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Because of its shallow depths, the water table is of significant importance for agriculture
and nature conservation in the Netherlands. Water management therefore requires accurate
information on the spatial and temporal variations of the water table depth. This infor-
mation is preferably expressed in terms of probabilities, in order to enable risk assessment.
Furthermore, to support strategic decisions in water policy, the information on the water
table dynamics should reflect the prevailing climatic conditions (say, the average weather
over a 30-year period). Since the number of observation wells and the lengths of the time
series are limited for regional studies, spatio-temporal prediction methods should be able to
incorporate additional measurements and additional information related to the water table
depth.

Stochastic methods are devised for estimating fluctuation characteristics representing the
prevailing climatic and hydrologic conditions. These methods are based on various models
for the dynamic relationship between precipitation surplus and water table depth: a physical
descriptive, one-dimensional model, SWATRE, supplemented with a univariate time series
model for the noise (SWATRE4+ARMA), linear transfer function-noise models (TFN), dy-
namic regression models (DR) or autoregressive exogenous variable models (ARX), and non-
linear threshold autoregressive models (TARSO). These models are applied to extrapolate
observed time series of water table depths, by using observed input series on the precipita-
tion surplus having a length of 30 years. Uncertainty is accounted for by generating a large
number of realisations using the stochastic model component. The models perform only
slightly differently in simulating water table depths, despite their clearly different theoretical
starting points. It is shown that a first-order ARX model can easily be expressed in terms
of a water balance for a soil column. Moreover, the physically based ARX model can be
applied in predicting the effects of human interventions in the hydrological regime on the
water table dynamics.

The ARX model is regionalised to a RARX model, by making its parameters dependent
of the spatial co-ordinates. Because of their physical basis, the RARX model parameters
can be guessed from auxiliary information such as a digital elevation model (DEM), digital
topographic maps and digitally stored soil profile descriptions. Next, the guessed RARX
parameters are used to transform a precipitation surplus series into a series of water table
depths. Predictions obtained by this ‘direct’ method are compared with observed water table
depths. The observed errors are used to correct the final predictions for systematic errors,
and to perform stochastic simulations (‘indirect’ method). The RARX model is incorporated
into a space-time Kalman filter algorithm, which enables predictions conditional to observed
water table depths. A cross-validation experiment shows that Kalman filter approaches
predict the temporal variation of the water table depths relatively precise, whereas the
‘indirect” method yields relatively accurate estimates of expected water table depths, since
systematic errors are small. The uncertainty about the temporal variation of the water table
depth is underestimated by all methods evaluated. Given the sampling design, the accuracy
of the uncertainty about the mean water table depth could not be assessed. Besides efforts
to reduce uncertainty, it would be interesting to optimise sampling designs in order to obtain
accurate estimates of uncertainty.

Additional inder words: groundwater head, time series analysis, physical interpretation,
resampling, stochastic simulation, accuracy, quantified uncertainty
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Voorwoord

Als het meeste werk aan een proefschrift achter de rug lijkt te zijn vind je de tijd om
een voorwoord te schrijven. Voor mijn persoonlijke aanleiding om dit proefschrift te
schrijven moet ik terug naar het jaar 1993, maar het kan ook 1994 zijn geweest, waarin
ik mij voorzichtig afvroeg of een promotieonderzoek misschien iets voor mij zou zijn.
Ik werkte destijds met veel plezier bij de afdeling Landinventarisatiemethoden van
DLO-Staring Centrum. In die prettige club van gedreven onderzoekers werd mijn idee
om een promotieonderzoek te verrichten enthousiast begroet. Er was belangstelling
voor methodieken om de grondwaterstand op een kwantitatieve manier te beschrijven.
Ik vond het een uitdaging om mij gedurende langere tijd op de ontwikkeling van zulke
methodieken te concentreren. In 1995 schreef ik een projectplan en in 1997 verscheen
het eerste artikel dat zou bijdragen aan dit proefschrift.

Tijdens het promotieonderzoek veranderde er veel op allerlei vlak, zozeer zelfs dat
ik mij enkele keren heb afgevraagd waar ik aan begonnen was en, vooral, waar het
moest eindigen. Door de steun van een aantal mensen om mij heen mag ik nu dit
voorwoord schrijven en hoop ik straks te promoveren. Mijn promotor prof. dr. ir. Peter
A. Troch ben ik zeer erkentelijk voor de wijze waarop hij mij gestimuleerd heeft om
dit proefschrift af te ronden en voor zijn adviezen die mij daarbij hebben geholpen.
Peter, bedankt en ik hoop op een voortzetting van de prettige contacten na mijn
promotie. Veel dank ben ik verschuldigd aan mijn copromotor dr. ir. Marc F.P.
Bierkens, die naast copromotor ook collega, tegenwoordig zelfs teamleider, en coauteur
van een aantal artikelen is. We verschillen nogal en dan heb ik het nog niet eens over
muziek gehad. Toch heeft dit een goede samenwerking nooit in de weg gestaan,
integendeel zelfs. Marc, bedankt voor je enthousiasme, de vele prikkelende discussies,
je deskundige inbreng en je humor.

Bijzondere dank ben ik verschuldigd aan Jaap de Gruijter. Eerst als hoofd van de
afdeling Landinventarisatiemethoden van DLO-Staring Centrum en later als collega
bij het GIST-team van Alterra heb je me gesteund, ook op cruciale momenten. Ik
ben je er erg dankbaar voor en ik beschouw het als een groot voorrecht om een
wetenschapper van jouw kaliber te kennen. Bedankt voor je waardevolle adviezen
en ik hoop nog vaak met je van gedachten te wisselen onder de koffie of wat dan
ook. Dick Brus, je was geloof ik ooit de eerste aan wie ik voorzichtig mijn gedachten
over een promotieonderzoek toevertrouwde, bedankt voor alles wat je sindsdien voor
mij hebt betekend, inclusief je commentaar bij hoofdstuk 1. Wim te Riele was niet
alleen mijn collega maar ook lange tijd mijn kamergenoot en daardoor oog- en vooral
oorgetuige van allerlei wel en wee rond mijn promotieonderzoek. Er vloog nog weleens
een muis door de kamer en jij wist die dan telkens met grote souplesse te ontwijken.
Bedankt dat je dit alles geduldig hebt doorstaan. Bovendien bedankt voor je hulp en
inbreng bij het onderzoek. Met je gedrevenheid en vasthoudendheid ben je een groot
voorbeeld voor mij. Na Wim werden achtereenvolgens Kim Trouwborst en Patrick
Hommel mijn ‘slapie’: ook jullie bedankt voor jullie solidariteit.

Mirjam Hack-ten Broeke, Peter Finke, Willy de Groot, Kees Hendriks, Tom Hoog-
land, Jack van der Horst, Ellis Leeters, Reind Visschers, Folkert de Vries en Dennis
Walvoort zijn naast Marc Bierkens, Dick Brus en Jaap de Gruijter mijn collega’s bin-
nen het GIST-team. Bedankt voor jullie collegialiteit, ook als de ansichtkaarten uit
Moddergat begonnen te vervelen. Mirjam, jou bedank ik bovendien voor de steun en
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Voorwoord

belangstelling die je getoond hebt toen je teamleidster was en die je nog steeds toont.
Peter, bedankt voor de stimulerende rol die je gespeeld hebt en speelt als program-
maleider van het LNV-programma 328, Geodata Groene Ruimte. Het grootste deel
van het onderzoek vond plaats in het kader van dit programma.

Ben van der Pouw, bedankt voor de ruimte die je me hebt gegeven en de wijze
waarop je me gestimuleerd hebt als voormalig hoofdafdelingshoofd bij DLO-Staring
Centrum en als programmaleider. Heidi Hamers, bedankt voor je steun en de mo-
gelijkheden die je me biedt als hoofd van de afdeling Bodem en Landgebruik van
Alterra, vooral op die momenten dat mijn gezondheid het een beetje liet afweten.
Betty Wennekes, Inge Koning en Liesbeth van der Lippe bieden belangrijke onder-
steuning binnen de afdeling, bedankt dat ik daarvan mag meegenieten.

John Mulder en Dennis Walvoort zijn mijn paranimfen en dat zijn ze niet voor niets.
John Mulder ken ik al een hele tijd en Liesbeth Ruyten niet geheel toevallig een dito
periode. Het zijn goede vrienden van mij en daarbij ook collega’s. Met John een dag
de rivierstreek in en dan maar zien waar je uitkomt, ’s avonds genieten van Liesbeth’s
onvolprezen kookkunst en nog lekker lang natafelen, waarbij menige Stiboka-anekdote
nog eens uitvoerig wordt naverteld, prachtig toch? Dennis Walvoort is een enthou-
siaste onderzoeker die nogal veel weet, ‘gewoon’ erg handig is met de computer en
niet geheel is ontbloot van humor. Een woord van dank aan mijn paranimfen stel ik
liever nog even uit tot na de plechtigheid, maar Liesbeth, jou durf ik nu reeds zwart
op wit te bedanken voor alle betrokkenheid die je steeds toont.

Paul van Walsum, coauteur van het eerste artikel dat heeft bijgedragen aan dit
proefschrift, bedankt voor de prettige samenwerking toentertijd en de prettige con-
tacten sindsdien. Bij datzelfde artikel gaven Michiel Jansen (Biometris) en Frans
van Geer (TNO-NITG) adviezen, waarvoor dank. Rini Schuiling bedank ik voor het
goede werk op GIS-gebied. Arie van Kekem wil ik graag bedanken voor zijn hulp bij
de bodemclassificatie. Prof. dr. ir. Jan G. de Gooijer (Universiteit van Amsterdam)
bedank ik voor de samenwerking die geleid heeft tot het artikel dat ten grondslag ligt
aan hoofdstuk 3 van dit proefschrift.

Graag bedank ik Martin Jansen, die als vormgever prachtig werk heeft geleverd aan
de omslag en de figuren. Herman Eijsackers, directeur Onderzoek van Alterra, bedank
ik voor zijn waardevolle opmerkingen bij het concept van dit proefschrift. Bert Jansen
bedank ik voor zijn adviezen bij de uitgave van Alterra Scientific Contribution 3.

Jacqueline Smits en Dik Engelfriet hielpen mij met de Engelse taal in delen van
het proefschrift. Jacqueline omlijstte deze hulp vaak met lekker eten, mooie muziek
en gezellige gesprekken bij een goed glas wijn. Jacqueline en Dik, heel veel dank.
Tja, de omslag doet het al vermoeden, muziek is erg belangrijk voor mij. De inspi-
rerende lessen traverso van Nancy Latour-Possman, het blokfluitkwartet met Anneke
Bruin, Marijke Piepers en Dik Engelfriet, de avonden duetten spelen met Cees van
Woerkum, de workshops traverso in Bunnik door Frédérique Chauvet en fantastisch
georganiseerd door Miep Blomberg, al die gezellige Bunnik-musici, andere mensen met
wie ik minder frequent maar niet met minder plezier samenspeel ... alle muziekvrien-
den ben ik dankbaar voor de ontspanning en afleiding die ze mij bieden.

De rij bedankjes zou nog veel langer kunnen worden, maar staat u mij toe dat ik
tenslotte mijn ouders bedank. Pa en moe, wat ik aan u te danken heb is teveel om
op te noemen.
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Bij de omslag
De omslag vertoont een grondwaterstandsverloop vanaf 1959 dat is gesimuleerd met
het transfer-ruismodel dat is gegeven voor ‘Well B’ in tabel 2.5:

h: = hF,t + TL:
hy g 0.9223hp ;_; + 8.138p; — 1.982p,_,
np —207.2 = 0.5262(n , — 207.2) + €

waarin h; een grondwaterstand is (cm) die mogelijk op tijdstip ¢ is opgetreden, hp ;
de component van de grondwaterstand is die kan worden verklaard uit het gemid-
delde potentigle neerslagoverschot p; (mm/dag) dat tussen ¢ — 1 en t is opgetreden,
ny de component van de grondwaterstand is die niet uit het neerslagoverschot kan
worden verklaard en €] een ‘foutje’ is dat aselect met teruglegging is getrokken uit de
foutenreeks die resteerde na kalibratie van het model op waarnemingen uit de periode
1984-1991 (resampling).

Elke achtste noot vertegenwoordigt een halfmaandelijkse grondwaterstand, zodat
elke driekwartsmaat een kwartaal bestrijkt. Het eerste kwartaal is gebaseerd op een
G-akkoord, het tweede op een D-akkoord, het derde op een a—akkoord en het vierde
op een D7-akkoord. Op die manier ontstaat er een basso ostinato die het seizoens-
verloop tot uiting brengt. De grondwaterstandsreeks begint op de voorzijde van het
proefschrift in het jaar 1959 en loopt door op de achterzijde. Een slotmaat is er
niet. Ondiepe grondwaterstanden klinken hoog, diepe grondwaterstanden laag. De
droge zomer van 1976 bevindt zich in de tweede maat van het vijfde systeem op de
achterzijde van het proefschrift.

Dennis Walvoort programmeerde het bovenstaande model in R (http://www.r—
project.org) en wist er behulp van LilyPond (http://www.lilypond.org) nootjes van
te maken zodat de grondwaterstand tot klinken kan worden gebracht. Wij hebben
de gesimuleerde grondwaterstanden zodanig geschaald dat zij vallen tussen een D' en
een A3, het bereik van een traverso, de dwarsfluit uit de achttiende eeuw. Als seed
voor de resampling van €; is het geboortejaar van J.S. Bach gekozen, vermenigvuldigd
met —1. Ik wens u veel speel—- en leesplezier. Er zit muziek in de grondwaterstand!
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Chapter 1

General Introduction

1.1 The water table depth and its significance

When making a borehole in the soil anywhere in the countryside of the Netherlands,
it may happen that, after some time, a depth is reached at which the soil is satu-
rated with water. Unbounded and unconfined, free, or ‘phreatic’ water flows into
the borehole, until a certain level is reached. At this level the pressure head of the
phreatic water equals the atmospheric pressure. Next, a second borehole is made a
bit farther away, say some meters. Most probably phreatic water is found at almost
the same depth as in the first borehole. Driven by curiosity, for a commercial reason
or for an educational purpose we continue making boreholes so that finally a large
area is surveyed. After some time, depending on the conductivity of the soil, in all
these boreholes the depth to the phreatic water level can be measured. This is often
done by using a tape measure at which a little bell is attached. The bell is let down
into the borehole little by little. When the bell contacts the water surface it causes
a floplike sound; this is the correct moment to read the depth to the water surface
from the tape measure. The observations in boreholes can be considered as point
observations on a continuous surface of phreatic water. This surface is referred to as
the water table. The depth of the water table below the ground surface is called the
water table depth. Suppose that the water table depth could be measured instanta-
neously in all the boreholes, then we have an interesting data set of observations on
water table depth at many locations in an area and at a certain time. A first analysis
of the data most likely indicates that the water table depth at a certain time varies
in space. Next, tubes with permeable filters are installed in the boreholes, to make
future measurements at the borehole locations possible. Time and again we measure
the water table depth in these so called observation wells, for instance with intervals
of some days length. A further analysis of the data will indicate that the water table
depth not only varies in space, but also fluctuates in time following a seasonal pat-
tern with a top in the winter and a trough in the summer. The water table depth is
determined at points and time steps at which the water table depth was measured in
observation wells or boreholes. For unvisited locations and for time steps at which no
observations were made water table depths need to be predicted. These predictions
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may deviate from the true water table depth. Therefore, uncertainty may rise about
the true water table depth at locations and time steps for which predictions were
made.

With the exception of areas like dunes, ice-pushed ridges, the hills of Limburg in
the very south of the Netherlands, and areas with excessive groundwater withdrawal,
the water table is already found within two meters below the ground surface. Because
of its shallow depths, the water table is of significant importance for agriculture and
nature conservation in the Netherlands. Many conditions for agricultural land use,
such as soil temperature and soil trafficability, are related to the water table depth.
The conditions for plant growth and the potential for development of vegetation types
are also related to the water table depth. It is important to notice that most of these
relationships are indirect in some way, however. For instance, a relationship between
water table depth and plant growth exists because the water table depth has an effect
on variables like temperature, degree of aeration, concentrations of nutrients, degree
of acidity, and thickness of the root zone. However, in general these variables can not
be observed against low costs, in contrast to the water table depth which is relatively
easy to measure. Moreover, the water table depth is only one variable explaining
many others. Therefore, the water table depth is frequently observed in a network of
thousands of observation wells, all over the Netherlands. The data are stored in the
National Groundwater Archive (Van Bracht, 1989).

The water table depth is monitored systematically since 1948, with the purpose
of making a groundwater map of the Netherlands (Krul, 1952). The extremely dry
summer of 1947 and its impact on food production confirmed the need for detailed
information on water table depths. The Committee on Agro-hydrological Research
(COLN-TNO) started an extensive survey (Visser, 1958). During the COLN survey
the water table depth was observed quarterly in some 23,000 wells in the period 1952-
1955, semi-monthly in some 2,000 wells and in 65 wells the water table depth was
observed every day. In 1958 the survey came to a close with the publication of two
maps at a scale 1 : 300,000 for each province in the Netherlands, representing the mean
water table depths in winter and summer, respectively. Together, these maps can be
considered as the first space-time model of the water table depth in the Netherlands.
Apart from these maps, maps of drought losses and salinisation were published. Note
that this immense job was done in a short period without the aid of computers and
geographical information systems!

In 1961 the Dutch Soil Survey Staff started to present seasonal fluctuation of the
water table on soil maps. The fluctuations in the water table depth were described
by water table classes which combine the average top and trough of the seasonal
fluctuation. Van Heesen (1970) describes how water table classes are mapped by
combining observations on hydromorphic soil profile characteristics such as gley hori-
zons, landscape characteristics and observed water table depths. In 1992 the soil map
of the Netherlands on a scale 1 : 50,000, including a map of water table classes, was
completed. Apart from this national soil map, maps on larger scales (1 : 25,000 or
1:10,000) are made for specific areas like forests, re-allotment areas and areas where
groundwater is withdrawn. In the last mentioned areas the purpose of the surveys is
to estimate the lowering of the water table and the ensuing agricultural production
losses (e.g. Bannink et al., 1985). In general, detailed soil surveys concern areas of
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about 2,000 to 15,000 hectares, in which only a limited number of observation wells is
present. During the survey, which takes generally no more than one year, additional
time series of the water table depth are collected in a network of temporarily installed
observation wells. When the water table is approximately at the highest or at the
lowest level of the seasonal fluctuation, the water table depth is measured instanta-
neously in a large number of boreholes. Ten Cate et al. (1995) describe the details of
mapping water table classes on large scales. Like the COLN maps, water table class
maps can also be considered as space-time models of water table depths.

During the second half of the twentieth century, the water table depth was lowered
by human intervention in large areas. For instance, because of increasing agricultural
mechanisation the trafficability of the soil needed to be improved, which was often
achieved by intensifying the drainage and lowering the surface water levels. Ground-
water was withdrawn increasingly because of the growing human population, changing
life-styles and expanding economy. Consequently, the 1 : 300,000 COLN maps and
the 1 : 50,000 Dutch water table class map do not represent the actual hydrological
conditions, at least in parts of the country. Therefore projects to update the 1 : 50,000
Dutch water table class map were initiated in the last few years (Finke, 2000).

Were food production the main interest when the COLN survey started in 1952,
nowadays ‘verdroging’ (literally: ‘drying out’, ‘desiccation’ or ‘withering’) in nature
conservation areas is one of the main issues in research projects on the water table
depth (Runhaar, 1999). The man-induced lowering of the water table in the Veluwe,
a large area of forests and moors, was investigated by Gehrels (1999). Information
on the water table depth is also used to assess the risk that fertilizers leach into the
groundwater and the surface water system (e.g. Brus, 1994). Moreover, information
on water table depths is needed for house-building, road-building and open-air recre-
ation. Summarising, information on water table depths is needed for interests which
are often incompatible. Conflicting demands are often made on the water table depth
and its dynamics.

Water table depths are not only significant in the Netherlands. The following
examples may illustrate the diversity in recent studies on the water table depth outside
the Netherlands. For instance, Boucneau et al. (1996a) described a methodology to
quantify trends in the water table depth due to changes in water management in a part
of Belgium. To this purpose they used a regression model for the relationship between
water table depth, precipitation and evapotranspiration. In another interesting paper
the same authors linked the parameters of this model to soil data and used these
relationships in predicting a time series of water table depths (Boucneau et al., 1996b).
Mew Jr. et al. (1997) evaluated monitoring strategies to estimate the mean water
table depth in the eastern U.S.A. by comparing means, estimated from weekly up
to annually observations, to the means calculated from hourly observations in 17
observation wells. Sun et al. (1995, 2000) investigated the spatio-temporal variation
of water table depths in Northern Central Florida, because of the significance of
the water table depth to wetland and upland ecosystems. Mufioz-Reinoso (2001)
investigated the impact of groundwater abstraction on water table fluctuation and
vegetation in the Dohana National Park in Spain. Coulibaly et al. (2001) devised
artificial neural network (ANN) models to simulate water table fluctuations in the
Gondo aquifer in Burkina Faso. The results of this study are very promising. The
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authors showed that ANN models can capture nonlinear relationships and the time-
varying dynamic behaviour of the hydrologic system. The models were successfully
applied in forecasting deep water table depths during the dry season. Interestingly,
ANN models do not require costly data on the physical system, just like the time
series models applied in this thesis. The studies quoted here indicate the international
interest of accurate information on the water table depth.

1.2 Problem definition

An observed time series of water table depths reflects the water table dynamics given
the meteorological and hydrological conditions during the monitoring period which
is generally restricted to a limited number of years, say 2 to 10 years. However, to
support strategic decisions in water policy, the information on water table dynamics
should reflect the prevailing climatic conditions, i.e., the average weather over, say,
30 years, rather than the meteorological circumstances during the monitoring period.
Thus methodology is needed to extrapolate observed time series of water table depths
to series of 30 years length from which characteristics can be calculated.

Apart from its restricted length, an observed time series represents the water table
depth for the well site only. In order to support water management, information
is needed for any location in an area. Information on the water table dynamics is
needed at a national or a regional scale. At a national scale a dense network of
observation wells exists, in regional studies the number of observation wells is often
very limited. Regional studies may for instance concern re-allotment areas, rural
development projects, district water boards, or nature conservation areas, the sizes
of which roughly vary from 2,000 to 15,000 hectares. Given a density of one suitable
observation well per 750 to 1,250 hectares (Finke, 2000), the number of observation
wells in regional studies varies roughly from 2 to 15. In nature conservation areas
and in areas where groundwater is withdrawn for drinking water or industrial water
supply, the monitoring network may be denser. However, in general the number of
observed time series in regional studies will be too small to make reliable spatio-
temporal predictions of the water table depth by using observed time series only.
Therefore, prediction methods are needed which incorporate additional measurements
of the water table depth and additional information related to water table depth.

In fact, the water table class maps mentioned in the previous section are spatio-
temporal models of water table depth, which incorporate additional measurements
and additional information such as hydromorphic soil profile characteristics and land-
scape characteristics. These maps have proved their practical value, but they have
some disadvantages. Firstly, although the map patterns are based on the knowledge
and insights of experienced soil surveyors, the methodology is not reproducible. Ba-
sically a water table class map is a conclusion rather than a result. Secondly, the
information on fluctuation is restricted to classes defined in terms of the highest and
lowest level of seasonal fluctuation. These water table classes have proved to be useful
in agricultural land evaluation. In other applications, for instance nature conserva-
tion, characteristics such as duration curves and regime curves are needed (e.g. De
Haan, 1992; Bierkens, 1998). Finally, without further efforts the reliability of the
water table class maps is unknown, which makes them less useful in risk assessment.
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Risk assessment is particularly needed to find optimal solutions for water management
in areas where conflicting interests on the water table depth are present. Therefore,
there is a demand for stochastic methods which enable to describe the water table
dynamics in terms of probabilities. Strictly spoken risk assessment can be performed
by counting observed or deterministically simulated water table depths. However, ob-
served time series of water table depths are generally not long enough to represent the
prevailing climatic conditions, thus models are applied to extrapolate the observed
time series. By using stochastic methods the probability distribution of the water
table depth can be estimated more accurately than by applying deterministic meth-
ods, because the unexplained part or noise component is taken into account. This
is particularly relevant if one is interested in the probability of extreme water table
depths. The uncertainty about the true water table depth can be accounted for in
stochastic methods, for instance by generating large numbers of possible realisations.

1.3 Objectives and scope

The main objectives of this thesis are:

1. to develop stochastic methods for estimating fluctuation characteristics of the
water table depth representing the prevailing climatic and hydrologic conditions;

2. to develop methods to predict water table depths in space and time in terms
of probabilities, for application in regions where suitable observation wells are
scarce;

3. to evaluate the accuracy of the stochastic methods developed with respect to
objectives 1 and 2.

The study is restricted to hydrologic situations where the local precipitation surplus
is the main driving force behind the fluctuation of the water table. Situations where
the water table is strongly influenced by open water levels, groundwater withdrawal
etc. are not considered. The study mainly focuses on methodology to support decision
making in long term water policy. To this purpose information on the water table
dynamics (i.e., statistics) under given hydrologic and climatic conditions is necessary.

1.4 Thesis outline

In chapters 2 to 4 only the time dimension of water table depths is considered. In chap-
ter 2 two methods are given to estimate fluctuation quantities of water table depths.
These represent the prevailing climatic and hydrologic conditions, despite the limited
length of the available time series of water table depths (4-10 years). In the first
method the physical descriptive model SWATRE (Belmans et al., 1983) is used to
describe the relationship between precipitation surplus and water table depth. The
temporal variation of the unexplained part is described with an additional univari-
ate time series model (SWATRE+ARMA). In the second method a transfer-function
model with added noise (TFN) is used to describe the relationship between precipita-
tion surplus and water table depth (Box and Jenkins, 1976). In chapter 3 a time series
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model that accounts for threshold nonlinearities in the relationship between precip-
itation surplus and water table depth is applied. The performance of this so called
TARSO model (Tong, 1990) is compared to the performance of the SWATRE+ARMA
model, the TFN model and a special form of the TFN model, namely the dynamic
regression model (DR). The DR model is equivalent to the autoregressive-exogenous
variable model (ARX). In chapter 4 the physical basis of a simple ARX model of
order one (ARX(1,0) model) is discussed. The effects of human interventions in the
hydrologic regime on the water table dynamics are predicted by using the physically
based ARX model.

A thread in chapters 2 to 4 is shown by the different ways to find a time series model
that describes the relationship between precipitation surplus and water table depth
adequately. In chapter 2 an iterative procedure for model selection, proposed by Box
and Jenkins (1976) is applied. This procedure starts with postulating a general class
of models. Next, a subclass of models is identified by employing the data and knowl-
edge of the system. A tentative model is fitted to the data and its parameters are
estimated. Next diagnostic checks are applied to find possible model inadequacies.
This procedure of identification, estimation (or calibration) and diagnostic checking
(or verification) is repeated until an adequate time series model is found. A disadvan-
tage of this procedure is that its results are generally not reproducible. Automatic
model selection criteria enable us to select an appropriate model from a large set of
candidate models in a reproducible way (see De Gooijer et al. (1985) for a review). In
chapter 3 an automatic model selection criterion (Bayes information criterion, BIC)
is applied to select dynamic regression models and time series models which account
for threshold nonlinearities (TARSO). In chapter 4 an ARX(1,0) model is chosen that
can easily be expressed in terms of a soil water balance. The physical interpretation
of time series models was discussed among others by Salas and Smith (1981). The
so called data-based mechanistic modelling (DBM) approach (see for instance Young
and Beven, 1994) is also based on physical interpretation of time series models. Price
et al. (2000) describe a recent application of DBM. Time series models which are
based on knowledge of the physical system, besides data, are also referred to as grey
box models (Bohlin, 1991; Hangos, 1995). In black box modelling knowledge of the
physical system is not used or simply not available; only data are used. Models which
are based on knowledge of the physical system only are referred to as white box models.
Because of its physical basis the ARX(1,0) model can easily be linked to additional
information. The physically based time series model forms the basis of the spatio-
temporal prediction methods described in chapters 5 and 6, because in areas where
only a limited number of observed time series is present it makes sense to incorporate
additional information into the prediction methods.

In chapters 5 and 6 spatio-temporal prediction methods for water table depths are
presented and their prediction performance is evaluated in a study area of about 1,200
hectares in the northern part of the Netherlands. These spatio-temporal prediction
methods are all based on a regionalised ARX(1,0) model, which is referred to as the
RARX(u;1,0) model with u representing the spatial co-ordinates. In chapter 5 two
methods are presented: the ‘direct’ and the ‘indirect’ method. In the direct method
additional physical information is used to ‘guess’ the RARX(u;1,0) model parameters
at any point in space. These guessed parameters are used to transform precipitation
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surplus series into time series of water table depths. In the indirect method the pre-
liminary predictions made by the direct method are compared to observed time series
of water table depths. Next the observed mean errors are interpolated to correct
the preliminary predictions. The standard deviations of the errors are interpolated
to enable risk assessment. In chapter 6 the accuracy of five prediction methods is
evaluated: the direct method, the indirect method and three alternative applications
of the space-time Kalman filter algorithm described by Bierkens et al. (2001). Dis-
tinction is made between prediction of actual water table depths and estimation of
statistics. Apart from the accuracy of the predicted water table depths and estimates
of statistics, the accuracy of the quantified uncertainty is assessed.

In chapter 7 the main results and conclusions are summarised and discussed. The
thesis ends with a summary in Dutch in chapter 8.

1.5 Notation

In this thesis the customs on notation of three disciplines are found, namely time
series analysis, geostatistics and hydrological modelling. For this reason some overlap
in the symbols used could not be avoided, unfortunately. For instance, v is used for
drainage resistance as well as the variogram, h is used for an observed water table
depth as well as the lag distance in a variogram, etcetera. Therefore, formulas and
symbols will be defined where they appear.

Uniformity is pursued at some points. For water table depth and precipitation
surplus, distinction is made between stochastic variables, denoted by H and P, re-
spectively, and single realisations or deterministic series, denoted by h and p. The
same distinction is made for the noise component of time series models describing
the relationship between P and H, namely N and n, respectively. The error term
of time series models for the relationship between P and H is denoted by e. After
fitting of the model to series of p and h the so obtained errors are denoted by €. The
residual term of regression models is denoted by €. The difference between observed
water table depths and deterministically predicted water table depths is denoted by
e. The results of calibration are denoted by a hat, *. The results of straightforward
transformations, or results obtained by ‘guessing’ rather than by calibration are de-
noted by a tilde, *. Realisations obtained by resampling procedures are denoted by
the superscript -*.






Chapter 2

Estimating fluctuation

statistics of water table
depths

(This chapter is based on the paper ‘Estimating fluctuation quantities from time series
of water-table depths using models with a stochastic component’ by M. Knotters and
P.E.V. van Walsum, which was published in the Journal of Hydrology 197 (1997):
25-46, copyright (©1997, with permission from Elsevier Science.)

Abstract

A method is developed to estimate fluctuation statistics of water table depths that
are independent of the precipitation surplus during the monitoring period, whose
length is generally limited to 4-10 years. For this purpose, one-dimensional models
are calibrated with the precipitation surplus as input variable. These models include
the SWATRE soil moisture accounting model, supplemented with a stochastic model
for the noise series, and transfer function-noise (TFN) models. The models are used
to simulate realisations of time series of water table depths with lengths of 30 years,
from which the mean highest and mean lowest water tables (M HW and MLW,
respectively) are calculated. These estimates can be used in water management for
making strategic decisions, because they reflect conditions of the prevailing climate
(i.e. average weather conditions over, say, 30 years) and not just the meteorological
conditions during the groundwater monitoring period, which is usually of limited
length. The results show that M HW's and M LW's which are estimated from an 8-
year series may deviate more than 20 cm from those estimated from 30-year series.
The results of the SWATRE models and the TFN models differ only slightly, despite
having clearly different theoretical starting points. The minimum length of series
needed for calibration is of practical value; series of 4 years which are not affected by
human intervention were generally found to be sufficiently long to model the dynamic
systems in this study adequately. Both SWATRE models and TEN models could be
improved in order to obtain a constant error variance: in SWATRE models hysteresis
of the soil water characteristics could be incorporated, whereas in TFN models a
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non-constant variance of water table depths could be taken into account.

2.1 Introduction

Water managers are interested in the spatial and temporal variations in the water table
depth. In the Netherlands, these have been measured at many locations for many
years. The dynamic variation or fluctuation of the water table depth is characterised
by various statistics. For instance, seasonal fluctuations in the water table depth
are described by the mean highest and mean lowest water tables (MHW and MLW,
respectively), calculated from time series of semi-monthly data, with lengths of at least
8 years. For each hydrologic year, the means of the three highest and the three lowest
water table depths are calculated, HGS and LGS, respectively. Next, the HG3s and
L(G3s are combined into classes of water table depths. These are mapped concurrently
with the soil survey, using correlations with profile and landscape characteristics (Van
Heesen, 1970). The minimum length of 8 years is chosen arbitrarily, since only time
series of this length were available at the time that mapping of the MHW and MLW
started (P. van der Sluijs, personal communication). Water table classes can be
translated into classes of duration, using empirical relationships (Van der Sluijs and
De Gruijter, 1985).

There is a growing need to improve the method described above. In this chapter one
of the deficiencies experienced in practice is addressed: estimates of MHW and MLW
may be affected by the precipitation surplus during the period of measurement of at
least 8 years. Strategic decisions by water managers, however, require information
that reflects the conditions of the prevailing climate, i.e. the average weather over a
period of, say, 30 years. Therefore, it is desirable to improve the estimation of MHW
and MLW accordingly.

The aim of the study described in this chapter is to obtain estimates of MHW
and MLW which represent the prevailing hydrologic and climatic conditions, using
time series models for water table depths with the precipitation surplus as an input
variable. Two types of models are applied, with different theoretical starting points.
Firstly, a physical model for vertical unsaturated flow is applied, called SWATRE
(Belmans et al., 1983), supplemented by an ARMA model for the series of differ-
ences between measured and simulated water table depths (ARMA, Auto-Regressive
Moving Average; Box and Jenkins, 1976). Secondly, transfer function-noise models
(TFN) are applied (Box and Jenkins, 1976). Both types of models are calibrated on
eight time series of water table depths. The models are used to simulate a large num-
ber of time series realisations of water table depths, with lengths of 30 years. From
these realisations the MHW and MLW are estimated. The stochastic component of
the models is crucial in this application, because MHW and MLW are measures for
extremes. The results are validated using data from an independent validation set.

This chapter is composed as follows. First, in section 2.2 the methodological prin-
ciples are set out (2.2.1), the modelling procedures for SWATRE+ARMA and TFN
models are explained (2.2.2 and 2.2.3), the simulation of 30-year time series of water
table depths is explained (2.2.4) and the procedure to estimate MHWs and MLWs
from these series is described (2.2.5). The data sets are described in section 2.3. The
procedure of validating estimated MHWs and MLWs is given in section 2.4. Next,
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in section 2.5 the results are presented and discussed for two representative observa-
tion wells, including an analysis of the influence of variations in precipitation surplus
on MHWs and MLWs estimated from 8-year series. Concluding remarks follow in
section 2.6.

Since the study described in sections 2.1 to 2.6 was published in 1997, new data
became available and furthermore, new insights were obtained into some topics men-
tioned in this chapter. Therefore, in appendix A2.1 the minimum length of series
needed for calibration of time series models will be reconsidered. In appendix A2.2
the variation of MHWs and MLWs estimated from 30-year series will be compared
with the variation of 8-year estimates.

2.2 Modelling, extrapolation and stochastic simula-
tion

2.2.1 Methodological principles

The basic idea of the methodologies used in this chapter is that models using precip-
itation surplus as an input variable, calibrated on time series of water table depths
with limited lengths (4-10 years), enable us to simulate series of extensive length
(say 30 years). From these extensive series MHW and MLW values can be estimated
that are not influenced by the particular weather circumstances during the period
of water table measurements. The models contain a dynamic component, describing
the dynamic relationship between the input and output either physically or empiri-
cally. Additionally, the models contain a noise component, which describes the part
of water table fluctuation that cannot be explained with the used physical concepts
or empirically from the input series.

Since the water table depth, H, is observed with discrete time intervals, we consider
discrete sequences in time, where time is denoted by the subscript ¢, =0,1,2,...,m
and m is the number of observations. The precipitation surplus, P;, can be seen as
the most important driving force behind the seasonal fluctuations in Hy.

Four stages can be distinguished in the weather-independent estimation procedure,
the details of which are given in the following subsections:

1. The procedure starts with modelling the relationship between precipitation sur-
plus and water table depth. The causal relationship between P; and H; can
be described by a SWATRE model using nonlinear physical relationships and
information that can be obtained at a field site, see subsection 2.2.2. Alter-
natively, the causal relationship between P, and H; can be described by a
transfer function-noise model (TFN model). A TFN model describes a lin-
ear, empirical relationship between two processes, in this case P, and H;, with
t=0,41,£2,..., see subsection 2.2.3;

2. Next, the time series of water table depths is extrapolated to a length of 30
years, by using observed data on precipitation surplus, p;, and the relationship
between p; and h; that was found in the first stage. It is assumed that the
average weather conditions during the last 30 years represent the prevailing
climate (e.g. Rudloff, 1981, p. 16-17; Schonwiese et al., 1993, p. 11);
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3. From the previous step a series of deterministically predicted water table depths
result, generated by a model that was calibrated on observed series of p, and
h:;. It can not be expected, however, that the variation of h; can be ‘fully’
explained from the p; series. Since we are interested in statistics of extremes,
e.g. MHW and M LW, the unexplained part or noise component, has to be
taken into account in the estimation procedure. Therefore, the extrapolation
stage is followed by a stage of stochastic simulation, in which a large number of
realisations of the noise component is generated and next added to the deter-
ministic series. In this way, realisations of the water table depth are obtained,
see subsection 2.2.4;

4. Finally, estimates of fluctuation statistics representing the prevailing hydrologic
and climatic conditions can be calculated from the stochastically simulated 30-
year series of water table depths, see subsection 2.2.5.

The H; series will show a seasonal fluctuation which is explained by the precipita-
tion surplus. Apart from this seasonal fluctuation, the H; series is assumed to follow
a stationary process during the calibration period. This requires at least that no
human interventions in the hydrologic system have taken place. Therefore, to begin
with we calibrated models on time series with a length of 4 years, because time series
of equidistantly observed water table depths of more than 4 years which are not in-
fluenced by human interventions are not so commonly available in the Netherlands.
Besides, it is only for the last 4 years that input data on vegetation and surface water
levels, needed for SWATRE models, are easily obtainable in the Netherlands. How-
ever, the calibration period should be long enough to cover the full dynamic response
in order to identify appropriate models and to estimate parameters accurately. There-
fore, we pay attention to the length of the calibration period in both the SWATRE
modelling and the TFN modelling.

2.2.2 Modelling time series of water table depths using SWA-
TRE

Modelling principles

The SWATRE model (Belmans et al., 1983) describes the vertical hydrologic interac-
tions in a column, providing an integration of processes in the atmosphere, vegetation,
unsaturated soil and saturated subsoil. Simulation of unsaturated flow in the presence
of a water table is the prime focus of the model: the other processes are treated in a
more schematic manner.

Potential evapotranspiration is modelled through multiplying the Makkink refer-
ence crop evapotranspiration, ey, by a crop factor provided by Feddes (1987). The
reduction of potential to actual evapotranspiration is simulated by means of a root
water uptake function that depends on the soil water potential.

The simulation of unsaturated flow is based on the Richards’ equation, which is
solved with a finite-difference scheme. The flux boundary condition at the bottom of
the soil profile is obtained by superposition of:
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e the local flux induced by the presence of trenches, drains and ditches;

e the regional groundwater flux.

The local flux is made head-dependent: the head difference between the simulated
water table and the assumed drainage base is divided by the drainage resistance,
yielding the drainage (or infiltration) flux. The drainage fluxes of the different orders
of surface water systems (trenches, drains, ditches) are simply added up. The regional
flux is obtained using a simple sine function to approximate the seasonal variation of
the regional groundwater flow system. In general, this flow system reaches the peak
of its intensity at the end of spring, when the regional system has received the winter
precipitation surplus. The interannual variations in the regional flow, which in reality
also exist, are not modelled.

