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Chapter 1

General Introduction

If I were to describe the content of this thesis in only two words, they would be ‘passion

fruit’. Not only is the work described here the result of four years of passionate

work, but it really is the result of a marriage between two fields in biology, viz.

developmental biology and biophysics. In the following sections, relevant background

information on these two fields is given together with an explanation of how the two

merge into an interesting research project.

Figure 1.1: Four historical figures whose work provided the basis for an im-
portant part of this thesis. a) embryologist Karl Ernst von Baer (1792-1876),
b) evolutionist Ernst Haeckel (1834-1919), c) physicist Adolf Fick (1829-1901)
and d) physiologist August Krogh (1874-1949).

1



2 chapter 1

1.1 Developmental Biology

At the beginning of the 19th century, von Baer (Fig. 1.1) first observed a close re-

semblance among different vertebrates during early development and this idea was

popularized by Haeckel’s (Fig. 1.1) famous yet fraudulent drawings (Haeckel, 1877;

Richardson et al., 1997, 1998) (Fig. 1.2).

Figure 1.2: Haeckel’s famous drawings (Haeckel, 1877) are somewhat idealized
from reality to fit the theory. The drawings show the resemblance among
vertebrates during early embryonic development. According to Haeckel (1877),
the upper row represents a very early stage with gill slits and without bones,
the middle row represents a somewhat later stage with gill slits and the first
bone formation and the bottom row represents a still later stage with further
bone development and loss of the gill slits in all species but the fish. From
left to right, the embryos represent a teleost fish, salamander, turtle, chicken,
pig, cow, rabbit and a human. Enveloping and appending parts of the embryos
were not included in the drawings.

These drawings show human embryos to be similar to pig embryos, which greatly

upset the late 19th century society. But even today, Haeckel’s drawings keep disturb-

ing many minds. In 2001 a bill was drafted in the state of Arkansas, USA, to prohibit

the distribution of these drawings.

Haeckel’s ‘artist impression of vertebrate development’ was put in perspective
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by Richardson et al. (1997), who showed that vertebrate embryos are not virtually

identical during a so-called phylotypic stage, as Haeckel suggested (upper row in

Fig. 1.2). However, vertebrate development is characterized by a decrease in visible

phenotypic diversity in mid-embryonic stages (Richardson, 1999). This developmental

period of phenotypic similarity among vertebrates is known as the phylotypic period

(Richardson et al., 1997; Slack et al., 1993). It is during the phylotypic period that

organogenesis takes place and the basic vertebrate body plan is established (Duboule,

1994b).

The phylotypic period coincides with the expression of homeotic genes, encod-

ing positional information and segment identity (Raff, 1996). Because the homeotic

genes are very conserved among the vertebrates, their temporally colinear expression

pattern has been suggested as a cause of the phylotypic period (Duboule, 1994b).

The expression of homeotic genes during the phylotypic period provides an example

of phylogenetic constraints on vertebrate development.

1.2 Biophysics and Diffusion

All vertebrate embryos develop in a watery environment and besides phylogeny, the

ruling physical laws also constrain the developing embryos. If the embryo is small

enough, diffusion through the skin is sufficient to meet its oxygen demands. Growth

of the embryo, however, demands at some time the development of an internal oxygen

transport mechanism as diffusion through the skin alone is not sufficient anymore to

serve the increasing volume of cells. This is an example of a physical constraint on

vertebrate development.

The process of diffusion was first mathematically described by Fick’s (Fig. 1.1)

laws (Fick, 1855), based on Fourier’s equation for conduction of heat. Fick’s first

law describes stationary diffusion, while his second law (Fig. 1.3) incorporates time-

dependent changes in the diffusion process. Fick provided a basis for the quantitative

analysis of diffusion. While Fick considered diffusion to be an interesting physical

phenomenon, it was Krogh (Fig. 1.1) who first pointed out the relevance of diffusion

in biological phenomenona. In 1919, Krogh published a paper on the rate of diffusion

of gases through animal tissue. Warburg (1923) was the first to give a quantitative

description of oxygen diffusion into a tissue slice. In ‘The comparative physiology of

respiratory mechanisms ’, Krogh (1941) applied the physical description of diffusion

to biological situations and formulated the general conclusion that “...diffusion alone
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Figure 1.3: Reproduction from Fick’s original publication ‘Ueber Diffusion’
(Fick, 1855). The picture represents Fick’s second law of diffusion, in which y
is the concentration, t is time, k is the diffusion coefficient and x is distance.
Note that the minus sign is incorrect (when k is positive) as a decrease in the
oxygen gradient over a tissue slice (d2y/dx2 negative) leads to a decrease in the
oxygen concentration in that slice (dy/dt negative).

can provide sufficient oxygen only to organisms of 1 mm diameter or less...”. Other

examples of physical constraints in which diffusion plays a role are the distribution

of nutrients and the removal of waste products in early embryos.

1.3 Vascular Development

The phylotypic period is a characteristic feature of vertebrate development and pro-

vides an interesting subject for biophysical research. During the phylotypic period,

the circulatory system forms. This formation can be divided into two processes;

vasculogenesis and angiogenesis (Weinstein, 1999). Vasculogenesis can be defined

as “the differentiation of angioblasts from mesoderm and the formation of primitive

blood vessels from angioblasts at or near the site of their origin” (Risau and Flamme,

1995). This process of vasculogenesis results in the formation of primitive major

blood vessels and appears to be largely genetically determined (Weinstein, 1999).

Vasculogenesis is followed by “the vascularization of tissues as a result of sprout-

ing of new vessels from preexisting ones” which is defined as angiogenesis (Maltepe

and Simon, 1998; Risau and Flamme, 1995; Weinstein, 1999). The combination of

vasculogenesis and angiogenesis leads to a proper development of the early primitive

vessels into functional vascular networks. An increase in the relative importance of

angiogenesis in the functional development of the axial vessels can be observed from
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lower to higher vertebrates (Weinstein, 1999). In contrast to vasculogenesis, angio-

genesis is largely dependent on environmental cues such as local oxygen concentration

(Weinstein, 1999).

Prior to the development of a circulatory system, vertebrate embryos rely on dif-

fusion through the skin for their oxygen supply. In adult vertebrates, the circulatory

system plays an important role in the transport of oxygen to the respiring tissues.

The research described in this thesis investigates whether circulatory system develop-

ment in vertebrates is associated with reaching Krogh’s 1 mm limit. In other words:

does the circulatory system in vertebrates develop in order to instantly overcome oxy-

gen shortage in the growing embryo (physical constraint) or is its formation largely

determined by phylogenetic constraints (which might be physical constraints being

incorporated in the genome)? Other functions of the circulatory system (e.g. waste

removal, nutrient distribution) might provide other clues as to the proximate goal of

its development.

1.4 Thesis Outline

Chapter 2 was published in a special issue of the Netherlands Journal of Zoology,

entitled ‘Adaptation and integration in vertebrates’ (Neth.J.Zool. 50(2): 289-294) on

the occasion of the retirement of professor Jan W.M. Osse. That chapter gives further

background information on the phylotypic period and can be seen as an elaboration

of section 1.1.

In chapter 3 (published in the Journal of Theoretical Biology 204(1): 113-133)

embryos are represented as plane sheets, cylinders and spheres. Analytical models are

employed to describe oxygen diffusion and consumption in these geometrically simple

shapes. A distinction was made between a situation where the water around the em-

bryo is continuously being refreshed (running water) and a situation with completely

stagnant water. Maximum sizes could be predicted for the model embryos in both

situations and these theoretical predictions were compared to literature data of ac-

tual vertebrate embryos. As expected all embryos are smaller than the maximum size

allowed in running water. In stagnant water only two of the eight species considered

have lack of oxygen. Apparently, oxygen is not directly limiting size of vertebrate

embryos.

This conclusion gave rise to the idea that substances other than oxygen might

diffuse less easily through tissue and thus set tighter limits on the size and shape of a
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vertebrate embryo. In chapter 4 oxygen and nutrient diffusion was analyzed in a ze-

brafish embryo (Danio rerio) with a very early circulatory system, in a running water

situation. The embryo was represented as a one-dimensional stack of half cylinders

lying on top of a yolk mass. At the boundary between yolk and embryonic tissue,

an axial vessel was modelled. Nutrients could diffuse from the blood vessel into the

surrounding tissue, while oxygen could diffuse both from the surrounding water and

from the blood vessel into the surrounding tissue. This model showed oxygen not to

be a limiting factor for either height or length of the embryo. Nutrient concentration,

however, appeared to be much more constraining than oxygen concentration. In fact,

the predicted maximum height of the zebrafish embryo based on nutrient diffusion

was similar to the actual height of the animal.

So nutrient diffusion was predicted to constrain the size of a developing zebrafish

embryo, while oxygen diffusion was not. But in the analysis so far, embryos were

simplified to geometrically simple shapes and mainly running water situations were

analyzed. The next step was to investigate the effect of intermediate flow velocities

of the water around the embryo on the oxygen diffusion dynamics. Chapter 5 (pub-

lished in the Journal of Theoretical Biology 212(4), 521-533) gives an analysis of the

effects of forced convection on the maximum size and shape of embryos. In high flow

velocities (near running water, cf. chapter 3 and 4), a flattened shape appeared to be

the most favorable for oxygen uptake. When flow velocities are very small, however

(nearly stagnant water), a spherical shape appeared to be the most favorable for gas

exchange. This was a rather remarkable find, stressing the positive effect of movement

in the medium on oxygen supply to the non-spherical vertebrate embryos.

Chapter 6 (published in the Bulletin of Mathematical Biology 64(1), 175-207)

presents a general model of oxygen dynamics in small organism that includes the

main features of the models described in the previous chapters. It further includes

a more realistic concentration dependent oxygen consumption pattern of the embryo

and the possibility to analyze different (though still geometrically simple) shapes.

The main goal of this chapter was to give an overview of the analytical possibilities

in the investigation of oxygen dynamics. The main conclusions from the previous

chapters were supported by the more general model.

The main disadvantage of analytical diffusion models is the inaccurate represen-

tation of the embryo shape. This difficulty was solved in chapter 7, in which a nu-

merical model of the oxygen dynamics in a realistically shaped zebrafish embryo was
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developed. The model embryo consisted of yolk and respiring tissues. Oxygen diffu-

sion and consumption were simulated with a computer program, which yielded the

three-dimensional oxygen profile inside and around the embryo. The lowest oxygen

partial pressure was predicted in the head with a gradient of posteriorly increasing

pressure along the midline of the embryo. These predictions fit well with in vivo

micro-electrode oxygen measurements, after adjustment of the values assigned to the

model parameters. Furthermore, the oxygen permeability of embryonic tissues and

yolk was found to be higher than expected. This is very advantageous to the embryo

as oxygen can penetrate the respiring tissues relatively easily.

The expression of several endothelial growth factors (e.g. vegf ) is known to be

stimulated by hypoxia. In chapter 8 we compared the expression pattern of vegf in

zebrafish embryos raised under normoxic and hypoxic conditions. Furthermore, we

compared the expression pattern with a simulated three-dimensional oxygen partial

pressure profile. No consistent differences in the vegf expression pattern were found

between the hypoxic and normoxic group. This complies with the idea that early

vessel formation in zebrafish is largely genetically determined. The apparent sim-

ilarity between the vegf expression pattern and localization of low oxygen partial

pressure has yet to be investigated in more detail. The available evidence suggests

that diffusion constraints on early vascularization have been translated into genetic

instructions and as such been trapped in the genome.

In between the chapters of this thesis, three intermezzos give some background

information on a specific subject. Intermezzo I discusses briefly the history of the

diffusion coefficient. Intermezzo II provides a mathematical analysis of mass transfer

to a sphere in stokes flow and intermezzo III explains the difference between diffusivity

and solubility.
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Chapter 2

The Phylotypic Egg Timer1

Von Baer and Haeckel provided the basis of what came to be known as the phy-
lotypic egg timer: during their development vertebrate embryos pass through
a period in which they show the archetype of the vertebrate body plan. Dur-
ing this period vertebrate embryos are similar, in both form and morphogenic
processes taking place. The phylotypic egg timer has been explained using phy-
logenetic constraints on the mechanism of body plan formation. Physical laws
also pose constraints on embryonic variability. Fathoming these physical and
phylogenetic constraints gives us insight in the measure of freedom for variation
at a specific stage of vertebrate embryonic development.

2.1 Introduction

In his Entwicklungsgeschichte der Thiere, Von Baer (1828) published four empirical

laws of embryology: 1) common characters of a taxon develop earlier in ontogeny

than specialized ones, 2) specialized forms develop from more general ones, 3) every

embryo of a certain taxon diverges more and more from other taxa instead of going

through those other forms, 4) an embryo of a higher taxon never resembles (the adult

of) another taxon, though only its embryo. Von Baer argued that during ontogeny all

animals diverge from one of the four embranchements (radiates, molluscs, articulates

and vertebrates), defined in 1812 by Georges Cuvier. Although von Baer saw the

similarity among vertebrate embryos, he never accepted the concept of evolution, not

even after the publication of Darwin’s Origin of Species in 1859 (Raff, 1996). It was

Haeckel (1877) who combined the concept of evolution and the similarity among early

vertebrate embryos, which culminated in his recapitulation theory or biogenetic law

(Hall, 1992; Raff, 1996). With his four laws, von Baer already rejected the concept of

1Kranenbarg, S. (2000). Neth.J.Zool. 50, 289-294. Reproduced with permission of
Brill, Leiden.

9
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Figure 2.1: The phylotypic egg timer, modified after Duboule (1994b). On-
togeny progresses from bottom to top, while the width of the egg timer indicates
the amount of variation present at each stage. The egg- and blastula-stages
(lower half of the egg timer) are taken from Haeckel (1877). The embryos in
the magnifying glass are redrawn from Richardson et al. (1997) and show some
of the variation still present during the pharyngula period. Embryos in the
upper half of the figure are taken from Duboule (1994b), though they are orig-
inally published by Haeckel (1877). The fish larva on the left was not correctly
drawn by Haeckel.

recapitulation, which can be traced back until Aristotle’s (384 - 322 BC) Great Chain

of Being (Raff, 1996). In his Anthropogenie, Haeckel (1877) published a series of com-

parative drawings which show different vertebrates to develop from a nearly identical

“frühes Stadium mit Kiemenspalten, ohne Beine”. A citation from his Natürliche

Schöpfungs-Geschichte (Haeckel, 1902) might serve to illustrate the implications on

society of Haeckel’s theory and drawings: “Was sollen diese Edelleute noch von dem

Vollblut, das in ihren privilegirten Adern rollt, denken, wenn sie erfahren, dass alle

menschlichen Embryonen, adelige ebenso wie bürgerliche, während der ersten beiden

Monate der Entwicklung von den geschwänzten Embryonen des Hundes und anderer

Säugethiere kaum zu unterscheiden sind?” The developmental stage at which all ver-

tebrates look rather similar is commonly called the pharyngula stage (Ballard, 1976)

or phylotypic stage (Slack et al., 1993). It is the stage at which all vertebrates express
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the archetype of the vertebrate body plan (Duboule, 1994b).

2.2 The Phylotypic Egg Timer

Haeckel’s recapitulation theory has largely been rejected and it is nowadays believed

that phylogenetic divergence finds its origin in ontogenetic divergence. Early ontoge-

netic divergence is usually coupled to early common ancestors, while late ontogenetic

divergence points to the close phylogenetic relationship of the species compared. The

phylotypic stage of vertebrate development is not the earliest stage. In fact, stages

prior to the pharyngula stage show quite some variation among vertebrates (Raff,

1996), of which Haeckel was well aware (Table II and III in Haeckel (1877); Fig. 2.1).

This variation consists of, for example, differences in fertilization (Elinson, 1987),

differences in the origin of cells constituting the extraembryonic membranes (result-

ing from cleavage or not), the existence of holoblastic and meroblastic cleavage in

different groups of fish (Slack et al., 1993) and differences in migration patterns and

temporary structures among vertebrate classes (Ballard, 1976). This very early di-

vergence followed by a more or less common stage is very interesting since we would

expect a common early ontogeny followed by (relatively late) divergence. Apparently,

stages prior to and after the phylotypic stage are more variable in an evolutionary

sense than the phylotypic stage itself. This idea has been metaphorised as ‘the phy-

lotypic egg-timer’ (Duboule, 1994b), ‘the developmental hourglass’ (Raff, 1996) or

‘the evolutionary hourglass’ (Richardson et al., 1997). Recently, Richardson (1995)

showed that heterochrony has shifted the developmental timing of structures in differ-

ent vertebrates and that it would be more appropriate to speak of a phylotypic period

instead of phylotypic stage (Fig. 2.1). The apparent variety in body size during the

phylotypic period, led Richardson et al. (1997, 1998) to conclude that “differences

between species become more apparent at late stages” (cf. Von Baer (1828)), though

vertebrates are not virtually identical at earlier stages. Hox genes (homeobox genes

that are organized in four vertebrate clusters of hox genes) play an important role

in the proper organization of the vertebrate body plan, which takes place during the

phylotypic period (Duboule, 1994b,a; Raff, 1996). There is a striking similarity in

hox gene expression along the anterior-posterior axis among (and even beyond) all

members of the subphylum. Hox genes are activated in a temporal sequence colinear

with their position in the cluster (temporal colinearity; Fig. 2.1; Duboule (1994b)).

The organisation of hox genes in clusters remains fairly constant among vertebrates.
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This results in low flexibility of hox gene expression patterns, which might be coupled

with the small window for variation in the phylotypic period (Duboule, 1994b). Be-

sides hox genes, many other genes and induction sequences show striking similarities

in all vertebrates. Examples are the growth factors involved in mesoderm induction,

the genes of the organizer and the axial expressed genes involved in neurulation.

Raff et al. (1991) argue that in early (i.e. pre-phylotypic) stages only few inductive

processes take place and redundancy is omnipresent. During the phylotypic period,

many global interactions take place and any real change in morphogenesis would be

lethal. After the pharyngula period, there are many inductive interactions, but they

are primarily local and changes are no longer necessarily lethal. This lack of evolu-

tionary flexibility during a certain period of development may be an explanation for

the existence of the phylotypic egg timer. Besides constraints on embryonic devel-

opment that originated from mechanisms of gene expression or induction sequences

during evolution (phylogenetic constraints), physical laws might also constrain em-

bryonic development and consequently play a role in explaining the existence of the

phylotypic egg-timer (Gilbert, 1991). All embryos are subject to a physical environ-

ment, which poses constraints on their development. The laws of hydrodynamics,

for example, demand the developing heart to be attuned to the developing vessels

for the blood to be pumped around properly. In addition, Fick’s laws of diffusion

might demand the development of a circulatory system at a certain size. Vertebrate

embryos before the phylotypic period solely depend on diffusion for their internal

oxygen distribution, since no circulatory system has developed yet. One can imagine

that organisms that solely depend on diffusion for distributing oxygen inside their

body cannot grow infinitely large. In fact, the constraints on size by the laws of dif-

fusion are probably the reason why insects do not grow bigger and why flatworms are

flat (McNeill Alexander, 1971; Krogh, 1941). We constructed a quantitative model

(Kranenbarg et al., 2000) describing diffusion of oxygen into embryos and with this

model and literature values for the relevant input parameters, we were able to pre-

dict maximum allowed size of vertebrate embryos without a circulatory system. We

found indeed that in two of the species considered (Cyprinus carpio (common carp)

and Clarias gariepinus (African catfish)) the theoretical occurrence of oxygen short-

age (when maximum size is reached) coincided with the first heart beat. In other

species a circulatory system develops much earlier than the theoretical occurrence

of oxygen shortage, so we hypothesized that other constraining factors (e.g. nutrient
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distribution, removal of waste products) might demand the development of a cir-

culatory system. Further modelling and experimentation should elucidate whether

these other possible physical constraints play an important role in circulatory sys-

tem development or whether phylogenetic constraints entirely rule the development

of such a system. Unravelling physical and phylogenetic constraints will result in a

lot of insight in the actual mechanisms of developmental processes and the measure

of freedom involved and might eventually explain why all members of the subphylum

Vertebrata go through a phylotypic period.
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Intermezzo I - A Brief History of
the Diffusion Coefficient

In 1855, Fick was the first to quantitatively describe the process of diffusion. His de-

scription is based on the hypothesis that the rate of transfer of a diffusing substance

through a unit area of section is proportional to the solute concentration gradient.

Fick used the factor k as a proportionality factor, or “eine von der Natur der Sub-

stanzen abhängige Constante”. This relation came to be known as Fick’s first law of

diffusion. With this hypothesis, Fick quantitatively described time-dependent changes

in a solute concentration in what now is known as Fick’s second law of diffusion. Fick

determined the value of k for diffusion of sodium chloride in water. The S.I. unit of

this factor k is m2/s.

In his 1897 publication on diffusion of gases in water, Hüffner used the term diffu-

sion coefficient for the factor k and described it as “einen die specifische Geschwindigkeit

der betreffenden Gasmolecüle ausdrückenden Factor”. He defined the diffusion coef-

ficient as the volume of gas diffusing through unit area and over unit thickness per

unit time under unit pressure difference, divided by the absorption coefficient for the

gas in question. As in Fick’s paper, the S.I. unit of the diffusion coefficient is m2/s.

In 1919, Krogh realized that the absorption coefficients for gases in tissue are

generally unknown and defined a diffusion constant as the volume of gas diffusing

through unit area and over unit thickness per unit time under unit pressure difference.

He did not use a symbol to describe the diffusion constant. Values for the Krogh

diffusion constant are expressed in m2/(Pa s) or its equivalent.

In his 1923 paper on oxygen diffusion into tissue slices, Warburg introduces the

symbol D for the Krogh diffusion constant. Subsequently, in 1927, Fenn uses the same

symbol for the diffusion constant in his work on oxygen diffusion into frog nerves. In

1928 however, in quoting Fenn’s 1927 paper, Harvey used the term diffusion coefficient

instead of constant and erroneously omitted the factor time from its definition.

15
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In 1931, Gerard was the first to apply Fick’s diffusion theory including the ‘true’

diffusion coefficient D (in m2/s) to oxygen diffusion into cells. Then, in contrast with

his 1919 publication, Krogh also used the symbol D to describe the diffusion coefficient

in his book on the comparative physiology of respiratory mechanisms, published in

1941. Yet he persisted in the unit m2/Pa s for his diffusion coefficient.

Up to and including the work of Krogh, diffusion of gases in tissue has experi-

mentally been investigated only in equilibrium situations. In 1962, Grote and Thews

acknowledged the essential dependency of time-dependent diffusion processes on the

value of the ‘true’ diffusion coefficient D in m2/s, defined in 1855 by Fick. They

measured the value of the ‘true’ diffusion coefficient for the first time in heart tis-

sue, thereby enabling the application of Fick’s second law to the diffusion of gases in

animal tissue.

In accordance with Millington (1955) and to prevent further confusion, it would

seem clear to define a ‘true’ diffusion coefficient D with dimensions m2/s to describe

time-dependent diffusion processes.

∂c

∂t
= D

(
∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2

)
(I.1)

in which c is the local solute concentration, t is time and x, y and z are the 3

dimensions in which diffusion takes place.

In describing diffusive equilibrium situations in only one dimension, the ‘true’

diffusion coefficient D (in m2/s) can be used in conjunction with concentration of the

diffusing substance,

FD = −D
dc

dx
(I.2)

where FD is the rate of transfer in the x-direction through unit area of section (in

kg/(m2 s)), D is the ‘true’ diffusion coefficient and c is the concentration of the

diffusing substance. Alternatively, the Krogh diffusion constant K, or permeability,

in m2/(Pa s) can be used in conjunction with partial pressure of the diffusing gas,

FK = −K
dp

dx
(I.3)

where FK is again the rate of transfer, though now in m3/(m2 s), K is the Krogh

diffusion constant and p is the partial pressure of the diffusing gas. The ‘true’ diffusion

coefficient and the Krogh diffusion constant are interrelated by the Bunsen solubility

coefficient:

K = αBD (I.4)
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where αB is the Bunsen solubility coefficient of the gas in question (in milliliters of

gas at STPD dissolved per milliliter liquid at a partial pressure of one atmosphere,

Altmann and Dittmer (1971)).
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Chapter 3

Physical Constraints on Body Size
in Teleost Embryos1

All members of the subphylum ‘Vertebrata’ display the characteristics of the
vertebrate body plan. These characteristics become apparent during the phy-
lotypic period, in which all vertebrate embryos have a similar body shape and
internal organization. Phylogenetic constraints probably limit the morpholog-
ical variation during the phylotypic period. Physical laws, however, also limit
growth and morphogenesis in embryos. We investigated to what extent oxygen
availability - as a physical constraint - might limit morphological variation dur-
ing embryonic development. This paper gives an analysis of time-dependent
diffusion into spherical embryos without a circulatory system. Equilibrium ap-
peared to settle in about 1.5 mins in running water and in about 10 mins in
stagnant water. Hence, steady state conditions were assumed and expressions
for maximum body size were obtained for spherical, cylindrical and sheet-like
embryos in running water and spherical embryos in stagnant water. Predic-
tions of the model based on literature data suggest that in running water –
both for spherical, cylindrical and sheet-like embryos - diffusion alone suffices
to cover the oxygen needs of a teleost embryo in its phylotypic period. The size
of carp (Cyprinus carpio) and African catfish (Clarias gariepinus) embryos is
very close to the predicted maximum. This suggests that in these species the
development of a functional circulatory system is correlated with the onset of
oxygen shortage. Oxygen availability is therefore a potentially important physi-
cal constraint on embryonic morphology, though in most species the circulatory
system becomes functional well in advance of the onset of oxygen shortage and
other demands than oxygen delivery (e.g. nutrient distribution, waste disposal,
osmoregulation) might require the development of a circulatory system.

3.1 Introduction

McFarland et al. (1979) hypothesize the existence of an ancestral vertebrate and thus

1Kranenbarg, S., Muller, M., Gielen, J.L.W. and Verhagen, J.H.G. (2000). J. Theor.
Biol. 204(1), 113-133. Reproduced with permission of Academic Press.
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the subphylum Vertebrata to be monophyletic. The body plan of this hypothetical

ancestral vertebrate essentially is a bilateral symmetric, cephalized, tube-within-a-

tube arrangement. Variations on this typically vertebrate body plan have led to the

different taxa, found within the subphylum Vertebrata today.

Despite this variation, the basic body plan can still be recognized in all species,

especially in embryonic and larval stages. Among all members of the subphylum a

developmental stage is found which shows considerable similarity in morphology and

anatomy (Duboule, 1994b; Elinson, 1987; Haeckel, 1877; Von Baer, 1828; Wolpert,

1991). It is commonly called the pharyngula stage (Ballard, 1976) or phylotypic stage

(Slack et al., 1993). Richardson (1995) and Richardson et al. (1997, 1998) showed

that also during the phylotypic stage some morphological variation is present between

members of the Vertebrata and argued that in this respect the phylotypic stage is

better described as a phylotypic period, which we will adopt in this paper.

The genetic and molecular mechanisms acting at developmental stages prior to

and during the phylotypic period are highly comparable among different vertebrates

(e.g. Harvey (1996). The pre-phylotypic stages, however, show considerable mor-

phological variation (cf. different types of cleavage and gastrulation among different

vertebrate classes) (Gilbert, 1994). Different selection pressures from the completely

different environments in which vertebrate eggs develop (e.g. water versus land), have

probably been instrumental in the evolution of very diverse ways of pre-phylotypic

embryonic development.

Realization of the vertebrate body plan requires many inductive interactions which

take place throughout the embryonic soma. This may have limited the morphological

variation of the phylotypic period, during which organogenesis takes place. After

the pharyngula period there are many, though primarily local, inductive interactions,

posing no large constraints on variation in general morphology (Gilbert, 1994).

Besides these phylogenetic constraints, physical laws might also directly limit the

amount of morphological variation in developing organisms (Gilbert, 1994). Early

embryonic stages can only be provided with oxygen by means of diffusion. The pro-

cess of diffusion, described by Fick’s laws, limits the maximum body size of these

embryonic stages. The development of a circulatory system can overcome these con-

straints. In this paper we intend to test the hypothesis that oxygen is a limiting factor

in early embryonic development and that a circulatory system develops to overcome

these limitations.
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Models of diffusion into sheet-like, cylindrical and spherical tissue or cells date

back to Warburg (1923; liver slices), Fenn (1927; frog nerves) and Harvey (1928;

bacteria), respectively. All these authors modelled oxygen diffusion independent of

time (Fick’s first law of diffusion). The biological implications of the equations were

reviewed by Krogh (1941), McNeill Alexander (1971) and Graham (1988). Fick’s first

law of diffusion was also used by e.g. Daykin (1965), Lee and Strathmann (1998),

Seymour (1994), Seymour and Bradford (1995), Strathmann and Chaffee (1984), and

Woods (1999) to describe oxygen diffusion into spherical organisms. Fick’s first law

of diffusion, however, does not take into account any changes in oxygen concentration

over time and therefore implies an equilibrium situation. In the present paper we

give an analysis of diffusion into spheres based on Fick’s second law of diffusion,

thus allowing changes in oxygen concentration over time. By analyzing the transient

effects (time-dependent changes in oxygen concentration), we try to estimate their

relative importance in models of oxygen diffusion into spherical organisms.

Weihs (1980) also modelled time-dependent oxygen diffusion into embryos, though

he assumed a vascular system to distribute oxygen inside the embryo. Since we

are interested in the constraints posed on embryos without a circulatory system, we

included internal diffusion of oxygen as part of our model.

After analyzing the transient effects of diffusion, we apply the model to oxygen

diffusion into pharyngulae of teleosts. Literature data of embryos of different species

are fed into the model. The calculations lead to theoretical constraints on body

size of these embryos if they were to rely solely on passive diffusion for their oxygen

supply. These predictions are compared with the actual dimensions of embryos and

similarities as well as discrepancies between theory and reality are discussed.

3.2 Model

(for abbreviations, see Appendix A)

3.2.1 Assumptions

To reduce mathematical complexity a number of assumptions are made in our model:

(1) In our model a teleost embryo is represented by a homogenous oxygen consuming

sphere, cylinder or plane sheet of fixed size, surrounded by a watery fluid. The actual
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shape of the embryo is likely to be somewhere in between. (2) We only consider radi-

ally directed diffusion. (3) The egg capsule surrounding the embryo is assumed to have

neither a facilitating nor an impeding effect on diffusion of oxygen from the surround-

ing water to the embryonic tissues (Berezovsky et al., 1979; Rombough, 1988), though

see discussion. (4) The volume-specific oxygen consumption, i.e. oxygen consumption

of the embryos per unit volume of respiring tissues, is assumed to be constant, both

throughout the embryo and throughout ontogeny (Balinsky, 1975; Rombough, 1998).

This simplification also implies that oxygen consumption is independent of oxygen

concentration, as long as the concentration gradient is large enough to provide a suf-

ficient diffusive flow to meet the consumption requirements. Below a certain value

of the ambient oxygen concentration, a large enough concentration gradient cannot

be maintained anymore and the embryo is said to be unable to survive below this

ambient concentration.

3.2.2 Oxygen diffusion into embryos living in running water

In running water the oxygen concentration at the body surface of an organism is

assumed to equal the free water concentration. The governing equation is a partial

differential equation describing the change in oxygen concentration inside the embryo

as a function of place and time (Fick’s second law of diffusion, Appendix B). The

total body surface of an organism without a circulatory system is involved in taking

up oxygen. First, we will solve Fick’s second law for a spherical organism.

According to Fick’s first law of diffusion,

J = DA
dc

dr
= D4πr2 dc

dr
(3.1)

[where J = oxygen flow, D = diffusion coefficient, A = surface area; 4πr2 for a sphere,

c = oxygen concentration, r = distance from the center of the sphere (co-ordinate)],

oxygen flows from high to low concentrations with a rate proportional to the existing

concentration difference. A net flow of oxygen leads to a proportional increase in

oxygen concentration. Therefore, differentiating equation 3.1 with respect to r gives

the rise in oxygen concentration at distance r from the center of the sphere due to

the net inflow of oxygen at the concentric shell with radius r. Dividing by the surface

area of this concentric shell (4πr2) gives the rise in oxygen concentration in a point

with radius r. In the following equation, we subtracted the term m, to account for

consumption of oxygen by the sphere and Fick’s second law of diffusion for a sphere
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becomes:

∂c

∂t
=

D

r2

∂

∂r

(
r2 ∂c

∂r

)
−m (3.2)

(where t = time, m = volume-specific oxygen consumption).

In order to solve this general partial differential equation, we specify it by the fol-

lowing boundary conditions (BC) and initial condition (IC): no oxygen is transported

at the center of the sphere (BC1; horizontal tangent to the oxygen concentration pro-

file at r = 0 in Fig. 3.1), oxygen concentration at the body surface equals the free

water concentration (BC2; Figs. 3.1 A, C and E) and oxygen concentration outside

the embryo equals the (constant) initial oxygen concentration (by definition C∞) in-

side the embryo (IC). Appendix B gives a complete derivation of the solution to the

partial differential equation and Figs. 3.1 A, C and E give a graphical representation.

Oxygen starvation will start at the center of the embryo. The oxygen concentra-

tion at the center can be described by the following equation:

c(0, t) = C∞ − mR2

6De

+
2mR2

De

∞∑
n=1

(−1)n+1

n2π2
e−n2π2 Det

R2 (3.3)

in which c(0,t) = oxygen concentration at the center of the embryo as a function of

time, C∞ = free water oxygen concentration, R = radius of the embryo, De = oxygen

diffusion coefficient of embryonic tissues, n = integer. In this equation a steady state

part (first two terms of the right-hand side) and a transient part (last term of the

right-hand side) are recognized. The transient part smoothly decreases to zero for

time t approaches infinity. Therefore oxygen starvation will never occur in running

water if mR2 ≤ 6DeC∞, as is the case in Figs. 3.1 A and C. The maximum radius of

a spherical embryo without a circulatory system and living in running water, can be

written as:

Rmax =

√
6DeC∞

m
or

V

A
=

√
2DeC∞

3m
(3.4)

where V = volume of the sphere and A = surface area of the sphere (cf. Harvey

(1928)).

