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Abstract 

van der Sanden, J.J., 1997. Radar remote sensing to support tropical forest 
management. Wageningen, The Netherlands (Wageningen Agricultural University), 
Tropenbos-Guyana Series 5, doctoral thesis, 330 p. 
 
This text describes an investigation into the potential of radar remote sensing for 
application to tropical forest management. The information content of various radar 
images is compared and assessed with regard to the information requirements of 
parties involved in tropical forest management at the global, national and local 
spatial levels. The study distinguishes between the use of radar remote sensing for 
application to forest resource assessment and forest resource monitoring. Both 
assessment and monitoring are essential components of procedures for sustainable 
forest management. The radar data studied are of tropical forest areas near the 
township of Mabura Hill in Guyana and the city of San José del Guaviare in Colombia. 
Mabura Hill is comprised of differing intact, primary forest types and forests that have 
been subjected to industrial selective logging. San José del Guaviare, on the other 
hand, is characterised by the presence of secondary forests and a variety of 
non-forest cover types. The available radar data set includes high resolution airborne 
radar images with differing wavelengths (i.e. X-, C-, L- and P-band) and polarizations, 
time-series images acquired by the first European remote sensing satellite ERS-1 and 
a collection of low altitude, nadir-looking, X-band scatterometer measurements. 
 
The study makes use of three fundamentally different information sources from the 
radar return signal: its strength or backscatter, polarization and phase, and spatial 
variability or texture. Results show that backscatter values computed from L- and 
P-band radar data and textural attributes computed from high resolution X- and 
C-band radar data make modest to good and complementary bases for region-based 
classification of tropical land cover at the level of primary forest types. Textural 
attributes and backscatter values computed per region from mono-temporal ERS-1 
images make modest bases for classifying at the levels of primary forest, logged-over 
forest, secondary forest and non-forest and poor bases for classifying at the level of 
primary forest types. Roads are usually the most easily observable indicators of 
foregoing and/or forthcoming (selective) logging and other human activities in ERS-1 
images. Detection of change in road networks by means of ERS-1 images would 
make a good first step in forest resource monitoring at the national spatial level, in 
particular. Textural attributes enable the ranking of forest types according to the 
degree of canopy roughness. Specific textural attributes also allow for quantification 
of canopy architectural properties. Despite differences in measurement scale, the 
canopy roughness of the land cover types studied was found to appear similarly in 
the texture of the available spaceborne and short wavelength airborne radar images. 
 
Keywords: remote sensing, radar, tropical rain forest, forest resource assessment, 
forest resource monitoring, sustainable forest management. 
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for me in 1984 as a three months project during my M.Sc. studies at the Wageningen 
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Prof.dr.ir. R.A. Feddes and Prof.dr.ir. R.A.A. Oldeman are also much appreciated for 
the supervision of my work and their constructive criticism during the realisation of 
this text. 
 
The investigations described were carried out within the framework of the Dutch 
National Remote Sensing Programme (NRSP) under the responsibility of the 
Netherlands Remote Sensing Board (BCRS). I wish to express my gratitude to the 
BCRS for the financial support given and the confidence trusted in me. The 
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acknowledged for their kind cooperation and logistical support during field visits. I am 
especially grateful to the members of the Tropenbos-Guyana team who provided me 
with transportation, accommodated me in their field camps and houses, guided me 
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of the forest. Moreover they shared with me their home-cooked diners, military 
rations, imported potato chips and local beer. The Tropenbos-Guyana Programme is 
acknowledged for publishing this thesis in its series. 
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the National Aeronautics and Space Administration (NASA). I owe these organisations 
many thanks for initiating their respective South American radar campaigns and for 
including the areas of interest to this study in the flight plans. I also want to 
acknowledge the Colombian and Guyanese aviation authorities for providing the 
clearance for the various radar over flights. Without the cooperation of these space 
organisations and national authorities this study would not have succeeded.  
 
Part of the work presented in this text was carried out during my six months stay as a 
visiting scientist with the Canada Centre for Remote Sensing (CCRS). Dr. Frank J. 
Ahern is much appreciated for giving me this opportunity. To him and other CCRS 
employees and visiting scientists I want to express my gratitude for sharing with me 
their ideas and knowledge. I especially want to thank my helpful roommate and PCI 
EASI/PACE instructor Ron Pietsch. The mentioned producer of image analysis 
software is acknowledged for providing me with the source code of the module for 
textural processing by means of a moving window. 
 
I wish to acknowledge my colleagues, initially at the Department of Land Surveying 
and Remote Sensing and later at the Department of Water Resources of the WAU, 
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1 Introduction 

1.1 Rationale and objective 

Among scientists, politicians and the public at large there is a still growing concern 
about the future of our natural environment in general and tropical rain forests in 
particular. Issues contributing to the explicit concern for forest resources in the 
humid tropics include: the alarming rate of tropical rain forest depletion; the 
potentially disastrous effects of deforestation on soil, water, climate, genetic 
richness and the future supply of economic products; the notion that the forest land 
is mostly converted to unsustainable uses and the fact that deforestation is often 
accompanied by violation of the rights of indigenous forest-dwelling people (Jacobs et 
al., 1988; Poore et al., 1989). The widespread concern is strengthened by 
uncertainty resulting from a present lack of accurate and/or up to date information 
on the state, extent and rate of change of tropical rain forests. This lack of 
information also hinders the development of programmes in support of and 
procedures for sustainable forest management. 
 
The world's political leaders acknowledged the concern about tropical rain forest 
resources in, among others, the agreements negotiated during the 1992 United 
Nations Conference on Environment and Development (UNCED) in Rio de Janeiro, 
Brazil. The need for more and better information on tropical rain forests in particular 
is expressed strongly in the recommendations of an agreement commonly referred to 
as 'Agenda 21' (UNCED, 1992; Lanly, 1992). In general, the collection of information 
on rain forests is complicated by their enormous extent, poor accessibility, intricate 
constitution and dynamic nature. Remote sensing systems have the capability to 
image the Earth's surface in a systematic, synoptic and repetitive manner. Hence, 
these systems make potentially outstanding tools for collecting up to date 
information to support the management of extensive natural resources of difficult 
access, such as tropical rain forests. 
 
The potential of remote sensing for application to the management of tropical forests 
and other land resources is acknowledged in the recommendations 7.33 and 11.36 
of Agenda 21. These recommendations read as follows: 
 
"7.33. All countries, particularly developing countries, alone or in regional or sub 
regional groupings, should be given access to modern techniques of land-resource 
management such as geographical information systems, satellite photography / 
imagery and other remote sensing technologies." 
 
"11.36. Assessment and systematic observation activities involve major research 
efforts, statistical modelling and technological innovation. These have been 
internalised into the management-related activities. The activities in turn will improve 
the technological and scientific content of assessment and periodical evaluations.  
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Some of the specific scientific and technological components included under these 
activities are: 
a) Developing technical, ecological and economic methods and models related to 

periodical evaluations; 
b) Developing data systems, data processing and statistical modelling; 
c) Remote sensing and ground surveys; 
d) Developing geographical information systems; 
e) Assessing and improving technology." 
 
The present study addresses components c and e of the recommendation 11.36. It 
aims to assess the potential of radar or microwave remote sensing for application to 
the management of tropical rain forests. To this end, the information content of 
images acquired by differing radar systems is evaluated and compared to the 
information requirements of parties involved in tropical forest management. 
Development of new techniques for extracting information on tropical forests from 
radar images is not an objective of the present study. Instead the aim is to evaluate 
existing techniques for radar image analysis and to investigate how these techniques 
can be optimised for the application studied. Since tropical rain forests typically occur 
in poorly surveyed regions, the study does not apply image analysis techniques that 
require geographically-referenced ancillary data on, for example, terrain physiography, 
infrastructure, soil type and vegetation type. 
 
The study distinguishes between the application of radar remote sensing to forest 
resource assessment and forest resource monitoring. Forest resource assessment is 
defined as the procedure for collecting, processing and presenting forest data. It 
usually results in a description of the location, extent and/or constitution of a certain 
forest area at a particular point in time. Forest resource monitoring, on the other 
hand, is defined as the process of continuously knowing the state of the forest 
environment and the changes that have and are taking place. Hence, it requires 
collecting, processing and presenting successive data on the location, extent and 
nature of changes. In order to plan and guide changes it is also important to gather 
information on the cause and rate of change. Forest resource assessment and 
monitoring are linked processes. Reliable monitoring of forest resources is feasible 
only if the starting point is well described by means of forest resource assessment. 
The processes of forest resource assessment and monitoring are essential parts of 
procedures for sustainable forest management. 

 

 

1.2 Outline of the present text 

Following the present introduction, the text continues with Chapter 2 which describes 
the individuals and organisations involved in tropical forest management, the spatial 
level at which they operate and their information requirements. All differing parties 
with a need for information on tropical forest resources are in fact potential users of 
the radar remote sensing data and analysis techniques studied. Chapter 2 also 
reviews selected publications on the potential of optical and radar remote sensing 
systems as tools for collecting information on tropical rain forests. 
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Chapter 3 introduces the reader to the principles of radar remote sensing and the 
terminology used in the present text. The chapter starts with an introduction to the 
basic concept of radar, the operating principles of radar systems used in remote 
sensing, the characteristics of radar signals, the specific properties of radar images 
and the concepts of radar polarimetry. This is followed by a discussion on the manner 
in which radar waves or microwaves interact with forests and on how this interaction 
is affected by microwave characteristics and forest properties. 
 
The study areas selected and the available radar remote sensing data are the 
subjects of Chapter 4. A general description of the principal study area near Mabura 
Hill, Guyana and the additional study area near San José del Guaviare, Colombia is 
followed by an outline of the procedure adopted to collect ground reference data and 
detailed descriptions of the forest types studied. Data compiled on the structure of 
primary forest types present in Mabura Hill are summarised in Appendix III. The last 
section of Chapter 4 reports on the radar campaigns that provided the data analysed 
in the present study and lists the specifications of sensor systems deployed. 
 
Chapter 5 discusses the methods and techniques used to extract information from 
the radar data sets studied and to appraise the value of this information for the 
identification of forest types and other land cover types, in particular. The available 
radar data sets are analysed according to two complementary approaches, i.e. 
analysis by means of image regions and pixel-per-pixel image processing techniques. 
Analysis of image texture by means of a technique based on grey level co-occurrence 
proved to be of great importance to the present study and is therefore described in 
detail. 
 
The results and conclusions of the analysis of the potential of the available X-, C-, L- 
and P-band radar data to support forest resource assessment are presented in 
Chapter 6. Three fundamentally different information sources from the radar return 
signal are investigated: its strength (backscatter), polarization and phase, and spatial 
variability. Spatial variations of the radar return signal are conceived as image 
texture. The emphasis is on analysis in view of the application of radar to land cover 
type classification because this usually makes up the first step in forest resource 
assessment procedures. Chapter 6 also discusses the potential value of the 
available radar data for estimating biomass parameters and forest architectural 
parameters. Texture is an important source of information, especially in high 
resolution X- and C-band radar images. Details concerning the automated analysis of 
texture in radar images according to the grey level co-occurrence approach are 
presented in Appendix I. 
 
Results and conclusions of investigations into the potential of radar images acquired 
by the first European remote sensing satellite ERS-1 to support forest resource 
monitoring are reported in Chapter 7. The chapter first discusses the temporal 
change in ERS-1 backscatter measurements for stretches of forest that are free of 
natural disturbance and human impact. This is followed by a discussion on the 
capabilities of ERS-1 to detect forest cover change resulting from industrial selective 
logging, in particular. Chapter 7 also reports on techniques for automated detection 
of change in radar images. 
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Considering the user requirements discussed in Chapter 2 and the analysis results 
given in Chapters 6 and 7, the last chapter of this text elaborates on the potential of 
radar remote sensing to support the management of tropical rain forests. After an 
assessment of the applicability of radar to forest management at global, national and 
local spatial levels, Chapter 8 continues with a discussion on radar data acquisition 
and analysis strategies or, in other words, on the implementation of radar remote 
sensing as a tool in tropical forest management. 
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2 User requirements and the potential of remote sensing 

2.1 Users and their information requirements 

In times past the management of tropical rain forests was primarily a topic of local 
and national concern. However, the ongoing world-wide depletion of this resource has 
made its management a point of significant global interest. Today, individuals and 
organisations with a need for information on tropical forests, i.e. potential users of 
radar remote sensing data, operate roughly at three spatial levels: the global (or 
international) level, the national level and the local (or forest management unit) level. 
The level of operation and the objectives of the user determine the spatial extent, the 
detail and the type of information required. Descending from the global to the local 
level the following trends in the information needs may be observed. First, the area 
for which information is needed decreases. Second, the information required is of an 
increasingly fine spatial detail. Third, the information needs diversify and become 
more specific. 
 
The Food and Agriculture Organisation of the United Nations (FAO) and the World 
Conservation Monitoring Centre (WCMC) are examples of organisations that operate 
at the global level. These organisations typically require information on items such as 
the global extent of tropical rain forests and the world-wide rates of deforestation and 
forest degradation. Examples of users mostly interested in information at the national 
level are governmental organisations such as ministries, forest services and planning 
agencies. At this level needs for information concern, for instance, the location, 
extent and state of forest concession areas leased by logging companies. Forest 
concessionaires and forest plantation owners are examples of users at the local 
level. To plan their operations these users may require information on the location of 
areas with unfavourable conditions (steep slopes, poor drainage etc.) or the 
distribution of forest types with a high proportion of commercially valuable species. 
 
The users identified so far are managers, policy makers, planners and/or controllers. 
An additional group of users is found in the scientific community. Scientists with an 
interest in tropical rain forests are active on all spatial levels and have a wide range 
of often very specific objectives. Hence, their information requirements vary widely 
and are difficult to pinpoint. The present text acknowledges but does not elaborate 
on the needs of scientific users. However, the information needs of scientists and 
other users overlap considerably. After all, many requirements of non-scientific users 
will be inspired by results of scientific research and, the other way around, research 
often addresses practical problems. The information needs of non-scientific users 
who operate at the global level are discussed in detail in section 2.1.1. Similarly, 
sections 2.1.2 and 2.1.3 elaborate on the needs of non-scientific users at the 
national and local level, respectively. Sections 2.1.1 through 2.1.3 discuss the 
essential users and information requirements. The overview presented is by no 
means exhaustive or exclusive. Experience shows that especially the inventory of 
user requirements is an invariably recurring and permanently difficult task. 
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2.1.1 Requirements at the global level 

The FAO may be considered the most important user at the global level since it has 
the United Nations (UN) mandate for the world-wide inventory and monitoring of 
tropical and other forest resources. The global information needs are discussed in 
international expert panels and dictated by major environmental issues, i.e. (changes 
in) biodiversity, the carbon cycle, the hydrological cycle, forest condition and land 
cover / land use. The information requested serves as a basis for policy making and 
control of parties operating at the national level. Table 2.1 presents a series of 
parameters that are needed to assess the mentioned global environmental issues. 
The parameters listed were discussed during the UNEP/FAO Expert Consultation on 
Environmental Parameters in Future Global Forest Assessments and the FAO/ECE 
Meeting of Experts on Global Forest Resources Assessment (UNEP/FAO, 1993; 
Nyyssönen, 1993). It is desirable that the information on these parameters is 
georeferenced. The preferred scale for the mapping of locational information ranges 
from 1:106 to 1:107. Traditionally, FAO collected information on the world's forest 
resources over five year intervals. In recent years, however, the observation 
frequency has been lower. The reference year for the most recent assessment was 
1990, whereas the preceding assessment describes the situation in 1981. 
 
Table 2.1 shows that the parameters relating to forest cover and forest categories 
are most important. Hence, these parameters may be considered primary indicators 
of the state of the world's forest resources. The remaining parameters, with 
exception of those that relate to socio-economic factors, are shown to be of 
secondary importance. Unlike most of the parameters listed, socio-economic 
parameters do not relate to the state of the forest ecosystem but rather to the social 
system interacting with the forest. Nevertheless, socio-economic parameters are of 
vital importance as changes in these parameters may cause considerable depletion 
of forest resources. Examples of socio-economic changes that are known to result in 
the destruction of forest are: increasing population densities, introduction of 
programmes to support settlement and sudden drops in international prices for forest 
products such as natural rubber (e.g. Etter and Andrade, 1987; Unni, 1994; van Dijk 
et al, 1994; Richards, 1996). Due to the strong influence of environmental problems, 
the emphasis is on information to be used in support of forest resource monitoring. 
Monitoring, however, must be preceded by forest resource assessment in order to 
establish a reliable starting point. 
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2  User requirements and the potential of remote sensing 

 
 

Table 2.1  Parameters required to assess major global environmental issues. The relative 
importance of each parameter is marked as follows: '+++' essential, '++' desirable, '+' 
optional. (After UNEP/FAO, 1993). 

 Global environmental issue 
 
 
Parameter 

 
Bio- 

diversity 

 
Carbon 
cycle 

Hydrolo- 
gical 
cycle 

 
Forest 

condition 

Land 
cover / 

land use 

Ecofloristic zones ++    + 

Forest cover: 
- Forest / non-forest 
- Burned areas 
- Logged areas 
- Regeneration 
- Biomass degraded areas 
- Deforested 

 
+++ 
+++ 

 
++ 
 

+++ 

 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 

 
+++ 
+++ 
+++ 
+++ 
+++ 
+++ 

 
+++ 
+++ 

 
 
 

+++ 

 
+++ 
+++ 

 
 
 

+++ 

Forest categories: 
- Potential forest vegetation type 
- Actual forest vegetation type 
- Administrative / legal status 
  (e.g. ownership) 
- Management type 
  (e.g. production forest) 
- Plantation / natural 

 
+++ 
+++ 

 
+++ 

 
++ 
+++ 

 
 

+++ 
 
 
 

++ 
+++ 

 
 

+++ 

  
 

++ 
 
 
 
 

+++ 

Fires (numbers, distribution) ++     

Percentage of vegetation cover     +++ 

Crown cover / leaf index + +++ +++  ++ 

Tree species composition ++  ++   

Diameter distribution  +++    

Stand height  + +   

Stand architecture ++  + ++ + 

Soil characteristics / topography: 
- soil organic matter 
- texture and slope 

 
++ 

 
+++ 

 
+ 

+++ 

 
++ 

 

Socio-economic factors  
(e.g. population density, 
infrastructure) 

 
+++ 

 
+++ 

 
+++ 

 
+++ 

 
+++ 
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2.1.2 Requirements at the national level 

Westinga et al. (1993) listed the needs for information on tropical forest resources at 
the national level. At this level the requested information is mainly used in support of 
policy making, planning and control of parties operating at the local level. In many 
countries the collection of data on forest resources has a long tradition in National 
Forest Inventories. Yet the scope of the National Forest Inventory has widened in 
time. The survey by Westinga et al. shows that at present there is a need for 
locational data on: forest cover, forest category, tree species composition, timber 
volume, ecological and socio-economic parameters. 
 