Parameters

Information about crops, soil profile, drainage levels, irrigation and infiltration was
collected in the field. Soil profile descriptions were translated into soil physical hori-
zons using soil physical standard curves for the main soil horizons in the Netherlands
obtained from Wosten et al. (1987). For technical details, we refer to Stolte et al.
(1992, 1994). A number of parameters had to be estimated by means of calibration
on the measured water table depths:

e drainage resistances;

e regional component of groundwater flow and its variation in time (mean, am-
plitude, time at which maximum was reached);

o effective saturated water content of the soil profile.

The saturated water content of the soil profile is the most important parameter
determining the amount of water that can be stored and released during the rising
and falling of the water table. Consequently, it is a key parameter in describing
the fluctuation of the water table depth. The method employed to obtain its value
through using soil physical standard curves has the drawback that it is not based on
measurements of samples obtained locally.

Calibration was performed by minimising the root mean squared error (RMSE)
between the measured and simulated water tables. Minimisation was achieved by
means of the Levenberg-Marquardt algorithm (Marquardt, 1963), as implemented in
the ZXSSQ subroutine of IMSL (IMSL, 1982).

Analysis of noise

Let Hg: be the part of water table depth H; that can be explained by the SWATRE
model. The unexplained part, H; — Hs;, forms the noise series Ng ;. The noise will
show autocorrelation structure in time, because the dynamic behaviour of H will not
be completely explained by the SWATRE model. The noise series Ng; was modelled
in order to make the noise useful in simulating time series of water table depths with
extensive length. ARMA models for stationary processes were appropriate for our
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model study (Hipel and McLeod, 1994, p. 107) because the noise series could be
assumed to form part of a stationary process. The ARMA model has the following
general form:

p

q
(Nst =) =Y b(Nsi ko — 1) +€s,e— Y Oes i, (2.1)
k=1 =1

where:

Ng ; is the noise series with discrete time index ¢;

{t is a constant, the mean level of the series Ng ;;

€s,¢ is the error series with discrete time index ¢, which is considered to follow a white
noise process;

by,..., b, are autoregressive parameters of model Eq. (2.1) up to order p;

01,...,0, are moving average parameters of model Eq. (2.1) up to order g.

Following the approach described by Box and Jenkins (1976) we distinguished three
stages in model building: identification, calibration (fitting) and verification (diagnos-
tic checking). The order of the ARMA model was identified by visual interpretation
of the plotted autocorrelation function (ACF).

Calibration by the exact maximum likelihood method was carried out using the
Genstat statistical package (Genstat 5 Committee, 1993). The model verification
included diagnostic checks on the error term eg ; described by Box and Jenkins (1976)
and Ljung and Box (1978) and a normality check described by Jarque and Bera (1980).
In addition to these checks we checked for the presence of cross-correlation between
ng; and fzsyt. As was indicated in subsection 2.2.1, a cross-correlation may lead to
underestimation or overestimation of the fluctuation if the ARMA model is used in
simulating time series of water table depths with extensive length.

2.2.3 Modelling time series of water table depths using TFN
models

For a detailed description of the basic principles of TFN modelling we refer to Box
and Jenkins (1976), and for application in hydrologic and environmental sciences to
Hipel and McLeod (1994). Precipitation surplus and water table depth are considered
to be the input and output of a linear system, which can be described by a transfer
function model. The part of the system which cannot be explained by the linear
relationship between input and output is called the noise component and is modelled
additionally. The general form of the TFN models used in this study is given by the
following equations:

Hpy = Y 8iHp _i+woPiy— Y wjPi_j s, (2:2)
im1 =1
P q
(Nep—p) = > ¢u(Neemk—p) +epp— > Orer i, (2.3)
k=1 =1
H;, = Hpy+ Ny, (2.4)
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where:

Hy 4 is the dynamic component of the water table depth at time ¢ which is explained
by the precipitation surplus F;;

Nr ¢ is the noise component at time ¢, containing all other causes than FPj;

it is a constant, the mean of Np 4;

€r,; is the error term with discrete time index ¢, which is considered to be a white
noise process;

61,...,0, are autoregressive parameters of the transfer function model up to order r;
wo, . ..,Ws are moving average parameters of the transfer function model up to order
s;

¢, - -, ¢, are autoregressive parameters of the noise model up to order p;

01,...,04 are moving average parameters of the noise model up to order g;

b represents the delay between input and output (in this study b = 0).

We identified and calibrated TFN models following the procedure described by
Box and Jenkins (1976). The identification of the transfer component was based on
visual interpretation of the residual cross-correlation function (RCCF). The RCCF
describes the cross-correlations between the residuals which remain after filtering both
the h; series and the p; series with an appropriate univariate time series model for
the p; series (‘prewhitening’, Box and Jenkins, 1976, pp. 379-380). In this study, the
following seasonal ARIMA model was fitted to the p; series:

(Pt — Pr_oa — ) = Py (Pr—1 — Pi_25 — €) + @t — On4ls_24, (2.5)

where c is a constant, 24 is the seasonal lag and O, is a seasonal moving average
parameter. The series a; is a white noise sequence with zero mean and finite and
constant variance. The RCCF is proportional to the impulse-response function and
gives insight into the length of the dynamic response.

The model verification included the checks that we also applied to the error term
es,; of the SWATRE models. In addition to these checks, we checked the signifi-
cance of estimated model parameters and for the presence of correlation between the
parameters of the transfer function model and parameters of the noise model.

2.2.4 Simulating time series of water table depths with exten-
sive length

Let [ be the number of semi-monthly time steps in the period from 1961 to 1990, and
let m be the number of semi-monthly time steps in the calibration period. We gen-
erated realisations of the process €s ; or er¢,t = 1,2,...,[, through random sampling
with replacement from the series €s; or ép;,t = 1,2,...,m. This approach requires
no assumptions to be made about the distribution of the error terms €g ¢ and ep ;. We
avoided making assumptions about the distribution of €5 ; and ep ; because estimates
of MHW and M LW concern the extreme values of H; and may therefore be sensitive
to false assumptions about the distribution of the error term. Also, because the diag-
nostic checks indicated that the distribution of the error terms €s ; and e ; departed
from the normal distribution, we did not use the normality assumption in the simu-
lation procedure. The number of N realisations of es; and ep,t = 1,2,...,1, were
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generated by repeating the sampling procedure N times. The NN realisations of es ; or
er,; were transformed into N realisations of the noise process Ns; or Ng ; by means
of the noise model Eq.( 2.3). Resampling of estimated error terms was described by
McLeod and Hipel (1978), Kreiss (1990) and Paparoditis (1990).

N realisations of Hy,t =1,2,...,] were obtained by adding IV realisations of Ng
or Np, to the deterministic series fzg,t or ilF’t, depending on whether the SWATRE
model or a TFN model was used, with realisations of Ng ; or Nr ; being generated from
the error series €5, or ép of the SWATRE model or the TFN model, respectively.
Before adding realisations of the noise component to the dynamic component, one
must check if there is a cross-correlation between ils)t and ng or between lALF,t and
np,. Cross-correlations may give rise to an underestimation or an overestimation of
the fluctuation (M HW and M LW), because the realisations of the noise component
are generated independently from the dynamic component. For instance, in the case
of positive cross-correlations, M HW and M LW values calculated from generated
realisations of H; will underestimate the real fluctuation.

2.2.5 Estimating MHW and MLW from simulated extensive time
series of water table depths

Firstly, we generated a large number (100) of realisations of H; for a period T of
length [; in the present study 7T was the period of 30 years for which the meteoro-
logical normals were calculated, i.e. the period from 1961 to 1990. A number of 100
realisations was found to be sufficiently large to obtain stable estimates of M HW
and M LW (standard errors between 0.08 cm and 0.27 cm for the eight observation
wells). MHW and MLW were calculated for each realisation hji t = 1,2,...,1,
i =1,2,...,100, following the procedure described by Van Heesen (1970). Realisa-
tions obtained through resampling are denoted by an asterisk (*). For each hydro-
logic year the three highest and the three lowest water table depths from a series
of semi-monthly data were averaged to provide values of h*!;, and h*}, respectively.
These series were averaged to provide values of my(h*%,) and mp(h*}), respectively.
Then, we estimated the expectations of my(Hy,) and my(H,), say p[my(Hy)] and
pmr(H)], by averaging the 100 values of mz(h*%,) and mz(h*%). These estimates,
say fulmyp(Hy)] and pmyp(H)], are estimates of M HW and M LW conditional to the
meteorological circumstances during the period from 1961 to 1990.

2.3 Time series of water table depths and precipi-
tation surplus

We selected time series of water table depths from eight observation wells, which
were located near five stations of the Royal Dutch Meteorological Institute (KNMI)
so that time series of the precipitation surplus were available for a period of at least
30 years (see Figure 2.1). The geohydrologic and soil physical conditions of the wells
were different and were by and large representative of large parts of the country. The
water table depth was observed at approximately equidistant time steps of half a
month, over a period of at least 10 years without interruptions and without changes
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Figure 2.1: Locations of meteorological stations and observation wells.

in the hydrologic regime.
P (mm day~!) was calculated from daily precipitation and Makkink reference-crop
evapotranspiration (De Bruin, 1987):

p= p/ - epy (26)

where p’ = precipitation (mm day~') and e, = potential Makkink reference-crop
evapotranspiration (mm day~!). We used data of daily precipitation and daily evapo-
transpiration. Because TFN models were used, the series of daily precipitation surplus
had to be converted into the frequency of the time series of water table depths. For
this purpose the daily data were averaged over the period between two semi-monthly
measurements of the water table depth. Transforming the input series in such a way
was found to be successful in previous studies (Van Geer and Defize, 1987). The
P data were available from 1958-01-01 to 1991-12-31 for the “De Bilt” KNMI sta-
tion and from 1959-01-01 to 1991-12-31 for the remaining stations (year-month-day).
Data on the water table depth, from 1982-01-01 to 1991-12-31, were selected from
the Groundwater Archive of the TNO Institute of Applied Geoscience (Van Bracht,
1989).
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Figure 2.2: Plots of water table depths predicted by means of SWATRE (izs, line),
observed water table depths (h, dots), noise series (ns) and error series (€s).

2.4 Validation of estimates

Firstly we calibrated SWATRE models and TFN models on the time series of h from
1988-01-01 to 1991-12-31. The simulation results were validated using h data from
1982-04-01 to 1987-03-31, called “val.”. We tested the Hp hypothesis that my,;. (hy)
and My, (h)) were part of the distributions of My, (h*),) and mya; (h*)), respectively.
For this purpose we calculated 100 realisations of H;, with ¢ = 1,2,... ¢, where
¢ is the length of the validation period. We estimated 95% confidence limits for
mval_(ﬁh) and mm]_(l}]) from the cumulative frequency distribution of the generated
100 realisations. If mq (hy) and m.. (ly), calculated from the observations, were
outside these limits we concluded that the estimates differed significantly from the
true values of M HW and M LW. However, significant differences between observed
and estimated M HW and M LW values may or may not be relevant from a practical
point of view. Therefore, we assessed the relevance by comparing differences between
Myar (h..) and fifm,a1. (H. )] with a previously chosen least relevant difference. For
applications in agriculture, estimation errors of M HW and M LW larger than 10 cm
are generally found to be relevant.
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Figure 2.2: Continued.

2.5 Results and discussion

2.5.1 Modelling results

For economy of presentation, we will focus on the results of only two observation
wells originating from hydrologically different situations. Observation well A (code
12BL0015, Figure 2.1) is situated in a drained brook valley with loamy, fine sandy
soils. Water table depths fluctuate within 120 cm below the soil surface. Observation
well B (code 12EP0120, Figure 2.1) is situated at the slope of a ridge of fine sand,
covering glacial till. The water table depths fluctuate between roughly 100 cm and
200 cm below the soil surface.

The parameter estimates of the models for observation wells A and B are listed
in Table 2.1. The parameter estimates of the SWATRE models can be physically
explained only to a certain extent, because model uncertainties may be reflected in
the estimates. For instance, poor representativeness of the soil physical standard
curves used may be compensated in the parameter values. Figure 2.2 shows trace
plots with results of the SWATRE modelling. The model fits clearly better to the
data from observation well A than to those from observation well B. The poor quality
of the fit may be caused by weak representativeness of the soil physical standard curves
used in the modelling. Another cause may be the interannual variations in regional
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Estimating fluctuation statistics of water table depths

Table 2.1: Parameter estimates of models calibrated on time series from 1988-01-01

to 1991-12-31

Model Observation well
A B
SWATRE Yq = 164.67 days Yq = 1304.81 days

Additional noise model

TFEFN model

4, = 5 days (fixed)

G, = 0.41mm day~!

F =152

¢ =0.94cm(3.76)
¢, = 0.380(0.083)
b5 = 0.438(0.083)
6% = p4cm?

61 = 0.846(0.02)
& = 6.80(0.47)
&y = 1.96(0.56)

¢ =—94.9(2.8)

¢, = 0.454(0.10)
[7? = 65 cm?

v, = 525.43 days
@» = 0.27mm day~
A, = 0.22mm day™!

~

dy, = 224 days

1

F =065
¢ = —3.88cm(2.88)
¢, = 0.502(0.092)

6% =198.3cm?

81 = 0.914(0.01)
G = 8.64(0.71)
&y = 2.07(0.76)
¢ = —208.5(7.0)
¢, = 0.463(0.10)
62 =135.2cm?

In brackets: standard errors.

Y4 = drainage resistance of ditches; v, = drainage resistance of trenches; gn = re-
gional component of groundwater flow; Ay, = amplitude of regional component of
groundwater flow; dy, = time at which mazximum regional groundwater flow is reached;
F= multiplication factor for saturated moisture content (all layers).

groundwater flux at the bottom of the soil profile which are not included in the model.
This limitation will not influence the fit to the data observed in Well A, because
effects of the temporal variation of the regional flux are dampened by the drainage
systems. Next, we analysed the noise component, ng. Figure 2.3 gives a summary of
diagnostic checks performed on the errors, és. The diagnostic checks indicated that no
significant autocorrelation is left in the error series of both observation wells A and B.
The diagnostic checks indicated absence of significant cross-correlation between the
dynamic component and the noise component of observation well A, which makes the
error series useful in simulating extensive H series. The error series of observation
well B, however, is significantly cross-correlated with the dynamic component. In
the validation stage we will investigate if these cross-correlations lead to relevant
estimation errors of M HW and M LW. The checks indicated that the distributions
of €5 ; depart from the normal distribution.

Figure 2.4 gives RCCFs of the errors which are left after prewhitening the 10-year
input and output series with the filter in Eq. (2.5). The RCCF's tend to zero within
the first 40 lags, which means that a calibration period of 4 years (96 semi-monthly
time steps) amply covers the length of cross-correlation. Figure 2.5 shows trace plots
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Figure 2.3: Summary of diagnostic checks, applied to the errors of the predictions
by SWATRE. Residual autocorrelation function (RACF) for the error series; resid-
ual cross-correlation function (RCCF) of iLS,t and the errors. Before estimating the
RCCF, the autocorrelated series iLS’t was transformed into an uncorrelated series by
an appropriate time series model; histogram of the errors és.

with results of the TFN modelling for Wells A and B. The TFN models fit the data
reasonably well. Figures 2.2 and 2.5 clearly show that especially for Well B the TFN
model yields a better fit than the SWATRE model. We identified TEN models of
orders b,r,s = 0,1,0 or 0,1,1. ARMA models for the noise of order p,q = 1,0
were found to be appropriate for all series analysed. Figure 2.6 gives a summary of
diagnostic checks for observation wells A and B. The checks indicated significant cross-
correlations between the dynamic component and noise component for observation
well B. These could not simply be removed by fitting alternative TFN models to the
series. In the validation stage we will judge if this inadequacy of the models used
leads to relevant estimation errors of M HW and M LW. The checks indicated that
the distribution of ép ; departs from the normal distribution for observation well B.
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Figure 2.4: RCCF for the precipitation surplus and the water table depth. Before
estimating the RCCF, both series where filtered with a seasonal ARIMA model fitted
to the series of the precipitation surplus.

2.5.2 Estimated MHW and M LW values

Table 2.2 lists MHW and M LW values, estimated by using the SWATRE model
and an ARMA model for the noise series and by using TFN models. In general
the estimates did not differ more than 10 cm. Large differences were found between
the M HW estimates for observation wells 32CL0064 and 57FL0019. These may be
the result of non-linear relationships between input and output in the top of the
fluctuation zone. These non-linearities were modelled in SWATRE but ignored in
TFEN modelling. In general, the results of the SWATRE models and the TFN models
are quite similar, in spite of different theoretical starting-points in modelling the time
series.

2.5.3 Results of validation

Table 2.3 lists results of the validation of estimated M HW and M LW values. When
SWATRE models with an additional ARMA model for the noise series were used, we
judged that the model estimations differed significantly from the M HW and M LW
values calculated from the observed time series for four of the eight observation wells
(Pr outside the range from 0.025 to 0.975). When TEFN models were used, we con-
cluded that the model estimates differed significantly from the M HW and M LW
values calculated from the observed time series for six of the eight observation wells.
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2.5 Results and discussion

Table 2.2: Estimates of the mean highest and mean lowest water tables (M HW and
MLW, cm below soil surface) for the period T', 1961-1990

Observation well MHW MLW

1] 2] 1] 2]
12BL0015(A) 42(2) 39(1) 109(2) 106(1)
12EL0003 23(1) 26(1) 80(2) 78(1)
12EP0120(B) 103(2) 108(2) 197(2) 200(1)
28HL0045 74(2) 77(2) 173(2) 176(2)
32CL0034 98(1) 101(1) 146(1) 148(1)
32CL0064 62(1) 80(2) 138(1) 137(2)
32CL0078 101(2) 103(1) 165(2) 158(1)
57FL0019 80(2) 103(3) 208(2) 208(3)

In brackets: standard deviations of 100 realisations of MHW and MLW (cm).

Models used: [1] SWATRE and an ARMA model for the noise series; [2] TFN mod-
els. Calibration period: 1988-01-01 to 1991-12-31. The calibration period of Well
32CL0064 was restricted to the period 1988-01-01 to 1990-12-31 because of an inter-

vention which took place in 1991.

Table 2.3: Validation of estimated mean highest and mean lowest water tables by
calculating Pr values

Observation well — Pr(mya1 (hy) > myar. (hy)) Pr(mya. (l) > myar. ()

1] 2] [1] 2]
12BLO0I5(A) 0.95 066 0.63 0.45
12EL0003 0.93 0.91 1.00 1.00
12EP0120(B) 0.96 1.00 0.94 1.00
28HL0045 0.64 0.76 0.19 0.61
32CL0034 0.92 0.99 0.96 0.98
32CL0064 0.82 1.00 1.00 1.00
32CL0078 0.99 1.00 1.00 1.00
57FL0019 0.08 1.00 1.00 1.00

Models used: [1] SWATRE and an ARMA model for the noise series; [2] TFN mod-
els. Calibration period: 1988-01-01 to 1991-12-31. The calibration period of Well
32CL0064 was restricted to the period 1988-01-01 to 1990-12-31 because of an inter-

vention which took place in 1991.

Table 2.4 lists the differences between estimated and true values of M HW and
M LW for both estimation methods. If differences between true and estimated values
are equal to or greater than 10 cm they are considered to be relevant. The combination
of SWATRE and a noise model performs slightly better than the TFN model. Most
differences were positive, i.e. M HW and M LW were estimated at a too deep level. A
reasonable explanation may be that the calibration period from 1988-01-01 to 1991-
12-31 did not contain all the information required to obtain an unbiased estimate
of the water table depths in the preceding years. Calibration on longer periods,
however, did in general not result in significantly different models (Knotters and Van
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Figure 2.5: Plots of water table depths predicted by TFN models (iALF, line), observed
water table depths (h, dots), noise series (np) and error series (ég).

Walsum, 1994). Another explanation for the positive errors in M HW and M LW
may be that the error variance is not constant. Plots of errors against the dynamic
component lAzs,t or iALF,t indicated a negative dependency between the error variance
and the dynamic component. This can be explained physically from the storage
capacity of the unsaturated zone which is reduced when the water table rises. For
that reason shallow water tables vary more with the precipitation surplus than deep
water tables. The TFN models in this study do not take this non-constant variance
of water table depths into account, so that the error variance will be underestimated
for shallow water tables and overestimated for deep water tables. Given the fact that
the M HW is derived from the shallowest levels and the M LW from the deepest
levels, both will be estimated at too deep levels. In contrast to the TFN models,
the SWATRE models take changes in storage capacity in the unsaturated zone into
account. However, the standard soil physical curves used in the SWATRE models
do not describe hysteresis effects. Therefore, the variance of shallow water tables is
underestimated to some extent, which also may give rise to positive errors both in
MHW and M LW estimates.

The diagnostic checks indicated cross-correlations between the error term and the
dynamic component for observation well B, both for the SWATRE model and the
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Figure 2.5: Continued.

TEN model. In the case of a SWATRE model these cross-correlations did not result
in relevant estimation errors, as Table 2.4 shows (+9 cm and +6 cm for M HW and
MLW, respectively). In the case of a TFN model relevant estimation errors were
found (420 c¢cm and +17 cm for M HW and M LW, respectively). From the positive
cross-correlations in Figure 2.6, however, one would have expected an underestimation
of the fluctuation, i.e. negative errors in the M HW and positive errors in the M LW.
Obviously, the effect of cross-correlation on estimates is dominated by the effect of a
non-constant variance.

Summarising, the validation results make clear that both the TFN models and
the SWATRE models can be improved. A first, small improvement can be made by
calibrating the models on longer series. Therefore, further analysis is based on models
calibrated on 8-year series. Furthermore, both the SWATRE and TFN models can
be improved with respect to a non-constant variance of water table depths.

2.5.4 Influence of weather on estimated M HW and M LW wval-
ues

The influence of the weather on the estimated M HW and M LW values was analysed
by first calibrating SWATRE models with additional noise models and TFN models

25



Estimating fluctuation statistics of water table depths

Observation well A

50 S
[~ RACF [ RCCF Co 5
0.8 — — 8
— . 40 —
04 — —
— Ae O — —w 5 30 —
0 L -. ,'.':q".v-n-.-'.-f' | -.,“’-.-:' . -‘," o -'L .: .-\'-'-. —_--'--
YN [ . e %°® o '.- 20
-04 —
[ [ 10 —
08 = H
T 1 1 1 L 1 1 1 1 1 1 1 10 1\.—n|_|\\ e 1
0 10 20 30 40 -40 -30-20 -10 O 10 20 30 40 -40-30-20-10 0 10 20 3040 50
lag (1 lag () é- (cm)
Observation well B 50
~ RACF ~ RCCF
0.8 — —
L L 40 — —
04 — —
— — — R ..-- - 30
0 .'-_" _""..'.'o"' "._.' — ..,._-'.-' ' - -'_"'- ot '.' '.-".-.
- J e L = 20
-04 — —
[ [ 10
wL : i
I e I N Y I S (Y o O ST | S S | S e N |
0 10 20 30 40 -40 -30-20 -10 O 10 20 30 40 -40-30-20-10 0 10 20 30 40 50
lag (t) lag (t) € (cm)

Figure 2.6: Summary of diagnostic checks applied to the residuals of the predictions
by TFN models. See Figure 2.3. Before estimating the RCCF, the autocorrelated
series of precipitation surplus was transformed into an uncorrelated series by an ap-
propriate time series model.

for Wells A and B, using 8-year series. Table 2.5 shows the results of the calibrations.
Next, we simulated time series of water table depths with a length of 30 years, and
calculated the M HW and M LW values for periods of both 8 and 30 years, following
the procedure described in subsection 2.2.4. The results were plotted against time in
Figure 2.7.

As compared to Figure 2.7c, Figure 2.7a shows small differences between M HW
values, calculated from the 8-year and the 30-year series. This is the effect of a trench
close to Well A, which skims off the water table. SWATRE enabled us to model this
non-linear behaviour, unlike the TFN models. Figures 2.7b and 2.7d show less obvious
differences between SWATRE and TFN models. Figure 2.7b shows some damping of
the M LW wvalues calculated from 8-year series, because the lower boundary conditions
of SWATRE are the same from year to year. Furthermore, the capillary rise towards
the roots stops when the water table falls to a large depth.

The differences between M HW and M LW values calculated from the 8-year and
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Table 2.4: Validation of estimated mean highest and mean lowest water tables by
calculating differences between estimated and true values (cm)
Observation well f[mvar, (Hy)| — mvar, () flmyar, (Hi)| — myar ()

[1] 2] [1] 2]
12BL0O015(A) +7 +1 1 —1
12EL0003 +5 +5 414 +12
12EP0120(B) +9 +20 +6 +17
28HL0045 +2 +4 -3 +2
32CL0034 +3 +7 +3 +5
32CLO0064 +3 120 414 +18
32CL0078 +10 +14 413 +9
57FL0019 —6 127 418 +19

Models used: [1] SWATRE and an ARMA model for the noise series; [2] TFN models.
Calibration period: see Table 2.2. Validation period: from 1982-04-01 to 1987-03-31.

Table 2.5: Parameter estimates of models calibrated on time series from 1984-01-01

to 1991-12-31

Model Observation well
A B
SWATRE 44 = 228.34 days 44 = 1183.35 days

Additional noise model

TFN model

¥, = 5days (fixed)
¢» = 0.38 mm day~
F =145

¢ =0.54cm(1.69)
¢, = 0.3527(0.0667)
b5 = 0.2538(0.0672)
62 = 87cm?

1

81 = 0.8762(0.0217)
@o = 6.878(0.384)
@1 = 2.752(0.469)

& = —94.14(3.64)

b, = 0.5110(0.0654)
6% = 94.5 cm?

4, = 338.56 days
Gr = 0.40mm day~
F =068

¢ =1.59 cm(2.42)
¢, = 0.5339(0.0647)

1

62 = 244 cm?

81 = 0.9223(0.0119)
&o = 8.138(0.571)
& = 1.982(0.619)
&= —207.2(8.41)

¢y = 0.5262(0.0660)
6% =192.1 cm?

Definition of symbols: see Table 2.1. In brackets: standard errors.

the 30-year series indicate the influence of variations in the weather on estimates from
the 8-year series. For observation well A these differences could be about 10 c¢m for
some periods, whereas those for observation well B could be as much as 20 cm.
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Figure 2.7: MHW and MLW walues for two observation wells, calculated from
8-year series (T8) and a 30-year series (T, from 1961-01-01 to 1990-12-31). Series
simulated by SWATRE and a noise model (Figs. A and B), and by TFN models (Figs.
C and D).

2.6 Conclusions

This study shows that M HW's and M LWs estimated directly from the 8-year time
series are affected by the precipitation surplus during these 8 years. Estimates based
on simulated 30-year series are much more representative of the climatic conditions.
The difference between estimates based on 8 years and estimates based on 30 years
may be about 20 cm, which is relevant to applications in agricultural water man-
agement in the Netherlands. The method described in this paper provides estimates
which represent the climatic conditions more adequately, because it enables us to
generate 30-year time series of water table depths, from which M HW and M LW val-
ues can be calculated. However, the use of models to estimate fluctuation statistics
will be only successful if they adequately describe the relation between input series
and output series. This implies that the calibration period must be sufficiently long
to identify appropriate models and to estimate parameters accurately. Analyses of
two observation wells in the Netherlands indicated that a 4-year calibration period
contains all information needed to provide a satisfactory description of the relation
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between precipitation surplus and water table depth, for semi-monthly time steps and
for shallow water table depths. In appendix A2.1 the minimum length of time series
needed for calibration will be reconsidered. In appendix A2.2 some further results are
presented on the variation of the 30-year estimates and the 8-year estimates of the
MHW and the MLW.

In the TFN models used in this study the error variance is assumed to be constant,
which is not consistent with reality, as the validation results indicate. Improvement
of the models is necessary on this point. In chapter 3 the TARSO model will be
presented as a nonlinear alternative for the TFN model. Although SWATRE models
take account of nonlinear relationships between precipitation surplus and water table
depth, the validation results were only slightly better in comparison with TFN models.
This is probably due to hysteresis effects, which are not included into the model.
SWATRE models could be improved at this point.

Appendix A2.1 Minimum length of calibration
period

A2.1.1 Introduction

The research reported in this chapter was published in 1997. In the mean time new
data became available and furthermore, new insights were obtained into some topics
mentioned in this chapter. In this section the minimum length of series needed for
calibration of time series models will be reconsidered.

Time series of water table depths are observed at numerous locations in the Nether-
lands, by several public services and for various reasons. One reason may be moni-
toring, to observe changes in the hydrologic system at the time they occur. Another
reason may be to estimate fluctuation characteristics such as M HW and M LW which
represent the actual hydrologic conditions. These characteristics are used to support
strategic decisions in water management. For economic reasons the observation pe-
riods are limited to the minimum length needed to estimate the fluctuation charac-
teristics accurately. As discussed in this chapter, time series models describing the
dynamic relationship between precipitation surplus and water table depth are used in
estimating fluctuation characteristics. The minimum length of the calibration period
for these models is analysed in this section, using results of Knotters and Bierkens
(1998) for 51 observation wells situated in open sandy soils in the Pleistocene part of
the Netherlands. The results and conclusions of this subsection are therefore restricted
to the soil types and hydrologic situations represented by the data set.

A2.1.2 Materials and methods

An important characteristic of the dynamic relationship between precipitation surplus
and water table depth is the response time, that is, the time to which a change
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(impulse) of precipitation surplus still influences the water table depth (response).
The dynamic relationship between precipitation surplus and water table depth, given
in Eq. (2.2) can be written as

Hpy = voPo+viP1+vo2B o+ ---

— WB)P, (A2.1)
with B being the backward shift operator (B*P = P,_; and v(B) = vo—v1B—vyB?—
-++). The weights vg,v1,v2,... form the impulse response function v(B):

w(B) wop—w1B—wsB?—.- —w,B*
B) = = A2.2
B =B~ 1T-0B 0B 0B (A2.2)

On the basis of the RCCFs for two observation wells (Figure 2.4) it was found in
subsection 2.5.1 that a calibration period of 4 years (96 semi-monthly time steps)
amply covers the length of dynamic response. Actually, Figure 2.4 indicates that the
response time for both wells is not longer than half a year. In this subsection the
response times are given for another 51 observation wells. The response times are
calculated from the theoretical impulse response function of fitted TFN models, in
contrast to subsection 2.5.1 where the response times were derived from the RCCF. It
was checked that the calibration periods for all 51 TFN models covered the response
times abundantly.

The TEN model that was fitted to the 51 time series of water table depths is the
ARX(1,0) model (ARX: autoregressive exogenous variable), which is a special form
of the TFN model. The ARX(1,0) model can easily be explained into physical terms,
as is pointed out in chapter 4. The ARX(1,0) model is given by:

Ht — U= al(Ht_l — ‘LL) + b()Pt + €t, (A23)

where ¢; is assumed to follow a white noise process with finite and constant variance
o2. The model in Eq. (A2.3) was fitted to the 51 time series by using the Kalman

filter algorithm as described by Bierkens et al. (1999). The response time r was
calculated with
—3At
— (A2.4)

Ina;

(Bierkens et al., 1999). The response time r can also be used to determine the
maximum allowable interval length between the elements of a time series. Of course,
using r to determine both the minimum series length and the maximum interval length
would lead to series with only two observations. Therefore, apart from the response
time also the minimum number of observations needed for accurate estimation of
model parameters determines both the minimum series length and the maximum
interval length.

A2.1.3 Results

The response times for the 51 locations are given in Table A2.1. The groundwater
table classes (GWTs) are explained in Table A2.2. An explanation of the soil pedo-
logical terms is given by De Bakker and Schelling (1989). The first group of GWTs
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Figure A2.1: Response time vs. group of actual GWT for 51 locations in the Pleis-
tocene part of the Netherlands. Group 1: Ia, Ila and Illa. Group 2: IIIb, IV, Vbo
and VIo. Group 3: VIlo. Group 4: VIId and VIIId.

represent wet soils with a M HW within 25 cm below the ground surface. These
soils are often found in areas with upward seepage and limited drainage devices. The
second group includes four GWTs with a M HW between 25 cm and 80 cm, and with
a M LW within 180 cm below the ground surface. These GWTs are often found in
artificially drained soil, or in areas where groundwater is withdrawn. The third group
concerns GWT Vllo, with a M HW deeper than 80 cm below the ground surface
and with a M LW within 180 cm. These are dry soils, either because of their high
topographic position or because of intensive artificial drainage and groundwater with-
drawal. The fourth group represents the very dry situations: the M HW is deeper
than 80 cm below the ground surface and the M LW is deeper than 180 cm below
the ground surface. These soils are very dry because of their topographic position,
intensive drainage or excessive groundwater withdrawal. Figure A2.1 shows a graph
of the response times for each group.

A2.1.4 Discussion

At first sight, in Table A2.1 no clear relationship can be found between response times
and groups of actual GWT; within each group a large deviation of response times can
be observed. Nevertheless, Figure A2.1 indicates that both the mean response times
and the variation of response times increase with increasing depth of GWT: the mean
response times are for group 1 7 = 82 days (standard deviation: 49 days), for group
2 7 = 128 days (58), for group 3 7 = 163 days (132), and for group 4 7 = 597 days
(679).

Table A2.1 and Figure A2.1 show that short response times can go together with
deep water tables. Possibly these time series of water table depths are observed in
wells which are situated at relatively high topographic positions, for instance at a
farmyard or in a road shoulder. The temporal variation of the water table depths
observed in these wells reflects the groundwater dynamics in the relatively low and
wet surrounding areas, however. This is possibly true for Wells 12EL0026, 21HL0018,
29CL0021, and 32GL0021 in group 2, for Well 27THP0064 in group 3 and for Wells
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Table A2.1: Response times r in days for 51 locations in the Pleistocene part of the
Netherlands.

Well code soil type soil texture GWT: r
actual
(soil map)
1. GWTs Ia, IIa and IIIa

16FP7053 broekeerdgrond very loamy, fine sand ITTa(III) 97
21HLO0019 bruine beekeerdgrond slightly loamy, medium fine sand Ila(IV) 12
27DP7603 vlierveengrond peat overlaying a

coarse sandy subsoil Ta(III) 121
28DP7037 broekeerdgrond slightly loamy, fine sand ITa(IV) 15
32HL0105 zwarte enkeerdgrond very loamy, fine sand IIIa(III) 94
50AP7608 broekeerdgrond very loamy, fine sand Ta(I) 134
50AP7615 beekvaaggrond slightly loamy, medium fine sand Ia(III) 100

2. GWTs IIIb, IV, Vbo, VIo

12EL0026 veldpodzolgrond slightly loamy, fine sand VIo(IlIb) 100
16GLO007 veldpodzolgrond slightly loamy, fine sand VIo(V) 94
21HL0018 laarpodzolgrond slightly loamy, medium fine sand VIo(IV) 54
27DL0031 bruine enkeerdgrond very loamy, fine sand VIo(Illb) 145
28FL0125 zwarte enkeerdgrond slightly loamy, fine sand VIo(VII) 182
28FP7015 veldpodzolgrond slightly loamy, fine sand IIIb(VI) 212
28GL0008 zwarte beekeerdgrond very loamy, fine sand VIo(VIIb) 143
28HL0O079 zwarte enkeerdgrond very loamy, fine sand VIo(I1Ib) 205
29CL0021 laarpodzolgrond slightly loamy, medium fine sand VIo(Vb) 83
32GL0021 gooreerdgrond slightly loamy, fine sand VIo(III) 47
34BP0192 gooreerdgrond very loamy, fine sand VIo(VII) 124
34CP7003 veldpodzolgrond medium fine sand VIo(VII) 106
34CP7016 veldpodzolgrond slightly loamy, fine sand VIo(V) 146
34DP0155 bruine enkeerdgrond very loamy, fine sand VIo(Vb) 69
34GL0007 veldpodzolgrond slightly loamy, medium fine sand VIo(Vb) 84
34GL0012 veldpodzolgrond slightly loamy, fine sand VIo(Vb) 189
41BP7014 veldpodzolgrond slightly loamy, fine sand VIo(I1Ib) 45
41BP7018 veldpodzolgrond slightly loamy, medium fine sand VIo(III) 200
45CL0024 zwarte beekeerdgrond very loamy, fine sand VIo(V) 164
50AP7618 veldpodzolgrond very loamy, fine sand Vbo(V) 88
51AL0003 zwarte enkeerdgrond slightly loamy, medium fine sand VIo(VI) 150
52DL0010 bruine beekeerdgrond very loamy, fine sand VIo(VI) 65
57TAP7802 veldpodzolgrond very loamy, fine sand IV(V) 238

16EL0035, 21FL0033, and 28BL0051 in group 4. In other cases a possible explanation
is the vicinity of a large ditch, which drains off the groundwater quickly, thus resulting
in small response times. This explanation may apply to Wells 41BP7014, 50AP7618
and 52DL0010 in group 2, and for Wells 12FL0033 and 28BL0052 in group 3. An
explanation for relatively small response times on the basis of topographic position
can not be given for Well 16GL0007 (group 2), 34GL0007 (group 2), 51FL0004 (group
3) and 28DL0044 (group 4).
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Table A2.1: Continued.

Well code soil type soil texture GWT: r
actual
(soil map)
3. GWT VIlo
12FL0033 veldpodzolgrond slightly loamy, fine sand VIIo(V) 57
22CL0044 bruine enkeerdgrond slightly loamy, fine sand VIIo(VII) 229
27THP0064 zwarte beekeerdgrond very loamy, fine sand VIIo(V) 26
28BL0052 veldpodzolgrond very loamy, fine sand VIIo(VI) 53
28DL0026 veldpodzolgrond slightly loamy, fine sand VIIo(VI) 162
28FP7017 veldpodzolgrond slightly loamy, fine sand VIIo(VI) 157
33BL0O003 zwarte enkeerdgrond slightly loamy, medium fine sand VIIo(IV) 319
51FL0004 zwarte enkeerdgrond slightly loamy, medium fine sand VIIo(VI) 60
51GP0087T veldpodzolgrond slightly loamy, medium fine sand VIIo(VI) 403
4. GWTs VIId and VIIId

16EL0035 zwarte enkeerdgrond slightly loamy, fine sand VIId(Vb) 126
21FL0016 gooreerdgrond loam poor, medium fine sand VIId(VI) 250
21FL0033 zwarte enkeerdgrond slightly loamy, fine sand VIId(VI) 100
28BL0051 meerveengrond peat overlaying a very loamy,

fine sandy subsoil VIId(IV) 45
28DL0044 laarpodzolgrond slightly loamy, medium fine sand VIIId(VII) 63
28GL0075 zwarte enkeerdgrond very loamy, fine sand VIId(V) 303
33FL0049 veldpodzolgrond slightly loamy, fine sand VIIId(VII) 638
34BL0O013 veldpodzolgrond slightly loamy, medium fine sand VIIId(IV) 842
41AL.0059 gooreerdgrond very loamy, fine sand VIIId(VI) 245
44HP7804 veldpodzolgrond slightly loamy, medium fine sand VIILd(V) 723
52CL0044 zwarte beekeerdgrond slightly loamy, medium fine sand VIId(VII) 1640
57EL0006 vlakvaaggrond very loamy, fine sand VIIId(VII) 2183

Note: For an explanation of classes of water table depth: see Table A2.2. An ex-
planation of the soil textures is given in Table A2.53. Soil classes are explained in

Table A2.4.

The minimum length of a time series needed to characterise the groundwater dy-
namics is not only determined by the response time. During the observation period
the water table depth must have varied only as a result of a varying precipitation
surplus. Other causes of fluctuation, such as groundwater discharge and human in-
terventions in the hydrologic regime, must be absent unless they are incorporated
into the time series model. Furthermore, when modelling a time series of water table
depths it is important to be aware that the relationship between precipitation sur-
plus and water table depth may vary in time. This relationship could for instance
depend on the water table depth itself, or could be different for rising and falling
water tables. If a linear, time invariant, model is calibrated, the time series must
contain deep and shallow, rising and falling water tables, to find an ‘average’ linear
model for the entire fluctuation zone. If a nonlinear time series model is calibrated,
for instance a TARSO model (chapter 3), the time series must represent the entire
range of water table depths sufficiently to identify the model properly and to calibrate
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Table A2.2: Explanation of the water table classes (GWTs).