Thus the size of an embryo that solely depends on diffusion from the surrounding

water for its oxygen supply will be limited by the oxygen concentration of the free

water, the oxygen diffusion coefficient and its volume-specific oxygen consumption.
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Figure 3.1: Schematic representation of the two models of a spherical embryo
described in this paper. Oxygen concentration is plotted against distance from
the center of the embryo in all six graphs. Rmax represents the maximum
radius of the organism (cf. equations 3.4 and 3.9) and R represents the actual
radius of the organism. The left row of graphs represents different situations
in running water and the right row represents equivalent situations in stagnant
water. Note that the maximum radius in running water is 1.29 (

√
5/9) times

as large as in stagnant water. A and B show the oxygen concentration profile
in a steady state situation for running (A) and stagnant (B) water conditions,
where R = 1

2Rmax. In this example, the oxygen concentration at the center of
the embryo will stabilize at 0.75C∞ in the stagnant water situation and at the
body surface, the oxygen concentration stabilizes at 0.9C∞.

caption continues on next page1
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For embryos larger than this maximum volume, the moment of time after which

oxygen starvation starts (ts) is obtained by putting c(0, t) = 0 in equation 3.3 and iter-

atively evaluating different t-values with the help of a computer programme (Fig. 3.1

E and Fig. 3.4).

Further analysis of equation 3.3 shows that the time in which the first 90%

of the drop in oxygen concentration from initial to equilibrium situation can be

(over)estimated by (see Appendix B):

t = − R2

π2De

ln

(
π2

120

)
=

0.25R2

De

(3.5)

For spherical embryos with a radius of about 0.5 mm and a diffusion coefficient of

6.55 10−10 m2s−1 (equal to that of frog muscle; 20�) this results in a time of about

1.5 mins. Since equilibrium appears to settle very quickly (cf. cell cycle in cleaving

zebrafish embryo of 15 mins), the oxygen profile inside the embryo can be regarded

as being in a steady state.

By extrapolating the steady state principle to cylindrical and sheet-like organisms,

equivalent formulae for their maximum sizes are easily obtained by solving Fick’s first

law of diffusion. For a cylinder we obtain (cf. Fenn (1927)):

Rmax =

√
4DeC∞

m
or

V

A
=

√
DeC∞

m
(3.6)

and for a plane sheet we obtain (cf. Warburg (1923)):

Rmax =

√
2DeC∞

m
or

V

A
=

√
2DeC∞

m
(3.7)

It can be seen that when embryos are modelled as spheres, cylinders or plane sheets,

maximum radii are in the proportion of
√

6 :
√

4 :
√

2, respectively. The result for the

actual shape of an embryo is likely to be somewhere in between (Rappoldt, 1992).

1In running water, the oxygen concentration outside the embryo remains constant (A,
C and E), while a diffusion boundary layer will form outside the embryo in stagnant water
(B, D and F). C and D show the steady-state oxygen distribution in running and stagnant
water, respectively, where R = Rmax. The oxygen concentration at the center of the embryo
stabilizes at 0. In stagnant water, the oxygen concentration at the skin surface stabilizes
at 0.6C∞. E and F show the decrease in oxygen concentration, indicated by the arrows,
for running and stagnant water, respectively, where R = 2Rmax, until the concentration
at the center of the embryo becomes zero (at t = ts) and the embryo dies. Note the slight
difference in inclination angle of the tangent to the inside and outside concentration profile
at the body surface (B, D and F), caused by the different diffusion coefficients of oxygen in
embryonic tissues and water.
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3.2.3 Oxygen diffusion into embryos living in stagnant water

If an animal lives in stagnant water, the oxygen concentration at the body surface does

not equal the free water concentration anymore, because a diffusion boundary layer

will form. The governing equations now constitute a set of two partial differential

equations; one describing the change in oxygen concentration inside the embryo and

one describing the change in oxygen concentration outside the embryo, both as a

function of place and time as described by Fick’s second law of diffusion.

Again, in order to solve the two partial differential equations for a spherical or-

ganism, we specify and bind them together by the following boundary and initial

conditions: no oxygen is transported at the center of the embryo (BC1; horizontal

tangent to the oxygen concentration profile at r = 0 in Fig. 3.1), oxygen concen-

tration at the surface of the embryo is equal for both partial differential equations

(BC2), the same holds true for oxygen transport over the body surface (BC3) and

the oxygen concentration equals the free water concentration at infinite distance from

the embryo (BC4; Figs. 3.1 B, D and F). Furthermore, the (constant) initial oxygen

concentration outside the embryo equals the (constant) initial oxygen concentration

inside the embryo and both are equal to the free water oxygen concentration (IC).

In Appendix B a complete derivation of the solution to this set of partial differential

equations can be found. Figs. 3.1 B, D and F give a graphical representation of the

solution.

As already mentioned before, oxygen starvation will start at the center of the

embryo and for this case the oxygen concentration at the center of the organism can

be described by the following equation:

c(0, t) = C∞ −mR2 2De + Dw

6DeDw

+
m

π

∫ ∞

0

e−xt

x

×
√

DwDeR
2 sin

(
R
√

x√
De

)
−√DwR3

√
x cos

(
R
√

x√
De

)

DwR2x sin2
(

R
√

x√
De

)
+

[
(Dw −De) sin

(
R
√

x√
De

)
+ R

√
De

√
x cos

(
R
√

x√
De

)]2 dx (3.8)

in which x = integration variable.

In this equation again a steady state part (first two terms of the right-hand side)

and a transient part (last term of the right-hand side) can be recognized. The transient

part smoothly decreases to zero for time t approaches infinity. Therefore, oxygen

starvation will never occur in stagnant water if mR2 ≤ 6DeDwC∞/(2De + Dw), as is
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the case in Figs. 3.1 B and D and

Rmax =

√
6DeDwC∞

(2De + Dw)m
or

V

A
=

√
2DeDwC∞

(2De + Dw)3m
(3.9)

cf. Lee and Strathmann (1998).

If this condition is not met, the moment of time t after which oxygen starvation

starts (ts) is obtained by putting c(0, t) = 0 in equation 3.8, analogous to the running

water situation (Fig. 3.1 F).

For relatively large values of t (see Fig. 3.2), equation 3.8 can be approximated

by:

c(0, τ) = C∞ −mR2 2De + Dw

6DeDw

+
2mR2

√
DeDw

3πDw
2

∫ ∞

0

e−y2τdy (3.10)

where τ = Det/R
2 and y =

√
xR2/De.

Equation 3.10 can be solved to give the time in which the central oxygen concen-

tration reaches a value 10% of the difference between initial and equilibrium concen-

tration above its equilibrium value (see Appendix B; equation 3.55):

t =
5.0R2

Dw

(3.11)

cf. Byatt-Smith et al. (1991). Note that m and C∞ disappeared from the equation

[cf. equation 3.5], due to the fact that we calculate when the oxygen concentration

reaches a value close to the equilibrium instead of calculating when an absolute value

is reached (see Appendix B). For the same embryo used in the running water case

(Dw = 1.96 × 10−9 m2 s−1), equilibrium will have settled in about 10 mins (cf. 5-10

mins to electrode stabilization in oxygen diffusion boundary layer measurements by

Rombough (1998)). The time of 10 mins is in the order of two thirds of a cell cycle

(Kimmel et al., 1995). The oxygen profile in stagnant water can therefore also be

considered to be in equilibrium.

Rewriting Fick’s first law of diffusion for a cylinder shows that the concentration

profile outside the embryo is described by a ln-function (du/dr = R2m/2Dwr) and

for a sheet, the profile is described by a straight line (du/dr = Rm/Dw). Both these

functions never reach a maximum value for r →∞ and therefore, no steady state can

be calculated for a cylinder or a sheet (integration constants become infinitely large,

cf. Lee and Strathmann (1998)).

The thickness of the diffusion boundary layer (Berezovsky et al., 1979; Pinder and

Friet, 1994; Rombough, 1998) is defined as the distance from the skin surface to the
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Figure 3.2: Graphical representation of the validation for simplifying equa-
tion 3.50. Each line represents the percentual difference between values of the
actual and simplified integrals for a range of tau (τ) values. The value of the
actual integral (I) was calculated using the Rhomberg method, while the sim-
plified integral (II) was calculated analytically. The difference between the two
values was converted to a percentage of the actual value (I). A diffusion coef-
ficient of 10−9 m s−2 was assumed in the calculations. The four different lines
represent different values of d, where De = dDw. It can be seen that for the
value of d we use (0.33), the error of the simplified integral is less than 5% (grey
area) if approximately, τ ≥ 1, i.e. t ≥ R2/De.

I = 3Dw
2

∫ ∞

0

e−y2τ

y

sin y − y cos y

DeDwy2 sin2 y + [(Dw −De) sin y + Dey cos y]2
dy

II =
∫ ∞

0
e−y2τdy.

point where the oxygen concentration has reached pδ% of the free water concentra-

tion. For the ratio of theoretical diffusion boundary layer thickness and theoretical

maximum radius of a spherical organism, we can write (see Appendix B):

δ

Rmax

= − 0.4

1− 0.01pδ

− 1 (3.12)
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in which δ = diffusion boundary layer thickness. If we define pδ to be 95% of the free

water oxygen concentration, it can be calculated from equation 3.12 that the diffusion

boundary layer thickness is seven times the maximum radius of the animal.

3.3 Parameter Values and Predictions on Morpho-

genesis

Values of the input parameters are based on literature data. Diffusion coeffi-

cients for oxygen in water were calculated according to equation 3.13 (Van Stroe and

Janssen, 1993), where salinity was not taken into account:

Dw = 3.051× 10−6e−17900/8.314Tk (3.13)

in which Tk = temperature in K; see Appendix A. According to Graham (1988), the

diffusion coefficient of oxygen in sea water is about 8% smaller than in fresh water

at 20�. The diffusion coefficient of oxygen in embryonic tissue is likely to be close

to that of other soft animal tissue (McNeill Alexander, 1971; Krogh, 1941). Values

for frog muscle, frog and dog connective tissue are all about one third of that for the

diffusion of oxygen in pure water. Therefore, De is taken to be 33% of that in water.

Free water oxygen concentration at different temperatures was determined after

a polynomial regression of data from Golterman et al. (1978), who gave solubility of

oxygen in water in equilibrium with air at 760 mm Hg and 100% relative humidity:

C∞ = 2.1753− 0.020796Tk + 6.686× 10−5Tk
2 − 7.2074× 10−8Tk

3 (3.14)

Graham (1988) gives a value for the oxygen content of sea water about 20% lower

than that for fresh water at 20�.

Table 3.1 gives literature values of the input parameters of the model, calculated

values for diffusion coefficients and oxygen concentration and predictions on body

size of 8 different teleost species. The predictions in Table 3.1 are in part based on

equations 3.13 and 3.14, thus neglecting the effects of salinity. The effects of salinity

on predicted body size are evaluated in the discussion.

Oxygen consumption of common carp (Cyprinus carpio) and zebrafish (Danio re-

rio) was measured per animal only (Kaushik et al., 1982; Skidmore, 1967). In order

to calculate the volume-specific oxygen consumption of these species, the volume of
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Table 3.1: Values of oxygen concentration (C∞), temperature (T ), diffusion coefficients of
oxygen in embryonic tissue (De) and water (Dw), oxygen consumption (m), weight (W ,
either dry weight, DW or wet weight WW ), volume (V ), surface area (A), actual volume-
to-surface ratios and predicted volume-to-surface ratios (V/A) for a sheet, cylinder and
sphere.
Species stage C∞ T De Dw m

×10−3 � ×10−10 ×10−9 original value

Winter flounder
Pseudopleuronectes
americanusa

hatch 12.2 6.5 4.59 1.38 0.016j µl (egg h)−1

Plaice
Pleuronectes platessab hatch 11.2 10 5.05 1.52 0.2k µl (egg h)−1

Herring
Clupea harengusc hatch 10.5 13 5.47 1.64 3k µl (24 h org)−1

Largemouth bass
Micropterus salmoidesd hatch 9.00 20 6.55 1.96 0.022l µg (mg min)−1

Common carp
Cyprinus carpioe

first
circ. 9.00 20 6.55 1.96 0.685k mg(1000

fish h)−1

African catfish
Clarias gariepinusf hatch∗ 8.66 22 6.88 2.06 0.53k mm3 (ind h)−1

African catfish
Clarias gariepinusf hatch∗ 8.19 25 7.41 2.22 0.43k mm3 (ind h)−1

Zebrafish
Danio reriog

first
circ. 8.19 25 7.41 2.22 0.072m µl (fish h)−1

African catfish
Clarias gariepinush hatch∗ 7.76 28 7.96 2.39 917.2m nmol(mg

DW h)−1

African catfish
Clarias gariepinusf hatch∗ 7.76 28 7.96 2.39 0.33k mm3 (ind h)−1

Rabbitfish
Siganus randallii

hatch 7.76 28 7.96 2.39 0.0805k µg (ind h)−1

a Cetta and Capuzzo (1982).
b deSilva and Tytler (1973).
c Eldridge et al. (1977).
d Spoor (1977).
e Kaushik et al. (1982).
f Kamler et al. (1994).
g Skidmore (1967).
h Conceição (unpubl. data).
i Nelson and Wilkins (1994).
j Extrapolated from values in text.
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W V m A V/A V/A sphere

original value mm3 kg m−3s−1 mm2 act. sheet cyl. runn. stagn.

13.1m µg DW 0.13 4.8×10−5 2.3 0.056 0.48 0.34 0.28 0.22

0.047n mg DW 0.47 1.7×10−4 5.4 0.087 0.26 0.18 0.15 0.12

116k µg DW 1.16 4.3×10−5 9.9 0.12 0.52 0.37 0.30 0.23

0.76l mg WW 0.76 3.7×10−4 7.5 0.10 0.18 0.12 0.10 0.078r

0.17p 1.1×10−3 2.8 0.062 0.10 0.073 0.060r 0.038r

47.4m µg DW 0.47 4.4×10−4 5.4 0.087 0.16 0.12 0.10 0.073r

45.2m µg DW 0.45 3.8×10−4 5.3 0.085 0.18 0.13 0.10 0.080

0.07q 4.1×10−4 1.5 0.046 0.17 0.12 0.10 0.078

0.041m mg DW 0.41 8.2×10−4 5.0 0.082 0.12 0.087 0.071r 0.055r

32.9m µg DW 0.33 4.0×10−4 4.3 0.077 0.18 0.13 0.10 0.080

0.008o mgDW 0.08 2.8×10−4 1.7 0.048 0.21 0.15 0.12 0.094

k Read from graph.
l Extrapolated from table.
m Read from table.
n Calculated from data on egg-specific and mass-specific m.
o Read from graph and calculated by subtracting yolk volume.
p Volume estimated from scaled drawings in Neudecker (1976).
q Volume estimated from scaled drawings in Kimmel et al. (1995).
r Indicates predicted maximum body sizes smaller than the actual ones.
∗ Hatching coincides with appearance of fully functional circulatory system (Zaki and

Abdula, 1983).
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the embryonic tissues was estimated from scaled drawings in Neudecker (1976) and

Kimmel et al. (1995), respectively. Subsequently, oxygen consumption per animal

was divided by the volume of respiring tissues. Whenever literature data on oxygen

consumption was given on a dry weight basis, a dry weight percentage of 10 was as-

sumed to convert dry weight to wet weight (Finn et al., 1991). A density of embryonic

tissues of 103 kg m−3 was assumed to convert mass to volume.

The values of the volume-specific oxygen consumption are based on the volume

of respiring tissue only (so excluding yolk, perivitelline fluid and egg-capsule). In

order to be able to convert embryonic size and shape to a volume to surface ratio, we

needed to obtain both volume and surface area of the respiring tissues. The volume

was obtained as mentioned in the previous paragraph. To our knowledge, the only

references that give surface area of early teleost larvae in some detail, are Rombough

and Moroz (1990) and Rombough (1998). Rombough (1998) gives head and trunk

area of newly hatched rainbow trout (Oncorhynchus mykiss). In order to be able to

calculate volume to surface ratios for the species in Table 3.1, we assumed area to

relate to volume to the power 0.67 (and thus we assumed the species in Table 3.1 to be

isomorphic to the newly hatched Oncorhynchus larvae). This resulted in the following

relation to calculate surface area from volume for embryos in their pharyngula period:

A = 9.0V 0.67 (3.15)

To give a preliminary validation of this model, we measured the volume to surface

ratio of a zebrafish embryo in its pharyngula period (33 hpf), using the ellipse method

as described by Drost and Van den Boogaart (1986). Using a digitizer tablet and a

computer program, the embryo, as defined by a lateral and dorsal view (from Kimmel

et al. (1995)) is converted to a series of ellipses describing its contour. The volume

of the embryo is the integral of the area of the ellipses over the length of the embryo.

The mean area of the ellipses was used as the base of a cylinder with a length equal

to that of the embryo and the total surface area was taken as the surface area of the

embryo. This approximate method yielded the relation A = 8.65V 0.67, which was

interpreted as a confirmation of equation 3.15.

As we are interested in the possible physical needs for an active oxygen transport

system, data were taken - when available - at the stage where blood could first be

seen to circulate through the vessels (‘first circulation’). In species indicated by an

asterisk (*) in Table 3.1, hatching coincides with ‘first circulation’. If data of the

‘first circulation’ stage were not available, data of the hatching stage were taken.
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Since blood typically begins to circulate by about 40% of the way through embryonic

development (Rombough, pers. comm.), the actual volume to surface ratios at the

‘first circulation’ stage of winter flounder (Pseudopleuronectes americanus), plaice

(Pleuronectes platessa), herring (Clupea harengus), largemouth bass (Micropterus

salmoides) and rabbitfish (Siganus randalli) are probably smaller, though certainly

not larger than the ones listed in Table 3.1 (see discussion).

Metabolic rate depends on temperature (Rombough, 1988). By using the regres-

sion line given in Rombough (1988) for metabolic rate on temperature together with

Figure 3.3: Graphical representation of the predicted survival time as a func-
tion of temperature. Using the regression line of metabolic rate on temperature
in Rombough (1988) together with equations 3.13 and 3.14, maximum size can
be expressed as a function of temperature. Solid lines represent maximum
volume-to-surface ratio of a sphere, cylinder and sheet in running water, while
the dotted line represents the maximum volume-to-surface ratio of a sphere in
stagnant water. Actual volume-to-surface ratios (Table 3.1) are also plotted.
Metabolic rate of underlined species (as given in Table 3.1) deviates consider-
ably from the regression line in citetrombough88(cf. Fig. 3.5) and the results
for these species should therefore be interpreted with caution (see text).
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equations 3.13 and 3.14, theoretical maximum volume to surface ratios can be calcu-

lated as a function of temperature [equations 3.4, 3.6, 3.7, 3.9, see Fig. 3.3]. It can

be seen in Fig. 3.3 that most species are smaller than their predicted maximum size

(though see discussion).

3.4 Discussion

Our analysis of the time-dependent effects of oxygen consumption in small organisms

shows that an equilibrium situation is reached very quickly (about 1.5 mins in running

water and about 10 mins in stagnant water), provided that the animal is smaller than

its maximum size. If animals are larger than their maximum size, oxygen concentra-

tion in the center will generally drop to zero within a very limited amount of time,

as survival time sharply decreases with size (Fig. 3.4). Therefore, using Fick’s first

law for modelling diffusion into small embryos is a valid simplification (e.g. models

by McNeill Alexander (1971); Fenn (1927); Harvey (1928); Krogh (1941); Warburg

(1923)). Byatt-Smith et al. (1991) reached the same conclusion for oxygen diffusion

into mouse and human preimplantation embryos.

Based on Fick’s first law of diffusion, Fenn (1927) predicts the maximum radius of

nerves to be 0.213 cm, which is about the size of the largest dogfish nerves. Seymour

and Bradford (1995) predicted maximum radius of a globular egg mass of the frog

Limnodynastes tasmaniensis to be about 2 cm, while the actual limit is 1.3 cm.

Egg-masses of 7 gastropod species appear to obtain a size (radius varying from 0.4

to 3.5 mm) which corresponds to the predicted maximum radius (0.71 to 3.4 mm;

Lee and Strathmann (1998)). Warburg (1923) predicted liver slices to be thinner

than 0.047 cm to survive in water saturated with pure oxygen. Experiments were in

agreement with the theory (Minami, 1923). McNeill Alexander (1971) used the same

law to predict that flatworms can attain a maximum thickness of about 0.06 cm,

which generally is conform observation in nature. Krogh (1941) draws the general

conclusion that ‘when metabolism is fairly high, diffusion alone can provide sufficient

oxygen only to organisms of 1 mm diameter or less, while larger forms depending on

diffusion must have a low metabolism’.

Predictions on maximum size of solid biological structures appear to vary from

about 0.5 to about 2 mm (egg masses include a lot of non-respiring jelly). Table 3.1

shows that predictions on maximum body size of teleost embryos range from 0.18

mm to 0.90 mm when modelled as spheres in running water (where Rmax = 3V/A)
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and from 0.11 to 0.69 when modelled as spheres in stagnant water. The biological

structures investigated in this paper (i.e. teleost embryos) apparently lead to relatively

small predicted maximum sizes. Actual radii (when converted volume-to-surface-ratio

to the radius of an equivalent sphere), however, range from 0.14 mm (zebrafish) to

0.36 mm (herring) and fall well within the range of predicted maximum sizes.

When looking at Table 3.1 in more detail, the actual volume-to-surface-ratio of

all species (except common carp and African catfish) is smaller than the predicted

maximum radius in running water, regardless of the shape of the model embryo. Since

the actual shape of the embryo will be somewhere intermediate between a plane sheet,

cylinder and sphere (cf. Rappoldt (1992)), none of the actual embryos will experience

oxygen shortage in running water.

In stagnant water, no general rule is applicable according to the predictions in

Table 3.1. Winter flounder, plaice, herring, zebrafish and rabbitfish will not experience

oxygen shortage in stagnant water. Actual volume to surface ratios of common carp

and African catfish embryos are relatively close to the predicted maximum values

of spheres in stagnant water [4-39% difference versus 70-380% difference in other

species (excluding the largemouth bass)], suggesting a correlation between the onset

of oxygen shortage and the appearance of a functional circulatory system. According

to Table 3.1, largemouth bass will also experience oxygen shortage, though for this

species data of the hatching stage were taken while circulation probably starts earlier.

The embryo will therefore be smaller at the onset of circulation and actual size might

be smaller than predicted maximum size.

It is unclear however, whether the conditions actually experienced by the embryos

resemble the stagnant water situation or the running water situation. Several ways

have been proposed in which the oxygen-poor diffusion boundary layer is refreshed,

either by the embryo itself or by the parents. Parental ‘fin-fanning’ to create a current

of oxygen-rich water over the eggs (e.g. Cichlidae, Gasterosteidae) probably increases

the amount of oxygen available to the embryo. Muscle contractions, which can be

recognized 19 hours post fertilization in case of the zebrafish (first circulation occurs

31 hours post fertilization at 25�; Kimmel et al. (1995)), might also serve such a

goal (Kamler, 1992; Osse and Van den Boogaart, 1994). Since the diffusion boundary

layer thickness (equation 3.12) can be calculated to measure several millimeters to

even centimeters in a steady state situation in stagnant water, it well extends outside

the egg capsule of the fishes and flow of the water surrounding the egg capsule might be
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Figure 3.4: (A) Predicted survival times (s) in running water as a function of
volume (mm3) of the zebrafish (Danio rerio) embryo for different oxygen sat-
uration percentages. Each line represents the effect of volume on survival time
for one specified oxygen saturation percentage. It can be seen that survival time
decreases with increasing volume of the embryo, while survival time increases
with increasing oxygen saturation value. The line with a saturation percentage
of 100% represents water in equilibrium with air (approximately 20% oxygen)
at 1 atm and 100% relative humidity. Dashed lines indicate vertical and hori-
zontal asymptotes of each line. The vertical asymptote indicates the maximum
volume Vmax (= 4

3πRmax3) at that particular oxygen saturation percentage
and therefore the embryo can survive indefinitely if smaller than Vmax (left of
the asymptote). The horizontal asymptote illustrates the fact that even if the
embryo is very large and diffusion is effectively absent, the embryo can survive a
certain amount of time on the oxygen initially present in its body. This amount
of time is given by C∞/m; the solution of equation 3.30 without the diffusion
term. The shaded area includes the area where diffusion is effectively absent,
i.e. the survival time differs less than 5% from its limiting value of C∞/m.

caption continues on next page1
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a supplier of oxygen to the developing eggs. Furthermore, the embryonic metabolism

causes higher concentrations of excretory products in the diffusion boundary layer

thus increasing the density of water around the embryo. This ‘heavy’ water drops

downward due to gravity, thereby creating a flow of water around the embryo in

stagnant water. Theoretically this can provide a supply of oxygen to developing eggs

(O’Brien et al., 1978). Alderdice et al. (1984) suggested that a pumping mechanism

of the egg capsule might also serve to facilitate respiratory gas exchange. Metabolic

heat production possibly creates a convective water flow in a similar fashion.

Regarding all these ways of boundary layer refreshment, it is highly unlikely that

any embryo will be surrounded by completely stagnant water. Therefore, just as the

actual shape of the embryo is intermediate between a sheet, cylinder and sphere, the

physical environment will be intermediate between completely stagnant water and a

continuously refreshed diffusion boundary layer. This suggests that only in common

carp and African catfish embryos the development of a circulatory system coincides

with the onset of oxygen shortage (Table 3.1).

As explained in section 3.3, the effects of salinity on predicted maximum body

size are neglected so far. When assuming the 20% decrease in oxygen content of sea

water and 8% decrease in diffusion coefficient of oxygen in sea water to be valid for a

large temperature range, the predicted volume to surface ratios will decrease by about

14% (cf. e.g. equation 3.4). In Table 3.1, we present four sea water species: winter

flounder, plaice, herring and rabbitfish. All four of these species are substantially

smaller than the predicted maximum sizes (Table 3.1). This situation does not change

when decreasing the predicted body size by 14%, even when the embryos are modelled

as spheres in stagnant water.

The predictions in Table 3.1 are based on our model in which several assumptions

were made (section 3.2.1). The assumption of modelling an embryo as either a plane

sheet, cylinder or sphere, has been accounted for by interpreting the actual embryo

1(B) Predicted survival times (s) in stagnant water as a function of the volume (mm3) of
the zebrafish (Danio rerio) embryo for different oxygen saturation percentages (cf. Fig 3.4
A). Note that the minimum survival time in this graph is the same as that Fig. 3.4 A
(horizontal asymptote), while the maximum volume (vertical asymptote) is 2 times as small
as in Fig. 3.4 A. As water in equilibrium with air (approximately 20% oxygen) is said to be
100% saturated, the line with a saturation percentage of 500% represents the theoretically
maximum oxygen saturation percentage (water in equilibrium with pure oxygen; five times
as much as water in equilibrium with air). The shaded area in the upper right corner
indicates the physical impossibility to have oxygen saturation percentages above 500%. In
Fig. 3.4 A this area is invisible.
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as being intermediate between these geometric forms.

There is no consensus about the effects of the egg capsule on oxygen diffusion

(Rombough, 1988) and these effects have been neglected so far. The following anal-

ysis, however, is useful if the capsule does constrain oxygen diffusion indeed. Gerard

(1931) gives the solution of Fick’s first law of diffusion for a sphere in which the dif-

fusion coefficient is different in the central and cortical part of the sphere (where the

oxygen concentration at the surface is constant, cf. running water condition). To give

an indication of the possible impeding effects of the egg capsule on oxygen diffusion,

we slightly modified Gerard’s equation to account for the lack of oxygen consumption

in the cortical part. Modified after Gerard (1931), we obtain:

Rmax =

√
q

p2 + q − 1

√
6DeC∞

m
(3.16)

where q = ratio of diffusion coefficients of oxygen in capsule and embryonic tissue

respectively, p = ratio of radius of embryo + capsule and radius of the embryo,

respectively.

For a cylindrical and sheet-like embryo, we obtain respectively:

Rmax =

√
q

q + 2 ln p

√
4DeC∞

m
(3.17)

Rmax =

√
q

2p + q − 2

√
2DeC∞

m
(3.18)

If we model the capsule as a spherical shell against a spherical embryo and if we

take q = 0.3 (Rombough, 1988) and p = 1.05 (Daykin, 1965), the maximum radius of

the embryo is about 86% of the value without a capsule. For a cylindrical and sheet-

like embryo, the effects are virtually identical for the same values of p and q. This

is a very crude approximation of the actual effects of the capsule, since (1) capsule

diffusion coefficients and thicknesses may vary amongst species (Rombough, 1988) and

(2) we did not take into account the varying amount of perivitelline fluid between

embryo and capsule. Special caution should be used when extrapolating these results

to other vertebrate classes. Amphibian embryos, for instance, have much thicker egg

capsules that can have large effects on the oxygenation of the embryos (Seymour,

1994). Nevertheless, our crude analysis gives an idea of the possible impeding effects

of an egg capsule on oxygen diffusion in teleost embryos. A decrease in the predicted

maximum radius of the organisms of 14% does not change the interpretation of the
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results in Table 3.1 as outlined above, and neither does a combination of salinity and

capsule effects.

The assumption of a constant volume-specific oxygen consumption is shortly ex-

plained in section 3.2.1. In our model, embryos are unable to grow bigger if diffusion

cannot maintain a large enough gradient to enable constant respiration anymore.

However, when subjected to extremely low oxygen concentrations, embryos lower

their consumption rate. In this way they are able to survive oxygen-poor conditions.

We consider it unlikely, however, that such an oxygen limited period has been in-

corporated as part of a life history strategy during evolution. Thus predicting an

impossibility to survive should be interpreted from an evolutionary viewpoint.

We checked the reliability of the oxygen consumption data by superimposing our

(literature) data on a graph from Rombough (1988) (Fig. 3.5). Considering the

amount of variation in the original figure, our data agree very well with the general

trend. However, the oxygen consumption of common carp (Kaushik et al., 1982)

and African catfish (Conceição, unpub. data) are relatively high, while the value for

herring (Eldridge et al., 1977) is relatively low. Decreasing the oxygen consumption

of the African catfish to a value close to the regression line in Fig. 3.5 (thus with a

factor 2), would yield predicted volume to surface ratios similar to those based on the

data from Kamler et al. (1994). Increasing the oxygen consumption of herring to a

value close to the regression line (factor 3) would still leave the herring embryo smaller

than the predicted maximum (volume to surface ratio 0.12 versus 0.13, respectively,

for a spherical embryo in stagnant water). Decreasing the value for common carp

with a factor 4 would make the predicted maximum body size larger than the actual

body size (Table 3.1). Thus, a value for the oxygen consumption of common carp

closer to the regression line in Fig. 3.5 would predict no oxygen shortage to occur

in common carp, while predictions based on the original value would. Although we

have no reason to question the data from Kaushik et al. (1982), the predictions on

maximum body size of common carp should be interpreted with caution and certainly

not as a general trend.

The deviations from the regression line mentioned in the previous paragraph also

have consequences for the results in Fig. 3.3. Since the regression line in Rombough

(1988) underestimates the metabolic rate of common carp and African catfish (un-

derlined) as compared to the data in Table 3.1 (Fig. 3.5), the predicted maximum

sizes for these species are overestimated and these species actually are closer to their
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Figure 3.5: Graph of oxygen consumption as a function of temperature. The
line represents the regression line of Rombough (1988). The black dots repre-
sent the oxygen consumption data from Table 3.1. Herring (Clupea harengus),
common carp (Cyprinus carpio) and African catfish (Clarias gariepinus) are
underlined and discussed separately because of their apparent deviation from
the regression line.

maximum size than suggested in Fig. 3.3 (cf. Table 3.1). The reverse is true for

herring (cf. Fig. 3.5 and Table 3.1).

By making the assumptions as mentioned earlier, we simplified the real situation,

though the resulting model appears to give an adequate description of the diffusion

process taking place. Including more realistic features in the model (e.g. actual shape

of the embryo, egg capsule) will slightly change our predictions, though not the general

picture emerging from Table 3.1. The general picture will still be that diffusion across

the body surface of teleost embryos is adequate for their oxygen supply even beyond

the time a circulatory system is functional. The circulatory system, therefore, does

not develop primarily to increase oxygen availability to the embryo. And oxygen

availability does not seem to be a direct driving factor for the development of a
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circulatory system. We thus have to reject our hypothesis.

Of the eight species in Table 3.1, only two (common carp and African catfish)

are bred for commercial (i.e. consumption) purposes. It is in these two species that

the actual size is very close to the predicted maximum size (and even larger than the

predicted maximum size for completely stagnant water). This might indicate that

these species are artificially selected to grow as fast as possible and therefore obtain

the maximum possible size as predicted by our model. In the not commercially bred

species, the circulatory system develops and becomes functional before the onset of

oxygen shortage as a built-in safety factor (prosynchronotropy; Burggren and Territo

(1995)). These findings are in agreement with the results of Pelster and Burggren

(1996), who found that functional ablation of haemoglobin did not affect oxygen-

dependent physiological processes in zebrafish (Danio rerio) larvae of 4 days old.

They concluded that diffusion of oxygen over the body surface was still adequate,

though oxygen carriage in the blood plasma was not impaired and might still have

played a role. Other possible driving factors for circulatory system development

include transport of nutrients and waste products and demands on blood flow for

remodelling and further development of the embryonic vascular system (Risau and

Flamme, 1995).
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Appendix A - Abbreviations and units of the pa-

rameters used in the diffusion models

Par. Description Unit

A surface area m2

b percentage of the difference between initial and equilibrium
concentration

%

c oxygen concentration inside the embryo kg m−3

c(r, t) oxygen concentration as a function of place and time kg m−3

c(0, t) oxygen concentration at the center as a function of time kg m−3

c(R, t) oxygen concentration at the body surface as a function of
time

kg m−3

c(r, 0) oxygen concentration as a function of place at t = 0 kg m−3

C(r, s) Laplace transformed c(r, t) kg m−3

C∞ oxygen concentration of free water in equilibrium with air
at 1 atmosphere and 100% relative humidity

kg m−3

d ratio of De and Dw –

De oxygen diffusion coefficient of embryonic tissues m2 s−1

Dw oxygen diffusion coefficient of water m2 s−1

F (s) F (s) = C(r, s)est kg s m−3

G integration constant kg s m−2

H integration constant kg s m−2

J oxygen flow kg s−1

m volume-specific oxygen consumption of respiring tissues kg m−3 s−1

n integer denoting the summations of subsequent contribu-
tions of the unsteady part.
These contributions becomes smaller when n increases.