Information on parameters related to forest cover and forest category, i.e. on primary 
indicators of the state of the forest, is important for both forest resource assessment 
and forest resource monitoring. In countries where National Forest Inventories have 
been carried out, there is not usually an urgent need to assess forest cover and 
category parameters over extensive areas. Whenever there is need to do so, the 
common scale for mapping is 1:50,000. The information used in forest resource 
assessment is usually required to be updated once every five to 10 years. This 
frequency of observation agrees with that of traditional forest inventories. To enable 
forest resource monitoring the information on the primary indicators needs to be 
collected more frequently. The preferred observation frequency depends on the 
dynamics of the change processes and the size of the area of interest. However, 
under most circumstances it suffices to collect the required information once every 
two years. The minimum scale for maps to be used in forest resource monitoring at 
the national level is 1:250,000. 
 
Parameters relating to tree species composition and timber volume are usually 
collected in forest inventories. Yet none of these parameters classify as primary 
indicators of the forest's state. Information on species and timber volume is mostly 
of importance in forest assessments that aim to prepare for logging. Such 
assessments, however, are typically carried out at the local spatial level. At the 
national level species and timber volume parameters are of secondary importance 
because of links with environmental issues, i.e. biodiversity and carbon cycle. 
Traditionally, these parameters are collected by means of sampling and for restricted 
areas only. Reliable monitoring of tree species composition and timber volume over 
extended areas is difficult since these parameters are difficult to estimate and highly 
dependent on both the forest type and the forest's development level (see Oldeman, 
1990). 
 
Requests for data on ecological parameters, i.e. indicators of biodiversity, have 
gained considerable importance in recent years. Ecological parameters represent the 
variety of life at the ecosystem, species community and genotype population levels. 
The increased need for information on these parameters can be explained from the 
growing concern with regard to the continuing depletion and degradation of forest 
resources. To date there is lack of parameters that give a good representation of 
(change in) biodiversity and yet are easy to estimate. The discussion as to which 
parameters are most suited and how these should be estimated is ongoing 
(Nyyssönen, 1993). FAO's assessment of loss in biodiversity at the global level is 
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Table 2.2  Summary of parameters on which parties involved in the management of tropical 
forests at the national spatial level require information. 

Parameter 
Forest cover: 
- Forest / non-forest 
- Logged-over forest 
- Secondary forest 
- Primary forest types 

Forest categories: 
- Administrative / legal status 
  (e.g. ownership) 
- Management type 
  (e.g. production forest, protection forest, conservation forest, conversion forest) 
- Plantation / natural 

Tree species composition 

Timber volume / woody biomass 

Biodiversity indicators 
  (e.g. canopy roughness, terrain physiography, cover fragmentation, road density,  
  net primary production, actual evapotranspiration, leaf chemistry, leaf biomass, leaf 
  area index) 

Socio-economic factors 
  (e.g. population density, infrastructure, development programs, commodity agreements) 

based on an estimation of the loss in tree species which in turn is estimated from 
loss in forest cover by means of species-area relationships (see FAO, 1993). A 
similar indirect way of assessing biodiversity could be applied at the national (or 
local) level. However, at these lower spatial levels a more direct indicator of 
biodiversity would be preferable. Canopy roughness which is shown to be related to 
species diversity by Oldeman (1983a), Brünig and Huang (1989) and Brünig and 
Mohren (1989) could be that kind of indicator. Moreover, canopy roughness is a 
parameter such a could possibly be estimated with the use of remote sensing. 
Stoms and Estes (1993) list additional indicators of biodiversity that may in potential 
be assessed from remote sensing images, namely: terrain physiography, cover 
fragmentation, road density, net primary production, actual evapotranspiration, leaf 
chemistry, biomass and leaf area index. 
 
Like at the global level, there is a need for information on socio-economic parameters 
at the national level. The importance of these parameters was discussed in section 
2.1.1. Socio-economic parameters should indicate whether or not the existing social 
system offers sufficient protection against unwanted degradation and decline of 
forest resources. In fact, these parameters point out the necessity for appropriate 
action by policy makers and planners. The information requirements of the parties 
involved in tropical forest management at the national spatial level are summarised 
in Table 2.2. 
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2.1.3 Requirements at the local level 

The users at the local level, both in the literal and figurative sense, stand the closest 
to the forest. Policy makers who decide at the higher spatial levels have mostly been 
replaced by decision-makers who truly interact with the forest. Generally speaking, 
users at the local level have a need for specific and detailed information on relatively 
small areas. Typical examples of local users are parties involved in the forestry 
industry (e.g. concessionaires, plantation owners) and the conservation of nature and 
natural resources. 
 
The main objective of users working in the forestry industry is the production of 
timber. At best production is meant to be sustainable, at worst short term profit is 
the only concern. The information needs of foresters have since long been covered by 
conventional forest inventories. Foresters were also among the first to make use of 
remote sensing images, i.e. aerial photographs. Radar remote sensing will be of 
value to foresters only if it can deliver important new information or improve, simplify 
and/or speed up the traditional inventory process. 
 
A regular forest inventory process to serve as a basis for sustainable forest 
management comprises four phases, namely: reconnaissance inventory, 
management inventory, operational inventory and post-harvest inventory (Husch, 
1971). The reconnaissance inventory is intended to provide information for 
establishing new forest concessions or plantations. It is designed to collect data on 
the location and the extent of important forest types at the lowest possible costs. 
Aerial photographs are commonly used but ground examination is minimal. The 
management inventory (also working plan inventory) is aimed at collecting detailed 
data on the state of the terrain and the forest. These data provide the basis for the 
management of the forest. To simplify both inventory and management, the forest is 
usually subdivided in smaller units e.g. man-made compartments or stands. Terrain 
characteristics that need to be assessed include topography, drainage and the 
location of watercourses, buffer zones, protected areas, roads, landings etc. The 
state of the forest is commonly described in terms of parameters that express 
species composition, size class distribution, volume by species, growth rates etc. 
The preferred scale for the mapping of locational data is of the order of 1:1,000 to 
1:10,000. In many management inventories the concept of "site classes" is 
introduced in order to label areas with comparable terrain and forest properties. The 
operational inventory (also logging plan inventory) is carried out in preparation for 
felling and extraction. At this stage there is a need for information on harvestable 
volume (by species, size and quality), positions of trees that are to be felled, the 
need to cut lianas and preferred routes for extraction. Following logging there ought 
to be a post-harvest inventory in order to assess logging damage, natural 
regeneration and the necessity of silvicultural interventions (e.g. replanting, weed and 
pest control). 
 
In combination the described inventories do make up a ground-based procedure for 
the monitoring of forestry operations. Monitoring is essential to ensure sustainable 
forest management as sustainability implies a time scale. Sustainability means that 
the forest should be able to fulfil its functions now and in the future (Lammerts van 
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Table 2.3  Summary of parameters on which parties involved in the management of tropical 
forests at the local spatial level require information. 

Parameter 
Terrain characteristics: 
- Topography 
- Water courses and drainage patterns 
- Infrastructure 
  (e.g. roads, bridges, skidding trails, log-markets, logging camps) 

Forest cover: 
- Primary forest types 
- Logged-over forest 
- Clear-cuts 
- (Natural) regeneration 
- Burned areas 

Forest categories: 
- Management type 
  (e.g. production forest, protection forest, conservation forest, conversion forest) 
- Plantation / natural 

Forest composition and structure: 
- Tree species composition 
- Diameter distribution (size class distribution) 
- Standing volume (by species) 
- Growth rates 
- Harvestable volume (by species, size, quality) 
- Positions of harvestable trees 

Site class 

Sustainable management indicators 
  (see Table 2.4) 

Bueren and Blom, 1997). Unfortunately, sustainability is not yet the objective of all of 
those who are involved in the forestry industry. However, in the near future timber 
producers around the world may have to prove that they manage the forest in a 
sustainable manner. As consumers become increasingly reluctant to purchase wood 
originating from forests managed as mines, the call for timber certification grows 
louder. Under pressure of consumers, environmental and social groups, the 1985 
International Tropical Timber Agreement (ITTA) has come to take the form of an 
agreement for sustainable development of tropical forest resources rather than of a 
pure commodity agreement (Bass et al., 1992). This agreement was negotiated by 
producer and consumer countries participating in the United Nations Conference on 
Trade and Development (UNCTAD). The organisation largely responsible for achieving 
the objectives of ITTA is the International Tropical Timber Organisation (ITTO). This 
organisation aims to accomplish its assignment by the year 2000. 
 
ITTO, in cooperation with timber trade and environmental organisations formulated a 
standard for the sustainable management of natural tropical forests and plantations 
(Marjuni, 1990; ITTO, 1991; ITTO, 1992). Guidelines and criteria formulated in this 
standard are dictated by the following definition: sustainable forest management is 
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the process of managing permanent forest land to achieve one or more clearly 
specified objectives of management with regard to the production of a continuous 
flow of desired forest products and services without undue reduction of its inherent 
values and future productivity and without undue undesirable effects on the physical 
and social environment. The standard is intended to be of use to forest managers 
and administrators in all three tropical regions. Per region, the forest conditions and 
management procedures vary considerably. Hence, the ITTO guidelines and criteria 
are of a general nature. Managers at the national and/or local level will have to 
shape them into more specific guidelines and criteria. Following ITTO, various other 
entities have developed standards for sustainable (tropical) forest management. 
Lammerts van Bueren and Blom (1997) evaluated no less than 11 different 
standards with the object of setting up a hierarchical framework for the formulation of 
standards for sustainable forest management. This framework is designed in an 
attempt to help solve problems that result from inconsistencies in and a lack of 
coherence between existing 'standards'. 
 
The framework proposed by Lammerts van Bueren and Blom (1997) consists of four 
hierarchical levels, namely: principles, criteria, indicators and verifiers. The principles 
and criteria describe what should be accomplished to ensure sustainable forest 
management. Indicators are parameters which allow to assess whether, and if so to 
what extent, the principles are followed and the criteria are realised. The indicators 
relate to either the forest ecosystem or the surrounding social system. Finally, 
verifiers are sources of information for the indicator or for the reference value for the 
indicator. For the purpose of the present study the indicators are of most importance. 
Especially, indicators of a spatial nature since these can presumably be assessed 
using the verifier "radar remote sensing data". The actual assessment of 
management performance should be based on a comparison between the actual 
value of the indicator and its reference value or norm. Unfortunately, the norms are 
the least developed elements in the existing standards. This is due to the fact that 
the formulation of norms requires much scientific knowledge and practical experience 
of the respective forest area or of similar forest areas. Because of the temporal 
dimension of sustainability, the indicators need to be assessed repeatedly over time 
so as to enable the manager to correct deviation. In other words, they need to be 
monitored. By monitoring protected forest areas, one can obtain information on the 
natural forest dynamics. This information can greatly facilitate the formulation of 
norms for sustainable forest management. 
 
Standards for sustainable forest management support the activities of both forest 
managers and organisations involved in the control of forestry operations and/or the 
certification of forest products. To increase the chances of achieving sustainable 
forestry, control and certification organisations should be able to obtain critical data 
without the involvement of concessionaires or plantation owners. Radar and other 
types of remotely sensed images are typical examples of data that can be acquired 
independently. Hence, remote sensing data have the potential to support control and 
certification organisations in their assignment. Similarly, remote sensing data may 
assist forest managers in their efforts to prove compliance with regulations for 
sustainable management. 
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Table 2.4  Examples of indicators proposed in existing standards for sustainable forest 
management (see Lammerts van Bueren and Blom, 1997). The selected indicators are of a 
spatial nature and hence can possibly be assessed and/or monitored with the help of 
remotely sensed images. The indicators are categorised on the basis of related sustainability 
principles. 

The forest resource shall be sustained. 

- Area and percentage of forest; classified by e.g. forest and vegetation type, 
administrative / legal status, age structure, origin of forest. 

- Area and percentage of forest land negatively affected by air pollutants (e.g. sulphate, 
nitrate, ozone) or ultraviolet B. 

- Area and percentage of forest affected by processes or agents beyond the range of 
historic variation, e.g. by insects, disease, fire, storm, flooding, salinisation. 

- Extent of illegal exploitation and encroachment. 

- Rate of conversion of forest cover to other uses (e.g. mining, ranching, energy, 
infrastructure). 

The protection function of the forest shall be sustained. 

- Percentage of crown cover. 

- Area and percentage of forest soils affected by significant alterations in physical-
chemical properties and erosion. 

- Infrastructure (primary and secondary roads, timber yards, skidding tracks) is located 
on natural benches, ridges and flatter slopes. 

- Sizes of infrastructure are reduced to the barest minimum possible. 

- Infrastructure does not disturb the flow of water in the network of rivers, streams etc. 

- Presence of infrastructure or logging gaps in buffer zones around watercourses or 
areas of protected forest. 

Yields of forest products (timber and non-timber) shall be sustained. 

- Annual number of trees and/or volume of timber per hectare harvested. 

- Changes in total volume of the growing stock. 

- Felled trees correspond to those identified for felling prior to harvest. 

- Number of large trees retained as seed producers (mother trees) per ha and species. 

- Natural or artificial regeneration of deforested areas is implemented successfully. 

The biodiversity of the forest shall be sustained. 

- Extent of forest disturbance due to logging (e.g. gap size and frequency). 

- Presence of representative protected areas. 

- Presence of ecological infrastructure (e.g. corridors of unlogged forest). 

- Presence of light demanding (pioneer) species over extensive areas. 

The long-term social and economic well-being of local communities shall be sustained. 

- Sites of special cultural, ecological, economic or religious significance to indigenous 
peoples are excluded from forestry operations. 

13 



Radar remote sensing to support tropical forest management 

The current and future information requirements of the parties involved in tropical 
forest management at the local spatial level are summarised in Table 2.3. Table 2.4 
specifies some of the indicators that are proposed in existing standards for 
sustainable forest management. The indicators are grouped according to related 
sustainability principles. All of the indicators shown are of a spatial nature and hence 
can in principle be assessed or monitored with the help of remote sensing data. 
Some of the listed indicators can be assessed solely on the basis of remote sensing 
data, whereas the assessment of others will require ancillary information (e.g. on 
location of ecological reserves, buffer zones, sites of importance to indigenous 
people etc.). At the local spatial level, forest resource monitoring can be expected to 
become an annually recurring procedure. The time-interval between forest resource 
assessments will be of the order of five years. Most likely, however, different parts of 
the management unit will need to be assessed in different years. Compatible scales 
for the mapping of locational data are large since the information needed is of a high 
spatial detail. The minimum scale for maps to be used in support of forest resource 
assessment is of the order of 1:10,000. Maps for use in forest resource monitoring 
are required to have a minimum scale of approximately 1:25,000. 

 
 
2.2 Potential of remote sensing to meet user requirements 

In history foresters were among the first ones to make use of remote sensing 
techniques. The earliest known application of remote sensing to forestry dates back 
to 1887 when aerial photographs were taken purposely from a balloon near Berlin in 
order to study beech, spruce and pine stands. Around 1919 aerial photography 
became much more operational due to the introduction of aeroplanes. Aeroplanes 
facilitated the use of aerial photography in large scale forest inventories as they 
provided a capacity for the acquisition of photographs in continuous strips along flight 
lines. The value of aerial photography for application to large scale forest inventory 
was first illustrated in Quebec. In this Canadian province, more than 200,000 
hectares of boreal forest were successfully surveyed on the basis of aerial 
photographs. This survey took place as early as 1920. From here onwards the use of 
aerial photographs in forest inventory spread rapidly throughout the world (Howard, 
1991). 
 
Since the beginning of the 20th century a large number of remote sensing 
techniques, other than aerial photography, has been developed. The systems 
presently available offer a wide range of capabilities and operate from a variety of 
platforms. However, the development of operational procedures for the use of remote 
sensing data and the development of remote sensing systems have not kept pace. It 
has been argued that this is due to the development of systems having been driven 
by a push from remote sensing technologists rather than by a pull from users of 
remote sensing data. Certainly this development gap will continue to exist as long as 
users and technologists do not improve their communication. Poor communication is 
the cause of considerable misunderstanding, misconception, confusion and 
ignorance among both groups (see Shelton and Estes, 1981; Estes, 1982; Green et 
al., 1988). 
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Evidently, there is strong need for procedures that implement the operational use of 
remotely sensed data in different fields. The potential of remote sensing for it to be 
applied in many fields cannot be denied. In some fields of application remote sensing 
images have already become an indispensable source of information (e.g. 
meteorology, sea ice monitoring). Remote sensing systems offer some distinct 
advantages. First, they are capable of acquiring data in a synoptic, systematic and 
repetitive manner. Second, remote sensing data can be georeferenced. This implies 
that it is possible to retrieve the geographical location for each object observed. 
People or organisations with a need for information on extensive areas often of 
difficult access are likely to benefit most from the use of remote sensing because 
alternative methods for collecting information are limited. 
 
Tropical rain forests cover extensive areas, are difficult to access and have a highly 
complex nature. Due to these characteristics, rain forests are a resource for which 
information is scarcely available and difficult to obtain. The availability of appropriate, 
reliable and up-to-date information is critical to any management process. Hence, 
remote sensing as a tool for collecting information on tropical rain forests has the 
potential to facilitate the management of these forests. However, at present there is 
little experience with the use of remote sensing for this field of application. The 
capabilities of different remote sensing systems and the information contents of 
different types of remote sensing data are still under investigation. Section 2.2.1 
discusses characteristics of remote sensing systems that are of importance in view 
of the application of these systems to tropical forest management. Sections 2.2.2 
and 2.2.3 review selected publications on the use of, respectively, optical and radar 
remote sensing in the tropical rain forest environment. The aim of these sections is 
to illustrate what types of information can be derived successfully from remote 
sensing data. Literature reviews can also be found in: Baltaxe (1980 and 1987), 
Joyce and Sader (1986), Ahern et al. (1990), Sader et al. (1990), van der Sanden 
(1990), Tittley (1992) and Hoffer et al. (1995). 

 
 
2.2.1 Relevant characteristics of remote sensing systems 

The applicability of a remote sensing system to forest management or any other field 
depends on both the specifications of the sensor and the supporting platform. Most 
important are the specifications that control the coverage, the repeat cycle and the 
image information content. Due to technical and operational limitations, the 
capabilities of sensor and platform are interrelated. This means that, for example, 
large areas can only be observed at the cost of spatial resolution. 
 
The coverage, i.e. the area that is observed routinely, depends primarily on the 
specifications of the platform. Spaceborne systems such as satellites are better 
suited to acquire data over extended areas than airborne systems. Geostationary 
satellites orbit at very high altitudes (ca. 36,000 km) which enables them to 
instantaneously image half of the Earth's surface. Polar orbiting satellites, on the 
other hand, systematically image a strip of land/sea and make use of the Earth's 
rotation to provide global coverage. The coverage as provided customarily by satellite 
systems cannot be provided by airborne systems other than at great expense. It 
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follows, that for the assessment and/or monitoring of forest resources at national 
spatial level and, in particular, at the global spatial level, satellite systems are 
preferred over airborne systems. 
 