Water table class (GWT) mean highest mean lowest
water table (M HW) water table (MLW)
I - < 50
Ia <25 <50
IIa <25 50 - 80
11 <40 80 - 120
IIIa <25 80 - 120
IIIb 25-40 80 - 120
I\Y 40 - 80 80 - 120
\4 <40 > 120
Vb 25 - 40 > 120
Vbo 25-40 120 - 180
VI 40 - 80 > 120
Vo 40 - 80 120 - 180
VII 80 - 140 > 120
VIlo 80 - 140 120 - 180
VIId 80 - 140 > 180
VIIId > 140 > 180

Values in cm below the ground surface.

the parameter values. The same is true for calibration of the parameters of physical
mechanistic models such as SWATRE (see subsection 2.2.2). Thus, a time series of
water table depths must at least cover one year. It may happen that in a year the
water table hardly fluctuates, due to constant meteorological circumstances during
that particular year. Then, the monitoring must be continued until the entire range
of water table depths has been measured. In Table A2.1 response times larger than
one year are found for groups 3 and 4, which represent the dry soils. In the case of
the slowest reacting groundwater system (a response time of 2183 days, that is six
years), the water table depth has to be monitored during at least six years in order
to determine the temporal variation.

Apart from the actual GWT, Table A2.1 gives the GWT of the polygon at the
1 : 50,000 national soil map in which the observation well is situated. In several cases
the actual GWT is ‘wetter’ or ’dryer’ than the GWT of the soil map. This can be
explained as follows:

e Since the soil survey took place the hydrologic system was changed by human
intervention;

e The well is situated in an impure part of the map polygon;

e The GWTs of the soil map are based on M HW and M LW values which were
calculated from time series of water table depths which were observed during
the period of six to eight years length prior to the soil survey. However, the
actual GWTs in Table A2.1 are based on M HW and M LW values which are
calculated according to the method described in this chapter, thus reflecting the
average weather conditions of a 30 years period.
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Table A2.3: Explanation of the soil texture terms.

term % < 50pum median of the fraction 50-2000xm
loam poor <10
slightly loamy 10-17.5
very loamy 17.5-32.5
fine sand 105-150
medium fine sand 150-210
coarse sand 210-300

Table A2.4: Ezxplanation of the soil taxonomy.
Dutch classification system

World classification system

De Bakker and Schelling (1989)

FAO (1988)

beekvaaggrond
broekeerdgrond
bruine beekeerdgrond
bruine enkeerdgrond
gooreerdgrond
laarpodzolgrond
meerveengrond
veldpodzolgrond
vlakvaaggrond
vlierveengrond

Gleyic Arenosols
Umbric Gleysols
Gleyic Arenosols
Fimic Anthrosols
Umbric Gleysols
Gleyic Podzols
Terric Histosols
Gleyic Podzols
Gleyic Arenosols
Fibric Histosols

zwarte enkeerdgrond Fimic Anthrosols

Without further research it is impossible to assess to what extent the causes men-
tioned above contribute to the differences between actual GWTs and GWTs of the
soil map for the locations in Table A2.1. Indeed, at 30 of the 51 locations the actual
GWT is dryer than the GWT at the soil map. It is true that since the soil survey took
place the drainage was often intensified and the drainage level was lowered. However,
it is also true that observation wells are often situated at relatively high topographic
points, such as farmyards and road shoulders. Therefore, the water table depths mea-
sured in these observation wells reflect the fluctuation of the dry, impure parts of the
map polygons. Furthermore, the effect of the difference between the average precip-
itation surplus of a monitoring period with six to eight years length and a period of
thirty years length, as illustrated by Figure 2.7, should be taken into account.

A2.1.5 Conclusion

The minimum length of observation periods needed for calibration of a time series
model to establish the relationship between precipitation surplus and water table
depths depends on:

1. the response time between precipitation surplus and water table depth;
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2. the variation of water table depths during the monitoring period, which should
reflect the entire fluctuation zone and both rising and falling water tables;

3. the absence of human intervention into the hydrologic regime which may influ-
ence the relationship between precipitation surplus and water table depth;

4. the number of observations needed to estimate the time series model parameters
accurately.

The interval length must be shorter than the response time to identify a proper time
series model and to estimate the model parameters accurately. It can be concluded
that the semi-monthly frequency, which is usual in groundwater monitoring in the
Netherlands, may not be sufficiently high for the fastest reacting groundwater systems.

Groundwater regimes which are influenced by, for instance, groundwater with-
drawals and open water levels in rivers, were not considered. Regimes influenced
by slowly reacting systems, nearby ice-pushed ridges and dunes, were not considered
either. Furthermore, the study is restricted to soil profiles without stagnating layers,
such as weakly permeable clay. Therefore, the results presented in this subsection
only give a first indication of the response times which occur in a large part of the
open, sandy, soils in the Netherlands, where the local precipitation surplus is the only
explanatory variable of the fluctuation of water table depth.

Appendix A2.2 The effect of extrapolating
time series on M HW and
MLW estimates

In Figure 2.7 M HW and M LW values calculated from an 8-year series were compared
with M HW and M LW values from a 30-year series (from 1961-01-01 to 1990-12-31).
Figure 2.7 shows that estimates based on 8-year series may deviate up to about 20 cm
from estimates based on an 30-years series. Clearly, the 8-year estimates represent the
meteorological conditions during the 8-year monitoring period which deviate from the
long term climatic conditions. Therefore, it is concluded that estimates based on the
30-year series are more useful to assess options for long term water policy, assuming
that the average climatic conditions over the last 30 years approximate the climatic
conditions over the coming 30 years. In other words, 30-year estimates are assumed
to be more ‘conservative’ than 8-year estimates and therefore more useful in long
term water policy. Of course, considering a M HW or M LW value as the average
of HG3 or LG3 values for a number of successive years (section 2.1), it is obvious
that 30-year estimates vary less in time than 8-year estimates. It could be interesting,
however, to get more insight into the variation of 30-year estimates of M HW and
M LW | because this variation could give us an idea about our uncertainty of the
future long term climatic conditions which we approximate now with the average
climatic conditions over the last 30 years. In Figure 2.7 only one 30-year period was
considered. New data on precipitation and evapotranspiration became available since

36



Appendix A2.2 The effect of extrapolating time series

year
1965 1970 1975 1980 1985 1990 1995 2000
[ [ [ I [ I I 1

80 v vy
L VYyvy Yy vV VY vB5 58508000
C 'Vvvvvvv v
130 v MHW g  —o— MHW, g
r & MW g == MLW ; §
L (3]
-180 — ,
L AAAAA Appd
L AA
2a e 28nnene il
- AL AL
L MDA
-230 -
cm

Figure A2.2: MHW and MLW estimates based on 8-year (T8) and 30-year peri-
ods (T) for Well B. Water table depths were simulated with a TFN model that was
calibrated on data from the period 1984-01-01 to 1991-12-51.

the time that Figure 2.7 was produced. These data can be used to calculate new
30-year estimates. This was done for Well B in Figure 2.7, by using a TFN model.

The TFN model was calibrated on data for the 8-year period from 1984-01-01 to
1991-12-31, using the method described by Bierkens et al. (1999). This method can
deal with sparsely or irregularly observed time series of water table depths, because
parameters are estimated for the 1-day sampling interval of the input series on pre-
cipitation surplus. The TFN model, expressed as a state equation, is embedded in a
Kalman filter algorithm. Next, a maximum likelihood criterion is minimised to obtain
parameter estimates of the TFN model for the 1-day time interval of the input series.
As contrasted to the method described in subsection 2.2.3, the semi-monthly series of
water table depths is not assumed to be equidistant. Furthermore, there is no need
to convert the series of daily precipitation surplus to a semi-monthly frequency (see
subsection 2.3). A possible disadvantage is that the method described by Bierkens
et al. (1999) is restricted to autoregressive processes of order one. In chapter 4 it
will be shown that an order one autoregressive process for the relationship between
precipitation surplus and water table depth can be understood from a physical point
of view. The calibrated TFN model is specified as follows:

hee = 0.9901hp . A+ 0.5216p;, (A2.5)
(np ¢+ 183.8610) = 0.9787(np 1—a¢ + 183.8610) + ép 4, (A2.6)
hy = hp+nrpy, (A2.7)

with h in cm, p the average precipitation surplus between ¢ and ¢t — At in mm day ™!,

At = 1 day and 62 = 18.6104 cm?. Using the model given in Eqs. (A2.5) to
(A2.7) and daily data on precipitation surplus from 1958-01-01 unto 1999-12-31 for
the meteorological station Eelde (see Figure 2.1), 100 realisations of H; series were
simulated for the following periods:

e 32 successive periods of eight years length, the first one from 1961-01-01 to
1968-12-31, and the last one from 1992-01-01 to 1999-12-31;
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e 10 successive periods of thirty years length, the first one from 1961-01-01 to
1990-12-31, and the last one from 1970-01-01 to 1999-12-31.

M HW values and M LW values were calculated for each period, using the procedure
described in subsection 2.2.5. The results are shown in Figure A2.2. The 30-year
estimates are clearly less variable than the 8-year estimates. The 30-year estimates
indicate that the seasonal fluctuation slightly increases, because the M HW slightly
tends to shallower depths, whereas the 30-year estimates of M LW slightly tends to
larger depths. Because the simulated water table depths are linear transformations of
the precipitation surplus (Eq. (A2.5)) this tendency is also present in the precipitation
surplus series. It may be caused either by possible changes in measurement methods
(for instance the introduction of measurement devices with higher resolution) or reflect
a climatic change.

Note that the results in Figure A2.2 slightly differ from the results for Well B in
Figure 2.7. Different TFN models were used, yielding different M HW and M LW
estimates. These differences reflect model uncertainty.
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Chapter 3

TARSO modelling of water
table depths

(This chapter is based on the paper ‘TARSO modelling of water table depths’ by
M. Knotters and J.G. de Gooijer, which was published in Water Resources Research
35(3) (1999): 695-705, copyright ©1999 by the American Geophysical Union.)

Abstract
Threshold autoregressive self-exciting open-loop (TARSO) models are fitted to six

time series of water table depths with precipitation surplus as input variable. Basically
these models are nonlinear in structure because they incorporate several regimes which
are separated by so-called thresholds. For each well a (subset-)TARSO (SSTARSO)
model is selected using the Bayes Information Criterion (BIC). (SS)TARSO models
are used to simulate realisations of water table depths with lengths of thirty years,
from which characteristics such as durations of exceedance are computed. The sim-
ulation performance of the fitted (SS)TARSO models is compared with results ob-
tained from transfer function noise (TFN) models, dynamic regression (DR) models,
and with a physical descriptive model extended with additional ARMA processes for
the noise (SWATRE+ARMA). As compared to the linear TFN and DR models the
(SS)TARSO models perform better because they incorporate several regimes. These
regimes are the result of different soil layers or drainage levels. Furthermore, it is
interesting that (SS)TARSO models show a good relative performance as compared
to the SWATRE+ARMA models. A possible reason may be that inputs of SWATRE
are inaccurate.

3.1 Introduction

In chapter 2 linear transfer function noise (TFN) models were fitted to eight time series
of water table depths and precipitation surplus covering a period of eight years of semi-
monthly data. Using these models realisations of time series of water table depths of
30 years were simulated from which relevant statistics were calculated. The results
in chapter 2 indicate that the descriptive physical model for vertical unsaturated
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flow called SWATRE (Belmans et al., 1983) performs only slightly better than TFN
models. However, the approach described in chapter 2 is not entirely satisfactory, since
TFN models describe linear relationships between precipitation surplus and water
table depth. From a physical point of view nonlinear rather than linear relationships
may be expected between precipitation surplus and water table depth. This may be
due to different soil layers or drainage levels. SWATRE conceptually describes these
nonlinear relationships. However, it needs input data on soil physical relationships
which are generally uncertain and, moreover, rather expensive to collect.

The objective of this chapter is to devise time series models which are capable
of representing the complex nonlinear mechanisms underlying the relationships in six
relatively short time series of water table depths and precipitation surplus. Next, using
these models, series of water table depths with lengths of 30 years are simulated. To
this end the class of threshold autoregressive self-exciting open-loop (TARSO) models
of Tong (1990) will be applied. These models identify piecewise linear functions over
disjoint subregions, which are discontinuous at their boundaries of the domain of the
output variable. Hipel and McLeod (1994, p. 83, 758) mentioned the usefulness of
these models in modelling nonlinearities in natural time series.

Chapter 3 is organised as follows. Section 3.2 provides a brief discussion of the time
series analysed in this study. In section 3.3 we introduce our main tool the TARSO
model, along with some explanation regarding the selection of the “best" model.
Also we explain briefly the modelling procedures for SWATRE, TFN and dynamic
regression models (DR) which will be used as benchmarks for model comparison.
Section 3.4 gives an outline of the procedure for selecting TARSO models. Section
3.5 describes the simulation procedure and the criteria used to evaluate the goodness-
of-fit of the simulated water table depths. Section 3.6 provides details of the TARSO
models fitted to six semi-monthly time series of precipitation surplus and water table
depths covering a period of 5 years. Next in section 3.6 the performance of the
TARSO models is evaluated by validation of simulation results and comparison is
made with similar results obtained from the SWATRE, TFN and DR models fitted
to these series. Section 3.7 ends with some concluding remarks.

3.2 Data

We used time series of semi-monthly observed water table depths from six observation
wells, all having a length of ten years (1982-1991), i.e. 240 observations. The wells
are located near three stations of the Royal Dutch Meteorological Institute (KNMI).
At these stations the daily precipitation surplus has been observed for at least 30
years (1959-1991). The observed series of water table depths are representative for
different geohydrologic situations in large parts of the Netherlands. The land use
is pasture at all six well locations. We subtracted the daily Makkink reference-crop
evapotranspiration (Winter et al., 1995) from the daily precipitation in order to obtain
daily precipitation surplus data. Next, we converted the daily precipitation surplus
data into the semi-monthly frequency of the water table depth series, by averaging
them over the periods between the successive observations on the water table depth.
This conversion was found to be successful in previous studies by Van Geer and Defize
(1987). As compared with chapter 2 two series have been excluded from the original
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set of eight series. One series was dropped because the groundwater level hardly
fluctuated during the whole period. The reason for dropping the second series is
that unknown sources strongly influenced the groundwater level behaviour besides
the precipitation surplus. Soil profile descriptions and drainage levels were collected
at all six well sites.

3.3 Models

3.3.1 TARSO and Subset-TARSO Model

Let {H;} denote a time series of water table depths (output) and {P;} a time series
of precipitation surplus (input). Now a discrete self-exciting TARSO process { Hy, P;}
with order (¢; (mq,mj}),...,(me,m})) and delay parameter d (d > 0) is defined by
Tong (1990) to be a solution of the equations

!

m; 7nj
Ho=af +3 0P H_ i + Y 0P +6?,  if rjoi<Hia<ry,  (3.)

i=1 i=0
where —co =79 <71y < --- < 1P = 00, aEJ) and bEJ) (j = 1,...,() are parameters,
and {eﬁj )} (j =1,...,0) are heterogeneous white noise sequences with zero mean and
finite variances 0%, and each being independent of {P;}. The thresholds are the
levels rq,...,r¢_1. Thus, the real line is partitioned into ¢ intervals, and H; satisfies

one of ¢ dynamic regression models depending on the interval in which Hy; 4 falls.
Note that in the above formulation, the value of the output variable Hy 4 (d > 0)
indicates which subsystem is activated. This is slightly different from the original

formulation of the TARSO model, where the regime switching is conditional on the

value of the delayed observable input variable. If bl(-j ) = 0 for every ¢ = 1,... ,m;-

and j =0,1,...,¢ Eq. (3.1) is called a self-exciting threshold autoregressive (SETAR)
process. SETAR processes with appropriately chosen parameters can exhibit impor-
tant features of real data sets which are not exhibited by Gaussian linear models,
e.g. time-irreversibility, non-Gaussian marginal distributions and occasional bursts
of outlying observations. For recent work in the theory and applications of SETAR
processes, the book of Tong (1990) is an excellent reference. However, in contrast with
SETAR processes, relatively little attention has been given to the use of nonlinear
multiple time series models.

It has been noted that when a SETAR process is fitted to real data some of the
intermediate AR parameters can become small when they are compared with their
respective standard errors. In such a case it may be worthwhile to fit subset-SETAR
models rather than full models to the data. Indeed, De Bruin and De Gooijer (1998)
noted that the out-of-sample forecast ability of SETAR models can be significantly im-
proved by deleting insignificant parameters. Similar results may occur when TARSO
models are fitted to real data. To allow for subset-TARSO processes we introduce

the following additional notation. Let a(@, , a(Jg.,, e ,a(Jg, denote the non-zero para-
P, P

. . ‘ 1 2 . h
meters agj) in Eq. (3.1) such that pgj),péj), e ,pg) are subsets of integers 1,2, ..., m;

with 1 < pl?) < p§ -+ < p < mj. Similarly, let 59),69) .. 59 denote the
qp qy qy
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non-zero parameters bl(j ) in Eq. (3.1) such that q(()] ), qiy ), e ,q,(cj ) are subsets of inte-
gers 1,2,...,m/ with 1 < q(()j) ( )< q,(cj) < m/. Then Eq. (3.1) can be rewritten
as
) k)
= ay —i—Za H—Zb( P+ €, i v <Hi_g<r;. (3.2)

In this case {H;, P} is said to follow a subset-TARSO (SSTARSO) process with
lags pgj),pg), . ,pg), q(()]), qy), ce ,q,(cj) in the jth regime. In section 3.4 we describe
a procedure for selecting a (SS)TARSO model. For a description of a method to
estimate (SS)TARSO models we refer to Tong (1990).

It is interesting to note that for £ =1 and d = 0 Eq. (3.1) reduces to

my 7n,1
Hy =ap+ Zath—i + ZbiPt—i + e (3.3)
i=1 im1

where for ease of notation the superscript (1) has been dropped. It is a dynamic
(single-input single-output) regression (DR) model where €; is not autocorrelated.
This model is also referred to as ARX (autoregressive-exogenous variables) model.

3.3.2 TFN Model

A class of linear time series models which has been commonly employed in relating
one variable to another is the transfer function model with added noise (TFN) of
Box and Jenkins (1976, p. 362). It consists of two parts: a transfer function part
which describes a functional relationship between the input and output variables, and
a noise part which is modelled in its own right using univariate linear autoregressive
(integrated) moving average (AR(I)MA) processes. More specifically, the transfer
function is given by the linear difference equation

r S
Hyp,; = ZéiHF,t—i + ijpt—j—b (3.4)
i=1 j=0
where Hp ; denotes that part of the water table depth H; which is explained by the
precipitation surplus P,. Here b is a delay factor, which is an integer greater than or
equal to zero.

In practice one could not expect that H; can be ‘fully’ explained by movements in
P,, there will always be outside disturbances. If it is assumed that the disturbance,
or noise N, is independent of the level of P; and is additive with respect to the
influence of P, then Eq. (3.4) can be written as

Hi = Hp:+ Np:. (3.5)

Now Np ; may be related to its own past Np 1, Np 2, and so on. This behaviour
can be described by an AR(I)MA process. Assuming that Ng . is stationary, this
process can be written as

p

q
(Npg —p) = Zﬂsi(NF,tfi — ) +ep;+ Z Oj€ert—j (3.6)

i=1 j=1
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where {€,} is a white noise process with zero mean and finite variance, and where
is the mean of the process { Ny :}. We shall refer to Eq. (3.6) as an ARMA process of
order (p,q). For methods for identifying, fitting, and checking TFN models we refer
to Box and Jenkins (1976).

3.3.3 SWATRE

SWATRE is a transient one-dimensional finite-difference model describing the ver-
tical hydrologic interactions in a column of soil (Belmans et al., 1983). The model
can be used to simulate the unsaturated flow in the presence of a water table. The
unsaturated flow is described by the so-called Richards’ equation. The numerical ap-
proximation of this equation leads to a finite-difference expression for all nodal points.
For the top and bottom nodes of the soil profile the expression has a special form be-
cause these nodes are at the boundaries of the flow domain. For the bottom nodal
point a flux is introduced as boundary condition in the finite-difference expression.
When the SWATRE model is used for simulating the unsaturated flow a distinc-
tion is made between the local fluxes induced by the presence of trenches, drains and
ditches, and regional groundwater flux. The local fluxes are pressure-head dependent:
the head difference between the simulated water table and the assumed drainage base
is divided by the drainage resistance, yielding the drainage or infiltration flux. The
drainage fluxes of the different orders of surface water systems are simply added up.
To approximate the seasonal variation in the regional groundwater flow system, the
regional flux is defined as a simple sine function. At the top of the soil system,
boundary conditions are defined for a maximum possible flux through the canopy,
and the maximum possible flux through the soil surface. For more details on the
various quantities, parameters, and series needed as inputs to the SWATRE model,
we refer to Belmans et al. (1983) and chapter 2. In SWATRE input is needed on pre-
cipitation, evapotranspiration, drainage levels and soil physical properties, whereas
in empirical time series models like the (SS)TARSO, TFN and DR model only input
on precipitation surplus is needed.

Now, suppose that {hs .} denotes the deterministic part of the water table depth
which is explained by the physical model SWATRE. Then, similar to Eq. (3.5), we
add a noise process {Ns ¢} to {hs+}, i.e. Hy = hgy+ Ns ;. As with the TFN model
it is assumed that {Ng ;} can be represented by an ARMA(p, ¢) process having white
noise errors. Also, we assume that {Ng .} is independent of the process {hg;}. Now
by modelling the noise {Ng ;} with an ARMA process it becomes possible to simulate
time series of water table depths. In section 3.5 we describe the simulation method
in more detail. In the following we refer to the combination of the model SWATRE
and an ARMA model as to the SWATRE+ARMA model.

3.4 Selection of SSTARSO models

A critical step in (SS)TARSO modelling is choosing an appropriate model from a
large set of candidate models, in a systematic and reproducible way. Automatic
model selection criteria, such as Akaike’s Information Criterion (AIC) and Bayes
Information Criterion (BIC) can be used to find a balance between lack of fit and
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model complexity; see De Gooijer et al. (1985) for a survey. For linear univariate and
multivariate time series models it has been noted that the basic difference between
BIC and AIC is that the former penalises an overparametrisation of the model more
strongly, in particular for large samples, than the latter. Recently Wong and Li (1998)
came to a similar conclusion when studying SETAR models. Hence, we decided to
use BIC as a model selection criterion.

Consider the SSTARSO process in Eq. (3.2). Let n denote the total number of
observations on the process { Hy, P;}. Similarly, let n; be the number of observations
belonging to the jth regime (5 =1,...,¢). Then BIC can be defined as

4
BIC = {n;mné2 ) + (A9 +kV) + 1) Inn;} (3.7)

i=1

where &i ;) 1s the residual variance in the jth regime.

Assume that the delay parameter d is known. In general, this assumption may
not be a reasonable one. In our case, however, it can be argued that the delay is
zero. Indeed from a physical point of view this means that the regime changes at the
moment {H;} passes a boundary between two soil layers or a drainage level. Since our
goal is simulating { H;}, we can only use information from the past about the regime
in which {H;} falls. Therefore, we decided to fix d at unity rather than zero. No other
values of d will be entertained here. Based on prior information the number of regimes
is fixed for each well. Although the depths of soil physical boundaries and drainage
levels are known for the six well sites, we did not use this information in the model
selection procedure. In subsection 3.6.1 we compare automatically selected threshold
values with observed thresholds such as soil physical boundaries and drainage levels.
Now, if no prior information is used on the values of the thresholds r; (j =1,...,(—1),
we propose the following procedure for selecting (SS)TARSO models using Eq. (3.7):

1. Fix the number of regimes ¢(# using prior information on the number of regimes;

2. Fix the maximum orders (My, M7), ..., (My#, M, ) from which the (SS)TARSO
model is selected;

3. Select an interval [rp,ry| in which the threshold values are searched, or the
combinations of threshold values if there are more than two regimes. In this
study, r, and ry are the 10th percentile and the 90th percentile of the empirical
distribution of H; respectively;

4. To guarantee that there are enough observations in each regime, search thresh-
olds at a fixed interval (here 1 cm) between rp and 7y such that within each
Jjth regime n; is at least 20. This results in a set of, say, R (combinations of)

candidate threshold values rq,...,7p_1;

5. Select candidate subsets for the non-zero coeflicients al(-j ) and bl(-j ) in the input
and the output series, say subsets {s,}, where u =1,..., K denotes the uth of
K subsets. Assign to these subsets the lags pgj),pg), c ,pgf),qéj),qy), ce ,q,(f)

of the AR terms in the output and input series in the jth regime. Given (#

regimes, fixed threshold values, and a fixed delay there are S = K ¢ candidate
SSTARSO models to represent the process { Hy, P;};
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6. Calculate the minimum value of Eq. (3.7) over all R x S candidate models.

Note that in the above procedure the first max;{d, Mj;, M}} observations should be
discarded from the two series to obtain one effective sample size for all fitted models.
In the rest of the chapter we restrict the range of fitted SSTARSO models by setting
My =--- =My =3, M{ = --- = M, =2, and K = 25. For physical reasons AR
terms for H;_5 and H;_3 are always combined with an AR term for H;_;. For similar
reasons AR terms for P,_; and P;_s are always put into the model specification with
an AR term for P;. Details about the choice of # will be given in subsection 3.6.1.
The DR models in this study are selected by the above procedure, with (# = 1 and
K = 25 candidate models. In contrast to previously proposed graphical methods to
select the threshold values r (e.g. Tsay (1989); Astatkie et al. (1997)) the automatic
selection procedure applied here is reproducible. In this sense the automatic selection
procedure is equal to the procedure based on Akaike’s Information Criterion (AIC)
proposed by Tong (1990) for the selection of SETAR models, and to the procedure
based on the modified generalised cross validation criterion described by Lewis and
Stevens (1991) for modelling time series using multivariate adaptive regression splines
(MARS).

3.5 Design of the simulation experiment

In the next section we compare by simulation the performance of the SSTARSO model
as opposed to the performance of the TFN, DR, and SWATRE models in generating
series of water table depths. Here a brief account is given of the various steps involved
in the Monte Carlo experiment. First, each series of semi-monthly observed water
table depths {h;} is divided into a validation set, covering the period 1982-1986, and
a calibration set covering the period 1987-1991, i.e. each set consists of n = 120
observations. Next, using the various models fitted to the data in the calibration set,
N artificial time series {h}?},i = 1,..., N are generated. Initially, each series consists
of 792 observations. However, to avoid the effect of any starting-up transients we
discarded the first 72 observations. Hence, each generated series {h;*} has an effective
sample size of L = 720 observations (thirty years of semi-monthly time steps).

The procedure to generate these data from SSTARSO models can be summarised
as follows. Let {¢;;t = 1,...,n} denote the set of standardised residuals ob-
tained from fitting Eq. (3.2) to the series {h;} in the calibration period. Let
s = maxj,h,k{d,pg ),q,(j)} + 1 denote a starting point of the simulated time series
{hy*}. Put hf* = hy for (t =1,...,s — 1), where h; is the mean of the series {h;} in
the calibration period. Now, given a fitted SSTARSO model, the value hy is computed

using computed values of h** | h**, ... and observed values of precipitation surplus
Ps—1,Ps—2,- .- as inputs. Then a residual is selected through random sampling with
replacement from the set {€&j;¢ = 1,...,n}. This residual is added to hs after being

destandardised with respect to the regime in which h:l 4 falls, yielding a realisation
Rt Next, izs+1 is computed using values of h¥', R | ... and ps,ps_1,... as inputs.
Then again a residual is selected at random with replacement from the set of available
residuals. This residual is added to fst after being destandardised with respect to

the regime in which the simulated value h:j_l_ g falls.
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This procedure is continued until a complete set of 792 artificial realisations of { Hy }
is obtained. Discarding simulated values from time index s to 72, gives an effective
set of simulated water table depths, denoted by hj® (t =1,..., L(= 720)). Note that
by resampling from the set of fitted residuals no assumptions are being made on the
distribution of the error process {eﬁj )}. Also note that the same simulation procedure,
apart from the conditioning on h’{i 4> can be applied to generate realisations hyt for
series of water table depths fitted by the DR model in Eq. (3.3).

The procedure we adopted to generate hj® from TFN and SWATRE models is
slightly different from the one given above. First, we decided that the models fitted
in chapter 2 for the period 1988-1991, can be used for the slightly larger calibration
period 1987-1991. The parameters of the models were re-estimated, now for the period
1987-1991. Based on these models, we generated two sets of realisations {iLFt} and

{hs¢} (t =1,...,792) of respectively the deterministic processes {hp ;} and {hs }.

Now let {ép .} and {€s} (t = 1,...,n) denote the sets of errors obtained from respec-
tively the TEN and the SWATRE model. From these two sets we obtain the sets of
realisations {ex',} and {e&’;} (t =1,...,792) through random sampling with replace-

ment. Next the sets {€;',} and {€§’,} are transformed into sets of realisations {nj’,}
and {ng"} (t=1,...,792) of the noise processes { Ny} and {Ns} respectively, us-
ing the ARMA models fitted to the noise series in the calibration period. Then for
each time point ¢ = 1,...,792 the realisations {nj’,} and {n§’,} are added to the

series {hg;} and {hs} respectively. Finally, discarding the first 72 observations of
both series, we obtain two series of simulated realisations {h}’} of the process { H;},
each having length L = 720.

In subsection 3.6.2 we will evaluate the accuracy of the above procedures using
data on {h;} from the validation period. This will be mainly done with the aid of the
following three statistics:

1. the mean error (M E) over N replications, i.e.

1 N 1 600 ]
ME = NZE > (he— i)
=1 t=481

where h}® is the value of h} obtained from the ith replication and where, for
ease of comparison, the time-index of the validation series h; is synchronised
with the time-index of the corresponding simulated realisation h};

2. the root mean squared error (RM SE) over N replications, i.e.

1N 80 12
RA[SE:NZ{E 3" (he — b } ;
i=1 = t=481
and
3. the mean absolute error (MAE), i.e.
1 N 600 .
MAE:NZE Z ‘htfhzq )
=1 t=481
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3.6 Results

Table 3.1: Estimation results for the DR models fitted to the series {hy,p;}

Well CLO dl &2 &3 bo b2 (3'6

1 -26.07(2.91) 0.52(0.05) 0.19(0.04) 6.43(0.41) 1.32(0.49) 8.27
2 -36.80(3.19) 0.37(0.06) 5.78(0.52) 10.76
3 -25.83(4.52) 0.68(0.04) 0.20(0.04) 8.90(0.58) 11.64
4 -31.12(4.54) 0.59(0.06) 0.22(0.06) 7.88(0.61) 13.44
5 -28.69(4.80) 0.60(0.05) 0.16(0.05) 5.01(0.41) 9.55
6 -31.62(3.88) 0.53(0.05) 0.13(0.06) 0.14(0.04) 5.70(0.28) 6.46

Calibration period is 1987-1991 (120 observations). Standard errors are given in
parentheses.

where n = 120 is the number of observations in the validation period, and where
L = 720 is the effective length of the simulated realisations h}*i = 1,..., N. The
total number N of replications will be fixed at 1000. The M E indicates systematic
errors in the simulated water table depths. The RMSE and M AFE are measures of
the closeness of the simulated water table depths to the observed water table depths
and reflect both systematic and random errors. The M AF is less sensitive for outlying
observations than the RMSE. Note that we did not examine the residuals to verify
the assumption that the error terms within each regime of Eq. (3.2) are white noise.
Instead we validated this assumption through the simulation results following the
procedure described above. If the residuals depart significantly from the white noise
assumption this will show up in a poor simulation performance.

3.6 Results

3.6.1 Modelling results

Below, we will briefly discuss the (SS)TARSO models selected for the six series of
water table depths {h;}. Special attention will be given to physical explanations of
the automatically selected threshold values and the estimated AR-coefficients for {p;}.
These physical explanations depend on the specific hydrological conditions at the well
sites, which vary between the wells. All depths given in the discussion are relative to
the ground surface elevation nearby the observation well. Estimation results based on
the DR, TFN, and SWATRE+ARMA models are summarised in respectively Tables
3.1-3.3. Figure 3.1 shows graphs of results of (SS)TARSO modelling in the calibration
period. Note that the graphs show a clear seasonal behaviour, with a seasonality of
24 semi-monthly time steps which equals one year. In the fitted models this seasonal
nonstationarity is fully explained by the input variable p;.

Well 1: The well is situated in a drained loamy, fine sandy soil. Drains are present
at about -80 cm, relative to the ground surface at the well location. Moreover, at
a distance of 50 cm to the well a trench with a bottom at about -50 cm is present.
Therefore, three regimes ((# = 3) were assumed. Using the model selection procedure
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Table 3.2: Estimation results for the TFN models fitted to the series {hy,p;}
Well 01 @o w1 hl N Ge

1 0.84(0.03) 6.48(0.44) -1.78(0.56)  -91.20(1.93)  0.56(0.08)  8.87
2 0.40(0.08)  5.68(0.58) -57.94(1.51)  0.32(0.09)  11.18
3 091(0.01) 851(0.62) -2.09(0.68) -208.08(2.19)  0.43(0.09) 11.64
4 085(0.02) 6.72(0.49) -163.71(2.85)  0.53(0.08)  13.93
5 0.85(0.03) 4.91(0.43) -1.38(0.54) -125.53(1.24)  0.52(0.08)  9.79
6 0.90(0.01) 547(0.20) -2.29(0.33) -156.89(1.15)  0.42(0.09)  6.61

Calibration period is 1987-1991 (120 observations). Standard errors are given in
parentheses.

of section 3.4, the final SSTARSO model is

~16.10 +0.58h, 1 +0.24hy 3 +6.81p,
(4.17)  (0.06) (0.05) (0.43)
+186p—a  +&, if By <57
(0.53) (—91,—57)
o) —6407 4769, +é”, if — 57 < hyy < —4T
¢ (2.00)  (1.09) (=91, —57) (=74, —44)
—19.10 +0.29h—1 +0.39h;_3 +3.01p;
(9.06)  (0.28) (0.12) (0.91)
+e® A Ry > T
(—74, —44)
The residual standard deviations are 6.1, = 7.15, 6.2 = 8.65, and &, = 6.13,

respectively. Thresholds are selected at -57 cm and -47 ecm. The 95% confidence
intervals of the estimated thresholds (in parentheses) are estimated from 10,000 boot-
strap replications. The skewness of the intervals is a result of the short distance of the
threshold at -47 cm to the upper limit of the range in which thresholds are searched;
only 21 observations are present in regime 3. In the bootstrap replications thresholds
are selected more often below -47 cm than above -47 cm, because at least 20 observa-
tions must be present in a regime. Similarly, thresholds are selected more often below
-57 cm than above -57 cm.

It is interesting to note that the selected threshold values are possibly related to the
drainage level of the trench at about -40 cm. The estimated AR-coefficient for p; in
regime 3 is small as compared with those in the other two regimes (3.01 vs. 6.81, 7.69).
In physical terms the value 3.01 means that, starting from equilibrium conditions, a
unit change of the precipitation surplus at time ¢, causes a change of 3.01 units in the
water table depth h;. Further note that p; is the average daily precipitation surplus
between ¢ — 1 and t. A physical explanation of the relatively small AR~coefficient for
p; in regime 3 may be that the fluctuation of the water table in regime 3 is damped
by the drainage to the trench. This effect can be seen in Figure 3.1a, which shows a
plot of observed water table depths and the interval in which 95% of the simulated
water table depths fall.

Well 2: The well is situated in a peaty soil with a relatively shallow and constant
surface water level. Three regimes were assumed ((# = 3), caused by the presence of
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Table 3.3: Estimation results for the SWATRE+ARMA models fitted to the series
{he, pe}

Well 44 o0 g A, d, F i1 o P3 01 Ge

1 21044 5 042 113 -0.19(2.32) 0.32(0.08) 0.36(0.08) 841
2 11241 4048 -2.33 173 -0.39(2.09) 0.23(0.09) 0.34(0.10) 9.91
3 1123.86 390.33 0.39 0.11 146 0.65 -0.92(2.67) 0.49(0.08) 14.82
4 24483 0.21 0.68 1.87(3.63) 0.61(0.07) 15.75
5 215.46 2.03 1.49 -0.79(1.44) 0.13(0.09) 13.59
6 239.60 1.73 115 -0.65(3.44) 0.94(0.05) 0.71(0.10) 8.96

Calibration period is 1987-1991 (120 observations). Standard errors are given in
parentheses. Here, 44 = drainage resistance of ditches (d); 4, = drainage resis-
tance of trenches (d); G» = regional component of groundwater flow (mm/d); Ay =
amplitude of regional component of groundwater flow (mrn/d ); czb = time at which
mazimum regional groundwater flow is reached (d); F = multiplication factor for
saturated moisture content (all layers) (-); [, &51, QA53, 6, and 6. are parameters of the
fitted ARMA models.

two drainage systems: a ditch with a water level at about -30 cm during the whole
season and a trench with a bottom at about -20 cm. Following the procedure of
section 3.4, the following TARSO model was fitted to the data:

—65.63 +3.76p,  +&, if hy i <—68
(1.58)  (0.85) (=71, —47)
3545  +0.32h,; —0.26h; 5 +0.30h, 3
. (14.19)  (0.25) (0.09) (0.09)
L +747p,  +&P, if —68<hy <47
(0.67) (—71,-47)  (—61,—35)
—55.00 +4.43p,  +323p g+, if heq > —4A7
(3.11)  (0.94) (1.18) (—61, —35)

with &.1) = 8.7, 6.2 = 8.57, and G5 = 10.94.

Note that the selected thresholds at -68 cm and -47 cm do not seem to be related
to any of the drainage levels. However, the estimated AR-coeflicient for p; in regime
1 and regime 3 is small as compared with the intermediate regime. This may be
explained from the constant surface water level, which damps the fluctuation in the
upper regime as a result of drainage in the wet season, and in the lower regime as
a result of replenishment through surface water in the dry season. Also from Figure
3.1b it is clear that the fluctuation of the water table is damped. Finally, the relative
large value of &) seems to indicate that for the third regime the relation between
H; and P, is less adequate than in the first two regimes.

Well 3: The well is situated at the slope of a fine-sandy ridge, overlaying glacial till.
At a distance of 250 m a brook is present with a water level at about -240 cm. The
second drainage system is a ditch with a bottom at about -130 cm, at 50 m distance
to the well. The ditch drains in periods with shallow water tables only. Distinct soil
physical boundaries are not present within the fluctuation zone of the water table.
Again three regimes are assumed, caused by the two drainage systems. The final
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SSTARSO model fitted to the data is

~55.21  +0.73hy +5.95p, 4 if Ay < 182
(26.53)  (0.13) (0.70) (—197, —137)
~165.39 +8.50p,  +&?, if — 182 < hy 1 < —150
ool @97 (133) (—197,-137) (—172,—116)
~43.92 405501 +0.1Th_3  +9.70p
(7.70)  (0.07) (0.05) (0.69)
+é® i Ry > —150
\ (—172, —116)

With 65(1) = 6.91, &E(z) = 14.82, and 66(3) = 9.50.

It is clear that no direct relationship exists between the drainage level of the brook

and the selected threshold values. The threshold at -150 cm may be caused by tem-
poral drainage to the ditch. The value of the AR-coefficient for p; increases from the
lower (regime 1) to the upper regime (regime 3), which indicates that at this loca-
tion shallow water tables vary more with the precipitation surplus than deep water
tables. The wide interval in which 95% of the simulated water table depths fall (see
Figure 3.1c) seems to indicate that the model could be further improved.
Well 4: The well is situated in a ridge of fine cover sands, with a distance of 130 m
to a brook. The water level in the brook is at about -140 cm. A loamy layer is present
between -150 cm and -170 cm. Three regimes are assumed, caused by drainage to the
brook and stagnation of groundwater flow on the loamy layer. The SSTARSO model
fitted to the data is

—2121  +087hy 1 +7.7lpy  +&, if hyq < —137
(14.98)  (0.09) (0.70) (—170, —114)

~46.65  +0.33h,—1 +0.29h,_» +7.83p,

. (12.96)  (0.12) (0.05) (0.59)
L —203p o 42, if —137T<h 1< -91
(0.80) (—170,—114) (—117,—87)

~06.82  +899p,  +&\Y), if hy_q>—91

4.73)  (2.13) (—117,—-87)

with 6'6(1) = 1136, 6'6(2) = 875, and 6'6(3) = 16.16.

The threshold at -137 ¢cm may be related to the loamy layer. A relation between
the selected threshold at -91 cm and drainage levels or soil physical boundaries is not
obvious. The relative large standard deviation in regime 3 (5. = 16.16) is possibly
the result of an ‘outlier’ in the calibration period at time t = 604, see Figure 3.1d.
Dropping this value reduces the residual standard deviation to &, = 10.93.