–

pδ percentage of free water oxygen concentration at end of
diffusion boundary layer

%

p ratio of radius of embryo + capsule and radius of the
embryo

–

q ratio of diffusion coefficients of oxygen in capsule and em-
bryonic tissue

–
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r distance from center of organism m

R radius of organism m

Rmax maximum radius of the organism m

s Laplace transform variable s−1

Tc temperature �
Tk temperature K

ts survival time s

u(r, t) oxygen concentration outside the embryo kg m−3

u(∞, t) oxygen concentration at the end of the diffusion boundary
layer

kg m−3

u(R, t) oxygen concentration at the body surface as a function of
time

kg m−3

u(r, 0) oxygen concentration outside the embryo as a function of
place at t = 0

kg m−3

U(r, s) Laplace transformed u(r, t) kg m−3

x integration variable –

V volume of the organism m3

Vmax maximum volume of the organism m3

w(r, t) transformed oxygen concentration (Appendix B.4) kg m−2

w(0, t) transformed oxygen concentration at the center as a func-
tion of time

kg m−2

w(R, t) transformed oxygen concentration at the body surface as a
function of time

kg m−2

w(r, 0) transformed oxygen concentration as a function of place at
t = 0

kg m−2

δ diffusion boundary layer thickness m

γ complex number –

Ω contour used to invert C(r, s) –

L Laplace transform operator –
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Appendix B

Diffusion of oxygen into embryos living in running water

The origin of a spherical co-ordinate system is placed at the center of the spherical

embryo. The oxygen concentration at place r and time t (0 ≤ r < R, t > 0) inside the

embryo is denoted by c(r, t). The oxygen concentration outside the embryo and the

(constant) initial oxygen concentration inside the embryo are supposed to be equal

and are denoted by C∞. With m the volume-specific oxygen consumption and De the

oxygen diffusion coefficient of embryonic tissue, the governing equations are:

∂c(r, t)

∂t
=

De

r2

∂

∂r

(
r2∂c(r, t)

∂r

)
−m (3.19)

with boundary (BC) and initial (IC) conditions:

IC:c(r, 0) = C∞, BC1:
∂c(0, t)

∂r
= 0, BC2:c(R, t) = C∞

With the help of the transformation (Carslaw and Jaeger, 1959)

w(r, t) = rc(r, t)− rC∞ (3.20)

equation set 3.19 reduces to:

∂w(r, t)

∂t
= De

∂2w(r, t)

∂r2
−mr (3.21)

with boundary (BC) and initial (IC) conditions:

IC:w(r, 0) = 0, BC1:w(0, t) = 0, BC2:w(R, t) = 0

Separation of variables yields for equation set 3.21 the solution:

w(r, t) =
m

6De

(
r3 −R2r

)
+

+
2mR3

De

∞∑
n=1

(−1)n+1

n3π3
sin

(
nπ

r

R

)
e−n2π2 Det

R2 (3.22)

With the help of equation 3.20 it follows that

c(r, t) = C∞ +
m

6De

(
r2 −R2

)
+

+
2mR3

De

∞∑
n=1

(−1)n+1

n3π3

1

r
sin

(
nπ

r

R

)
e−n2π2 Det

R2 (3.23)
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in which easily a steady state part and a transient part is recognized. Oxygen star-

vation will start at the center of the embryo. From equation 3.23 it follows that

c(0, t) = lim
r↓0

c(r, t) = C∞ − mR2

6De

+
2mR2

De

∞∑
n=1

(−1)n+1

n2π2
e−n2π2 Det

R2 (3.24)

Equation 3.24 can be written as:

c(0, t) = C∞ − mR2

6De

+
2mR2

De

(
1

π2
e
−π2Det

R2

− 1

4π2
e
−4π2Det

R2 +
1

9π2
e
−9π2Det

R2 − · · ·
)

(3.25)

By using only the first term to approximate equation 3.24, we obtain:

c(0, t) = C∞ − mR2

6De

+
2mR2

π2De

e
−π2Det

R2 (3.26)

Now suppose we want to calculate when the central oxygen concentration reaches

a value b% of the difference between initial and equilibrium concentration above its

equilibrium value:

b

100

mR2

6De

=
2mR2

π2De

e
−π2Det

R2 (3.27)

and thus

t = − R2

π2De

ln

(
bπ2

1200

)
(3.28)

Note that this is an overestimation of the time until equilibrium as including

subsequent terms of equation 3.24 leads to still smaller values of t [including three

terms in equation 3.26 leads to a time 0.2% smaller than resulting from equation 3.28].

If p = 10% then equation 3.28 reduces to:

t =
0.25R2

De

(3.29)

Diffusion of oxygen into embryos living in stagnant water

Again, the center of the embryo is used as the origin of a spherical co-ordinate system.

As before, the oxygen concentration at place r and time t (0 ≤ r < R, t > 0) inside

the embryo is denoted by c(r, t). The oxygen concentration in the surrounding water

is denoted by u(r, t), (r > R, t > 0). The initial oxygen concentrations inside the
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embryo and in the surrounding water are supposed to be equal and are denoted by

C∞. With m and De as before, and with Dw the oxygen diffusion coefficient of water,

the governing equations are:

∂c(r, t)

∂t
=

De

r2

∂

∂r

(
r2∂c(r, t)

∂r

)
−m (3.30)

with boundary (BC) and initial (IC) conditions:

IC:c(r, 0) = C∞, BC1:
∂c(0, t)

∂r
= 0 (3.31)

BC2:c(R, t) = u(R, t), BC3:De
∂c(R, t)

∂r
= Dw

∂u(R, t)

∂r
(3.32)

∂u(r, t)

∂t
=

Dw

r2

∂

∂r

(
r2∂u(r, t)

∂r

)
(3.33)

with boundary (BC) and initial (IC) conditions:

IC:u(r, 0) = C∞, BC4:u(∞, t) = C∞ (3.34)

The transfer of oxygen between embryo and surrounding water is described by

equation set 3.32.

Next the Laplace transform L with respect to time is applied (Duffy, 1994). With

L : c(r, t) ⇒ C(r, s) and L : u(r, t) ⇒ U(r, s) (3.35)

equations 3.30 and 3.33 change into simple second order differential equations for

C(r, s) and U(r, s). It follows that

C(r, s) =
C∞
s
− m

s2
+

G

r
sinh

(
r
√

s√
De

)
(3.36)

and

U(r, s) =
C∞
s

+
H

r
e
− r

√
s√

Dw (3.37)

The values of the integration constants G and H are easily found with the help

of (the transformed) equation 3.32. For the inner region this leads to

C(r, s) =
C∞
s
− m

s2
+

+
m

s2

(
Dw + R

√
Dw

√
s
)

R
r

sinh
(

r
√

s√
De

)

(
Dw −De + R

√
Dw

√
s
)
sinh

(
R
√

s√
De

)
+ R

√
De

√
s cosh

(
R
√

s√
De

) (3.38)
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And for the outer region this leads to

U(r, s) =
C∞
s
−

m

s2

(
−De sinh

(
R
√

s√
De

)
+ R

√
De

√
s cosh

(
R
√

s√
De

))
R
r
e
−(r−R)

√
s√

Dw

(Dw −De) sinh
(

R
√

s√
De

)
+ R

√
Dw

√
s sinh

(
R
√

s√
De

)
+ R

√
De

√
s cosh

(
R
√

s√
De

)

(3.39)

Observe that equations 3.38 and 3.39 already furnish the steady state for c(r, t)

and u(r, t), respectively:

c(r,∞) = lim
t↑∞

c(r, t) = lim
s↓0

sC(r, s) = C∞ +
m

6De

(
r2 −R2

)− m

3Dw

R2 (3.40)

u(r,∞) = lim
t↑∞

u(r, t) = lim
s↓0

sU(r, s) = C∞ − mR3

3Dwr
(3.41)

By defining diffusion boundary layer thickness δ as the distance from the skin

surface to the point where the oxygen concentration will eventually reach pδ% of the

free water concentration, we can write:

0.01pδC∞ = C∞ − mR3

3Dw(δ + R)
(3.42)

By assuming c(0,∞) = 0 and De = 0.33Dw, and using equation 3.9, 3.42 can be

rewritten as:

δ

Rmax

=
0.4

1− 0.01pδ

− 1 (3.43)

The complex function C(r, s) possesses a branch point at s = 0. If we cut the

complex s-plane along the real axis from s = 0 to s = −∞, then the transform C(r, s)

is analytic on the remaining part of the s-plane. To retrieve the Laplace-original c(r, t)

we have to evaluate the following contour integral in the complex s-plane.

c(r, t) =
1

2πi

∫ γ+i∞

γ−i∞
F (s)ds (3.44)

with F (s) = C(r, s)est and Re(γ) > 0. This integral is simplified with the help of the

contour Ω given in Fig. 3.6, on account of the equality

1

2πi

∫

ABC

F (s)ds =
1

2πi

∫

ADEFC

F (s)ds (3.45)

The contribution of the large semicircle around s = 0 disappears if we take its

radius to infinity. And if we let the radius of the small circle around s = 0 approach
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Figure 3.6: Contour used to invert C(r, s). During the inverse Laplace trans-
formation of C(r, s), integration in the complex s-plane along ABC is simplified
by substituting it with integration along ADEFC.

zero, its contribution yields once more the steady state c(r,∞) of our problem, as

given by equation 3.40.

Hence, the transient part of the solution is determined by the contributions of the

two straight lines between s = 0 and s = −∞:

ctrans(r, t) =
1

2πi

∫ 0

−∞
F−(s)ds +

1

2πi

∫ −∞

0

F+(s)ds (3.46)

where F−(s) and F+(s) denote the limit of F (s) as we approach the branch cut from

below or from above. With the substitution s = −x it follows that

ctrans(r, t) =
m

π

∫ ∞

0

e−xt

x2

R

r
sin

(
r
√

x√
De

)

×
√

DwDeR
√

x sin
(

R
√

x√
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)
−√DeDwR2x cos

(
R
√

x√
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)

DwR2x sin2
(

R
√

x√
De

)
+

(
(Dw −De) sin

(
R
√

x√
De

)
+ R

√
De

√
x cos

(
R
√

x√
De

))2 dx

(3.47)

Thus, with the help of equations 3.40 and 3.47, it follows that

c(r, t) = C∞ +
m

6De

(
r2 −R2

)− m

3Dw

R2 + ctrans(r, t) (3.48)

As already said before, oxygen starvation will start at the center of the embryo.
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From equations 3.48 and 3.47 it follows that

c(0, t) = lim
r↓0

c(r, t) = C∞ −mR2 2De + Dw

6DeDw

+
m

π

∫ ∞

0

e−xt

x

×
√

DwDeR
2 sin

(
R
√

x√
De

)
−√DwR3

√
x cos

(
R
√

x√
De

)

DwR2x sin2
(

R
√

x√
De

)
+

(
(Dw −De) sin

(
R
√

x√
De

)
+ R

√
De

√
x cos

(
R
√

x√
De

))2 dx

(3.49)

By taking τ = Det/R
2 and y =

√
xR2/De, equation 3.48 reduces to:

c(0, τ) = C∞ −mR2 2De + Dw

6DeDw

+
2mR2

√
DwDe

π

×
∫ ∞

0

e−y2τ

y

sin y − y cos y

DeDwy2 sin2 y + ((Dw −De) sin y + Dey cos y)2 dy (3.50)

For large values of t (typically t > R2/De, see Fig. 3.2), equation 3.50 can be

approximated by:

c(0, τ) = C∞ −mR2 2De + Dw

6DeDw

+
2mR2

√
DeDw

3πDw
2

∫ ∞

0

e−y2τdy (3.51)

Equation 3.51 can be solved as:

c(0, τ) = C∞ −mR2 2De + Dw

6DeDw

+
mR2

√
DeDw

3πDw
2

√
π

τ
(3.52)

Now suppose we want to calculate when the central oxygen concentration reaches

a value b% of the difference between initial and equilibrium concentration above its

equilibrium value:

b

100
mR2 2De + Dw

6DeDw

=
mR2

√
DeDw

3πDw
2

√
π

τ
(3.53)

which can be rewritten as:

t =
40000De

2R2

πb2Dw (2De + Dw)2 (3.54)

If De = 0.33Dw and b = 10% then equation 3.54 reduces to:

t =
5.0R2

Dw

(3.55)
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Chapter 4

Metabolic Constraints on
Morphology of the Zebrafish
Embryo (Danio rerio)1

Metabolic requirements pose restrictions upon the morphology of organisms.
Their size and shape should be kept within certain limits in order to maintain
adequate supply and removal of molecules involved in metabolism. We investi-
gated the restricting role of oxygen and nutrient supply on the development of
zebrafish embryos shortly after the initiation of circulation, and the importance
of this circulation for the distribution of these molecules. For that purpose we
developed a model calculating the maximum dimensions of such embryos, based
on the requirement of a sufficient supply of oxygen and nutrients. The model
shows that in oxygen-saturated water oxygen allows for embryos to grow con-
siderably larger than actual ones, and therefore does probably not directly limit
development. The dimensions calculated on the basis of nutrient demand lie
close to the actual ones, indicating nutrients, contrary to oxygen, to be a limit-
ing factor for growth of the zebrafish embryo. The calculations also imply that
in this stage adequate nutrient transport requires the presence of a primitive
circulatory system, while oxygen transport does not.

4.1 Introduction

The development of a functioning vertebrate body from a fertilized egg involves both

genetic determination of cells and imposition of cell fate by adjacent tissue (Browder,

1984). Although the ultimate result of these processes is formation of the adult body,

they also at least partially determine the shape of the developing embryo. Especially

the latter of the two processes (called induction) poses restrictions upon embryo mor-

phology, since it requires a specific arrangement of tissues. While acknowledging the

1In preparation: Brascamp, J.W., Kranenbarg, S. and Muller, M.
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importance of these phylogenetic factors, the present paper focuses on the influence

of physical factors on embryo morphology.

Particularly important physical factors for development are the availability of oxy-

gen and nutrients, the molecules fuelling metabolism. We studied these factors and

their potentially limiting effects on development of the zebrafish embryo (Danio re-

rio). Kranenbarg et al. (2000) showed oxygen availability not to be directly limiting

for growth in the early, pre-circulation, teleost embryo. During this early develop-

mental period yolk cell degradation in most teleosts is slow (Heming and Buddington,

1988), and nutrients are probably provided by scattered intracellular yolk particles

(Sire et al., 1994). This study addresses the role of oxygen and nutrient availability

in the development of somewhat older zebrafish embryos, in which nutrients from the

yolk cell and oxygen from surrounding water are distributed through the body by a

primitive circulatory system. For that purpose, the dynamics of oxygen and nutrients

inside the zebrafish embryo during this period were simulated using a mathematical

model. The model predicts size and shape of the embryo and investigates the impor-

tance of the vascular system, based on metabolic requirements of body tissues.

4.2 Materials and Methods

4.2.1 Model

Biological background

The initial circulatory system of the zebrafish has a fairly simple architecture (Fig. 4.1).

Blood is carried from the heart towards the tail by the dorsal aorta, and is transported

back through the trunk by the cardinal vein, eventually returning to the heart after

passage over the yolk cell. No lower level branches are present at this stage.

Both the artery and the vein are paired in the most rostral region, but merge to

single ducts dorsal of the yolk cell (Rieb, 1973; Isogai et al., 2001). Both oxygen and

nutrients are supposed to diffuse into the blood as it flows over the yolk cell, then be

transported into the body by the blood stream, and subsequently into (other) tissues

by diffusion. Since fish yolk is a highly diverse substance, nutrients diffusing into the

blood can be of various types. However, the most abundant yolk components are

proteins and fat (Heming and Buddington, 1988; Suzuki and Suyami, 1983), which

move into the blood as free amino acids and very low density lipoproteins (VLDL),

respectively (Sire et al., 1994). Contrary to nutrients, oxygen can reach the embryonic
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Figure 4.1: Overview of the circulatory system of the zebrafish at 30 hours post
fertilization. The position of the dorsal aorta, the cardinal vein, the heart and
the yolk cell are indicated by DA, CV, H and Y, respectively. The vascular bed
of the yolk cell is represented by a dashed line.

tissue by diffusion through the skin as well. As soon as either nutrients or oxygen

molecules reach respiring tissue, they can be taken up by cells and be metabolized.

Simplifying assumptions

The following simplifying assumptions were made in order to model the situation

described in the previous section. See also Fig. 4.2.

� The approximately conical embryo body is represented as a series of aligned

half cylinders of decreasing radius, neglecting the curvature of the embryo.

� The initially paired artery running from the heart towards the tail is represented

as a single tube along the central axis of these half cylinders.

� Amino acids and very low density lipoproteins are the only nutrients considered

in this model.

� The rate of oxygen uptake into cells is supposed to be independent of extracel-

lular concentrations (Longmuir, 1957), as is that of nutrient uptake.

� Diffusion of molecules within the body in any other than radial direction (i.e. per-

pendicular to the longitudinal axis) is neglected.
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Figure 4.2: Approximation of the embryo body using half cylinders. The central
cylinder, depicted in grey, represents the dorsal aorta. The larger half cylinders
represent the embryonic tissue. The arrows indicate net molecule movement
via the blood vessel (nutrients and oxygen) and through the skin (only oxygen)

� Tissue can survive any low oxygen (Padilla and Roth, 2001) or nutrient concen-

tration higher than zero.

� The system is in equilibrium.

Modelling nutrient dynamics

In the model nutrients move through a central cylinder representing the blood vessel,

along a longitudinal axis. Diffusion in radial direction leads them out of the central

cylinder into a concentric larger half cylinder element, representing tissue (Fig. 4.2).

Within this tissue the nutrient concentration declines from the blood vessel outward,

due to consumption and radial diffusion. The maximum supportable radius of one

specific half cylinder of tissue is calculated as the radius at which the nutrient con-

centration reaches zero. By repeating this procedure for subsequent tissue slices until

no nutrients are left in the vessel, the maximum length and length dependent radius

of the model embryo are calculated.

The calculations essentially consist of two steps. First the maximum radius of a
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half cylinder I is calculated numerically from

cn,I =
mn

4Dn

(
−2rn,I

2 ln

(
rb

rn,I

)
+ rb

2 − rn,I
2

)
(4.1)

(cf. Currie (1961)). In this equation cn,I is blood nutrient concentration at level I

[kg m−3], mn is nutrient consumption rate [kg m−3 s−1], Dn is nutrient diffusion

coefficient [m2 s−1], rn,I is calculated embryo (or half cylinder) radius [m], and rb is

blood vessel radius [m]. Next, the nutrient concentration in the blood vessel running

through the subsequent half cylinder I+1 is calculated:

cn,I+1 = cn,I − mnπ(rn,I
2 − rb

2)l

2Φ
(4.2)

in which Φ is the blood flux [m3 s−1], and l is the half cylinder height [m]. Equation

4.1 can now be repeated for the next slice, et cetera until no nutrients are left in the

vessel.

Modelling oxygen dynamics

For oxygen, model geometry is essentially the same as for nutrients, the only difference

being that diffusion into the tissue now takes place from the outside as well as from

the inside (Fig. 4.2). Therefore, the radii are obtained using an extended version of

the calculations for nutrients. First the radius is calculated that a given slice can reach

using oxygen originating from the blood alone, exactly like it was done for nutrients.

Then, the extra radius is calculated that can be supported by oxygen coming from

the surrounding water. No concentration gradient develops outside of the embryo,

which corresponds to a running water situation.

The radius supported by oxygen from the blood at level I is calculated from

cO,I =
mO

4DO

(
−2rO,I

2 ln

(
rb

rO,I

)
+ rb

2 − rO,I
2

)
(4.3)

in which rO,I is the radius supported by blood oxygen. See equation 4.1 for the

meanings of the remaining parameters, subscript O indicating ‘oxygen’. Subsequently

the total tissue radius supported by oxygen is calculated using

cO,∞ =
mO

4DO

(
−2r2

O,I ln

(
rtot
O,I

rO,I

)
+ rtot

O,I
2 − rO,I

2

)
(4.4)

in which cO,∞ is ambient oxygen concentration and rtot
O,I is total embryo radius. Analo-

gous to the situation concerning nutrients, the next step is calculating the oxygen con-

centration in the first downstream slice. Due to the binding of oxygen to hemoglobin,
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equation 4.2 is extended to:

cO,I+1 = cO,I + bSI − mOπ (rO,I
2 − rb

2) l

2Φ
− bSI+1 (4.5)

In this equation b is oxygen carrying capacity of hemoglobin and SI and SI+1 are

the fractions of oxygen-saturated hemoglobin for I and I + 1, respectively. Equation

4.5 is solved numerically, using a sigmoidal relation between oxygen concentration cO

and hemoglobin saturation fraction S: S =
αcO

β

1 + αcO
β
, where α and β are constants.

4.2.2 Experimental procedures

Newly fertilized zebrafish eggs were collected and kept in a water filled petri dish at

28�. We measured the cross sectional area of the yolk cell (n=10) from microscopic

images taken every hour from 25 to 30 hours post fertilization (hpf), in order to esti-

mate the yolk volume, assuming a spherical yolk cell. The derivative of the resulting

volume-to-time-curve was determined to estimate the rate of yolk volume loss dV/dt.

Blood flow velocity u through the dorsal aorta was estimated by measuring the ve-

locity of red blood cells in the aorta of 30 hpf embryos (n=2), filmed using a high

speed camera (Speed Cam). We measured the radius rb of the dorsal aorta, over the

vessel section (of almost uniform width) lying caudal from the anus (n=4). For this

purpose we visualized the vasculature from microscopic images, using ‘digital motion

analysis’ as described by Schwerte and Pelster (2000). To be able to compare the

model predictions to the actual embryo dimensions, we measured the height of 30 hpf

embryos (n=2) along their longitudinal axis from microscopic images. For a relevant

comparison to our model, we only measured tissue dorsal from the aorta, and we

excluded the finfold.

4.3 Results

4.3.1 Parameter values

The used parameters are listed in Table 4.1, along with their estimated values, which

are explained in the text.

Parameter b represents the oxygen carrying capacity of hemoglobin. Willmer

(1933) gives this value for various tropical fresh-water fishes. He finds considerable

differences between species, apparently correlated mainly with habitat, but for all
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Table 4.1: The parameters used in our model, and their respective values. Details are given
in the text.

Par. Description Value Unit

b Hemoglobin O2 carrying capacity 1.5×10−1 kg m−3

cn,1 Blood nutrient concentration in first half cylinder 2.4×10−2 kg m−3

cO,1 Blood O2 concentration in first half cylinder 8.3×10−3 kg m−3

C∞ Ambient O2 concentration 8.3×10−3 kg m−3

Dn Nutrient diffusion coefficient 3.5×10−10 m2 s−1

DO O2 diffusion coefficient 2.2×10−9 m2 s−1

mn Nutrient consumption rate 3.3×10−4 kg m−3 s−1

mO O2 consumption rate 4.1×10−4 kg m−3 s−1

rb Aorta radius 2.4×10−5 m

α Constant defining hemoglobin O2 saturation curve 5.8×104 -

β Constant defining hemoglobin O2 saturation curve 1.5 -

Φ Blood flux 3.3×10−12 m3s−1

three species living in rivers (like zebrafish does), the carrying capacities are re-

markably similar. The average value for these species (Myleus setiger, Hydrolycus

scomberoides and Pterodoras granulosus) is 1.5×10−1 kg m−3 (SD 4.1×10−3). This

value is used in our model, based on the fact that these three species live in water of

similar temperature and oxygen content as the zebrafish.

The nutrient concentration in blood entering the first section, cn,1, is calculated

by dividing rate of mass loss of the yolk cell by blood flux: cn,1 =
(dV/dt)ργ

Φ
. The

value of ρ (the specific wet weight of yolk) is estimated as 103 kg m−3, and for the

wet weight to dry weight conversion factor γ we use a value of 0.1 (Finn et al., 1991).

Together with the experimentally found value of 8.1×10−14 kg s−1 for dV/dt, and the

value for Φ mentioned in Table 4.1, this results in a cn,1 value of 2.4×10−2 kg m−3.

The oxygen concentration cO,1 in blood entering the first cylinder is estimated by

assuming that blood flowing over the yolk sac obtains the same oxygen concentration

as the surrounding water: C∞. If the embryos are surrounded by oxygen saturated

water of 28�, C∞ equals 8.3 10−3 kg m−3 (Golterman et al., 1978).

D is the diffusion coefficient at 28� of either oxygen or nutrients through tissue.



58 chapter 4

For oxygen a value of 2.2×10−9 m2 s−1 is taken from Kranenbarg et al. (2000). One

of the parameters defining a molecule’s diffusion coefficient is its size, as shown by

the Stokes-Einstein equation: D =
kBT

6πµr
(Cussler, 1997), in which kB is Bolzman’s

constant, T is temperature, µ is solvent dynamic viscosity and r is solute molecule

radius. In this study, the diffusion coefficient of the smallest, and therefore fastest,

amino acid (glycine) is used. The diffusion coefficients of all other amino acids as

well as that of VLDL, which have a radius around 100 times that of amino acids, are

bound to be smaller than the one used, so that we calculate the upper possible limit

of nutrient movement by diffusion. Various authors (Mahler et al., 1985; Desaulniers

et al., 1996; Dowse et al., 2000) find that the diffusion coefficient of oxygen is around

3 times larger in water than in a range of tissues. Considering the Stokes-Einstein

equation, it is probable that this relation also applies to glycine. The diffusion coef-

ficient of glycine in water is taken from Cussler (1997) and divided by 3, yielding a

value for Dn of 3.5×10−10 m2 s−1.

The parameter α, together with β, defines the sigmoidal curve indicating the re-

lationship between blood plasma oxygen concentration and percentage hemoglobin

saturation. The paper by Willmer (1933) from which b is estimated, also gives re-

lationships between oxygen pressure and percentage blood saturation for the same

fishes. By fitting a sigmoidal curve to the graph for Myleus setiger at 10 mm Hg

CO2, a value for α of 5.8×104 is found.

mO is the volume specific consumption rate of oxygen. Kranenbarg et al. (2000)

give a value of 4.1×10−4 kg m−3 s−1, which is adopted in this study. The corresponding

consumption rate for nutrients mn is calculated from this value, using the amount

of oxygen needed to utilize a given amount of yolk. Consumption of 1 kg of oxygen

corresponds to metabolizing 7.3×10−1 kg protein or 1.5 kg fat (Blaxter, 1988). The

protein to lipid weight ratio in fish yolk, calculated from data on eleven different

species (Heming and Buddington, 1988), is 3.9 (SD 2.6). Combining these values, a

value for mn of 3.3×10−4 kg m−3 s−1 (SD 2.7×10−5) is calculated.

Along with α, parameter β is estimated from Willmer (1933), yielding a value of

1.5. The blood vessel radius rb is experimentally determined to be 2.4×10−5 m (SD

2.4×10−6, n=4). The blood flux Φ is calculated by multiplying blood flow speed u,

experimentally determined at 1.8×10−3 m s−1 (SD 1.5×10−4, n=2) with the aorta

cross-sectional area, calculated from rb assuming a cylindrical aorta. This results in

a value for Φ of 3.3×10−12 m3 s−1(SD 6.4×10−13).
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Figure 4.3: The actual height of the embryonic tissue measured perpendicular
to the midline (solid line), compared to the embryo profile calculated from
nutrient demand (dashed). The heart is located at longitudinal position 0; the
dotted extensions of the solid line indicate embryo radius rostral or caudal of
the vascular system (see also Fig. 4.1).

4.3.2 Model output

The model calculates embryo profiles with declining radii in caudal direction, both

using the nutrient and the oxygen requirements. The predicted size according to

oxygen demand, with an initial radius of around 0.6 mm and an infinite length is

much larger than the one based on nutrients, which starts at a radius of around 0.2

mm and ends after less than 2 cm. Although the ‘oxygen embryo’ has an infinite

length, the blood oxygen supply runs out at around 14 cm from the heart, after

which a radius of a bit more than 0.4 mm can be maintained by diffusion through the

skin alone. A section of the profile based on nutrient demand is depicted in Fig. 4.3,

along with the actual embryo dimensions.

It can be concluded that although the predicted length, based on nutrient demand,

exceeds the actual one by around tenfold, the predicted maximum radius lies close to

the actual one.

4.4 Discussion

We investigated to what extent the required supply of oxygen and nutrients to tissue

restricts embryo morphology in the zebrafish, and what role the vascular system

plays. For that purpose we developed a model predicting morphology on the basis

of these requirements and compared the results to the actual morphology. On the

basis of oxygen requirements, we calculated the model embryo to grow both thicker

and longer than the actual one. Even after the blood has been depleted of oxygen,
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diffusion through the skin suffices to support a radius considerably larger than the

actual one. The model suggests that, in case of oxygen saturated water, zebrafish

embryo development is not directly limited by oxygen demand. In this situation the

oxygen supplying capacity of the circulatory system is small compared to that of skin

diffusion. These conclusions are in agreement with previous findings by Pelster and

Burggren (1996) who found disruption of hemoglobin function not to affect aerobic

processes in the zebrafish embryo. The nutrient model on the other hand, led to an

embryo that was longer than the actual one, but of equal radius. Also, the calculated

maximum radius, which can be interpreted as the maximum diffusion distance of

nutrients, is several times smaller than the distance between the yolk sac and the

tip of the embryo tail (see Fig. 4.1). This suggests the circulatory system to play a

crucial role in transporting nutrients to the caudal part of the body.

These model results were achieved using parameter values taken from literature

and experiments. The values defining blood characteristics (b, α and β) were deter-

mined in other fish species. Although there are reasons to believe they also apply

to zebrafish blood (see section 4.3.1), their relevance for the zebrafish has not been

experimentally tested. The initial blood nutrient concentration Cn,1 was calculated

using blood flux Φ. Φ has a considerable inaccuracy which on its own would lead to

a SD of around 20% in Cn,1. The calculation was furthermore based on the assump-

tion that all mass loss from the yolk sac corresponds to nutrients metabolized by the

embryo. This method leads to an overestimation of the amount of nutrients available

if any nutrients are stored within the body (Blaxter, 1988). Also, when estimating

the yolk cell volume we ignored the longitudinal section extending from the yolk ball

in caudal direction (see Fig. 4.1). The error made in this way is estimated as less

than 5%. The nutrient diffusion coefficient Dn was intentionally overestimated. Since

yolk supplies several different nutrient molecules it is not possible to give a single Dn

for nutrients as a whole. We used the highest possible value for Dn (based on the

amino acid glycine) since our goal was to estimate the maximum possible embryo

size. The diffusion coefficient of other amino acids is bound to lie in the same order of

magnitude as that of glycine, due to their comparable size. The diffusion coefficient

of VLDL on the other hand, might be around a hundred times smaller than the one

used (see section 4.3.1).

What is the significance of these inaccuracies for the interpretation of our results?

Concerning the parameters describing the oxygen carrying characteristics of blood (b,
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α and β) we can safely state that possible variations in these are of no importance to

our conclusions. The radius and length of the model embryo are largely determined by

oxygen diffusion through the skin rather than from the blood, and widely exceed the

actual dimensions. The effect of variation in Cn,1 should be examined more closely.

A higher value of Cn,1 would lead to larger model embryos, which could affect our

conclusions regarding the importance of nutrient requirements. Closer investigation

reveals that an altered value of Cn,1 has only a modest influence on the maximum

radius and length of the model embryo. A twofold increase in Cn,1 leads to an increase

in maximum radius and length of around 30% and 20%, respectively. These values

indicate that fluctuations within reasonable limits of Cn,1 would not affect our con-

clusions. As mentioned, we overestimated the nutrient diffusion coefficient Dn. This

has no consequences for our conclusions. Since a smaller value of Dn would lead to a

narrower and more elongated model embryo, this overestimation even emphasizes our

conclusion that nutrient requirements might constrain the embryo radius. A tenfold

decrease of Dn leads to about a twofold decrease of maximum radius and a fourfold

increase in length. Finally, variation in Φ would lead to changes in Cn,1 and also

the predicted embryo length. The former was discussed above, and no conclusions

were based on the latter, so that variations in this parameter would have no effect on

our conclusions. Summarizing, it can be stated that in spite of several uncertainties

determining parameter values, our conclusions remain justified.

The embryo size prediction is essentially based on the actual, observed supply of

nutrients. This means that if model and parameter values are correct the volume

of the model embryo will by definition be identical to the actual volume (in other

words: the model embryo volume is a function of Cn,1 and mn), yet we calculated an

embryo that is larger than the actual one. In addition to the parameter inaccuracies

discussed above, we ignored the nutrients being supplied to the embryo section rostral

of the heart. This might explain why the calculated embryo volume is larger than

the actual one, though it does not affect our predictions on maximum radius.

Our model has several imperfections. Especially the hard to assess problem of

nutrient dynamics obliged us to settle for choices that require critical comments (Cn,1,

Dn). In spite of these imperfections we have come to several conclusions that can

withstand careful review, so that the notion remains that zebrafish embryos of this

developmental stage are restricted in their growth by nutrient but not oxygen demand,

and need their circulatory systems for nutrient but not oxygen transport.
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Intermezzo II - Oxygen Transfer to
a Sphere in Stokes Flow1

Introduction

The Reynolds number of a flow around an object is a measure of the relative impor-

tance of the inertial forces compared to the viscosity forces. In low Reynolds number

flow, or Stokes flow (Re < 1), viscosity forces dominate (Purcell, 1977). Biology

offers an interesting possibility to apply the theory of mass transfer to spheres in low

Reynolds number flow.

Many small organisms (order of magnitude 1 mm) do not have an active internal

oxygen transport system and solely depend on diffusion and external convection for

their oxygen supply. The lack of an active transport system sets limits on the max-

imum size of these organisms as anoxic regions are expected to be avoided. Krogh

(1941) put it very concisely: ‘...diffusion alone can provide sufficient oxygen only to

organisms of 1 mm diameter or less...’. This conclusion, however, is based on the

assumption that the oxygen concentration at the body surface equals the free wa-

ter concentration (well-stirred condition). As many small organisms live in stagnant

ponds, this assumption is likely to be invalid, because an oxygen poor boundary

layer is expected to develop around the organism. This difficulty is accounted for in

models of oxygen transfer in stagnant water (Lee and Strathmann, 1998; Kranenbarg

et al., 2000), although these models raise yet another problem. In natural conditions,

completely stagnant water is highly unlikely to occur. Even stagnant ponds are

continuously being stirred by aerial and thermal advection. The contribution of this

advection to the total mass transfer can be accounted for by the introduction of static

fluid film around the organism, through which oxygen is transported (Carslaw and

Jaeger, 1959; Gielen and Kranenbarg, 2002). The thickness of this layer is translated

1The mathematical analysis in this chapter is mainly performed by Jan H.G. Ver-
hagen, MSc.
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in a so-called mass transfer coefficient.

Flow associated with the stirring effects of aerial and thermal advection is typically

in the low Reynolds number regime for small organisms with a diameter of about a

millimeter. In this intermezzo, we account for the stirring effects of advection by

describing the actual boundary layer morphology and oxygen concentration profile

around the spherical organism (contrary to the mass transfer coefficient method,

where a spherical boundary layer is forced upon the organism). The theory can

be applied to teleost eggs, which are typically spherical and about a millimeter in

diameter.