Like the coverage, the repeat cycle or time interval between repetitive coverage is 
mostly dependent on platform specifications. Due to their orbiting behaviour, 
spaceborne sensor systems routinely image every part of the Earth's surface at fixed 
time intervals, i.e. during each overpass. For existing polar orbiting satellites this 
interval varies from 12 hours to roughly one month. Geostationary satellites orbit 
synchronously with the Earth's rotation and can therefore provide continuous 
coverage. Once again, it will be more costly for airborne systems to provide a similar 
frequency of observation over extended areas. Airborne systems, however, are under 
direct control and hence offer much greater flexibility with regard to the time of data 
acquisition. 
 
In section 2.1 it was discussed that, depending on the spatial level, forest resource 
assessments are carried out with a frequency of once every five to 10 years. 
Likewise, procedures for forest resource monitoring were reported to be carried out 
annually or biennially. In theory, the data requirements associated with forest 
resources assessment and monitoring can be met by all of the currently available 
remote sensing systems. In practice, however, many remote sensing systems prove 
incapable to do so. Often this is due to adverse atmospheric conditions, i.e. the 
presence of a large amount of moisture, clouds and/or smoke. Such conditions 
which are known to be especially common in tropical regions, seriously hamper the 
imaging capability of optical remote sensing systems. Whenever such conditions 
prevail, only radar remote sensing systems can offer a guaranteed imaging capability. 
 
The image information content is primarily governed by sensor specifications, such 
as: number of channels, wavelength(s), polarization(s), spatial resolution(s) and 
stereoscopic capacity. However, in practice the specifications of the sensor are 
linked to those of the platform. For example, airborne sensor systems generally 
acquire data of a higher spatial resolution than spaceborne sensor systems. The 
spatial resolutions of airborne systems are of the order of 1 to 10 m, whereas the 
spatial resolutions of spaceborne systems range from 10 m to 5 km. Local users will 
generally require data of a finer spatial detail than users at the national or global 
spatial level. Similarly, forest resource assessment will usually require data of a finer 
spatial detail than forest resource monitoring. Generally speaking, the use of data of 
an unnecessarily high spatial resolution is not recommended as it will result in 
needless expense for both data acquisition and data processing per unit area. The 
information content of different types of remotely sensed data from tropical rain 
forests is discussed in more detail in sections 2.2.2 and 2.2.3. 

 
 
2.2.2 Information content of optical remote sensing data 

Literature on the use of remote sensing in support of tropical forest assessment and 
monitoring shows that most of the applied optical remote sensing systems are 
satellite systems. Table 2.5 lists some relevant characteristics of the most frequently 
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Table 2.5  Relevant specifications of optical satellite systems that are applied frequently to 
tropical forest resource assessment and monitoring procedures. For a description of the 
abbreviations please refer to the included List of abbreviations. 

 Remote sensing system 

Characteristic NOAA AVHRR Landsat MSS Landsat TM SPOT HRV 

Spatial 
resolution 

1.1 km (LAC) 
4 km (GAC) 

80 m 30 m (VIS & IR) 
120 m (TIR) 

10 m (PAN) 
20 m (XS) 

Spectral 
channels 

1 Visible 
1 Near-IR 
1 Mid-IR 
2 Thermal-IR 

2 Visible 
2 Near-IR 
 

3 Visible 
1 Near-IR 
2 Mid-IR 
1 Thermal-IR 

1 Panchromatic 
2 Visible 
1 Near-IR 
 

Area covered by 
single image 

4 million km2 
(central part) 

34,000 km2 34,000 km2 3,600 km2 

Repeat cycle 12 hours 16 days 16 days 26 days 
(2-5 days in 
off-nadir view) 

Compatible 
image map 
scales 1) 

≤ 1:1.5 million 
(LAC) 
≤ 1:6.5 million 
(GAC) 

≤ 1:150,000 ≤ 1:50,000 
(VIS & IR) 
≤ 1:200,000 
(TIR) 

≤ 1:20,000 (PAN) 
≤ 1:40,000 (XS) 

1)  According to Forster (1993). 

used satellites. High resolution airborne optical sensors, other than cameras for 
aerial photography, have rarely been used. This can be explained by the prevalent 
poor atmospheric conditions and the fact that most of these systems are flown 
experimentally rather than operationally. 
 
The present discussion with regard to the information content of optical remote 
sensing data will be structured on the basis of application fields which are inspired 
by the user requirements as discussed in section 2.1. 
 
Forest / non-forest mapping 
Data from existing optical remote sensing systems are suitable for discriminating 
tropical forests from non-forest cover types (including large scale deforestations). The 
best evidence of this is found in FAO (1993). This report discusses FAO's Forest 
Resources Assessment 1990 (FRA90), a project in the practice of forest resources 
assessment and monitoring. FRA90 aimed to assess the extent and location of the 
global tropical forest cover in 1990 as well as to estimate the change in forest cover 
relative to 1980. Low resolution NOAA AVHRR LAC and high resolution Landsat 
MSS/TM data were used in a multi-stage sampling approach. 
 
The FRA90 results indicate that AVHRR LAC, MSS and TM data provide a suitable 
basis for distinguishing between forest and non-forest. However, it proved difficult to 
obtain a multi-temporal global coverage of cloud-free Landsat MSS or Landsat TM 
data. Cloudiness and atmospheric moisture are well known problems for the use of 
optical remote sensing in the humid tropics (Nelson and Holben, 1986; Päivinen and 
Witt, 1988; Cross, 1990; Garcia and Alvarez, 1994; etc.). Smoke has been reported 
to create similar problems (e.g. Malingreau and Laporte, 1988; Malingreau and 

17 



Radar remote sensing to support tropical forest management 

Tucker, 1990). An advantage of NOAA AVHRR is that the chance of obtaining clear 
data is relatively high. This is due to the high observation frequency. As a rule, there 
are two NOAA satellites in orbit, jointly these can image every spot on the globe twice 
a day. 
 
Another advantage of NOAA AVHRR data is the relatively low cost. However, NOAA 
data are of a much lower spatial resolution than Landsat data (see Table 2.5). This 
limits their applicability to forest resource assessment and/or monitoring at the 
global level. Assessment and/or monitoring of forests at the national and, in 
particular, the local level requires images of a higher spatial resolution, e.g. images 
from Landsat MSS or Landsat TM. The capabilities of the NOAA satellites for 
forest/non-forest mapping and other environmental applications have been reported 
in various articles. A review of these can be found in Ehrlich et al. (1994). According 
to these authors there is at present a lack of standards for data analysis and 
accuracy verification. This may give rise to inconsistencies in global data sets and as 
such complicate global change detection. 
 
Studies to improve the precision of NOAA AVHRR based forest cover estimates 
concentrate on techniques for decomposing pixels (e.g. Cross et al., 1991; Foody, 
1994; Shimabukuro et al., 1994). Eva et al. (1995) investigated the capabilities of 
the ATSR-1 thermal infrared radiometer. This sensor, which is flown onboard the ERS-
1, offers a spatial resolution comparable to that of the NOAA AVHRR LAC data. The 
forest/non-forest contrast in ATSR-1 data proves to be higher than in NOAA AVHRR 
data. Hence it is concluded that the ATSR-1 data are potentially more useful for 
global forest/non-forest mapping. 
 
Kummer (1992) reports on the use of Landsat MSS and SPOT data to assess 
national forest cover and rates of forest cover change in the Philippines. In this 
country, a total of five forest surveys using remotely sensed data was conducted in 
the period from 1973 through 1987. Involvement of Filipino experts proved crucial to 
obtain sufficiently accurate results. Like Ehrlich et al. (1994), Kummer stresses the 
need for standardisation (both in technologies and sensor systems) in order to allow 
for effective change detection. Data from satellites in the Landsat and SPOT series 
have also been widely applied for forest cover mapping in Brazil (e.g. Nelson et al., 
1987; Fearnside et al., 1990; de Oliveira, 1990). 
 
Deforestation and forest regeneration mapping 
The types of deforestation considered here are small in scale and result from human 
activities such as shifting cultivation, (selective) logging, mining etc. Forest 
regeneration is assumed to include both reforestation and the natural regrowth of 
forests. 
 
Eden (1986) in Guyana, Singh (1986) in India and Gilruth et al. (1990) in Guinea 
investigated the value of Landsat MSS for detecting deforestation due to shifting 
cultivation. The authors report different results. According to Eden and Gilruth et al., 
the MSS images largely fail to show the effects of shifting cultivation, whereas Singh 
states that the deforestation resulting from shifting cultivation is detected with an 
accuracy of 74%. The inconsistency in these results is most likely due to differences 
in the local shifting cultivation techniques, determining the dimensions of the shifting 
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cultivation plots. Sensor systems with spatial resolutions smaller than or equal to 
that of Landsat MSS appear unreliable tools for detecting shifting cultivation or other 
small scale human interference that may result in forest degradation. According to 
Booth (1989), this type of forest degradation - and not large scale forest clearance - 
is the main cause of deforestation in West Africa. Thanks to the relatively high spatial 
resolution, Landsat TM and SPOT are expected to be better suited for detecting small 
scale forest disturbance. A study by King (1994) in Belize in fact shows that both TM 
and SPOT are able to detect shifting cultivation with an overall accuracy of ca. 90%. 
Wilkie (1990) successfully applied TM data to map the settlements of shifting 
cultivators and gold miners in Zaire. Kamaruzaman and Manaf (1995) report that TM 
images show logged-over forest. 
 
Naturally regenerating or secondary forests are often among the cover types that are 
most difficult to identify. Depending on their development phase these forests are 
easily confused with either crops/grassland or primary forests. Investigators that 
used NOAA AVHRR or MSS data (e.g. Nelson and Holben, 1986; Singh, 1987; Cross, 
1990) usually relate poorer results than those that applied the spectrally (and 
spatially) improved Landsat TM data (e.g. Garcia and Alvarez, 1994; Kamaruzaman 
and Manaf, 1995). 
 
Forest type and species mapping 
Mapping of forest types or species requires data of a relatively fine spatial detail. 
Still, in most studies dealing with Landsat or SPOT data, tropical rain forests are 
considered as one vegetation type or divided into a few clearly distinct types (e.g. Roy 
et al., 1985; Unni et al., 1985; Singh, 1987; Forstreuter, 1988; Roy et al., 1991; 
Garcia and Alvarez, 1994; Paradella et al., 1994). This implies that the required level 
of classification detail is rather low and explains why the reported classification 
accuracy is generally high. Results of low level classifications may well satisfy the 
information needs of users that operate at the global and national spatial level. 
Likewise, these results may meet the requirements for reconnaissance inventory at 
the local level. However, at this level there also is a need for more detailed 
information, e.g. at the level of primary forest types or species. 
 
Tuomisto et al. (1994) evaluate the applicability of Landsat MSS and TM images for 
the detection of primary forest types in Peruvian Amazonia. The results indicate that 
both image types suit the purpose well. Landsat TM images offer the best 
capabilities due to better spatial and spectral resolutions. Visual interpretation of 
enhanced image products rather than pixel-by-pixel digital classification proves to 
yield the best results. This can be explained by the complex and heterogeneous 
(spectral) nature of primary forest types and the fact that most forest type transitions 
are not abrupt but gradual (cf. Vester, 1997). These characteristics of primary forests 
are the cause of an unacceptably high proportion of misclassified pixels in pixel-by-
pixel digital classifications. A commonly expressed drawback of visual image 
interpretation is that it does not provide the technology for operational forest 
resource assessment or monitoring (e.g. Roy et al., 1985). This may hold true for 
assessment and monitoring at the global and national spatial level, but it probably is 
not so at the local spatial level. 
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Most tropical forest types comprise a large number of species. This seriously 
complicates the identification of species by the use of remotely sensed images. Data 
from orbital remote sensing systems like Landsat MSS/TM or SPOT do not usually 
allow for species detection other than in forest types with a strong dominance of a 
particular species or in single-species forest plantations (e.g. Roy et al., 1985; Unni 
et al., 1985; Singh et al., 1986; Garcia and Alvarez, 1994). Swellengrebel (1959) 
reports on the value of large scale aerial photographs (scale 1:10,000) for the 
identification of species in the Guyana rain forest. The author concludes that 
individual trees cannot be identified as to species. This is mainly due to the great 
variation in which the crowns of any one tree species appear on the photographs. 
Some species, occurring in groups, could be recognised on the photographs. 
However, this was attributed to the general appearance of the group rather than the 
features of individual trees within the group. According to Loetsch et al. (1973) the 
findings by Swellengrebel agree with those of other researchers that studied forests 
in different parts of the humid tropics. 
 
Forest fire detection 
Virtually all conversion of tropical moist forest to non-forest takes place through the 
use of fire. Hence, active fires, smoke plumes and fire scars are indicators of 
recently deforested land. Both low resolution NOAA AVHRR data (e.g. Malingreau et 
al., 1985; Matson and Holben, 1987; Pereira and Setzer, 1993a; Balladares et al., 
1997) and high resolution Landsat MSS/TM data (e.g. Tanaka et al., 1983; Pereira 
and Setzer, 1993b) have been applied successfully in the detection of forest fires. 
Nezry et al. (1993) report the clear visibility of smoke plumes in SPOT images. Helfert 
and Lulla (1990) discuss the use of Space Shuttle photography for the mapping of 
smoke palls over the Amazon Basin. 
 
Biomass mapping 
Investigators who aimed to map the biomass of tropical rain forests with the help of 
optical remote sensing data have met with little success. The parameter most closely 
related to biomass is the Normalized Difference Vegetation Index or NDVI. This 
parameter is calculated from the reflectance in the near-infrared and visible red 
wavebands (see Lillesand and Kiefer, 1994). The NDVI is sensitive to variations in 
green leaf biomass rather than to variations in total biomass above the ground. 
 
Box et al. (1989) compute annually integrated NDVI values from NOAA AVHRR data 
and evaluate the relationships with, among others, total aboveground biomass, leaf 
area index, net primary production and net biospheric CO2 flux. The analysis is 
carried out at the global spatial level, across all major vegetation types, including 
tropical rain forests. The results show weak global relationships between NDVI and 
total aboveground biomass, leaf area index or net biospheric CO2 flux. Across the full 
range of vegetation types, the NDVI proves to be closely related to the net primary 
production. However, for tropical rain forests alone the relationship between NDVI 
and net primary production is poor. 
 
Sader et al. (1989) evaluated the capability of Landsat TM derived NDVI values in 
assessing the total aboveground biomass and age of secondary tropical forests in 
Puerto Rico and Costa Rica. Both the NDVI-biomass and NDVI-age relationship was 
found to be poor. The NDVI values for the study area in Puerto Rico were influenced 
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significantly by local topographic effects, i.e. slope and aspect. Results concerning 
the NDVI relationship to green leaf biomass were inconclusive. A well known problem 
associated with the use of NDVI for estimating green leaf biomass is the effect of 
saturation at higher leaf densities (e.g. Tucker et al., 1985). According to Sader et al. 
(1989), NDVI may be a good predictor of total aboveground biomass in low biomass, 
even age plantation forest on flat terrain. Lucas et al. (1993) adopted another 
approach to assessing the age of secondary forests. Rather than analysing single-
date Landsat TM images, these authors analysed a time-series of TM images. The 
approximate age of secondary forests was estimated by comparison of classification 
results for images acquired at different points in time. 
 
Estimation of structural parameters 
No investigators other than those that had large scale aerial photographs available 
have attempted to estimate structural parameters for primary tropical forests. The 
capacity to obtain reliable estimates of forest/tree structural parameters from 
remotely sensed images can facilitate the process of forest inventory greatly. 
Although some parameters such as crown diameter, tree height, tree number and 
crown closure can in potential be directly assessed on (stereoscopic) images, others 
such as bole diameter and volume can only be estimated with the help of allometric 
equations. 
 
Swellengrebel (1959) in Guyana investigated the possibilities for estimating the 
volume of tropical forests through the measurement of crown diameters on aerial 
photographs on a scale of 1:10,000. The author concludes that volume estimation by 
crown diameter measurement is severely restricted by the impossibility of recognising 
tree species and the limited visibility of smaller trees on the photographs. The 
inability to identify species implies that volume figures can only be given per forest 
type. Volume per forest type can be divided into volumes per (commercial) tree 
species only by extensive field work, thereby diminishing the value of photo volume 
estimation considerably. The chances of observing a particular tree on an image will 
decrease as the architecture of the forest canopy becomes more complex. 
Swellengrebel determines that chance of observing a tree with a bole diameter of ca. 
50 cm in mixed forest in Guyana is approximately 70%. 
 
Oza et al. (1989, 1992) developed regression equations which enabled them to 
estimate the mean crown diameter in managed even-aged teak (Tectona grandis L.) 
plantations from Landsat MSS data. This opens the way to the combined use of 
Landsat MSS data and allometric equations for assessing the timber volumes in teak 
plantations. The use of optical remote sensing data for estimating structural 
parameters of plantation forests in the tropics has not been studied widely. Other 
studies dealing with this field of application usually relate to temperate regions (e.g. 
Peterson et al., 1986; Ahern et al., 1991; Ardö, 1992; Brockhaus and Khorram, 
1992). 
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2.2.3 Information content of radar remote sensing data 

Compared to remote sensing with optical satellite systems, remote sensing with 
radar or microwave satellite systems is a new development. The European remote 
sensing satellite ERS-1, which was launched in 1991, became the first system to 
routinely acquire radar data on a global scale, over an extended period of time. Long 
before the launch of ERS-1, however, airborne surveys and experiments with 
spaceborne systems had shown the potential of radar for application in the humid 
tropics. Like in the previous section, the literature review presented here is 
structured on the basis of application fields which are inspired by the user 
requirements as discussed in section 2.1. 
 
Publications from the 1970s and 1980s discuss results from over flights with 
different airborne radar systems and the spaceborne Shuttle Imaging Radars (SIR-A, 
SIR-B). Prior to the launch of ERS-1, multi-temporal data sets were scarce and 
therefore most of the results published concern forest resource assessment rather 
than forest resource monitoring. Results of studies that apply data from ERS-1 or its 
successor ERS-2 are gradually being published. So are results of studies that use 
data as acquired by SIR-C and the experimental multi-frequency, polarimetric radar 
system from NASA/JPL. To date, there are few publications on the capabilities of the 
Japanese radar satellite JERS-1 and the recently launched Canadian radar satellite 
RADARSAT. The most relevant characteristics of the currently operating radar satellite 
systems are listed in Table 2.6. For reasons of comparison the table also lists the 
characteristics of the airborne radar system from NASA/JPL (AIRSAR). The reader is 
referred to section 3.1 for a comprehensive discussion on the operating principles of 
radar systems. 
 