Well 5: This well is situated in fluviatile, heavy clay, covering fine sand at about -115
cm depth. A brook with a water level of about -80 cm is present at a distance of 15
m from the well. Three regimes were assumed in the model selection. The resulting
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SSTARSO model is

~136.84  +391p,  +elb, if he1 < 133
(2.45)  (1.00) (—134, —114)
—31.44  +0.73h,; +4.03p, 42, if —133<h, i < —106
po_ (L70) (0.10) (0.34) (—134,-114) (—120, -86)
—54.86  +0.32h,_; +0.1Th_3 +7.60p;
9.27)  (0.10) (0.06) (0.89)
+el® i by > —106
(—120, —86)

\

with &6(1) = 1132, 66(2) = 545, and 66(3) = 10.04.

The selected threshold at -133 cm cannot be explained by drainage levels or soil

physical boundaries. The observed water table depths in Figure 3.1e show that the
fluctuation in regime 1 (below -133 cm) is damped at a depth of about -140 cm,
possibly as a result of regional groundwater flow. The model specification in regime 1
does not fully seem to capture this phenomenon, as may be noticed from the relative
large value of .1). The threshold at -106 cm may be related to the distinct soil
physical boundary between the heavy clay and the sandy subsoil. As compared with
the other regimes, the AR~coefficient for p; in regime 3 is large. This can be explained
from the small storage capacity of clay, as compared with sand. Furthermore, the
storage capacity decreases when the water table rises. The relative low value of the
AR-coefficient for p, in the first regime can be explained from a ditch, which dominates
the fluctuation of the water table in the lower regime. This may also be the reason for
the absence of AR-coefficients for h. The relative large value of 5., may be explained
from hysteresis of the soil water characteristic in clay.
Well 6: The well is situated in fine cover sands, at the lower end of a slope to an
ice-pushed ridge. Two regimes were assumed, as a result of temporal drainage to a
ditch with a bottom at -160 cm, at a distance of 40 m to the well. The final SSTARSO
model selected is given by

—23.70  +0.68h,_1 +0.1Th,_3 +5.38p,
(4.70)  (0.04) (0.03) (0.24)
4 i hyg <121
b — (—158, —114)
P} —62.95  +0.02h_; +0.49h;_5 +8.60p;
(10.70)  (0.12) (0.08) (0.75)
4@ by > 121
| (—158, —114)

with 6.1) =5.13 and d.2) = 6.42.

A threshold is selected at -121 cm (see Figure 3.1f), which is possibly related with
temporal drainage to the ditch. As the AR-coefficients for p; indicate, the water
table depth in the upper regime varies more with the precipitation surplus than in
the lower regime, which can be explained from the storage capacity of the soil that
reduces when the water table rises.
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cm a. Well 1 b. Well 2
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Figure 3.1: Results of (SS)TARSO modelling in the calibration period. Observed
water table depths (dots), intervals in which 95% of the simulated water table depths
fall (dashed lines), and selected thresholds (solid lines).

3.6.2 Results of the simulation experiment

Table 3.4 summarises the validation results of simulated water table depths. The
ME, RMSE and MAF indicate that (SS)TARSO models perform better than the
alternative models in simulations for Wells 1, 2, and 5. An improvement compared
to linear models is obvious, because even if strong threshold nonlinearities are absent
the (SS)TARSO models account to some extent for the non-constant relationship be-
tween precipitation surplus and water table depth caused by the non-constant storage
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Figure 3.2: Results of model simulations in the validation period for Well 5. Ob-
served water table depths (dots), intervals in which 95% of the simulated water table
depths fall (dashed lines), and selected thresholds (solid lines).

capacity of the unsaturated zone, in contrast to linear models. More interesting the
(SS)TARSO models show equal or better performance in terms of RMSE and MAE
than the nonlinear SWATRE+ARMA models for Wells 1, 2, 4, 5 and 6, even though in
SWATRE soil physical boundaries, drainage levels and time-varying storage capacity
are modelled. A reason of the relatively weak performance compared to (SS)TARSO
models may be that inputs such as the standard soil physical curves do not represent
the conditions at the well location.

Note from Table 3.4 that the improvement indicated by M E, RMSE and MAFE
is largest for Well 5. As mentioned in the above subsection, the selected SSTARSO
model for Well 5 contains a threshold nearby a distinct soil physical boundary be-
tween heavy clay and a sandy subsoil. The model specifications for the regimes diverge
clearly. The obvious threshold nonlinearity explains why the SSTARSO model per-
forms better than the linear TFN model and the linear DR model. A possible reason
for the relatively weak performance of the SWATRE+ARMA model for Well 5 may
be that the soil physical standard curves of heavy clay poorly represent the conditions
at the well location.

The DR model has a poor relative performance in terms of M E, RMSFE and MAE
as compared with the other three models. In section 3.3 we mentioned that the DR
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Table 3.4: Validation results

Well (SS)TARSO TFN

p ME RMSE MAE p ME RMSE MAE
1 8§ 03 15.3 12.3 13 17 16.3 132
2 8 64 17.3 13.6 8 69 17.9 14.3
3 11 178 320 258 35 19.2 28.7  24.0
4 305 24.0 19.2 4 52 23.5 18.5
5 7 58 16.9 13.4 11 98 18.7 14.8
6 24 128 17.8 15.0 31 127 16.9 14.1

model can be considered as a special case of the TFN model. The main difference
between the DR model (Eq. (3.3)) and the TFN model (Eq. (3.5)) is that in the TFN
model the noise Ny 4 is described by an additive AR(I)MA process (Eq. (3.6)), whereas
in the DR model the noise Ny ; is assumed to follow the autoregressive structure of
Hy. This will be pointed out in section 4.2, Egs. (4.2) and (4.3). The validation results
indicate that the simulation results can be improved if the noise is modelled by an
additive AR(I)MA process. Therefore, it may be worthwhile to extend (SS)TARSO
models with additive AR(I)MA models for the noise in each regime.

The percentages of observations outside the interval in which 95% of the simulated
water table depths fall (p in Table 3.4) are generally larger than 5. In particular TFN
models seem to underestimate this interval. As an example, the plots in Figure 3.2
show observed h; and 95% intervals of simulated realisations of H; in the validation
period for Well 5. As the plots in Figure 3.2 show, the observations exceed the upper
limit of the 95% interval more often than the lower limit. Furthermore, the values of
ME are positive in most cases, which means that the simulated H; is generally deep
as compared with the observations. Clearly, all models simulate values of H; which
are too deep as compared with the observations in the validation period, in particular
for Wells 3 and 6. We will briefly discuss some reasons for this systematic error in
the simulations. A reason may be that the calibration period does not contain all
information needed for simulation results free of systematic errors in the preceding
validation period. However, the analyses described in subsection 2.5.1 and appen-
dix A2.1 indicated that a four-year calibration period generally covers the dynamic
response between local precipitation surplus and water table depth. Calibration of
models on eight-year periods and next validation of simulation results on two-year
periods reduced the systematic error only to some extent, however. Another reason
may be that the water table depth shows a nonstationary behaviour during the period
1982-1991. This may be caused by the regional component of groundwater flow which
influence on the water table depth may vary across years, while it is assumed to be
constant in the SSTARSO, TFN and DR model, and to vary within a year only in the
SWATRE+ARMA model. Temporal changes in the regional component of groundwa-
ter flow may be caused by intensified drainage in rural areas, increased groundwater
withdrawal, or persistent long term meteorological fluctuations. As a result the water
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Table 3.4: Continued.

Well SWATRE+ARMA DR

p ME RMSE MAFE p ME RMSE MAFE
1 9 4.3 16.4 13.0 14 1.7 16.6 13.5
2 9 7.9 17.4 13.7 6 7.2 18.1 14.4
3 12 13.2 28.6 23.0 7 19.6 33.2 274
4 3 3.4 25.7 20.2 3 5.7 27.3 21.7
5 6 8.6 21.4 16.7 6 9.4 20.0 15.9
6 16 12.6 20.1 16.2 19 13.0 18.1 15.1

Validation period is 1982-1986 (120 observations). p in %. ME, RMSE and MAE

m cm.

tables in the calibration period (1987-1991) are systematically deeper than those in
the validation period (1982-1986), which cannot be explained from the input series.
This is a possible reason for simulated water table depths that are systematically
deeper than the observed water table depths during the validation period.

Figure 3.3 shows curves of simulated and observed durations of exceedance of water
table depths in the validation period. The durations are in days per year, assuming
that the cumulative frequency distributions of daily observed water table depths and
semi-monthly observed water table depths are equal. The simulated durations of
exceedance are calculated from 1000 simulated realisations of the water table depth
in the validation period. Since it is not our purpose to compare curves between wells,
we varied the scaling on the Y-axes in order to obtain a clear view on the curves
of each well separately. In particular for Wells 1, 4 and 5 a good approximation
of the observed durations is achieved with SSTARSO models. The duration curves
computed with TFN models and DR models differ only slightly. Also from Figure 3.3
a positive systematic error is obvious in most simulations. Table 3.5 gives RM SFEs
as a measure of the difference between simulated durations and observed durations of
exceedance. Before calculating the RM SE, the lowest water table depth was removed
from both the simulated and the observed duration curve, in order to diminish the
effect of outlying values. The RMSE values indicate that for Wells 1, 2 and 5 the
duration curves simulated with SSTARSO models approximate the observed duration
curves better than those simulated with the alternative models. As in the validation
of simulated water table depths, the improvement is largest for Well 5.

3.7 Some concluding remarks

The (SS)TARSO models introduced in this chapter are adequate alternatives for the
DR and the TFN models as well as the SWATRE+ARMA model in simulating water
table depths and estimating durations of exceedance. The (SS)TARSO models are
easy to specify and they can be interpreted physically with respect to the hydro-
logical conditions at the well location. Physical interpretation is important if these
models are generalised to a space-time context. This will be a natural step in fur-
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Figure 3.3: Observed and simulated durations of exceedance in the validation period.

ther research, because estimates of fluctuation characteristics are also requested for
locations at which time series of water table depths are not available. Similar to
the TFN model the (SS)TARSO model can be generalised to more than one input
series. For instance, volumes of abstracted groundwater and surface water levels can
be incorporated besides the precipitation surplus.

The comparative simulation experiment showed a systematic error in the results of
all models. A possible reason may be that the regional component of groundwater
flow changes in time, for instance as a result of intensified drainage in rural areas or
increased groundwater withdrawal. Further research is needed to the source of this
systematic error. An improvement of the (SS)TARSO models may be achieved by
incorporating additive AR(I)MA processes for the noise components. The validation
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Table 3.5: Validation of duration curves by RMSFEs

Well Models

(SS)TARSO TEFN SWATRE+ARMA DR
1 4.5 6.0 5.6 5.9
2 7.3 7.8 8.7 8.1
3 18.8 19.9 13.6 20.7
4 6.9 7.4 6.2 8.0
5 7.6 11.5 9.0 11.5
6 13.4 13.1 13.0 13.5

Values are in em. Validation period is 1982-1986 (120 observations).

results indicate that TFN models with additive AR(I)MA noise processes perform
better than DR models without these components. Therefore, it is anticipated that
(SS)TARSO models can be improved in this respect.
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Chapter 4

Physical basis of time series
models for water table depths

(This chapter is based on the paper ‘Physical basis of time series models for water
table depths’ by M. Knotters and M.F.P. Bierkens, which was published in Water
Resources Research 36(1) (2000): 181-188, copyright (©2000 by the American Geo-
physical Union.)

Abstract

The relationship between precipitation surplus and water table depth can be described
by empirical time series models such as transfer function-noise models (TFN), autore-
gressive exogenous variable models (ARX), and threshold autoregressive self-exciting
open loop models (TARSO). In this paper these models are interpreted in terms of
the water balance of a soil column. A physically based ARX model is used to predict
the effect of an intervention on the water table dynamics at two locations. It is shown
that the physically based ARX model predicts the effect of interventions reasonably
well.

4.1 Introduction

In lowland areas such as the Netherlands, structural changes in the water table fluctu-
ation will often have impact on agricultural land use and ecology. To support decision
making in these areas, water managers need reliable predictions of the effects of in-
terventions in the hydrological regime on the water table fluctuations. Preferably,
these effects are expressed in terms of risks or probabilities, which implies the need
of stochastic methods.

The water table depth can be related to precipitation surplus using empirical time
series models such as transfer function-noise models (TFN) (chapter 2; Gehrels et al.,
1994; Van Geer and Zuur, 1997), transfer function models as described by Tankersley
et al. (1993) and Tankersley and Graham (1994), ARX models or dynamic regression
models (DR) (chapter 3) and threshold autoregressive self-exciting open-loop models
(TARSO) (chapter 3). TFN and ARX models describe linear relationships between
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input and output. The TARSO model accounts for threshold nonlinearities in the
relationship between precipitation surplus and water table depth. In chapters 2 and
3, and in Bierkens and Walvoort (1998) the performance was evaluated of empirical
time series models and physically based models such as the physical descriptive model
SWATRE (Belmans et al., 1983), a simple analytical model (Bierkens and Walvoort,
1998) and a stochastic differential equation (Bierkens, 1998). These comparative
studies concluded that empirical time series models are able to simulate water table
depths as well as more physically based models.

An advantage of empirical time series models is that only data on the input and
output variable are required for calibration, whereas physical mechanistic models need
additional information, in particular on the soil physical properties of the unsaturated
zone. A disadvantage of empirical time series models as compared to physical mech-
anistic models is that they cannot be used to predict the effect of changes in the
hydrological system on water table dynamics, because of the lack of a physical basis.
Therefore, there is a need for relationships between physical quantities and the para-
meters of empirical time series models. If known, these relationships can be used to
predict the effect of interventions in the hydrological regime on water table dynamics.
Several authors have given a physical basis to time series models in hydrology. For
instance, Salas and Smith (1981) demonstrated that annual streamflow time series
can be represented by autoregressive moving average (ARMA) processes. Parlange et
al. (1992) formulated a first-order autoregressive (AR(1)) model for soil water content
on the basis of the hydrological budget and soil water transport equation.

The aim of this study is to analyse how parameters of empirical time series models
for water table depth are related to physical quantities. In an application it will be
demonstrated that physically based time series models can be used in predicting the
effect of an intervention in the hydrological regime on water table dynamics.

This chapter is composed as follows. In section 4.2 the time series models describ-
ing the relationship between the potential precipitation surplus and the water table
depth are given. In section 4.3 a water balance for a soil column is derived. It will
be shown that the water balance can be expressed in terms of an ARX model. An
extension is made to situations with threshold nonlinearities in the relationship be-
tween precipitation surplus and water table depth (TARSO model). In section 4.4
the application of a physically based ARX model to predicting the effects of interven-
tions in the hydrological regime is illustrated by two examples from practice. Some
concluding remarks will end chapter 4.

4.2 Time series models

Let { H;} denote a discrete time series of water table depths (output). Furthermore, let
{P,;} denote a time series of the average daily potential precipitation surplus between
t—1 and ¢ (input), which is calculated from the difference between daily precipitation
and daily Makkink reference-crop evapotranspiration (Winter et al., 1995). Now the
TFN model is given by

H;y = Hr s + Ny, (4.1)
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with

Hyp, = ;6iHF,t—i + Zowjptfjfb
= j=

and

P q
Ny —p= Z¢i(Nt—i — )+ e+ Zagft—j-
j=1

i=1

Hpy ; denotes the part of the water table depth H; that is explained by the precipitation
surplus P,. Here b is a delay factor, which is an integer greater or equal to zero. In
this study b is assumed to be zero.

The unexplained part, or noise V¢, is independent of the level of P, and is additive
with respect to the influence of P,. Furthermore {N;} is assumed to be stationary.
The term {¢} is a discrete white noise process with zero mean and finite variance,
and where p is the mean of the process {IV;}.

If 6;,4 = 1,...,r equals ¢;,s = 1,...,p the TFN model can be written as an
autoregressive moving average exogenous variable (ARMAX) model:

P s P q
Hy—p= Z ¢ Hp —i + ijptfjfb + Z@(th —p)+e+ Z Orer—r, (4.2)

i=1 =0 i=1 k=1

which can be written as follows (Hipel and McLeod, 1994):

P s q
= (Hy_; — iPi_; L
H,—p Z(/)(Ht ;L)—&-Zw Ptj—&—et—&—Zert k
i=1 Jj=0 k=1

If the moving average terms are taken to be zero, i.e. 6y = 0,k = 1,...,q, the
autoregressive exogenous variable model (ARX(m, m’)) results, which is given by

!

Ht*M:Zai(Ht—i*M)+ijPt—j+6t7 (4.3)
im1 =0

where €, is a discrete white noise process with zero mean and finite variance. In
contrast to the TFN model in Eq. (4.1), the transfer component Hy ; and the noise
component Ny of the ARMAX model are interrelated, as appears from the common
autoregressive operators ¢;,¢ = 1,...,p in Eq. (4.2). The TFN model is therefore
more general and more flexible when fitted to observed series than the ARMAX model
or the ARX model. However, in the next section it will be shown that the ARX(1,0)
model can easily be related to the water balance terms of a soil column.

The above models describe linear relationships between input and output. However,
the relationship between precipitation surplus and water table depth may contain
several forms of nonlinearities. One form of nonlinearity is caused by the presence of
thresholds which divide the relationship between precipitation surplus and water table
depth into several regimes. These thresholds are, for instance, soil physical boundaries
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Figure 4.1: Soil column with water balance terms.

Input terms: P, = potential precipitation surplus, i.e. precipitation—potential evap-
otranspiration [Ltfl]; Eyi — Ea.; = difference between potential and actual evapo-
transpiration [Lt~]; q» = regional groundwater fluz [Lt™']. Output terms: V, =
volumetric water content in the unsaturated zone [L]; qa¢ = drainage flux [Lt™"].
H, = the drainage level [L)|; Hy = water table depth [L].

or drainage levels. Threshold nonlinearities in the relationship between precipitation
excess and water table depth can be modelled by threshold autoregressive self-exciting
open loop models (TARSO) (chapter 3; Tong, 1990). A discrete TARSO process
{H;, P,} with order (¢;(mq,m}),...,(me,m})) and delay parameter d (d > 0) can be
defined as a solution of the equations

!

m; "
Hy =y =3P (Hyoi = D)+ 3 0P Pi+ ), if 1y < Hima <75,
i=1 =0
(4.4)
where —oco =79 < r; < - < 1 = 00, al(-j) and bgj) (j = 1,...,¢) are parameters,
and {egj )} (j =1,...,¢) are heterogeneous white noise sequences with zero mean and
finite variances Uzm and each being independent of {P;}. The thresholds are the
levels r1,...,7¢_1. The real line is partitioned into ¢ intervals, and H; satisfies one

of ¢ ARX models depending on the interval in which H;_4 falls. Note that Eq. (4.4)
is an alternative notation of the definition of a TARSO model given by Tong (1990)
with respect to the constant term.

4.3 A water balance for the phreatic groundwater
zone

Figure 4.1 shows a soil profile with a water table and incoming and outgoing fluxes.
At the top of the soil column two incoming fluxes are assumed: P, [Lt™!] and
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{Ep+ — Eap}, [Lt™']. The term P; reflects the potential precipitation surplus, which
is defined by

P,=P —E,,,

where P/ [Lt™'] is the precipitation between ¢ — 1 and t, and E,,; [Lt~!] is the po-
tential Makkink reference-crop evapotranspiration between t —1 and ¢. The generally
unknown difference between potential and actual evapotranspiration (E, ; [Lt™']) is
expressed in Figure 4.1 by the term {E, ; — E, .} [Lt !]. At the bottom of the soil
column the flux g, [Ltfl] expresses the regional component of groundwater flow,
i.e. upward and downward seepage. The term gqq [Ltfl] indicates the flux to and
from surface waters such as trenches and ditches, with drainage level Hy [L]. The
term V; [L] expresses the moisture content in the unsaturated zone, which shows a
generally unknown variation in time.

Until now a discrete time scale was used, i.e. equidistant time steps indicated by
subscripts t. In the following, a water balance will be constructed in terms of a linear
time series model. For this purpose the continuous time scale will be used, indicated
by (t). Several terms are assumed to be independent of H(t), so that a water balance
with a linear structure can be constructed. First, the drainage level Hy is assumed to
be independent of H(t), so that the drainage flux gq(¢) can be defined by

H, — H(t)
qa(t) = ———=,
Y
where « is the drainage resistance which is also assumed to be independent of H (t).
Next, the effective porosity ¢ [—] of the porous medium in which the water table
depth H(t) fluctuates is assumed to be independent of H(t). Finally, the regional
component of groundwater flow (gp,) is assumed to be independent of H(t). A water
balance for the phreatic groundwater zone can now be given by
dH  H,— H(t) dv

+P(t)+q, + {E,(t) — Ea(t)} —

AT " T (45)

which results in the following ordinary differential equation for H(t):

aH _ @ 1 B m W
7l PO a2 an0-RO-F ) 6o

The second term at the right hand side of Eq. (4.6) is called U(t) in the following. If
we assume that dV'/dt does not depend on H(t) and given that at time ¢ — At the
water table depth is equal to H(t — At) the solution to Eq. (4.6) is given by

t
H(t) = H(t — At)e 2V @) 4 / e~ /Ny (1)dr.
t—At

Now, assuming that U(t) is constant between t — At and ¢, we obtain
H(t) = H(t — At)e™Y#0) 1 U(t)py {1 - e—m/w} ,
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This results in
Ht) = {e—m/ W} H(t — At)
Sty {1 _ e—At/(w)} P(t)

+{va, + Hy} {1 - e*At/(m')}
+y {[Ep(t) — E.(t)] — %} {1 _ e_At/(‘P’Y)} - (w7)

The last term at the right hand side of Eq. (4.7) contains terms which are generally
unknown. If this term is a white noise process then the structure of Eq. (4.7) is
identical to the ARX model which is given in Eq. (4.3) with order (1,0). The first
two terms at the right hand side of Eq. (4.7) describe the dynamic relationship
between the input P(t) and the output H(t). The third term at the right hand side
contains only terms that are assumed to be constant in time. The last term at the
right hand side of Eq. (4.7) can be considered as the error process €(t). For given At
Eq. (4.7) can now be written as

Ht — = ax (Ht—At — ‘LL) + b()Pt + €t, (48)
with
a; = e Bten)
bO = ’Y(l - a’l)7
o= g+ Hy. (4.9)

This model is referred to as the physically based ARX(1,0) model. From Eq. (4.9)
it follows that 0 < a; < 1 and 0 < by < oo, as they should from a physical point of
view. The physical quantities vy, ¢, and ¢, can now be calculated from time series
parameters in the following way:

__bo
Y - 1_a15
—At
p = :
vIna;
— H,
@ = == (4.10)
Y

The analysis shows that from a physical point of view the ARX(1,0) model is the
most appropriate time series model among other linear alternatives. Lankester and
Maas (1996) found a similar relationship between precipitation surplus and water
table depth on the basis of the first two moments of the impulse response function.
The parameters in Eqs. (4.9) and (4.10) can be fitted on irregularly spaced time series
by using the Kalman filter application described by Bierkens et al. (1999).

The physically based ARX(1,0) model can easily be extended to situations with
more than one drainage level. Assuming two drainage levels to be present, H; and
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H,, a water balance can be written as

dH H,—H(t) H,—H(t) av
— = P(t) +qy + {E,(t) — Ea(t)} — —
i T, T (t) +an +{Ep(t) — Ea(t)} —

with «; and 75 being the drainage resistances corresponding to the drainage levels
H, and H>, respectively. After some derivations we obtain

1- 1— H, H
H(t) —5MF%W+—£P@+—£{%+J+_%
« @ 71 72
1-p AV
T {Ep(t) — Ea(t) - E} ; (4.11)
with
1 1
o=—+—,
Y1 Y2
and
At
B=e =%

Eq. (4.11) is analogous to the following ARX(1,0) model in continuous time:

H(t)—p/ =a) {H(t— At) — '} + by P(t) + € (),

with
G = 8
]__
h = —2,
u/—{%+%+%} (4.12)

«

Note that the ARX(1,0) model applied in this study is chosen on the basis of physical
analysis rather than selected from a large set of candidate models by a procedure
of identification, estimation and diagnostic checking as described by Box and Jenk-
ins (1976) or an automatic selection procedure using Akaike’s Information Criterion
(AIC) or Bayes Information Criterion (BIC) (see De Gooijer et al. (1985) for a sur-
vey). As a result, the ARX(1,0) model is likely to fit less well to the data than a
TFN model selected from a large set of candidate models. However, as shown, the
ARX(1,0) model can easily be expressed in physical quantities, which makes predict-
ing effects of interventions in hydrological regimes possible. This will be illustrated
in the next section.

The schematic soil profile in Figure 4.1 can easily be extended to a situation with
more than one regime, as is shown in Figure 4.2. Threshold nonlinearities in the
relationship between precipitation surplus and water table depth may be caused by
soil physical boundaries, or the presence of drainage levels. Further, the regional flux
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Figure 4.2: Soil column with water balance terms for three regimes. See Figure 4.1.
The superscript 1), j = 1,...,3 indicates the regime.

may vary with the regimes. Now (4.7) can be extended to a situation with j =1,...,¢
regimes:

H(t) = {e_ﬁ‘t/(ﬂo(j\]’Y(j\])}H(t _ At)
+y D) {1 _ o= Ot/ ) } P()
+ {fy(j)ql()j) + Hs(j)} {1 B efAt/(Lp(]’),),(]'l)}

+0 {18, 0 - B (0] - 257 {1-e o)y

At

For a given At the structure of Eq. (4.13) equals the TARSO model given in (4.4)
with order (¢;(11,01),...,(1¢,0p)). Its parameters can be written in terms of physical
quantities in the following way:

agj) = e AUV
béj) = ’Y(J) {Zl - agj) )

4.4 Application: predicting the effect of a hydro-
logical intervention

In this section the physically based ARX(1,0) model is applied to predict the effect
of two interventions. The first intervention took place in 1985 in the neighbourhood
of an observation well in the eastern part of the Netherlands (Well 1). The data on
water table depth from the period after 1985 were used to calibrate the ARX(1,0)
model. The data which were collected before 1985 were used to validate the accuracy
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Figure 4.3: Schematic soil profiles for the sites of Well 1 (left) and Well 2 (right)

of the predicted effect of the intervention. Note that in most practical applications
the data will be used the other way round, that is, calibration on data which are
collected before an intervention takes place and prediction of water table depth which
will occur after the intervention. However, in this application the series before the
intervention was not sufficiently long enough to calibrate an ARX(1,0) model.

The second intervention took place during 1995 and 1996 in the neighbourhood of
another observation well in the eastern part of the Netherlands (Well 2). The data
before 1995 were used to calibrate the ARX(1,0) model, whereas the data which were
observed after 1996 were used to evaluate the accuracy of the predicted effect of the
intervention on the water table depth.

4.4.1 The well sites

Well 1 is situated in a slightly undulating landscape of eolian sands. The dominant
land use is pasture. Observations on water table depth were available from April 28th
1982. South of the well site a water course flows. North of the well site a ditch is
present. The distance between the water course and the ditch is on average 325 m.
The well site is halfway between the water course and the ditch. A soil profile is
given in Figure 4.3. Daily precipitation is observed at a station a few kilometers from
the well site. Data on daily Makkink reference-crop evapotranspiration (Winter et
al., 1995) are known for the meteorological station Twente Airport at 42 km distance
from the well site.

Well 2 is also situated in a slightly undulating landscape with eolian sands, mainly
used as pasture. Observations on the water table depth are available from January
13th 1989. A soil profile description is given in Figure 4.3. Daily precipitation is
observed 10 kilometers from the well site, daily Makkink reference crop evapotran-
spiration is known for the meteorological station Twente Airport at 44 kilometers
distance from the well site.
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Table 4.1: Data on the hydrological conditions before and after the interventions

took place.
Well parameter value before intervention value after intervention
1 H; -2.2 -1.82
H, -2.44 -2.60
U 2.93 5.38
L 325 325
2 H -1.6 -1.6
H, -1.5 -1.5
Utrenches 0.8 0.8
Uditches 1.1 1.1
Ltreuches 134 108
Lditches 628 547

Values in m. All levels are relative to the ground surface at the well site. Hy = average
drainage level; Hy, = average bottom level of drainage devices; u = average wetted
perimeter of drainage devices; L = average distance between drainage devices.

4.4.2 The interventions

Data on the hydrological conditions before and after the interventions were provided
by the District Water Board “Groot Salland”.

Well 1: In 1985 the profiles of the water course and the ditch were enlarged and a
pumping-engine was installed in order to maintain a higher water level in summer.
As a result both the drainage resistance 7 (days) and the drainage level H; changed.
The data given in Table 4.1 were used to calculate the drainage resistances before
and after the intervention. For this purpose the drainage formula of Ernst (1956) was
applied, which is given by

Y = Y + Yh + Ve + Ye

D, n L2 n L 1 aD, n Lc,
—_— - —1In
]{?V 8 Z?:l kh,iD,i TI']{?I‘ u u

(4.14)

where v, is the resistance to vertical flow (days), v, is the resistance to horizontal
flow, v, is the resistance to radial flow, and ~, is the resistance to the flow into the
drainage devices, see Figure 4.4. Dy, ;,i =1,...,n are the thicknesses of n layers with
horizontal flow. D, and D, are the thicknesses of the layers with vertical and radial
flow, respectively (m). ky;,¢ = 1,...,n are the horizontal conductivities in the n
layers with horizontal flow (m d—!). k, and k, are the vertical and radial hydraulic
conductivity in the layers with vertical and radial flow, respectively (m d~!), with
k. = Vknky. L is the distance between the drainage devices (m), u is the wetted
perimeter (m), « is a factor accounting for the geometry of radial flow (-), and c. is the
entrance resistance (days). Three profile types can be distinguished: i) homogeneous
profiles; ii) profiles with a boundary between two layers above the bottom of the
drainage devices (H,, in Table 4.1), and iii) profiles with a boundary between two layers
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Figure 4.4: Scheme of the vertical (7, ), horizontal (), radial (v,) and entrance
component (v,) of the drainage resistance.

Table 4.2: Hydraulic conductivities used in the calculations of the drainage resis-
tances.

Well depth ky, ke
1 0--1.6 15 15
—-16- -2 3 1

—2--22 15 15

2 0--1.15 15 15
—1.15-—-1.5 3 1

Depths in m relative to the ground surface at the well site. ky and ky are horizontal
and vertical saturated hydraulic conductivity, respectively, in m d—1.

below the bottom of the drainage devices. Hydraulic conductivities were derived from
the soil profile descriptions and a table given by Bierkens (1996), see Table 4.2. The
entrance resistance c, was assumed to be 1 day, both before and after the intervention.

Using Eq. (4.14) and the information in Tables 4.1 and 4.2 the drainage resistances
before and after the intervention were estimated at 145.0 d and 90.2 d, respectively.
The mean drainage levels before and after the intervention, relative to the ground
surface at the well site, were estimated at -2.20 m and -1.82 m, respectively.

Well 2: In the neighbourhood of the well site trenches and ditches are present.
During 1995 and 1996 the drainage in the surrounding area was intensified: the
length of active trenches increased by 475 m and a trench with a length of 212 m was
enlarged to the size of a ditch. Details on the hydrological situation before and after
the intervention took place are given in Table 4.1. The drainage resistance before and
after the intervention was calculated using Eq. (4.14) for both the trenches and the
ditches. Average distances between trenches and ditches were derived from a digital
topographical map, for 9 neighbourhoods with radii varying from 100 m to 900 m.
The hydraulic conductivities used in Eq. (4.14) are given in Table 4.2. For a detailed
description of the procedure we refer to Knotters and Bierkens (1998). The total
drainage resistance before and after the intervention was calculated as follows:

1
2
2t

minI{('y'i,R)

Ytot. = (4 15)

with R = 100, 200, ...,900 being the radius of the area for which the drainage resis-
tance is calculated and ¢ = 1, 2 indicating trenches and ditches, respectively. Following
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Figure 4.5: Calibrated and observed series of water table depths for Well 1. Cali-
bration period from January 1st 1987 to March 13th 1997. e: observed water table
depth. Solid line: updated predictions.
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Figure 4.6: Predicted water table depths (solid line), 95% prediction interval (dashed
lines), observed water table depths (e) for observation Well 1. Prediction period from
January 1st 1982 to December 18th 1984.

Egs. (4.14) and (4.15) the drainage resistances before and after the intervention were
estimated at 228.3 d and 183.6 d, respectively.

4.4.3 The effect of the interventions

Well 1: Using water table depths observed between January 1st 1987 and March 13th
1997 and daily observations on precipitation and evapotranspiration, the physically
based ARX(1,0) model given in Eq. (4.8) was calibrated for time intervals of one
day by using the Kalman filter algorithm applied by Bierkens et al. (1999). With
a drainage level H; = —182 cm relative to the ground surface of the well site, the
calibration resulted in a drainage resistance 4 of 98.85 d, an effective porosity ¢ of
0.1621 and a regional groundwater flux g, of 0.5775 mm d~!. Following Eq. (4.9) the
estimated ARX(1,0) model for At =1 day is

hy +176.3 = 0.9395(hi—a¢ + 176.3) + 5.982p; + €&,

with 6. = 3.71 cm. The results of the calibration are depicted in Figure 4.5.
Next the calibrated drainage resistance was adjusted proportionally to the drainage

70



4.4 Application: predicting the effect of a hydrological intervention

resistances before and after the intervention which were calculated by Eq. (4.14)
(145.0 d and 90.2 d, respectively). This resulted in a drainage resistance of 158.8 d
for the period before the intervention. Using the adjusted drainage resistance and
assuming a drainage level of -220 cm relative to the ground surface at the well site,
the water table depth was predicted for the period from January 1st 1982 to December
18th 1984, i.e. before the intervention took place. Note that the values of effective
porosity ¢ and regional groundwater flux ¢, were not adjusted. Now, using Eq. (4.9)
the ARX(1,0) model adjusted for the effect of the intervention on v and Hj is given
by

hy 4 210.8 = 0.9619(hy_n¢ + 210.8) 4 6.052p; + &.

The predicted time series of water table depths is depicted in Figure 4.6. The 95%
prediction interval is also shown, which is estimated by

[hpyt 1/ 2,hF £+ 196/ ] (4.16)

where hp ; is the (deterministically) predicted water table depth (see Eq. (4.1)), a1 is
taken from the adjusted ARX(1,0) model (a; = 0.9619) and o, = 3.71 cm.

Well 2: The ARX(1,0) model given in Eq. (4.8) was calibrated on water table depths
observed between January 1st 1989 and December 28th 1994 and daily observations
on precipitation and evapotranspiration, using the Kalman filter algorithm applied by
Bierkens et al. (1999). The drainage level H; both before and after the intervention
is 160 cm below the ground surface at the well site, which is slightly deeper than the
average bottom depths nearby the well site. The calibration resulted in a drainage
resistance 4 of 203.5 d, an effective porosity @ of 0.1405 and a regional groundwater
flux g, of 1.410 mm d~!. The ARX(1,0) model which describes the water table
dynamics before the intervention took place is then given by

(At =1 day), with 6. = 3.99 cm. The results of the calibration are depicted in Figure
4.7.

The calibrated drainage resistance of 203.5 d was adjusted proportionally to the
drainage resistances before and after the intervention which were calculated by Egs.
(4.14) and (4.15). This resulted in a drainage resistance of 163.7 d for the period
after the intervention took place. Next the water table depth in the period from
January 1st 1997 to November 28th 1998, i.e. after the intervention took place, was
predicted by using the adjusted drainage resistance of 163.7 d in the ARX(1,0) model.
The other parameters were left unchanged, i.e., = 0.1405, ¢, = 1.410 mm d—1,
Hy, = —160 cm. From Eq. (4.9) follows that the ARX(1,0) model, adjusted for the
effect of the intervention on -y is given by

hy + 136.9 = 0.9574(hy_ ¢ + 136.9) + 6.967p; + &.
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Figure 4.7: Calibrated and observed series of water table depths for Well 2. Cali-
bration period from January 1st 1989 to December 28th 1994. e: observed water table
depth. Solid line: updated predictions.
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Figure 4.8: Predicted water table depths (solid line), 95% prediction interval (dashed
lines), observed water table depths (e) for observation Well 2. Prediction period from

January 1st 1997 to November 28th 1998.

The predicted time series of water table depths is shown in Figure 4.8. The 95%
prediction interval is calculated using Eq. (4.16).
The prediction performance is validated with the following criteria:

e the mean prediction error as a measure of systematic error:

1 n
ME:E;@

where n is the number of observations and e; is the difference between the
observed and predicted water table depth.

e the standard deviation of the prediction errors as a measure of precision:

n

1 2
SDE = .~ ME
n—lg(e )

72



4.4 Application: predicting the effect of a hydrological intervention

Table 4.3: Validation results of the predictions with physically based ARX(1,0) mod-
els.

Well, model ME SDE RMSE MAFE
1,1 10.58 21.76 23.37 19.93
1,2 -21.78 25.54 32.75 24.93
2,1 -4.28 14.30 14.77 11.33
2,2 -13.68 13.85 19.35 15.98

Values in cm. ME = mean error, SDE = standard deviation of errors,

RMSE = root mean squared error, MAE = mean absolute error.

Well 1, model 1 (adjusted for the intervention): Hy = —22m, v = 158.8d,

¢ =0.1621, ¢, = 0.5775mmd .

Well 1, model 2 (benchmark, not adjusted for the intervention) : Hy = —1.82m,

v =9885d, o = 0.1621, g, = 0.5775mmd " .

Well 2, model 1 (adjusted for the intervention): Hy = —1.6m, v = 163.7d,

© = 0.1405, g, = 1.410mmd~".

Well 2, model 2 (benchmark, not adjusted for the intervention) : Hy = —1.6m,

v =203.5d, o = 0.1405, ¢ = 1.410mmd 1.

e the root mean squared error as a measure of accuracy:

e the mean absolute error as measure of accuracy which is less sensitive for out-
lying values than the RMSE:

1 n
MAE ==Y |e;].
n;\e\

Table 4.3 lists the results for the above described validation criteria. Predictions
with the models that were not adjusted for the interventions are used as a benchmark.
From both Table 4.3 and Figures 4.6 and 4.8 it is clear that the adjusted ARX(1,0)
model is predicting the effect of the interventions reasonably well. As compared
with the benchmark model that does not account for the intervention, the prediction
performance clearly improved if the parameters of the ARX(1,0) model were adjusted
for the intervention. The M FE of 10.58 cm which was found for Well 1 can be explained
from the fact that only the drainage resistance and the drainage level were adjusted for
the intervention, whereas it may be expected that the upward regional groundwater
flux ¢y, decreases due to higher surface water levels after the intervention. This may be
mended by adjusting g;, on the basis of expert knowledge or the results of a stationary
model for groundwater flow.

The results for Well 2 in Table 4.3 show that the predictions are improved in terms
of ME, RMSE and M AFE if the ARX(1,0) model is adjusted for the intervention in
the drainage system. In the case of Well 2 the decreased drainage resistance mainly
influences the mean water table depth: the SDE increases slightly if the adjusted
model is applied in the predictions, whereas the M E reduces with 9.4 cm.
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4.5 Some concluding remarks

In this chapter, empirical time series models describing the relationship between pre-
cipitation surplus and water table depth are interpreted physically. It is shown that
the ARX(1,0) model can be expressed in water balance terms. Furthermore, it is
shown that the TARSO model, which accounts for threshold nonlinearities in the
relationship between precipitation surplus and water table depth, can be expressed
in water balance terms also. For each regime, separated by thresholds, a physically
based ARX(1,0) model can be derived.

The ARX(1,0) model applied in this study is chosen on the basis of physical analy-
sis. A model identification procedure as described by Box and Jenkins (1976) or
an automatic selection procedure with for instance Akaike’s Information Criterion or
Bayes Information Criterion (De Gooijer et al., 1985) may result in models that fit
better to the data than the ARX(1,0) model. However, because the physically based
ARX(1,0) model can easily be expressed in physical quantities they can be attractive
tools for predicting the effect of interventions in the hydrological regime on the water
table dynamics. In contrast to mechanistic groundwater models only limited physi-
cal information is required. The predictions can further be improved by accounting
for the effect of interventions on the regional groundwater flux. In situations with
a strong nonlinear relationship between precipitation surplus and water table depth,
the physically based TARSO model can be applied.
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Chapter 5

Predicting water table depths
in space and time using a
regionalised time series model

(This chapter is based on the paper ‘Predicting water table depths in space and time
using a regionalised time series model’ by M. Knotters and M.F.P. Bierkens, Geoderma
(in press), copyright (©2001, with permission from Elsevier Science.)