The model

An oxygen consuming sphere of radius a is held fixed in a uniform stream flowing

from left to right parallel to the x-axis with constant velocity U , see Fig. II.1. The

Reynolds number 2aU/ν is supposed to be small compared to unity, where ν is the

kinematic viscosity of the fluid. Oxygen is transported to the sphere across the

mass boundary layer. The oxygen transfer consists of two parts: an advective and a

diffusive contribution. In a steady state, the equation of oxygen mass conservation

can be written as (Bird et al., 1960):

q · ∇c = D∇2c (II.1)

where q is the fluid velocity vector, c is the oxygen concentration and D is the

oxygen diffusion coefficient in water. The left hand side of equation II.1 represents the

advective contribution, while the right hand side represents the diffusive contribution

to the oxygen transfer.

Diffusive contribution

The diffusive contribution can be written in a dimensionless form in spherical polar

co-ordinates (r, θ) as (Bird et al., 1960):

2

Pe

(
sin θ

∂

∂r̄

(
r̄2 ∂c̄

∂r̄

)
+

∂

∂θ

(
sin θ

∂c̄

∂θ

))
(II.2)

Here

c̄ =
C∞ − cw

C∞ − cs

, r̄ =
r

a
, δ̄ =

δ

a
, Pe =

2aU

D
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Figure II.1: Streamlines around a sphere in Stokes flow. Values of ψ (mm3/s)
are indicated in the streamlines.

where C∞ is the bulk oxygen concentration, cw is the oxygen concentration in the

water, cs is the oxygen concentration at the sphere surface, δ is the mass boundary

layer thickness

At the surface of the sphere (r̄ = 1), the no-slip condition requires all fluid velocity

components to be zero. If we assume the oxygen concentration at the sphere surface

to be constant (due to mixing inside the sphere, see chapter 8), the tangential diffusion

at the surface must be zero, so the boundary conditions that have to be satisfied by

c̄ at r̄ = 1 are:

c̄ = 1,
∂

∂r̄

(
r̄2 ∂c̄

∂r̄

)
= 0 (II.3)

At the outer edge of the concentration boundary layer (r̄ = 1 + δ̄), the following

boundary condition has to be satisfied:

c̄ = 0 (II.4)

Furthermore, we will assume the radial diffusive transport at the outer edge of the

concentration boundary layer equal to that in stagnant medium, i.e.:

r̄2 ∂c̄

∂r̄
= −1 (II.5)

Equation II.1 will be solved using the Von Kármán integral method, which has been

successfully applied to many boundary layer problems in the past. In this method
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a distribution of the concentration over the thickness of the mass-boundary layer is

assumed which satisfies as many boundary conditions as possible (Friedlander, 1957).

The following assumption is made:

r̄2 ∂c̄

∂r̄
= −k(θ)

(
1−

(
r̄ − 1

δ̄

)2
)
− 1 (II.6)

The concentration distribution follows from equation II.6 together with boundary

conditions for c̄ at r̄ = 1 and r̄ = 1 + δ̄:

c̄ =
1

r̄

(
k + 1− k

δ̄2

)
− 2k

δ̄2
ln r̄ + k

( r̄

δ̄2
− 1

)
(II.7)

where

k =
δ̄2

(1 + δ̄)(δ̄2 − 2δ̄ + 2 ln(1 + δ̄))

This oxygen distribution satisfies all four boundary conditions.

Advective contribution

The flow around the sphere is well known as Stokes flow (see Fig. II.1) and the di-

mensionless stream function ψ̄(r̄, θ) (with ψ̄ = ψ/a2U) in spherical polar co-ordinates

r̄ and θ is

ψ̄ = r̄2

(
1

2
− 3

4r̄
+

1

4r̄3

)
sin2 θ (II.8)

When F represents the total amount of oxygen transported within the concentration

boundary layer across a radius at any θ along the sphere due to advection, F (θ) can

be written as:

F (θ) = −
∫ 0

1

ψ̄dc̄ = −
∫ 1+δ̄

1

∂c̄

∂r̄
ψ̄dr̄ (II.9)

Total mass transfer

The equation of oxygen mass conservation (II.1) can be rewritten as the mass balance

for a θ-section of the concentration boundary layer by integrating equation II.2 over

the boundary layer thickness and differentiating equation II.9 with respect to θ:

− d

dθ

(∫ 1+δ̄

1

∂c̄

∂r̄
ψ̄dr̄

)
=

∫ 1+δ̄

1

2

Pe

(
sin θ

∂

∂r̄

(
r̄2 ∂c̄

∂r̄

)
+

∂

∂θ

(
sin θ

∂c̄

∂θ

))
dr̄ (II.10)
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Both ψ̄ and c̄ are now known functions of r̄, δ̄ and θ. Equation II.10 needs two

boundary conditions for c̄(θ). One condition is dc̄/dθ = 0 for θ = 0. If the other

boundary condition would be known, the boundary layer thickness δ̄ could be solved

as a function of θ.

If the Péclet number Pe À 1 the concentration boundary layer δ̄ becomes very

small. In that case, equation II.10 can be linearized for δ̄ ¿ 1 and the tangential

diffusion term appears negligible. The resulting first order differential equation needs

only one boundary condition and can be solved analytically to:

δ̄ =
3

√
30

Pe
×

3

√
θ − 1

2
sin 2θ

sin θ
(II.11)

The Sherwood number (Sh) is defined as (Friedlander, 1957):

Sh = −
∫ π

0

(
∂c̄

∂r̄

)

r̄=1

sin θdθ =

∫ π

0

(k + 1) sin θdθ (II.12)

For Pe À 1 or δ̄ ¿ 1, k(δ̄) can be linearized and equation II.12 can be solved

analytically to (cf. Friedlander (1957, 1961)):

Sh = 0.9785Pe1/3 (II.13)

For smaller values of Pe, the mass boundary layer thickness is no longer small

compared to one. In that case, equation II.10 has to be solved numerically. However,

this is not possible because equation II.10 lacks sufficient boundary conditions in θ-

direction. The tail length of the mass boundary layer appears to be undetermined

and could as well be infinitely long. This is the direct result of the assumption that

c̄ = 0 at r̄ = 1 + δ̄ and because the boundary condition for ∂c̄/∂θ at r̄ = 1 + δ̄ and

θ = π is missing.

Applying the linearization procedure for δ̄ ¿ 1 to equation II.10 and II.12 shows

that Sh can be written as:

Sh = αPe1/3 + βPe0 + O
(
Pe−1/3

)
(II.14)

It can be shown that the contribution of the tangential diffusion to the Sh-number

must be O
(
Pe−1/3

)
. So we may solve equation II.12 up to O(Pe0) numerically

without needing a second boundary condition for δ̄(θ). (Neglecting the tangential

diffusion term in equation II.10 reduces the equation from a second order to a first

order differential equation in θ, for which only one boundary condition at θ = 0 is

sufficient.)
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The numerical solution of equation II.12 without the tangential diffusion term is

shown in Fig. II.2. With the effect of the tangential diffusion included, the solution

to the right order of accuracy is:

Sh = 0.978Pe1/3 + 1.38 + O
(
Pe−1/3

)
(II.15)

This expression together with its confidence interval is valid for all Pe larger than

one (Fig. II.2). Fig. II.2 also shows the agreement between our analytical model

(solid line) and data points from Friedlander (1957). See Kranenbarg et al. (2001) for

several other relations between the Sherwood number and the Péclet number from

the literature
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Figure II.2: Sherwood number as a function of the Péclet number. The solid
line with dashed confidence intervals represents the general solution of equation
II.12 to the right order of magnitude (equation II.15). Black dots represent data
cited in Friedlander (1957).



Chapter 5

Consequences of Forced
Convection for the Constraints on
Size and Shape in Embryos1

Previously, predictions on maximum size of biological objects based on oxygen
availability have been made for both zero and infinite water velocity around
the object. In reality however, water velocity is always intermediate between
zero and infinity. We predicted maximum size and optimal shape of biological
objects, pending the velocity of water around them. We assumed oxygen inside
the object to be transported by diffusion and outside the object by diffusion and
convection. Fick’s first law of diffusion describes the inner transport. For the
outer transport, we relied on semi-empirical relations between mass transport
and flow conditions (Friedlander’s equations). To keep mathematical complex-
ity acceptable, we restricted ourselves to the analysis of a sphere and a cylinder
in cross flow. If water velocity is low, a spherical shape is most favorable for gas
exchange. If water velocity is high, an elongated and flattened shape is more
favorable. A size-dependent intermediate velocity exists where shape does not
matter (10−4 m/s for teleost embryos). Teleost embryos are typically exposed
to flow velocities equal to or larger than 10−4 m/s, making an elongated shape
more favorable than a spherical one. Although teleost eggs are typically spher-
ical, the oxygen consuming embryos inside are indeed elongated.

5.1 Introduction

Several authors have predicted maximum sizes of biological objects based on oxygen

diffusion capacities (McNeill Alexander, 1971; Fenn, 1927; Gerard, 1931; Harvey, 1928;

Kranenbarg et al., 2000; Krogh, 1941; Lee and Strathmann, 1998; Strathmann and

Chaffee, 1984; Warburg, 1923; Woods, 1999). All of these authors assumed the oxygen

1Kranenbarg, S., Verhagen, J.H.G., Muller, M. and van Leeuwen, J.L. (2001). J.
Theor. Biol. 212(4), 521-533. Reproduced with permission of Academic Press.
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concentration at the surface of their object to equal the concentration of the free water

(infinitely thin concentration boundary layer). In addition, Kranenbarg et al. (2000)

and Lee and Strathmann (1998) give a model of oxygen diffusion into animals living

in completely stagnant water. This situation allows a complete diffusion boundary

layer to build up without any perturbations.

A comparison of oxygen diffusion into a spherical, cylindrical and sheet-like an-

imal in the ‘infinitely thin boundary layer’ situation by Kranenbarg et al. (2000)

showed that a sheet-like animal can become largest in the absence of an additional

internal oxygen transport system. This makes the sheet the most optimal shape for

gas exchange when water velocity is infinitely large (and presumably much lower). A

situation where consumption (independent of local oxygen concentration) by the an-

imal is at equilibrium with the supply by diffusion (steady state) is never reached for

an infinitely long cylindrical or sheet-like shape in stagnant water. The optimal shape

for gas exchange in stagnant water could therefore not be determined by Kranenbarg

et al. (2000).

In real life situations, however, it is highly unlikely that an animal lives in either

completely stagnant water or in a situation where the boundary layer is infinitely thin.

Naturally occurring mechanisms such as parental fin fanning (e.g. Cichlidae, Gas-

terosteidae), positive buoyancy of eggs (Cambalik et al., 1998; Nakatani and Maeda,

1993), cilia-induced convection (Burggren, 1985), flow of the surrounding medium

(Johnson, 1980) or natural convection (O’Brien et al., 1978) tend to stir or refresh

the oxygen poor boundary layer around the animal.

In this paper, we try to assess the effects of movement of the medium due to

external forces (forced convection) on the supply of oxygen to embryos without a

functional circulatory system. Our analysis aims to predict a theoretical maximum

body size that can be supplied with oxygen solely by diffusion, pending the flow

velocity of the external medium. In addition, the optimal body shape for gas exchange

is determined for different flow velocities of the surrounding medium.
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5.2 Theoretical Analysis

5.2.1 Optimal shape in forced convection with infinite or zero
velocity

The volume of respiring tissue of an animal without a circulatory system has to

be supplied with oxygen by diffusion through the skin surface. Too large a surface

area will be energetically inefficient, as will be too large a tissue volume. Thus,

an optimal tuning of the (oxygen supplying) surface area and (oxygen consuming)

tissue volume is to be expected. Therefore, volume-to-surface-ratio (V/A) is a relevant

definition of size. A maximum volume-to-surface-ratio represents the volume that can

be maintained by a specified surface area (and a surface-to-volume-ratio represents the

surface area needed to supply a specified volume with sufficient oxygen). Kranenbarg

et al. (2000) give theoretical maximum volume-to-surface-ratios for sheet-, cylinder-

and sphere-shaped embryos living in running water (infinitely thin diffusion boundary

layer) in a steady state situation.

sheet:
V

A
= 1.41

√
DeC∞

m
(5.1)

cylinder:
V

A
=

√
DeC∞

m
(5.2)

sphere:
V

A
= 0.82

√
DeC∞

m
(5.3)

where V is the volume of the organism, A is the surface area, De is the diffusion

coefficient of oxygen in embryonic tissue, C∞ is the free water oxygen concentration

and m is the volume-specific oxygen consumption (independent of the oxygen concen-

tration, based on Longmuir (1957); see appendix A). In running water, a sheet-like

shape is the most favorable for gas exchange (sheet-like embryos can obtain the largest

volume-to-surface-ratio). Equation 5.1 holds for a sheet of infinite planar dimensions

and equation 5.2 holds for an infinitely long cylinder. For a finite cylinder in running

water, the effect of diffusion through the (plate-like) ends on the oxygen concentration

in the center of the cylinder is negligible at a length-radius-ratio of about five (Gielen

and Kranenbarg, 2002). In low Reynolds number flow around a finite cylinder, water

velocity will be largest around the ends of the cylinder, thereby locally increasing the

oxygen concentration. The effect of this faster flow around the ends of the cylinder

will at most be a two-fold larger oxygen concentration at the ends as compared to the
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middle part of the cylinder (Kranenbarg et al., 2000). It can therefore be argued that

the effect of diffusion through the ends of a finite cylinder at low Reynolds number

flow on oxygen concentration at the center of the cylinder will cease to exist at a

length-radius-ratio of about ten. At a length-radius-ratio between ten and twenty,

there is no effect of oxygen diffusion through the ends of a finite cylinder on oxygen

concentration at the center of the cylinder, though the maximum volume-to-surface-

ratio is still smaller than that of an infinite cylinder. At a length-radius-ratio of

about twenty, the maximum volume-to-surface-ratio of a finite cylinder equals 95%

of that of an infinite cylinder. In the remainder of this paper we will discuss sheets

and cylinders of infinite dimensions with the implicit assumption that the results will

reasonably hold for length-radius-ratios larger than about twenty.

If the diffusion coefficient of oxygen in water is assumed to be three times that

of oxygen in embryonic tissue (Kranenbarg et al., 2000), the maximum volume-to-

surface ratio for a spherical embryo without a circulatory system in stagnant water

(complete diffusion boundary layer build-up, zero velocity) in a steady state situation

is:

V

A
= 0.63

√
DeC∞

m
(5.4)

which is (of course) smaller than in running water. Steady state situations do not

exist for a cylinder and plane sheet of infinite dimensions in stagnant water as the

concentration gradient is described by a logarithmic and linear function of the radial

distance, respectively and the oxygen concentration thus never reaches a plateau

(Kranenbarg et al., 2000). However, contrary to running water, the sphere appears

to be the most favorable shape in stagnant water! This can be shown as follows.

Assume for simplicity the diffusion coefficients of oxygen in tissue and water to be

the same (De = Dw). The oxygen concentration at the center of a spherical embryo

in stagnant water, as a function of time t (where t is large) is given by:

c(0, t) = C∞ − mR2

2D
+

mR3

3πD

√
π

Dt
(5.5)

where R is the radius of the organism (Kranenbarg et al., 2000).

For a sheet-like organism, the equivalent expression is:

c(0, t) = C∞ −mt

(
1− 4 i2 erfc

R

2
√

Dt

)
(5.6)

for any t (Carslaw and Jaeger, 1959), where R is half the thickness of the sheet and

i2 erfc (z) is a repeated integral of the error function (Abramowitz and Stegun, 1965).
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Table 5.1: Volume-to-surface-ratios (V/A) of spherical or sheet like embryos with their
accompanying survival times ts in stagnant water. Values of the input parameters are
those at 25� (Appendix C).

ts (s) sphere V/A (m) plane sheet V/A (m)
103 1.12×10−4 2.69×10−5

104 1.08×10−4 9.67×10−6

105 1.07×10−4 3.06×10−6

106 1.07×10−4 9.67×10−7

Using the first two terms of a power series expansion of i2 erfc (z) (Abramowitz and

Stegun, 1965), equation 5.6 reduces to:

c(0, t) = C∞ − 1.1284mR

√
t

D
(5.7)

for large t.

Now suppose that we want to calculate the volume-to-surface-ratio at which the

model embryo can survive ts seconds, i.e. the center of the organism is not allowed

to become anoxic for t < ts. If t = ts, the concentration in the center of the model

embryo reaches zero:

sphere: 0 = C∞ − mR2

2D
+

mR3

3πD

√
π

Dts
(5.8)

sheet: 0 = C∞ − 1.1284mR

√
ts
D

(5.9)

From these equations, the volume-to-surface-ratio at t = ts can be calculated by using

appendix C to estimate parameters m and D (Table 5.1).

These results show that although a steady state solution does not exist for a plane

sheet (and cylinder) of infinite dimensions in stagnant water, a maximum volume-

to-surface-ratio can be predicted for a defined survival time. This predicted max-

imum volume-to-surface-ratio is larger for a spherical organism than for a sheet-

and cylinder-shaped organism (assuming the cylinder to be intermediate between the

plane sheet and the sphere), which makes the sphere the most optimal shape in stag-

nant water (see discussion). Preliminary numerical evaluations of diffusion in plane

sheets and cylinders of finite dimensions in FEMLAB 2.1 show similar results, thus

indicating that a sphere in stagnant water can indeed obtain the maximum volume-

to-surface-ratio.
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5.2.2 Effects of forced convection on size and shape; an ana-
lytical approach

The plane sheet appears to be a less favorable shape for gas exchange in stagnant

water than in running water, while the reverse is true for the sphere. This suggests

the existence of a flow condition where shape does not matter! In order to find this

condition, we analyzed a moving line sink (as a representation of a cylindrical, oxygen

consuming organism in a moving fluid) and a moving point sink (for a spherical,

oxygen consuming organism in a moving fluid). In our analysis we only considered

the line sink moving perpendicular to its axis.

According to Kranenbarg et al. (2000), a steady state situation for the oxygen

concentration distribution is reached within several minutes (when theoretically pos-

sible). This is very quick compared with the developmental time scale and we therefore

adopt a steady state situation in the subsequent analyses.

Moving point sink

If oxygen is consumed at a rate 4
3
πR3m per unit time at the origin of a co-ordinate

system and the medium moves uniformly past the origin with velocity U parallel to

the x-axis, the steady state oxygen concentration in point (x,y,z) is given by (modified

after Carslaw and Jaeger (1959)):

c(x, y, z) = C∞ − mR3

3Dw

√
x2 + y2 + z2

e
−U(

√
x2+y2+z2−x)

2Dw (5.10)

Note that although we analyzed a point sink, we introduced a radius R. An actual

spherical sink would influence the streamlines of the originally parallel flow, while a

point sink does not. The effect of introducing a radius in the analysis will be discussed

in section 5.3. For now, we will assume the equations of a point sink to hold for a

spherical sink as well. For x = 0, y = 0 and
√

x2 + y2 + z2 = R, it follows from

equation 5.10 that

c(0, 0, R) = C∞ − mR2

3Dw

e
−UR
2Dw (5.11)

which gives the oxygen concentration at the outer surface of the spherical embryo

(see Fig. 5.1 A for the orientation of the sphere).
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Figure 5.1: Illustration of the orientation of the point (A) and line (B) sink.
The artificially introduced radius (see text) is indicated by R. The flow velocity
of the surrounding medium is represented by U .

Moving line sink (of infinite length)

If oxygen is consumed at a rate mπR2 per unit length and unit time along the y-axis

and the medium moves uniformly past the y-axis with velocity U parallel to the x-axis

(cross flow), the oxygen concentration in steady state at a point (x,y,z) is given by
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(modified after Carslaw and Jaeger (1959)):

c(x, z) = C∞ − mR2

2Dw

e
Ux

2Dw K0

(
U
√

x2 + z2

2Dw

)
(5.12)

where K0 is the modified Bessel function of the second kind of order 0. Here we again

introduced a radius R and again we will assume the equation for a line sink to hold

for a cylindrical sink (see also section 5.3).

For x = 0 and
√

x2 + z2 = R, it follows from equation 5.12 that

c(0, R) = C∞ − mR2

2Dw

K0

(
UR

2Dw

)
(5.13)

gives the oxygen concentration at the outer surface of the cylindrical embryo (see

Fig. 5.1 B for the orientation of the cylinder).

It would be interesting to know under what conditions the oxygen concentration

for a cylindrical and a spherical shape are equal, or when

cline(0, R) = cpoint(0, 0, R) (5.14)

This is the case when equations 5.11 and 5.13 are equal:

1

2
K0

(
UR

2Dw

)
=

1

3
e−

UR
2Dw (5.15)

which yields after numerical evaluation

UR = 6.6Dw (5.16)

Since the diffusion coefficient is in the order of magnitude of 10−9 m2/s and the embryo

radius (volume-to-surface-ratio) in the order of magnitude of 10−4 m (Kranenbarg

et al., 2000), the flow velocity at which the oxygen concentration at the surface of

the model embryo is the same for a cylindrical and spherical shape is in the order

of magnitude 10−4 m/s, or several hundreds of micrometers per second. When the

velocity is higher a cylindrical shape is more favorable, if flow is perpendicular to the

axis, when it is lower a spherical shape is more favorable for gas-exchange.

5.2.3 Effects of forced convection on size and shape; a semi-
empirical approach

The effects of forced convection on gas exchange in different shapes can also be in-

vestigated by employing dimensionless number theory (appendix B). Numerous semi-

empirical relations exist between different dimensionless numbers to describe mass
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transfer to different shapes, which we used in the following analysis. Again, we com-

pared oxygen diffusion and forced convection to a spherical and cylindrical embryo in

cross flow.

We assume diffusion to be the only way of oxygen transport inside the organism,

as the animal does not have a functional circulatory system yet. Outside the embryo

forced convection occurs in combination with diffusion. It is therefore convenient to

divide the problem of oxygen transport to an embryo into an inner and an outer

problem. In this paper we assume oxygen transport inside and outside the embryo

to be linked by a ‘constant and equal concentration on the skin surface’ principle

(Daykin, 1965).

Oxygen transport inside the embryo

Fick’s first law of diffusion applied to the inside of a spherical embryo gives:

4

3
πr3m = 4πr2De

dc

dr
(5.17)

where r is the distance to the center of the embryo, c is the oxygen concentration,

and the volume-specific oxygen consumption m is independent of the oxygen concen-

tration.

This reduces to:

dc

dr
=

mr

3De

(5.18)

By integrating from the center of the sphere (r = 0) to the surface (r = R) and

assuming c(0) = 0, we obtain:

cs =
mR2

6De

(5.19)

where cs = oxygen concentration at the skin surface.

For a cylindrical embryo an analogous expression can simply be derived by apply-

ing Fick’s first law to a cylinder:

cs =
mR2

4De

(5.20)

Thus, equations 5.19 and 5.20 give the oxygen concentration at the body surface of

a spherical and cylindrical organism respectively, needed to sustain the maximum

possible volume-to-surface-ratio.
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Oxygen transport outside the embryo

The effect of forced convection in combination with diffusion on the oxygen transport

to the embryo can be assessed by a dimensionless number analysis. A respiring embryo

builds up an oxygen concentration boundary layer around it. Oxygen is transferred

by diffusion across that boundary layer at a rate proportional to the difference in

oxygen concentration on opposite sides of that layer (Daykin, 1965):

J = 4πR2(C∞ − cs)k (5.21)

where J is the mass flux of oxygen to the sphere and k the mass transfer coefficient.

For a sphere with volume-specific oxygen consumption m, equation 5.21 becomes:

Rm

3
= (C∞ − cs)k (5.22)

The mass transfer coefficient, the sphere radius and the diffusion coefficient of oxygen

in water (Dw) can be combined into a dimensionless number, the Sherwood number

(Sh, equivalent to the Nusselt number in heat transfer) (Daykin, 1965):

Sh =
2kR

Dw

(5.23)

The Sherwood number is a measure for the ratio of total mass transfer to diffusive

mass transfer. By assuming Dw = 3De (Kranenbarg et al., 2000), equations 5.20,

5.22 and 5.23 can be combined to obtain:

Shsphere =
4

6DwC∞
mR2

− 3
(5.24)

For a cylindrical embryo the analogous formula becomes:

Shcylinder =
4

4DwC∞
mR2

− 3
(5.25)

The effect of forced convection is to reduce the boundary layer thickness and thus

enhancing diffusion of oxygen into the embryo. Forced convection can be described

in terms of the dimensionless Reynolds number (Re) and Schmidt number (Sc, equiv-

alent to the Prandtl number in heat transfer) (Bird et al., 1960):

Re =
2RU

ν
(5.26)
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Table 5.2: Several semi-empirical relations of the Sherwood number (Sh) with the Reynolds
(Re) and Schmidt (Sc) or Péclet (Pe) number, together with their origin (mass or heat
transfer), their validity domain and author.

mass / heat validity region reference

sphere

Sh =
(
1.21Pe2/3 + 4

)1/2
mass Re < 1 Brian and Hales (1969)

Sh = 1 + (1 + Pe)1/3 mass Re < 1 Clift et al. (1978)
Sh = 2 + 0.89Pe1/3 mass Re < 1 Friedlander (1957)

Pe > 103

Sh = 2 + 0.6Re1/2Sc1/3 heat 1 < Re < 105 Bird et al. (1960)
Sh = 2 + 0.8Re1/2Sc1/3 mass Re > 1 Daykin (1965)

Sc ≈ 103

cylinder

Sh = 0.557Pe1/3 mass Re = 0.1 Friedlander (1957)
Pe ≥ 10

Sh = 0.91Re0.385Sc0.31 heat 0.1 < Re < 50 Jakob (1949)
Sh = 0.86Re0.43Sc0.3 heat 0.1 < Re < 200 McAdams (1951)
Sh = 0.49Re0.53Sc1/3 heat 102 < Re < 105 Bird et al. (1960)

where ν is the kinematic viscosity of the surrounding water, U is the flow velocity of

the surrounding water. The Reynolds number is a measure for the ratio of inertial

forces to viscous forces. The Schmidt number is a measure for the ratio of kinematic

viscosity to molecular diffusivity:

Sc =
ν

Dw

(5.27)

The Péclet number (Pe) is often used as the product of the Reynolds and Schmidt

numbers and is a measure for the ratio of convective mass transfer to diffusive mass

transfer:

Pe = ReSc =
2RU

Dw

(5.28)

Several other theoretical and semi-empirical equations exist to relate the Sherwood

number to the Reynolds and Schmidt or Péclet number for different flow conditions

and different shapes of the object (Table 5.2).

We want to calculate the maximum volume-to-surface-ratio at any flow velocity

of the surrounding medium for both a spherical and cylindrical embryo. This can be
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Figure 5.2: Graph of maximum volume-to-surface-ratio of a cylindrical and a
spherical animal as a function of flow velocity of the surrounding medium at
25�. The two sets of lines were calculated using the different relations shown
in Table 5.2. The dotted lines were used for further analytical analysis (see
text). Note the intersection point of the two sets of lines. Flow velocities above
that of the intersection point make a cylindrical shape more efficient. At lower
velocities, a spherical shape is more efficient.

done by combining equations 5.24 and 5.25 with the equations in Table 5.2, giving

two equations with two variables (R and U) for both the sphere and the cylinder.

Fig. 5.2 gives the result of these calculations. Using Friedlander’s equations (Ta-

ble 5.2), the point of intersection of the curves for maximum volume-to-surface-ratio

of a sphere and cylinder as a function of flow velocity of the surrounding medium can

be calculated (dotted lines in Fig. 5.2). It appears that if

U = 9.83

√
Dwm

C∞
(5.29)

the maximum volume-to-surface-ratio for a spherical organism is the same as that
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Figure 5.3: Graphs of the four input parameters as a function of temperature:
(A) oxygen concentration of the free water (data from Kranenbarg et al. (2000)),
(B) volume-specific oxygen consumption (data from Rombough (1988)), (C)
kinematic viscosity of water (data from Weast (1976)). and (D) diffusion coef-
ficient of oxygen in water (data from Kranenbarg et al. (2000)).
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of a cylindrical organism and can be expressed as:

V

A
= 0.41

√
DwC∞

m
(5.30)

cf. equations 5.3 and 5.4, where the coefficients in front of the rooted term are 0.47

and 0.36 respectively if De is converted to Dw (Dw = 3De; Kranenbarg et al. (2000)).

If the flow velocity of the surrounding medium is lower, the maximum volume-to-

surface-ratio for a spherical organism is larger, if this flow velocity is higher, then a

cylindrical organism can obtain a larger volume-to-surface-ratio.

If we replace the velocity and radius in the Reynolds number by equations 5.29

and 5.30 respectively, where R = 2V/A in a cylinder and R = 3V/A in a sphere, we

obtain the following for the intersection point:

for a cylinder: ReSc = 8.14 (5.31)

for a sphere: ReSc = 12.2 (5.32)

In terms of the physical parameters, these expressions read
2RU

ν

ν

Dw

≈ 10, which can

be simplified as:

RU = 5Dw (5.33)

Note that this equation closely resembles equation 5.16 in section 5.2.3.

Obviously, all four input parameters (C∞, m, ν and Dw) necessary to create

Fig. 5.2, depend on temperature. Appendix C gives this dependency for these four

parameters based on literature data. Kranenbarg et al. (2000) give the temperature

dependencies of the free water oxygen concentration and the diffusion coefficient of

oxygen in water. Appendix C gives this relation based on temperature in degrees Cel-

sius instead of Kelvin. Kinematic viscosity of water decreases with temperature, which

can be described by a polynomial fitted to data in Weast (1976). Volume-specific oxy-

gen consumption of teleost embryos depends on temperature as given by Rombough

(1988). In appendix C, Rombough’s regression line is represented as a fourth order

polynomial. Fig. 5.3 gives a graphical representation of the above mentioned relations.

Using the equations in Appendix C, maximum volume-to-surface-ratio as a function

of flow velocity of the surrounding medium can be calculated with temperature as a

covariable (Fig. 5.4). As was already shown by Kranenbarg et al. (2000), theoretical

maximum volume-to-surface-ratio is higher as temperature decreases. However, the

flow velocity at which the lines representing maximum volume-to-surface-ratio of a

sphere and cylinder intersect show a relatively small effect of temperature (Fig. 5.4).
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Figure 5.4: Graph of the maximum volume-to-surface-ratio of a cylindrical
(dotted lines) and a spherical organism (solid lines) as a function of flow ve-
locity of the surrounding medium (cf. Fig. 5.2) and temperature (indicated in
� near the intersection point). The two lines for each temperature are based
on Friedlander’s equations in Table 5.2. Note the minor effect of temperature
on the flow velocity at the intersection point of the lines for a cylinder and
sphere.

5.3 Discussion

In our theoretical analysis, we compared oxygen supply to three geometrically simple

shapes (sheet, cylinder and sphere). In fact, the analysis of a sheet boils down to the

elimination of two out of three dimensions. Oxygen diffuses to a sphere from three

dimensions, while a sheet of infinite length and width can be supplied with oxygen

from only one dimension (i.e. perpendicular to the sheet). In case of the infinite

cylinder, one dimension (i.e. parallel to the long axis of the cylinder) is excluded.

Finite sheets and cylinders will at least partly be supplied with oxygen from less than

three dimensions. This is the reason why in stagnant water, a sphere is the most
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favorable shape for gas exchange.

In running water (U > 1 m/s; Fig. 5.2), the oxygen concentration at the skin

surface equals the free water concentration (infinitely thin concentration boundary

layer). A given surface area can supply a larger volume of embryonic tissue when

arranged in a sheet-like shape. When flow velocity is high, a flattened shape is

therefore more favorable for gas exchange. It should be noticed that a large surface

area is favorable for gas exchange only if it is available to the underlying tissue.

Thin flaps protruding from a body (e.g. early finfold of teleosts) cannot serve as a

‘respiratory organ’ unless an integrated oxygen transport system is present to carry

away the oxygen and thereby maintaining the oxygen concentration gradient. The

maximum volume-to-surface-ratio of a cylindrical organism is intermediate between

a sheet-like and a spherical one.

When the flow velocity of the surrounding medium increases from zero to infinity,

the advantage of having a larger surface area (sheet) gradually takes over from the

advantage of being supplied with oxygen from three dimensions (sphere). In general it

can be said that for gas exchange in stagnant water, the sphere is the most favorable

shape, while flattening of the body becomes more and more favorable as flow velocity

increases.

Since the efficiency (volume of respiring tissue that can be supplied with oxygen

per unit surface area) of different shapes with respect to gas exchange appears to

reverse with increasing flow velocity, an intermediate flow velocity can be expected

where shape does not matter. In order to find this intermediate velocity, we com-

pared the supply of oxygen to a sphere and cylinder in cross flow. Our preference

to analyze cross flow instead of parallel flow is based on three arguments. First of

all, the analysis of parallel flow would introduce an additional parameter (length of

the cylinder) which makes comparison with the sphere rather difficult. Secondly, a

symmetrical moving body (at least at Reynolds numbers > 0.1) will take up an ori-

entation with the maximum cross-sectional area normal to the direction of motion

(McNown and Malaika, 1950; Vogel, 1994), i.e. cross flow. Thirdly, there is a vast

amount of empirical data on mass and heat transfer to cylinders and spheres in cross

flow. Mass and heat transfer to cylinders in flow parallel to its axis is much less well

investigated. Analysis of diffusion and convection in and around other shapes such as

ellipsoids and eventually actual embryo shapes would be very interesting. However,

such analyses become mathematically extremely difficult and even impossible when
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performed analytically. To overcome these limits of analytical mathematics, numeri-

cal evaluation of the equations of diffusion and motion in arbitrary three-dimensional

shapes are required.

The flow regime, at which shape does not matter, can be defined by analyzing

an oxygen consuming point and line (section 5.2.3). This leads to the condition that

if flow velocity of the surrounding medium times radius of the model organism is

about seven times the diffusion coefficient of oxygen in water, a spherical and cylin-

drical shape can obtain an equal volume-to-surface-ratio. From the semi-empirical

dimensionless number analysis, the analogous proportionality factor is five (instead

of seven). In fact, the conditions assumed in the point and line sink analysis are more

favorable for the model organism than in the dimensionless number analysis. In the

point and line sink analysis, water is allowed to flow inside the artificially introduced

boundaries of the model organism (because a point and line are infinitely thin). This

enhances oxygen transport and thus it is not surprising that for a specified flow ve-

locity and oxygen diffusion coefficient, the maximum radius calculated from the point

and line sink analysis is a little bit larger than that calculated from the semi-empirical

analysis.