Forest / non-forest mapping 
Radar remote sensing data can be used to discriminate between tropical forest and 
non-forest cover types (including large scale deforestations). The first evidence of this 
is found in the results of a radar mapping project that was executed as early as 1965 
in the Darien province of Panama (Viskne et al., 1970). Subsequent to the 
Panamanian project, a large number of regional and nation-wide radar mapping 
programs was carried out successfully in Southeast Asia and Africa, as well as 
Central and South America. The airborne radar systems deployed acquired high 
resolution data in short wavelength bands, i.e. Ka- or X-band. Most data were 
processed on image film and made available to users as radar mosaics at scales 
ranging from 1:25,000 to 1:250,000. The mosaics served a variety of purposes 
including thematic mapping for forestry, land-use, geology, geomorphology and soil 
survey (e.g. Parry and Trevett, 1979; Furley, 1986; Dams et al., 1987; Sicco Smit, 
1988; Thompson and Dams, 1990). 
 
Experiments with the AIRSAR system from NASA/JPL show that the backscatter 
contrast between forest and non-forest increases with an increase in radar 
wavelength. Hence, radar systems that operate with long wavelengths (e.g. L- or P-
band) have more potential to discriminate between forest and non-forest than 
systems that operate with short wavelengths (e.g. X- or C-band) (Zebker et al., 1991; 
Hoekman et al., 1996). Single date AIRSAR images have been reported to show 
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Table 2.6  Relevant specifications of currently operating radar satellite systems. The 
specifications of the airborne NASA/JPL AIRSAR system are included for reasons of 
comparison. For a description of the abbreviations please refer to the included List of 
abbreviations. 

 Remote sensing system 

Characteristic ERS-1/2 JERS-1 RADARSAT AIRSAR 

Spatial 
resolution 

25 x 25 m 18 x 18 m 10 x 10 m 
(Fine beam) 
30 x 30 m 
(Standard beam) 
100 x 100 m 
(ScanSAR wide) 

7 x 12 m 

Radiometric 
resolution 
(no. of looks) 

3 3 1 (Fine beam) 
4 (Standard 
    beam) 
8 (ScanSAR wide) 

16 

Frequency and 
polarization 

C-band 
VV 

L-band 
HH 

C-band 
HH 

C-, L-, P-band 
polarimetric 

Area covered by 
single image 

10,000 km2 5,625 km2 2,500 km2 
(Fine beam) 
10,000 km2 
(Standard beam) 
250,000 km2 
(ScanSAR wide) 

72 km2 

Repeat cycle 35 days 44 days ≤ 24 days not applicable 

Compatible 
image map 
scales 

≤ 1:200,000 ≤ 1:200,000 ≤ 1:100,000 
(Fine beam) 
≤ 1:200,000 
(Standard beam) 
≤ 1:500,000 
(ScanSAR wide) 

≤ 1:50,000 

recently cleared areas in addition to forest and non-forest areas. The clearance of 
tropical forests usually involves cutting and burning but is rarely complete in the 
sense that large dead trees often remain standing. It is assumed that these trees 
with their dry (charred) surfaces and wet cores are responsible for the very distinct 
backscatter signature of recently cleared forest areas (Hoekman et al., 1996). 
 
Various authors have illustrated the relatively good forest/non-forest mapping 
capabilities of the spaceborne L-band radar systems as flown during the SIR-A and 
SIR-B experiments (e.g. Ford and Casey, 1988; Stone and Woodwell, 1988; Werle, 
1989; Nezry et al., 1993). Results of the 1994 SIR-C experiment show that multi-
polarization L-band data offer enhanced capabilities to discriminate between forest 
and non-forest (Rignot et al., 1997). The mapping potential of the C-band ERS-1 
satellite was investigated by, among others, Conway et al. (1994), Keil et al. (1994), 
Leysen et al. (1994), van Dijk et al. (1994), Bijker and Hoekman (1996) and Le Toan 
et al. (1996). Attempts to map forest and non-forest using single date ERS-1 images 
may meet with difficulties mostly due to confusion between forest and regenerating 
natural vegetation in early development phases. The possibilities to discriminate 
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between forest and non-forest are enhanced considerably whenever a time series of 
ERS-1 images is available. Kux et al. (1995) use single date airborne radar images to 
simulate the forest/non-forest discriminating capabilities of RADARSAT (Standard 
beam). Their results are comparable to those of investigators that apply ERS-1 data. 
 
Unlike optical sensor systems, radar systems are capable of acquiring usable data 
independent of daylight and atmospheric conditions. This a distinct advantage, in 
particular for applications that require timely information. The most commonly noted 
disadvantage of both airborne and spaceborne radar sensors is their sensitivity to 
topography (e.g. Sicco Smit, 1975; Dams et al., 1987; Leysen et al., 1994, Keil et 
al., 1994). Topographic variations affect the strength of the radar backscatter and as 
such create tonal differences in radar images. Topography induced differences in 
image tone may be easily confused with tonal differences resulting from other causes 
(e.g. cover type transitions) and hence complicate the visual and/or computerised 
analysis of radar images. Image analysis techniques that compensate for topographic 
effects are in development (e.g. Bayer and Winter, 1990; Wu, 1990; Meier et al., 
1992; Ulander, 1996). 
 
Deforestation and forest regeneration mapping 
Like in section 2.2.2 the type of deforestation considered here is of a small scale. 
Forest regeneration is assumed to include both reforestation and natural forest 
regrowth. 
 
Depending on their spatial resolution radar systems may or may not be capable of 
detecting deforestation resulting from shifting agriculture or selective logging. 
Evidently, image scale is of importance in those cases where analysis is based on 
visual interpretation of photographic image products. According to Sicco Smit (1975), 
the effects of shifting agriculture and selective logging show poorly in the 1:200,000 
airborne images (X-band) that were produced in the framework of the Colombian 
Proradam project. Thompson and Dams (1990) discuss the results of the deployment 
of a high resolution (6  m) X-band radar system at a number of tropical forest 
locations in Asia, South and Central America. Based on visual interpretation of 
stereoscopic radar image strips at scales up to 1:25,000, the authors identified 
shifting cultivation clearings as small as 0.25 ha and three levels of selective logging 
disturbance (undisturbed, first cycle logging, second cycle logging). Areas of shifting 
cultivation were also observed in airborne, X- and C-band radar images for Araracuara, 
Colombia (Jorritsma, 1993; Hoekman et al., 1994). 

6×

 
The limited spatial resolution and low incidence angle of the ERS-1 radar cause its 
data to be of little value for the detection of shifting cultivation areas (van Dijk et al., 
1994; Hoekman, 1996). Still, Kuntz and Siegert (1994) report identifying the effects 
of selective logging in ERS-1 images for Borneo, Indonesia. The interpretation of the 
images, however, is noted to require skilled personnel, i.e. personnel capable of 
integrating a-priori expert knowledge of land-use activities into the interpretation 
process. Using a combination of C- and L-band SIR-C data for the Rondonia State in 
Brazil, Saatchi et al. (1997) report detecting forest disturbance due to the clearing of 
vines and undergrowth with an overall accuracy of 77%. The key radar channel for 
distinguishing this type of forest disturbance is L-band HH. 
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Like in the case of optical remote sensing, naturally regenerating or secondary 
forests are often among the cover types that are most difficult to discriminate. 
Depending on the development phase, regenerating forests may be confused with 
either crops/grassland or primary forests. Detection of secondary forests in short 
wavelength airborne radar images proves feasible if the images provide stereoscopic 
coverage (e.g. Dams, 1987). Studies by Freeman et al. (1992) and Hoekman et al. 
(1996) illustrate that the multi-frequency, multi-polarization data from the NASA/JPL 
AIRSAR system provide a good basis for the mapping of secondary forest. The 
routinely acquired C-band ERS-1 data prove to be of limited value for this purpose. In 
single date ERS-1 images, regenerating and mature forests are easily confused (e.g. 
Conway et al. 1994; Keil et al., 1994; Bijker and Hoekman, 1996; Luckman et al., 
1997). Knowledge-based analysis of multi-temporal ERS-1 data offers improved 
possibilities for secondary forest mapping (e.g. Bijker, 1997). Spaceborne radar 
systems that operate in L-band are more capable of identifying secondary forests 
than those that operate in C-band (i.e. ERS-1, RADARSAT). Studies that apply JERS-1 
and/or SIR-C data show that L-band radar systems may be used to map and monitor 
forest regeneration up to a certain age (Luckman et al., 1997; Yanasse et al., 1997). 
The maximum age is a function of the rate of regrowth which strongly depends on the 
history of the site. 
 
Hoekman et al. (1996) noted that secondary forests dominated by Cecropia species 
display higher L- and P-band backscatter values than other forests of a similar 
biomass. This deviating backscatter behaviour of Cecropia dominated forests is also 
observed by Bijker (1997) in ERS-1 images and Foody et al. (1997) in SIR-C images. 
The presence of Cecropia species indicates that the land had been used relatively 
lightly prior to abandonment. 
 
Forest type and species mapping 
The distribution of forest types is controlled by site conditions. These conditions are 
strongly influenced by physiographic terrain characteristics such as topography and 
drainage. Radar images represent these characteristics clearly and hence enable 
identification of forest types. The method of identifying forest types based on 
physiographic terrain features was successfully applied in many of the earlier radar 
mapping programmes (e.g. Viskne et al., 1970; Sicco Smit, 1975, 1978, 1988; 
Furley, 1986; Trevett, 1986). Although this method has never lost its value, the 
introduction of radar systems with higher spatial resolutions enabled discrimination 
of forest types based on differences in canopy architecture. In high resolution, short 
wavelength radar images canopy architecture can be observed as texture, i.e. the 
pattern of image tone. Forest type classification according to image texture has 
played a major role in the mapping projects as discussed by Thompson and Dams 
(1990). Results of experiments with the advanced airborne radar system from 
NASA/JPL show that this type of radars has great potential for application to tropical 
forest type mapping (Freeman et al., 1992; Pope et al., 1994; Hoekman et al., 
1996). 
 
Attempts to map tropical forest types based on data from spaceborne radar systems 
have met with limited success. Several researchers have demonstrated the capability 
of orbiting L-band radars to discriminate between flooded and non-flooded forest 
types. A review of their investigations is presented in a publication by Hess et al. 
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(1990). To date, there are few publications on the use of spaceborne radar data in 
more detailed tropical forest type classifications. Those that have appeared show 
variable results. Stone et al. (1989) report observing different primary forest types in 
L-band SIR-A data for the Brazilian state of Pará. Using L-band SIR-B images, Ford and 
Casey (1988) in Borneo, Indonesia distinguished among three different forest types 
in the coastal lowlands. However, the researchers failed to identify forest types in 
level (and mountainous) parts of the interior uplands. Nezry et al. (1993) do not 
seem to be capable of differentiating between primary forest types in L-band SIR-B 
data for central Sumatra as they do not mention so. Likewise, there are few 
investigators who report observing different primary forest types in ERS-1 images. The 
findings of an ERS-1 study by Hoekman (1996) in Araracuara, Colombia are positive 
but modest. Van Dijk et al. (1994) report negative results for the Bolivian Amazon. 
 
Radar remote sensing data, like optical remote sensing data, may enable the 
detection of species in forests that are strongly dominated by certain species or in 
single-species forest plantations. Most tropical forests, however, have a very high 
species diversity and hence radar mapping is usually restricted to the forest type 
level. Thompson and Dams (1990) and Nezry et al. (1993) report identifying rubber 
plantations in airborne and spaceborne radar images, respectively. 
 
Estimation of biomass and other structural parameters 
Signals from radars that operate with long wavelengths (e.g. L- or P-band) have the 
potential to penetrate the surface of the forest canopy and hence to interact with 
underlying components (branches, trunks, undergrowth etc.). Thanks to this 
penetrating capacity, radar remote sensing systems can offer better capabilities for 
estimating forest biomass and other structural parameters than optical remote 
sensing systems. 
 
Several researchers have studied the relationships between the radar backscatter 
and the structural characteristics of temperate forests in general and of coniferous 
forest plantations in particular. Their results show that the backscatter in L- and/or P-
band is strongly correlated to structural parameters such as aboveground biomass, 
basal area, mean height and mean trunk diameter. Similar correlations have been 
found between L- and/or P-band backscatter and plantation age (e.g. Sader, 1987; 
Wu, 1987; Wu and Sader, 1987; Hussin et al., 1991; Moghaddam et al., 1994). The 
L-band backscatter has been shown to increase with increasing biomass until it 
saturates at a dry biomass level of ca. 100 t ha-1. The backscatter in P-band appears 
to saturate at a dry biomass level of the order of 200 t ha-1 (Dobson et al., 1992; Le 
Toan 1992). 
 
To date, few results have been published of studies on backscatter-structure 
relationships in uneven age, mixed tropical forests. L-band multi-polarization 
backscatter measurements for closed primary forests in Costa Rica were shown to be 
poorly correlated to aboveground biomass and other structural parameters (Wu, 
1990). Freeman et al. (1992) in Belize found evidence of backscatter-biomass 
relationships comparable to those as reported for forests in temperate regions. 
Similar qualitative evidence of correlations between P-band backscatter and 
aboveground biomass is presented for a riparian forest in Peru by Rignot et al. 
(1995). The studies by Freeman et al. and Rignot et al. illustrate a common problem 
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for investigations into relationships between remote sensing measurements and 
tropical forest structure, namely the difficulty of obtaining the required set of ground 
reference data. 
 
Hoekman et al. (1996) in San José del Guaviare, Colombia quantitatively compared 
airborne multi-polarization C-, L- and P-band backscatter measurements with on site 
biomass measurements. They found good correlations between the backscatter in L- 
and P-band and the aboveground fresh biomass up to a level of approximately 
200 t ha-1. However, the authors demonstrate that biomass is not always the 
parameter that governs the radar return signal in L- and P-band. Soil moisture is 
shown to dominate the backscatter if biomass levels are below ca. 10 t ha-1 (fresh 
weight). Likewise, forest architecture is shown to affect the backscatter in those 
cases where the biomass is over approximately 200 t ha-1 (fresh weight). Procedures 
to estimate biomass from radar observations over hilly terrain should also account 
for the effect of topography on backscatter level and microwave interaction (van Zyl, 
1993). 
 
Luckman et al. (1997) in Tapajós, Brazil discuss the biomass mapping potential of 
the radars onboard SIR-C (C-, L-band), ERS-1 and JERS-1. Their results confirm the 
findings of other studies that C-band data are of little value for estimating biomass 
and that L-band data may be used to assess biomass up to a certain threshold level. 
The biomass level at which the backscatter in L-band was found to saturate is 
approximately 60 t ha-1 (dry weight). The authors note that this saturation point is 
well below that quoted for forests in temperate regions. Saatchi et al. (1997) 
observed the same phenomenon in a study on the backscatter behaviour of 
secondary forests in Rondonia, Brazil. They explained it by the relatively high water 
content of the vegetation in young secondary forests and the strengthening effect of 
water on the height of the radar return signal. Foody et al. (1997) studied SIR-C data 
for an area with regenerating forests in the vicinity of Manaus. The aboveground dry 
biomass of these forests ranged from 64 to 141 t ha-1. In this study no significant 
relationships between radar measurements in a single wavelength/polarization bands 
and biomass were found. Correlations between backscatter ratios and biomass were 
shown to be stronger. A higher sensitivity to biomass of polarization and/or frequency 
ratios and combinations has also been found in other studies (e.g. Sader, 1987; Wu, 
1987; Ranson and Sun, 1994; Rignot et al., 1995). 
 

27 



Radar remote sensing to support tropical forest management 

 

 
 

28 



3 An introduction to radar remote sensing of forests 

3.1 Radar remote sensing principles 

3.1.1 Radar system operation 

The word radar is an acronym for RAdio Detection And Ranging. Written out in full, the 
name reveals that the system makes use of radio (electromagnetic) waves to detect 
the presence of objects and to determine their position. A radar system transmits an 
electromagnetic wave signal, in a narrow beam, in the direction of interest. Objects 
that are present within the radar beam will cause this signal to be reflected in various 
directions. Reflections in the direction of the system, that are above the threshold 
power level, will be detected by a detector and registered by a recorder. The 
reflections that are observed by the radar are denoted as radar return signal or radar 
backscatter. Radar systems provide their own radiation and are therefore referred to 
as active systems. Both the transmission and the reception of the electromagnetic 
waves is controlled by an antenna. The position of an object is determined by a 
combination of direction and distance (range). Direction is determined by the fact that 
the object is located within the radar beam, distance is derived from the speed at 
which the waves travel (speed of light) and the time elapsed between the 
transmission and reception of the signal. 
 
Originally radar systems were developed for the detection of isolated objects such as 
ships or aircraft. Radar, in order to be used as a tool for remote sensing, was 
redesigned. The capability to detect and measure the backscatter contributions from 

θgr

θinc

 

Figure 3.1  Side-looking radar measurement geometry. Relationship between slant range 
distance  and ground range distance R  as well as between incidence angle R g θinc  and 

grazing angle θgr . (Adapted from Hoekman, 1990.) 
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a variety of objects at the Earth's surface was added. Changes in system design 
resulted in a type of radar that is known as an imaging radar system. This system 
has additional imaging capacity but operates according to the same basic detection 
and ranging concepts as the original radar. The measurement geometry for an 
imaging radar system is illustrated in Figure 3.1. It can be seen that the radar beam 
is pointing to the side, in a direction perpendicular to the direction of flight. Because 
of this imaging radar systems are also known as side-looking radar (SLR) systems. 
The figure also introduces a number of commonly used terms: azimuth direction 
(direction of flight), range direction (direction perpendicular to the line of flight), slant 
range distance R  (direct sensor-to-object distance), ground range distance Rg  

(distance from sensor-to-object projected on the ground), incidence angle θinc  (angle 

 

Figure 3.2 (a-b)  Operating principle of side-looking radar with amplitude modulation. (a) 
Transmitted and received signal as a function of time. (b) Propagation of the wavefront from 
the transmitted and reflected signal in time and space. (Adapted from Lillesand and Kiefer, 
1994.) 
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of viewing relative to the vertical at the point of the object observed) and grazing 
angle θgr  (angle of viewing relative to the horizontal at the point of the object 

observed) (Skolnik, 1980; Colwell, 1983; Buiten and Clevers, 1993). 
 
The capacity of radar remote sensing systems to detect and measure multiple 
objects in the range direction is based on the frequency and/or amplitude modulation 
of the transmitted radio wave. Modification, in time, of wave frequency and/or 
amplitude results in a 'time-coded' signal. Due to this 'time-coding' the sensor is 
capable of discerning the backscatter contributions of objects (in range direction) that 
are separated in time, or in other words, of objects that are located at particular 
distances from the sensor. The operating principle of a radar system that makes use 
of amplitude modulation is shown in Figure 3.2. This type of system is often referred 
to as a pulse radar since the amplitude modulation causes the waves to be 
transmitted in shorts bursts, or pulses. Figure 3.2a shows the transmitted and 
received electromagnetic signal as a function of time. Figure 3.2b illustrates the 
propagation of the front of one single radar pulse in space/time. The time lag 
between two consecutive pulses allows for the reception and recording of all 
reflections resulting from the first pulse prior to the transmission of the second 
pulse. In this manner a mix up of reflections resulting from different pulses can be 
avoided, and thus the erroneous localisation of objects within the field of view. 
 