Abstract

A regionalised autoregressive exogenous variable (RARX) model is presented for the
relationship between precipitation surplus and water table depth. The parameters of
the RARX model are ‘guessed’ at unvisited locations using auxiliary information such
as soil profile descriptions, a topographic map and a digital elevation model (DEM).
In the Direct Method the guessed parameters are used to predict time series of water
table depths at unvisited locations; observed water table depths are not used in the
prediction procedure. In the Indirect Method, observed water table depths are used
to correct the predictions resulting from the Direct Method for systematic prediction
errors. The prediction performance is evaluated by cross-validation. The validation
results show small random errors (standard deviation on average 10 cm), but large
systematic errors (absolute mean error on average 18 cm). The root mean squared
error of the predicted time series is on average 22 cm. Taking the uncertainty of both
the future weather conditions and the RARX-model predictions into account, a map
reflecting the risk that a critical depth will be exceeded at a critical day in a future
year is constructed. Furthermore, maps showing the components of uncertainty in
predicted water table depths are given.

5.1 Introduction

In the Netherlands, the phreatic water table is generally found at shallow depths,
say, between 0 - 2 m below the ground surface. As a consequence, the water table
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depth is often critical to agriculture and nature reserves. Therefore, water managers
want to be informed about the variation in both space and time of water table depth.
Information in terms of risks may be useful in taking strategic decisions in land use
planning and water management. Stochastic methods are able to provide this risk
information.

The water table fluctuates in time mainly as a result of the precipitation surplus.
Empirical time series models such as linear transfer-function noise (TFN) models (Box
and Jenkins, 1976; chapter 2), and autoregressive exogenous variable (ARX) models
(Hipel and McLeod, 1994; chapter 4) have proved to be useful tools in describing
the dynamic relationship between precipitation surplus and water table depth. The
parameters of these models can be estimated for well sites, where sufficiently long
time series of precipitation surplus and water table depth are available. Since precipi-
tation surplus data are usually available over long periods, the models can be used to
simulate long time series of water table depths, say 30 years, from which all climate
representative characteristics of the dynamic behaviour can be calculated.

It may be desirable, however, to not only be informed about the dynamic behav-
iour of the water table at the well sites, but also at other locations. To this end,
the water table depth needs to be predicted in both time and space. Statistical
spatio-temporal prediction methods can roughly be divided into three approaches: i)
methods starting from geostatistical methodology (see Kyriakidis and Journel (1999)
for a review), ii) methods based on multivariate time series modelling (see for in-
stance, Pfeifer and Deutsch, 1980), and iii) methods based on time series models with
regionalised parameters (for instance Van Geer and Zuur, 1997). Combinations of
these three approaches are also possible. In some way, all these methods parametrise
the spatio-temporal random function X (u,t), where X is the target variable, u is a
vector representing the spatial co-ordinates x,y, and ¢ is the time index. Generally,
these parametrisations demand many observations on the target variable X in both
space and time. However, in most regional surveys in the Netherlands, only few time
series of water table depths are available, and the opportunities for collecting addi-
tional groundwater data in space and time are limited. Therefore, there is a need
to use widely available auxiliary information in parametrising the random function
X (u,t). Since simple time series models describing the relationship between precipi-
tation surplus and water table depth can be expressed in physical quantities (chapter
4), this study focuses on regionalised time series models using relationships between
widely available physical information and parameters of time series models. These
relationships may enable spatial prediction of time series models. This way, input
series on precipitation surplus can be transformed into output series of water table
depths at all points in space. From these spatially predicted or simulated series, all
needed characteristics can be calculated.

The aim of this study is to predict time series of water table depths spatially
using physically based regionalised time series models and databases, such as digital
elevation models (DEM), digital topographic maps and soil maps, and to evaluate
the accuracy of such predictions. Furthermore, it will be shown that information in
terms of risks can be provided by regionalised time series models.

The chapter is composed as follows. In section 5.2, the study area and the data set
are described. In section 5.3, the regionalised ARX model (RARX) is introduced and
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o Validation locations
o Measurement locations
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Figure 5.1: Study area and its location in the Netherlands. Closed circles: 13 lo-
cations where time series of water table depths have been observed in permanently
installed wells. Open circles: 27 locations where water table depths have been o0b-
served incidentally in temporarily installed observation wells.

its physical basis is given. In section 5.4, we describe how the parameters of the RARX
model are guessed from auxiliary information such as DEMs, soil profile descriptions
and digital topographic maps. The set up of the prediction experiment is described
in section 5.5. The results are discussed in section 5.6. In section 5.7 the sources of
uncertainty are discussed. In section 5.8, two maps based on the RARX model are
presented: i) a map of the risks that the water table is present within a depth of 50 cm
at April 1st in any future year, given the actual hydrological conditions, and ii) a map
with expected water table depths at April 1st in any future year. Furthermore, two
maps with components of uncertainty about the future water table depth at April 1st
are given. The chapter ends with a summary and discussion in section 5.9.

5.2 Data

The study area of 1,375 hectares is situated in the northern part of the Netherlands
(Figure 5.1). A brook valley with relatively wet and peaty soils forms the southern
part of the area. Here, the water table depth fluctuates roughly between 0 and 50 cm
in winter and 80 and 120 cm in summer. The northern part is built up of slightly
undulating cover sands, which locally cover boulder clays. In this part, the water table
depth fluctuates roughly between 50 and 120 cm in winter and 120 and > 200 cm
in summer. In 1997, a detailed soil map was made as part of a rural development
project. At 1,185 locations soil profile descriptions were made, to a depth of 180 cm
by augering (Van Dodewaard, 1997). The soil descriptions include field observations
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Table 5.1: Information on the observed time series of water table depths.

Well number 7 starting date ending date mean st. dev. min. max.
(d-m-y) (d-m-y) (cm) (cm) (cm)  (cm)

1 57 30- 7-1995 16- 3-1998 -151 10.6 -172 -115
2 41 9- 5-1995 16- 3-1998 -140 18.7 -164 -86
3 40 9- 5-1995 16- 3-1998 -192 15.2 -217  -160
4 38 30- 7-1995 2- 3-1998 -138 11.3 -165  -105
5 33 1-10-1996 16- 3-1998 -117 14.8 -141 -80
6 88 29- 1-1991 28- 4-1998 -80 13.1 -108 -29
7 61 12- 2-1991 28- 5-1998 -14 10.9 -37 12

8 38 27- 3-1991 28- 5-1998 -13 9.8 -44 7

9 97 14- 1-1991 28- 5-1998 -93 13.2 -116 -29
10 90 14- 1-1991 28- 5-1998 -63 14.5 -86 -15
11 7 29- 1-1991 28- 5-1998 -43 13.4 -64 -2

12 28 2-11-1995 15- 3-1997 -118 25.9 -150 -95
13 28 2-11-1995 15- 3-1997 -115 12.8 -135 -80
14 25 16- 6-1997 12- 6-1998 -61 10.6 -79 =37
15 25 16- 6-1997 12- 6-1998 -225 22.5 -254  -180
16 25 16- 6-1997 12- 6-1998 -250 31.2 -250  -152
17 25 16- 6-1997 12- 6-1998 -184 20.4 -211 -145
18 25 16- 6-1997 12- 6-1998 -81 9.4 -95 -56
19 25 16- 6-1997 12- 6-1998 -46 11.2 -63 -17
20 25 16- 6-1997 12- 6-1998 -93 27.5 -135 -53

of texture, organic matter content, soil horizons, and gley marks such as rust mottles
and the depth to the grey coloured, permanently saturated, reduced zone (G horizon).

A DEM of the area was made by laser scanning. The elevation ranges globally
from 4.5 m above Dutch Ordnance Datum in the brook valley to 13.5 m above Dutch
Ordnance Datum in the northern part. The accuracy of the elevation data, expressed
as root mean squared error, is approximately 22 cm at a point scale.

Up-to-date digital topographic maps (scale 1 : 10,000) are available for all parts
of the Netherlands. These maps distinguish several classes of drainage devices, such
as trenches, and ditches of various widths. Therefore, these maps may be useful in
regionalising RARX parameters that are related to the drainage characteristics. For
each of the classes the lengths of drainage devices within previously defined areas can
be calculated, and hence the average distance between drainage devices which belong
to the same class. Data on the wetted perimeters and bottom depths of drainage
devices are provided by the local water authorities.

Figure 5.1 shows the locations of 40 observation wells present in the area. In 13
permanently installed wells the water table depth is observed semi-monthly. For these
wells, time series are available with a length varying from 28 to 97 observations.
In 27 temporarily installed wells, the water table depth has been observed daily
during 5 separate weeks covering, in 1997 and 1998, both a wet and a dry season.

78



5.2 Data

Table 5.1: Continued.

Well number 7 starting date ending date mean st. dev. min. max.

(d-m-y) (dmy) (em) (om) (cm) (cm)
21 25 16- 6-1997 12- 6-1998 =77 14.9 -103 -53
22 25 16- 6-1997 12- 6-1998 -78 28.9 -118 -33
23 25 16- 6-1997 12- 6-1998 -88 26.6 -125 -45
24 25 16- 6-1997 12- 6-1998 -190 23.3 -221  -146
25 25 16- 6-1997 12- 6-1998 -90 6.1 -99 =75
26 24 16- 6-1997 12- 6-1998 -110 5.3 -117 -98
27 24 16- 6-1997 12- 6-1998 -67 9.1 -83 -46
28 25 16- 6-1997 12- 6-1998 -158 10.2 -170  -134
29 25 16- 6-1997 12- 6-1998 -93 5.9 -101 -78
30 25 16- 6-1997 12- 6-1998 -90 5.8 -98 =75
31 20 16- 6-1997 13- 3-1998 -70 13.9 -88 -40
32 25 16- 6-1997 12- 6-1998 -168 27.0 -168  -120
33 25 16- 6-1997 12- 6-1998 -128 17.8 -128 -93
34 25 16- 6-1997 12- 6-1998 -87 28.5 -87 -46
35 25 16- 6-1997 12- 6-1998 -44 29.8 -90 -4
36 25 16- 6-1997 12- 6-1998 -105 17.9 -129 -71
37 24 16- 6-1997 12- 6-1998 -86 18.6 -109 -51
38 25 16- 6-1997 12- 6-1998 -104 17.8 -125 -73
39 25 16- 6-1997 12- 6-1998 -112 13.4 -131 -81
40 25 16- 6-1997 12- 6-1998 -51 6.7 -63 -36

Table 5.1 gives details of the observed time series of water table depths. The 27
temporarily installed wells are located following a stratified random sampling design,
with catchments as strata. The boulder clay area in the northern part was excluded
from the network of observation wells, because in these soils the water table depth
could not be accurately measured (see Figure 5.1). The remaining area in which the
wells are located amounts 976 hectares.

The groundwater data set is roughly representative for local studies in areas of
comparable size in the Netherlands.

Daily data on precipitation are available from the station Dedemsvaart nearby the
study area. Daily data on the potential Makkink crop reference evapotranspiration
(Winter et al., 1995) are available from the station Eelde at about 55 km distance of
the study area. The precipitation surplus is calculated by

Pt = PQ — €p,t, (5-1)

where p} is the daily precipitation [Lt '] and e, is the daily potential Makkink crop
reference evapotranspiration [Lt~!].
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5.3 A regionalised ARX model (RARX)

We apply the first order autoregressive exogenous variable model (ARX) for the re-
lationship between precipitation surplus and water table depth, because this model
can easily be related to physical quantities, as shown the previous chapter. These
relationships to physical quantities will be used in regionalising the time series model.
The ARX model used in this study is defined by

Hy — p=a{Hianr — p} +boPs + €,

where ¢ indicates the time step, At indicates the time interval (At = 1day in this
study), Hy [L] is the water table depth at time ¢, P; is the mean potential precipitation
surplus between t — At and ¢ [Lt~!], a; [-], b [t] and p [L] are parameters and ¢, [L]
is an error term which is assumed to be a white noise sequence with zero mean and
finite and constant variance o2. This model is referred to as the ARX(1,0) model,
where 1 is the time lag in the autoregressive term of the output variable H and 0 is
the time lag in the autoregressive term of the input variable P.

The above defined ARX(1,0) model describes the dynamic relationship between
precipitation surplus and water table depth at one point in space. However, it may
be expected that this relationship varies in space, depending on hydrologic conditions
and soil physical conditions. This means that the parameters a1, by and p are space
dependent. Furthermore, it is likely that the error term ¢, and the error variance o2
vary in space. Now, a regionalised form of the ARX(1,0) model is given by

Hy(a) — p(a) = ag (Q){He-ac(w) — p(w)} + bo(0) F; + €(u), (5.2)
with error variance o2(u), and with u = (z,y) indicating the spatial co-ordinates =
and y. We refer to Eq. (5.2) as to the regionalised autoregressive exogenous variable
(u;1,0) model (abbr. RARX(u;1,0)). Note that P; is assumed to be global, that is,
space invariant. This assumption is quite reasonable in relatively small study areas,
as is often the case in the Netherlands. For larger areas a spatially varying P;(u) can,
for instance, be obtained through spatial interpolation using radar data.

The RARX(u;1,0) model given in Eq. (5.2) is a special form of the more general
extension of the transfer-function noise model (TFN) to the space domain given by
Van Geer and Zuur (1997). Van Geer and Zuur (1997) consider first order autoregres-
sive processes for both the transfer component and the noise component for reasons
of simplicity, that is, to easily incorporate them into a Kalman Filter algorithm. We
consider in Eq. (5.2) a first order autoregressive model for reasons of physical com-
prehensibility, because physical relationships may be helpful in regionalisation of the
RARX parameters. As explained in the previous chapter, the ARX model can be
considered as a special form of the transfer function-noise model: the transfer com-
ponent and the noise component have equal autoregressive parameters and therefore,
both components are interrelated in the ARX model. The more general TFN model
allows for a noise component which is independent of the transfer component.

Based on the water balance of a soil column given in chapter 4, relationships between
ARX(1,0) model parameters and physical quantities were derived, assuming that these
physical quantities are independent of H;(u). For the RARX(u;1,0) model these
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relationships are:
a(u) = e A/ () (5.3)
where p(u) is the effective porosity [-], and y(u) is the drainage resistance [t],

bo(w) = () {l—ay(w)}, (5.4)

and

‘u(u) = 7(u)qb(u)+HS(u): (55)

where ¢, (u) is the flux to the shallow groundwater from the deeper groundwater
systems [Lt~!], and H,(u) is the drainage level (e.g. the surface water level in ditches
and trenches, relative to the ground surface at location u) [L].

The error term can be expressed in physical quantities by

) = (0] { By = Euslo)] = S50 b {1 e 860} ), (56)

where [E,, s — E, ¢(u)] is the difference between potential and actual evapotranspira-

tion, and %51 is the change of the water content in the unsaturated zone during

At. Note that the error term contains those water balance terms that are usually not
very well known: both the actual evapotranspiration and the water content in the
unsaturated zone are generally neither measurable nor accurately predictable against
reasonable costs. The term €} (u) contains the remaining unknown influences.

5.4 Guessing RARX parameters from physical in-
formation

If only a limited number of observed time series of water table depths is available, then
it makes sense to use auxiliary information extensively when predicting water table
depths in space and time. The physical relationships that are given in the previous
section can be used to ‘guess’ the RARX(u;1,0) parameters from physical information.
The term ‘guess’ instead of ‘estimate’ or ‘predict’ is used to emphasise that physical
information is straightforwardly transformed into RARX(u;1,0) parameter values,
instead of executing a calibration or optimisation. Guessed parameters are denoted as
% in this thesis. In this section, it will be explained how the RARX(u;1,0) parameters
ay(u), bg(u), and p(u) can be guessed from physical information in data sources such
as DEMs, soil profile descriptions, information on surface water levels, and digital
topographic maps. In Egs. (5.3) and (5.4) it can be seen that a;(u) and bo(u)
both depend on the drainage resistance y(u) and the effective porosity ¢(u). The
methods by which these two physical quantities can be guessed are described in the
next two subsections. In the third subsection it is explained how p(u) can be guessed
from physical information. Using the procedures given in the next three subsections
guessed RARX parameter values can be obtained for the 1,185 locations with soil
profile descriptions.
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5.4.1 Guessing drainage resistance

The drainage resistance cannot be observed directly in the field, but can be calculated
from information on drainage devices and saturated conductivities of the subsoil. In
this study the formula of Ernst (1956) is used, which is given by

Y = YW + Yh + Y + Ye

D, L2 L aD, Lec,
In +

ke * 85" [ kniDn; * ke u (]

(5.7)

where v, is the resistance to vertical flow, v, is the resistance to horizontal flow, v,
is the resistance to radial flow, and ~, is the resistance to the flow into the drainage

devices. Dy ;,7 = 1,...,n are the thicknesses of n layers with horizontal flow. D,
and D, are the thicknesses of the layers with vertical and radial flow, respectively
(m). ku,¢=1,...,n are the horizontal conductivities in the n layers with horizontal

flow (m d='). k, and k, are the vertical and radial hydraulic conductivity in the
layers with vertical and radial flow, respectively (m d=!), with k&, = /kyk,. L is
the distance between the drainage devices (m), u is the wetted perimeter (m), o
is a factor accounting for the geometry of radial flow (-), and ¢, is the entrance
resistance (d). Three profile types can be distinguished in determining the value of
a: 1) homogeneous profiles; ii) profiles with a boundary between two layers above the
bottom of the drainage devices and iii) profiles with a boundary between two layers
below the bottom of the drainage devices.
Three types of drainage device were distinguished:

1. trenches and periodically dry ditches;
2. ditches with a width up to 3 m;

3. ditches with a width larger than 3 m.

The average distance between drainage devices was derived from digital topographic
maps (1:10,000) for areas with a specified radius. Bottom depths and wetted perime-
ters of the ditches were provided by the local water authorities. Bottom depths relative
to the ground surface were calculated using the DEM. Hydraulic conductivities were
derived from the soil profile descriptions and a table given by Bierkens (1996). Effec-
tive horizontal and vertical conductivities for multilayered profile types are calculated
in the following way:

1 n
kh,eff. = - § kh,ia
n“

=1

1
Z?:l kvl,,,; ,

where n is the number of layers. The entrance resistance c, was assumed to be 1 day.

kv,eff. =
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In the presence of 3 drainage types the total drainage resistance can be calculated
as follows:

- 1
Y= Z:3 1 (58)
=1 minR(’Yqz,u)

with R = 100,200, ...,1000m being the radii of the area for which the drainage re-
sistances are calculated. This way, for each type of drainage device (1,2, or 3), the
smallest drainage resistance is selected from average drainage resistances of neigh-
bourhoods of varying size.

5.4.2 Guessing effective porosity

The effective porosity is the ratio between a change in the water balance during At
and the resulting change in water table depth. The effective porosity not only depends
on the porosity of the medium in which the water table fluctuates, but also on the
storage of water in puddles and preferential flow or ‘bypass flow’. Prior information
about the porosity is available from the soil profile descriptions and the soil physical
standard curves for the main soil horizons in the Netherlands (Wosten et al., 1987).
From this information various quantities which may be related to the effective porosity
can be calculated, for instance the storage coefficient if the pressure head profile is
at equilibrium and the water table depth is equal to the depth to the permanently
saturated, reduced zone. This depth is observed by augering during the soil survey.

The storage coefficient (i [-] was calculated using the program CAPSEV (Wesseling,
1991), as follows:

" eqa i_e h) 7 ereQi(uai A’L
p, = iz Boness = 009 (20)) F Oroviduat i} £r2 (5.9)

Zg

where n is the number of discretisation intervals (0.01 m) between the ground surface
and the top of the permanently saturated zone, z, is the water table depth (m) which
is set equal to the depth to the permanently saturated zone here, z; is the depth of
the ith discretisation interval of 0.01 m, 6y,¢,; is the saturated moisture content in the
ith discretisation interval (m3m~3), 6(h,(z;)) is the moisture content corresponding
to the pressure head h,, at depth z; (m®m™3), and 6,cgiqual,; is the residual moisture
content in the ith discretisation interval ( m3m=3).

The permanently saturated zone may not be present within the augering depth of
1.80 m. Omitting these values or replacing them by the censor depth (1.80 m) would
lead to a bias in the guessed effective porosities. Therefore, these censored observa-
tions were replaced by their maximised likelihood value (2.04 m) in the calculations
(Knotters et al., 1995).

5.4.3 Guessing ;(u)

As indicated by Eq. (5.5) the RARX parameter p(u) depends on the drainage level
H,(u), the drainage resistance y(u) and the regional groundwater flux g, (u). The
value of H (u) can easily be calculated as the difference between the surface elevations
from the DEM and the surface water levels provided by the local water authorities.
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The value of vy(u) can be guessed in the way described in subsection 4.1. However,
the value of g, (u) can not be easily and accurately guessed from available data (Knot-
ters and Bierkens, 1998). Therefore we guessed the value of p(u) directly from the
hydromorphic soil profile characteristics that were observed in the field. These char-
acteristics roughly indicate the fluctuation zone of the water table. The value of z(u)
was guessed from the average of the depth to the permanently saturated zone and
the depth to the top of the hydromorphic characteristics, such as rust mottles.

5.5 Spatial prediction of time series and validation

5.5.1 A direct method

A first approach in predicting time series of water table depths spatially may be to
interpolate the guessed RARX parameters ‘directly’ from the 1,185 augering locations
to a location u and next to transform a p; series into a h;(u) series. The performance
of this method is evaluated as follows:

1. Guess the values of aj (u), bp(u), and u(u) at the 1,185 augering locations, using
the methods described in section 5.4 and Egs. (5.3) and (5.4);

2. Model the spatial structures of the guessed parameter values;

3. Interpolate the guessed parameter values to the 27 validation locations which
are located following a stratified random sampling design (Figure 5.1);

4. Transform the p, series (Eq. (5.1)) into a series of water table depths at the 27
validation locations by using the interpolated, guessed RARX parameters and
Eq. (5.2);

5. Calculate the differences between observed and predicted water table depths
and validation criteria:

ej(w) = h;(w;) — hj(w),j =1,...,n(w), (5.10)

where n(u;) is the number of observed water table depths at the ith validation
location. The systematic error in a predicted time series is calculated by

n(u;)
ME(w) = - (;) > e, (5.11)

The standard deviation of error in a predicted time series is calculated by

n(u;)
SDE(w;) = ;_ > (ej(w) — ME(u;))*. (5.12)
n(u;) —1 4

SDE(u;) can be interpreted as a measure of the error in predicting the temporal
variation of the water table depth at location u;.

84



5.5 Spatial prediction of time series and validation

The root mean squared error of a predicted time series is calculated by

n(u;)
1
RMSE(ul) == ej(ui)Q. (513)

n(w) —~

The mean absolute error of a predicted time series is calculated by

n(u;)
MAE(u;) = ﬁ > lesul (5.14)

Both RMSE(u;) and MAE(u;) are measures of the overall closeness of the pre-
dictions to the observations. M AE(u;) is less sensitive to outlying observations than
RMSE(u;). Note that first the RARX parameters are interpolated and next the wa-
ter table depths are calculated, that is, ‘interpolate first, calculate later’ or IC. The
other way round (CI) would imply that for every time step ¢ the spatial structure of
Hy(u) has to be modelled (see for instance Bierkens, 2001).

5.5.2 An indirect method

In the ‘direct’ method the observed water table depths are not used for prediction.
It may be attractive in practice, however, to improve the predictions by using ob-
served water table depths. The observations can be used to correct the predictions
for systematic errors. Furthermore, the observations can be used to predict the stan-
dard deviation of the error process, o (u), which is used to construct a risk map
(section 5.8). The ‘indirect’ prediction method is evaluated by a cross-validation
procedure:

1. See the above steps 1 and 2;

2. Interpolate the guessed RARX parameters to the 40 locations where water table
depths are observed (Figure 5.1);

3. Transform the p; series into 40 series of water table depths by using the inter-
polated, guessed, RARX parameters using Eq. (5.2);

4. Calculate errors, mean errors M E(uy,) and standard deviations of error SDE(uy),
k =1,...,40 indicating the observation well, by replacing 7 by k in Eqgs. (5.10)
to (5.12);

5. Estimate the standard deviation of the error term e(u) of the RARX model
(Eq. (5.2)) for the k locations in the following way:

7o) = /(1 - 63 (i) SDE?(wy), (5.15)
with k =1,...,40. Eq. (5.15) is true for first order autoregressive processes with

finite variance, which implies that 0 < |@1(ug)| < 1 (see for instance Chatfield,
1989, p. 36). G(uy) will be used in constructing a risk map (section 5.8);
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6. Model the spatial structure of M E(u) and 6(u) using M E(uy) and &.(uy), k =
1,...,40;

7. Leave one of the 27 validation locations out, say u#, and interpolate the mean
error and &, from the remaining 39 locations to this location, say M E(u#) and
~ Y.
Ge(u?);

8. Correct the predicted water table depths at location u# for ]ﬁ(u#);
9. Repeat steps 7 and 8 for all 27 validation locations;

10. Calculate the differences between observed and predicted water table depths
and the validation criteria, see Egs. (5.10) to (5.14).

In this cross-validation experiment the models for the spatial structures of m(u)
and & (u) were estimated once on the basis of all 40 well locations, instead of 27 times
for 39 locations for each cross-validation run apart. It may be expected, however, that
a bias resulting from this is limited.

5.6 Results

5.6.1 Regionalised RARX parameters

Guessed values of @; (u) were calculated from guessed drainage resistance and effective
porosity using Eq. (5.3), for the 1,185 augering locations. The spatial structure of
@1 (u) was modelled by a nested spherical isotropic variogram:

0.001223 +0.003190 (1555 — 0.5 (55)")
+0.01662 (155055 — 0.5 (5855)")
if < 365.6,

Y =13 0.001223 + 0.003190 + 0.001662 (1,5L 0.5 (5 )3) | (5.16)

2363 2363
if 365.6 < h < 2363,

0.001223 + 0.003190 + 0.001662,
if h > 2363,

where h is the lag distance. The sample variogram and the fitted model (Eq. (5.16))
are shown in Figure 5.2a. The model was fitted by the weighted least squares method,
using the numbers of pairs of observations in the distance classes as weights. Fig-
ure 5.2b shows a map of @, (u), obtained by ordinary kriging using Eq. (5.16) (Deutsch
and Journel, 1992). As Figure 5.2b indicates, the value of a;(u) increases in the
northern direction. The small values in the southern part are caused by the relatively
small drainage resistances and a relatively small effective porosity. This is represen-
tative for fast reacting groundwater systems with shallow water tables and intensified
drainage, as can be found in the southern part of the study area. In the northern part,
the drainage resistances are generally larger and the effective porosities are generally
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Figure 5.2: Spatial structure of ai(u), a Sample variogram (dots) and fitted vari-
ogram model (line), b Map of ai(u).

larger too, because of thicker unsaturated zones. Therefore, in this part of the study
area larger values of @, (u) are found.

Guessed values of by(u) were calculated from guessed drainage resistance and
guessed effective porosity using Eq. (5.4). The spatial structure of bp(u) was modelled
by the following spherical isotropic variogram:

3.363 + 4801 (Lol — 05 (+5)°)
if b < 1834,
- (5.17)
3.363 + 4.801,
if > 1834.

Figure 5.3a shows the sample variogram of Eo(u) and the fitted model given in Eq.
(5.17). Figure 5.3b shows a map of by(u), obtained by ordinary kriging using Eq.
(5.17). Figure 5.3b indicates large values of by(u) in the southern part. This can
be explained from the relatively small effective porosities; starting from equilibrium,
a change in precipitation surplus will result in a larger immediate change of water
table depth in the southern part than in the northern part. In the northern part, the
effective porosity is generally larger because of thicker unsaturated zones. Of course,
the relatively small drainage resistances in the southern part will reduce the effect of
a small effective porosity on the values of bo (u), but only to some extent, as Figure
5.3b indicates.

Guessed values of fi(u) were obtained from the 1,185 soil profile descriptions (sub-
section 4.3). The spatial structure of ji(u) was modelled by an exponential isotropic
variogram:

(k) =197.1 + 4072 {1 — exp (—3)}

if h < 500. (5.18)
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Figure 5.3: Spatial structure of ZNJO(u), a Sample variogram (dots) and fitted vari-
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Figure 5.4: Spatial structure of fi(w), a Sample variogram (dots) and fitted variogram
model (line), b Map of fi(u).

Figure 5.4a shows the sample variogram of fi(u) and the fitted model given in Eq.
(5.18). For distances larger than 500 m a trend seems to be present, as the sample
variogram indicates. Therefore the spatial structure is described locally up to a dis-
tance of 500 m, and ordinary kriging with a search neighbourhood is used. Figure 5.4b
shows a map of ji(u), obtained by local ordinary kriging and Eq. (5.18). Figure 5.4b
reflects the relatively shallow water tables in the southern part of the study area and
the relatively deep water tables in the northern part, from which the presence trend
in p1(u) can be explained (see section 5.2).
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Figure 5.5: Validation results of the Direct Method (values in c¢m), a mean error
(ME), b root mean squared error (RMSE), ¢ mean absolute error (MAE), d stan-
dard deviation of error (SDE).

5.6.2 Validation results for the direct method

Figures 5.5a to 5.5d show the validation results of the direct approach in predicting
time series of water table depths. On average, the RMSE is equal to 34 cm (Fig-
ure 5.5b). Several RM SE values are large, due to large systematic errors (M E) in the
predicted water table depths. The SDE values (Figure 5.5d) are small as compared
to the M E and RMSE values. Since the SDFE can be interpreted as a measure of
the error in predicting the temporal variation of water table depth, percentages of
variance accounted for were calculated, using the standard deviations of water ta-
ble depths given in Table 5.1. The percentage of variance accounted for is 64 % on
average. Note that the predictions are deterministic, that is, the observed p; series
is straightforwardly transformed into h(u;) series using Eq. (5.2) and the guessed,
interpolated RARX(u;1,0) parameters.
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Figure 5.6: Spatial structure of ME(u) and 6.(u), a ME(u) against zpgm(u), b
Sample variogram (dots) and fitted variogram model (line) of regression residuals of
the regression ME(u) against zppm(u), ¢ Sample variogram (dots) and fitted vari-
ogram model (line) of normalised &5(u).

5.6.3 Validation results for the indirect method

The MFE values observed at the 40 well locations appeared to be related to the
ground surface elevation. The following relation was found between systematic errors
and digital elevation data (zpgm) (Figure 5.6a):

ME(u) = 180.1 0.3487zppy (u) + £(u)
[34.5] [0.0586] , . = 25.03cm, (5.19)

(standard errors in brackets) with MFE and zpgy in cm and R2, = 46.9%. The

spatial structure of the residual term ¢(u) in Eq. (5.19) was modelled by

343.1+245.0 (15557 — 05 (r5t7)”)
if b < 1089.7,
v(h) = (5.20)
343.1 + 245.0,
if A > 1089.7,

see Figure 5.6b. The MFE values were interpolated to the validation locations by
means of External Drift Kriging (Deutsch and Journel, 1992), using the variogram
model given in Eq. (5.20) and with zpgy as an external drift.

The spatial structure of &.(u) was modelled by the following spherical variogram
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Figure 5.7: Validation results of the Indirect Method (values in

cm), a mean er-

ror (ME), b root mean squared error (RMSE), ¢ mean absolute error (MAE), d

standard deviation of error (SDE).

model after transformation to a standard normal distribution:

0.6616 +0.2240 (152 — 0.5 ()"
if h < 1455,
v(h) =
0.6616 + 0.2240,
if B > 1455,

(5.21)

see Figure 5.6c. Eq. (5.21) was used in constructing a risk map (section 5.8).
Figures 5.7a to 5.7d show the results of the indirect method in predicting time series
of water table depths. As compared to Figure 5.5a a reduction of systematic errors can

be seen in Figure 5.7a. Keeping in mind the accuracy of the DEM (

RMSE =22 cm),

the predictions seem reasonably accurate with an average RMSE value of 22 cm
(Figure 5.7b). The precision of the predictions (Figure 5.7d) is the same as in the
direct method (Figure 5.5d), because only the systematic error was reduced.
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Figure 5.8: Prediction results for Well 4.  Horizontal azes: day number

(day 1 = 1 January 1990); Vertical axes: depth in cm relative to the ground sur-
face. a Direct Method, b Indirect Method.

Figures 5.8a and 5.8b show time series plots of observed and predicted water table
depths, obtained by the Direct Method and the Indirect Method, respectively, for
Well 4 (see Table 5.1). The reduction of the systematic error obtained by the Indirect
Method is obvious: in this example, M E' = —58.2 cm in the Direct Method, whereas
MEFE = —14.2 cm in the Indirect Method. The standard deviation of error, SDFE, is
9.2 cm for both methods, which corresponds with a percentage of (temporal) variance
accounted for of 33 %. This possibly indicates that the linear ARX(1,0) model not
adequately describes the relationship between precipitation surplus and water table
depth for the location of well number 4.

5.7 Sources of uncertainty

In the errors that are observed in the cross-validation experiments, the following
sources can be distinguished:

1. the assumption that the p; series represents the precipitation surplus at all
locations in the study area;

2. inadequacy of the ARX(1,0) model to describe the relationship between precip-
itation surplus and water table depth;

3. the guessed values a, (u), by(u), and ji(u) at the 1,185 augering locations. These
guessed values may contain errors because of possible weak representativeness
of the physical relationships which are used in the guessing procedures (sec-
tion 5.4), and errors in the data sets;

4. the interpolation of the values of @y (), bo(u), and fi(u), from the 1,185 augering
locations to the ‘unvisited’ locations, such as the 27 validation locations;

5. the correction for systematic error, because M E(u) was observed at a limited
sample and its spatial structure was modelled using a limited number of loca-
tions (only in the Indirect Method).
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Table 5.2: Error components in RARX(u;1,0) model predictions

Well number A B DM M
ME SDE ME SDE ME SDE ME
1 2.3 8.4 -32.9 8.4 -66.4 8.5 -35.1
2 0.9 12.5 -10.3 12.7 -49.3 14.7 -24.7
3 0.5 9.8 -4.4 13.3 -74.0 14.5 -36.2
4 -3.2 8.6 -38.0 11.3 -58.2 9.2 -14.2
5 -0.2 9.7 -2.1 10.1 -30.4 11.2 -9.2
6 0.0 10.4 -6.1 10.6 7.4 10.5 17.7
7 0.3 6.6 0.8 12.6 19.0 10.4 7.9
8 0.3 6.2 14 14.9 26.7 10.3 13.8
9 0.0 11.0 -9.2 11.1 -7.4 11.2 16.6
10 -0.3 10.4 2.1 10.5 -21.0 11.0 -23.0
11 0.4 9.1 3.9 14.7 9.3 11.4 31.1
12 0.7 13.4 -30.0 18.5 -26.3 20.1 -24.9
13 0.2 7.4 -51.2 8.6 -47.2 8.6 -28.9

ME = mean error. SDE = standard deviation of error. A: RARX(u;1,0) model pa-
rameters fitted on observed time series. B: RARX(u;1,0) model parameters guessed
from physical information obtained at the well sites. DM (Direct Method): Guessed
RARX(u;1,0) model parameters, interpolated from augering locations to unvisited lo-
cations. IM: Results of the Indirect Method, that is, results of DM corrected for the
systematic error, interpolated to unvisited locations. Results for DM and IM obtained
by cross-validation. Values in cm.

The effects of these sources of uncertainty on the predictions were analysed by
cross-validation for the 13 locations, where long time series of water table depths are
observed. Table 5.2 gives the results of this analysis. The ME and SDE values
arising from the fitted RARX(u;1,0) model indicate the error resulting from sources 1
and 2. If RARX(u;1,0) model parameters are guessed using physical information from
the well site, then the M E and SDFE values increase in comparison with the values
arising from the fitted models, as a result of source 3. At unvisited locations, where soil
profile descriptions are not available, the guessed RARX(u;1,0) model parameters are
predicted by interpolation. The M E and SDFE values arising from these interpolated,
guessed, RARX(u;1,0) model parameters are larger than those arising from the fitted
model, but are not necessarily larger than those arising from the guessed values, as
Table 5.2 indicates. This can be explained from the weak representativeness of local
physical information and from the limited sample size used in observing the errors.
From the results in Table 5.2, it is clear that the systematic error is predominant. The
last column of Table 5.2 shows the reduction of the systematic error that is obtained
by interpolating observed systematic errors to unvisited locations in order to correct
the preliminary predictions (in the Indirect Method).

Table 5.2 shows generally small differences in SDFE values. For instance, for Well
4 the SDFE arising from both the Direct and the Indirect Method is 9.2 cm which
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corresponds with a percentage of variance accounted for of 33 % (see Figure 5.8).
The performance of the fitted model is only slightly better: a SDFE of 8.6 cm, which
corresponds with a percentage of variance accounted for of 41 %. This indicates
that in this situation, the linear ARX(1,0) model may not adequately describe the
relationship between precipitation surplus and water table depth.

5.8 Mapping risks

In section 5.5, it was described how time series of water table depths can be predicted
spatially at 40 validation locations. In a similar way, time series of water table depths
can be predicted at each node of the DEM-grid. Hence, for all grid nodes, the dynamic
behaviour of the water table can be characterised. Stochastic methods enable us to
characterise the water table dynamics in terms of risk, which may be valuable in
taking strategic decisions on water management. The map presented in this section
reflects the risk that the water table is within a critical depth, at a critical day in a
future year. The procedure for constructing risk maps starts with the following three
assumptions:

e the daily precipitation surplus over the last 30 years is representative for the
climatic conditions in the future 30 years;

e the mean prediction errors (M E(u), Eq. (5.11)) and standard deviations of er-
rors (SDE(u), Eq. (5.12)) are independent of the predicted water table depths;

e ME(u) is independent of SDE(u).
The procedure is as follows:

1. Interpolate the guessed RARX parameters @, (u), bo(u), and ji(u) from the 1,185
augering locations to the A nodes of the DEM grid, say ai(ug), bo(ugy), and
f(ug), with g = 1,..., M indicating the gth grid location (M = 21, 547);

2. Simulate N realisations of the mean errors M E(u) conditional to the observed
mean errors at the 40 well locations (Eq. (5.11)), say ME®(u,), with i =
1,..., N indicating the ith realisation (N = 100 in this study), using the vari-
ogram given in Eq. (5.20) and External Drift Kriging with zpgy as an external
drift in combination with sequential simulation (Deutsch and Journel, 1992);

3. Transform the 30-year input series P; into N x M series fLS) (u,) using
B (ug) = () + ME® (ug)) =
a1 (ay) { g, (wy) = (fly) + MED(wy)) } + bo(u,)p,
with ¢ representing the tth day in the 30-year series;

4. Select the 30 values of ﬁﬁi)(ug) for which t corresponds with the predefined
critical day in the year, for instance April 1st, say lNz((;)(ug), d=1,...,30;
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5. Simulate N realisations of the standard deviation of the error process G¢(u)
conditional to the values estimated at the 40 well locations (Egs. (5.12) and

(5.15)), say agi)(ug), t=1,..., N, using the model of spatial structure given in
Eq. (5.21) and sequential Gaussian simulation (Deutsch and Journel, 1992);

6. Standardise the observed prediction errors at the 40 well sites (Eq. (5.10)) in
the following way:
, ~ex(u,) — ME(u,)
(%) = =GB,

with o = 1,...,40 indicating the oth observation well and k£ = 1,...,n, indi-

cating the kth error from the oth series. This results in a series of standardised
’o 40

errors e, j =1,..., K, K =7 " ny;

7. Destandardise the series e;-, j =1,...,K for each grid location u, and each

realisation & (u,) as follows:

' —i(i)(“-") ; (5.22)

8. Add egz)(ug),j =1,...,K to each E((;) (ug) . In this way, the distribution
of the predicted water table depth for the critical day in any future year at
each location u, is approximated by K x N x 30 values, say iNL((;’J )(ug) with
i=1,...,N,7=1,...,Kand d=1,...,30. Hence, the frequency of exceeding
a predefined critical level can be estimated.