Despite this small difference, the apparent similarity in the order of magnitude of

the results of the analytical and semi-empirical approach suggest that the analysis of

point and line sinks can be used to predict the effects of forced convection on maximum

volume-to-surface-ratio and optimal shape. At a flow velocity of about 10−5 to 10−4

m/s and larger, a cylindrical shape can obtain a larger volume-to-surface-ratio than a

spherical one (Fig.5.4). Bearing the analysis in section 5.2.1 in mind, this statement

holds true for cylindrical shapes with length-radius-ratios larger than about twenty.

Kranenbarg et al. (2000) presented a graph of theoretical maximum volume-to-

surface-ratios of spherical, cylindrical and sheet-like organisms with continuous re-

freshment of the oxygen poor boundary layer (Fig. 5.5). The same graph includes

the maximum volume-to-surface-ratio of a spherical organism in stagnant water. Ac-

tual volume-to-surface-ratios of several teleost embryos are smaller than or equal to

the maximum volume-to-surface-ratio of a spherical embryo in stagnant water. This

suggests that in stagnant water diffusive oxygen supply is sufficient if the embryos

were spherical. However, the theory presented in this paper indicates that deviation

from the spherical shape (which is of course the case) would create problems with the

oxygen supply if the water were stagnant (at least for the embryos scattered around
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Figure 5.5: Graph of the calculated maximum volume-to-surface-ratios of a
spherical, cylindrical and sheetlike organism in a situation of continuous diffu-
sion boundary layer refreshment (‘running water’) as a function of temperature
(solid lines). The dotted line represents the maximum volume-to-surface-ratio
for a spherical organism in a completely stagnant medium. The open circles
indicate literature data for several teleost embryos (for further explanation, see
Kranenbarg et al. (2000).

the dotted line in Fig. 5.5).

According to Johnson (1980), measured Reynolds numbers for forced convection

over gravel-like substrates vary from 0.1 - 75. For salmonid eggs this suggest a water

velocity of 10−4 to 10−1 m/s (assuming an egg diameter in the order of magnitude of a

millimeter). Several marine buoyant teleost eggs rise to the surface with a velocity of

typically 1×10−3 to 2×10−3 m/s (Nakatani and Maeda, 1993; Cambalik et al., 1998).

Burggren (1985) found a convective flow inside the egg capsule of the pickerel frog

(Rana palustris) due to the activity of a ciliated epithelium. The velocities of this

convection varied between 1×10−4 and 3×10−4 m/s. Even in the absence of forced

convection, natural convection can generate water velocities around a teleost egg of

about 2×10−4 m/s on average (O’Brien et al., 1978). Furthermore, the perivitelline



Convection and Bodyshape 87

fluid of Atlantic salmon (Salmo salar) eggs exchanges within a few minutes with

the external medium (Potts and Rudy, 1969). These data suggest that teleost eggs

typically develop in a moving external medium, with flow velocities of at least 10−4

m/s.

Eggs of teleosts are generally spherical, though elongated eggs also occur; e.g. some

Gobiidae (Moser, 1996). The embryos at the stage where a circulatory system be-

comes functional, however, can reasonably accurately be modelled as a finite cylinder

of length-radius-ratio of about twenty, although this does not take the actual curvature

of the long axis of the embryo into account (Moser, 1996). Fig. 5.2 shows that under

the prevalent flow conditions, such a shape is indeed more favorable with respect to

diffusive oxygen supply than a more spherical one. And however small, flow velocities

of 10−4 m/s appear necessary to supply the actual cylindrical embryo with sufficient

oxygen. Lower flow velocities would predict maximum volume-to-surface-ratios for

the cylindrical embryo below the dotted line in Fig 5.5.

It is conceivable that a sheet-like shape would be even more favorable than a

cylindrical one at the prevalent flow velocities, though our model is not suitable to

analyze this shape properly. In addition, it is likely that other constraints such as

strength and stability would prevent the actual embryo from adopting a sheet-like

shape.

Another way of utilizing the high oxygen transfer properties of running water

is increasing respiration rate, while the same amount of tissue is to be maintained

as in stagnant water. Increase of respiration rate may lead to faster growth and

reproduction. According to equations 5.3 and 5.4, running water can supply enough

oxygen to an equally sized, but 1.7 times higher respiring animal as compared to

an animal in stagnant water. Indeed, it is known that individuals of the freshwater

wood louse (Asellus aquaticus) that live in fast running water have a respiration rate

one and a half times that of individuals living in slowly running water (Hynes, 1970).

Although the theory presented in this paper cannot simply be extrapolated to animals

with a circulatory system like the freshwater wood louse, the opportunities are clear.
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Appendix A Abbreviations and units

A Surface area of the embryo [m2]

c Oxygen concentration [kg/m3]

cs Oxygen concentration at the skin surface [kg/m3]

C∞ Oxygen concentration of the free water [kg/m3]

De Diffusion coefficient of oxygen in embryonic tissues [m2/s]

Dw Diffusion coefficient of oxygen in water [m2/s]

J Mass flux of oxygen [kg/s]

k Oxygen transfer coefficient [m/s]

m Volume-specific oxygen consumption [kg/m3 s]

r Distance to the center of the embryo [m]

R Radius of the embryo [m]

t Time [s]

ts Survival time [s]

Tc Temperature [�]

U Flow velocity of the surrounding medium [m/s]

V Volume of embryonic tissue [m3]

ν Kinematic viscosity [m2/s]

Appendix B Dimensionless numbers in convective

mass transfer theory

For symbols see appendix A.

name abbr. equivalent number equation description
in heat transfer

Péclet number Pe
2RU

Dw

convective mass transfer
diffusive mass transfer

Reynolds number Re
2RU

ν
inertia

viscosity

Schmidt number Sc Prandtl number
ν

Dw

kinematic viscosity
molecular diffusivity

Sherwood number Sh Nusselt number
2kR

Dw

total mass transfer
diffusive mass transfer
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Appendix C Temperature dependency of input pa-

rameters

Values of constants in the polynomial describing the temperature dependency of three

input parameters. Parameter value = a + bTc + cTc
2 + dTc

3 + eTc
4. Furthermore,

Dw = 3.051× 10−6e−17900/8.314(Tc+273).

C∞ m ν

a 1.455×10−2 2.122×10−5 1.789×10−6

b -4.052×10−4 9.687×10−7 -5.567×10−8

c 7.831×10−6 7.967×10−7 1.003×10−9

d -7.207×10−8 -2.772×10−9 -9.310×10−12

e 0 -3.736×10−10 3.355×10−14
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Chapter 6

Oxygen Balance for Small
Organisms: an Analytical Model1

An analytical model is developed that describes oxygen transport and oxy-
gen consumption for small biological structures without a circulatory system.
Oxygen inside the organism is transported by diffusion alone. Oxygen transfer
towards the organism is retarded by a thin static fluid film at the surface of
the organism. The thickness of this film models the outward water conditions,
which may range from completely stagnant water conditions to so-called well-
stirred water conditions. Oxygen consumption is concentration-independent
above a specified threshold concentration (regulator behavior) and is propor-
tional to the oxygen concentration below this threshold (conformer behavior).
The model takes into account shape and size of the organism and predicts the
transition from (pure) regulator behavior to (pure) conformer behavior, as well
as the mean oxygen consumption rate. Thereby the model facilitates a proper
analysis of the physical constraints set on shape and size of organisms without
an active internal oxygen transport mechanism. This analysis is carried out in
some detail for six characteristic shapes (infinite sheet, cylinder and beam; fi-
nite cylinder, sphere and block). In a well-stirred external medium, a flattened
shape appears to be the most favorable for oxygen supply, while a compact
shape (cube) is more favorable if the external medium is nearly stagnant. The
theoretical framework is applied to oxygen consumption data of eight teleost
embryos. This reveals relative insensitivity to external flow conditions in some
species (e.g. winter flounder, herring) while others appear to rely on exter-
nal stirring for a proper oxygen supply (e.g. largemouth bass). Interestingly,
largemouth bass is the only species in our analysis that exhibits ‘fin-fanning’.

1Gielen, J.L.W. and Kranenbarg, S. (2002). Bull. Math. Biol. 64(1), 175-207.
Reproduced with permission of the Society for Mathematical Biology.
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6.1 Introduction

Molecular diffusion is an important mechanism by which oxygen is transported to

respiring biological structures. However, molecular diffusion is only efficient over rel-

atively short distances, or as formulated by Krogh (1941): ‘diffusion alone can provide

sufficient oxygen only to organisms of 1mm diameter or less’. Molecular diffusion thus

poses a physical constraint on the size and shape of an organism that does not (yet)

have an additional way of oxygen transport (Graham, 1988). Mathematical models

of oxygen transport may serve to gain quantitative insight in these constraints and

the parameters involved.

Models of oxygen flow to biological structures date back to Warburg (1923), Fenn

(1927) and Harvey (1928), who modelled steady-state diffusion of oxygen from a well-

stirred solution to liver slices, frog nerves and bacteria, respectively. Warburg (1923)

and Fenn (1927) calculated maximum diffusion distances, while Harvey (1928) calcu-

lated a minimum surface oxygen tension for the bacterium to maintain an adequate

respiration. Gerard (1931) extended this model for a varying diffusion constant and

oxygen consumption pattern in the sphere. These authors modelled steady-state dif-

fusion of oxygen from a well-stirred solution into a one-dimensional structure (only the

radius is a variable shape-factor) under the assumption that volume-specific oxygen

consumption is independent of oxygen concentration (regulator behavior).

Strathmann and Chaffee (1984) elaborated on these models to formulate size con-

straints for invertebrate egg masses, while Lee and Strathmann (1998) included the

depletion of oxygen in a boundary layer around a spherical egg or egg-mass. Seymour

and Bradford (1987) modelled the effect of an impeding gelatinous capsule on the

oxygen delivery to a spherical egg and predicted maximum sizes of amphibian eggs

and egg capsules.

Daykin (1965) and Wickett (1975) applied mass transfer theory to oxygen trans-

port to respiring fish eggs. They predicted the bulk flow velocity required for proper

egg development. Kranenbarg et al. (2000) employed mass transfer theory to predict

maximum size and optimal shape of small organisms for any bulk flow velocity.

The assumption of concentration-independent consumption was alleviated by Byatt-

Smith et al. (1991) in their non steady-state models of oxygen diffusion to mouse

and human preimplantation embryos in the absence of stirring. They modelled the

volume-specific oxygen consumption of the embryos both as being independent of the

oxygen concentration (regulator) and as being directly proportional to the oxygen
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concentration (conformer), though both models were mutually exclusive.

This short historical sketch shows three important aspects in models of oxygen

transport to small organisms: shape and size of the organism, oxygen consumption

pattern of the organism and flow condition of the medium around the organism. In

the present paper we incorporate all these aspects of the oxygen transport prob-

lem in one analytical model. We represent the actual organism by a region G in

space, which determines the size and shape of the organism. Analytical solutions of

the resulting formalism for some special one-dimensional cases (infinite sheet, infi-

nite cylinder, sphere) and some higher dimensional cases (infinite beam, rectangular

parallelepiped and finite cylinder) are included. The oxygen consumption behavior

of our model organism is, in essence, a mixed form of conformer behavior (at low

oxygen concentrations) and regulator behavior (at higher oxygen concentrations), as

is generally found by experiment (e.g. Longmuir (1957)). Pure regulator and pure

conformer behavior are included as limiting cases in our model. Convective oxygen

transport to the organism is incorporated in our model by the introduction of a thin

static fluid film around the organism, through which oxygen is transported (Carslaw

and Jaeger, 1959; Rosen, 1952). The thickness of this layer will be translated in a

transport coefficient keff. A well-stirred external medium is represented by a layer of

(almost) zero thickness, while more or less stagnant water conditions are represented

by a positive thickness of the encapsulating layer, and hence by a finite value for keff.

With the inclusion of these aspects in our model we are able to make a proper

analysis of the constraint oxygen transport sets on the size and shape of organisms

that do not have an active internal oxygen transport mechanism.

6.2 The Model

6.2.1 Preliminaries

We wish to describe the stationary oxygen concentration inside a small organism

surrounded by water as a function of (1) the shape and size of the organism, (2)

the oxygen consumption pattern the organism exhibits, (3) the outside conditions

the organism experiences. The organism is modelled as a region G in 3-dimensional

space; the surface of the organism is denoted as ∂G. The oxygen concentration inside

the organism at place ~x and time t is described by the function u(~x, t), with ~x ∈ G and

t > 0. Then the stationary (equilibrium) oxygen concentration inside the organism
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Figure 6.1: The oxygen consumption rate F (u) of the organism (dimensionless:
Φ(v)). For u < C0 (dimensionless: v < E) there is conformer behavior; for
u > C0 (dimensionless: v > E) there is regulator behavior. The maximum
consumption rate equals m (dimensionless: P ).

is given by u(~x) = u(~x,∞), with ~x ∈ G.

Oxygen inside the organism is transported by diffusion; the (constant) diffusion

coefficient is denoted as D. It is assumed that barriers to oxygen diffusion and possible

movements of the protoplasm or interstitial fluid can be adequately accounted for in

the value of this diffusion coefficient (e.g. Desaulniers et al. (1996); Dowse et al.

(2000); Krogh (1919)). These authors show that the diffusion coefficient of oxygen in

animal tissue is about three times smaller than its value in water.

Furthermore oxygen will be consumed inside the organism. We suppose that the

oxygen consumption rate F at place ~x and time t is in the following way a function

of the oxygen concentration u = u(~x, t):

F (u) =

{
m if u ≥ C0

mu/C0 if u ≤ C0
(6.1)

This assumption implies a uniform oxygen consumption throughout the embryo,

while in reality oxygen is consumed by a large number of point sinks, i.e. the mi-

tochondria. To reduce mathematical complexity, however, we assume the effect of

all these point sinks on the final oxygen distribution to be the same as a uniform

oxygen consumption. Preliminary measurements of the oxygen concentration inside

a zebrafish (Danio rerio) embryo in vivo indeed supports this assumption.

The threshold concentration C0 marks the transition between so-called regulator

behavior and conformer behavior. We say the organism exhibits at place ~x and time
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t regulator behavior if u(~x, t) ≥ C0. This means that the oxygen concentration is

locally sufficiently high for the organism to consume all the oxygen it can use. The

consumption rate at such a point will therefore be at its maximum value m. If

u(~x, t) < C0 we say the organism exhibits at place ~x and time t conformer behavior.

This means that the oxygen concentration is locally too low to satisfy all the needs

of the organism. Accordingly it scales down its consumption to a (constant) fraction

of the available oxygen; see Fig. 6.1. Of course the organism as a whole can be

in a mixed state: then there is only lack of oxygen and thus conformer behavior

in (typically) some small interior part of G, while the outer parts of G still exhibit

regulator behavior. We designate an organism as a pure regulator (conformer) if it

exhibits regulator (conformer) behavior in all points of G.

It can be expected that the transition from pure regulator behavior to mixed

case behavior triggers certain biological modifications in the organism, for instance,

the onset of the formation of blood vessels in the oxygen deprived region. Also the

transition from mixed case behavior to pure conformer behavior is interesting from a

biological point of view: then the organism as a whole experiences oxygen shortage,

which may eventually lead to the complete shut-down of certain biological functions

inside the organism (Padilla and Roth, 2001). For these reasons we will pay special

attention to the parameter values for which these transitions occur.

In general the free water oxygen concentration C∞ does not equal the oxygen

concentration at the surface of the organism. The first reason for this phenomenon

stems from the solubility of oxygen in the organism’s tissue. With K the (dimen-

sionless) Henry coefficient for oxygen with respect to water and tissue, the oxygen

concentration in water directly at the surface ∂G equals u(~x, t)/K. For biological

tissue K will generally equal or be close to one. The second reason is found in the

formation of a thin static fluid film of water at the surface of the organism (Carslaw

and Jaeger, 1959; Rosen, 1952). The average thickness of this layer depends on the

water movement around the organism. In more or less stagnant water conditions

this film will be relatively thick, while in running water conditions this layer will be

practically non-existent. We suppose that oxygen transport through this layer obeys

Fick’s first law. This leads to the equation:

D
∂

∂~n
u(~x, t) = keff

[
C∞ − u(~x, t)

K

]
, for ~x ∈ ∂G and t > 0 (6.2)

The so-called mass transfer coefficient keff = Dw/δ, where δ represents the (averaged)

thickness of the static film and Dw the diffusion coefficient of oxygen in water. In
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this way keff delivers a measure for the thickness of the static layer, and thereby for

the outward water conditions. Running water conditions can be characterized by the

equation:

u(~x, t) = KC∞, for ~x ∈ ∂G and t > 0 (6.3)

Because for keff → ∞ equation 6.2 transforms into 6.3, we may say that the case

keff = ∞ represents running water conditions. The value of keff under (completely)

stagnant water conditions will be discussed in Section 6.3.3.

6.2.2 The model equations

The foregoing considerations lead to the following partial differential equation on G

and matching boundary condition on ∂G for the oxygen concentration u(~x, t):

PDE:
∂

∂t
u(~x, t) = D ∆~x u(~x, t)− F (u(~x, t)), for ~x ∈ G and t > 0 (6.4)

BC: D
∂

∂~n
u(~x, t) +

keff
K

u(~x, t) = keff C∞, for ~x ∈ ∂G and t > 0 (6.5)

Since the time scale for diffusion equilibrium is very much smaller than the time scale

for growth of the organism, we can safely assume diffusion equilibrium at any stage

during a growth process. That is why we are, in this paper, mainly interested in the

stationary (equilibrium) solution of equations 6.4 and 6.5, which means that an initial

condition is not needed.

At this point we introduce in the following way a characteristic length L for the

region G:

L = V/A with V =

∫

G

1 dω and A =

∫

∂G

1 dσ (6.6)

So L equals the volume to surface area ratio of the organism, which is in the present

context a meaningful notion indeed, as it represents the volume of respiring tissue to

be supplied with oxygen per unit surface area (Kranenbarg et al., 2000).

Next we introduce, with the help of this characteristic length L, the following

dimensionless parameters:

~ξ = ~x/L dimensionless place co-ordinates

τ = D t/L2 dimensionless time

v(~ξ, τ) = u(~x, t)/C∞ dimensionless concentration

(6.7)



Oxygen Balance for Small Organisms 97

The co-ordinate transformation ~x → ~ξ is a simple contraction with its center in the

origin, and transforms the region G into a unique ‘standard’ region G′ with the same

shape as G, but with a (dimensionless) volume to surface area ratio equal to one.

Note that the (dimensionless) time scale τ obtained on G′ depends on the size of G.

With the help of equation 6.7 we deduce in a straightforward way the following

dimensionless forms for 6.4 and 6.5:

PDE:
∂

∂τ
v(~ξ, τ) = ∆~ξ v(~ξ, τ)− Φ(v(~ξ, τ)) for ~ξ ∈ G′ and τ > 0 (6.8)

BC:
∂

∂~n′
v(~ξ, τ) +

Q

K
v(~ξ, τ) = Q for ~ξ ∈ ∂ G′ and τ > 0 (6.9)

Here the dimensionless consumption rate Φ is defined as (see Fig. 6.1):

Φ(v) =

{
P if v ≥ E

Pv/E if v ≤ E
(6.10)

and the dimensionless parameters P , Q and E are given by:

P = mL2/(D C∞) dimensionless maximum consumption rate

Q = keff L/D dimensionless mass transfer coefficient

E = C0/C∞ dimensionless threshold concentration

(6.11)

In this way we have reduced the parameter set D [m2 s−1], m [kg m−3 s−1], C0 [kg

m−3], C∞ [kg m−3], keff [m s−1], L [m] and K to the dimensionless parameter set P ,

Q, E and K; also the region G is transformed into a matching standard region G′.

As already said before in this paper we are mainly interested in the stationary

(equilibrium) state of the organism. From equations 6.8 and 6.9 we infer for the

dimensionless equilibrium concentration v(~ξ) = v(~ξ,∞) the following boundary value

problem:

PDE: ∆~ξ v(~ξ)− Φ(v(~ξ)) = 0 for ~ξ ∈ G′ (6.12)

BC:
∂

∂~n′
v(~ξ) +

Q

K
v(~ξ) = Q for ~ξ ∈ ∂ G′ (6.13)

From this equilibrium concentration v(~ξ) on G′ we retrieve with the help of equa-

tion 6.7 the original equilibrium concentration u(~x) on G. Now we can divide G into

two parts: G = Greg ∪ Gconf, with Greg = {~x ∈ G | u(~x) ≥ C0} and Gconf = {~x ∈
G | u(~x) ≤ C0}. On Greg the organism exhibits regulator behavior; and on Gconf

there is conformer behavior. Roughly speaking, we expect ‘unimpeded growth’ on

Greg and we expect ‘adaptive behavior’ on Gconf.
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Table 6.1: Parameter values for eight teleost embryos. To the left: L, volume to surface
area ratio [m]; m, maximum consumption rate [kg m−3 s−1]; D, diffusion coefficient [m2

s−1]; C∞, free water oxygen concentration [kg m−3]. The mass transfer coefficient
keff = 3.00× 10−5 m s−1 for all eight embryos. To the right: P , dimensionless consumption
rate; Q, dimensionless mass transfer coefficient. The dimensionless parameters S and T
are defined in Section 6.5.

L m D C∞ P Q S T

×10−5 ×10−4 ×10−10 ×10−3

African catfish
Clarias gariepinus 8.50 3.80 7.41 8.19 0.45 3.44 5.12 0.67

Common carp
Cyprinus carpio 6.20 11.0 6.55 9.00 0.72 2.84 3.35 0.85

Herring
Clupea harengus 12.0 .430 5.47 10.5 0.11 6.58 20.0 0.33

Largemouth bass
Micropterus salmoides 10.0 3.70 6.55 9.00 0.63 4.58 5.78 0.79

Plaice
Pleuronectes platessa 8.70 1.70 5.05 11.2 0.23 5.17 10.8 0.48

Rabbitfish
Siganus randalli 4.80 2.80 7.96 7.76 0.10 1.81 5.60 0.32

Winter flounder
Pseudopleuronectes
americanus

5.60 4.80 4.59 12.2 0.03 3.66 22.3 0.38

Zebrafish
Danio rerio 4.60 4.10 7.41 8.19 0.14 1.86 4.93 0.38

To exemplify the presented theory, we used the oxygen dynamics data from Kra-

nenbarg et al. (2000) for eight teleost embryos to calculate the corresponding values

of the dimensionless parameters used in this paper. These embryos do not have a

circulatory system yet and are therefore dependent on diffusion for their internal

oxygen supply. The value of the mass transfer coefficient was chosen to represent a

bulk flow velocity ranging from 10−4 – 10−3 m s−1, which is the minimum convection

velocity found in natural situations. For this purpose we used the relation between

mass transfer coefficient and bulk flow velocity for a spherical particle given by Clift

et al. (1978). The value for the threshold concentration was obtained from Longmuir

(1957). Both the mass transfer coefficient and the threshold concentration were cho-

sen to be equal for all eight embryos: keff = 3.00×10−5 m s−1 and C0 = 6.40×10−5 kg
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m−3. This means E ≈ 0.01; to be complete: for the (dimensionless) Henry coefficient

K the value 1 is chosen. Table 6.1 shows the result.

6.2.3 Critical points and mean consumption rate

The equilibrium concentration profile v(~ξ) predicted by 6.12 and 6.13 for an organism

of shape G′ depends of course on the actual parameter values P , Q, E, and K.

Also the minimum and maximum values vmin and vmax which v(~ξ) takes on G′ are

functions of these parameters. For a given type G′ we define in the associated (four-

dimensional) parameter space two so-called critical (hyper-)surfaces Sreg and Sconf

by their respective equations:

Sreg : vmin(P,Q, E,K) = E

Sconf : vmax(P,Q, E,K) = E
(6.14)

Surfaces Sreg and Sconf divide parameter space in three parts. For vmin(P,Q, E,K) ≥
E the organism is a (pure) regulator: G = Greg. For vmax(P,Q, E,K) ≤ E the

organism is a (pure) conformer: G = Gconf. For all other cases the organism is in a

mixed state.

If we vary (in some continuous way) the parameters of the model, the result will

be a trajectory in parameter space. A point of intersection of such a trajectory with

Sreg or Sconf we call a critical point: in passing one of these surfaces we expect an

essential change in the behavior of the organism.

For instance, it is to be expected that most of the parameters of our model are a

function of the ambient temperature T . Thus, for a (slowly) varying temperature T

the organism follows a trajectory 〈P (T ), Q(T ), E(T ), K(T )〉 in parameter space. A

critical temperature arises whenever this trajectory crosses a critical surface.

One more example: because we are particularly interested in how the size of an

organism affects its equilibrium state, it is worthwhile noting that if we multiply the

size of G by κ, P changes into Pκ2, Q into Qκ (and, to be complete, τ into τ/κ).

Therefore, points in parameter space representing different sizes of the organism, all

other circumstances unchanged, are to be found on a simple parabola parallel with

the PQ-plane. A critical size for an organism corresponds with a point of intersection

of this parabola and Sreg or Sconf.

Another measurable quantity predicted by our model is the mean (oxygen) con-

sumption rate γ, that is the consumption rate per unit of volume:

γ =
1

V

∫

G

F (u(~x)) dω =
D

V

∫

∂G

∂

∂~n
u(~x) dσ (6.15)
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With dimensionless volume V ′ =
∫

G′ 1 dω′ and dimensionless surface area A′ =∫
∂G′ 1 dσ′ (remember: V ′/A′ = 1) the corresponding dimensionless mean consumption

rate Γ is given by:

Γ =
1

V ′

∫

G′
Φ(v(~ξ)) dω′ =

1

A′

∫

∂G′

∂

∂~n′
v(~ξ) dσ′ (6.16)

which means that Γ also equals the mean dimensionless surface flux. The relation

between γ and Γ is given by the equality: γt = ΓτC∞.

Of course Γ is a function of the model parameters P , Q, E, K, but Γ also depends

on the type G′ of the organism under consideration. For a pure regulator we have of

course Γ = P ; for other cases we can use Γ to determine what shape of an organism is

a more favorable one (that is, admits a higher value for Γ, or, allows a better overall

respiration), given all other circumstances are the same (see Fig. 6.3 b).

6.3 One-dimensional Cases

In this section we demonstrate the principles set out in the previous section for three

simple cases: the infinite sheet, the infinite cylinder and the sphere. At first glance

an organism in the form of an infinite sheet or an infinite cylinder seems strange.

But firstly, we need only a perpendicular cross-section of such a sheet or cylinder; the

resulting extra surface we render ineffective by taking there a homogeneous boundary

condition of the second kind (a no-flow boundary condition). And secondly, later on

we will see that the case of a (thin) finite sheet or a (long) finite cylinder may be

readily approximated by the corresponding infinite case.

The common feature of these three cases is their inherent symmetry, which allows

for the use of only one place variable: all three cases are effectively one-dimensional.

Consequently, for all these cases 6.12 and 6.13 reduce to simple ordinary differential

equations with matching boundary conditions. The case of the infinite sheet we will

discuss in some detail. For the infinite cylinder and the sphere we will only give the

final results.

6.3.1 The infinite sheet

The volume to surface area ratio for (any perpendicular cross-section of) a plane

infinite sheet with diameter 2R equals R. Therefore the (dimensionless) diameter of

the ‘standard’ infinite sheet equals 2. Hence we may reduce 6.12 and 6.13 to the
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following boundary value problem on [0, 1]:

ODE:
∂2

∂ξ2
v(ξ)− Φ(v(ξ)) = 0 for 0 < ξ < 1 (6.17)

BC1:
∂

∂ξ
v(0) = 0, BC2:

∂

∂ξ
v(1) +

Q

K
v(1) = Q (6.18)

This boundary value problem is easily solved for the (pure) regulator or (pure) con-

former case. The regulator case occurs if (and only if) v(0) ≥ E. Now Φ(v) = P and

it follows that

v(ξ) =
P

2
ξ2 + K − KP

Q
− P

2
(6.19)

The conformer case occurs if (and only if) v(1) ≤ E. Now Φ(v) = Pv/E and it

follows that

v(ξ) =
KQ cosh(ξ

√
P/E)

K
√

P/E sinh(
√

P/E) + Q cosh(
√

P/E)
(6.20)

Expressions for the critical surfaces follow already from equations 6.19 and 6.20:

Sreg : (K − E)Q = KP + PQ/2 (6.21)

Sconf : (K − E)Q = KE
√

P/E tanh(
√

P/E) (6.22)

For a mixed case there will be, for some ρ between 0 and 1, conformer behavior on

[0, ρ] and regulator behavior on [ρ, 1]. By means of the (continuity) conditions

lim
ξ↑ρ

v(ξ) = E, lim
ξ↓ρ

v(ξ) = E, and lim
ξ↑ρ

∂

∂ξ
v(ξ) = lim

ξ↓ρ
∂

∂ξ
v(ξ) (6.23)

we find for 0 ≤ ξ ≤ ρ:

v(ξ) = E
cosh(ξ

√
P/E)

cosh(ρ
√

P/E)
(6.24)

and for ρ ≤ ξ ≤ 1:

v(ξ) =
P

2
ξ2 +

2(K − E)Q− 2KP − PQ(1− ρ2)

2K + 2Q(1− ρ)
(ξ − 1− K

Q
) + K − KP

Q
− P

2
(6.25)

with ρ the (unique) root between 0 and 1 of the following transcendental equation:

E
√

P/E tanh(ρ
√

P/E) =
2(K − E)Q− 2KP (1− ρ)− PQ(1− ρ)2

2K + 2Q(1− ρ)
(6.26)
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Obviously we should give ρ the value 0 for a (pure) regulator, while for a (pure)

conformer ρ should get the value 1. Then, as expected, equation 6.26 reduces for

ρ = 0 to 6.21 and for ρ = 1 to 6.22.

The dimensionless mean consumption rate Γ follows from 6.16. For this simple

one-dimensional case it holds that

Γ =
∂

∂ξ
v(1) (6.27)

Hence from equations 6.19, 6.20 and 6.25 we infer, respectively:

Γ = P for a regulator (6.28)

Γ =
KQ

K + Q
√

E/P coth(
√

P/E)
for a conformer (6.29)

Γ =
2(K − E)Q + PQ(1− ρ)2

2K + 2Q(1− ρ)
for a mixed case (6.30)

The result for a regulator is, of course, not a surprise: it follows also from first

principles or, for that matter, from 6.16. Note that equation 6.30 on Sreg reduces to

6.28 and on Sconf to 6.29.

6.3.2 The infinite cylinder and the sphere

The case of the infinite cylinder and the sphere can be treated in exactly the same

way. For that reason we mention in this subsection only the relevant model equations

and their most important consequences.

First we discuss the case of the infinite cylinder. The (dimensionless) radius of the

‘standard’ infinite cylinder equals 2; therefore we have to solve the following boundary

value problem on [0, 2]:

ODE:
1

ξ

∂

∂ξ
[ξ

∂

∂ξ
v(ξ)]− Φ(v(ξ)) = 0 for 0 < ξ < 2 (6.31)

BC1: lim
ξ→0

ξ
∂

∂ξ
v(ξ) = 0, BC2:

∂

∂ξ
v(2) +

Q

K
v(2) = Q (6.32)

The expressions for the critical surfaces are:

Sreg : (K − E)Q = KP + PQ (6.33)

Sconf : (K − E)Q = KE
√

P/E I1(2
√

P/E)/I0(2
√

P/E) (6.34)
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where I0 and I1 are modified Bessel functions (Abramowitz and Stegun, 1965). The

transcendental equation for the radius ρ of the region with conformer behavior reads:

E
√

P/E
I1(ρ

√
P/E)

I0(ρ
√

P/E)
= (6.35)

2(K − E)Q− 2(PQ + KP )(1− ρ2/4)− PQρ2 ln(ρ/2)

Kρ− 2Qρ ln(ρ/2)

This time ρ should get the value 2 for a (pure) conformer. As expected, equation 6.35

reduces for ρ = 0 to 6.33 and for ρ = 2 to 6.34.

The (dimensionless) mean consumption rate Γ for this case is given by:

Γ = P for a regulator (6.36)

Γ =
KQ

√
P/E I1(2

√
P/E)

K
√

P/E I1(2
√

P/E) + Q I0(2
√

P/E)
for a conformer (6.37)

Γ =
(K − E)Q− PQ(1− ρ2/4)− 2PQ ln(ρ/2)

K − 2Q ln(ρ/2)
for a mixed case (6.38)

Note again that equation 6.38 reduces on Sreg to 6.36 and on Sconf to 6.37.

Next we discuss the case of a spherical organism. The (dimensionless) radius of

the ‘standard’ sphere equals 3; therefore we have to solve the following boundary

value problem on [0, 3]:

ODE:
1

ξ2

∂

∂ξ
[ξ2 ∂

∂ξ
v(ξ)]− Φ(v(ξ)) = 0 for 0 < ξ < 3 (6.39)

BC1: lim
ξ→0

ξ2 ∂

∂ξ
v(ξ) = 0, BC2:

∂

∂ξ
v(3) +

Q

K
v(3) = Q (6.40)

The expressions for the critical surfaces (see Fig. 6.2 a) are:

Sreg : (K − E)Q = KP + 3PQ/2 (6.41)

Sconf : (K − E)Q = KE(
√

P/E coth(3
√

P/E)− 1/3) (6.42)

Comparison of the values for P and Q in Table 6.1 with Fig. 6.2 shows, as follows

from 6.41, that for the chosen values of E (≈ 0.01) and K (= 1), zebrafish, rabbitfish,

winter flounder, plaice and herring are clearly in the regulator area (in both the sphere

and the cube model). Common carp and largemouth bass are in the mixed case area.

African catfish enters the mixed case area when going from the sphere to the cube

model.
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(a) Critical surfaces for the sphere. (b) Critical surfaces for the cube.

Figure 6.2: For K = 1: the critical surfaces Sreg and Sconf divide the reduced
parameter space 〈P,Q, E, 1〉 into three parts: the regulator domain (oxygen de-
ficiency nowhere in the organism), the mixed domain (oxygen deficiency some-
where in the organism), the conformer domain (oxygen deficiency everywhere
in the organism). For differently shaped organisms the picture is essentially the
same.