Two objects can be successfully discriminated in the range direction if the slant 
distance between them is sufficient. The minimum slant distance required is a 
measure of the spatial resolution of the radar in the slant range direction. This 
resolution is determined by the system's pulse length cτ (where c  is the speed of 
light and τ  is the pulse duration). The relationship is illustrated in Figure 3.3. The 

cτ

θgr

θgr

 

Figure 3.3  Spatial resolution, in the range direction, of side-looking radar systems. 
Dependence of the slant range resolution r  on the pulse length R cτ  and on the relationship 
between slant range resolution, ground range resolution r  and grazing angle y θgr . Objects A 

and B, unlike C and A or B, cannot be discriminated since the offset in their slant range 
distances (R ) is RB Ab g b g− < cτ 2. (Adapted from Lillesand and Kiefer, 1994.) 
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radar return signals (echoes) for objects A and B can be seen to overlap in space. 
The echoes of A and B will, therefore, not be separated in time when they arrive at 
the sensor. Consequently, the radar will not be capable of distinguishing these two 
objects. The "slant size" of return signals will be equal to the "slant size" of the 
incident signal (pulse length) as the objects will continue to generate backscatter for 
as long as they are illuminated. When one accounts for the two-way propagation of 
the signals (towards and away from the object), it can be seen that two objects will 
only generate separable echoes when their slant distance is equal to at least half of 
the echo "slant size", i.e. when the slant distance is ≥ cτ 2. In Figure 3.3 the slant 
distance between A and B (R ) is RBb g b g− A < cτ 2, while R RCb g b gA−  and R R  

are both 

C Bb g b g−
> cτ 2. The slant distances show that A and B can be discriminated from C 

and confirm the inseparability of A and B. It follows that the slant range resolution r  
of a side-looking radar system is equal to 

R

cτ 2. Figure 3.3, in addition, illustrates the 
relationship between the ground range resolution r  and the slant range resolution. 

The relationship between them is: 
y

 

r
r

y
R

gr

=
cos θc h      [m]             (3.1) 

 
The spatial resolution on the ground improves in the range direction since it is 
inversely proportional to the cosine of the grazing angle and r  has a set value. 
Equation 3.1 is based on the assumption that the observed surface area is flat. 

R

 
The data used for the purpose of this study were acquired by a type of radar that is 
known as a synthetic aperture radar (SAR). SAR systems make use of special data 
recording and processing techniques which enable them to provide images with high 

 

Figure 3.4  Side-looking radar image formation in the azimuth or flight direction. The imaging 
capability in the flight direction is provided by aircraft motion. (Adapted from Curran, 1985.) 
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and constant spatial resolution in the azimuth direction. The azimuth resolution of a 
SAR system is equal to half of the antenna length and is thus independent of the 
distance between the sensor and the observed object (e.g. Curlander and 
McDonough, 1991). Radar remote sensing systems are equipped with fixed 
antennas. The capability to localise objects in the direction of flight is therefore 
dependent on aircraft or satellite motion (see Figure 3.4). 
 
The radar systems described above, belong to a category of imaging radar systems 
that are capable of providing radar measurements for objects located within a strip of 
land (swath) at the Earth's surface. In addition to these imaging systems a category 
of non-imaging radar remote sensing systems can be distinguished. The ERASME 
scatterometer system that was flown for this study (see section 4.4.4) is an example 
of the latter category. Scatterometer systems, unlike imaging radar systems, have a 
very narrow beam width in the range direction. For this reason they only provide a 
single (narrow) line of backscatter measurements. The measurement geometry of a 
scatterometer system is illustrated in Figure 3.5. In this figure, a side-looking 
antenna is shown to allow for comparison with Figure 3.1. Scatterometers, however, 
may be operated in a number of different configurations, e.g. with a forward- or nadir-
looking antenna. The ERASME data, for example, were acquired in a nadir-looking 
mode meaning that the antenna was pointed in a direction immediately below the 
aircraft, i.e. perpendicular to the Earth's surface. 

 
 
 

 

Figure 3.5  Side-looking scatterometer measurement geometry and illustration of nadir. 
Scatterometers have a narrow beam width in the range direction and can only provide a 
single line of backscatter measurements. (Adapted from Hoekman, 1990.) 
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3.1.2 Characteristics of radar signals 

Important characteristics of radar signals are: wavelength, polarization, amplitude 
and phase. The meaning of these parameters is illustrated in Figure 3.6. It should 
noted that this figure only shows part of the total electromagnetic wave, i.e. the 
electrical field. The magnetic field (not shown) is located in a plane that is at right 
angles to the electrical field plane. Both components of the electromagnetic wave 
behave in a similar fashion. Wavelength λ  is equal to the distance between two, 
successive, apices of the sine curve. The maximum deviation of the curve, the 
amplitude A, is an indication of the strength of a wave. Polarization is determined by 
the plane of vibration of the electrical field, e.g. vertical (V) for Figure 3.6a and 
horizontal (H) for Figure 3.6b. Another property of a vibrating point on the curve is its 
phase (angle) φ . This parameter represents the point's deviation and direction of 
motion. Two points on the same curve have the same phase when their distance is 
equal to n ⋅ λ  (where n ). Two waves are said to be "in phase" when they 
have the same frequency as well as the same phase angle at any point in time. The 
values of the phase angle may vary over a range from 0 to 2π. Figure 3.6 also shows 
that the position of a specific point on the curve can be indicated with the help of a 
vector representation of the vertical (horizontal) electrical field vector E  (E ). 

= 1,2,3,...

v h

 
The technical specifications of the radar system determine the wavelength, 
polarization, amplitude and phase of the transmitted radio wave. Reflected waves 
may have a different polarization, amplitude and/or phase because these are subject 
to changes resulting from the interaction of the waves with the observed objects. The 
changes in polarization, amplitude and phase may be object specific and are 
therefore an important source of information for the discrimination of objects in radar 
images. The majority of current radar systems, however, only record a small portion 
of the information available. For most systems the recording capacity is limited to the 
amplitude of either H- or V-polarized waves. A more advanced system is required, i.e. 
a polarimetric radar, to record all of the information in both polarization and phase. 
This type of radar system will be discussed in more detail in section 3.1.6. 
 
Wavelength is an important characteristic of radar signals. It determines the extent to 
which specific objects, or object components, may act as reflectors and affects the 
propagation of both the transmitted and reflected waves through the atmosphere. 
Radar waves, independent of wavelength or other characteristics, will be attenuated 
by any object that is in the direction of propagation. Reflection, however, depends on 
the relative size of the object(s) encountered, i.e. the size of the object(s) compared 
to the wavelength. The effects of wavelength on the interaction of microwaves with 
forest are discussed in detail in section 3.2.2. Wavelength is important for the 
propagation of microwaves through the atmosphere because longer wavelengths are 
less susceptible to atmospheric attenuation and/or dispersion than shorter ones. 
However, serious atmospheric effects are usually restricted to operating wavelengths 
less than 3 cm and do not occur under conditions other than those of heavy rain 
storms. The wavelengths of the majority of radar remote sensing systems range from 
0.8 to 100 cm. Specific wavelength bands are often referred to with a special, but 
arbitrarily chosen, letter code. The commonly accepted nomenclature for radar bands 
used in remote sensing and the corresponding wavelength range is shown in Table 
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λ

φ

 

Figure 3.6 (a-b)  Side and front view of the electrical field for an electromagnetic wave. (a) 
Wave with vertical (V) polarization. (b) Wave with horizontal (H) polarization. Illustration of 
wavelength λ , amplitude A , phase φ , vertical electrical field E  and horizontal electrical field 

. 
v

Eh φ  ranges from 0 to 2π. 
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Table 3.1  Nomenclature of radar bands for Earth observation and corresponding 
wavelengths. 

Band designation Wavelength (cm) 

 Ka  0.84 - 0.85 

 K  1.24 - 1.25 

 Ku  1.73 - 1.74 

 Ku  2.14 - 2.24 

 X  3.06 - 3.16 

 X  3.47 - 3.51 

 C  5.61 - 5.71 

 S  9.09 - 9.68 

 L  23.08 - 24.69 

 P  30 - 100 1) 
1) Nominal wavelength range; at present there are no allocations for Earth observation within 
this range. 

3.1. X-, C-, L- and P-band are of special interest since these were used to acquire the 
data sets for the present study. 
 
Radar waves, regardless of wavelength, can be transmitted and received in different 
modes of polarization. Conventional radar systems, i.e. non-polarimetric systems, 
transmit and receive either horizontally (H) or vertically (V) polarized waves. However, 
the transmitted and received waves are not necessarily of the same polarization. 
Consequently, the radar signal may have four different polarization modes: HH (H 
receive, H transmit), VV (V receive, V transmit), HV (H receive, V transmit) and VH (V 
receive, H transmit). Polarization of radar signals is achieved through filtering of the 
outgoing and incoming electromagnetic waves. In practice, the HH and VV polarization 
modes are often referred to as like-polarizations, the HV and VH modes are known as 
cross-polarizations. As previously noted, the polarization of radar signals is an 
important source of information for the discrimination of objects in radar images. For 
further discussion of the information content of polarization as it applies to forests, 
please refer to section 3.2.3. 

 
 
3.1.3 Characteristics of radar images 

Radar images have special properties that differentiate them from other types of 
remote sensing images. The most striking image characteristics relate to the image 
geometry. These characteristics result from the side-looking configuration and the 
operation through ranging (see section 3.1.1). An important geometrical property of 
radar images is illustrated in Figure 3.7. It shows that radar systems measure the 
slant range distance of objects. Radar systems, therefore, image objects on the 
ground in a slant range format. The image space, in contradiction to the ground 
space, does not have a constant scale. For radar images the slant range scale 
increases with an increasing slant range (and ground range) distance. This results in 
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Figure 3.7 (a-b)  Slant range versus ground range format. (a) Side-looking radar systems 
measure slant range R  rather than ground range distances R . R  can be derived from R  

with the use of flight altitude 
g g

H  information. (b) The side-looking configuration and the 
operation through ranging result in images with a distorted scale in range direction. (Adapted 
from Lillesand and Kiefer, 1994 and Lo, 1986.) 
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distorted images of the features on the ground. The slant range scale distortions may 
be a problem for applications that require images with correct geometry, i.e. images 
in a ground range format. However, with the use of image processing techniques this 
problem can be easily overcome. If the observed Earth surface is assumed to be flat, 
then the ground range distance Rg  is computed from the slant range distance R  and 

the flight altitude H  according to: 
 

R R Hg = −2 2                  (3.2) 

 
Figure 3.8 illustrates the geometrical effects that occur in radar images of terrain with 
varying relief. Radar images of such terrain look distinctively "side-lighted" due to 
enhanced radar returns from slopes that face the sensor (front slopes) and reduced 
returns from those that face away from the sensor (back slopes). The return signals 
from slopes are affected by the slope's aspect and by its displacement towards the 
line of flight. For front slopes the aspect causes strong reflection of microwaves in 
the direction of the sensor, while their displacement leads to the reflected power 
being confined to a small image region. For back slopes the aspect and displacement 
have the opposite effects, i.e. the reflections towards the sensor are weaker and 
spread over a large image region. The image of front slopes is comparatively small 
because these slopes will always appear shorter in the image than they would in an 

β β βα α α

θ α βel < ,

θ α βel = ,

θ α βel > ,

 

Figure 3.8  Geometrical effects in SAR images of varying relief terrain. The appearance of 
front (back) slopes depends on the angle α  (β ) in relation to the elevation angle θel . Regions 
of "layover" contain a double image, i.e. from the front slope and from the upper part of the 
back slope. (Adapted from Leberl, 1990.) 
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orthogonal map projection. Likewise, the image of back slopes is comparatively large 
because they will always appear longer. The appearance of front or back slopes in 
radar images depends on, respectively, the front slope angle α or the back slope 
angle β  in relation to the elevation angle θel . Front slopes appear "foreshortened" 
when θ αel >  (case C in Figure 3.8), "laid over" when θ αel <  (case A), or as a line 
when θ αel =  (case B). Back slopes may also be imaged in three different manners. 
First, when θ βel <  (case A) the slope is fully imaged because radar waves are 
incident on the entire slope surface; second, when θ βel =  (case B) the slope is 
imaged as a region of zero return because the radar waves travel parallel to the slope 
surface and are not incident, and finally, when θ βel >  (case C) the slope is not 
imaged because its surface is hidden in radar shadow. In case A the range distances 
for the upper parts of the back slope can be seen to be equal to those for the front 
slope. Regions of "layover" will, therefore, contain the signal from the front slope as 
well as the signal from upper back slope. The latter, of course, is an additional 
reason for the relatively high backscatter levels in "layover" regions. In the context of 
this text it is important to note that the geometrical effects discussed above can also 
be found in short wavelength radar images of irregular forest canopies. In images of 
forests and other natural surfaces the local variation in backscatter is commonly 
referred to as image texture. Image texture is discussed in detail in Chapter 5 as it 
proves to be an important information source in the discrimination of tropical forest 
types. 
 
SAR data recording and processing techniques require the transmission of 
electromagnetic waves that have the same frequency and phase. The use of this so-
called coherent illumination results in the formation of image speckle. Speckle gives 
SAR images their well known "grainy" appearance and can be seen best in 
homogeneous regions. Speckle is caused by interference among the backscattered 
waves of the individual scattering elements (scatterers) that are present within one 
resolution cell. In practice, a resolution cell (the smallest possible ground area to be 
observed by a sensor under the conditions in force) has a size of several square 
meters and will therefore contain numerous scatterers of varying sizes. Each of these 
scatterers, when illuminated by a radar wave, will produce an echo with a certain 
phase and amplitude or power (power is proportional to amplitude squared). The sum 
of these echoes, however, may vary as it depends on interference that occurs 
between echoes of individual scatterers. These interferences can either be 
constructive or destructive and therefore result in either a higher or lower overall 
backscatter. 
 
The interference of radar echoes that originate from two scattering elements is 
illustrated in Figure 3.9. The example shown is simplified, there are only two echoes 
involved and these echoes are assumed to have the same amplitude and 
polarization. The echoes only differ in the sense that they have different phases. 
Phase differences result from dissimilarities in slant range distance that the 
transmitted, coherent waves travel before being reflected by a specific scatterer. 
Figure 3.9 shows that these phase differences are of great importance in determining 
the amplitude of the resulting radar echo. In situation A, where the phase difference 
is zero, the interference is shown to be constructive. The amplitude A of the resulting 
wave is equal to the sum of the amplitudes of the constituent waves. Constructive 
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interference is also shown in situation B, but in this case the resulting wave has a 
lower amplitude than in situation A. In situation C the wave interference leads to the 
total extinction of the resulting wave. Situation C, is a clear example of the 
destructive interference of radar echoes. For distributed objects the amplitude of a 
backscattered wave will generally change continuously. The echo from one specific 
resolution cell will change over time due to wind induced changes in the (relative) 
location of individual scatterers. The echoes from spatially adjoining resolution cells 
are subject to an additional source of variation, i.e. the natural spatial variation in 
size and location of scatterers. 
 
The interference of radar echoes clearly obstructs consistent backscatter 
measurements from single resolution cells. However, the backscatter fluctuations 
have a stochastic nature, i.e. behave according to a certain probability distribution. 
For a wide range of distributed land targets, including forests, the backscatter 
amplitude fluctuations may be described with a theoretical probability distribution 
that is commonly referred to as the "Rayleigh-distribution". The backscattered power 
can be shown to have an exponential distribution (Hoekman, 1990). Both 
distributions are single parameter distributions. The Rayleigh distribution follows 
directly from the mean amplitude, the exponential distribution from the mean 
backscattered power. In order to characterise objects with the use of radar remote 
sensing it is therefore important that the radar measurements are accurate 
estimates of either mean amplitude or mean power. 
 
In practice, the accuracy of radar measurements is often improved through linear 
averaging of measurements from resolution cells that adjoin in the azimuth direction. 
A measurement from a single resolution cell is often denoted as a look. This explains 
why the image resulting from the averaging process described is often referred to as 
a multiple look image. Multiple look images, when compared to single look images, 
show fewer fluctuations in backscatter, or in other words, are less "grainy". Relevant 
averaging, however, requires that the looks are statistically independent. This, in 
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Figure 3.9  Interference of radar echoes in relation to phase difference. Phase difference 
governs the amplitude A  of the resulting wave. Case A and B show constructive interference, 
i.e. the amplitude of the resulting echo is larger than that of the interacting echoes. Case C 
shows destructive interference, i.e. total extinction of the resulting wave. Interference of 
radar echoes is the cause of image speckle. 
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general, will be true since the properties of the scatterers (size and relative location) 
and thus their backscatter will vary both in time and in space. The accuracy of mean 
amplitude or power estimations will increase with an increase in the number of 
averaged looks. The number of looks that are involved in the averaging process also 
affects the shape of the amplitude or power distribution. Figure 3.10 illustrates the 
distribution of backscattered power for 1, 3, 7 and 16 look radar data. The multiple 
look power distributions shown correspond to those found in the radar data used in 
this study. The 3 look distribution relates to the ERS-1 data, the 7 look distribution to 
the CCRS SAR data and the 16 look distribution to the NASA/JPL AIRSAR data (see 
section 4.4). In Figure 3.10 it can be seen that the distributions become higher and 
narrower as the number of looks increases. This implies that the fluctuations in the 
measurements of backscattered power are reduced as a result of look averaging. 
Look averaging improves the radiometric properties, i.e. the radiometric resolution, of 
radar images. However, look averaging may also cause deterioration of the 
geometrical properties of radar images as a reduced spatial resolution in azimuth 
direction may result. 

 
 
3.1.4 Radar backscatter 

The capacity of isolated objects to reflect radar waves is usually expressed by a 
parameter known as the "radar cross-section". Radar cross-section σ (sigma) is a 
function of radar wavelength as well as of object characteristics (size, shape, 
orientation and composition). The radar cross-section can be defined by the "radar 
equation", which, in its simplest form, is equal to: 
 

σ π= ⋅4
 power reflected back per unit solid angle

incident power density
  [m2]          (3.3) 

 

Figure 3.10  Distributions of averaged power samples for 1, 3, 7 and 16 look radar images. 
A larger number of looks can be seen to reduce the fluctuation in the radar measurements, 
i.e. to improve radiometric resolution. The 3, 7 and 16 look distributions relate to the data 
from, respectively, ERS-1, CCRS SAR and NASA/JPL AIRSAR. Data from these SAR systems 
were used for the purpose of the study. 
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For a more extensive discussion of the basic radar equation please refer to e.g. 
Skolnik (1980) or Ulaby et al. (1981, 1982, 1986b). 
 