The following two components of uncertainty in predicted water table depths at a
critical day in a future year can be distinguished:

1. Uncertainty about the precipitation surplus in a future year. This uncertainty
can be expressed by the variance, say 02, of the predicted water table depths
at the 30 critical days:

#3uy) = 5 D {ﬁ&%g) - (% ;ﬁ? <ug>> } .

This variance is independent of M E(u,) and can be estimated from any of the
N series ;L((;)(ug),i =1,...,N;

2. Uncertainty about the relationship between precipitation surplus and water ta-
ble depth as described by the RARX(u;1,0) model with guessed parameters.
This source of uncertainty can be divided into a systematic component (M E(u))
and a random component (SDE(u)). These components are observed at the
well sites (Egs. (5.11) and (5.12)). The uncertainty about the relationship be-
tween precipitation surplus and water table depth described by RARX(u;1,0)
model with guessed parameters can be quantified by the following variance:
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385IbH5.09

Figure 5.9: a Map of the risk that at April 1st in a future year the water table depth
will be shallower than 50 cm; b Map of the expected water table depth at April 1st in
a future year. Values in cm.
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A map showing the risk that the water table depth at April 1st in a future year will be
shallower than 50 cm is shown in Figure 5.9a. April 1st is representative for the start
of the growing season. At that time, shallow water tables will negatively influence
the soil trafficability and soil temperature. A map of the expected water table depth
at April 1st in a future year is shown in Figure 5.9b.

If the risk is close to 50%, it will be difficult to take a decision in water management
or land use planning. Risks close to 50% arise from the choice of a critical level close
to the median of the probability distribution of h;(u), or from high uncertainty, either
about the future weather conditions or the predictions by the RARX(u;1,0) model.
These high uncertainties result in a median of the probability distribution of A, (u),
close to the chosen critical level. Figures 5.10a and 5.10b show both components of
uncertainty. The highest uncertainties concern the northern part of the study area,
where the temporal variation of water table depth is large and the mean water table
is found at large depths. Furthermore, the parameter a;(u) has large values in the
northern part, see Figure 5.2b. Consequently, the noise component has large values, as
follows from Eq. (5.22), and thus uncertainty component 2 is large. Besides this, the
large values of a;(u) result in large variation between years, and thus the uncertainty
component 1 is large also.

If the main source of uncertainty is in the relationship between precipitation surplus
and water table depth as described by the RARX(u;1,0) model, additional effort can
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385IbH5.11

Figure 5.10: Maps of uncertainty components in predicted water table depth at
April 1st in a future year, expressed in standard deviations (cm). a uncertainty aris-
ing from unknown weather conditions, b uncertainty arising from the RARX (u;1,0)
model.

be made to reduce this uncertainty. For instance, a possible reduction of uncertainty
can be achieved by intensifying the groundwater monitoring network with respect to
the patterns shown by Figures 5.9a and 5.10b. Additional observations should be
made in the areas with risks close to 50% as well as high uncertainty. Note that in
this example, there is little need to improve the predictions of water table depth, since
the area of risks close to 50% and large uncertainty is very limited.

5.9 Summary and discussion

A regionalised and physically interpretable autoregressive exogenous variable model
was presented to predict and to simulate time series of water table depths spatially,
in an area where only limited observations of water table depth were available. The
validation results indicate that the predictions are reasonably accurate (The areal
mean RMSE = 22 cm), as compared to the accuracy of the digital elevation data
(RMSE = 22 cm). The RARX(u;1,0) model was applied in mapping the risk that
a critical level will be exceeded at the start of the growing season, taking the un-
certainty about the future weather conditions and the uncertainty arising from the
RARX(u;1,0) model into account. The mapped risks may form the input of a cost
function, which should inform water managers whether a decision on water manage-
ment is cost-effective or not. The closer the risks to 50%, the more difficult it will
be to take a decision. The risk map only shows small areas having risks nearby 50%,
which implies that in this example, the method can be helpful to water managers in
taking strategic decisions. The risks were calculated under the following assumptions:
i) the precipitation surplus over the last 30 years is representative for the precipitation
surplus over the coming 30 years, ii) mean errors (M E(u)) and standard deviations
of errors (SDE(u)) of predicted water table depths are independent of the predicted
water table depths, and iii) M E(u) is independent of SDE(u). The accuracy of the
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estimated risks depends on the quality of these three assumptions. A validation of
estimated risks would be an interesting topic for further research.

In this study, the RARX(u;1,0) model has been applied to calculate water table dy-
namics under the actual hydrologic conditions. Using the physical relationships given
in Egs. (5.3) to (5.5), the RARX model can be used to evaluate the effects of interven-
tions in the hydrologic regime on the water table dynamics (chapter 4). The method
can be extended to situations where strong threshold nonlinearities are present (chap-
ter 3), using the physical basis of threshold autoregressive models (TARSO) given in
chapter 4. The amount of information needed for parametrising the RARX(u;1,0)
model is small when compared to physically based mechanistic models for groundwa-
ter flow. However, soil profile information needs to be widely available. The proposed
method is restricted to areas with relatively shallow water tables and precipitation
surplus being the main explanatory variable of water table fluctuation. Extensions
to situations with more explanatory variables, for instance, surface water levels and
groundwater withdrawals, have not yet been tried.

The procedure of ‘guessing’ RARX(u;1,0) parameters and interpolating them to un-
visited locations can be improved at several points. In this study, the RARX(u;1,0)
parameters were first calculated and next interpolated to unvisited locations, i.e. CI
(calculate first, interpolate later). The other way round, i.e. IC (interpolate first,
calculate later) may have several advantages in this case, however. If the physi-
cal information from which the drainage resistance, the effective porosity, and hence
a1 (u), and bo(u) are calculated is available at the unvisited locations, then the cal-
culated parameter values will ‘automatically’ satisfy the stationarity conditions, that
is 0 < |@1(u)| < 1 and bo(u) > 0. Furthermore, possible relationships between @, (u),
bo(u), and fi(u) play no role in IC. IC needs more calculation than CI, however. In
particular, the interpolation of the soil profile descriptions and the calculation of aver-
age distances between drainage devices would be very labour intensive. Therefore, we
decided to use CI in this study. We neglected possible relationships between a;(u),
bo(u), and ji(u), because i) scatter plots indicated that these relationships are not
strong; ii) possible interpolation errors due to neglecting possible relations between
the RARX parameters will be small, because of the high density of points (1,185
in an area of 1,375 hectares) from which is interpolated to unvisited locations, and
iii) the Indirect Method corrects for the systematic part of possible errors. Checks
indicated that all interpolated values of @, (u) and bo(u) satisfied the stationarity con-
ditions, which is expected since we interpolated from a dense grid. In case of convex
interpolators this is also ensured.
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Chapter 6

Accuracy of spatio-temporal
RARX model predictions of
water table depths

(This chapter is based on the paper ‘Accuracy of spatio-temporal RARX model pre-
dictions of water table depths’ by M. Knotters and M.F.P. Bierkens, accepted for
publication in Stochastic Environmental Research and Risk Assessment.)

Abstract

Time series of water table depths (H;) are predicted in space using a regionalised
autoregressive exogenous variable (RARX) model with precipitation surplus (P;) as
input variable. Because of their physical basis, RARX model parameters can be
guessed from auxiliary information such as a digital elevation model (DEM), digital
topographic maps and digitally stored soil profile descriptions. Three different ap-
proaches to regionalising RARX parameters are used. In the ‘direct’ method (DM),
P, is transformed into H; using the guessed RARX parameters. In the ‘indirect’
method (IM), the predictions from DM are corrected for observed systematic errors.
In the Kalman filter approach, the parameters of regionalisation functions for the
RARX model parameters are optimised conditional to observations on Hy. These re-
gionalisation functions describe the dependence on spatial co-ordinates of the RARX
parameters. External drift kriging and simple kriging with varying means are applied
as regionalisation functions, using guessed RARX model parameters or DEM data
as secondary variables. Predictions of H; at given days, as well as estimations of
expected water table depths are made for a study area of 1,375 hectares. The per-
formance of the three approaches is tested by cross-validation using observed values
of Hy in 27 wells which are positioned following a stratified random sampling design.
IM performs better with respect to systematic errors than the alternative methods in
estimating expected water table depths. The Kalman filter methods perform better
than both DM and IM in predicting the temporal variation of H;, as is indicated by
lower random errors. Particularly the Kalman filter method that uses DEM data as
an external drift outperforms the alternative methods with respect to the prediction
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of the temporal variation of the water table depth.

6.1 Introduction

Agricultural and ecological water management in the Netherlands requires accurate
information on water table fluctuation. Preferably, the uncertainty about water table
fluctuation is quantified, in order to enable risk assessment. The information may
concern either prediction of the water table depth on a given day, or estimation of
statistics. These statistics are for instance M HW and M LW (chapter 2), duration
curves (section 3.6.2, Figure 3.3), percentiles or percentages (section 5.8, Figure 5.9a),
or expected water table depths (section 5.8, Figure 5.9b). Predictions of water table
depths on a given day are more and more required in the current water management
practice in the Netherlands. By using predictions of actual water table depths, water
managers can anticipate actual trends. For instance, in the wet spring of 1998 up-
to-date predictions of water table depths, for instance at March 13, might have been
helpful to water managers in aiming for optimal conditions in the start of the growing
season. In contrast, statistics of the water table fluctuation are needed to assess
options for long term water policy. For instance, to decide on investments to lower
the water table depth in the start of the growing season, an estimate of the expected
water table depth at March 13 in any future year, given the actual hydrological
regime, may be relevant information. Agricultural or ecological water management in
the Netherlands is generally restricted to areas of limited size, in which mostly often
only a few time series of water table depth are available. On average, one suitable
observation well is present per 750 to 1,250 ha (Finke, 2000). Therefore, auxiliary
information may be needed to predict the water table depth accurately in these areas.
In chapter 5 a regionalised autoregressive exogenous variable model (RARX) for the
relationship between precipitation surplus and water table depth was introduced. In
essence, the RARX model is a linear time series model which parameters are made
space dependent or ‘regionalised’. In other words, the value of a RARX parameter
depends on its location. For locations at which time series of water table depths were
observed, the RARX model parameters can be calibrated. At other locations the
RARX model parameters can be guessed from auxiliary physical information which
is generally widely available, as explained in chapter 5. This auxiliary information
includes a Digital Elevation Map (DEM), digitally stored soil profile descriptions, soil
physical standard curves and digital information on the positions and sizes of ditches.

Using the guessed RARX parameter fields it is possible to predict time series of wa-
ter table depth spatially. This can be done straightforwardly, without use of observed
water table depths. However, applying this ‘direct’ method can result in large sys-
tematic prediction errors (subsection 5.6.2). The direct method can be improved by
interpolating the observed systematic prediction errors to unvisited locations in order
to correct the preliminary results. Furthermore, if repeated observations in time are
available, the noise term, containing the part of water table fluctuation that cannot
be explained from the precipitation surplus, can be quantified. In section 5.8 it was
shown that this ‘indirect’ method can be applied in estimating the risk of shallow
water tables at the start of the growing season.

Bierkens et al. (2001) incorporated the RARX model into a space-time Kalman
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filter algorithm. This application of the space-time Kalman filter is a mathematical
framework which enables the prediction of water table depths in space and time
conditionally to observed water table depths, optionally using auxiliary information.
For every time step at which the water table depth was observed an update of the
predictions is made. This makes the Kalman filter attractive in practising daily water
management. As the ‘indirect’ method, the Kalman filter approach can also be used
for estimation of statistics of the water table fluctuation.

The aim of this study is to evaluate the accuracy of prediction methods in either
predicting water table depths, or estimating water table depths which are expected
in the prevailing hydrological regime. To this end a cross-validation experiment is
carried out. The accuracy of estimates of expected water table depths ‘in any future
year’ is evaluated as follows: expected water table depths are estimated for days in
the monitoring period at which observations were taken, given the meteorological
conditions during the monitoring period. Next, the estimates are compared with the
observations.

The set up of this chapter is as follows. In section 6.2 the study area and the
data set are introduced. In section 6.3 the ‘direct’ and ‘indirect’ spatio-temporal
prediction method, and three applications of the space-time Kalman filter algorithm
are explained. An outline of the validation procedure is given in section 6.4. The
results are presented and discussed in section 6.5. Conclusions follow in section 6.6.
In appendix A6.1 the accuracy of quantified uncertainty is analysed.

6.2 Study area; data set

The study area of 1,375 hectares is situated in the north-eastern part of the Nether-
lands. The set of observed water table depths H; (Figure 5.1) can be divided into
two parts:

1. a preferential sample of 13 time series observed in permanently installed obser-
vation wells (measurement locations);

2. a stratified random sample (approximately proportionally allocated to the stra-
tum areas) of 27 short time series (of two years length) observed in temporar-
ily installed observation wells (validation locations), representing a part of the
study area of 976 hectares. The four strata are catchments with controlled
surface water levels, see Figure 5.1.

The northern ‘appendix’ of the study area (Figure 5.1) is not a part of the area of
976 hectares from which the stratified random sample has been taken. In the northern
part boulder clay is present at shallow depth. Because of the temporary occurrence
of perched water tables at impermeable layers, the water table depth can not be
measured accurately in observation wells placed in the boulder clay. Therefore, the
northern part of the study area was excluded from the validation. Predicted water
table depths are mapped for the northern part, however, in order to illustrate the
differences in the predictions obtained by the evaluated methods.

The ground surface elevation was determined at all 40 groundwater observation
points. Figure 6.1 shows the sampling scheme in time. Note that the interval lengths
are not constant.
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Figure 6.1: Sampling scheme. Vertical axis: well number. Horizontal azis: day
number (day 1 = January 1st, 1990)
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Figure 6.2: Digital elevation model of the study area. Values in cm above Dutch
Ordnance Datum.

The soil of the study area is built up of relatively wet and peaty sediments in a
brook valley in the southern part, and relatively dry cover sands, locally covering
boulder clays in the northern part. A digital elevation model (DEM, Figure 6.2)
reflects the geomorphologic structure of the landscape: a relatively flat and low brook
valley in the south and relatively high, slightly undulating cover sand ridges in the
north.

Daily data on precipitation are available from the station Dedemsvaart nearby the
study area. Daily data on the potential Makkink crop reference evapotranspiration
(Winter et al., 1995) are available from the station Eelde at approx. 55 km distance
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from the study area. The precipitation surplus is calculated as follows:
pe = P:: — Ep,ty

where p, is the daily precipitation [Lt '] and e, ; is the daily potential Makkink crop
reference evapotranspiration [Lt~!].

At 1,185 locations in the study area soil profile descriptions were made by experi-
enced soil surveyors, as a part of a regional survey for land development. A DEM,
made by laser scanning, is available with a resolution of 25 x 25 m, see Figure 6.2. On
a point scale, the DEM deviates on average 22 c¢m from the elevation determined by
surveying. Information on ditches, such as average distances and perimeters, are de-
rived from digital topographic maps. Information on surface water levels is provided
by the local water authorities.

6.3 Spatio-temporal prediction methods

6.3.1 The RARX model

The RARX model is explained in detail in chapter 5. Here the model will be recapit-
ulated. The RARX(u;1,0) model is given by

Hy(w) — p(u) = ar(){Hi—pr(0) = p()} + bo(u) B + € (w), (6.1)

with ul = (z,y) indicating the spatial co-ordinates = and y. /At is the time step.
Note that the precipitation surplus P, is assumed to be global, that is, space invariant.
This assumption is reasonable for relatively small areas. The error process, €;(u), is
assumed to form a discrete sequence of mutually independent disturbances with zero
expectation and finite and constant variance o2(u). In space, the error process is
assumed to be continuous and structured.

According to chapters 4 and 5, the physical basis of the RARX(u;1,0) model para-
meters is derived from the water balance of a soil column. The RARX(u;1,0) model
parameters can be expressed in physical quantities as follows:

ap(u) = e A/ (len) (6.2)
where p(u) is the effective porosity [-], and y(u) is the drainage resistance [t],

bo(u) = ~y(u){l—ai(u)}, (6.3)

and

p(u) = y(u)gs(w) + Hs(u), (6.4)

where g, (u) is the flux to the shallow groundwater from the deeper groundwater sys-
tems [Lt~1], and H,(u) is the drainage level (e.g. surface water level) [L]. p(u), y(u),
gp(u), and Hy(u) are assumed to be time invariant. Furthermore, it is assumed that
the water table fluctuation depends on precipitation surplus only. Other influences
such as groundwater discharge are assumed to be absent or forming part of the time
invariant flux g, (u).
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The physical relationship for o2(u) is:

72w =var o) [(Bs ~ Bustw) - S50 a ) @9)

where E, ;(u) is the actual evapotranspiration [LT ] and V (u) is the moisture volume
in the unsaturated zone. Both quantities can not be observed against reasonable costs
and therefore generally are unknown. The term €} (u) contains the remaining unknown
influences. Thus, to estimate o?(u) measured water table depths are needed.

The RARX(u;1,0) model in Eq. (6.1) is the basis of the three prediction methods
that are evaluated in this study: the ‘direct’ method, the ‘indirect’ method and the
space-time Kalman filter.

6.3.2 The ‘direct’ method (DM) and the ‘indirect’ method
(IM)

In DM, widely available auxiliary information is transformed directly into RARX
parameters. In section 5.4 it was described how y(u) and ¢(u) are guessed from
auxiliary information on ground surface elevation, drainage devices and soil profile
descriptions. Using the relationships in Egs. (6.2) and (6.3), the guessed physical
parameters 7(u) and ¢(u) are transformed into guessed RARX parameters a; (u) and
bo(u). The parameter p(u) is guessed directly from hydromorphic soil characteristics
which were determined at the 1,185 augering locations. Eq. (6.4) was not used in
guessing p(u), because it was not possible to guess the regional groundwater flux
g (u) accurately from auxiliary information.

The RARX parameters can be guessed for locations where soil profile descriptions
were made. Next, the guessed parameter values are interpolated to unvisited loca-
tions (e.g. a grid). Using these interpolated, physically based RARX parameters
ai(u), bo(u), fi(u) and the model given in Eq. (6.1), time series on precipitation
surplus are transformed into time series on water table depths. Note that DM is a
purely deterministic method; observed water table depths are not used. As shown
in subsection 5.6.2 and Figure 5.5, DM may result in large systematic prediction er-
rors. Furthermore, a prediction of the standard deviation of the error process, o.(u),
is not provided, which makes the direct method unsuitable for application in risk
assessment.

As in DM, IM starts with transformation of physical information into RARX pa-
rameters and subsequently, after spatial interpolation, transformation of time series
on precipitation surplus into time series on water table depths. Next, the predicted
water table depths are compared with observed water table depths. The observed
systematic errors are spatially interpolated to correct the preliminary, direct, predic-
tions. In this study, the systematic errors were interpolated by external drift kriging
(Deutsch and Journel, 1992; Goovaerts, 1997), using elevation data from the DEM as
an external drift.

If time series of water table depths are observed, the standard deviation of the error
process, o.(u), can be estimated. The estimated o.(u) can be interpolated spatially
to unvisited locations, and thus it can be used in constructing maps reflecting the risk
that a critical water table depth is exceeded (chapter 5).
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6.3.3 The space-time Kalman filter (KF)

In DM, observed water table depths are not used, whereas in IM observed water ta-
ble depths are only used to correct afterwards for systematic errors, and to predict
the variance of the error term, o (u). However, spatio-temporal predictions of wa-
ter table depths could be improved if they are optimised with respect to observed
water table depths. The space-time Kalman filter algorithm enables one to predict
water table depths in space and time, conditional to the observed water table depths.
Furthermore, the space-time Kalman filter can be used in conditional simulation and
in network optimisation. Bierkens et al. (2001) described in detail a space-time
Kalman filter algorithm for water table depths. Here, this algorithm will briefly be
recapitulated.

The basis of the algorithm is the RARX(u;1,0) model given in Eq. (6.1). In the
space-time Kalman Filter applied in this study, the RARX(u;1,0) model is rewritten
in a state-space formulation:

Hy(w) a(wy) 0 .- 0 Hei(wy)
Hy(uz) | 0 afug) - Hy 1 (uz)
Hy(uy) 0 . 0 a(uy) H;_1(uy)
1—as(u) 0 0 bo(uy) fu(uar)
X . fr(az)
n 0 1—ay (UQ) bO(u2) :
0 . fi(un)
0 0 1-da(ay) buy) Pe
e(uy)
e:(uz)
+ , (6.6)
e (uy)
with error standard deviations (6¢(u1),5c(uz), - ,6c(un)). Here, N indicates the

number of locations for which the water table depth is to be predicted for discrete time
steps, say t =0,1,..., K. The hats in Eq. (6.6) indicate that the RARX parameters
a1(w;), bo(w;), p(u;), and oc(uw;),s =1,..., N are estimated. The RARX parameters
can be calibrated for the 13 locations where time series of water table depth are
available which are sufficiently long to calibrate an ARX(1,0) model (see chapter 2,
appendix A2.1). For all other locations, the parameters have to be estimated by
so-called regionalisation functions. These functions describe the dependency of the
RARX parameters on the spatial co-ordinates u. The RARX parameters could only
be calibrated for 13 locations in a study area of 1,375 hectares. Therefore, it should
be possible to include auxiliary variables into the regionalisation functions. In this
study, the guessed RARX parameter values, which are derived from physical auxiliary
information by using Eqs. (6.2) to (6.4) and the procedures described in section 5.4,
are used as auxiliary variables. Alternatively, ground surface elevation data from the
DEM (Figure 6.2) are used as auxiliary variable. An estimator of a RARX(u;1,0)
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parameter, for instance a;(u), is given by
ar(u) =rqwar(w),i =1,...,n;s5(u),j=1,...,m;0,], (6.7)

(Bierkens et al., 2001), where a;(u;) are parameter values calibrated on time series
observed at n locations u;,7 = 1,...,n, and s;(u),j = 1,...,m are the values of m
auxiliary variables at location u. In this study, m = 1, i.e., only one auxiliary variable
at a time is considered. 6, are the parameters of the regionalisation function. For
instance, if some type of kriging is used as a regionalisation function, 8, are the
variogram parameters.

The dependence of the RARX parameter values on the regionalisation functions is
explicitly denoted in the following matrix-vector notation of Eq. (6.6):

hy = A(6.)h; 1 +B(04,0,)x:(0,) + €(0,,1), (6.8)

where 8,, 0, 8, and 8, are parameter vectors of the regionalisation functions, see
Eq. (6.7), and I is the integral scale. Eq. (6.8) is referred to as the state equation,
representing the ‘state’ of the water table depth at time ¢. h, is the N x 1 ‘state’
vector, A is the N x N system matrix, B is the N x (N 4 1) input matrix, x; is the
(N + 1) x 1 input vector, and e; is the N x 1 vector with additive noise or ‘system
noise’.

In section 6.3.1 it was mentioned that the error term e,(u) is assumed to form a
white noise sequence in time, but assumed to be continuous and structured in space.
It is further assumed that the spatial structure of €;,(u) can be described with an
isotropic exponential spatial covariance. The properties of the system noise vector e;
can now be summarised as:

Eleg] = 0

Elee!] = {(?(”"’I) o (6.9)

where Q is a N x N covariance matrix, which elements [Q);;] are given by

A N —u; —U;
Q0] = (s 8,)(u: 0 exp (=) (6.10)
Here, I denotes the integral scale.
The ‘state’ of the water table depth (Eq. (6.8)) is linked to observed water table
depths by the measurement equation

yt = Cihy + vy (6.11)

The measurement vector y; contains the water table depths that are observed at time
t. Because the number of observations may vary in time, y; is a M; x 1 vector with
M; being the number of observations taken at time t. The observations are linked to
the state by the M; x N measurement matrix C as follows: if the ith element of y;
is an observation of the jth state variable in hy, then the element (¢, j) in C is set to
one, and the remaining elements of the ith row in C are set to zero. The noise vector
v; represents the measurement errors. These are assumed to have zero expectation.
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Furthermore, the measurement errors are assumed to be independent in time, and to
be independent of the system noise. In summary, the properties of v, are:

FE [Vt] =0
T Rt ft=s
Elvwa] = {0 if t# s
E[viel] = 0 Vis (6.12)

Here, 0 is a vector or a matrix, filled with zeros. Usually it is assumed that the mea-
surement errors are spatially independent, so that R; is a diagonal matrix with vari-
ances of the observation errors on the diagonal. Given the state equation, Eq. (6.8),
the measurement equation, Eq. (6.11), and the properties of the error processes,
Egs. (6.9), (6.10) and (6.12), the Kalman filter can be used to predict the water ta-
ble depth optimally. A detailed description of the Kalman filter can be found, for
instance, in Van Geer et al. (1991).

Optimal predictions of water table depths can be obtained by an optimisation pro-
cedure in which model parameters are estimated, using observed water table depths.
It is important to note that the RARX parameters are estimated via optimisation of
the parameters of their regionalisation functions. Following Bierkens et al. (2001),
the regionalisation parameters 8, 0, 8,,, 0, and the integral scale I are optimised.
The RARX parameter values in the space-time Kalman filter algorithm depend on
these regionalisation parameters: the system matrix A, the input matrix B and the
input vector x depend on 8, 8, and 6,, (Eq. (6.8)), whereas the covariance matrix Q
(Eq. (6.9)) depends on 6, and I. The parameters O1 = (0,,8,,0,,0,,I) can be esti-
mated by running the Kalman filter and minimising the prediction errors. Assuming
that both the system noise e; and the observation errors v, are Gaussian distributed,
O can be estimated by minimising a maximum likelihood criterion given by Schweppe
(1973):

L L
J(L;©) = LMy In(27) + > In(|Z(©)]) + Y _nf (©)Z; " (©)ny(O). (6.13)
=1 =1
Here, L is the number of times at which the water table depth was observed. Since
the water table depth is not measured at every time step at all locations, My, is
the average number of observations per observation time. n; is a vector of differences
between the observations y; and the so-called time update h; at time step I. The time
update h; is the prediction using all observations up to and including the previous
time step, [ — 1. Thus, n; can be considered as a vector of one-step-ahead prediction
errors. Z; is the covariance matrix of ny, that is, Z; = E[nn}'].

Two types of regionalisation functions that account for an auxiliary variable were
applied: kriging with an external drift, and simple kriging with varying means
(Goovaerts, 1997; Deutsch and Journel, 1992). In kriging with an external drift
the regionalisation function for the RARX parameter a;(u), rq(u;...) in Eq. (6.7),
has the following form:

ra( ) = Blsw)] + 3 A(0) {ar(w) — 8 [s(u)]}, (6.14)

i=1
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where 3[-] is a drift function depending on the auxiliary variable s(u), A(6,) are kriging
weights depending on the parameter vector 8,. Here 6, is the vector of parameters
of the variogram of the residuals. The drift function has a linear form:

Bs(u)] = bg + bys(u), (6.15)

where b, and 0] are estimated implicitly when solving the kriging system
(cf. Goovaerts, 1997).

In this study, the parameters a;(u), bp(u), and fi(u) which were guessed on the
basis of physical information (subsection 6.3.2) are used as an external drift. As
explained in subsection 6.3.1, o.(u) cannot easily be guessed from physical auxiliary
information against reasonable costs. However, it can be expected that a relationship
exists between o.(u) and the average water table depth. This can be pointed out
as follows. The effective porosity will increase with increasing water table depth,
because the fraction of pores filled with air will increase. Consequently, the value of
the term bp(u) in Eq. (6.5) will decrease, as follows from Eqgs. (6.2) and (6.3). Thus,
it can be expected that o.(u) is related to the average water table depth. Therefore,
the values of fi(u) which were guessed from hydromorphic soil characteristics which
roughly reflect the average water table depth, can be useful as auxiliary information
in regionalising o.(u). The parameter o.(u) was regionalised using external drift
kriging with ji(u) as an external drift.

In simple kriging with varying means the regionalisation function is in its structure
equal to the function in Eq. (6.14). However, the methods have different definitions of
the trend component (3[-]. In external drift kriging, the trend component is a simple
linear regression function, see Eq. (6.15). The parameters b and b} in Eq. (6.15)
are implicitly estimated through the kriging system within each neighbourhood. In
contrast, in simple kriging with varying means the trend can have any form. This
trend, or ‘varying mean’, can for instance be the result of arbitrary ad-hoc proce-
dures, whereas in external drift kriging inference relies on the generalised least squares
method. In this study, the ‘varying mean’ is formed by guessed RARX parameter
values, which can be considered as the outcomes of ad-hoc procedures. Thus, for the
RARX parameter a;(u), the trend component 3[a;(u)] is defined as

Blai(w)] = a1 (u),
whereas in external drift kriging the trend component is defined as
Blai(w)] = by + bydr (w),

where b)) and b are estimated through the kriging system.

6.3.4 Summary of prediction methods

The methods described in subsections 6.3.2 and 6.3.3 require different minimum sizes
of groundwater data sets. DM does not need observed water table depths at all. IM
needs observed water table depths at a sufficiently large number of points in space, in
order to accurately estimate the model of spatial structure of the systematic prediction
error. Preferably, time series on water table depths are observed at these points so
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that the standard deviation of the error process o(u) can be estimated and next
spatially predicted at unvisited locations. If in KF a kriging interpolation method
is used as a regionalisation function, calibrated ARX(1,0) parameters are needed at
the well locations. This implies that sufficiently long time series on water table depth
must be available. Additional incidental observations are needed to calibrate the
regionalisation parameters © (Bierkens et al., 2001).

Both in DM and IM auxiliary information on drainage resistance, effective porosity
and hydromorphic soil characteristics is needed, as is explained in subsection 6.3.2. In
KF the RARX model parameters that are guessed following the same procedure as in
DM can be used as auxiliary variables. Alternatively, in situations where the physical
information needed for guessing RARX model parameters is absent, other auxiliary
information such as a DEM can be used in KF. The prediction methods evaluated in
this study are now summarised as follows:

e DM: the direct method. Physically based, guessed RARX parameters are used
in the predictions, observed water table depths are not used;

e IM: the indirect method. Physically based, guessed RARX parameters and all
observed water table depths are used;

e KF1: space-time Kalman filter, with external drift kriging as a regionalisation
function for a;(u), bp(u), (u). Physically based, guessed RARX parameters
are used as external drifts. oc(u) is regionalised by external drift kriging with
fi(u) as an external drift. All observed water table depths are used,;

o KF2: space-time Kalman filter, with simple kriging with varying means as a
regionalisation function for a;(u), bg(u), and p(u). Physically based, guessed
RARX parameters are used as varying means. o¢(u) is regionalised by external
drift kriging with fi(u) as an external drift. All observed water table depths are
used;

o KF3: space-time Kalman filter, with external drift kriging as a regionalisation
function for aq(u), bo(u), p(u), and o.(u). The ground surface elevation from
the DEM is used as auxiliary variable. All observed water table depths are used.

Two types of information are distinguished: predicted water table depths, and es-
timates of statistics for the water table fluctuation, for instance expected water table
depths. In DM and IM, one and the same procedure is followed for both predicting
water table depths and estimating expected water table depths: in both cases the
input series is transformed into an output series, using guessed RARX parameter val-
ues. In IM, observed water table depths are only used to correct for systematic errors,
both in prediction and in estimation. However, if KF methods are used for predicting
water table depths, for each time step at which observations on water table depths
are available an update of the spatio-temporal predictions is made. Alternatively,
if KF is used for estimation of expected water table depths, first the RARX(u;1,0)
parameters are estimated using the available observations on water table depths and
the auxiliary information used in the regionalisation function. Next, time series on
precipitation surplus are transformed into time series on water table depth by using
the estimated RARX(u;1,0) parameters, without updating.

109



Accuracy of spatio-temporal RARX model predictions

6.4 Set up of the validation of spatio-temporal pre-
dictions

Time series of water table depth were predicted (or estimated) at the 27 validation
locations by means of a cross-validation procedure. In IM and the KF methods all
observed water table depths were used in the prediction (see Figures 5.1 and 6.1),
except those observed at the validation location. This procedure was repeated 27
times, each time leaving one validation location out for which prediction errors were
calculated. The interval length in Eq. (6.1) is one day (At =1 day) in the prediction
procedures, since daily precipitation surplus is the input of the RARX model.
For each test location the following validation measures were calculated:

e the mean error,

Mhi

1
A’/[Ehi = E Zej’hi’ (616)
3 J:1

where hi indicates the ith test location in the Ath stratum, e is the difference
between observed and predicted water table depth resulting from the cross-
validation, np; is the length of the observed time series at location hi. The
absolute value, |ME|p;, is a measure for the closeness of the predicted to the
observed mean water table depth;

e the standard deviation of error,

1 Npi 5
SDE;M- = g — 1 J; [ejym- — MEM] s (617)

which is a measure for the closeness of predicted to observed temporal fluctua-
tion;

e and the root mean squared error,

Npi

1
RMSEL; = | — e2, 6.18
h Nhi ‘72 7,hi ( )

which is a measure for the overall closeness of predicted to observed water table
depths.

The three measures in Egs. (6.16) to (6.18) describe the closeness of predicted time
series of water table depth to observed time series at location uy;. Areal means of
these measures can be estimated by

mal(y) = ZL:Wh {M] , (6.19)
h=1

Np

(Cochran, 1977), where L denotes the number of strata, and W}, denotes the stratum

weight. The stratum weight is proportion of the stratum area to the total area. y can
be replaced by M E, |[ME|, SDE or RMSE.
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Table 6.1: Validation results for the prediction of water table depths.

DM IM KF1 KF2 KF3
ma(ME) 236 15 8.3 “10.0 14.4
ma(|ME)) 30.7 17.5 24.1 28.1 24.2
ma(SDE) 9.5 9.5 6.9 7.0 5.7
ma(RMSE) 33.5 21.5 26.1 29.6 25.9

Values are in cm.

6.5 Results and Discussion

6.5.1 Predicting water table depths

The areal means of ME, |ME|, SDE, and RMSE in predicting water table depths
are listed in Table 6.1. The SDFE can be interpreted as the closeness of the predicted
to the observed temporal fluctuation. It is indicated that KF methods perform well
with respect to SDE. In particular KF3 performs well with respect to SDFE, despite
the use of only DEM data as auxiliary variable, whereas in the alternative methods
all available physical information was used.

The systematic errors (M E) are relatively large for all methods except IM. As ex-
plained in subsection 6.3.2, correction for systematic errors is part of the prediction
procedure in IM. The negative M E values found for DM and KF2 can be explained
to some extent from possible bias in the guessed RARX parameter ji(u). The para-
meter fi(u) has been guessed from hydromorphic soil characteristics observed in the
field by augering at 1,185 locations as part of a soil survey. fi(u) is calculated as the
average of the depth to the top of the permanently reduced zone and the depth to
the top of the hydromorphic characteristics, such as rust mottles. This average value
should approximate the mean water table depth. However, hydromorphic character-
istics are often ‘fossil’, that is, the hydromorphic characteristics do not represent the
actual water table, but reflect the water table in the past which generally fluctuated
at shallower depths. Besides, the mean water table depth differs from the RARX
parameter p(u) by a factor bp(u)p/(1 — a1(u)), where p is the mean precipitation
surplus. The contribution of this factor to the negative systematic errors is generally
limited, however. Bias in fi(u) will be reflected in the predictions of KF2, because
here fi(u) is used as an auxiliary variable in simple kriging with a varying mean (see
subsection 6.3.3). In KF1, however, fi(u) is used as an auxiliary variable in kriging
with an external drift. In this method the values of the auxiliary variable are linearly
transformed by a regression model (Eq. (6.15)), which possibly eliminates bias in
fi(u).

Figure 6.3 shows maps of the predicted actual water table depth at March 13, 1998,
as an example of predicting actual water table depths. The relatively detailed patterns
resulting from IM and KF3 can be explained by the DEM data from a 25 x 25 m
grid which were used as an external drift variable in both methods. It is interesting
to compare the patterns obtained by DM with the patterns obtained by IM, KF1,
and KF2, because differences are the effect of using observed water table depths in
the predictions. Most resemblance is found for DM and KF2, particularly in the
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DM IM

385Ib H6.04

KF1 KF2 KF3

Figure 6.3: Predicted water table depth at March 13, 1998. Values in cm below
ground surface. DM: direct method, IM: indirect method, KF1: space-time Kalman
Filter with guessed RARX parameters as an external drift, KF2: space-time Kalman
Filter with guessed RARX parameters as varying means, KF3: space-time Kalman
Filter with DEM data as an external drift.

northern part of the study area. In section 6.2 it is explained that in this northern
‘appendix’ the water table depth was not observed. The relatively small differences
between DM and KF2 indicate that the observed water table depths contribute less
to the predictions in KF2 than in IM and KF1. Clearly, the stochastic components
of the regionalised RARX parameters, for example {a;(w;) — 8 [s(w;)]} in Eq. (6.14),
are small in KF2. In KF1 kriging with an external drift is used as a regionalisation
function. Here, the drift 3[s(u;)] is a linear transformation of the guessed RARX
parameter values, see Eqs. (6.14) and (6.15). The patterns in Figure 6.3 indicate
that in KF1, with kriging with an external drift as a regionalisation function, the
observed water table depths contribute more to the predictions than if kriging with
varying means is used as a regionalisation function in KF2.

6.5.2 Estimating expected water table depths

Figure 6.4 shows maps of the expected water table depth at March 13 in any future
year, given the prevailing hydrological regime. The future meteorological conditions
were approximated by the daily precipitation surplus series from 1969 to 1998. As
compared to the actual water table depths at March 13, 1998 (Figure 6.3), the water
table at March 13 in any future year (Figure 6.4) is predicted at larger depths. Indeed,
this result reflects the relatively wet meteorological conditions in the Netherlands in
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Table 6.2: Validation results for the estimation of expected water table depths.

DM IM KF1 KEF2 KF3
ma(ME) 236 15 16.3 88 25.0
ma(|ME)) 30.7 17.5 30.2 29.1 32.3
ma(SDE) 9.5 9.5 9.5 9.3 9.9
ma(RMSE) 33.5 21.5 32.6 31.8 35.0
Values are in cm.
DM IM
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Figure 6.4: Estimates of the water table depth, expected for March 13 in any fu-
ture year, given the prevailing hydrological regime. DM: direct method, IM: indirect
method, KF1: space-time Kalman Filter with guessed RARX parameters as an exter-
nal drift, KF2: space-time Kalman Filter with guessed RARX parameters as varying
means, KF3: space-time Kalman Filter with DEM data as an external drift.

the spring of 1998. Again, resemblance is found for the maps obtained by DM and
KF2.

In Table 6.2 the areal means of ME, |ME|, SDE, and RMSE for estimates of
expected water table depths are given. Again, negative M E values are found for
DM and KF2; the possible causes are discussed in subsection 6.5.1. As compared to
prediction of actual water table depths (Table 6.1), the performance of KF methods
decreases in estimating expected water table depths. This can be explained from the
fact that in this case no updates are made for each time step at which observations
become available. Instead, the time series on precipitation surplus is transformed
straightforwardly into a time series of estimates of expected water table depths, by
using the preliminary calibrated RARX(u;1,0) parameters.
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The results in Table 6.2 indicate that the methods perform equally well with re-
spect to SDE. The results on |M E| in Table 6.2 indicate that IM approximates the
mean water table depth better than KF1 and KF3. In particular, KF3 results in
large systematic errors. Note that in KF3 only DEM data were used as auxiliary
variable, whereas in the alternative methods all available physical information was
incorporated.

6.6 Conclusions

The performance of five spatio-temporal prediction methods, based on the
RARX(u;1,0) model for water table depths, was tested in a case study. The per-
formance was evaluated by means of a cross-validation procedure, since the number
of observed time series of water table depths was too small to separate an indepen-
dent validation set. A disadvantage of cross-validation is that the distances from the
observation points to the prediction points are overrated, because an incomplete set
of observation points is used in the interpolation. Thus, the prediction errors may be
overestimated. For this reason the cross-validation results are mainly used to evaluate
the relative performance of the five methods.

Distinction was made between prediction of water table depths and estimation of
expected water table depths. Predictions of water table depths are needed to support
short term decisions in daily water management. It is concluded that the temporal
fluctuation of the water table is predicted more precisely by methods which include
the space-time Kalman filter algorithm than by the ‘direct’ and ‘indirect’ method
which are based on guessed RARX parameter fields and geostatistically interpolated
corrections for systematic error. This may be expected, because in the space-time
Kalman filter methods an update of the predictions is made for every time step at
which the water table depth has been observed. However, the Kalman filter methods
fail in predicting the mean water table depth, whereas the indirect method predicts
the mean level accurately.