The transcendental equation for the radius ρ of the region with conformer behavior

is given by:

E(ρ
√

P/E coth(ρ
√

P/E)− 1) = (6.43)

9(K − E)Q− 9KP (1− ρ3/27)− 9PQ(1− ρ/3)2(ρ + 3/2)

Kρ + 3Q(3− ρ)

For this case ρ should get the value 3 for a (pure) conformer; see Fig. 6.3 a. Again,

equation 6.43 reduces for ρ = 0 to 6.41 and for ρ = 3 to 6.42. Finally, the (dimen-

sionless) mean consumption rate Γ is given by:

Γ = P for a regulator (6.44)

Γ =
KQ(

√
P/E coth(3

√
P/E)− 1/3)

K(
√

P/E coth(3
√

P/E)− 1/3) + Q
for a conformer (6.45)

Γ =
(K − E)Qρ + 9PQ(1− ρ/3)2(1 + ρ/6)

Kρ + 9Q(1− ρ/3)
for a mixed case (6.46)

see Fig. 6.3 b. Again, equation 6.46 reduces to 6.44 on Sreg and reduces to 6.45 on

Sconf.
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(a) The dimensionless radius ρ of the
region with oxygen deficiency.

(b) The dimensionless mean consumption
rate Γ.

Figure 6.3: For the sphere and for K = 1, E = 1
2 . (a) The radius ρ of the

region with conformer behavior as a function of the dimensionless maximum
consumption rate P and the dimensionless mass transfer coefficient Q. For a
pure regulator ρ = 0; for a pure conformer ρ = 3. (b) The dimensionless mean
consumption rate Γ as a function of the dimensionless maximum consumption
rate P and the dimensionless mass transfer coefficient Q. The two extra curves
on the surface separate pure regulator behavior from mixed case behavior and
mixed case behavior from pure conformer behavior.

6.3.3 Limit cases and critical sizes

Several interesting special cases are neatly incorporated in our formalism. We discuss

these cases mainly for an infinite sheet. It is easily verified that analogous results can

be achieved for the infinite cylinder and for the sphere, or even for arbitrarily shaped

organisms.

(1) In the literature (Byatt-Smith et al., 1991) the term conformer is used if the

oxygen consumption rate F the organism exhibits, is modelled by a linear function:

F (u) = au (in dimensionless form: Φ(v) = pv), while the term regulator is used if F

is modelled by a constant function: F (u) = m (in dimensionless form: Φ(v) = P ).

The first of these two special cases is represented within our model by the con-

dition E ≥ K. Because K obviously is an upper limit for the dimensionless oxygen
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concentration v inside the organism, the condition E ≥ K compels conformer behav-

ior everywhere in the organism’s interior, independent of all other parameter values.

We could introduce for this case the new (dimensionless) variable p = P/E, thereby

removing one parameter from our model (note the occurrence of the term P/E in 6.20

and 6.29). The model equations for this case are linear: now even the time-dependent

equations are easily solvable.

The second special case is represented within our model by the condition E = 0. It

should be noted that this case still leaves open the possibility of conformer behavior

somewhere in the organism. Conformer behavior in this case just means that the

oxygen concentration v in part of the organism is equal to zero, see equation 6.24.

The transition from pure regulator behavior to partial conformer behavior is still given

by 6.21. Even pure conformer behavior is possible for this case: this also happens

if Q = 0, as follows from 6.22. Because Q = 0 stands for a homogeneous boundary

condition of the second kind (a no-flow boundary condition), this is as expected. For

E = 0 the transcendental equation 6.26 for the ‘radius’ ρ of the region with conformer

behavior reduces to a simple quadratic equation. So for this special case it follows

from 6.26 and 6.30 that the dimensionless consumption rate Γ = P (1− ρ), which for

this simple case also follows from first principles.

(2) That leaves the case 0 < E < K. Now all three behavioral patterns are

possible: the organism may be a pure regulator, or may be in a mixed state, or

may be a pure conformer. The critical surfaces Sreg and Sconf separate these three

possibilities in parameter space; see Fig. 6.2.

As already said before the limiting case Q = ∞, that is keff = ∞, is tied in with so-

called running water conditions, or well-stirred water conditions (Carslaw and Jaeger,

1959; Kranenbarg et al., 2000). For this special case the second boundary condition

(6.18 b) changes into a simple boundary condition of the first kind, BC2 : v(1) = K.

The expressions for the critical surfaces, given by 6.21 and 6.22, simplify to Sreg :

K−E = P/2 and Sconf : K−E = 0; therefore pure conformer behavior is impossible

for this limit case (unless E ≥ K).

(3) Special attention is often devoted to that size of a (slowly growing) organism,

for which it first encounters, somewhere in its interior, oxygen deficiency. Such a

size is called a critical size. Because oxygen is needed to perform essential biological

processes, natural selection will favor organisms that prevent oxygen deficiency in
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their interior. These organisms can either stay of subcritical size or develop an ad-

ditional oxygen transport system (e.g. a circulatory system) by the time they reach

their critical size. Within our model oxygen deficiency starts when the representa-

tion 〈P,Q, E,K〉 of this organism in parameter space passes the critical surface Sreg.

Therefore, as follows from equations 6.21, 6.33 and 6.41, for such a critical point it

holds that

(K − E)Q = KP + nPQ/2 (6.47)

where it is understood that n takes the value 1 for an infinite sheet, 2 for an infi-

nite cylinder and 3 for a sphere. We divide equation 6.47 by Q, rewrite the result

with the help of 6.11 in terms of the original model parameters, to find, after some

rearrangements:

n

2
L2 +

KD

keff
L− D

m
(KC∞ − C0) = 0 (6.48)

Hence for the critical value of the volume to surface area ratio we obtain:

Lcrit = −KD

nkeff
+

√
K2D2

n2k2
eff

+
2D

nm
(KC∞ − C0) (6.49)

Note that Lcrit represents the maximum volume of respiring tissue that can be fully

supplied with oxygen per unit surface area. With Rcrit the critical radius (half the

diameter) of the object under consideration, it follows from the relation L = V/A =

R/n that

Rcrit = −KD

keff
+

KD

keff

√
1 + 2n

k2
eff

mKD
(C∞ − C0

K
) (6.50)

The special case C0 = 0, K = 1 and keff = ∞ yields

Rcrit =

√
2n

DC∞
m

(6.51)

a well-known result (e.g. Graham (1988)). Note that it is possible to determine in

exactly the same way critical values for other model parameters.

(4) One more interesting limit case arises when we take the thickness δ of the static

fluid film that surrounds the organism to infinity. This situation can be simulated

in the laboratory by placing one small organism at the center of a large water-filled

tank. For an infinite sheet and an infinite cylinder taking δ to infinity means that
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keff goes to zero. The reason for this is the non-existence of a stationary solution

for the diffusion problem outside the organism for these two shapes. For a sphere-

like organism, say with radius R, such an external stationary solution does exist:

uex(x) = C∞ + (u(R)/K − C∞)R/x, with x > R the distance from the center of the

sphere. It follows that keff takes the value Dw/R = Dw/(3L), with Dw again the

diffusion coefficient of oxygen in water. Substituting this value for keff in 6.48, we

obtain:
(

3

2
+

3KD

Dw

)
L2 − D

m
(KC∞ − C0) = 0 (6.52)

So the critical value of the volume to surface area ratio for this case is:

Lcrit =

√
2DwD(KC∞ − C0)

3m(Dw + 2KD)
(6.53)

The special case C0 = 0 and K = 1 yields:

Lcrit =

√
2DwDC∞

3m(Dw + 2D)
(6.54)

also a well-known result (e.g. Lee and Strathmann (1998)).

(5) Finally we discuss the question: what happens at the critical surface Sconf?

Will a growing organism, beyond its critical size, eventually change into a pure con-

former, or will it always remain in a mixed state? For the infinite sheet this question is

answered by means of equation 6.22. Rewriting this equation in terms of the original

model parameters, see 6.11, we obtain after some rearrangements:

keff(C∞ − C0

K
) =

√
mDC0 tanh

(
L

√
m

DC0

)
(6.55)

Therefore, if it holds that

keff(C∞ − C0

K
) ≥

√
mDC0 (6.56)

a growing organism of this shape will always retain a region with regulator behavior,

which is the case for all eight teleost embryos in Table 6.1. A simple inspection of

the right-hand side of equations 6.34 and 6.42 shows that the same condition applies

for an infinite cylinder and for a sphere.

We will show that this condition also holds for an organism of arbitrary shape.

With that goal in mind we put a given point on a smooth part of the surface ∂G of
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the organism under a magnifying-glass: in this way we interpret the organism in the

neighborhood of this point as a (left) half-space. Then, assuming that the organism

is a pure conformer, the following initial value problem describes the tendency of the

system in the neighborhood of this point, see equations 6.8 and 6.9:

PDE:
∂

∂τ
v(ξ, τ) =

∂2

∂ξ2
v(ξ, τ)− P

E
v(ξ, τ) for ξ < 0 and τ > 0 (6.57)

BC:
∂

∂ξ
v(0, τ) +

Q

K
v(0, τ) = Q, IC: v(ξ, 0) = v0 (6.58)

Next we apply the Laplace transformation: v(ξ, τ) → V (ξ, s). A straightforward

calculation yields:

V (ξ, s) =
v0

s + P/E
+

(
Q

s
− v0Q/K

s + P/E

)
exp(ξ

√
s + P/E)

Q/K +
√

s + P/E
(6.59)

It follows:

lim
τ→∞

v(0, τ) = lim
s↓0

sV (0, s) =
Q

Q/K +
√

P/E
(6.60)

Thus a condition for regulator behavior in the neighborhood of this point is:

Q

Q/K +
√

P/E
≥ E (6.61)

If we rewrite this result with the help of 6.11 in terms of the original model parameters,

we retrieve equation 6.56.

6.4 Higher Dimensional Cases

In Section 6.3 we provided a complete analytical solution of the non-linear boundary

value problem stated in equations 6.12 and 6.13 for three one-dimensional cases. Such

a general solution is not feasible for higher dimensional cases. The difficulty here is the

description of the surface inside the organism that separates the region with regulator

behavior from the region with conformer behavior. But if we restrict ourselves to the

pure regulator case or to the pure conformer case the problem simplifies to a linear

boundary value problem and a solution by the method of eigenfunction expansion

becomes possible. This method enables us to obtain useful expressions for the critical

surfaces Sreg and Sconf for higher dimensional cases.
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6.4.1 A formal solution

We consider the following eigenvalue problem, which will prove to be central to our

purpose:

PDE: ∆~ξ X(~ξ) + λX(~ξ) = 0 for ~ξ ∈ G′ (6.62)

BC:
∂

∂~n′
X(~ξ) +

Q

K
X(~ξ) = 0 for ~ξ ∈ ∂ G′ (6.63)

Such an eigenvalue problem admits an infinite number of (positive) eigenvalues λn

with corresponding eigenfunctions Xn(~ξ) (n = 1, 2, 3, . . . ) (cf. Churchill (1955)). If

we expand the constant function g(~ξ) = 1 on G′ with respect to this (orthogonal) set

of eigenfunctions, the result is:

1 =
∞∑

n=1

γnXn(~ξ) (6.64)

with γn = (g, Xn)/(Xn, Xn) =

∫

G′
Xn(~ξ) dω′

/∫

G′
Xn(~ξ)2 dω′

As we will shortly see, both special cases mentioned above, are solvable in terms of

the eigenfunctions Xn(~ξ), the eigenvalues λn, and the Fourier coefficients γn.

For a pure regulator it holds that v(~ξ) ≥ E for all ~ξ ∈ G′. This means that

Φ(v) = P , as follows from 6.10. Then equations 6.12 and 6.13 reduce to:

PDE: ∆~ξ v(~ξ) = P for ~ξ ∈ G′ (6.65)

BC:
∂

∂~n′
v(~ξ) +

Q

K
v(~ξ) = Q for ~ξ ∈ ∂ G′ (6.66)

The formal solution of this problem is:

vreg(~ξ) = K − P

∞∑
n=1

γn

λn

Xn(~ξ) (6.67)

as follows easily by inspection. The critical surface Sreg is given by min~ξ∈G′ [vreg(~ξ)] =

E, see 6.14. This yields the following equation for the critical surface

Sreg : K − E = P max
~ξ∈G′

( ∞∑
n=1

γn

λn

Xn(~ξ)

)
(6.68)

For a pure conformer it holds that v(~ξ) ≤ E for all ~ξ ∈ G′. Hence Φ(v) = Pv/E,

see, again, 6.10. So this time equations 6.12 and 6.13 reduce to:

PDE: ∆~ξ v(~ξ)− P

E
v(~ξ) = 0 for ~ξ ∈ G′ (6.69)
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BC:
∂

∂~n′
v(~ξ) +

Q

K
v(~ξ) = Q for ~ξ ∈ ∂ G′ (6.70)

The formal solution of this problem is:

vconf(~ξ) = K −K(P/E)
∞∑

n=1

γn

P/E + λn

Xn(~ξ) (6.71)

as follows again by inspection. Critical surface Sconf is given by max~ξ∈G′ [vconf(~ξ)] = E,

see, again, 6.14. This yields the following equation for the critical surface

Sconf : K − E = K(P/E) min
~ξ∈G′

( ∞∑
n=1

γn

P/E + λn

Xn(~ξ)

)
(6.72)

For a pure regulator the dimensionless oxygen consumption rate Γ = P , as follows

from first principles or, for that matter, from the first equality in equation 6.16. For

a pure conformer it follows from 6.71 and the second equality in equation 6.16 that

Γ = −K(P/E)/A′
∞∑

n=1

γn

P/E + λn

∫

∂G′

∂

∂~n′
Xn(~ξ) dσ′ (6.73)

An application of Green’s identity on the surface integral in the right-hand side of

equation 6.73 yields, together with 6.62:

Γ = K(P/E)/A′
∞∑

n=1

γnλn

P/E + λn

∫

G′
Xn(~ξ) dω′ (6.74)

Parseval’s relation for the constant function g(~ξ) = 1 on G′ yields, together with 6.64:

V ′ = (g, g) =
∞∑

n=1

(g,Xn)2/(Xn, Xn) =
∞∑

n=1

γn

∫

G′
Xn(~ξ) dω′ (6.75)

Next we define: gn =
γn

V ′

∫

G′
Xn(~ξ) dω′, which means:

∞∑
n=1

gn = 1 (6.76)

In this way we obtain from 6.74 and 6.76, and with the equality V ′ = A′ in mind,

the following concise expression for the dimensionless consumption rate Γ for a pure

conformer:

Γ = K(P/E)
∞∑

n=1

gnλn

P/E + λn

(6.77)

Note that the parameter combination Q/K plays a role in the determination of the

eigenvalues λn and the weight factors gn.



112 chapter 6

6.4.2 Three characteristic shapes

It should be noted that it is not always possible to find an analytical solution for

the eigenvalue problem stated in 6.62 and 6.63. For exotic regions G′ we have to use

numerical methods, for instance, a Galerkin procedure (Fairweather, 1978). But for

(from a mathematical point of view) reasonably shaped organisms an explicit solution

is attainable (cf. Gielen (2000)). The regions G′ discussed in the following three

examples, are determined by one or two shape-parameters. We use these parameters

in Section 6.5 to distinguish and compare between elongated, compact and sheet-like

organisms.

Infinite beam

First we discuss in some detail the case of a (rectangular) infinite beam with length

2R1 and breadth 2R2. We may take R1 ≤ R2, which means that α = R2/R1 ≥ 1.

Note that α defines the shape of the beam and that the ‘dimensions’ of the standard

beam of this shape are 2(1+1/α) and 2(1+α), respectively. With G′ = [−1−1/α, 1+

1/α]× [−1−α, 1+α] equations 6.12 and 6.13 constitute a two-dimensional boundary

value problem.

Because of the inherent symmetry of the case under consideration, it is obvious

that in the equilibrium situation there will be no oxygen transport through the planes

ξ1 = 0 and ξ2 = 0. Therefore it is possible to restrict the problem to the region

[0, 1 + 1/α]× [0, 1 + α] by taking no-flow boundary conditions on these planes. Then

the eigenvalue problem stated in 6.62 and 6.63 may be written as:

PDE:
∂2

∂ξ2
1

X(ξ1, ξ2) +
∂2

∂ξ2
2

X(ξ1, ξ2) + λX(ξ1, ξ2) = 0 (6.78)

BC1:
∂

∂ξ1

X(0, ξ2) = 0, BC2:
∂

∂ξ1

X(1 + 1/α, ξ2) +
Q

K
X(1 + 1/α, ξ2) = 0 (6.79)

BC3:
∂

∂ξ2

X(ξ1, 0) = 0, BC4:
∂

∂ξ2

X(ξ1, 1 + α) +
Q

K
X(ξ1, 1 + α) = 0 (6.80)

Applying the well-known separation of variables technique: X(ξ1, ξ2) = X̃1(ξ1)X̃2(ξ2),

we get two (almost identical) so-called regular Sturm-Liouville problems:





X̃ ′′
1 (ξ1) + λ1X̃1(ξ1) = 0 for 0 < ξ1 < 1 + 1/α

X̃ ′
1(0) = 0

X̃ ′
1(1 + 1/α) + (Q/K)X̃1(1 + 1/α) = 0

(6.81)
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X̃ ′′
2 (ξ2) + λ2X̃2(ξ2) = 0 for 0 < ξ2 < 1 + α

X̃ ′
2(0) = 0

X̃ ′
2(1 + α) + (Q/K)X̃2(1 + α) = 0

(6.82)

Because Q/K > 0 the eigenvalues λ1,n and λ2,n are positive: we write λ1,n = µ2
1,n

with µ1,n > 0, and λ2,n = µ2
2,n with µ2,n > 0 (n = 1, 2, 3, . . .). A straightforward

calculation yields the eigenfunctions:

X̃1,n(ξ1) = cos(µ1,nξ1) and X̃2,n(ξ2) = cos(µ2,nξ2) (6.83)

where µ1,n is the nth positive root of the first and where µ2,n is the nth positive root

of the second of the following two characteristic equations for µ:

−µK sin(µ(1 + 1/α)) + Q cos(µ(1 + 1/α)) = 0
−µK sin(µ(1 + α)) + Q cos(µ(1 + α)) = 0

(6.84)

Hence the eigenfunctions Xi,j(ξ1, ξ2) and corresponding eigenvalues λi,j of the original

problem are:

Xi,j(ξ1, ξ2) = cos(µ1,iξ1) cos(µ2,jξ2) with λi,j = µ2
1,i + µ2

2,j (6.85)

Following the guideline set out in Section 6.4.1, we determine the Fourier coefficients

γi,j of the constant function f(ξ1, ξ2) = 1 with respect to this orthogonal set of

eigenfunctions Xi,j(ξ1, ξ2). It follows from equation 6.64 that

γi,j =

∫ 1+1/α

0
X̃1,i(ξ1) dξ1∫ 1+1/α

0
X̃1,i(ξ1)2 dξ1

×
∫ 1+α

0
X̃2,j(ξ2) dξ2∫ 1+α

0
X̃2,j(ξ2)2 dξ2

(6.86)

which leads, with the shorthand Q/K = q, to

γi,j =
2(−1)i+1q

√
q2 + µ2

1,i

(1 + 1/α)(µ3
1,i + q2µ1,i) + qµ1,i

×
2(−1)j+1q

√
q2 + µ2

2,j

(1 + α)(µ3
2,j + q2µ2,j) + qµ2,j

(6.87)

Once γi,j is known, the dimensionless concentration vreg(ξ1, ξ2) follows from 6.67 and

6.85, and the dimensionless concentration vconf(ξ1, ξ2) follows from 6.71 and 6.85.

The next step, still following the path set out in Section 6.4.1, is the determination

of the minimum value of vreg(ξ1, ξ2) and the maximum value of vconf(ξ1, ξ2) on G′. In

general this is not an easy task; numerical methods may be needed, though for the

highly symmetrical case we are dealing with here the problem is not that difficult.

The minimum value of (any stationary) v(ξ1, ξ2) on an infinite beam will always be

found on the central axis of the beam and the maximum value will always be attained
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on the edges of the beam. In this way we infer from 6.68 and 6.72 for the critical

surfaces the following equations:

Sreg : K − E = P

∞∑
i,j=1

γi,j

µ2
1,i + µ2

2,j

(6.88)

Sconf : K − E = K(P/E)
∞∑

i,j=1

γi,j cos(µ1,i(1 + 1/α)) cos(µ2,j(1 + α))

P/E + µ2
1,i + µ2

2,j

(6.89)

Note that the infinite sum in the right-hand side of 6.88 is a function of Q/K alone,

while the infinite sum in the right-hand side of 6.89 is a function of Q/K and P/E.

Rectangular parallelepiped

Next we discuss the case of a (rectangular) parallelepiped with length 2R1, breadth

2R2 and height 2R3. We may take R1 ≤ R2 ≤ R3, which means that α = R2/R1 ≥ 1

and β = R3/R1 ≥ α. The shape of the parallelepiped is fixed by α and β, and

the ‘dimensions’ of the standard parallelepiped of this shape are 2(1 + 1/α + 1/β),

2(1 + α + α/β) and 2(1 + β + β/α), respectively. The symmetry argument already

used for the case of an infinite beam yields, this time, a three-dimensional eigenvalue

problem for an unknown function X(ξ1, ξ2, ξ3) on the region [0, 1 + 1/α + 1/β)] ×
[0, 1 + α + α/β]× [0, 1 + β + β/α].

The same reasoning as applied for the case of the infinite beam leads to the

following eigenfunctions Xi,j,k(ξ1, ξ2, ξ3) and corresponding eigenvalues λi,j,k:

Xi,j,k(ξ1, ξ2, ξ3) = cos(µ1,iξ1) cos(µ2,jξ2) cos(µ3,kξ3) (6.90)

with λi,j,k = µ2
1,i + µ2

2,j + µ2
3,k

where µ1,n is the nth positive root of the first, µ2,n is the nth positive root of the

second and µ3,n is the nth positive root of the third of the following three characteristic

equations for µ (n = 1, 2, 3, . . .):

−µK sin(µ(1 + 1/α + 1/β)) + Q cos(µ(1 + 1/α + 1/β)) = 0
−µK sin(µ(1 + α + α/β)) + Q cos(µ(1 + α + α/β)) = 0
−µK sin(µ(1 + β + β/α)) + Q cos(µ(1 + β + β/α)) = 0

(6.91)

The Fourier coefficients γi,j,k of the constant function f(ξ1, ξ2, ξ3) = 1 with respect to

this new orthogonal set of eigenfunctions are:

γi,j,k =
2(−1)i+1q

√
q2 + µ2

1,i

(1 + 1/α + 1/β)(µ3
1,i + q2µ1,i) + qµ1,i

× (6.92)
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2(−1)j+1q
√

q2 + µ2
2,j

(1 + α + α/β)(µ3
2,j + q2µ2,j) + qµ2,j

×
2(−1)k+1q

√
q2 + µ2

3,k

(1 + β + β/α)(µ3
3,k + q2µ3,k) + qµ3,k

where, again, the shorthand q = Q/K is used.

The minimum value of (any stationary) v(ξ1, ξ2, ξ3) on a rectangular parallelepiped

will always be found in the center and the maximum value will always be attained

on the vertices. With these facts in mind we infer from 6.68 and 6.72 the following

equations for the critical surfaces (see Fig. 6.2 b)

Sreg : K − E = P

∞∑

i,j,k=1

γi,j,k

µ2
1,i + µ2

2,j + µ2
3,k

(6.93)

Sconf : K − E = K(P/E)× (6.94)
∞∑

i,j,k=1

γi,j,k cos(µ1,i(1 + 1/α + 1/β)) cos(µ2,j(1 + α + α/β)) cos(µ3,k(1 + β + β/α))

P/E + µ2
1,i + µ2

2,j + µ2
3,k

If, for instance, we let β tend to infinity, than equations 6.91 a,b transform into

6.84 a,b; hence the roots of 6.91 a,b change into the roots of 6.84 a,b. And for the

roots µ3,n of 6.91 c it holds that µ3,n → 0, but µ3,n(1+β +β/α) → (2n−1)π/2. Thus

γi,j,k changes into γi,j (4/π)(−1)k+1/(2k − 1), with γi,j given by 6.87. By means of

the well-known equality
∑∞

k=1 (−1)k+1/(2k − 1) = π/4 it follows that equation 6.93

transforms into 6.88. So we see that in this respect an elongated parallelepiped

resembles an infinite beam. The same result can be obtained for equations 6.94 and

6.89, using a slightly more involved argument.

Finite cylinder

Finally we discuss the case of a finite cylinder with diameter 2R1 and length 2R2.

The shape of the cylinder is again fixed by α = R2/R1, this time with 0 < α < ∞,

and the ‘dimensions’ of the standard finite cylinder of this shape are 2(2 + 1/α) and

2(1+2α), respectively. Symmetry arguments yield this time, in accordance with 6.62

and 6.63, a two-dimensional eigenvalue problem for an unknown function X(ξ1, ξ2)

on the region [0, 2 + 1/α]× [0, 1 + 2α]:

PDE:
1

ξ1

∂

∂ξ1

[ξ1
∂

∂ξ1

X(ξ1, ξ2)] +
∂2

∂ξ2
2

X(ξ1, ξ2) + λX(ξ1, ξ2) = 0 (6.95)

BC1: lim
ξ1→0

ξ1
∂

∂ξ1

X(ξ1, ξ2) = 0, BC2:
∂

∂ξ1

X(2 + 1/α, ξ2) +
Q

K
X(2 + 1/α, ξ2) = 0 (6.96)

BC3:
∂

∂ξ2

X(ξ1, 0) = 0, BC4:
∂

∂ξ2

X(ξ1, 1 + 2α) +
Q

K
X(ξ1, 1 + 2α) = 0 (6.97)
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The separation of variables technique: X(ξ1, ξ2) = X̃1(ξ1)X̃2(ξ2), yields:




(1/ξ1)(ξ1X̃
′
1(ξ1))

′ + λ1X̃1(ξ1) = 0 for 0 < ξ1 < 2 + 1/α

limξ1→0 ξ1X̃
′
1(ξ1) = 0

X̃ ′
1(2 + 1/α) + (Q/K)X̃1(2 + 1/α) = 0

(6.98)





X̃ ′′
2 (ξ2) + λ2X̃2(ξ2) = 0 for 0 < ξ2 < 1 + 2α

X̃ ′
2(0) = 0

X̃ ′
2(1 + 2α) + (Q/K)X̃2(1 + 2α) = 0

(6.99)

Also for this case the eigenvalues λ1,n and λ2,n are positive: we write again λ1,n = µ2
1,n

with µ1,n > 0, and λ2,n = µ2
2,n with µ2,n > 0 (n = 1, 2, 3, . . .). With the help

of the Bessel functions J0 and J1 (Abramowitz and Stegun, 1965) we obtain the

eigenfunctions:

X̃1,n(ξ1) = J0(µ1,nξ1) and X̃2,n(ξ2) = cos(µ2,nξ2) (6.100)

where µ1,n is the nth positive root of the first and where µ2,n is the nth positive root

of the second of the following two characteristic equations for µ:

−µKJ1(µ(2 + 1/α)) + QJ0(µ(2 + 1/α)) = 0
−µK sin(µ(1 + 2α)) + Q cos(µ(1 + 2α)) = 0

(6.101)

Hence the eigenfunctions Xi,j(ξ1, ξ2) and corresponding eigenvalues λi,j of the original

problem are:

Xi,j(ξ1, ξ2) = J0(µ1,iξ1) cos(µ2,jξ2) with λi,j = µ2
1,i + µ2

2,j (6.102)

The Fourier coefficients γi,j of the constant function f(ξ1, ξ2) = 1 with respect to this

new orthogonal set of eigenfunctions Xi,j(ξ1, ξ2) follow again from 6.64:

γi,j =

∫ 2+1/α

0
ξ1X̃1,i(ξ1) dξ1∫ 2+1/α

0
ξ1X̃1,i(ξ1)2 dξ1

×
∫ 1+2α

0
X̃2,j(ξ2) dξ2∫ 1+2α

0
X̃2,j(ξ2)2 dξ2

(6.103)

which leads, with the shorthand Q/K = q, to

γi,j =
2q2

µ1,i(2 + 1/α)(q2 + µ2
1,i)J1(µ1,i(2 + 1/α))

×
2(−1)j+1q

√
q2 + µ2

2,j

(1 + 2α)(µ3
2,j + q2µ2,j) + qµ2,j

(6.104)

The minimum value of (any stationary) v(ξ1, ξ2) on a finite cylinder will be found

in the center and the maximum value will be attained on the border circles of the

cylinder. In this way we infer from 6.64 and 6.73 for the critical surfaces the following

equations,

Sreg : K − E = P

∞∑
i,j=1

γi,j

µ2
1,i + µ2

2,j

(6.105)
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Sconf : K − E = K(P/E)
∞∑

i,j=1

γi,jJ0(µ1,i(2 + 1/α)) cos(µ2,j(1 + 2α))

P/E + µ2
1,i + µ2

2,j

(6.106)

If we apply to this case the line of reasoning already developed in the last para-

graph of Section 6.4.2 we get for α →∞ the case of an infinite cylinder and for α → 0

the case of an infinite sheet: an elongated cylinder resembles an infinite cylinder and

a flattened cylinder resembles an infinite sheet.

6.5 Critical Size for Differently Shaped Organisms

Due to growth of the organism or to changes in the environmental conditions the

organism experiences, the representation 〈P, Q, E, K〉 of the organism follows a path

in parameter space. Also in parameter space we find, subject to the shape of the

organism, the critical surfaces Sreg and Sconf. If the organism changes shape during

its growth process these critical surfaces will shift accordingly in parameter space.

A critical point arises whenever the path the organism follows intersects one of its

critical surfaces. From a biological point of view the arrival at a critical point is

important: we then expect an essential change in the behavior of the organism.

In this section we discuss what happens at the critical surface Sreg for some

constant value of E and for K = 1. As a result of these restrictions the critical

surface Sreg degenerates into a critical curve in the reduced parameter space 〈P, Q〉.
In this section we also pay special attention to block-like organisms (block: short for

rectangular parallelepiped, see Section 6.4.2). The reason for this is the possibility

to distinguish within this class between compact, elongated or flat structures. The

numerical justification of the results in this section rests upon equations 6.21, 6.33,

6.41, 6.88, 6.93 and 6.105.

Figure 6.4 shows, for E = 0 and K = 1, the critical curves for six organisms of

different shape and a possible trajectory an organism, that goes through an otherwise

undisturbed growth process, could follow in the reduced parameter space 〈P, Q〉.
During such a growth process only the volume to surface area ratio L of the organism

increases, while all other parameter values are constant. In this way we obtain, with

the help of equation 6.11, the trajectory 〈Q(L), P (L)〉L = 〈keffL/D, mL2/(DC∞)〉L,

which is a simple parabola. An equation for this parabola is: P = RQ2, with R =

P/Q2 = mD/(k2
effC∞). Such a parabola is completely determined by the parameter

R. The intersection of this parabola with one of the critical curves yields a critical
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Figure 6.4: For E = 0 and K = 1: a parabolic growth trajectory represent-
ing undisturbed growth and critical curves for six different shapes. Whenever
a growth trajectory crosses a critical curve from below an organism of corre-
sponding shape starts to experience oxygen deficiency.

point (Qcrit, Pcrit). Thus it becomes obvious that the value of Qcrit, and therefore the

value of Lcrit, depends solely on the value of the dimensionless parameter combination

R (for a given value of E and K and for a given shape of the organism).

From Qcrit we can deduce Lcrit (see 6.11): Lcrit = DQcrit/keff. In Fig. 6.5

we have plotted, for E = 0.01 and K = 1, the dimensionless parameter Tcrit =

Qcrit
√

R as a function of the dimensionless parameter S = 1/
√

R. Because Tcrit =

Lcrit
√

m/(DC∞) is directly proportional to Lcrit (and does not depend on keff) and

S = keff
√

C∞/(mD) is directly proportional to keff, Fig. 6.5 shows the dependency of

the critical volume to surface area ratio Lcrit on the mass transfer coefficient keff. Re-

member: keff is a measure for the outward water conditions the organism experiences;

the limit S →∞ (keff →∞) represents well-stirred water conditions. Figure 6.5 also

shows that, at least for large keff, a flattened shape allows for a larger Lcrit and is

therefore more favorable for oxygen supply than a compact one.

In Fig. 6.5, again, zebrafish, rabbitfish, winter flounder, plaice and herring are

smaller than the critical size Tcrit even for the most disadvantageous shape (i.e. the

cube) under the given value of the mass transfer coefficient. This value of the mass

transfer coefficient is not large enough to fully meet the oxygen demands of common

carp, African catfish and largemouth bass (though note the effect of the shape used
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Figure 6.5: For E = 0.01 and K = 1; Tcrit as a function of S for six different
shapes: infinite sheet (1), infinite cylinder (2), infinite beam with α = 1 (3),
sphere (4), finite cylinder with α = 1 (5), cube (6). Because Tcrit ∝ Lcrit and
S ∝ keff, this picture shows how the outward water conditions influence the
critical size of the organism. Also the results for S and T from Table 6.1 are
plotted in this figure: African catfish (ac), common carp (cc), herring (hg),
largemouth bass (lb), plaice (pl), rabbitfish (rf), winter flounder (wf), zebrafish
(zf).

to model the embryo).

Next we turn our attention to block-like organisms. A structure from this class

is determined by its proportions: 1 : α : β, with α ≥ 1, β ≥ α (see Sec. 6.4.2). This

yields a multitude of critical curves Sα,β
reg in the reduced parameter space 〈P, Q〉. The

positioning of these curves in parameter space is not obvious and is, for instance, quite

different for small and large values of Q; see Fig. 6.6. It can be seen, for instance, that

P 1,1

crit(0.05) > P 10,10

crit (0.05) and P 1,1

crit(2) < P 10,10

crit (2). Therefore, the critical curves of a

cube and a sheet with proportions 1 : 10 : 10 coincide somewhere between Q = 0.05

and Q = 2. Numerical evaluation yields (Q,P ) = (0.0874, 0.072) for this common

point. It follows that, for conditions compatible with R = P/Q2 = 9.425, a cube

and a sheet with proportions 1 : 10 : 10 share the same value for Lcrit and hence are

equally well equipped for oxygen supply.

As before, we determine for a given value of S (or, equivalently, a given value of

R) for all allowed values of α and β a critical value Qα,β

crit (or, equivalently, Tα,β

crit or

Lα,β

crit). Using the cube (α = 1, β = 1) as a gauge, we define the relative critical size
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(a) A cross-section of {Sα,β
crit}

for Q = 0.05.
(b) A cross-section of {Sα,β

crit} for Q = 2.