For objects of interest to remote sensing, i.e. for distributed objects such as land 
surfaces, the σ  will depend on the size of the resolution cell. Larger resolution cells 
may have a larger backscattered power as they may contain more scatterers. The 
parameter that describes the reflectivity of homogeneous land surface areas, 
unambiguously and independent of the area of the resolution cell Ares , is the 

"differential radar cross-section" σo (sigma nought). This parameter is a 
dimensionless measure, that is defined as the expectation of the radar cross-section 
σ  per unit area: 

σ
σ° =

Ares

     [m2 m-2]            (3.4) 

 
Another commonly used backscatter measure for distributed objects is the "radar 
cross-section per unit projected area" γ  (gamma). Gamma is related to sigma nought 
by: 

γ σ
θ

=
°

sin grc h
     [m2 m-2]            (3.5) 

 
The relationship between resolution cell area and projected area A  is illustrated in 

Figure 3.11. Both sigma nought and gamma are usually represented on a logarithmic, 
i.e. decibel (dB), scale. The conversion of 

proj

σo from the linear scale to the logarithmic 
dB scale is shown in Equation 3.6, the conversion for γ  is identical. 
 
σ σo o= ⋅10 log10 e j     [dB]             (3.6) 

θgr

Ares

A Aproj res gr= sin θc h
 

Figure 3.11  The projected area A  is related to the resolution cell area A  through the 

sine of the grazing angle 
proj res

θgr . Sigma nought σo is defined as the radar cross section per unit 

, while gamma Ares γ  is defined as the radar cross section per unit A . (Adapted from 
Hoekman, 1990.) 

proj
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3.1.5 Radiometric calibration 

Radiometric calibration of SAR is defined by Curlander and McDonough (1991) as 
"the process of characterising the performance of the end-to-end SAR system, in 
terms of its ability to measure the amplitude (and phase) of the backscattered 
signal". The authors use the term 'end-to-end' to stress that all the elements that 
play a role in the process from data acquisition up to the data delivery must be taken 
into account. The need for calibration depends on the intended data analysis method 
which is usually determined by the application. For quantitative analysis of SAR data 
calibration is required, but for qualitative analysis of SAR data calibration is not 
strictly necessary. Applications with a quantitative analysis approach often aim to 
compare backscatter measurements. Comparisons may be made spatially across a 
single image frame, temporally from pass to pass in multiple image frames, across 
frequencies or polarization channels or ultimately across data acquired by different 
radar systems. Applications with a qualitative analysis approach frequently aim to 
extract spatial information from SAR images for mapping purposes. 
 
The process of calibration can be separated into a lower level process (relative 
calibration) and a higher level process (absolute calibration). Relative calibration 
provides a common basis for all image pixels such that a given pixel intensity value 
represents a unique value of backscattered power. A good relative calibration will 
permit repeatable (precise) backscatter measurements both in space and in time. 

 

Figure 3.12  Diagram of the error sources that need to be taken into account in the 
radiometric calibration of the "end-to-end" SAR system. (Adapted from Curlander and 
McDonough, 1991.) 

43 



Radar remote sensing to support tropical forest management 

Data from a system that has been relatively calibrated may contain a bias error in the 
backscatter values. However, this error does not hamper the use of the data in 
comparative studies as it will be the same at all times and for all spatial locations. A 
good absolute calibration will result in backscatter measurements that are both 
repeatable and absolute (accurate). Data from an absolutely calibrated radar system 
should not contain any bias error. This type of data are essential for applications that 
involve the comparison of backscatter across channels and/or systems as well as for 
studies that aim to validate backscatter measurements with the use of scattering 
models. 
 
Figure 3.12 shows the error sources that must be considered in the radiometric 
calibration of space borne SAR systems. In the calibration of most airborne SAR 
systems the digital down link does not need to be accounted for since this 
subsystem is generally lacking. The calibration process usually consists of an internal 
calibration and an external calibration. Internal calibration involves the 
characterisation of the radar system's performance with the use of calibration signals 
that are injected into the radar data stream by built-in devices. This process 
compensates for errors that arise in the: sensor electronics, digital down link and 
signal processing. External calibration is required to compensate for errors that have 
their origin in the atmospheric state, the SAR antenna or the unstability of the 
platform/orbit. In external calibration the system's performance is characterised with 
the use of calibration signals that are transmitted or backscattered by ground 
targets. Suitable targets for external calibration are point targets with a known radar 
cross-section σ  (e.g. corner reflectors, transponders) or distributed targets with a 
known differential radar cross-section σo. The reader is referred to radar handbooks 
such as those by Ulaby et al. (1982) or Curlander and McDonough (1991) for a more 
elaborate discussion on SAR calibration. 

 
 
3.1.6 Imaging radar polarimetry 

In section 3.1.2 it was noted that the information contained in the polarization of a 
backscattered radar wave is related to the characteristics of the observed object. As 
such, polarization can be used to identify objects at the Earth's surface. Hence, it 
must be considered an important information source in radar remote sensing. 
 
Thus far, the radar waves that have been discussed in this chapter were assumed to 
have either a horizontal (H) or a vertical (V) polarization (see Figure 3.6). However, as 
illustrated in Figure 3.13, the polarization of radar waves is often more complicated. 
The electrical field of this wave can be seen to be equal to the vector sum of an H- 
and a V-polarized electrical field component. The resulting polarization, however, 
depends strongly on the phase difference between these two components. In Figure 
3.13 the difference in phase between the H- and V-component was chosen to be 
equal to 1

4 π. This results in a wave with an elliptical shape from the front view (seen 

from the direction of propagation). Based on its shape the wave in Figure 3.13 is said 
to have an elliptical polarization. The effects of the H-V phase difference on 
polarization are also illustrated in Figure 3.14. Depending on phase difference the 
resulting wave can be seen to have a linear, an elliptical, or a circular shape and thus 
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polarization. In addition it is shown (by means of an arrow) that elliptical or circular 
polarized waves can be either right- or left-handed. The handedness of a wave 
represents the sense of rotation of the tip of the electrical field in a fixed plane 
perpendicular to the direction of propagation. It is defined to be right-handed (left-
handed) if the direction of rotation in this plane appears clockwise (counter 
clockwise) to an observer looking from the front of the wave in the direction of 
propagation (IEEE, 1983). This view will henceforth be referred to as the 'front view'. 
A wave that propagates in space as a left-handed (right-handed) screw will, when 
seen from the front view, create a right-handed (left-handed) sense of rotation in the 
plane of definition (see also Figure 3.13). 
 
Figure 3.14 illustrates a limited selection of polarizations. In reality the number of 
polarizations is unlimited, since the H-V phase difference may have any value in the 
range from 0 to 2π , the amplitudes of the H- and V-component may vary widely and 
because waves do not necessarily have both an H- and V-polarized component. All 
possible polarizations, however, may be described with the use of just two 
parameters from the so-called polarization ellipse (see Figure 3.15). The two relevant  
 

∆φ π= 1 4

 

Figure 3.13  Side and front view of the electrical field of a wave with H- as well as V-polarized 
electrical field components. The electrical field of the composite wave is equal to the vector 
sum of the H- and V-polarized components. The polarization of the composite wave is 
governed by the phase difference of the two components. A ∆φ of 1 4π  is shown to result in 
a wave with an elliptical front view, i.e. in a wave with an elliptical polarization. The wave 
propagates in space as a left-handed screw but is denoted to be right-handed as its tip (when 
observed from the front of the wave in the direction of propagation, i.e. in 'front view') rotates 
clockwise in the plane perpendicular to the direction of propagation. 

45 



Radar remote sensing to support tropical forest management 

 
 
 

∆φ = 0

∆φ π= 1 3
4

∆φ π= 1
4 ∆φ π= 1

2

∆φ π= 3
4

∆φ π= 1 1
2

∆φ π= ∆φ π= 1 1
4

∆φ π= 2

 

Figure 3.14  Effect of the H-V phase difference on the polarization of composite waves. A 
limited selection of waves with linear, elliptical and circular polarizations is shown. Elliptical 
or circular polarized waves can be either right- or left-handed. Handedness is indicated by 
means of an arrow, an arrow pointing in a clockwise (counter clockwise) direction indicates a 
right-handed (left-handed) wave. 
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parameters from this ellipse are the ellipticity angle χ  and the orientation angle ψ . 
Figure 3.15 shows that χ  is related to the ratio of the major axis a  and the minor b  
of the polarization ellipse, while ψ  corresponds to the angle between a and reference 
direction H. Any physical polarization may be represented by values of χ  and ψ  that 
range from, respectively, -45° to 45° and 0° to 180°. The sign of the ellipticity angle 
is indicative of handedness, with negative (positive) ellipticity angles corresponding to 
waves with a right-handed (left-handed) polarization. For linearly polarized waves the 
ellipticity angle is equal to 0° (axes ratio equal to 0). The orientation angle is 0° or 
180° in case of H-polarization and 90° for V-polarization. Circularly polarized waves 
have ellipticity angles of plus or minus 45° (ellipse axes ratio equal to 1) while their 
orientation angles cannot be determined. The amplitude of the represented wave is 
proportional to the size of the polarization ellipse, i.e. to the square root of the sum 
of a  and b  (Evans et al., 1988). 2 2

 
The above characterisation of wave polarization using the geometrical parameters χ  
and ψ  is very suitable for a graphical representation of polarization but often not 
practical for use in computations. For computational purposes it is usually more  
 

χ

ψ

 

Figure 3.15  All possible polarizations may be described with the use of just two parameters 
from the polarization ellipse, i.e. with ellipticity angle χ  and orientation angle ψ . The values 
for χ  may range from -45° to 45° and represent the ratio of the major a  and minor b  ellipse 
axes. The sign of χ  is indicative of wave handedness. The values for ψ  may range from 0° to 
180° and correspond to the angle between a  and the reference direction H. Wave amplitude 

is proportional to a b2 2+ . 
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φh

 

Figure 3.16 (a-b)  (a) Relationship between polarization vector p  and polarization ellipse. The 
shape of the ellipse agrees with the vector sum of the H- and V-polarized components of p  
as a function of time. (b) Vector representation of the H-polarized electrical field component 

 in the complex plane. The vector length is indicative of amplitude Eh Eh , while the angle 

between the vector and the real axis represents the phase φh . 

 
convenient to describe the polarization of a wave by means of a two-dimensional 
complex polarization vector p . This vector can be written as (e.g. Kong, 1990; Ulaby 
and Elachi, 1990; Groot, 1991): 
 

p =
F
HG
I
KJ =
F
HG

I
KJ

E

E

E e

E e
h

v

h
j h

v
j v

φ

φ                 (3.7) 

 
where E  and E  represent the H- and V-polarized components of the electrical field, h v

Eh  and Ev  the matching amplitudes and φh  and φv  the corresponding phases (  

indicates modulus of complex number). The number j  in Equation 3.7 is equal to 

−1 . A graphical representation of the complex H-polarized electrical field component 
is shown in Figure 3.16. This figure, in addition, illustrates the relationship between 
the two alternative ways of describing wave polarization, i.e. the polarization ellipse 
and the polarization vector. 
 
 

 
______________________________  
Figure 3.17  Diagram of the operating principles of conventional and polarimetric radar 
systems. Conventional radars transmit either H- or V-polarized waves and record the 
amplitude of the received H- and/or V-polarized wave component. Polarimetric radars 
transmit both H- and V-polarized waves and record the amplitude as well as the phase of the 
received H- and V-polarized wave component.         
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To date, the information content of backscattered radar waves has not always been 
fully exploited in the practice of radar remote sensing. Conventional radar systems 
are not capable of fully measuring the polarization properties of the radar return 
signal. Complete measurement of polarization properties requires the use of a more 
recently developed and more advanced type of radar, i.e. the imaging radar 
polarimeter or polarimetric radar system. The operating principles of both 
conventional and polarimetric radar systems are illustrated in Figure 3.17. It can be 
seen that the two systems operate differently in both the transmission and the 
recording of the radar waves. Conventional radar systems transmit either an H- or V-
polarized wave, while polarimetric radars transmit both H- and V-polarized waves. 
Following the interaction of the transmitted wave(s) with the observed object there 
will thus be one or two backscattered waves. These waves, when received by the 
radar antenna, will be recorded. A conventional radar system will record the 
amplitude of the received H- and/or V-component; a polarimetric system will record 
both the amplitude and the phase of the H- as well as the V-component. From 
Equation 3.7 it can be seen that only polarimetric systems can provide all of the 
measurements required to make up the polarization vector for a wave and therefore it 
is only these systems that can fully describe the polarization properties of both 
signals received. Polarimetric radar systems operate with two antennas. One of these 
controls the transmission and reception of waves/wave components with an H-
polarization, the other of waves/wave components with a V-polarization (Ulaby and 
Elachi, 1990). 
 
The combined measurements of a polarimetric radar system make up matrix : ′S

′ =
′ ′
′ ′
F
HG

I
KJ =
F
HG

I
KJS

S S

S S

e e

e e
hh hv

vh vv

hh
j hh

hv
j hv

vh
j vh

vv
j vv

σ σ
σ σ

φ φ

φ φ              (3.8) 

where σij  is the measured amplitude in case of i  receive and j  transmit and φij  

the corresponding absolute phase. Using ′S  one can calculate the radar backscatter 
cross-section σrt  for any possible combination of transmitted p  and received p  
radar waves according to: 

t r

σ ψ χ ψ χ πrt r r t t
r t, , ,b g = ′4

2
p S p                (3.9) 

Matrix  is related to the widely used scattering matrix S  by: ′S

′
F
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I
KJ
F
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I
KJ
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           (3.10) 

Scattering matrix S  describes the polarization transformation properties of the 
observed object, it relates the polarization of the scattered waves p  to the 
polarization of the incident waves p  according to: 

s

i

ps
jk R

ie

R
=

0

Sp               (3.11) 
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Here, R  is the slant range distance and k  the wave number of the illuminating wave 
in free space (

0

2π λ0 ; where λ0  is the free space wavelength). The discrepancy in the 
matrices  and S ′S  results from differences in the description of polarization for 
scattered and received waves. These dissimilarities, in part, are due to different 
conventions for the definition of polarization for waves and antennas (e.g. Ulaby and 
Elachi, 1990). 
 
The matrices and polarization vectors introduced apply to completely polarized waves, 
i.e. to waves with a time-independent polarization. However, in the practice of radar 
remote sensing the polarization of the received waves will usually vary in time and 
therefore the descriptors presented cannot be used. Application of radar polarimetry 
for earth observation requires the use of scattering descriptors as first set up by 
Stokes (1852). The Stokes equivalent for the polarization vector, i.e. the Stokes 
vector F , can be written as:  
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with s E Eh v0
2= + 2

 and  being the normalized Stokes vector. A

 
Stokes vectors of a scattered F  and incident F  wave are related through a 4 4s i ×  
Stokes (or Mueller) matrix L : 

F s

R
=

1
2
LF i                (3.13) 

Matrix  can be seen to correspond to the scattering matrix S  (Equation 3.11). L , 
like S , relates the polarization properties of incident and scattered waves and not of 
transmitted and received waves. Consequently, L  cannot be directly derived from 
radar system measurements. The matrix derived from these measurements, the 

L

′S  
equivalent, is denoted as the Stokes scattering operator M  and related to L  
according to: 

M R R= T -1−1
L               (3.14) 
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and with: T and -1 indicating, respectively, the transposed and the inversed matrix. 
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The elements of the Stokes scattering operator relate to the elements of matrix ′S  
by: 
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where the asterisk denotes the complex conjugate. 
 
For most land surface areas it can be shown that ′Shv  and ′Svh  are identical. The latter 
causes M  to be symmetrical and makes this 4 4×  matrix fully describable with just 
10 elements, i.e. the elements as defined in Equations 3.16 through 3.25. The 
equality of ′Shv  and ′Svh  for land surfaces follows from the reciprocity principle. This 
principle implies interchangeability of polarization states of radar signals. It may be 
described as follows: when a wave with polarization 'a' is incident and a scattered 
wave with polarization 'b' results, then a wave with polarization 'a' will result when a 
wave with polarization 'b' is incident and the propagation directions are reversed 
(Hoekman, 1997). 
 
With the help of the Stokes scattering operator it is possible to calculate the radar 
cross-section, and thus sigma nought or gamma, for any combination of receive and 
transmit polarizations. The process for doing this is called wave synthesis (van Zyl et 
al., 1987) and can be written as follows: 
 

( ), , , 4 r
rt r r t tσ ψ χ ψ χ π= A MAt              (3.26) 
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The processing of polarimetric SAR images, like that of conventional SAR images, 
involves look averaging (see section 3.1.3). Therefore, in radar polarimetry, in 
practice, matrix M  will always represent the spatial average of a series of ′S  
matrices. In view of the analysis of polarimetric radar images it is useful to note that 

 matrices for neighbouring pixels may be averaged linearly. M

 
 
3.2 Interaction of microwaves with forests 

3.2.1 Microwave interaction principles 

In order to describe the interaction of microwaves with the forest it is convenient to 
view the forest as a combination of three media, i.e. soil, vegetation and air. The 
surface of the forest soil makes a distinct boundary between the soil and air and/or 
the soil and vegetation media. The boundary between vegetation and air is less well 
defined since air can be found above as well as within vegetation. Both vegetation 
and soil consist of various particles that in part may be built up out of a multitude of 
materials. When compared to air, vegetation and soil are heterogeneous media. In 
fact, they constitute a mixture of several (sub-)media. Examples of vegetation and 
soil (sub-)media are the constituent materials to leaves, branches, trunks, litter and 
rocks. 
 
The processes that govern the interaction of microwaves with forests (or any other 
object) are: transmission, reflection (or scattering) and absorption. Microwave 
transmission and reflection can occur at the boundaries of two adjoining media while 
microwave absorption takes place within a specific medium. Perfect (i.e. 100%) 
transmission is restricted to boundaries of media with identical electrical properties.  
 

E i
E r

Et

 

Figure 3.18  Microwave interaction in adjoining homogeneous media with different electrical 
properties. The incident microwave E  is both reflected Ei r  and transmitted E  at the 
boundary of medium 1 and 2. The absorption of microwave energy by medium 2 causes the 
transmitted wave to loose power. At the interface of media 2 and 3 E  is reflected and 
transmitted once again. 

t

t
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′′εr

′εr

 

Figure 3.19  Dielectric constant as a function of gravimetric water content for corn leaves in 
C-band at 22°C. ′εr  and ′′εr  are the real and imaginary parts of the complex dielectric 
constant, respectively. Other vegetation materials display a similar trend in the variation of ′εr  
and ′′εr  with respect to water content. (Based on model by Ulaby and El-Rayes, 1987.) 
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Perfect reflection occurs only if the electrical properties of the medium encountered 
are like those of a theoretical object known as a perfect conductor. At boundaries 
between forest media perfect transmission or reflection does not generally occur. 
Usually, the incident microwaves are in part transmitted, while the rest are reflected 
(see Figure 3.18). Transmission and reflection of microwaves is a repetitive but finite 
process. Microwaves transmitted at one point in time may be reflected and/or 
transmitted once again when they encounter another boundary. The process, 
however, is finite since there is a loss of power in the direction of propagation due to 
both reflection and absorption. This loss of power is known as the extinction or the 
attenuation of microwaves. Extinction or attenuation is a two-way process because it 
occurs to microwaves travelling into as well as out of the object observed. 
 