Estimates of expected water table depths are needed to support decision making in
long term water policy. The case study indicates that the indirect method (IM) is an
accurate alternative for the Kalman filter methods in predicting water table depths
which are expected in a given hydrological regime. In particular in the Kalman filter
method that makes use of DEM data as an auxiliary variable in external drift kriging
(KF3) relatively large systematic errors can occur.

Maps of predicted water table depths and estimates of expected water table depths
indicate that observations contribute more to the predictions if kriging with an ex-
ternal drift is used as a regionalisation function for the RARX parameters in the
space-time Kalman filter algorithm (KF1) than if simple kriging with varying means
(KF2) is used.
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Appendix A6.1 Accuracy of quantified uncertainty
about water table depths

In the previous sections we evaluated the accuracy of predicted water table depths.
Apart from predictions, stochastic methods also provide information on the uncer-
tainty about these predictions. Quantified uncertainty can be helpful in risk as-
sessment. It is therefore interesting to evaluate the accuracy of the information on
uncertainty. This will be done in this section by means of cross-validation.

First, let us reconsider the RARX(u;1,0) model, now expressed as a TFN model,
analogous to Egs. (4.1) and (4.2):

Hi(u) = Hp +(u) + N¢(u), (A6.1a)
with
(Hr t(u) — p(u)) = a1 (u)(Hr t—ac(u) — p(u)) + bo(u) P, (A6.1b)
and
Ni(u) = a1(u)Ni—ar(u) + €(u), (A6.1c)
where

Hy(u) is the ‘true’ water table depth at time ¢ and location u;

Hy +(u) is the dynamic component, that is, that part of the water table depth that
can be explained from the precipitation surplus P;

Ny is the noise component, containing that part of the ‘true’ water table depth that
can not be explained from the precipitation surplus P;

€:(u) is the error term, which is assumed to form a white noise sequence with zero
mean and finite and constant variance o2(u);

ai(u), bo(u), u(u), and o?(u) are the RARX(u;1,0) parameters;

At is the time interval, which equals one day in this study.

Note that the parameter p(u) now forms part of the dynamic component, which is
somewhat different from Eqs. (4.1) and (4.2). Expressing the RARX(u;1,0) model as
a TFN model in Egs. (A6.1a) to (A6.1c) has the advantage that the noise component
N¢(u) is clearly distinguished from the error term €;(u). Furthermore, the noise
component is clearly defined as the difference between the ‘true’ water table depth
and the dynamic component:

Ny(u) = Hy(u) — Hp 4(u). (A6.2)

In both the present and the previous chapter, methods are discussed which assign
values to the RARX(u;1,0) parameters either by ‘guessing’ or by calibration. If a;(u),
bo(u), and p(u) are assigned, a time series of water table depths at location u can
be predicted simply by transforming the input series P, into a series of the dynamic
component Hr ;(u), by using Eq. (A6.1b). These predictions, say iNLFyt(u), are referred
to as ‘deterministic’, since they result from straightforward transformation of the input
series. Consider k locations where time series of water table depths were observed,
having lengths n4,...,ng. In the present case study k equals 40. The differences
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between the observed water table depths at independent validation locations and the
deterministically predicted water table depths result from our uncertainty about the
true water table depth:

ej(ur) = hy(ug) = he (), (A6.3)

with k£ indicating the kth location where a time series of water table depths was ob-
served and j = 1,...,n%. The observed series ej(uy) can be considered as a realisation
of the noise component N¢(uy). For locations where time series of water table depths
were observed, the standard deviation of noise, o (ug), can be estimated by the stan-
dard deviation of e;(ug) (SDE(uy), see Egs. (5.11) and (5.12), with ¢ replaced by
k). It is important to note that SDE(u) only reflects uncertainty about the tem-
poral variation of the water table depth at location u,. The uncertainty about the
mean water table depth at location uy, is reflected by the mean error M E(uy) (Eq.
(5.11)). Both the standard deviation of noise, oy (u), and the mean error, M E(u),
are predicted at locations where no observations of water table depths are available.
The accuracy of quantified uncertainty about the temporal variation of water table
depths (predictions of o x(u)) will be discussed in subsection A6.1.1. The accuracy of
information on uncertainty about the mean water table depth (predictions of M E(u))
will be discussed in subsection A6.1.2.

A6.1.1 Accuracy of quantified uncertainty about the temporal
variation

The noise component, Ny(u) in Eq. (A6.1c), represents the uncertainty about the
dynamic relationship between precipitation surplus and water table depth. The stan-
dard deviation of the noise, o (u), is a measure of uncertainty: a large value of oy (u)
implies high uncertainty about the dynamic relationship between precipitation surplus
and water table depth.

In the indirect method (IM, see subsections 5.5.2 and 6.3.2) o (u) can be guessed
at unvisited locations as follows:

1. Calculate SDE(uy),i =1,...,40 for the 40 locations where time series of water
table depths were observed, see Egs. (5.11) and (5.12);

2. Model the spatial structure of SDE(u), and interpolate SDE(uy) to unvisited
locations, say & (u).

An alternative procedure may be to interpolate &.(uy) (Eq. (5.15)) and a1 (uy) to un-
visited locations, by using the variograms given in Egs. (5.21) and (5.16), respectively.
Then estimate the standard deviation of the noise process by

& (u) = % (A6.4)

In the space-time Kalman Filter methods (KF1 to KF3, see subsections 6.3.3 and
6.3.4) oy (u) can be calculated from the calibrated RARX(u;1,0) parameters 6.(u)
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Table A6.1: Summary of differences between SDE(u) and o (u) predicted by IM,
KF1, KF2 or KF3. Results for wells 1 to 13.

Method mean difference mean absolute difference
(cm) (cm)
IM (rN(u) 3.1 3.1
( ) 3.9 3.9
KFl O'N(ll) 0.6 2.5
KF2, Gn(u) 3.1 4.3
KF3, 6y (u) 1.5 3.0
and a;(u):
R AL
on(u) = T—a2) (A6.5)

The RARX(u;1,0) parameters o.(u) and a;(u) are only ‘known’ at the 13 locations
where time series are available which are sufficiently long to accurately calibrate an
ARX(1,0) model. In subsection 6.3.3 it was explained that 6.(u) and a;(u) are
obtained at unvisited locations by using kriging methods as a regionalisation function.

Standard deviations of noise, either Gy (u) or &'y(u) for IM, and 6y (u) for KF
methods, are calculated by means of cross-validation for the 13 well locations where
relatively long time series of water table depths are available. The results are com-
pared with the ‘observed’ SDE(u) values in Table A6.1. Assuming that the values
of SDE(u) observed at the 13 well locations approximate the true value of oy (u)
accurately, a positive difference indicates an underestimation of oy (u). The mean
differences in the second column of Table A6.1 indicate that all methods underesti-
mate oy(u) on average. Comparing the mean differences in the second column of
Table A6.1 with the mean absolute differences in the third column, it is indicated
that IM underestimates oy (u) for all 13 locations. A possible reason is that the
observed errors do not represent the entire deviation of the model predictions from
the true water table depth (see Figures 5.1 and 6.1). In particular the errors observed
at the 27 validation locations may underestimate the temporal variation, because the
observations are clustered in time; the water table depth was observed daily during
five separate weeks. Although covering both a wet and a dry season in 1997 and 1998,
these observations may not represent the full temporal variation. Nevertheless, the
errors observed at all 40 locations were used in the spatial modelling of o (u). Under-
estimation of oy (u) is also found for the KF methods: KF2 tends to underestimate
on(u) more than KF1 and KF3. KF1 approximates oy (u) more accurately than the
alternative methods. The underestimation of o (u) in the KF methods can possibly
be explained from the uncertainty of the regionalised RARX(u;1,0) parameters that
was not taken into account in &y (u).

A common way of expressing the uncertainty about the true value of the water
table depth is calculating a prediction interval, in which the true value is expected
to fall with a certain probability, often 95%. Consequently, it is expected that a 95%
prediction interval covers 95% of the true values. Assuming a normal distribution of
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Table A6.2: Percentage of observed water table depths covered by 95% prediction
intervals.

Well number IM, 6n(u) IM, 5y (u) KF1 KF2 KF3
1 86.0 87.7 94.7 98.2 87.7
2 85.4 87.8 90.2 70.7 80.5
3 90.0 90.0 95.0 97.5 95.0
4 87.9 91.4 96.6 98.3 93.1
5 93.9 84.8 100.0 75.8 97.0
6 76.1 67.0 2.7 73.9 70.5
7 91.8 73.8 100.0 44.3 100.0
8 94.8 75.9 100.0 69.0 100.0
9 83.5 80.4 80.4 79.4 89.7
10 92.2 78.9 85.6 76.7 90.0
11 92.2 85.7 90.9 94.8 93.5
12 71.4 67.9 85.7 50.0 75.0
13 89.3 89.3 89.3 100.0 92.9

the noise N¢(u), a 95% prediction interval can be calculated by
[hpt(u) — 1.960 5 (u), hp ¢ (u) + 1.960 5 (u)] . (A6.6)

The percentages of values covered by the 95% prediction intervals were calculated
by means of cross-validation for the 13 well locations where relatively long time series
of water table depths are available. The results for IM, KF1, KF2, and KF3 are
given in Table A6.2. The intervals resulting from IM are clearly too ‘narrow’. In
IM prediction intervals are calculated by using a sample of errors e;(uy), which may
not fully represent the entire deviation of the model predictions from the true values.
Apart from this, the distribution of e;(u;) may deviate from the normal distribution.
Furthermore, the spatial structure oy (u) is approximated by a model. For these rea-
sons the prediction intervals in IM may not cover the previously declared percentage
of the true values. This problem may be partly tackled by simulation methods and by
resampling techniques, just like the procedure which was followed in constructing a
risk map (see section 5.8), because in that case no assumption about the distribution
of N¢(u) needs to be made. The underestimation would be less serious, however, if
water table depths were randomly sampled in time at the 27 validation locations,
perhaps with some stratification to cover both the wet and the dry seasons.

Until now we focused on the standard deviation of the noise, o (u), at 13 locations
where extensive time series of water table depths were observed. Now the accuracy
of the standard deviation of the error series (¢;(u) in Eq. (6.1)), will be evaluated for
KF methods. If KF methods are applied in predicting actual water table depths, an
update of the spatio-temporal predictions is made for each time step t at which water
table depths are observed, as explained in subsection 6.3.4. Starting from the update
at time step t, a prediction is made for the next time step, ¢ + At. This prediction
is referred to as the one-step-ahead prediction. The difference between the observed
water table depth at time step ¢ + At and the one-step-ahead prediction is called the
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one-step-prediction error ;4 a:(u):
errar(w) = {Hipa(u) — p(w)} — {ar (w){He(u) — p(u)} +bo(u) Pryact.  (A6.7)

In this study At equals one day. If water table depths are observed at a large number of
successive days, then o.(u) can be estimated from observed one-step-ahead prediction
errors. This is the case for the 27 validation points, as described in sections 5.2 and 6.2.
At these locations the water table depth was observed daily during five separate 5-day
periods in 1997 and 1998, representing both wet and dry meteorological conditions,
see Table 5.1 and Figure 6.1. The number of observations for these series is 25,
24 or 20, so that 20, 19 or 16 one-step-ahead prediction errors could be calculated,
respectively. Next o.(u;) was estimated by

N 1 _
oL(u;) = ni_lg(erq)z, (A6.8)

where ¢ = 1,...,27 indicates the validation location, j = 1,...,n; indicates the jth
one-step-ahead prediction error at the ith validation location, and €; is the mean of
the one-step-ahead prediction errors at validation location ¢. The thus obtained esti-
mates 6. (u;) are compared with estimates &(u;) which result from calibration of the
Kalman filter algorithm in Figure A6.1. It is clear that both estimates are not related
to each other. When compared to ”.(u;), which is based on observed one-step-ahead
prediction errors, the KF methods underestimate both the mean level of o.(u) and its
spatial variation. This can be explained from kriging of the ‘known’ values of o(u)
at the 13 locations of permanently installed observation wells to any other location in
the study area, see Figure 5.1. The spatial mean of the 5.(u;) values resulting from
the KF methods roughly corresponds with the mean of the values of o.(u) observed
at these 13 locations (4.2 cm), which can be considered as the effect of smoothing. In
other words, the values of 5.(u) are ‘dominated’ by the values that were observed at
the 13 locations of permanently installed observation wells, which do not represent
the water table dynamics in the entire area. The values of &.(u), estimated by the
Kalman filter, show less spatial variation than the values of 6% (u), estimated from
the one-step-ahead prediction errors, see Figure A6.1. The underestimated spatial
variation of o.(u) can also be explained from the smoothing effect of kriging. This
is particularly true for KF3, where relatively small effective ranges were calibrated
for the variograms of o.(u). As a result, at short distances from the 13 permanently
installed observation wells the values of §.(u) equal the mean of the values of o (u)
that were observed at the 13 well locations. Obviously, the effect of updating on the
basis of observed water table depths from the 27 locations of temporarily installed
wells, is very limited on spatial predictions of o.(u). Therefore, the values of 5.(u)
mainly reflect the values of o.(u) that were observed at the locations of the 13 per-
manently installed observation wells. It should be noted, however, that due to the
cross-validation procedure followed here the distance to these 27 locations is over-
rated. At smaller distances to the 27 temporarily well locations the effect of updating
may be larger, resulting in less smoothed values of o(u).

119



Accuracy of spatio-temporal RARX model predictions

8 (u) KF1 & (w) KF2 o
(cm) (cm) °
7T 77 §
61 . 61 )
5. .0 . 5 % . :
slem . oo A
3 . - 3 L.
2 - oL
1 1
| | | | | | | |
0 5 10 15 20 0 5 10 15 20
Al
KF3 &(u)
r (cm)
6 —
5 —
4 00g0003®® o« ‘o o q0% ¢ °
3 (—
2 —
1+
| | | |
0 5 10 15 20
GAE'(U,')
(cm)

Figure A6.1: o.(u) resulting from calibration of a Kalman filter algorithm (6.(u))
vs. o.(u) estimated from observed one-step-ahead prediction errors (5.(u)).

A6.1.2 Accuracy of quantified uncertainty about the mean
depth

The error in the prediction of the mean water table depth at location u is quantified
by the mean error, M E(u). For a location k where a time series of water table depths
with length n; was observed the mean error is calculated by:

1 nk 1 ng
20— D e )

j=1
It is shown in Tables 6.1 and 6.2 that large systematic errors can be present in spa-
tially predicted time series of water table depths. In section 5.8 a procedure is given
to simulate possible values of M F(u) at unvisited locations, as part of a procedure
to construct a risk map. However, the uncertainty about M E(uy) which arises from
the limited size of the sample taken at location k is neglected in this procedure.
The sample size is limited in two ways. Firstly, the samples cover periods of limited
length, and may therefore not represent the full fluctuation zone of the water table.
Secondly, the time steps at which the water table depth was observed may be selected
with unequal and unknown probability, as is the case in this study (see Figure 6.1).
Because of the latter, it is not easy in this case study to quantify the uncertainty
about M E(uy). If the water table depth were observed continuously in time, for

ME(uy) = (A6.9)
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instance by using automatic devices such as divers, then the uncertainty related to
sample size could be reduced to zero, provided that the water table showed maximum
fluctuation during the monitoring period. If it is not possible to record the water
table depth continuously, then it may be worthwhile to collect data following some
random sampling design, because these designs enable us to make statistical inference
with respect to our uncertainty about ME(uy) (Cochran, 1977). At a location uy
we consider the water table depth during a predefined period in time as the popu-
lation from which a random sample is taken. If the sample has size n, the observed
water table depths {hj(ux), he(ug),. .., h,(ur)} can be compared with deterministi-
cally predicted water table depths {hpi(ug), hr2(uk), ..., he(ug)}, resulting in a
random sample {ej(uy), e2(uy),...,e,(uy)} following Eq. (A6.3). This sample can
thus be considered to be taken from a population of differences between observed and
predicted water table depths. For a simple random sampling design the accuracy of
M E(uy) can now be quantified by its standard error:

se(ME(uy)) = SDE—Q(U'“), (A6.10)

n

where SDE(uy,) is calculated by Eq. (5.12), replacing i by k.
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Chapter 7

(General discussion and
conclusions

7.1 Introduction

In this chapter the results and conclusions of the studies reported in chapters 2 to 6
are discussed in the perspective of the objectives as formulated in chapter 1. Apart
from these main objectives, several problems encountered during the work on this
thesis are discussed. In section 7.2, the estimation of fluctuation characteristics of the
water table depth representing the prevailing climatic and hydrologic conditions is
dealt with. In section 7.3 attention is paid to time series models for the relationship
between precipitation surplus and water table depth. Special attention will be given
to the extent of knowledge about the physical system incorporated into the models.
Section 7.4 deals with the different ways to find an appropriate time series model.
Section 7.5 discusses the physical basis of the ARX(1,0) model. The prediction per-
formance of the regionalised time series model applied in this thesis (the RARX(u;1,0)
model) is discussed in section 7.5. Section 7.7 treats the accuracy of quantified un-
certainty about the water table depth. Finally, in section 7.8 some thoughts about
future research needs are given.

7.2 Estimation of fluctuation statistics

In chapter 2 a method was presented to estimate fluctuation statistics of the water
table depth representing the prevailing climatic and hydrologic conditions, indepen-
dent of the precipitation surplus during the monitoring period. The length of the
monitoring period is generally restricted to 4 to 10 years. In essence the procedure is:

1. model the relationship between precipitation surplus and water table depth, by
using models with a stochastic component;

2. transform an extensive time series of precipitation surplus into a series of water
table depths by using the model resulting from step 1. In this study series of
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30 years are used, assuming that the average weather conditions during those
30 years represent the prevailing climate;

3. generate a large number of realisations by using the stochastic model component;

4. calculate fluctuation statistics from the realisations of 30-year series of water
table depths.

Fluctuation statistics such as the mean highest and mean lowest water table (MHW
and MLW, respectively) used to be estimated from observed time series covering at
least 8 years (Van Heesen, 1970). However, in practice these lengths are generally
restricted to 4 to 10 years. The results in chapter 2 show that estimates based on
an 8-year series may differ more than 20 ¢cm from estimates based on a 30-year se-
ries (see Figures 2.7 and A2.2). As the results in Figure A2.2 indicate, the 30-year
estimates show less variation than the 8-year estimates. It can be concluded that the
methodology presented in chapter 2 meets the first objective formulated in chapter 1:
to develop stochastic methods for estimating fluctuation characteristics
of the water table depth representing the prevailing climatic and hydro-
logic conditions. Apart from MHW and MLW, this methodology can be used to
estimate various fluctuation characteristics, for instance duration curves (chapter 3).
The structures of the models described in chapters 2 and 3 imply that water table
depths can only be simulated with semi-monthly time intervals. Hence, the fluctuation
characteristics represent the semi-monthly frequency only. Recently, this restriction
of time series models was eliminated by Bierkens et al. (1999). They embedded the
TFN model in a Kalman filter algorithm, enabling the prediction or simulation of time
series of water table depths at the daily frequency of the input series on precipitation
surplus.

7.3 Time series models for water table depths

Two models were applied in chapter 2 to describe the relationship between precip-
itation surplus and water table depth: i) the physical descriptive model SWATRE
(Belmans et al., 1983) supplemented with a stochastic model for the noise series
(SWATRE+ARMA), and ii) transfer-function models with added noise (TFN, Box
and Jenkins, 1976). TFN models are referred to as black box models (Bohlin, 1991),
because they are lacking a physical basis. They only describe empirical relationships
between input and output series. Physical mechanistic models such as SWATRE,
are called white box models, because they are based on specific knowledge of the
physical system. The performance of both models in estimating fluctuation statis-
tics was evaluated in a validation experiment. Although SWATRE is conceptually
based on specific knowledge of the physical system, the validation results were only
slightly better than those obtained by the TFN models. This is probably due to er-
rors in the input data on soil physical relationships. Moreover, hysteresis effects were
not included into the model and, for the sake of mathematical simplicity, physical
processes are schematised. For these reasons water table depths simulated by using
the SWATRE model may differ from observed water table depths. If these differences
are minimised by calibrating some of the model parameters, their values may lose
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their physical meaning, since they counterbalance errors in the physical data and the
model structure. Thus, once calibrated, the SWATRE model can be seen as a grey
box model, as it is based on knowledge of the physical structure as well as on observed
time series.

The validation results in chapter 2 indicated that both the SWATRE-+ARMA
model and the TFN model can be improved. More specifically, TFN models describe
linear relationships between precipitation surplus and water table depth, which is not
consistent with reality. A nonlinear rather than a linear relationship may be expected
between precipitation surplus and water table depth, due to the presence of different
soil layers or drainage levels and a time-varying storage capacity of the unsaturated
zone.

In chapter & an attempt was made to improve the estimation of fluctuation statis-
tics, by applying a time series model that accounts for threshold nonlinearities in the
relationship between precipitation surplus and water table depth. The performance of
this so-called threshold autoregressive self-exciting open-loop (TARSO) model (Tong,
1990) was evaluated in a validation experiment. The SWATRE model, the TFN
model and the dynamic regression model (DR), which is a special form of the TFN
model, were used as benchmarks for model comparison. It is concluded that TARSO
models are adequate alternatives for the DR and the TFN models as well as the
SWATRE+ARMA model to simulate water table depths and to estimate durations
of exceedance. The differences in the validation results for the four evaluated models
are small, however. The TARSO models incorporate several regimes which are sepa-
rated by thresholds. As explained in subsection 3.3.1, the active regime depends on
the water table depth at the previous time step. Within each regime the relationship
between precipitation surplus and water table depth is described by a linear dynamic
regression model. An automatic procedure was followed in determining the thresh-
old values and the autoregressive orders of the dynamic regression model for each of
the regimes, using an automatic selection criterion (BIC, see section 3.4). The role
of prior knowledge on the physical system in the model selection procedure will be
elaborated upon in the following section. In fact, the selected subset-TARSO models
in chapter 3 can be considered as grey box models, because prior physical knowledge
was used in the model selection procedure. Moreover, the selected models could be
interpreted physically.

TARSO models can be classified in between the physical descriptive model SWA-
TRE and linear time series models such as TFN and DR models. SWATRE explicitly
describes threshold nonlinearities such as drainage levels and soil physical boundaries,
in addition to other nonlinear relationships. TARSO models only take threshold non-
linearities into account, whereas TFN models and DR models have a linear structure.
However, the validation results in chapters 2 and 3 indicated only small differences in
performance between the various models, despite the clearly different model concepts.

7.4 Finding an appropriate model

In chapters 2 to 4 appropriate time series models for the relationship between precip-
itation surplus and water table depth were found in three different ways:
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1. a procedure of identification, estimation (calibration) and diagnostic checking
(verification) as given by Box and Jenkins (1976) (chapter 2);

2. automatic model selection using an automatic selection criterion (Bayes Infor-
mation Criterion, chapter 3);

3. a physical analysis (chapter 4).

The first two methods are based on observations on the input and output vari-
ables. Knowledge about the physical system is not used. The disadvantage of the
first method is that its results depend on experts’ insights and experience. There-
fore the results may not be reproducible, in contrast to the second method which
allows models to be selected in an objective and reproducible way. Both methods
or parts of them can be used to explore data, in order to gain more insight into a
physical system. The selected model structures may confirm existing theory about
the underlying physics, but may also give rise to new insights into physical processes.
This is extensively discussed in P.C. Young’s work on the data-based mechanistic
modelling (DBM) approach, see for instance Young and Beven (1994). The DBM ap-
proach starts with the selection of a model structure by applying objective statistical
inference to time series data. Next, only those model equations are accepted which
are found to be physically relevant. The procedure followed in chapter 3 is similar
to the DBM approach. First, in chapter 3 appropriate subset-TARSO models were
selected from a large set of candidate models, by using an automatic model selection
criterion (BIC, section 3.4). Next, the selected models were interpreted physically
(subsection 3.6.1).

An important step in automatic model selection procedures is the compilation of
the set of candidate models. The number of candidate models should not be too large.
The larger the set, the higher the risk of finding a model which fits well to the data,
but which describes the underlying process inadequately. This risk can be lowered by
restricting the set of candidate models to models which are relevant from a physical
point of view. It should be noted, however, that if the set of candidate models is re-
stricted too drastically on the basis of existing physical insights, little opportunity is
left to gain new physical insights from the selected models. Obviously, in the compila-
tion of the set of candidate models some subjective choices cannot be avoided. Apart
from that, automatic selection procedures can be considered as objective and repro-
ducible. Prior knowledge on the physical system was used in the selection procedure
for subset-TARSO models in chapter 3. Firstly, the delay parameter, d in Eq. (3.2),
was fixed at unity, based on prior physical knowledge as explained in section 3.4.
Secondly, the number of regimes was fixed on the basis of prior physical information
as well. It was assumed that thresholds in the relationship between precipitation sur-
plus and water table depth are related to drainage levels and soil physical boundaries.
These levels were observed in the field; the number of regimes was derived from the
number of observed drainage levels and determined soil physical boundaries. The
candidate threshold levels were restricted only with respect to a minimum of obser-
vations within the regimes, as explained in section 3.4. The selected threshold values
were compared with drainage levels and levels of soil physical boundaries in subsec-
tion 3.6.1, in order to evaluate the theory that threshold nonlinearities are caused by
these drainage levels and soil physical boundaries. Indeed, several threshold values
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were close to drainage levels and soil physical boundaries. If drainage levels or soil
physical boundaries were absent, or not so pronounced, the selected threshold val-
ues could only be explained from the non-constant relationship between precipitation
surplus and water table depth caused by the non-constant storage capacity of the
unsaturated zone, as pointed out in subsection 3.6.2.

Diagnostic checks are performed in chapter 2 to verify lack of fit, see subsec-
tions 2.2.2 and 2.2.3 and Figures 2.3 and 2.6. The procedure of identification, es-
timation and diagnostic checking is repeated until a suitable model is found which
explains all data and satisfies all model assumptions. This procedure may be sound
from a scientific point of view. However, from an engineering point of view it may
make sense to keep the purpose of the model in mind during the modelling process.
For instance, diagnostic checks applied to the residuals may indicate the presence of
correlations which are unacceptable from a theoretical point of view. However, if the
magnitude of these residuals is not relevant given the purpose of the model, then
the model may still be appropriate for practical application. Therefore, apart from
diagnostic checking, the simulation results were wvalidated in chapter 2. In chapter 3
the diagnostic checks were replaced by a validation procedure with respect to the pur-
pose of the model. It was assumed that if the residuals depart from the white noise
assumption, this would show up in a poor simulation performance, see section 3.5.
Of course, validation procedures depend on the availability of independent validation
sets which are sufficiently large and which represent the processes under investigation.

7.5 The physically based ARX(1,0) model

Compared to the automatic model selection procedure applied in chapter 3, in chap-
ter 4 a time series model was chosen rather than selected. In fact, the number of
candidate models was restricted to one on the basis of a physical analysis. It was
shown that a simple first order autoregressive-exogenous variable model (ARX(1,0)
model) can easily be expressed in terms of a water balance for a soil column. The
physical interpretation could straightforwardly be extended to TARSO models. In-
terestingly, both the procedure of identification, estimation and diagnostic checking
in chapter 2 and the automatic model selection procedure in chapter 3 indicated first
order autoregressive processes for the relationship between precipitation surplus and
water table depth. The process of physical interpretation reveals the physical meaning
of the assumptions made in linear time series modelling. The linear model structure
implies that drainage levels, the effective porosity of the soil, and the regional com-
ponent of groundwater flow are assumed to be independent of the water table depth.
However, drainage levels will be independent of the water table depth only in areas
where constant surface water levels are maintained. In other areas drainage levels
will show temporal fluctuations depending on the groundwater storage. Furthermore,
the effective porosity of the soil will vary in time, depending on the fraction of pores
filled with air, and thus also depending on the water table depth. Finally, the regional
component of groundwater flow will probably show temporal fluctuations, depending
on the gradient in the groundwater head and thus also depending on the water table
depth. Besides this, the regional component of groundwater flow will probably show
temporal fluctuations, reverberating persistent long term meteorological fluctuations.
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The noise component of the ARX(1,0) model contains remaining influences which
are not incorporated explicitly into the model. These include, for instance, the dif-
ference between potential and actual evapotranspiration, surface runoff, flow through
macropores or cracks and preferential flow. Furthermore, the noise component in-
cludes the temporal variation of those terms which are assumed to be time invariant:
the drainage level, the effective porosity and the regional component of groundwater
flow. The noise component of the ARX(1,0) model is assumed to follow the same
autoregressive structure as the dynamic component, as explained in section 4.2 and
Egs. (4.2) and (4.3). In contrast to the ARX model, in a TFN model the noise com-
ponent does not necessarily follow the same autoregressive structure as the dynamic
component. The validation results in chapter 3 indicated that TFN models perform
slightly better than DR models, which are equivalent to ARX models with respect
to the autoregressive structure of the noise component. Therefore, the autoregressive
structure of the unknown influences forming the noise component possibly differs from
the autoregressive structure of the dynamic component and thus, ARX models may
not be adequate at this point.

In a case study (section 4.4) it is demonstrated that the physically interpreted
ARX(1,0) model can be applied to predict the effects of human interventions on
the water table dynamics. The validation results indicate that the ARX(1,0) model
predicts the effects reasonably well, despite its drastically schematised representation
of the physical system. Because of its physical basis the ARX(1,0) model can easily
be linked to additional information. The physically based time series model forms
the basis of the spatio-temporal prediction methods described in chapters 5 and 6,
because in areas where only a limited number of observed time series is present it
makes sense to incorporate additional information into the prediction methods.

7.6 Spatio-temporal predictions of water table
depths

The second objective of the study reported in this thesis is: to develop methods
to predict water table depths in space and time in terms of probabilities,
for application in regions where suitable observation wells are scarce.

For that purpose in chapter 5 a regionalised time series model was devised. Here
‘regionalised’ means that the parameters of the time series model are made depen-
dent of location. The physically based ARX(1,0) model for the relationship between
precipitation surplus and water table depth, presented in chapter 4, is regionalised,
because its parameters can be ‘guessed’ from widely available information on the
physical system. This makes the method suitable for application in areas where only
a limited number of observed time series is available. For such areas it is not possible
to model the spatial structure of time series model parameters which are obtained
through calibration on observed time series. By using the physical basis of the ARX
model, additional information on the physical system can be transformed into time
series model parameters. Additional information on the physical system is obtained
from digital elevation models (DEM), detailed digital topographic maps which con-
tain information on the locations and sizes of ditches, and digitally stored soil profile
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descriptions which are combined with soil physical standard curves. In section 5.4,
methods are described to obtain time series model parameters from this additional
information. The thus obtained parameter values are referred to as ‘guessed’ parame-
ter values, because they result from straightforward transformation rather than from
calibration on observed time series. The regionalised ARX(1,0) model is referred to
as the RARX(u;1,0) model, with u being a vector of spatial co-ordinates.

Two spatio-temporal prediction methods based on the RARX(u;1,0) model are
presented in chapter 5: the ‘direct’ method (DM) and the ‘indirect’ method (IM).
DM is a purely deterministic method which provides predicted water table depths
only. Apart from predictions IM provides quantitative information on the uncertainty
about the true water table depths. IM can thus be considered as a stochastic method,
which enables us to predict water table depths in terms of probabilities.

The third objective of this thesis is: to evaluate the accuracy of the stochastic
methods developed with respect to objectives 1 and 2. Therefore in chap-
ter 6 the accuracy of four alternative spatio-temporal prediction methods based on
the RARX(u;1,0) model is assessed in a case study. Two types of information are
distinguished:

1. predictions of water table depths. Using these predictions, water managers can

immediately anticipate actual trends;

2. estimates of statistics of the water table fluctuation, e.g., fluctuation statistics
like MHW and M LW (chapter 2), duration curves (chapter 3), probabilities
of exceedance (chapter 6) and expected water table depths (chapter 6). These
statistics can help water managers in assessing options for long term water
policy.

Apart from DM and IM, three applications of a RARX(u;1,0) model, embedded in
a spatio-temporal Kalman filter algorithm, are evaluated in chapter 6, the details of
which are explained in Bierkens et al. (2001). Three alternative applications of the
Kalman filter algorithm, referred to as KF1, KF2 and KF3, respectively, are described
in subsection 6.3.3. In KF1 and KF2 physically based, guessed RARX parameters
are used as auxiliary information in the interpolation of the RARX parameter values
which are ‘kmown’ for 13 locations in the study area. At these 13 locations time
series were observed which were suitable to calibrate the RARX model parameters.
In KF1 external drift kriging is applied in the interpolation of all RARX parameters.
In KF2 simple kriging with varying means is applied to interpolate a;(u), bg(u) and
p(u), whereas external drift kriging is applied to interpolate o.(u), with guessed
values fi(u) as an external drift. In KF3 external drift kriging is applied, with ground
surface elevation from the DEM as an external drift for all RARX parameters. It
should be noted that KF methods depend on the presence of time series which are
suitable to calibrate RARX model parameters, in contrast to DM and IM.

In KF methods the spatio-temporal predictions can be updated at any moment
that observed water table depths become available. In other words, KF methods en-
able us to predict water table depths spatially at time ¢, conditionally to the observed
water table depths up to and including time ¢. This property makes the KF methods
attractive for the prediction of actual water table depths. DM and IM provide pre-
dictions which, in fact, are linear transformations of the precipitation surplus only.
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In DM observed water table depths are not at all taken into account. In IM observed
water table depths are only used to correct for systematic errors and to quantify the
uncertainty about the true water table depths.

The validation results in chapter 6 indicate that, at least in this case study, KF
methods predict the temporal fluctuations of the actual water table depth more pre-
cisely than DM and IM. This is clearly the effect of the ‘updating’ in the KF meth-
ods. However, IM shows less large systematic errors than the alternative methods.
All methods estimate the expected water table depth equally well. It is indicated
that IM estimates the expected (temporal) mean depth of the water table in a given
hydrologic regime more accurately than the KF methods. A possible explanation is
that the 13 locations for which RARX model parameters were calibrated on observed
time series, did not represent the average conditions in the study area. In general, the
validation results show that the temporal variation of the water table depth is pre-
dicted reasonably precisely, but that relevant errors can occur in estimating the mean
depth around which the water table fluctuates. Thus it is concluded that the spatio-
temporal prediction methods need to be improved with respect to the prediction of
the temporal mean.

In the methods described in chapters 5 and 6 time series modelling and geostatis-
tical methodology are combined to parametrise the spatio-temporal function X (u,t).
A similar approach was followed for weather data by Hutchinson (1995), who in-
terpolated the parameters of stochastic point models for rainfall spatially by thin
plate smoothing splines, accounting for dependence on elevation. Van Geer and Zuur
(1997) modelled the spatial structure of parameters of TFN models for the relation-
ship between precipitation surplus and water table depth. In contrast to the methods
described in chapters 5 and 6, they did not use auxiliary information in the inter-
polation, because in their case time series model parameters were calibrated for a
sufficiently large number of locations. In section 5.1 two alternative approaches for
regionalised time series models were mentioned. Multivariate geostatistical methods
form the first alternative, see for instance Rouhani and Hall (1989) for an applica-
tion to piezometric heads. The second alternative is formed by methods based on
multivariate time series modelling (for instance Pfeifer and Deutsch, 1980; Dalezios
and Adamowski, 1995). As compared to regionalised time series models, multivari-
ate geostatistical approaches as well as multivariate time series modelling generally
demand many observations on the target variable in both time and space. Because
the studies in this thesis concern regional applications in which observed water table
depths are scarce, methods based on a regionalised time series model were devised for
spatio-temporal prediction of water table depths.

7.7 The accuracy of quantified uncertainty

The stochastic methods devised in this thesis enable us to describe the dynamics of
the water table in terms of probabilities. Therefore, the methods can be applied in
risk assessment. An example is given in Figure 5.9, which shows a map reflecting
the risks that the water table is present within a depth of 50 cm on April 1st in any
future year, given the actual hydrologic and climatic conditions. Two components of
uncertainty contribute to these risks: i) the uncertainty about the future precipitation
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surplus, and ii) the uncertainty about the relationship between precipitation surplus
and water table depth as described by the RARX(u;1,0) model. The uncertainty
about the future precipitation surplus is approximated by the variation of the precip-
itation surplus over the last 30 years. The uncertainty about the representativeness
of the RARX(u;1,0) model is quantified by using the differences between observed
and predicted water table depths at 40 (cross-)validation locations. In section 5.8 the
procedure for drawing a risk map is explained and three assumptions in calculating
the risks are given. A fourth assumption can be added to these three: the uncertainty
on the relationship between precipitation surplus and water table depth as described
by the RARX(u;1,0) model is assumed to be completely covered by the prediction
errors observed at the 40 (cross-)validation locations.

If the risk of taking a wrong decision is close to 50%, it will be difficult to decide.
Because Figure 5.9 shows only small areas with risks of around 50%, the map can
be helpful to water managers when they have to take strategic decisions. Of course,
the calculated risks may deviate from the true risks, since they are based on several
assumptions. Evidently, the practical value of stochastic spatio-temporal prediction
methods in decision making depends on the accuracy of the quantified uncertainty.
Therefore in appendix A6.1 the accuracy of quantified uncertainty is assessed, by
means of cross-validation.

In summary, the analyses in appendix A6.1 indicate the following:

1. The uncertainty about the temporal variation of the water table depth is un-
derestimated by the spatio-temporal prediction methods applied in this study.
This may be caused by the sampling design, which did not fully represent the
temporal variation of the water table depth. Apart from that, in the KF meth-
ods the uncertainty of regionalised parameters a;(u), bo(u) and p(u), was not
taken into account in the spatial predictions of o (u). Furthermore, the analy-
ses indicated that the interpolated values of o.(u) are smoothed. In this case
study the smoothing effect of kriging resulted in underestimation of both the
mean level and the spatial variation of o(u);

2. The accuracy of the uncertainty about the mean depth, around which the wa-
ter table fluctuates in time, cannot be assessed using the sampling design in
the present case study. Hence, it can be concluded that the sampling design
can be improved in this respect. More specifically, to provide estimates of the
uncertainty about the mean error, the water table depth must be monitored
continuously in time or, at least following a random sampling design.

7.8 Some topics for further research

During the work on this thesis several problems were faced which could not be inves-
tigated within the scope of the studies reported here. In this final section some ideas
for future research are given. First, some opportunities to improve the methods pre-
sented in this thesis are discussed. Next, some ways to improve or to complete data
are suggested. Finally, some thoughts are given on the tuning of stochastic methods
to support decision making in groundwater policy.
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The results in chapters 2 to 4 indicated that the time (series) models applied in
this thesis did not explain all data. Furthermore, the diagnostic checks in chapter 2
indicated that the models did not satisfy all model assumptions. Thus, provided that
the data are correct, the models can be improved from a scientific point of view.
Besides, the validation results in chapters 2 and 3 indicated that the models could
be improved keeping the purposes of the models in mind. However, the validation
results also indicate that linear time series models, threshold nonlinear models and
the physical descriptive model SWATRE perform only slightly differently. Therefore,
possible improvements may be expected from other types of models than those applied
in this thesis.

In chapter 2 it was pointed out that shallow water tables vary more with the precipi-
tation surplus than deep water tables, due to the varying storage capacity of the unsat-
urated zone. As a result, the errors remaining from a TFN model are heteroscedastic
(i.e., the errors have non-constant variance). Time series models accounting explic-
itly for heteroscedasticity are the GARCH models (Generalised Autoregressive Con-
ditional Heteroscedasticity, e.g. Franses and Van Dijk, 1996). Essentially, the error
variance is modelled by an ARMA model in GARCH models. Given the heteroscedas-
tic errors resulting from TFN models, it might be interesting to apply GARCH models
to the noise component of TFN models. It would be particularly interesting to give
a physical basis to the GARCH model, analogous to chapter 4. This physical basis
can be used by predicting the error variance component of the GARCH model spa-
tially. The TARSO model (chapter 3) also accounts for non-constant error variance.
However, the TARSO model is not smooth around the threshold levels which divide
the fluctuation of the water table depth into regimes. The Multivariate Adaptive Re-
gression Splines algorithm (MARS) for time series, introduced by Lewis and Stevens
(1991), can be used to obtain continuous (smooth) nonlinear threshold autoregressive
models. A MARS algorithm for time series (TSMARS) was applied to sea surface tem-
perature series by Lewis and Ray (1997). They applied a semi-multivariate adaptive
spline threshold autoregressive (SMASTAR) model, that incorporates several predic-
tor variables (wind direction and wind speed) to model the sea surface temperature.
Interestingly, this model could be interpreted by oceanographers. The development of
a SMASTAR model for water table depths that can be interpreted physically would
be an interesting topic for further research.