Figure 6.6: For a block with proportions 1 : α : β and for E = 0, K = 1: the
critical dimensionless consumption rate Pcrit as a function of α and β for two
values of Q. Note the symmetry in α and β: a block with proportions 1 : α : β
behaves the same as a block with proportions 1 : β : α.

Fα,β(S) by:

Fα,β(S) =
Qα,β

crit(S)

Q1,1

crit(S)
=

T α,β

crit(S)

T 1,1

crit(S)
=

Lα,β

crit(S)

L1,1

crit(S)
(6.107)

Hence, if it holds for a given value of S that Fα,β(S) < 1, then the critical size of

a block-like organism with proportions 1 : α : β is smaller than the critical size of a

cube, which means that a cube for the given value of S is more favorable for oxygen

supply.

In Fig. 6.7 a we have plotted Fα,β for a small value of S (i.e. a small value of keff)

and in Fig. 6.7 b we have plotted Fα,β for a large value of S (i.e. a large value of

keff). The results show that for almost stagnant water a compact structure is more

favorable for oxygen supply and that for well-stirred water conditions a flat shape is

more favorable. This concurs with the predictions already made by Kranenbarg et al.

(2000).

Apart from pure growth an organism may also (slowly) change its shape. During

such a process, supposing all other parameter values are kept constant, again only the
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(a) Fα,β for S = 0.05. A cube appears to
be the most favorable shape for oxygen
supply.

(b) Fα,β for S = 1. A cube appears to
be the least favorable shape for oxygen
supply.

Figure 6.7: For a block with proportions 1 : α : β and for E = 0, K = 1: the
relative critical size Fα,β(S) as a function of α and β for two values of S.

volume to surface area ratio L of the organism changes. Hence the organism follows

again a parabola in parameter space. In addition the change of shape of the organism

also results in a new corresponding critical curve.

If we take, for instance, a block-like organism with proportions 1 : α0 : β0, with

volume V0 and with volume to surface area ratio L0, we have:

V0 =
(α0 + β0 + α0β0)

3

α2
0β

2
0

8L3
0 (6.108)

Hence, if a block with proportions 1 : α0 : β0 and with volume to surface area ratio

L0 alters into a block with proportions 1 : α1 : β1 and with volume to surface area

ratio L1, at the same time changing its volume V0 into V1 = g3V0, we have:

L1 =
α0 + β0 + α0β0

α1 + β1 + α1β1

(
α1β1

α0β0

)2/3

gL0 (6.109)

By comparing, for a given value of S, L0 with Lα0,β0

crit (S) and L1 with Lα1,β1

crit (S) it is

possible to see if the proposed growth-spurt of the organism will result in a change

of its oxygen consumption pattern and, therefore, of its behavior. Following this

procedure it can be shown, for example, that a critical cube would change into a

supercritical sphere if the volume were kept constant in the transition.
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6.6 Discussion

We presented a model that describes the oxygen balance in small organisms without

an active internal oxygen transport mechanism, e.g. flatworms (Platyhelminthes) or

precirculation embryos of higher organisms. In three important aspects this model

expands on earlier models of oxygen transport. Firstly, we included the effect of

a moving medium on the oxygen balance. Secondly, we modelled the consumption

pattern of the organism as a combination of regulator behavior above a specified

threshold oxygen concentration and conformer behavior below the threshold. This

is a more realistic oxygen consumption pattern than a pure regulator or a pure con-

former pattern as adopted in previous models. And thirdly, by using the method of

eigenfunction expansion, we were able to treat within our model organisms with a

wide variety of shapes, contrary to existing analytical models that mainly analyze

infinite sheets, infinite cylinders or spheres.

We defined four dimensionless parameters that completely describe the state of the

organism. This state includes the value of tissue variables (oxygen diffusion coefficient,

maximum respiration rate, oxygen consumption concentration threshold), outward

conditions variables (mass transfer coefficient, free water oxygen concentration), and

size and shape of the organism. For a given shape of the organism and based on

the oxygen consumption concentration threshold, we were able to define the critical

surfaces Sreg and Sconf. These surfaces divide parameter space into three domains:

the regulator domain (oxygen deficiency nowhere in the organism), the mixed domain

(oxygen deficiency at least somewhere in the organism), and the conformer domain

(oxygen deficiency everywhere in the organism). Oxygen deficiency is defined here as

a local oxygen concentration below the threshold concentration.

A change in the four parameters describing the state of the organism may, for

instance, occur due to a variation in environmental conditions (for instance, a change

of the ambient temperature) or due to growth of the organism. Such a change triggers

a journey along a certain trajectory in parameter space. Whenever this trajectory

crosses a critical surface in parameter space, an essential change in the behavior of

the organism is expected. If, for example, such a trajectory enters the conformer

domain (i.e. passes Sconf), the organism experiences oxygen deficiency everywhere in

its tissues and lowers its respiration rate. Eventually, this may lead to the complete

shut down of certain biological processes, cf. the suspended animation observed in

zebrafish embryos after they had been transferred to an anoxic environment (Padilla
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and Roth, 2001).

If a trajectory in parameter space enters the mixed domain from the regulator

domain, (i.e. passes Sreg), this marks the onset of oxygen shortage somewhere in the

organism. Because oxygen is needed to perform essential biological processes such

as aerobic respiration and growth, we expect natural selection to favor residence of

an organism without a circulatory system in the regulator domain. This enabled us

to define a critical size for an organism: the largest size for which it can maintain

pure regulator behavior. Size is defined here as the volume to surface area ratio, so

the critical size represents the maximum volume of respiring tissue that can be fully

supplied with oxygen per unit surface area.

The shape of an organism, apart from its size, acts in our model as a ‘fifth’ in-

dependent variable. Contrary to the prevailing models of oxygen supply to small

organism, this feature of our model enabled us to analyze the class of block-like or-

ganisms. In fact, even more exotically shaped organisms can be analyzed, though this

would require numerical methods, such as Galerkin procedures. The analysis of the

class of block-like structures allowed us to distinguish between cube-like, elongated

and sheet-like organisms. In this way we were able to confirm a conjecture of Kra-

nenbarg et al. (2000): they stated that for almost stagnant water a flat shape is more

favorable for oxygen supply, while for well-stirred water conditions a compact shape

is more favorable.

The analysis of oxygen dynamics data of teleost embryos from Kranenbarg et al.

(2000) illustrates a useful application of the presented theoretical framework. Several

teleost embryos (zebrafish, rabbitfish, winter flounder, plaice and herring) appear to

be relatively insensitive to external flow conditions. These species will not experience

oxygen deficiency even in nearly stagnant water. Other species however (common

carp, African catfish and largemouth bass) apparently need a certain amount of ex-

ternal stirring to fully meet their oxygen demands.

Oxygen consumption data of common carp and African catfish are considerably

higher then the average oxygen consumption of teleost embryos (Kranenbarg et al.,

2000). This could be indicative for rearing conditions with excess oxygen. The

predictions for maximum size for these specimens should therefore be interpreted

with caution.

Interestingly, largemouth bass is the only species in our analysis in which the

male fans the nest in which the eggs are deposited (Scott and Crossman, 1973). This
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fanning greatly enhances external stirring and might explain the large size of the

largemouth bass embryo.



Intermezzo III - Diffusivity and
solubility

Steady state oxygen diffusion into a homogeneous sphere with radius R that consumes

oxygen at a rate m per unit volume from a well stirred solution of concentration C∞

is described by:

D

r2

d

dr

(
r2 dc

dr

)
−m = 0 (III.1)

where D is the oxygen diffusion coefficient in water, r is the distance from the center

of the sphere and c is the local oxygen concentration.

Integration reveals the general solution of (III.1):

c =
mr2

6D
− P

r
+ Q (III.2)

where P and Q are integration constants, the values of which still have to be deter-

mined.

If the solubility of the diffusing substance in the sphere is αd times its solubility in the

surrounding medium (αd is called the distribution coefficient), then the boundary

conditions are: BC1: dc/dr = 0 for r = 0 (no transport at the center of the sphere)

and BC2: c = αdC∞ for r = R. Applying the boundary conditions to the general

solution (III.2) yields:

c = αbC∞ +
m

6D

(
r2 −R2

)
(III.3)

When the concentration reaches a value zero in the center of the sphere, the maximum

size without a central anoxic region is attained:

Rmax =

√
6αdDC∞

m
(III.4)

Contrary to the diffusion coefficient of a substance, its solubility does not explicitly

appear in the partial differential equation describing the diffusion process. However,
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differences in solubility of a substance between two (or more) compartments lead to

a discontinuity in concentration at the boundary. Possible differences in solubility

therefore show up in the boundary conditions determining the system (see above).

As can be seen from the examples described above, both diffusivity and solubility

determine the magnitude of the transport barrier. Furthermore, differences in the

diffusion coefficient can either counteract or enforce differences in solubility. Chapter

7 provides an example of a biological system in which compartments with different

diffusion coefficients do occur (embryo, yolk and surrounding medium).



Chapter 7

Oxygen Profile in Zebrafish
Embryo (Danio rerio) Elucidated
by Theory and Experiment1

We present a numerical-experimental diffusion study in which we elucidate
the spatial oxygen profile around and inside a zebrafish embryo in the pre-
circulation stage (24-28 hpf). Lowest oxygen partial pressures are found in
the head with a gradient of posteriorly increasing pressure along the midline
of the embryo. Furthermore, instead of being a barrier to oxygen diffusion,
this study shows the yolk mass to have a relatively high oxygen permeability.
The oxygen permeability in the rest of the body in this stage is close to that of
water. Knowledge of the details of the oxygen distribution are important for an
understanding of vasculogenesis and angiogenesis since oxygen levels influence
the expressions of endothelial growth factors.

7.1 Introduction

Animals without a specialized internal oxygen transporting mechanism have to rely

on diffusion through the body surface for their oxygen supply (Graham, 1988). Krogh

(1941) formulated the general rule that “diffusion alone can provide sufficient oxygen

only to animals of 1 mm diameter or less”. The circulatory system in vertebrate

embryos is highly variable in its time of appearance (Richardson, 1995), and before

it becomes established, oxygen is distributed by diffusion.

Exactly how oxygen is distributed in and around a vertebrate embryo without

a circulatory system is still unknown. Previous theoretical studies have predicted

minimum oxygen concentrations, yet the actual shape of the embryo was grossly

simplified (Daykin, 1965; Lee and Strathmann, 1998; Seymour, 1994; Seymour and

1In preparation: Kranenbarg, S., van den Boogaart, J.G.M. and Van Leeuwen, J.L.
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Bradford, 1995; Strathmann and Chaffee, 1984; Woods, 1999). The experimental

testing of these of oxygen diffusion models is extremely limited (Rombough, 1998).

To our knowledge, no complete spatial oxygen distribution in early vertebrate embryos

has been measured before.

Vascularization of the embryo is determined at least in part by environmental

factors such as local oxygen concentration (Risau, 1997; Semenza, 2001; Weinstein,

1999; Yancopoulos et al., 2000). Several angiogenic factors (e.g. vascular endothelial

growth factor VEGF) are known to respond to hypoxia by stimulating vascularization

(Boussat et al., 2000; Gassmann et al., 1996; Ladoux and Frelin, 1993; Liu et al., 1995;

Namiki et al., 1995; Shweiki et al., 1992; Tufro-McReddie et al., 1997). In this respect

it is very interesting to know the internal oxygen profile of a vertebrate embryo.

Here we show micro-electrode measurements of the external and internal oxy-

gen profile of a zebrafish embryo (Danio rerio) in which a circulatory system is not

functional yet (24-28 hours post fertilization hpf, 28�) (Kimmel et al., 1995). The

measured oxygen profiles are compared with a numerical model of the oxygen con-

sumption and diffusion dynamics inside and around a realistic representation of the

shape of the embryo.

This numerical-experimental procedure (Oomens et al., 1993) elucidates the in-

ternal and external oxygen profile in the zebrafish embryo. Furthermore, interesting

physical properties of the embryonic tissues and yolk are revealed. These results pro-

vide a quantitative basis for a functional understanding of vertebrate vascularization.

7.2 Materials and Methods

7.2.1 Oxygen measurements

Fertilized zebrafish embryos (Danio rerio Hamilton) were kept in a petri-dish in a

constant temperature chamber (27�). Approximately 26 hpf (24-28 hpf), an embryo

was decapsulated with two syringe needles. One embryo was embedded in the center

of a cylindrical 1% low melting agarose gel (1 cm in diameter, 2 cm high) to allow

a proper boundary layer build-up all around the embryo. This gel was transferred

to a small water-filled box and placed underneath a clark style micro-electrode with

guard cathode (Diamond General). The micro-electrode had a tip-diameter of 20

µm. A motorized x,y,z-micro-manipulator (Märzhäuser) was used to position the

micro-electrode with an accuracy of 0.1 µm. The micro-electrode was forced along
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the measuring trajectory through the embryo with approximately 100 µm per second.

Then the micro-electrode was retracted along the same trajectory with steps of 10

µm per second and during each step the local oxygen partial pressure at the electrode

tip was recorded by an Apple Macintosh II computer. The temperature of the water

during the oxygen measurements was 27�.

7.2.2 Numerical simulation

A three-dimensional equidistant (59×61×67) grid was constructed in which the medium

surrounding the embryo, the embryonic tissue and the yolk were represented (Fig. 7.1).

Fick’s second law of diffusion in equilibrium situation:

K∇2p = m (7.1)

where K is the Krogh diffusion constant or permeability of oxygen (which in turn is

the product of the oxygen diffusion coefficient D and the oxygen solubility α), p is

the oxygen partial pressure and m is an oxygen consumption term, was rewritten as a

difference equation using the explicit (forward-difference) method in three dimensions

(Crank, 1975). The system was considered a composite medium and the continuity of

flux condition across boundaries was satisfied (Crank, 1975). The difference equation

was solved with a Runge-Kutta method in Matlab 6.1.

7.2.3 Input parameter values

During the simulations, the oxygen partial pressure was kept constant at the grid

boundaries with a value equal to the measured bulk oxygen partial pressure. The

oxygen permeability in water (Van Stroe and Janssen, 1993) at 27� is 6.3×10−13

m2/(s kPa). The agarose gel was assumed not to significantly impede oxygen diffusion

compared to water (Westrin and Axelsson, 1991). The nature of the discontinuities

found in the measured oxygen profiles implied an oxygen permeability in the embry-

onic tissues equal to that in the surrounding medium while the oxygen permeability in

yolk is higher than in the surrounding medium. The exact value of the permeability

of oxygen in the yolk, as well as that of the (constant) oxygen consumption rate was

determined by comparing the numerical results with the measurements and adjusting

the value of the model input parameters to optimally describe the measured profile.

This procedure yielded a value for the oxygen permeability in yolk which is 2.5 times

higher than in the surrounding medium and an oxygen consumption rate of 5.1×10−4
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ml oxygen /(ml tissue s), which is about twice the routine metabolic rate previously

determined for teleost embryos (Rombough, 1988). The oxygen consumption rate

was taken zero for both the surrounding medium and yolk.

7.3 Results

Our micro-electrode measurements reveal a previously unknown physical property of

the yolk material of a zebrafish embryo. The measurements showed clear disconti-

nuities in the slope of the oxygen partial pressure profile. The oxygen profile in the

surrounding medium was characterized by a slope at the ventral surrounding medium

- yolk boundary, which was consistently steeper than that of the profile inside the yolk

(Fig. 7.1 A). This implies that the permeability of oxygen in yolk is larger than the

oxygen permeability in the surrounding medium, since transport over the boundary

has to be continuous (Crank, 1975). The slope of the measured oxygen profiles did

not show discontinuities at the boundary between the animal tissue and the surround-

ing medium (Fig. 7.1 A), implying an equal oxygen permeablity in the surrounding

medium and the embryonic tissue. This is in contrast with the observation that the

oxygen permeability of adult animal tissue of various types is much lower than of

water (Krogh, 1919).

Fig. 7.1 shows two representative examples of measured oxygen profiles. Profile

(A) shows how oxygen partial pressure changes in a ventro-dorsal direction through

the surrounding medium, the yolk material, the tissue of the embryo, and the sur-

rounding medium again. The relatively high oxygen permeability of the yolk permits

an easy oxygen transport within it and causes an increased boundary layer thickness

inside the yolk at the ventral side of the embryo. The oxygen partial pressure in

the center of the animal tissue falls to about one quarter of the surrounding oxygen

partial pressure. Profile (B) shows oxygen partial pressure change in a lateral direc-

tion through the yolk. Here again the discontinuity representing the sudden change

in oxygen permeability is prominent, while the minimum oxygen partial pressure is

somewhat higher than in profile (A).

Previous oxygen distribution models for early embryos have considerably simpli-

fied the morphology (Kranenbarg et al., 2000). In our numerical model, Fick’s second

law of diffusion is solved for an equidistant three-dimensional grid in which a zebrafish

embryo (consisting of tissue and yolk) and the surrounding medium are distinguished.
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Figure 7.1: Comparison between measured (A and B) and modelled (C and D)
oxygen profiles in the zebrafish embryo. (A) and (C), Oxygen partial pressure
(in kPa) in ventro-dorsal direction (dashed arrow in the heading figures). B and
D, Oxygen partial pressure in lateral direction through the yolk (at the level of
the white spot in the heading figures). Note the discontinuity in the slope of
the oxygen partial pressure profile at the surrounding medium - yolk boundary.
Profile parts inside the yolk are indicated with a light bar, while profile parts
inside the tissue of the embryo are indicated with a dark bar. Scale bar is 1
mm.
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The shape of the embryo is realistically represented. Trajectories through the result-

ing three-dimensional oxygen profile, equivalent to the paths of the micro-electrode

are shown in Fig. 7.1 C and D. Realistic estimates of input parameter values (see

Methods section) yield predicted oxygen partial pressure profiles in close agreement

with the micro-electrode measurements. Both the shape of the experimental curves

and the measured values for the oxygen partial pressure are surprisingly accurately

represented by the model.

Fig. 7.2 shows the complete three-dimensional oxygen profile in and around the

zebrafish embryo, based on our numerical model. Fig. 7.2 A represents a sagittal

section through the embryo, clearly showing the thicker boundary layer in the yolk

when compared to that in the surrounding medium. As in the micro-electrode ex-

periments, the minimum oxygen pressures are observed in the center of the animal

tissues. A decrease in oxygen partial pressure along the central axis of the embryo

can be observed from posterior to anterior. The thicker boundary layer in the yolk is

also present in the horizontal (Fig. 7.2 B) and transverse (Fig. 7.2 C) sections.

7.4 Discussion

The oxygen permeability or Krogh diffusion constant of teleost yolk material has

- to our knowledge - not been measured before. A relatively high value for this

permeability in zebrafish embryos as found in our study is very advantageous to the

animal. As the oxygen permeability in the yolk is higher than in the surrounding

medium, the yolk sac effectively mediates oxygen transport to the oxygen consuming

embryonic tissues. Replacing the yolk in our model with surrounding medium yields

oxygen partial pressures close to zero inside the head of the embryo. Also the value

of the oxygen permeability in embryonic tissues as found in our study implies a more

rapid diffusion of oxygen into the embryo compared to adult animal tissue, which is

highly advantageous when completely relying on oxygen diffusion through the skin.

The agreement between our model and experiments shows that the oxygen dis-

tribution inside the zebrafish embryo can be accurately simulated with a physically

simple model. The only input parameters to the model are the bulk oxygen partial

pressure, the distribution of the oxygen permeability and the oxygen consumption

rate of the embryonic tissue.

Apparently, diffusion alone can meet the oxygen demands of an early zebrafish
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Figure 7.2: Three-dimensional predicted oxygen field surrounding the zebrafish
embryo (indicated by the solid white line). A, Sagittal section through the pre-
dicted oxygen field. B, Horizontal section through the predicted oxygen field.
C, Transverse section through the predicted oxygen field. The figures were
obtained from the same simulation as Fig. 7.1. The pressure boundary layer
extends both inside the embryo and in the medium surrounding the embryo.
Oxygen partial pressure decreases along the long axis of the embryo from pos-
terior to anterior. Minimum oxygen pressures are observed in the center of the
tissue of the embryo in the anterior region. Contours of the yolk and animal
tissue are indicated in the subfigures. The color bar represents oxygen partial
pressure in kPa. The black contour lines represent oxygen partial pressures as
indicated in the color bar. Scale bar is 1 mm.
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embryo. This is in agreement with previous experiments in which haemoglobin ab-

lation did not noticeably affect the zebrafish embryo (Pelster and Burggren, 1996).

Acute anoxic stress is not likely to trigger blood vessel maturation. The predicted

three dimensional oxygen profile predicts minimum oxygen partial pressures along the

long axis of the embryo. Hypoxia is known to cause vascular growth factor expression

(e.g. vegf ) (Shweiki et al., 1992). Therefore, we suggest that the observed oxygen

gradients play a key role in vasculogenesis and angiogenesis in the zebrafish embryo

(Gassmann et al., 1996).
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Chapter 8

Effect of Oxygen Partial Pressure
on vegf Expression in the
Zebrafish Embryo (Danio rerio)1

Vascularization of the early vertebrate embryo is comprised of vasculogenesis
and angiogenesis. Vasculogenesis is thought to be mainly genetically deter-
mined, while external cues play an important role in angiogenesis. From a
functional point of view, we investigated the role of oxygen on zebrafish vascu-
larization by showing the expression pattern of the oxygen sensitive angiogenic
factor vegf in normoxic and hypoxic conditions. Furthermore, we show a nu-
merical simulation of the oxygen dynamics in a zebrafish embryo and correlate
the predicted oxygen partial pressure profile with the vegf expression pattern.
No differences in the vegf expression pattern between the normoxic and hy-
poxic group were observed, while the general regions showing vegf expressions
correlate with regions of low oxygen partial pressure, predicted by the model.
This led us to suggest that early vascularization of the zebrafish embryo is
mainly genetically determined, where this developmental program represents
functional physical constraints trapped in the genome.

8.1 Introduction

8.1.1 Vasculogenesis and angiogenesis

Vasculogenesis is the first step of cardiovascular development in the vertebrate em-

bryo (Risau, 1997; Yancopoulos et al., 2000). Vasculogenesis can be defined as ‘the

differentiation of angioblasts from mesoderm and the formation of primitive blood

vessels from angioblasts at or near the site of their origin’ (Risau and Flamme, 1995).

Vasculogenesis is followed by ‘the vascularization of tissues as a result of sprouting

1In preparation: Kranenbarg, S., Van der Meulen, T., Samallo, J., Schipper, H.,
Schutter, M., Stroband, H.W.J. and Van Leeuwen, J.L.

135
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of new vessels from preexisting ones’ which is defined as angiogenesis (Maltepe and

Simon, 1998; Risau and Flamme, 1995; Weinstein, 1999). The combination of vas-

culogenesis and angiogenesis leads to a proper development of the early primitive

vessels into functional vascular networks (Patan, 2000). An increase in the relative

importance of angiogenesis in the functional development of the axial vessels can be

observed from lower to higher vertebrates (Weinstein, 1999).

A complex set of vascular-specific growth factors is required for a proper car-

diovascular development (e.g. Beck et al. (2000); Maltepe and Simon (1998); Patan

(2000); Risau (1997); Yancopoulos et al. (2000)). Vascular endothelial growth fac-

tor (VEGF2) and its receptors Flt1, Flk1/KDR and Flt4 (VEGF receptors 1-3) are

part of this set and play a critical role in both vasculogenesis and angiogenesis (Beck

and D’Amore, 1997; Patan, 2000; Risau, 1997; Weinstein, 1999; Yancopoulos et al.,

2000). The respective roles of these genes are exemplified by the result of targeted

disruption studies in mice embryos, which cause impaired or blocked vessel formation

(Carmeliet et al. (1996); Ferrara et al. (1996) for Vegf −/− embryos; Fong et al. (1995)

for Flt-1−/− embryos; Shalaby et al. (1995, 1997) for Flk-1−/− embryos).

8.1.2 Effect of hypoxia

The embryonic circulatory plan of vertebrates shows a high amount of evolutionary

conservation. Furthermore, the establishment of the major vessels is highly repro-

ducible from embryo to embryo, suggesting that vasculogenesis is a largely hard wired

developmental process (Weinstein, 1999), which is not influenced by the local oxygen

pressure. This idea is supported by several studies. First, the notochord is shown to

play an important role in signalling on the developing axial endothelium in zebrafish

embryos (Brown et al., 2000; Sumoy et al., 1997). Second, mice embryos without

a proper oxygen sensing mechanism (Hif-1α−/−) showed no vascular abnormalities

and the heart and dorsal aorta appear nearly normal up to E8.5-E8.75 (Iyer et al.,

1997). Finally, VEGF receptor 2/Flt-1/KDR (the only gene product known to be

absolutely required for vasculogenesis in mice as no blood vessels can be observed at

any stage in Vegf receptor 2/Flk-1−/− embryos (Shalaby et al., 1995, 1997)) is not

directly up-regulated by hypoxia in human cells (Brogi et al., 1996; Gerber et al.,

1997).

2We will adopt the following typesetting for genes and proteins, respectively, in this chapter.
Referring to the human system: VEGF and VEGF, murine system: Vegf and Vegf and zebrafish:
vegf and Vegf.
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In contrast to vasculogenesis, angiogenesis appears largely dependent on environ-

mental cues such as local oxygen pressure (Risau, 1997; Semenza, 2001; Weinstein,

1999; Yancopoulos et al., 2000). Hypoxia can promote intensified vascularization

through the liberation of angiogenic agents. As one of those agents, VEGF induces

angiogenesis (reviewed by Dor et al. (2001)) since endothelial cells are stimulated to

grow up a VEGF gradient (Maltepe and Simon, 1998). Hypoxia increases VEGF

mRNA levels in mammals and birds (Boussat et al., 2000; Gassmann et al., 1996;

Ladoux and Frelin, 1993; Namiki et al., 1995; Shweiki et al., 1992; Tufro-McReddie

et al., 1997; Yue and Tomanek, 1999) due to both an increased transcription rate

(transcriptional regulation) (Ikeda et al., 1995; Levy et al., 1995; Liu et al., 1995) and

an increase in VEGF mRNA stability (posttranscriptional regulation) (Ikeda et al.,

1995; Levy et al., 1996; Shima et al., 1995). VEGF protein levels are also increased

in mammals by hypoxia (Boussat et al., 2000; Lee et al., 2001).

8.1.3 Oxygen gradients and vessel development

Before the development of a cardiovascular system, embryos depend solely on diffusion

for their oxygen supply. This results in the formation of oxygen gradients inside the

embryo (Kranenbarg et al., 2000, 2002), which constitute the environmental cues

thought to be important in vascularization of the vertebrate embryo (Lee et al., 2001;

Maltepe and Simon, 1998).

The formation of oxygen gradients has been simulated using three-dimensional

numerical methods (Kranenbarg et al., 2002) and measured using oxygen micro-

electrodes (Gassmann et al., 1996; Kranenbarg et al., 2002; Rombough, 1998). The

three-dimensional oxygen profile in a zebrafish embryo as found in both the numerical

predictions and the micro-electrode measurements, shows a region of lowest oxygen

partial pressure in the head with a gradient of posteriorly increasing partial pressure

along the midline of the embryo (Kranenbarg et al., 2002).

From a functional perspective, it is interesting to explore whether oxygen (as an

environmental cue) both spatially and temporally regulates vascularization of the

embryo. Therefore, we analyzed the spatial and temporal expression of vegf in the

zebrafish embryo under normoxic and hypoxic conditions. The results were compared

with numerical simulations of the oxygen transport and consumption dynamics in a

realistically shaped model embryo to obtain physical insight in the process of early

vertebrate vascularization.
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8.2 Materials and Methods

8.2.1 Embryos and oxygen treatment

Newly fertilized zebrafish embryos (Danio rerio) were collected. Subsequently, the

batch was randomly divided into a normoxic and a hypoxic group, each consisting of

approximately 75 eggs. One hour post fertilization (hpf), the eggs from the normoxic

group were placed in a tea strainer inside a water-filled 1 liter beaker. A continuous

air-flow was led through the water to ensure a constant, air-saturated oxygen partial

pressure. The beaker was covered with a plexiglass lid to reduce evaporation. Eggs

from the hypoxic group were placed in a similar set-up at the same time, yet with a

continuous flow of nitrogen gas, to ensure a constant, low oxygen partial pressure. The

oxygen partial pressure in the hypoxic group was continuously monitored during the

experiment with a clark style micro-electrode (Diamond General). The temperature

in both beakers was 28� during the entire experiment. The air-saturated oxygen par-

tial pressure was 21.6 kPa, while the oxygen partial pressure in the hypoxic group was

4.5±1.6 kPa, which amounts to about 21 % of the air air-saturated partial pressure.

The developing embryos were sampled (6-10 eggs per sample) from both the nor-

moxic and the hypoxic groups at 1 hpf, 8.75 hpf, 10.5 hpf, 12.5 hpf, 18.5 hpf, 24 hpf

and 30 hpf. The eggs were fixed in 4% paraformaldehyde (PFA) in PBS and stored

at 4�.

8.2.2 Whole mount in situ hybridisation and cryosectioning

An α-sense digoxigenin labelled vegf probe was generated starting from a pBluescript

SK vector containing a 1.1 kb 5’RACE zebrafish vegf insert, which was kindly pro-

vided by dr. Ruowen Ge from the Department of Biological Sciences of the National

University of Singapore. The insert encodes the 5’ end of vegf coding region and 5’

untranslated region (5’UTR) (Liang et al., 1998).

The vegf -probe was used to carry out whole mount in situ hybridisation. The

in situ hybridisation method used here is essentially as described in Stroband et al.

(1995), with the following modifications. After fixation in 4% PFA at 4� for at

least 24 hours, the embryos were mechanically decapsulated and washed in PBST

(PBS buffer/0.1% Tween-20). Before the 2 hours incubation in prehybridization
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mix at 70�, the embryos were incubated for 7 min in prehybridization mix with-

out tRNA and heparin. Hybridization took place overnight at 70� using the vegf -

probe. The optimal probe dilution was determined experimentally. The embryos

were rinsed at 70� in prehybridisation mix and subsequently washed at 70� in 50%

formamid/2×SSCT (SSC solution/0.1% Tween-20) for 15 min, 25% formamid/2×SSCT

for 15 min, 2×SSCT for two times 15 min, 0.2×SSCT for two times 30 min, 0.2×SSCT

for 15 min and allowed to cool to room temperature (RT) during this last washing step.

The embryos were washed two times 10 min in PBST at RT and incubated 4 hours

at RT with 1% blocking solution (PBST-BL, Roche Biochemicals), before overnight

probe detection at 4� with alkaline phosphatase labelled α-DIG-Fab fragments. Em-

bryos were rinsed and subsequently washed six times 15 min in PBST-BL and two

times 5 min in PBST. After a three times 5 min wash in AP buffer (0.1 M Tris/0.1 M

NaCl/0.05 M MgCl2/0.1% Tween-20), the probe was visualized by incubation with

nitro blue tetrazolium (NBT, Roche Biochemicals) and 5’-bromo-4’-chloro-3’-indolyl

phosphatase (BCIP, Roche Biochemicals) according to the manufacturers protocol.

When the resulting deep purple color was first seen intense enough in some embryos,

all embryos were washed simultaneously three times 5 min in PBST, fixed in 4% PFA

in PBS, and stored at 4�.

The embryos were photographed in PBST with a Zeiss Stemi SV11 dissecting

microscope in combination with an Olympus DP50 digital camera with accompanying

analySIS® software. After photographing, sections of whole-mount stained embryos

were prepared by cryosectioning as essentially described by Stevens et al. (1998).

The postfixation in 4% PFA/0.2% glutaraldehyde/PBS was omitted. The sections

were photographed with the Olympus DP50 digital camera, mounted on a Nikon

microphot-FXA microscope.

8.2.3 Simulation of oxygen dynamics

In order to realistically simulate the oxygen dynamics inside a zebrafish embryo, an

analysis of the oxygen transport mechanisms in the surrounding medium is inevitable.

Dimensionless number theory provides a suitable framework to carry out this analysis.

The dimensionless Sherwood number (Sh) is a measure for the ratio of total mass

transfer over diffusive mass transfer. The dimensionless Péclet number (Pe) is a

measure for the ratio of convective mass transfer over diffusive mass transfer. These

dimensionless numbers are employed to describe the transport dynamics of oxygen to
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spheres and to calculate the oxygen partial pressure at the egg surface.

Intermezzo 4.4 gives a relation between the Sherwood number and the Péclet

number for a sphere in Stokes flow:

Sh = 0.978Pe1/3 + 1.38 (8.1)

For the spherical zebrafish egg, the Sherwood number can also be defined as (Daykin,

1965)

Sh =
2a2m

3K
(
pOamb

2 − pOs
2

) (8.2)

where a is the egg radius [m], m is the volume-specific oxygen consumption[m3/(m3

s)], K is the oxygen permeability in water [m2/(kPa s)], pOamb
2 is the free water oxygen

partial pressure [kPa] and pOs
2 is the (assumed constant) oxygen partial pressure at

the egg surface [kPa]. Together, equations 8.1 and 8.2 present a relation between the

Péclet number and the oxygen partial pressure at the egg surface, pending the oxygen

consumption m.

Grunwald et al. (1988) showed that zebrafish embryos of 29 hpf (when blood

circulation starts) bend their body about 7 times per minute. As it takes several

minutes for the equilibrium in the diffusion of oxygen to settle (Kranenbarg et al.,

2000), it is safe to assume that these muscular contractions will stir and homogenize

the perivitelline fluid with respect to oxygen partial pressure (Wickett, 1975). This

stirring of the perivitelline fluid validates the assumption of a constant and equal

oxygen partial pressure both at the egg capsule and the skin surface of the embryo.

This partial pressure was calculated for a Péclet number of 100 (representing a flow

velocity of several hundreds of micrometers per second (Kranenbarg et al., 2001))

and used as a boundary condition in a numerical simulation of oxygen transport and

consumption in the zebrafish embryo as essentially described by Kranenbarg et al.

(2002). Except the boundary oxygen partial pressure, all parameter values are equal

to Kranenbarg et al. (2002).