The amount of power that is transmitted, reflected and/or absorbed is strongly 
influenced by the electrical properties of the media concerned. The parameter that 
quantifies these electrical properties is known as the relative dielectric constant εr . 
εr  is complex and can be written as: 

 

ε ε
ε

ε εr
c

r j= = ′ − ′′
0

r               (3.27) 

 
where εc  is the dielectric constant of the material and ε0 is the dielectric constant of 
free space. In practice the real part ′εr  governs the ratio of transmitted and reflected 
power. In combination with ′εr  the imaginary part ′′εr  determines the amount of 
absorbed power (de Hoop, 1975). Clearly, the designation relative relates to the fact 
that the dielectric constant of a medium is normalised to the dielectric constant of 
free space. Free space is a lossless medium, i.e. a medium with 100% transmission 
and no reflection or absorption. For media other than free space it holds that ′ >εr 1 
and ′′ >εr 0. The values for ′εr  and ′′εr  depend on intrinsic characteristics of the 
medium, i.e. type and proportion of constituent materials, as well as on external 
variables such as microwave frequency and temperature. 
 
Natural media such as soil and vegetation can be seen as mixtures of bulk material, 
air and water. The relative complex dielectric constant (from here on referred to as 
the dielectric constant) for such media tends to be strongly influenced by their water 
content. Figure 3.19 illustrates the relationship between the water content and the 
dielectric constant for corn leaves in C-band at 22° C (Ulaby and El-Rayes, 1987). For 
vegetation material with a dry weight per unit volume other than that of corn leaves 
(i.e. 0.33 g cm-3) the relationship will differ. However, the trend in the relationship will 
be the same, i.e. an increase in ′εr  and ′′εr  with an increase in water  content. In 
Figure 3.19 the moisture status of the vegetation is expressed in terms of the 
gravimetric water content. The gravimetric water content for vegetation is defined as 
the mass ratio of water to bulk material, i.e. gram water per gram wet-weighted 
vegetation material. In contrast, the gravimetric water content for soil is defined as 
the mass ratio of water to solid phase, i.e. gram water per gram dry-weighted soil 
material (Koorevaar et al., 1983). The dominating effect of water on the dielectric 
properties of vegetation and soil implies that this element strongly affects the 
transmission and extinction of microwaves in forests. An increase in water content 
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will generally result in decreased transmission and increased extinction (reflection 
plus absorption). 
 
Figure 3.20 illustrates the changes in the radar cross section σleaf  and the extinction 
cross section σext leaf,  as a function of gravimetric water content for a single tree-leaf 

in C-band. The two cross sections are normalised to those of a metal leaf (perfect 
conductor) of the same size. In practice the gravimetric water content of tree-leaves 
ranges from 0.4 to 0.8 g g-1. An increase in gravimetric water content is shown to 
result in an increase in both the leaf's radar and extinction cross section. As the 
radar cross section of the leaf increases it will reflect more power, i.e. generate more 
backscatter. Similarly, as the extinction cross section of the leaf increases it will 
attenuate more power, i.e. generate less backscatter. The backscatter of the 
ensemble of leaves in a forest canopy is governed by the radar cross section and the 
extinction cross section of the average leaf. According to the Cloud model by Attema 
and Ulaby (1978) the radar cross-section per unit projected area γ  for an "opaque" 
forest canopy is given by: 
 

γ σ
σ

= leaf

ext leaf2 ,

     [m2 m-2]         (3.28) 

 

σ σleaf pc

σ σext leaf ext pc, , 

 

Figure 3.20  Radar cross section σleaf  and extinction cross section σext leaf,  as a function of 
gravimetric water content for a single tree-leaf at C-band. The values for σleaf  and σext leaf,  
have been normalized to those of a perfect conducting metal leaf of the same dimensions, 
i.e. σpc  and σext pc, . (Adapted from Ulaby, 1992.) 
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At the logarithmic dB scale this translates into: 

γ σ σ= − −leaf ext leaf c,    [dB]          (3.29) 

where c is a constant. The designation "opaque" implies that all incident microwaves 
are scattered by the canopy, i.e. that there is no transmission of microwaves and 
thus no backscatter from the forest soil. It follows from this equation that the γ  for 
an opaque forest canopy comprising leaves similar to the one used to derive the 
backscatter and extinction cross section curves shown in Figure 3.20 is reflected in 
the vertical distance between those curves. Figure 3.20 illustrates that an increase in 
gravimetric water content from 0.4 to 0.8 g g-1 results in a smaller vertical distance 
between the curves. This implies that γ  becomes a smaller negative number, i.e. 
that the radar backscatter increases as a function of water content. 
 
With regard to the reflection or scattering of microwaves one usually distinguishes 
between surface scattering and volume scattering. The designation surface scattering 
is used for reflections at boundaries between 'primary' media, e.g. the vegetation-soil 
interface. Volume scattering refers to reflections that originate from within the 
(heterogeneous) 'primary' media, e.g. from within the vegetation or the soil layer. The 
reflection of microwaves in the direction of the sensor, i.e. backscattering, provides 
the basis for radar system operation (see section 3.1.1). The backscattering process 
is therefore of utmost importance in radar remote sensing. The radar backscatter 
from closed forests is generally dominated by return signals originating from volume 
scattering in the interior of the vegetation layer and surface scattering at the 
underlying forest soil. Surface scattering at the air-vegetation interface usually is 
negligible since the average dielectric properties of the canopy are close to those of 
air. Exceptions occur in those situations where the scattering elements are of a size 
greater then or equal to ca. 10 times the incident wavelength. Under such 
circumstances, the scattering is governed by the dielectric properties of the individual 
scatterers and not by the average dielectric properties of the canopy at large. 
Generally speaking, the amount of backscatter resulting from soil volume scattering 
is small in comparison to that resulting from scattering at the forest soil surface. 
Hence, soil volume scattering is an insignificant interaction process in closed forests. 
 
Volume scattering in the vegetation layer encompasses single scattering at individual 
vegetation particles (e.g. leaves, twigs, branches, trunks) and multiple scattering at a 
series of vegetation particles. Soil surface scattering may occur when the radar 
waves either directly or indirectly reach the soil surface under the forest. Direct soil 
surface scattering occurs when gaps are present or when the waves are able to 
penetrate through the vegetation layer. Indirect soil surface scattering results from 
multiple scattering between the vegetation particles and the soil. Generally speaking, 
the amount of scattered, and thus backscattered energy will depend on both the 
wave parameters and the scattering properties of the object observed. Relevant wave 
parameters include: 
 
- frequency (or wavelength) 
- polarization of transmitted and received waves 
- observation incidence angle  
- viewing geometry (i.e. relative orientation of sensor and observed object). 
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If the wave parameters are fixed by the system design and the flight plan, then the 
average backscattered energy will only vary with the scattering properties of the 
objects observed. At present the interaction of microwaves with complex objects such 
as forests is still not fully understood. Nevertheless, it is possible to list variables 
that have been found to govern the forest's (back)scattering behaviour. The 
scattering properties of the forest soil are known to depend on the: 
 
- random surface roughness 
- periodic surface patterns 
- dielectric properties (mainly determined by water content) 
 
The scattering behaviour of the forest vegetation is influenced by the: 
 
- thickness of the volume 
- density of the component particles (or scatterers) 
- size distribution of the component particles 
- shape distribution of the component particles 
- orientation distribution of the component particles 
- dielectric properties of the component particles. 
 
The listed variables relate to structural, architectural and material forest properties. 
Surface roughness and surface patterns are structural properties of the forest soil. 
The distributions of the size, shape and orientation of the component vegetation 
particles reflect the forest's architecture. Soil and vegetation dielectric 
characteristics, vegetation volume thickness and particle density are qualified best 
as material properties. 
 
Structural and architectural properties affect scattering behaviour because they 
govern the spatial distribution of the scattered power, i.e. the proportion of 
microwave energy scattered in the backscatter as well as in other directions. The 
effect of these properties, however, depends strongly on the incident wavelength. For 
a more detailed discussion on this topic the reader is referred to section 3.2.2. 
Material properties influence the magnitude of the scattered power in all directions. 
Their effect depends primarily on the soil and/or vegetation water content. 
 
The relative importance of the soil and vegetation variables listed is strongly 
dependent on the wave parameters. The role of these parameters in the interaction 
of microwaves with forests is discussed in sections 3.2.2 through 3.2.5. For more 
information on the principles of microwave interaction with forests and other objects 
the reader is referred to handbooks such as Ulaby et al. (1981, 1982, 1986b) and 
Colwell et al. (1983). 
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3.2.2 Effects of wavelength 

Wavelength λ  is of primary importance in the interaction of microwaves with forests 
as it affects the penetrating capacity of the microwaves and the spatial distribution of 
the scattered power. 
 
The extent to which microwaves are able to vertically penetrate an object is denoted 
here as the depth of vertical penetration δp . Depth of vertical penetration is defined 

as the vertical distance below the surface at which the power of the incident wave will 
have decreased to a level equal to e−1  times the level at the surface. For most 
natural materials, with the exception of water, the depth of vertical penetration is 
approximated by: 
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Equation 3.30 is simple, nevertheless it is problematic to reliably estimate δp  for 

forests (and other vegetation types). This is due to difficulties in establishing the 
effective dielectric constant of the heterogeneous forest vegetation. However, the 
equation shows that a microwave with a long wavelength λ  penetrates a forest with 
given dielectric properties to a greater depth than a microwave with a short 
wavelength. Furthermore, the equation shows that δp  decreases with an increase in 

incidence angle θinc . Some indication of the penetration of microwaves in tropical 
forests is found in studies by Imhoff et al. (1986) and Aiba et al. (1988). Both 
studies analyse the penetration of L-band microwaves with incidence angles ranging 
from 35° to 55° in mangrove forest. The results, however, differ considerably. Imhoff 
et al. report that the δp  may be as much 12.5 m, while Aiba et al. report a δp  of ca. 6 

m. Differences in δp  affect the interaction of the microwaves with the forest because 

the processes of transmission, scattering and absorption take place in different parts 
of the volume and/or at different surfaces. 
 
In section 3.2.1 the spatial distribution of the power scattered by forest components 
was said to depend on their structural and architectural properties. More indirectly 
however, the power distribution or scattering pattern is also dependent on the 
wavelength of the incident microwaves. In the context of microwave interaction, the 
scale of soil surface roughness and soil surface pattern and the size of vegetation 
particles must be seen relative to the incident wavelength. Wavelength defines the 
effective scale of soil roughness and pattern as well as the effective size of 
vegetation particles. The scattering patterns of forest components are governed by 
their effective rather than actual scales and sizes. It therefore follows that 
wavelength affects scattering patterns. 
 
For a given wavelength the influence of effective roughness on the scattering pattern 
of a non-periodic soil surface is illustrated in Figure 3.21. A perfectly plane surface 
(Figure 3.21a) is shown not to generate backscatter since it reflects all of the 
incident microwaves in a narrow beam away from the sensor. This scattering pattern 
is commonly referred to as specular reflection while the direction in which the 
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scattering occurs is denoted as the forward direction. The other limiting case, i.e. the 
random rough surface (Figure 3.21c), reflects the incident power uniformly in all 
possible directions above the surface. It displays a so-called diffuse scattering 
pattern which results in a relatively strong radar backscatter. The scattering pattern 
of the surface with intermediate roughness (Figure 3.21b) comprises both a 
specularly reflected and diffusely scattered component. The magnitude of the 
specularly reflected component is smaller than that for the plane surface. Likewise, 
the magnitude of the diffusely scattered component, and thus of the backscatter, is 
smaller than that for the random rough surface. 
 
In practice, the scale of the surface roughness may be approximated by the vertical 
relief, or the average height of the surface irregularities h . As a rule of thumb, h  is 
computed from observations with a horizontal spacing ≤ 0 1. λ  (Ulaby et al., 1982). 
According to Sabins (1987) the following criteria may be used in the definition of 
three effective roughness classes: 
 

- smooth ; h
inc

<
λ
θ25cosb g            (3.31) 

 

- rough  ; h
inc

>
λ

θ4.4cosb g            (3.32) 

 

Figure 3.21 (a-c)  Effect of surface roughness on scattering pattern. (a) Perfectly plane 
surface; no backscatter, all incident power is specularly reflected in the forward direction 
(away from sensor). (b) Intermediate surface; moderate backscatter, incident power is 
specularly reflected in the forward direction and diffusely scattered in all other directions 
above the surface. (c) Rough surface; strong backscatter, incident power is diffusely 
scattered in all possible directions above the surface. (Adapted from Schanda, 1986.) 
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- intermediate; 
λ

θ
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where both h  and λ  are in m. Sabins' criterion for a smooth surface deviates slightly 
from the Fraunhofer criterion as proposed by Ulaby et al. (1982). In this criterion the 
multiplier in the denominator of Equation 3.31 equals 32 rather than 25. Ulaby et al. 
distinguish between smooth and rough surfaces only. The Equations 3.31 through 
3.33 and Figure 3.21 show that the effective roughness of a scattering (forest soil) 
surface is assessed easily and that the relationship between wavelength and 
scattering pattern of a surface is well understood. The Equations 3.31 through 3.33 
show that the effective roughness of a soil surface varies as a function of the 
incidence angle. For a more detailed discussion on the effects of incidence angle on 
the interaction of microwaves with forests the reader is referred to section 3.2.4. 
 
The scattering pattern of the scatterers in the forest vegetation volume (e.g. leaves, 
branches and trunks) depends strongly on their effective size. According to Knott et 
al. (1985) the behaviour of scatterers with size l  may be classified as: 
 

- low-frequency (or Rayleigh) scattering ; l ≤ 0 4. λ         (3.34) 

- high-frequency (or geometric) scattering ; l > 10λ         (3.35) 

- resonant scattering ; 0 4 10. λ λ< ≤l        (3.36) 
 
Low-frequency scatterers act as a single scatterer, i.e. the entire object participates 
in a single scattering process. High-frequency and resonant scattering objects, on the 
other hand, may be said to comprise a collection of scatterers, as parts of the object 
create different scattering processes. In a resonant scattering process there is 
interaction between the waves reflected by the component scatters. In a high-
frequency scattering process this is not the case. The patterns resulting from 
resonant scattering are more difficult to predict than those resulting from low- and 
high-frequency scattering. This is due to the fact that the resonant scattering process 
is more sensitive to the sizes, shapes and orientations of scatterers. For similar 
reasons, the radar cross sections for resonant scattering objects cannot be predicted 
as easily as those for low- or high-frequency scattering objects. 
 
Scattering at the forest soil surface is a typical example of high-frequency scattering. 
However, high-frequency scattering may also occur at relatively large forest vegetation 
components, e.g. at tree trunks in X- or C-band. In practice, a radar system does not 
usually observe a single low-frequency scatterer but rather a collection of such 
scatterers. The scattering behaviour of a composite low-frequency scattering object is 
governed by the volume of the component scatterers. A volume of low-frequency 
scatterers does not usually generate much backscatter. The effect of such a volume 
on the overall backscatter level primarily results from its capability to attenuate 
microwave energy. A typical example of a low-frequency scattering volume is the 
collection of leaves, twigs and small branches in P-band. The presence of these 
forest components does in fact decrease the amount of microwave energy received 
by a P-band radar system. 
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Table 3.2  Summary of the general 1) relationship between wavelength and the scattering 
behaviour of the components in a closed forest. The marking is as follows: '++' main 
backscattering source, '+' secondary backscattering source and '-' attenuating source. 

 Forest component 
 

Wavelength 
 

Leaves 
 

Twigs 
Secondary 
branches 

Primary 
branches 

 
Trunks 

 
Soil 

X-band ++ ++ ++    

C-band ++ + ++    

L-band - - ++ ++ ++ + 

P-band - - - ++ ++ ++ 

1) Depending on their effective size, components may have a scattering behaviour that 
deviates from the one listed. 

The effective size of forest vegetation particles depends on their physical dimensions 
but also on their shape and orientation. Generally speaking, many of these particles 
act as resonant scattering objects since their size is neither small nor large in 
comparison to the incident wavelength (see Equations 3.34 through 3.36). The 
backscatter from such objects was said to be highly sensitive to variations in 
effective size and hence difficult to predict. In the practice of radar remote sensing, 
however, one does not observe the individual scattering particles but rather a 
collection of scatterers with a wide variation in both architectural and material 
properties. Therefore, radar backscatter measurements of forests rarely expose the 
specific, and possibly extreme, backscattering behaviour of individual particles. 
 
The effect of wavelength on the backscattering behaviour of the components in a 
closed forest is summarised, in a generalised manner, in Table 3.2. Depending on 
their effective size, components may have a scattering behaviour that differs from the 
one listed. The information in this table is mainly based on results from analysis of 
radar data for forests in temperate regions. At present, results relating to tropical 
forests (notably in P-band) are scarce. The table shows clearly that microwaves with 
different wavelengths interact with different forest parts. It may thus be concluded 
that microwaves with different wavelengths make up complementary information 
sources on forests. This also implies that particular wavelengths are more suited for 
some applications than for others. L- and P-band, for example, are much better suited 
for estimating trunk biomass parameters than X- and C-band. 

 
 
3.2.3 Effects of polarization 

The polarization of incident microwaves affects their interaction with forests because 
it defines the plane in which the microwave interaction will take place. In the present 
text this plane will be referred to as the polarization plane. The polarization plane is 
built up by the vector defining the electrical field, i.e. the vector representing 
polarization, and the propagation vector (see section 3.1.2). For linear waves the 
orientation of the electrical field does not vary in time and as such the orientation of 
the polarization plane is constant. For non-linear waves, however, the orientation of 
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the electrical field and polarization plane will vary as a function of time over a 2π  
range. 
 
The polarization plane restricts the microwave interaction to object parts located in 
this plane. Waves with a horizontal (vertical) polarization, for example, will only 
interact with object parts in the horizontal (vertical) plane. To describe the interaction 
between objects and microwaves with different polarizations the effective size 
concept as introduced in section 3.2.2 needs to be accentuated. The effective size of 
an object must express its size in the polarization plane. For all but spherical objects 
the effective size will thus depend on the polarization of the incident wave. The 
(back)scatter behaviour of non-spherical objects will therefore be polarization 
dependent. 
 