The validation results in chapters 2 and 3 indicate systematic errors in the simu-
lated water table depths. In subsection 3.6.2 it was suggested that systematic errors
appearing from the validation experiment could possibly be explained from persis-
tent long term meteorological fluctuations, which cause long range fluctuations of the
regional groundwater flux. Another possible cause of the systematic errors could be
the lowering of water tables as a result of intensified drainage and groundwater with-
drawal. The causes of these systematic errors should be further examined. The next
question to be answered is how to deal with these phenomena in predicting actual
water table depths and estimating statistics. Influences like groundwater abstraction
could be incorporated into time series models as input series, next to precipitation
surplus, provided that groundwater abstraction data are available. If the history of
drainage works is known, they could be treated as interventions (e.g. Hipel et al.,
1975; Hipel and McLeod, 1994). Recently, Coulibaly et al. (2001) applied artificial
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neural network models (ANN) to forecast deep water tables during the dry season in
Burkina Faso. In this part of the Sahel region, the hydrological regime changes in
time, because of the decreasing trend in rainfall and increasing water demands. The
results indicate that ANN models can be applied to a hydrologic regime that changes
in time. Apart from a time series of water table depths, time series on precipitation,
river water level, maximum and mean temperatures were used in ANN modelling of
water table depths. It might be interesting to investigate the performance of ANN
models in predicting water table depths in parts of the Netherlands, where the hy-
drological system is changing because of increasing water demands and intensified
drainage. A disadvantage of ANN models is that they cannot easily be interpreted
physically, they really are ‘black box’ models. This may be a disadvantage when the
models are extended to a space-time context and observed time series of water table
depths are scarce.

The ‘echo’ of persistent long term meteorological fluctuations in the water table
depth could be modelled by including autoregressive terms with long lags into the
time series model. Another way to account for these meteorological fluctuations may
be to incorporate an input series of observed groundwater heads, which reflect these
long term meteorological fluctuations. However, in general it will not be possible to
identify these models and to calibrate their parameters, because observed time series
of sufficient length are scarce.

In chapter 6 the accuracy of three spatio-temporal prediction methods based on
the RARX(u;1,0) model was evaluated. The accuracy may increase if the methods
described in chapters 5 and 6 are combined. For instance, values of @, (u), bp(u) and
fi(u) are obtained by the indirect method, IM, firstly. Next, only the ranges of the
variograms for o(u) and €(u) are calibrated by the space-time Kalman filter.

In appendix A6.1 and section 7.7 it was pointed out that the accuracy of quantified
uncertainty depends on the sampling design. It was suggested that the uncertainty
can be quantified more accurately if the water table depths are observed continuously
in time at the validation points, or at least following a random sampling design. In
chapters 5 and 6 an existing sampling design was used with which the uncertainty
could not be quantified accurately, as appeared from the results in appendix A6.1. An
interesting topic for further research would be to optimise spatio-temporal sampling
designs with respect to accurate estimates of uncertainty, in particular the application
of classical sampling theory both in space and in time (e.g. Brus and De Gruijter,
1997; De Gruijter, 2000).

The accuracy of predictions or estimates depends not only on models or sampling
designs, but also on the quality of the observations used. In this thesis, input series
of potential precipitation surplus were calculated from daily data on precipitation
and on potential Makkink crop evapotranspiration (De Bruin, 1987), observed at the
nearest meteorological station. The effects of more advanced interpolation methods
on the prediction of water table depths should be investigated. A discussion on the
quality of data on precipitation and on evapotranspiration is beyond the scope of
this thesis. It should be noted that the availability of accurate meteorological data is
crucial in the application of the methods described in this thesis. The same holds for
observations on water table depths. The measurement error in observed water table
depths is neglected in this thesis. This can be justified, because the observation wells
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are checked on defects like stoppages. Apart from that, the measurements, taken with
a bell and a tape measure (chapter 1), can be considered as precise. However, little is
known about the accuracy of measured water table depths. Therefore, it is advisable
to investigate the accuracy of measured water table depths, preferably for various soil
types. A specific problem is the presence of perched, temporary, water tables above
impermeable layers, of which the depths cannot accurately be measured in the existing
network of observation wells. For this reason the boulder clay area was excluded from
the validation study in chapters 5 and 6. For applications in agriculture and ecology
it is important to know the depth to these temporary water tables, because these
temporary water tables are relevant to plant growth. A possible way to measure the
depth to temporary water tables at a certain location is to install a number of wells
with small filters at various depths, both above and below impermeable layers. The
depth to perched, temporary, water tables can be observed in tubes with filters above
an impermeable layer.

In chapters 1 and 6 it was mentioned that on average one suitable observation well
per 750 to 1,250 hectares is present (Finke, 2000). The accuracy of predicted water
table depths will increase if more observations are done. However, the accuracy of
predicted water table depths will not necessarily decrease if the number of observed
time series is reduced. If only those wells are removed in which erroneous time series
of water table depths (i.e., negatively contributing to the predictions) are observed,
the accuracy of predictions will increase. In other cases, the monitoring design has to
be reconsidered in order to maintain or to improve the accuracy of predicted water
table depths (e.g. Angulo et al., 2000).

In observation wells and boreholes, water table depths can be measured at points
in space. Water table depths can be observed continuously in space with ground-
penetrating radar devices (e.g. Shih et al., 1986; Anderson Jr. et al., 2000). It
would be interesting to investigate if water table depths in Dutch soil types can be
accurately measured by ground-penetrating radar. An interesting application would
be to measure the depth to perched water tables by ground-penetrating radar. Besides
this, ground-penetrating radar can be used to make ‘snapshots’ of the water table at
a large number of locations on a certain day.

Electronic divers can be installed in observation wells to measure water table depths
continuously in time, or at least with a high sampling frequency, say hourly or at each
quarter of an hour. Measurements can also be taken following some random sampling
design. For these reasons, divers can be useful in quantifying the uncertainty about
the water table depth, see section 7.7 and subsection A6.1.2.

Finally, some ideas are presented about a better tuning of stochastic methods for
the prediction of water table depths to support decision making in groundwater pol-
icy and water management. By using stochastic methods it is possible to quantify
uncertainty about the true water table depths. Of course, hydrologists are challenged
to reduce this uncertainty, by improving models and by optimising monitoring strate-
gies. However, some part of the water table depth will always be left unexplained,
and furthermore, the water table depth will never be observed at all times and places.
Quantified uncertainty can be useful in supporting strategic decisions in water policy.
For instance, probabilities can be calculated which can be helpful in choosing between
alternatives. An example is given in section 5.8, where a map is presented reflecting
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the risk that the water table is within a critical depth at the start of the growing
season. Note that ‘risk’ is used here as a synonym for ‘probability’. Risks can be esti-
mated by multiplying probabilities with costs, for instance costs related to agricultural
production losses. Apart from risks, probabilities can be translated into opportuni-
ties, for instance the opportunity that an ecosystem can be restored. Summarising,
once translated into probabilities, risks or opportunities, quantified uncertainty can
be used in water management and water policy.

As discussed in section 5.9, high uncertainty implies probabilities of approx. 50%,
which makes it difficult to take decisions. Thus, probabilities or risks highlight the
need for reduction of uncertainty. Next, an additional survey can be executed to pro-
vide more accurate information for decision makers. It might be more cost-effective,
however, to decide on the accuracy needed for application in water management or
policy before a survey or monitoring program starts. This implies that water man-
agers, policy makers and scientists need to communicate about uncertainty, proba-
bilities and risks in advance. For instance, a question on monitoring the effects of
an intervention can possibly be translated into a testing problem with Hy: no effect.
Then, water managers or policy makers rather than scientists must decide on the
least relevant difference, that is, the slightest effect that must be indicated. Further-
more, they should indicate the maximum tolerated probability of wrongly accepting
Hy, that is, wrongly concluding that an effect is absent (type II error). These deci-
sions are based on the costs of the monitoring, and the costs which are made if it is
wrongly concluded that an intervention had no effect. These costs can be considered
as the ‘consumer’s risk’, which is equivalent to the probability of a type II error in
hypothesis testing (Kendall and Buckland, 1982). In conclusion, to improve the fit of
stochastic methods to problems in water management and groundwater policy, it is
extremely important to translate practical questions carefully into statistical terms,
as well as to translate statistical inference into answers which can be understood by
water managers and policy makers. The utilisation of statistical knowledge in water
management and water policy is an interesting topic for further research. Experts
in statistics and hydrology as well as experts in management science, communication
studies and psychology should co-operate in finding ways to improve the utilisation
of knowledge about uncertainty. After all, being uncertain is a human condition.
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Chapter 8

Samenvatting

Als je ergens op het platteland in Nederland een gat in de grond boort, bereik je na
enige tijd meestal een diepte waarop de bodem is verzadigd met water. Het water
dat niet is gebonden aan bodemdeeltjes en niet onder druk door een afsluitende laag
staat, wordt ‘freatisch’, vrij, grondwater genoemd. Het freatische grondwater, dat zich
vrij in de porién van de grond bevindt, stroomt het boorgat in tot zich een bepaald
niveau instelt. Op dit niveau is de drukhoogte van het grondwater gelijk aan de
atmosferische druk. Als we een paar meter verderop een tweede boorgat maken, dan
vinden we daarin waarschijnlijk op ongeveer dezelfde diepte freatisch grondwater als in
het eerste boorgat. We gaan door met het maken van boorgaten, totdat we uiteindelijk
een heel gebied hebben verkend. Na enige tijd, afhankelijk van de doorlatendheid
van de grond, kunnen we in al deze gaten de diepte tot het freatische grondwater
meten. Meestal gebeurt dit met behulp van een meetlint waaraan een cilindervormig
klokje is bevestigd. Het klokje wordt langzaam neergelaten in het boorgat. Als het
klokje de waterspiegel raakt hoor je ‘plop’ en kan de diepte van de grondwaterspiegel
worden afgelezen van het meetlint. De waarnemingen in de boorgaten kunnen worden
beschouwd als puntwaarnemingen van een continu oppervlak van freatisch grond-
water, dat de grondwaterspiegel wordt genoemd. De diepte van de grondwaterspiegel
ten opzichte van het maaiveld wordt aangeduid als de grondwaterstand. Als we in
alle boorgaten tegelijkertijd de grondwaterstand zouden meten, dan leverde dat een
interessante verzameling waarnemingen op van de grondwaterstand die in een gebied
op een bepaald tijdstip is opgetreden. Hoogstwaarschijnlijk zal uit een eerste analyse
van deze waarnemingen blijken dat de grondwaterstand varieert van plaats tot plaats.
Vervolgens plaatsen we buizen met doorlatende filters in alle boorgaten, zodat we
ook in de toekomst grondwaterstanden kunnen meten op diezelfde plekken. Keer op
keer meten we de grondwaterstand in alle boorgaten, bijvoorbeeld met tussenpozen
van enkele dagen. Analyseren we ook deze waarnemingen, dan zal blijken dat de
grondwaterstand niet alleen van plaats tot plaats varieert, maar tevens door de tijd
fluctueert, met een piek in de winter en een dal in de zomer. We kennen nu de grond-
waterstand op lokaties waar grondwaterstandsbuizen staan en op tijdstippen waarop
de grondwaterstand is gemeten. Voor lokaties waar geen buizen staan en voor tijd-
stippen waarop de grondwaterstand niet is gemeten zullen we voorspellingen moeten
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doen. Die voorspellingen kunnen afwijken van de grondwaterstand in werkelijkheid.
We zijn dus onzeker over de echte grondwaterstand op de lokaties en tijdstippen
waarvoor we voorspellingen hebben gedaan.

In het grootste deel van Nederland bevindt de grondwaterspiegel zich al binnen
twee meter beneden maaiveld. Vanwege deze geringe diepte is informatie over de
grondwaterstand belangrijk voor de landbouw en het natuurbeheer. Grondwater-
beheerders moeten rekening houden met meerdere, vaak tegengestelde belangen ten
aanzien van de grondwaterstand. FEen verandering in het grondwaterregime kan voor
de één een gewenste ontwikkeling inluiden, maar voor de ander een risico betekenen.
Om goede afwegingen te kunnen maken dienen grondwaterbeheerders te beschikken
over nauwkeurige informatie over de grondwaterstand. Bij voorkeur is ook de be-
trouwbaarheid van deze informatie bekend, zodat zij kan worden gebruikt in risico-
analyses. In Nederland wordt de grondwaterstand al sinds 1948 regelmatig waar-
genomen in een netwerk van duizenden grondwaterstandsbuizen. Grondwaterstands-
reeksen weerspiegelen de dynamiek van de grondwaterstand die hoort bij de hydro-
logische en meteorologische omstandigheden gedurende de waarnemingsperiode. Een
waarnemingsperiode met constante hydrologische omstandigheden is meestal beperkt
tot circa 2 tot 10 jaar. Om strategische beslissingen op het gebied van grondwater-
beheer te kunnen ondersteunen is echter informatie gewenst die de dynamiek weer-
spiegelt onder de heersende klimatologische omstandigheden, wat meestal benaderd
wordt met de gemiddelde weersomstandigheden over een periode van 30 jaar. Er
is dus behoefte aan methoden waarmee het mogelijk is om grondwaterstandsreeksen
te extrapoleren naar reeksen van 30 jaar lang, waaruit vervolgens karakteristieken
kunnen worden berekend.

Een grondwaterstandsreeks bevat alleen informatie over de dynamiek van de grond-
waterspiegel op de plaats van de grondwaterstandsbuis waarin deze reeks is waar-
genomen. Voor toepassingen in het grondwaterbeheer is echter informatie nodig voor
elke lokatie in een bepaald gebied. De dichtheid van het netwerk van grondwater-
standsbuizen is echter beperkt tot één per 750 tot 1 250 hectare. Regionale studies
waarin informatie over de grondwaterstand gebiedsdekkend gewenst is hebben meestal
betrekking op gebieden met een omvang van ca. 2 000 tot ca. 15 000 ha. Dit
kunnen bijvoorbeeld ruilverkavelingen, (delen van) waterschappen of natuurgebieden
betreffen. Het aantal grondwaterstandsbuizen in deze gebieden is te klein om de
grondwaterstand nauwkeurig in ruimte en tijd te voorspellen op basis van uitsluitend
waargenomen grondwaterstandsreeksen.

Tot nu toe werd de variatie van de grondwaterstand weergegeven op zo-
genaamde grondwatertrappenkaarten (Gt-kaarten). Deze kaarten, die tegelijk met de
bodemkaart worden vervaardigd, kunnen worden beschouwd als ruimte-tijdmodellen
van de grondwaterstand. Gt-kaarten worden gemaakt op basis van grondwaterstands-
waarnemingen, bodemkundige profielkenmerken en landschappelijke kenmerken. Gt-
kaarten kunnen verouderd zijn, doordat inmiddels de grondwaterstand is verlaagd,
bijvoorbeeld omdat de grondwaterstand is aangepast aan landbouwkundige eisen, of
omdat er grondwater wordt onttrokken voor drinkwater, industrie of beregening van
landbouwgewassen. Een ander nadeel van Gt-kaarten is dat de indeling in grond-
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watertrappen geént is op landbouwkundige toepassing, terwijl voor toepassingen in
bijvoorbeeld het natuurbeheer informatie gewenst is die niet door de Gt-kaarten wordt
verschaft. Vanuit wetenschappelijk oogpunt heeft de methode waarmee Gt-kaarten
vervaardigd worden het nadeel dat zij niet reproduceerbaar is. Tenslotte is de be-
trouwbaarheid van de Gt-kaarten onbekend, tenzij er extra inspanningen worden
geleverd om deze alsnog te schatten. Daardoor zijn Gt-kaarten niet zonder meer
geschikt voor gebruik in risicoanalyses. Risicoanalyse kan in het bijzonder nodig zijn
als er in een gebied tegengestelde belangen bestaan ten aanzien van de grondwater-
stand. Daarom is er behoefte aan stochastische methoden waarmee de dynamiek van
de grondwaterstand in termen van waarschijnlijkheden kan worden beschreven.

De belangrijkste doelen van het onderzoek dat in dit proefschrift is beschreven
zijn:

1. stochastische methoden te ontwikkelen waarmee de fluctuatie van de grond-
waterstand zoals die zich voordoet onder de heersende hydrologische en klima-
tologische omstandigheden kan worden gekarakteriseerd;

2. methoden te ontwikkelen waarmee de grondwaterstand in ruimte en tijd kan
worden voorspeld in termen van waarschijnlijkheden, in gebieden waar weinig
bruikbare grondwaterstandsbuizen aanwezig zijn;

3. de nauwkeurigheid te evalueren van de methoden die met het oog op de doelen 1
en 2 zijn ontwikkeld.

In hoofdstuk 2 is een stochastische methode ontwikkeld waarmee fluctuatiekarak-
teristieken van de grondwaterstand kunnen worden geschat die representatief zijn voor
de heersende hydrologische en klimatologische omstandigheden. De methode maakt
gebruik van eendimensionale modellen die de relatie beschrijven tussen het neerslag-
overschot en de grondwaterstand. Twee modellen met een verschillende theoretische
basis zijn toegepast. Het eerste model is het fysisch-mechanistische model SWATRE
voor de fysische beschrijving van stroming van water in de onverzadigde zone, uit-
gebreid met een tijdreeksmodel voor de residuen (SWATRE+ARMA). Het tweede
model is het transfer-ruismodel (TFN), dat de empirische relatie tussen neerslag-
overschot en grondwaterstand beschrijft. Met deze modellen worden grondwater-
standsreeksen gesimuleerd van 30 jaar lang, waaruit fluctuatiekarakteristieken kunnen
worden berekend. In hoofdstuk 2 zijn dat de gemiddeld hoogste en gemiddeld laagste
grondwaterstand (resp. GHG en GLG), waarop de indeling in grondwatertrappen is
gebaseerd. De methode is toegepast op acht verschillende grondwaterstandsreeksen
in een validatie-experiment. De resultaten van de SWATRE+ARMA-modellen ver-
schillen maar weinig van die van de TFN-modellen, ondanks de duidelijke theoretische
verschillen. Uit de resultaten blijkt dat GHG’s en GLG’s die zijn berekend uit reek-
sen van 8 jaar lang met meer dan 20 cm kunnen afwijken van GHG’s en GLG’s die
berekend zijn uit reeksen van 30 jaar lang. Van praktisch belang is de minimale
lengte die een grondwaterstandsreeks moet hebben om er een model op te kunnen
kalibreren die de relatie met het neerslagoverschot adequaat beschrijft. De minimale
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lengte hangt af van 1) de responstijd tussen het neerslagoverschot en de grondwater-
stand; 2) de variatie van de grondwaterstand tijdens de waarnemingsperiode; 3) de
afwezigheid van een ingreep in de waterhuishouding en 4) het aantal waarnemingen
dat nodig is om de modelparameters nauwkeurig te kunnen schatten. Een reeks moet
tenminste een jaar lang zijn, mits in dat jaar een seizoensfluctuatie optreedt waarbij
de top en het dal van de grondwaterstandsfluctuatie worden bereikt. Als de respons-
tijd tussen het neerslagoverschot en de grondwaterstand langer is dan een jaar, dan
is de minimale reekslengte gelijk aan de responstijd. Voor 51 reeksen afkomstig het
Pleistocene deel van Nederland zijn de responstijden berekend. In zes gevallen bleek
de responstijd langer dan een jaar te zijn.

In hoofdstuk 3 is een zogenaamd TARSO-model toegepast op zes grondwaterstands-
reeksen. Dit model verdeelt het grondwaterstandsverloop in verschillende regimes,
die worden gescheiden door drempels. De relatie tussen het neerslagoverschot en
de grondwaterstand in een bepaald regime wordt beschreven met een dynamische
regressievergelijking. Passeert de grondwaterstand een drempel, dan treedt een an-
der regime in werking en geldt een andere dynamische regressievergelijking. Voor
elk van de zes grondwaterstandsreeksen is een TARSO-model geselecteerd met be-
hulp van een automatisch criterium voor modelselectie: het Bayes Informatie Cri-
terium (BIC). Dit criterium maakt een afweging tussen enerzijds de mate waarin
het model bij de waarnemingen past en anderzijds de complexiteit van het model.
De geselecteerde TARSO-modellen zijn gebruikt om grondwaterstandsreeksen van 30
jaar lang te simuleren, waaruit karakteristieken zoals de GHG, de GLG en duurlijnen
van de grondwaterstand kunnen worden berekend. De resultaten van de TARSO-
modellen zijn in een validatie-experiment vergeleken met die van SWATRE+ARMA-
modellen, TFN-modellen en dynamische regressiemodellen (DR). Uit het validatie-
experiment blijkt dat de resultaten van de verschillende modellen weinig van elkaar
verschillen. Als er duidelijke drempels in het grondwaterstandsverloop zijn te onder-
scheiden, bijvoorbeeld als gevolg van de aanwezigheid van drainageniveaus of lagen
met verschillende bodemfysische eigenschappen, dan leveren TARSO-modellen betere
resultaten op dan de lineaire TEN- en DR-modellen. De kleine verschillen tussen de
validatieresultaten van TARSO-modellen en SWATRE+ARMA-modellen kunnen mo-
gelijk worden verklaard uit onnauwkeurigheden in de invoergegevens die nodig zijn
voor het fysisch-mechanistische model SWATRE.

In hoofdstuk 4 is een eenvoudig lineair tijdreeksmodel voor de relatie tussen het
neerslagoverschot en de grondwaterstand uitgedrukt in termen van de waterbalans
voor een bodemkolom. De parameters van het autoregressive exogenous variable-
model (ARX-model) kunnen worden geschreven in termen van drainageweerstand, ef-
fectieve porositeit, regionale grondwaterflux en drainageniveau. Uit twee voorbeelden
blijkt dat met het fysisch geinterpreteerde ARX-model het effect van ingrepen in de
waterhuishouding op de grondwaterstand goed kan worden voorspeld.

In hoofdstuk 5 wordt een geregionaliseerd tijdreeksmodel gepresenteerd voor de re-
latie tussen het neerslagoverschot en de grondwaterstand. Als basis dient het fysisch
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geinterpreteerde ARX-model dat in hoofdstuk 4 is beschreven. Als dit ARX-model
wordt ‘geregionaliseerd’ tot een RARX-model dan wil dat zeggen dat de parameters
van het tijdreeksmodel afhankelijk worden van de lokatie. Voor lokaties waar grond-
waterstandsreeksen zijn waargenomen kunnen de waarden van de RARX-parameters
worden geschat door middel van kalibratie. Op andere lokaties kunnen de waarden
van de RARX-parameters worden gegist met behulp van de fysische relaties die in
hoofdstuk 4 zijn gegeven en hulpinformatie zoals een digitale hoogtecijferkaart, een
digitale topografische kaart met lokaties en afmetingen van sloten, digitaal opgeslagen
bodemkundige profielbeschrijvingen en bodemfysische standaardcurven. Twee metho-
den om de grondwaterstand in ruimte en tijd te voorspellen worden in hoofdstuk 5
beschreven: de ‘directe’ methode (DM) en de ‘indirecte’ methode (IM). DM is een de-
terministische methode en maakt geen gebruik van waargenomen grondwaterstanden.
In IM wordt als vervolg op DM gebruik gemaakt van waargenomen grondwaterstanden
om te corrigeren voor systematische fouten en om de onzekerheid over de werkelijke
grondwaterstand te kwantificeren. De nauwkeurigheid van de voorspellingen is on-
derzocht door middel van kruisvalidatie. Bij kruisvalidatie wordt telkens een lokatie
waar een grondwaterstandsreeks is waargenomen buiten beschouwing gelaten. Met
behulp van de overige gegevens wordt een grondwaterstandsreeks voorspeld voor deze
lokatie. De voorspellingen worden vervolgens vergeleken met de waargenomen grond-
waterstanden. Deze procedure wordt net zolang herhaald totdat voor alle lokaties
waar grondwaterstanden zijn waargenomen ook voorspellingen zijn gedaan. De ver-
schillen tussen de waargenomen en voorspelde grondwaterstanden zeggen iets over
de nauwkeurigheid van een voorspellingsmethode. Uit de validatieresultaten blijkt
dat er grote systematische fouten kunnen voorkomen in DM, die in IM aanmerkelijk
kunnen worden gereduceerd. De fouten in de voorspelling van de temporele fluctu-
atie zijn relatief klein; gemiddeld wordt 64 % van de temporele variatie verklaard.
Met behulp van IM is een kaart gemaakt die het risico weergeeft dat in een toekom-
stig jaar een kritische diepte aan het begin van het groeiseizoen wordt overschreden.
Hierbij zijn als componenten van onzekerheid onderscheiden: i) onzekerheid over het
neerslagoverschot in een toekomstig jaar, en ii) onzekerheid over de relatie tussen
het neerslagoverschot en de grondwaterstand zoals die beschreven is door het RARX-
model. Hoe groter de onzekerheid, hoe dichter risico’s bij 50 % zullen liggen en hoe
moeilijker het is voor grondwaterbeheerders om een beslissing te nemen. Kaartjes met
de componenten van onzekerheid laten de gebieden zien waar in dat geval de voor-
spellingen mogelijk te verbeteren zijn, bijvoorbeeld door aanvullende waarnemingen
te verrichten.

In hoofdstuk 6 wordt de nauwkeurigheid van een aantal methoden om de grond-
waterstand in ruimte en tijd te voorspellen met elkaar vergeleken. Naast de directe
en de indirecte methode die in hoofdstuk 5 werden besproken, zijn dit methoden
die zijn gebaseerd op een zogenaamd ruimte-tijd Kalmanfilter. Met een ruimte-tijd
Kalmanfilter is het mogelijk om voorspellingen te optimaliseren met behulp van de
beschikbare waarnemingen van de grondwaterstand. Daarnaast kan het ruimte-tijd
Kalmanfilter worden gebruikt om grondwaterstanden te simuleren, gegeven de waar-
nemingen. Verder kunnen met het ruimte-tijd Kalmanfilter monitoringnetwerken
worden geoptimaliseerd. In tegenstelling tot DM en IM dienen bij het ruimte-tijd
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Kalmanfilter de RARX-parameters op een aantal lokaties bekend te zijn. In het
studiegebied zijn de RARX-parameters bekend voor 13 lokaties waar tijdreeksen
beschikbaar zijn die voldoende lang zijn om de parameters te kalibreren. Vervolgens
worden deze ‘bekende’ RARX-parameters ruimtelijk geinterpoleerd, waarbij gebruik
wordt gemaakt van hulpinformatie. Drie varianten zijn onderscheiden: KF1, KF2
en KF3. In KF1 en KF2 wordt dezelfde hulpinformatie gebruikt als in DM en IM,
namelijk waarden voor RARX-parameters die zijn gegist uit hulpinformatie zoals de
digitale hoogtecijferkaart, de digitale topografische kaart met lokaties en afmetingen
van sloten, digitaal opgeslagen bodemkundige profielbeschrijvingen en bodemfysische
standaardcurven. Het verschil tussen KF1 en KF2 is gebaseerd op de manier waarop
de RARX-parameters ruimtelijk worden geinterpoleerd met behulp van die hulpin-
formatie. In KF1 wordt gebruik gemaakt van kriging with an external drift, waarbij
gelijktijdig met de interpolatie een lineaire samenhang tussen de doelvariabele en de
hulpvariabele wordt aangepast. In KF2 wordt gebruik gemaakt van kriging with vary-
ing means, waarbij de gegiste RARX-parameterwaarden worden beschouwd als het
gemiddelde niveau en de afwijkingen ten opzichte van dit gemiddelde worden geinter-
poleerd. In KF3 worden digitale maaiveldhoogtecijfers gebruikt als ezternal drift in
kriging with an external drift.

De nauwkeurigheid van DM, IM, KF1, KF2 en KF3 is met elkaar vergeleken door
middel van kruisvalidatie. Hieruit blijkt dat de KF-methoden de temporele fluctuatie
van de grondwaterstand preciezer voorspellen dan DM en IM. Dit is het gevolg van
het feit dat de voorspellingen worden geoptimaliseerd met behulp van beschikbare
grondwaterstandswaarnemingen (updating). Het gemiddelde grondwaterstandsniveau
blijkt echter door IM beter geschat te worden. IM blijkt een nauwkeurig alternatief
voor de drie KF-methoden te zijn bij het schatten van de grondwaterstand die wordt
verwacht op een bepaalde dag in enig toekomstig jaar, gegeven de heersende hydro-
logische en klimaatomstandigheden.

Tenslotte is in hoofdstuk 6 de nauwkeurigheid onderzocht waarmee de onzekerheid
over de werkelijke grondwaterstand is gekwantificeerd. Het blijkt dat de onzekerheid
over de temporele variatie van de grondwaterstand vooral in IM wordt onderschat.
Dit kan worden verklaard uit het feit dat op 27 lokaties de waarnemingen in de tijd
geclusterd waren, waardoor de temporele variatie van de voorspelfout wordt onder-
schat. De onderschatting van de onzekerheid over de temporele variatie van de grond-
waterstand die bij KF-methoden werd geconstateerd, kan worden verklaard uit het
feit dat de onzekerheid over de geregionaliseerde RARX-parameters niet in rekening
is gebracht. De standaardafwijking van de foutencomponent van het RARX-model
wordt onderschat omdat de 13 lokaties van waaruit geinterpoleerd wordt niet re-
presentatief zijn voor het gehele studiegebied en de kriging-interpolatiemethoden een
te ‘glad’ oppervlak voorspellen. De nauwkeurigheid van de geschatte systematische
fout in de grondwaterstandsvoorspellingen kon niet goed worden bepaald vanwege het
steekproefontwerp waarmee de grondwaterstand in te tijd was waargenomen. Als de
grondwaterstanden waren waargenomen volgens een aselecte steekproefmethode was
het wel goed mogelijk geweest om de nauwkeurigheid van de systematische fout te
bepalen.
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In hoofdstuk 7 worden de resultaten van de studies uit hoofdstuk 2 tot en met
6 bediscussieerd en worden de belangrijkste conclusies samengevat. Ook worden er
een aantal ideeén voor vervolgonderzoek gegeven. Om de fluctuatie van de grond-
waterstand te karakteriseren voor de heersende hydrologische en klimatologische om-
standigheden worden modellen gebruikt die de samenhang tussen het neerslagover-
schot en de grondwaterstand beschrijven. De TFN-modellen die in hoofdstuk 2
worden toegepast worden ook wel black bor-modellen genoemd, omdat zij slechts
een empirische relatie beschrijven tussen de invoerreeks van het neerslagoverschot en
uitvoerreeks van de grondwaterstand. Fysisch-mechanistische modellen zoals SWA-
TRE worden daarentegen white bor-modellen genoemd, omdat zij gebaseerd zijn op
kennis van het fysische systeem. Een fysisch-mechanistisch model zal echter nooit
volledig het grondwaterstandsverloop kunnen verklaren, omdat fysische processen in
het model zijn geschematiseerd en omdat invoergegevens fouten bevatten. Zodra pa-
rameters van een fysisch-mechanistisch model worden gekalibreerd op waargenomen
grondwaterstanden, kunnen deze parameters inboeten aan fysische betekenis omdat
zij een tegenwicht moeten bieden tegen schematisaties en fouten in de invoer. Zodra
een fysisch-mechanistisch model gekalibreerd is, is het dus geen white boz-model meer
maar een grey boz-model, dat gebaseerd is op zowel fysische kennis als waargenomen
tijdreeksen. De TARSO-modellen die in hoofdstuk 3 worden beschreven kunnen ook
worden beschouwd als grey box-modellen, omdat de set kandidaatmodellen die is ge-
bruikt in de automatische modelselectieprocedure is samengesteld op basis van fy-
sische kennis. Bovendien kunnen de geselecteerde modellen fysisch worden uitgelegd.

In hoofdstuk 2 werden TFN-modellen gevonden op basis van een procedure van
identificatie, kalibratie en verificatie. Bij de identificatie en verificatie speelt de vi-
suele interpretatie van geschatte autocorrelatiefuncties en kruiscorrelatiefuncties een
belangrijke rol. Een nadeel van deze methode is dat zij niet geheel reproduceerbaar is.
Dit in tegenstelling tot de procedure op basis van een automatisch selectiecriterium
(BIC) die in hoofdstuk 3 is gevolgd bij de selectie van TARSO-modellen. Toch vallen
bij de samenstelling van de set kandidaatmodellen waaruit met behulp van het cri-
terium een model wordt geselecteerd min of meer subjectieve keuzes niet te vermijden.
Wordt de set kandidaatmodellen namelijk te groot, dan neemt het risico toe dat er
een model wordt geselecteerd dat weliswaar goed bij de waarnemingen past, maar het
onderliggende proces niet goed beschrijft. Dit risico kan worden verkleind door de set
kandidaatmodellen te beperken tot modellen die op basis van bestaande fysische ken-
nis relevant zijn. Als de set kandidaatmodellen echter te drastisch wordt beperkt op
basis van bestaande inzichten in de fysische processen, dan verdwijnt de mogelijkheid
om met behulp van de resultaten van de modelselectie nieuwe inzichten in het fysische
systeem op te doen.

Bij verificatie of diagnostic checking wordt gecontroleerd of het model goed bij de
waarnemingen past en of aan alle modelveronderstellingen wordt beantwoord. Dit is
een correcte wetenschappelijke benadering, maar het kan nuttig zijn om ook de doelen
van het model in gedachten te houden. Uit de verificatie kan bijvoorbeeld blijken dat
in de residuen correlaties voorkomen die vanuit theoretisch oogpunt ontoelaatbaar
zijn. Als de residuen echter gering zijn gelet op het doel van het model, dan kan
het model nog steeds geschikt zijn voor toepassing in de praktijk. Door de prestatie
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van het model te testen op een onafhankelijke validatieset, zoals in hoofdstuk 2 en 3,
kan de geschiktheid voor praktische toepassingen worden beoordeeld. In hoofdstuk
4 is een model voor de relatie tussen het neerslagoverschot en de grondwaterstand
niet geselecteerd, maar gekozen op basis van een fysische analyse. In feite is de set
kandidaatmodellen beperkt tot één. Een eenvoudig eerste-orde autoregressief model
met het neerslagoverschot als invoervariabele (een ARX(1,0)-model) blijkt eenvoudig
in termen van de waterbalans voor een bodemkolom te kunnen worden vertaald.

In hoofdstuk 5 en 6 is een geregionaliseerde tijdreeksmodel toegepast om de grond-
waterstand in ruimte en tijd te voorspellen. Dit geregionaliseerde tijdreeksmodel is
een combinatie van tijdreeksmodellering en geostatistische interpolatie. Het is ook
mogelijk om met behulp van multivariate geostatistische methoden of multivariate
tijdreeksmodellen de grondwaterstand in ruimte en tijd te modelleren. Het nadeel van
deze twee benaderingen is echter dat er veel waarnemingen van de grondwaterstand
nodig zijn om de modelparameters te schatten, in tegenstelling tot de geregionaliseerde
tijdreeksmodellen die in hoofdstuk 5 en 6 zijn toegepast.

Tijdens het werk aan dit proefschrift rezen een aantal vragen die niet direkt konden
worden beantwoord, maar die wel interessant zijn om in de toekomst te worden on-
derzocht. Deze vragen hebben betrekking op verbeteringen of alternatieven voor de
methodieken die in dit proefschrift zijn toegepast, op verbeteringen of aanvullingen
aan de gegevensbestanden die zijn gebruikt en op de mogelijkheden om de resul-
taten van stochastische methodieken beter te benutten in het grondwaterbeheer en
het grondwaterbeleid.

Naast de modellen die zijn gebruikt in hoofdstuk 2 en 3 om de relatie tussen het
neerslagoverschot en de grondwaterstand te beschrijven zijn er nog een aantal al-
ternatieven die de moeite waard zijn om te onderzoeken. Een probleem is dat de
grondwaterstand niet constant varieert met het neerslagoverschot: hoge grondwater-
standen variéren meer dan lage, omdat het bergingsvermogen van de bodem bij hoge
grondwaterstanden kleiner is. GARCH-modellen (Generalised Autoregressive Condi-
tional Heterscedasticity) zijn tijdreeksen die met deze niet-constante variatie rekening
kunnen houden. Het is misschien de moeite waard om te onderzoeken of GARCH-
modellen tot betere resultaten leiden dan de modellen die tot nu toe zijn toegepast.
De TARSO-modellen uit hoofdstuk 3 houden ook rekening met niet-constante vari-
atie door het grondwaterstandsverloop in verschillende regimes te verdelen. Als de
grondwaterstand een bepaalde drempelwaarde passeert dan treedt er een ander regime
in werking. Met MARS-modellen (Multivariate Adaptive Regression Splines) is het
mogelijk om deze overgang van het ene naar het andere regime geleidelijker te laten
verlopen, wat wellicht meer in overeenstemming is met de werkelijkheid dan de plot-
selinge overschakeling op een ander regime bij de TARSO-modellen. Uit de validatie-
resultaten in hoofdstuk 2 en 3 bleek dat er systematische fouten voorkwamen in de
gesimuleerde grondwaterstanden. Mogelijk hangen deze systematische fouten samen
met lange-termijn schommelingen in het weer die vertraagd in het grondwaterstands-
verloop tot uiting komen. Een andere oorzaak kan zijn dat de grondwaterstand daalt
doordat er meer gedraineerd wordt of meer grondwater wordt gewonnen. Met mo-
dellen die zijn gebaseerd op zogenaamde neurale netwerken (ANN, artificial neural
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networks) is het mogelijk gebleken om in Burkina Faso grondwaterstandsreeksen te
modelleren die geleidelijk steeds dieper werden doordat de neerslag afnam en de water-
winning toenam. Wellicht kunnen ANN-modellen ook worden toegepast op reeksen
in gebieden in Nederland waar de grondwaterstand geleidelijk verandert.

In hoofdstuk 6 bleek dat de nauwkeurigheid waarmee onzekerheid kan worden ge-
kwantificeerd afhangt van het steekproefontwerp waarmee verschillen tussen gemeten
en voorspelde grondwaterstanden worden waargenomen. Dit is een interessant en be-
langrijk onderwerp voor verder onderzoek, met name de toepassingsmogelijkheden van
klassieke steekproeftheorie, zowel in ruimte als in tijd. Niet alleen de steekproef- of
monitoringontwerpen en de modellen voor grondwaterstanden zijn belangrijk voor de
nauwkeurigheid van schattingen en voorspellingen, maar ook de kwaliteit van de waar-
nemingen. Voor de toepassing van de methoden die in dit proefschrift zijn beschreven
is het van belang om over neerslag- en verdampingscijfers van goede kwaliteit te
beschikken. Over de nauwkeurigheid van grondwaterstandsmetingen in buizen en
boorgaten is weinig bekend. Het is belangrijk om hier onderzoek naar te doen, zodat
eventuele meetfouten in rekening kunnen worden gebracht bij het kwantificeren van
onzekerheid. Met name het meten van de grondwaterstand in bodems waarin slecht
doorlatende lagen voorkomen, zoals keileem, is een probleem. De tijdelijke grond-
waterspiegels die op deze stagnerende lagen voorkomen zijn relevant voor de planten-
groei, en dienen daarom gemeten te worden. Wellicht dient in dit soort bodems de
grondwaterstand te worden waargenomen in niet een maar een aantal buizen met
filters op verschillende dieptes, zowel boven als onder stagnerende lagen. Nieuwe
meetapparatuur biedt mogelijkheden om de grondwaterstand nauwkeuriger te meten
en onzekerheid beter te kwantificeren. Met name grondradar en zogenaamde elektro-
nische divers, waarmee het mogelijk is om de grondwaterstand continu te meten in
resp. de ruimte en de tijd, bieden nieuwe mogelijkheden.

Tenslotte is het belangrijk om de benutting van kennis over onzekerheid, die met
stochastische methoden kan worden opgedaan, te verbeteren in het grondwaterbeheer
en het grondwaterbeleid. Dit is een belangrijk onderwerp voor toekomstig onder-
zoek, waarin deskundigen op uiteenlopende gebieden zoals hydrologie, statistiek, be-
stuurskunde, communicatiewetenschappen en psychologie vruchtbaar zouden kunnen
samenwerken. Uiteindelijk is onzekerheid een menselijke eigenschap.
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