8.3 Results

8.3.1 vegf expression

Expression of vegf was detected in all stages analyzed. The spatial expression pattern

of the normoxic group was comparable to that described previously by Liang et al.
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Figure 8.1: vegf expression in three embryonic stages of the zebrafish. Embryos
raised under normoxic conditions (A-F) are compared with embryos raised un-
der hypoxic conditions (G-L). A,B,G,H: 4-8 cell stage embryos in lateral (A,G)
and top view (B,H); C,D,I,J: 10.5 hpf embryos in lateral (C,I) and dorsal view
(D,J) and E,F,K,L: 12 hpf embryos in lateral (E,K) and dorsal view (F,L). Scale
bar is 500 µm.
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Figure 8.2: vegf expression in 18-19 hpf zebrafish embryos. Embryos raised
under normoxic conditions (A-C) are compared with embryos raised under hy-
poxic conditions (D-F). Four regions of vegf expression can be determined:
anterior forebrain (arrows with straight white heads), mesoderm underlining
and lateral to the anterior hindbrain (arrows with straight black heads), meso-
derm underlining and lateral to the posterior hindbrain (arrow with concave
white head), and the ventro-medial portion of each somite, adjacent to the
notochord (arrows with concave black heads). Scalebar is 500 µm.
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(1998, 2001). In the 4 cell stage (1 hpf), all 4 cells showed vegf mRNA in the region

adjacent to the yolk (Fig. 8.1 A,B). At 80% epiboly (8.75 hpf), vegf was expressed

in the dorsal region of the embryo (data not shown). At 10.5 hpf, vegf is expressed

throughout the embryo, adjacent to the yolk (Fig. 8.1 C,D). At 12 hpf, vegf is clearly

expressed bilaterally along the entire length of the embryo in the region directly on

top of the yolk (Fig. 8.1 E,F). At 18.5 hpf, vegf is expressed bilaterally in regions

comparable to the four regions described by Liang et al. (1998) (anterior forebrain,

mesoderm underlining and lateral to the anterior hindbrain, mesoderm underlining

and lateral to the posterior hindbrain, and the ventro-medial portion of each somite,

adjacent to the notochord (Fig. 8.2). In addition to the four regions described by

Liang et al. (1998), we also found vegf expression in a region directly on top of the

yolk at the beginning of the yolk sac extension (Fig. 8.2 A); the region of pronephros

development (Drummond et al., 1998). Cryosections confirmed the global localization

of this expression pattern. A similar expression pattern was found in 24 hpf embryos,

although the details of the vegf expression in the head region were not examined. In

30 hpf embryos, the somite expression was greatly reduced, while the expression in

the region of pronephros development was extended posteriorly (Fig. 8.3). None of

the control animals (in which the probe hybridization step was omitted) showed any

coloring.

Both the spatial and temporal expression pattern of vegf under hypoxic condi-

tions in the stages examined, were highly comparable to those in normoxic condi-

tions (Fig. 8.1 G-L). Although some differences in color intensity of the whole mount

embryos can be observed, these differences could not be attributed to the oxygen

treatment since the variation in color intensity also existed within a treatment group.

At 12 hpf, a bilateral expression as seen in the normoxic group was not found equally

clear in the hypoxic group (Fig. 8.1 L). The consistency of this difference has yet to

be determined in larger scale experiments.

The photographs of the 18.5 hpf embryos show a lagging behind of brain develop-

ment in the hypoxic animals (Fig. 8.2). This difference was not observed consistently

in the other hypoxic animals. However, from 18.5 hpf onwards hypoxic embryos did

show a consistent lagging behind in pigmentation. In addition, at 30 hpf a pericardial

edema was observed in 3 out of 6 hypoxic embryos.
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Figure 8.3: vegf expression in 24 hpf zebrafish embryo (A) and 30 hpf embryo
(B), both with the tail curved upwards. Subfigure C shows the results of our
numerical simulation of the oxygen dynamics. The colorbar on the right gives
oxygen partial pressure in kPa.

8.3.2 Simulation of oxygen dynamics

We made a simulation of the oxygen transport and consumption dynamics in a ze-

brafish embryo with stirring of the perivitelline fluid. The oxygen partial pressure

gradient between the bulk flow and the embryo surface was 3 kPa. The results of the

numerical simulation are shown in Fig. 8.3, together with the ISH result of a 24 and 30

hpf normoxic embryo. The oxygen partial pressure at the body surface of the model

embryo is constant. The lowest oxygen partial pressure can be observed in the head

region, with a gradient of increasing oxygen pressure in posterior direction (Fig. 8.3

C). In the embryonic tissues on top of the yolk, the minimum oxygen partial pressure

in dorso-ventral direction are located just ventral to the midline of the embryo.
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8.4 Discussion

In tissues that are in active vascularization, vegf is known to be expressed and to play

an important role (Beck and D’Amore, 1997; Liang et al., 2001; Patan, 2000; Risau,

1997; Weinstein, 1999; Yancopoulos et al., 2000). Furthermore, Vegf expression is

sensitive to local oxygen conditions in mammals, with hypoxia increasing vegf mRNA

levels (Boussat et al., 2000; Gassmann et al., 1996; Ladoux and Frelin, 1993; Namiki

et al., 1995; Shweiki et al., 1992; Tufro-McReddie et al., 1997). In order to clarify the

role of local oxygen conditions in the vascularization of the early zebrafish embryo, we

examined the effect of ambient oxygen partial pressure on the spatial and temporal

expression pattern of vegf in the zebrafish embryo.

Not surprisingly, the expression pattern in normoxic embryos was highly compa-

rable to that previously published by Liang et al. (1998, 2001). Low ambient oxygen

partial pressure, however, changed neither the temporal nor the spatial vegf expres-

sion pattern in early zebrafish embryos, as far as can be judged from the current

analysis of our in situ hybridizations.

We did, however, study the expression pattern on a whole embryo scale, with

some preliminary cryosectioning to further localize the vegf expression. More detailed

differences in the vegf expression pattern between the normoxic and hypoxic group

have yet to be investigated. Furthermore, as in situ hybridization is not an adequate

technique to quantify gene expression (Ikeda et al., 1995; Levy et al., 1995; Liu et al.,

1995), differences in the amount of vegf mRNA between the two experimental groups

have not been detected. Quantitative polymerase chain reaction (PCR) techniques

or RNAse protection arrays could shed some light on this subject. The amount of

vegf mRNA is determined by the transcription rate and its stability, both of which

are potentially increased by hypoxia (Ikeda et al., 1995; Levy et al., 1995; Liu et al.,

1995; Shima et al., 1995). As only the Vegf protein and not the mRNA can perform

a functional task in vascularization, the effect of hypoxia on the actual amount of

functional Vegf protein produced should be examined (Boussat et al., 2000; Lee et al.,

2001).

Although several issues still have to be resolved, large differences in vegf expression

patterns under normoxic and hypoxic conditions have not been found. During early

organogenesis, the heart and blood vessels of the zebrafish embryo form by the process

of vasculogenesis. This process is thought to be a mainly predetermined, genetically

controlled developmental process. This idea is supported by our experiments.
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We did see hypoxic embryos to lag behind in pigmentation with respect to nor-

moxic embryos. This suggests that hypoxia slows down development. This effect of

oxygen on early development has been shown in extremo by Padilla and Roth (2001),

who found anoxia to completely stop zebrafish development and to elicit a state of

suspended animation. In addition, the observed pericardial edema (common to many

cardio-vascular and hematopoietic mutants (Chen et al., 1996; Stainier et al., 1996;

Weinstein et al., 1996)) in the hypoxia group suggests a more specific adverse effect

of hypoxia on vascularization. The pathways through which hypoxia achieves this

effect still have to be resolved. A similar phenotypic effect was found in both Vegf

loss and gain of function studies in zebrafish embryos (Liang et al., 2001; Nasevicius

et al., 2000).

Yet how does the vegf expression pattern compare with the local oxygen partial

pressure in the embryo? We did not measure the local internal oxygen partial pres-

sure of embryos raised in a well-stirred medium, though we did make a numerical

simulation of the oxygen consumption and transport dynamics in a zebrafish embryo.

When comparing the results of our numerical simulation with the actual vegf ex-

pression pattern, some interesting similarities emerge. The lowest oxygen pressure is

predicted in the head region, which coincides with the most extensive expression of

vegf found in the head. Furthermore, low oxygen pressures were predicted along the

central axis in the trunk and tail region. And compared with the predictions in a

stagnant medium (Kranenbarg et al., 2002), the region of low oxygen partial pressure

in the head is shifted towards the yolk. The same pattern can roughly be found in the

vegf expression. This shows that vegf expression is roughly associated with relatively

hypoxic regions.

A more detailed analysis of vegf expression is needed to elucidate smaller scale

correlations. This analysis should be compared with the results of a more detailed

numerical model, integrating a more differentiated representation of the animal tis-

sues with local oxygen consumption differences. More detailed oxygen partial pres-

sure measurements (with an oxygen micro-electrode or immuno-histo-chemical stain-

ing (Lee et al., 2001)) can be employed to validate the model. This more detailed

numerical-experimental procedure (Oomens et al., 1993) might also detect small scale

differences in oxygen partial pressure and vegf expression between the normoxic and

hypoxic group.

Anticipating these more detailed studies, the following picture of early zebrafish
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vascularization emerges. The heart and large vessels (such as the aorta) in the ze-

brafish are formed by a process called vascularization. This process seems largely

determined by phylogenetic constraints. Smaller vessels, emerging later in develop-

ment, are formed by the process of angiogenesis. This process appears to depend

largely on environmental cues such as local oxygen pressure (Lee et al., 2001), repre-

senting physical constraints. The regions in which vasculogenesis takes place coincide

with regions of low oxygen pressure. Thus, the phylogenetic constraints regulating

vasculogenesis can in fact be hypothesized to be physical constraints being trapped

in the genome.
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Summary

The embryonic development of all more than 50,000 extant species of vertebrates

(Harvey Pough et al., 2002), is characterized by a period of remarkably low mor-

phological variability between species. During this so-called phylotypic period, all

embryos express the archetype of the vertebrate body plan. Development of the vas-

cular system is one of the important and interesting processes taking place during the

phylotypic period.

Knowledge on the genetic regulation of vascularization is vastly accumulating over

the past decade. Regulation by environmental factors is also recognized (e.g. Mal-

tepe and Simon (1998)), though a quantitative basis for a proper analysis appears

to be lacking. The research described in this thesis aims to link qualitative and

semi-quantitative molecular-genetic research on vascularization on the one hand with

quantitative physical modelling on the other hand.

Fertilized vertebrate eggs lack a circulatory system and the early embryo relies

solely on diffusion from the surrounding medium for its oxygen and nutrient supply.

As diffusion can only be effective over short distances, the absence of a circulatory

system limits the maximum size of embryos. Analytical models were employed to gain

insight in the process of oxygen and nutrient diffusion and to predict the maximum

size a vertebrate embryo can attain. The analysis showed that equilibrium between

supply and consumption of oxygen can safely be assumed, which greatly facilitated

further modelling (chapter 3).

Analytical models of oxygen diffusion in and around a specified shape showed that

only three parameters are important in predicting the maximum size (based on oxygen

requirements) of embryos living in either a stagnant or a very turbulent environment.

Two of these three parameters are physical properties of the environment and embryo,

i.e. the oxygen diffusivity and the oxygen solubility, while the third is a biological

property of the embryo; the volume-specific oxygen consumption (chapter 3).

Values for these three parameters were found in the literature for several teleost
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embryos and the predicted maximum size was compared with the actual size of the

embryos. The equilibrium models (consumption equals supply) generally predicted

maximum sizes larger than the actual ones and it was concluded that “diffusion across

the body surface of teleost embryos is adequate for their oxygen supply even beyond

the time a circulatory system is functional” (chapter 3).

The functional aspects of nutrient distribution in early blood vessel development

were assessed in chapter 4. This chapter presents an application of the analytical

models to the diffusion of nutrients, together with an implementation of the effect of

a simplified vessel inside a zebrafish embryo. Since nutrient molecules are larger than

oxygen molecules, the diffusivity of nutrients is much smaller than that of oxygen.

The analysis suggested that “zebrafish embryos ... are restricted in their growth by

nutrient but not by oxygen demand, and need their circulatory system for nutrient

but not oxygen transport” (chapter 4).

These indications of physical constraints on body size from nutrient supply are

very promising, but need further research to reach quantitative conclusions. The

remainder of this thesis, however, focusses on the interplay between the supply and

consumption of oxygen and vertebrate development. In the preceding chapters 3 and

4, the environment of the vertebrate embryo was either assumed stagnant or well

stirred. As these conditions hardly occur in nature, the effects of forced convection

with intermediate flow velocities were analyzed in chapter 5. Dimensionless number

theory provided the framework for a theoretical relation between flow velocity and

maximum size of the embryo, based on oxygen supply and demand. The shape of

the embryo appeared to influence this relationship. At large flow velocities of the

surrounding medium, a flattened shape is most favorable for gas exchange, while at

very small flow velocities, a spherical shape is to be preferred. This can be explained

as follows: since at high flow velocities, the oxygen diffusion boundary layer is con-

tinuously being refreshed at the body surface, a large surface-to-volume ratio, and

thus a flattened shape, is favorable. At small flow velocities, however, an oxygen-poor

boundary layer will develop around the embryo. Therefore, being able to obtain oxy-

gen from as many directions as possible, and thus a spherical shape, is most favorable.

Physical phenomena such as forced convection, free convection, thermal stirring and

wind assure a certain minimum flow velocity of the surrounding medium of teleost

embryos and thereby the flattened shape to be the most favorable (chapter 5).

The conjecture of changing optimal shapes with flow velocity was confirmed in
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chapter 6. This chapter serves as a mathematical overview of the analytical mod-

elling possibilities. In contrast with the models from previous chapters, the analyti-

cal model presented in this chapter integrates three important aspects of modelling

oxygen transport to small organisms: variable shape, variable oxygen consumption

pattern and variable external flow conditions. The combination of these aspects into

one model allows an broad analysis of the constraints oxygen transport sets on the size

and shape of organisms that do not have an active internal oxygen transport mecha-

nism. The predictions from this integrative model support the main conclusions from

chapters 3 and 5 (chapter 6).

With an overview of the analytical modelling possibilities of oxygen dynamics pre-

sented in chapter 6 and the preceding chapters, we had gained both qualitative and

quantitative insight in the oxygen transport and consumption dynamics. Further-

more, we elucidated the constraints set on embryo size and morphology by oxygen

diffusion and showed oxygen not to be a constraining factor. All analytical models,

however, grossly simplified the morphology of the embryos. This shortcoming was

alleviated in chapter 7, which presents a numerical model of the oxygen transport

and consumption dynamics in a realistically shaped zebrafish embryo. The model

predictions were compared with micro-electrode in vivo oxygen partial pressure mea-

surements. This numerical-experimental procedure resulted in the spatial oxygen

partial pressure profile in and around the zebrafish embryo. Lowest oxygen partial

pressures were found in the head with a gradient of posteriorly increasing partial

pressure along the midline of the embryo. The procedure further revealed that oxy-

gen permeability in yolk material is remarkably high. This is very advantageous for

the animal and prevents nearly anoxic conditions to develop inside the head region.

Whereas the oxygen permeability of adult tissue of several vertebrate species has been

found to be much lower than that of water, the permeability in embryonic tissues of

zebrafish appears to be close to that of water (chapter 7).

Several angiogenic factors are known to respond to low oxygen partial pressures by

stimulating vascularization. Therefore, detailed knowledge of the three-dimensional

oxygen partial pressure profile is essential for a complete understanding of vertebrate

vascularization.

In chapter 8, we showed the expression pattern of one such factors (vascular en-

dothelial growth factor, vegf ) under normoxic and under hypoxic conditions. Under

normoxic conditions, vegf is expressed most extensively in the head of the embryo and
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bilaterally in the ventro-medial part of the somites, as previously described (Liang

et al., 1998, 2001). Hypoxia did not noticeably affect the spatial and temporal expres-

sion pattern of vegf in the early zebrafish embryo, though it did slow down normal

development. These results suggest the early vascularization of the zebrafish embryo

(vasculogenesis) to be mainly determined by phylogenetic constraints.

The in situ hybridization results were compared with a numerical simulation of the

oxygen transport and consumption dynamics. A spatial similarity could be observed

between predicted regions of low oxygen partial pressure and the expression of vegf.

This suggests the phylogenetic constraints to be physical constraints being trapped

in the genome.

Taken together, chapters 7 and 8 help to understand the probable signalling path-

ways that actually bridge the gap between quantitative physical modelling and quali-

tative molecular genetic research. The combination of the two yields important insight

in the process of vascularization and provides a promising new research field.

In the introduction, the general goal of this thesis was formulated as unravelling

physical and phylogenetic constraints in the development of blood vessels in verte-

brate embryos. Does the circulatory system develop to overcome oxygen shortage by

the time it becomes functional in the growing embryo? It can now be concluded that

the answer to this question must be negative. Both our analytical models and our

numerical model shows that by the time a functional circulatory system is present,

diffusion alone is still adequate for a proper oxygen supply (cf. chapters 3, 5, 6 and

7). The results of a hemoglobin ablation experiment by Pelster and Burggren (1996)

also questioned the role of the early blood vessel system in oxygen transport and thus

supports our conclusion. Apparently, ontogeny incorporates a safety factor to ensure

a proper circulatory system to be present before its functioning is actually required.

Although the circulatory system does not develop to overcome acute anoxia, hy-

poxic conditions might still act as cues to regulate vessel development. This, how-

ever, could not be experimentally demonstrated and circulatory system development

appears largely genetically determined (chapter 8), at least for the initial part of

vascularization (vasculogenesis). Yet other studies show oxygen to influence vessel

development and the onset and extent of environmental influences on vertebrate vas-

cular development remains to be determined.
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Another interesting aspect of vertebrate vascularization is the effect of other fac-

tors than oxygen as possible physical constraints on development (e.g. waste trans-

port, transport of signalling molecules, hormones etc.). Nutrient distribution appears

a promising candidate as the primary function of the functional circulatory system

(chapter 4) though further research is needed to elucidate its effects.
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Samenvatting

De embryonale ontwikkeling van alle meer dan 50.000 soorten gewervelde dieren,

wordt gekenmerkt door een periode met weinig morfologische variatie. Gedurende

deze zogenoemde fylotypische periode, vertonen alle embryo’s het archetype van het

bouwplan van de gewervelde dieren. De ontwikkeling van het bloedvatstelsel is een

belangrijk en interessant proces dat plaatsvindt tijdens de fylotypische periode.

De kennis over genetische regulatie van bloedvatontwikkeling is het laatste decen-

nium sterk toegenomen. Regulatie door omgevingsfactoren wordt nu erkend, maar

een kwantitatieve basis voor verdere analyse ervan lijkt grotendeels afwezig. Het on-

derzoek dat in dit proefschrift beschreven wordt, is erop gericht om het kwalitatieve

en semi-kwantitatieve moleculair-genetische onderzoek te koppelen aan kwantitatieve

fysische modellering van dit proces.

Bevruchte eieren van gewervelde dieren bezitten nog geen bloedvatstelsel en het

vroege embryo vertrouwt volledig op diffusie voor de aanvoer van zuurstof en voedings-

stoffen. Aangezien diffusie alleen effectief is over kleine afstanden, zal de afwezigheid

van een bloedvatstelsel de maximale grootte van de embryo’s beperken. We hebben

analytische modellen gemaakt om inzicht te krijgen in het diffusieproces en om de

maximale grootte van de embryo’s te kunnen voorspellen. Deze analyse toonde aan

dat zeer snel evenwicht bereikt wordt tussen de aanvoer en consumptie van zuurstof,

wat verdere modellering veel makkelijker maakte (hoofdstuk 3).

Analytische modellen van zuurstofdiffusie binnenin en rondom een bepaalde vorm,

toonde aan dat slechts drie parameters belangrijk zijn voor het voorspellen van de

maximale grootte (gebaseerd op zuurstofbehoefte) van embryo’s in een ofwel stil-

staand ofwel zeer snel stromend medium. Twee van deze drie parameters zijn fysische

eigenschappen van de omgeving en het embryo (diffusiecoëfficiënt van zuurstof en de

zuurstofoplosbaarheid), terwijl de derde parameter een biologische eigenschap van het

embryo is (volumespecifieke zuurstofconsumptie, hoofdstuk 3).

Waarden van deze drie parameters hebben we in de literatuur gevonden voor
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diverse soorten vissenembryo’s. De daarmee voorspelde maximale grootte van deze

embryo’s hebben we vergeleken met de werkelijke grootte. De evenwichtsmodellen

(waarin de consumptie gelijk is aan de toevoer) voorspelden over het algemeen een

maximale grootte die groter was dan de werkelijke grootte van het embryo. Op

basis hiervan hebben we geconcludeerd dat diffusie over het lichaamsoppervlak van

vissenembryo’s voldoende is voor de toevoer van zuurstof, zelfs nog als een functioneel

bloedvatstelsel aanwezig is (hoofdstuk 3).

De functionele aspecten van het transport van voedingsstoffen in een vroeg bloed-

vatstelsel, hebben we onderzocht in hoofdstuk 4. Dit hoofdstuk beschrijft een toepass-

ing van de analytische modellen op de diffusie van voedingsstoffen, gecombineerd met

de effecten van een simpel bloedvat in een zebravisembryo. Aangezien voedingsstof-

fen bestaan uit grotere moleculen dan zuurstof, zullen ze over het algemeen minder

makkelijk diffunderen. De analyse maakte aannemelijk dat zebravisembryo’s in hun

grootte beperkt worden door de toevoer van voedingsstoffen en niet door die van zu-

urstof. Het vroege bloedvatstelsel lijkt nodig voor het transport van voedingsstoffen

en niet van zuurstof (hoofdstuk 4).

Deze aanwijzingen dat voedingsstoffen de lichaamsgrootte van embryo’s kunnen

beperken, zijn veelbelovend, maar behoeven nog verder onderzoek om kwantitatieve

conclusies te kunnen trekken. De rest van het proefschrift gaat daarentegen over

het samenspel tussen toevoer en consumptie van zuurstof aan de ene kant en de on-

twikkeling van gewervelde dieren aan de andere kant. In de voorgaande hoofdstukken

3 en 4 werd aangenomen dat het medium rond het embryo ofwel helemaal stilstond

of heel erg snel bewoog. Deze condities zijn echter in de natuur nauwelijks te vinden

en daarom hebben we in hoofdstuk 5 de effecten van intermediaire stroomsnelheden

onderzocht. Gebaseerd op de toevoer en consumptie van zuurstof, werd een theore-

tische relatie afgeleid tussen stroomsnelheid en maximale grootte van een embryo.

De vorm van het embryo bleek deze relatie te bëınvloeden. Bij hoge stroomsnelheden

van het medium bleek een platte vorm het gunstigst voor zuurstofopname, terwijl bij

zeer lage stroomsnelheden een bolvorm juist gunstiger was. Dit kan als volgt worden

verduidelijkt. Bij hoge stroomsnelheden wordt er continu zuurstofrijk water aange-

voerd en zal dus continu aan de huid van het embryo een hoge zuurstofconcentratie

heersen. Een relatief groot huidoppervlak, en dus een platte vorm, is in deze situatie

zeer gunstig. Bij zeer geringe stroomsnelheden, zal zich een zuurstofarme grenslaag

om het embryo heen ontwikkelen. In deze situatie is het juist gunstig om zuurstof
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vanuit zoveel mogelijk richtingen te kunnen benutten en dus om bolvormig te zijn.

Fysische fenomenen zoals externe stroming, vrije convectie, thermische beweging en

wind zorgen in de natuur altijd voor een bepaalde minimale stroomsnelheid rondom

vissenembryo’s, waardoor een platte vorm het gunstigst is (hoofdstuk 5).

De vinding dat de meest optimale vorm voor gasuitwisseling afhangt van de

stroomsnelheid, werd bevestigd in hoofdstuk 6. Dit hoofdstuk geeft een wiskundig

overzicht van de analytische modelleermogelijkheden. In tegenstelling tot de voor-

gaande hoofdstukken incorporeert het analytische model uit dit hoofdstuk drie be-

langrijke aspecten van het zuurstoftransport naar kleine organismen: variabele vorm,

variabel zuurstofconsumptiepatroon en variabele externe stromingscondities. De com-

binatie van deze drie aspecten in één model, maakt een zeer brede analyse mogelijk

van de beperkingen die zuurstoftransport oplegt aan grootte en vorm van organismen

die nog geen actief intern zuurstoftransportsysteem hebben. De conclusies van dit

integratieve model onderschrijven de belangrijkste conclusie uit de hoofdstukken 3 en

5 (hoofdstuk 6).

Met het overzicht van de analytische mogelijkheden om het probleem van zuur-

stofdiffusie te modelleren uit hoofdstuk 6 en voorgaande hoofdstukken, hadden we

zowel kwalitatief als kwantitatief inzicht gekregen in de dynamica van het zuurstof-

transport en -consumptie. Verder hadden we de beperkingen die zuurstofdiffusie

oplegt aan zowel grootte als vorm van embryo’s geanalyseerd en ontdekt dat zuurstof

geen beperkende factor lijkt. Alle analytische modellen vereenvoudigen echter in zeer

sterke mate de vorm van het embryo. Dit nadeel werd aangepakt in hoofdstuk 7,

dat een numeriek model laat zien van het transport en de consumptie van zuurstof

in een realistisch gevormd zebravisembryo. De voorspellingen van dit model wer-

den vergeleken met in vivo micro-elektrode metingen van de partiële zuurstofdruk.

Deze numeriek-experimentele methode resulteerde in het drie-dimensionale partiële

drukprofiel van zuurstof in en rondom het zebravisembryo. De laagste partiële zuur-

stofdruk werd gevonden in de kopregio, terwijl de partiële druk hoger werd richting

de staart van het embryo. De procedure liet verder zien dat de permeabiliteit van

zuurstof in de dooier verrassend hoog is. Dit is erg voordelig voor het embryo en

voorkomt zelfs bijna-anoxische omstandigheden het kopgebied. Terwijl de zuurstof-

permeabiliteit in weefsel van diverse soorten volwassen gewervelde dieren lager is dan

die in water, lijkt deze permeabiliteit in weefsel van de embryonale zebravis niet te

verschillen van die in water (hoofdstuk 7).
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Van diverse factoren die belangrijk zijn bij de vorming van bloedvaten, is bekend

dat zij gevormd worden onder invloed van lage zuurstofspanningen. Daarom is gede-

tailleerde kennis van het drie-dimensionale partiële drukprofiel van zuurstof belangrijk

voor een compleet begrip van de bloedvatvorming in gewervelde dieren.

In hoofdstuk 8 lieten we het expressie-patroon zien van één van deze factoren

(vascular endothelial growth factor, vegf ) onder normoxische en hypoxische condities

in een zebravisembryo. Onder normoxische omstandigheden komt vegf het sterkst

tot expressie in de kop van het embryo en bilateraal in het ventro-mediale deel van

de somieten (vgl. Liang et al. (1998, 2001)). Hypoxia had geen zichtbaar effect op

het spatiële en temporele expressiepatroon van vegf in het vroege zebravisembryo.

De lage zuurstofspanningen hadden echter wel een generieke verlaging van de ont-

wikkelingssnelheid tot gevolg. Op basis van deze resultaten kan gesteld worden dat

de vroege bloedvatontwikkeling (vasculogenese) in het zebravisembryo voornamelijk

door genetische factoren wordt bepaald.

De in situ hybridizatie-resultaten werden vergeleken met numerieke simulaties van

zuurstoftransport en -consumptie. De plaatsen in het embryo waar de laagste zuur-

stofspanningen voorspeld werden, kwamen grofweg overeen met de plaatsen waar

vegf tot expressie kwam. Dit pleit voor de stelling dat de eerder genoemde genetische

factoren in principe fysische beperkingen zijn die zijn vastgelegd in het genoom.

Samen geven hoofdstukken 7 and 8 enige aanwijzingen die uiteindelijk moeten

leiden tot het slaan van een brug tussen de kwantitatieve fysische modelvorming en

het kwalitatief moleculair-genetisch onderzoek. De combinatie van deze twee velden

levert belangrijke inzichten in het proces van bloedvatvorming en vormt daarmee een

veelbelovend nieuw onderzoeksgebied.

Het algemene doel van dit proefschrift werd in de introductie omschreven als het

ontrafelen van fysische en fylogenetische beperkingen tijdens de ontwikkeling van het

bloedvatsysteem in gewervelde dieren. Ontwikkelt het bloedvatsysteem zich om tekor-

ten aan zuurstof te ondervangen op het moment dat het begint te functioneren? We

kunnen nu zeggen dat dit niet het geval is. Zowel de analytisch als de numerieke mod-

ellen laten zien dat via alleen diffusie nog steeds voldoende zuurstof naar de embryo’s

getransporteerd wordt op het moment dat er een functioneel bloedvatsysteem aan-

wezig is (vgl. hoofdstukken 3, 5, 6 en 7). De resultaten van een hemoglobine-ablatie

experiment (Pelster and Burggren, 1996) gaven ook aanleiding tot het zetten van

vraagtekens bij de rol van het vroege bloedvatstelsel in het transport van zuur-stof
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en onderschrijven dus onze conclusie. Blijkbaar bouwt de natuur een zekere veilighei-

dsmarge in om ervoor te zorgen dat het bloedvatsysteem in elk geval klaar is op de

moment dat het daadwerkelijk nodig is.

Hoewel het bloedvatstelsel dus niet gevormd wordt om acuut zuurstofgebrek te

verhelpen, kunnen lage zuurstofspanningen wel belangrijke regulerende factoren zijn

voor de vorming van de vaten. Dit kon echter niet experimenteel worden bevestigd

en de (initiële) vorming van het bloedvatstelsel (vasculogenese) van de zebravis lijkt

voornamelijk genetisch bepaald (hoofdstuk 8). Andere studies tonen echter aan dat

zuurstof wel invloed heeft op de bloedvatontwikkeling. Wanneer deze invloed begint

en hoe uitgebreid hij is zal in vervolgonderzoek moeten worden vastgesteld.

Een ander interessant aspect van de vorming van het bloedvatstelsel bij gewer-

velde dieren is de mogelijke beperking die andere factoren dan zuurstof opleggen

(e.g. transport van afvalstoffen, signaalmoleculen, hormonen etc.). Het transport van

voedingsstoffen lijkt een belangrijke functie van het vroege bloedvatstelsel (hoofdstuk

4), maar verder onderzoek is nodig om dit duidelijk aan te tonen.
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(Téléostéens, Cyprinidae). Ann. Embryol. Morph. 6(1), 43–54.

Risau, W. (1997). Mechanisms of angiogenesis. Nature 386, 671–674.

Risau, W. and Flamme, I. (1995). Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11,

73–91.

Rombough, P. J. (1988). Respiratory gas exchange, aerobic metabolism, and effects

of hypoxia during early life. In: W. S. Hoar and D. J. Randall (eds.) The physiology

of developing fish, part A Eggs and larvae, vol. XI of Fish physiology, pp. 59–161,

San Diego: Academic Press, Inc.

Rombough, P. J. (1998). Partitioning of oxygen uptake between the gills and skin

in fish larvae: a novel method for estimating cutaneous oxygen uptake. J. Exp.

Biol. 201, 1763–1769.

Rombough, P. J. and Moroz, B. M. (1990). The scaling and potential importance

of cutaneous and branchial surfaces in respiratory gas exchange in young chinook

salmon (Oncorhynchus tshawytscha). J. Exp. Biol. 154, 1–12.

Rosen, J. B. (1952). Kinetics of a fixed bed system for solid diffusion into spherical

particles. J. Chem. Phys. 20, 378–394.

Rosso, J. and Lukins, S. (1986). Het delicatessenkookboek. Utrecht: Het Spectrum

B.V.

Schwerte, T. and Pelster, B. (2000). Digital motion analysis as a tool for

analysing the shape and performance of the circulatory system in transparent ani-

mals. J. Exp. Biol. 203, 1659–1669.



Bibliography 173

Scott, W. B. and Crossman, E. J. (1973). Freshwater fishes of Canada. Ottawa:

Fisheries Research Board of Canada, Bulletin 184.

Semenza, G. L. (2001). Regulation of hypoxia-induced angiogenesis: a chaperone

escorts VEGF to the dance. J. Clin. Invest. 108(1), 39–40.

Seymour, R. S. (1994). Oxygen diffusion through the jelly capsules of amphibian

eggs. Israel J. Zool. 40, 493–506.

Seymour, R. S. and Bradford, D. F. (1987). Gas exchange through the jelly

capsule of the terrestrial eggs of the frog, Pseudophryne bibroni. J. Comp. Physiol.

B 157, 477–481.

Seymour, R. S. and Bradford, D. F. (1995). Respiration of amphibian eggs.

Physiol. Zool. 68(1), 1–25.

Shalaby, F., Ho, J., Stanford, W. L., Fischer, K.-D., Schuh, A. C.,

Schwartz, L., Bernstein, A. and Rossant, J. (1997). A requirement for

Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–

990.

Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X.-F.,

Breitman, M. L. and Schuh, A. C. (1995). Failure of blood-island formation

and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66.

Shima, D. T., Deutsch, U. and D’Amore, P. (1995). Hypoxic induction of

vascular endothelial growth factor (VEGF) in human epithelial cells is mediated

by increases in mRNA stability. FEBS Lett. 370, 203–208.

Shweiki, D., Itin, A., Soffer, D. and Keshet, E. (1992). Vascular endothe-

lial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.

Nature 359, 843–845.

Sire, M.-F., Babin, P. J. and Vernier, J.-M. (1994). Involvement of the lyso-

somal system in yolk protein deposit and degradation during vitellogenesis and

embryonic development in trout. J. Exp. Zool. 269, 69–83.

Skidmore, J. F. (1967). Oxygen uptake by zebrafish (Brachydanio rerio) of different

ages in relation to zinc sulphate resistance. J. Fish. Res. Board Can. 24(6), 1253–

1267.



174

Slack, J. M. W., Holland, P. W. H. and Graham, C. F. (1993). The zootype

and the phylotypic stage. Nature 361, 490–492.

Spoor, W. A. (1977). Oxygen requirements of embryos and larvae of the largemouth

bass, Micropterus salmoides (Lacépède). J. Fish Biol. 11(77-86).
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Dankwoord

Met weemoed terugkijkend op de afgelopen vier jaar, kan ik zeggen dat promoveren

een leerzame maar vooral leuke onderneming is. Hoewel slechts mijn naam prijkt op

de titelpagina van dit proefschrift, hebben aan de totstandkoming ervan velen een

belangrijke bijdrage geleverd. Ik ben er trots op dat zoveel mensen mij op zowel

wetenschappelijk als op sociaal gebied hebben willen ondersteunen en hoop dat ze

dat blijven doen! Om niet te verzanden in te lange stukken tekst, wil ik iedereen,

gëınspireerd door een kookboek van Rosso and Lukins (1986), een plaatsje geven in

het geheel en hen op die manier bedanken voor de onuitwisbare indruk die ze hebben

achtergelaten. Thank you very much, we enjoyed ourselves! (naar Feynman (1998))
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