The effect of polarization on microwave interaction may be illustrated with a very 
much simplified forest model. Consider a forest consisting of a collection of, rough, 
vertical cylinders over a smooth surface. The cylinder length (size in vertical direction) 
is > 0 4. λ  and much larger than the cylinder radius (size in horizontal direction). The 
forest is assumed to be observed under non-extreme incidence angles, e.g. in the 
range of 20° to 70°. Due to the orientation of the polarization plane vertically 
polarized waves will interact with a larger portion of the cylinders than horizontally 
polarized waves. The cylinders, in other words, act as resonant or high-frequency 
scatterers for vertically polarized waves and as low-frequency scatterers for 
horizontally polarized waves. Hence, for vertically polarized waves the cylinders act as 
(back)scattering objects, while for horizontally polarized waves they act as attenuating 
objects (see section 3.2.2). Consequently, vertically transmitted waves will be 
scattered back to a higher degree than horizontally transmitted waves. In both 
polarizations the backscatter originating from direct interaction of microwaves with 
the underlying surface is negligible since this surface is smooth. Backscatter 
contributions resulting from multiple interactions between the cylinders and the 
underlying surface are left aside. The example also shows why horizontally polarized 
waves may penetrate deeper into a forest than vertically polarized waves. On their 
way into the forest both the horizontally and vertically polarized waves will be 
attenuated by the cylinders. However, due to (back)scattering the loss of power for 
vertically polarized waves will be considerably higher than for horizontally polarized 
waves. Therefore, waves with a horizontal polarization will penetrate deeper than 
waves with a vertical polarization. 
 
As noted in section 3.2.2 radar systems observe a collection of forest vegetation 
particles. The effect of polarization on the interaction of microwaves with these 
particles diminishes as the particles' orientations and other architectural properties 
become more diverse. In a forest the majority of the scatterers are distributed widely 
in orientation, architecture and space. Consequently, the interaction of microwaves 
with these scatterers will show little dependence on polarization. Tree trunks make 
exceptional scatterers because of a predominantly vertical orientation. Hence, the 
interaction of microwaves with tree trunks is noticeably polarization dependent (see 
example above). 
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The interaction of microwaves with an object may result in polarization changes. First, 
microwave interaction may cause the polarization plane of the scattered wave to be 
different from that of the incident wave, e.g. a transformation from horizontal to 
vertical. Second, microwave interaction may result in depolarization. Due to 
depolarization the scattered waves become partially polarized. Partially polarized 
waves have an unpolarized component. Waves transmitted by radar systems lack an 
unpolarized component and are therefore denoted as completely polarized. Partially 
polarized waves stand midway between completely polarized and completely 
unpolarized waves. Whereas the polarization of completely polarized waves is fixed 
both in time and in space, the polarization of completely unpolarized waves changes 
randomly. Microwaves transmitted by radar systems were given as examples of 
completely polarized waves. Waves emitted by the sun may be referred to as 
examples of completely unpolarized waves. Changes in the polarization of radar 
waves are often object specific and, therefore, an important source of information for 
discriminating objects in radar images. 
 
Microwaves that interact with forests and other types of vegetation are known to 
become depolarized to a high degree. Depolarization in vegetation volumes is caused 
by the multiple reflection of waves at resonant scatterers, e.g. leaves, twigs and 
branches. Strong depolarization implies that the scattered waves will have a large 
unpolarized component. This large unpolarized component, in turn, gives rise to a 
substantial amount of cross-polarized backscatter which is characteristic for 
vegetation. Because of its dispersing effect on polarization the multiple reflection 
interaction process in vegetation volumes is often referred to as diffuse scattering. 
However, diffuse scattering in vegetation volumes is not to be confused with diffuse 
scattering at surfaces (see Figure 3.21c). Diffuse volume scattering involves diffusion 
of polarization, whereas diffuse surface scattering involves diffusion of incident 
power. 

 
 
3.2.4 Effects of incidence angle 

The effects of the incidence angle on the microwave-forest interaction are primarily 
due to its influence on the microwave penetration depth. By affecting the depth of 
vertical penetration the incidence angle determines the extent to which microwaves 
interact with their main backscatter sources. For microwaves with short wavelengths, 
the most important sources of backscatter are concentrated in the upper parts of the 
forest (e.g. leaves, twigs, secondary branches). For long wavelengths, the most 
important backscatter sources are found in the lower forest parts (e.g. primary 
branches, trunks, forest soil). According to Equation 3.30 the depth of vertical 
penetration δp  will decrease with an increase in incidence angle θinc . An increase in 

incidence angle will thus result in a reduced capability for long wavelengths to 
interact with their principal scatterers. Hence, radar systems that operate with long 
wavelengths will generally measure relative high (low) backscatter levels at small 
(large) incidence angles. The interaction process for waves with short wavelengths is 
not as sensitive to incidence angle variations because there are an abundance of 
scatterers in the upper parts of the forest. Generally speaking, measurements from 
systems with short wavelengths will show little dependence on incidence angle. 
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The importance of incidence angle in relation to microwave interaction is illustrated, 
in another way, in Equations 3.31 through 3.33 (see section 3.2.2). These equations 
are valid for high-frequency, surface scattering objects. They show that the effective 
roughness of such an object is inversely proportional to the cosine of the incidence 
angle. Consequently, an increase in incidence angle will result in a larger effective 
roughness. Changes in effective roughness as a function of incidence angle will 
affect the (back)scattering pattern of the object observed (see Figure 3.21). The most 
likely affected (back)scattering pattern in forests is that of the forest soil. In many 
circumstances, however, the microwaves will not be able to interact with the soil as 
their wavelength is too short to penetrate the overlying vegetation. Alternatively, in 
those cases where microwaves with long wavelengths are used, the soil may be 
effectively smooth throughout the entire incidence angle range. Hence, it may be 
concluded that for the interaction of microwaves with forests the effect of the 
incidence angle on the effective surface roughness is of little importance. 

 
 
3.2.5 Effects of viewing geometry 

The term viewing geometry describes the relative orientation of the sensor to the 
observed object. Its effect on the appearance of objects in radar images is a direct 
result of the radar operating principles, i.e. the side-looking configuration and the 
measurement through ranging. Variations in viewing geometry can affect the 
appearance of objects with specific spatial features, i.e. non-randomly oriented 
scatterers and/or distinct spatial patterns. 
 
The effect of the viewing geometry on the image of objects that hold (non-spherical) 
scatterers with specific orientations relates to the effective size of the scatterers and 
results in varying backscatter levels. This size is dependent on the orientation of the 
scatterer relative to the direction of propagation of the incident wave and thus on 
viewing geometry. Leaves, for example, will exhibit their largest effective size when 
they are located in a plane perpendicular to the direction of propagation of the 
incident waves. Therefore, if a certain forest consists of trees with a specific leaf 
orientation then its backscatter (at short wavelengths) can be expected to reach a 
maximum when the viewing geometry is such that the microwaves travel in a direction 
perpendicular to the plane through the leaf surfaces. 
 
The effects of viewing geometry in relation to the imaging of objects with specific 
spatial patterns, e.g. linear objects such as roads or row plantations, can be seen in 
the backscatter level as well as the image geometry. These objects, depending on 
their orientation relative to the sensor, may induce foreshortening, layover and 
shadowing effects (see section 3.1.3). Such effects greatly enhance their visibility in 
an image but occur only when their orientation is deviant from the radar range 
direction. If this is not the case then the radar may detect, for example, a road but no 
road-forest transitions. Consequently, there will be no distinct height differences in 
the range direction and thus no foreshortening, layover and shadowing effects. 
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3.2.6 Forest backscatter modelling 

Forest backscatter models may be used in either a forward or an inverse modelling 
approach. In a forward modelling approach they serve to estimate the radar return 
signal as a function of wave parameters (i.e. frequency, polarization, incidence angle) 
and/or architectural and material forest properties. Forward modelling facilitates 
radar data analysis and image interpretation as it allows simulation of the effects of 
changing wave parameters and forest properties. In an inverse modelling approach 
the models are applied to estimate the forest's architectural and material properties 
from a given set of radar data. 
 
Existing forest backscatter models may be grouped into three main categories: 
empirical models, physical models and semi-empirical models. Empirical models are 
developed by fitting mathematical expressions to experimental data sets (regression 
analysis). Physical models are developed on the basis of electromagnetic theory and 
knowledge of the (back)scattering behaviour of certain, simplified, media and/or 
objects. Semi-empirical models are based on a combination of physics and 
empirically derived expressions which allows them to utilise the best features of both 
approaches. Due to the physical basis semi-empirical models are more widely 
applicable than empirical models. The incorporation of empirical expressions, on the 
other hand, leads to a simplified and thus computationally less involved 
representation of the forest's (back)scattering characteristics. 
 
The modelling of radar backscatter from forests is of much interest but still a topic of 
considerable research. Existing models are applied with varying rates of success. 
Inverse modelling approaches are substantially more difficult than forward modelling 
approaches. This is due to the highly simplified representation of the forest and  
 

 

Figure 3.22  A forest as represented in a radiative transfer backscatter model consists of a 
soil surface covered by two vegetation layers, i.e. a crown layer and a trunk layer. At the 
assumed transparent upper crown and crown-trunk boundary there is 100% transmission, 
and thus no reflection, of microwaves. At the assumed opaque soil-trunk interface there is 
100% reflection, and thus no transmission, of microwaves. (Adapted from Ulaby et al. 1990.) 
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limitations of current model inversion techniques. An extensive discussion on existing 
forest backscatter models, on their principles and capabilities is beyond the scope of 
this text. For a review of the existing forest backscatter models the reader is referred 
to Simonett et al. (1987) and Richards (1990). Extensive discussions on the 
fundamentals of backscatter modelling can be found in Ulaby et al. (1982) and Fung 
(1994). Numerous publications address the capabilities of forest backscatter 
modelling , e.g. Hoekman (1987), McDonald et al. (1991), Beaudoin et al. (1992), Le 
Toan et al. (1992), Pulliainen (1994), Rignot et al. (1994) and Wang et al. (1994). 
The discussion in this text will focus on the representation of the forest and the 
forest-microwave interaction processes in the frequently used radiative transfer 
models. 
 
The majority of the available radiative transfer models are of a semi-empirical nature. 
One widely applied model belonging to this category is the Michigan Microwave 
Canopy Scattering model (MIMICS) (Ulaby et al., 1990). Radiative transfer models 
typically represent the forest as a soil surface covered by two layers of vegetation, 
i.e. a crown layer and a trunk layer. Both vegetation layers are treated as the sum of 
the constituent elements, such as leaves, branches and trunks. These elements are 
modelled as spatially isolated dielectric objects with smooth surfaces and of a simple 
geometry. Leaves are usually represented as elliptical discs, branches and trunks as 
cylinders. The numbers, orientations, dimensions and dielectric properties of the 
modelled vegetation elements are defined on the basis of field measurements. Their 
spatial distribution within the vegetation layers is assumed to be random, while the 
height of these layers is specified based on field observations. In most models the 
vegetation layer is assumed to be continuous which implies that they cannot deal 
with the presence of canopy gaps. The characteristics of the vegetation constituents, 
with the exception of the dielectric properties, are usually expressed in terms of 
probability density functions. The way in which a radiative transfer backscatter model 
represents a forest is illustrated in Figure 3.22. 
 
The overall scattering behaviour of the forest is decomposed into a series of models 
representing the most important microwave interaction processes. The processes 
that are commonly accounted for are illustrated in Figure 3.23 and listed below: 
 
1 - crown volume scattering 
2 - scattering from tree trunks 
3 - surface scattering from forest soil (specular or diffuse) 
4a - scattering from trunks followed by soil surface scattering 
4b - soil surface scattering followed by scattering from tree trunks 
5a - scattering from leaves or branches followed by soil surface scattering 
5b - soil surface scattering followed by scattering from leaves or branches. 
 
Process 1 involves both single (bounce) and multiple scattering. The processes 2 and 
3 involve single (bounce) scattering, the processes 4a, 4b, 5a and 5b double 
(bounce) scattering. An alternative designation for single bounce scattering is odd 
bounce scattering. Likewise, multiple scattering is often referred to as diffuse 
scattering. The models assume that the vegetation-air and crown-trunk interfaces are 
transparent, i.e. that the microwaves incident on these interfaces are fully 
transmitted and not scattered. The vegetation-soil boundary, on the other hand, is 
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assumed to be opaque. This implies that the incident microwaves are fully scattered 
and not transmitted. Process 2 accounts for direct backscatter contributions from 
tree trunks. However, at incidence angles not close to 90° these contributions are 
small. At such angles trunks will scatter in the forward (towards the soil) and not in 
the backward (towards the sensor) direction. This is due to their near-vertical 
orientation, supposedly smooth surface and large dimensions. It follows that tree 
trunks primarily contribute to the overall backscatter through the trunk-ground 
interaction processes 4a and 4b. 
 
The computation of the overall forest backscatter involves summation of the 
backscatter contributions from each of the processes listed. A key factor in 
computing the backscatter from processes 1, 2, 4 and 5 is the calculation of the 
scattering matrices S  for all vegetation constituents within a certain volume (see 
section 3.1.6). These matrices are subsequently used to compute the backscatter 
and attenuation characteristics of the vegetation volume. To enable the computation 
of scattering matrices it is necessary to model the vegetation elements as objects of 
a simple geometry (i.e. discs and cylinders). The model for each process must 
account for the (back)scattering and attenuation properties of the vegetation. In 
addition, the models for processes 3, 4 and 5 must consider the (back)scattering 
properties of the forest soil. The soil's (back)scatter properties may be modelled in 
different manners. A number of frequently used soil models are described in Ulaby 
and Elachi (1990). In the soil backscattering process (process 3) the vegetation 
functions as an attenuating layer. 
 
The decompositional backscatter models described may be used to identify the 
components that govern the backscatter behaviour of a specific forest at a particular 
frequency, polarization and/or incidence angle. Process 1, for example, will dominate 
the overall backscatter when the microwaves observe the crown layer (e.g. in X- or 

 

Figure 3.23  Dominant backscattering sources in forests: (1) crown volume scattering, (2) 
direct scattering from tree trunks, (3) direct scattering from the soil surface, (4a) trunk - 
ground scattering, (4b) ground - trunk scattering, (5a) crown - ground scattering, (5b) ground - 
crown scattering. 
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C-band). Similarly, process 4 will be the most important contributor to the backscatter 
when the waves observe the trunk-soil combination (e.g. in P-band). Hence, the 
models lead to a better understanding of what the microwaves are observing or, in 
other words, of the microwave-forest interaction process. A better understanding of 
this process may greatly facilitate the interpretation and analysis of radar data sets. 
However, in practice the value of the model strongly depends upon the ability of the 
user to provide it with a good representation of the forest. Representing the 
vegetation layers in terms of dielectric cylinders and discs may prove to be a 
particularly difficult task. This especially holds true for very complex forests such as 
tropical rain forests. 
 
Polarimetric radar images offer an additional opportunity to obtain a better 
understanding of the microwave-forest interaction processes. Each of the pixels in 
such an image represents a matrix denoted as a Stokes scattering operator M . This 
matrix describes the depolarizing effects of the object observed (see section 3.1.6). 
These effects vary in a specific and known fashion as a function of the microwave 
interaction process. Hence, it is possible to identify the apparent interaction 
process(es) based on the information contained in M . The knowledge of the 
microwave interaction process may then be used to identify the forest constituents 
that dominate the radar backscatter, i.e. the forest constituents being observed by 
the radar. 
 
Based on the information contained in polarimetric radar images van Zyl (1989) 
developed a procedure for classifying the dominant microwave interaction process. 
This procedure compares the depolarizing effect of observed objects with that of 
three standard objects, i.e. a slightly rough dielectric surface, a dihedral corner 
reflector and a multiple scattering volume. These standard objects are known to act 
as, respectively, a single (or odd) bounce, double bounce and multiple (or diffuse) 
scatterers. The scattering process of each pixel (object) is classified as being 
primarily single bounce, double bounce or diffuse through comparison of the pixel's 
depolarizing effect with that of the three standard objects. A pixel with an 
incompatible scattering behaviour is labelled as 'unclassified'. Freeman and Durden 
(1992) developed a procedure that exploits the scattering information in polarimetric 
radar images to classify land cover. The basis of this procedure is a decomposition of 
the total backscattered power into backscatter contributions that may be ascribed to 
single bounce, double bounce and multiple scattering. This decomposition is done in 
C-, L- and P-band. Based on the resulting information the image pixels are empirically 
categorised by land cover type (i.e. bare soil or water, urban, low vegetation, low 
vegetation with double bounce dominance, medium high vegetation, medium high 
vegetation with double bounce dominance, forest and forest with double bounce 
dominance). 
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4 Description of study sites and radar data 

4.1 General study site characteristics 

4.1.1 Mabura Hill, Guyana 

The study focuses on an area of tropical rain forest near the township of Mabura Hill 
in the Republic of Guyana. Guyana is situated in the northern part of South America 
between latitudes 1°10' and 8°35' North and longitudes 56°20' and 61°63' West. It 
borders the Atlantic Ocean, Venezuela, Brazil and Surinam and has a size 
comparable to that of the United Kingdom (ca. 215,000 km2). The northern boundary 
of the study area is near Mabura Hill, approximately 235 km south of the capital 
Georgetown (see Figure 4.1). The study area covers roughly 235,000 ha and is part 
of a logging concession. An area of some 900 ha, however, is excluded from logging 
and set aside as an ecological reserve and study site for use by researchers from the 
Dutch Tropenbos Foundation (Tropenbos, 1991a; ter Steege et al., 1996). 
 
Guyana has a tropical climate characterised by high temperatures, high rainfall and 
high humidity. North-south movements of the Intertropical Convergence Zone result in 
wet and dry seasons. There is a long wet season from May to August and a shorter 
one from December to February. The remaining periods are drier, with October being 
the driest month. On average, however, no month has less than 100 mm of rain. The 

 

Figure 4.1  Map showing the Mabura Hill study area in the Republic of Guyana. 
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annual rainfall is highest in the mountainous areas in the west of the country (ca. 
4400 mm) and decreases towards the east and south-west (ca. 1700 mm). In 
Mabura Hill the average annual rainfall is 2700 mm. According to Jetten (1994) most 
rain falls in the late afternoon and the early evening. The author also notes that 
rainshowers rarely cover areas larger than 2 to 3 km2 and that, therefore, the spatial 
variation in rainfall is large. Measurements at the Tropenbos meteorological station 
show that the mean annual temperature in Mabura Hill is 26°C. The changes in the 
mean monthly temperature are approximatley 2°C, while the daily temperature 
fluctuations are close to 6°C. September and October are warmer than average, 
January and February are cooler than average. 
 
The study site is located in a lowland region where two main landscape types overlap, 
namely the White Sands Area and the Pre-Cambrian Plateau. These landscapes have 
their origin in the geological history of the area and have specific topographic, soil 
and vegetation characteristics. The White Sands formation has a uniform and gently 
undulating relief and constitutes the upper layer. In some places, however, the sands 
are penetrated by laterite-covered ridges from the underlying Pre-Cambrian Plateau. In 
the south-central and western parts of the study area such ridges are visible as low 
mountain ranges. The drainage of the study area is controlled by the Essequibo River 
in the east, the Demerara River in the west and many small creeks. In spite of their 
size, these creeks often form wide valleys due to the coarseness of the quartz-rich 
sand. At places where the White Sands formation is thin, streams have cut through 
the sandy layer into soil types associated with the Pre-Cambrian Plateau, i.e. Brown 
Loamy Sands and Sandy Loams. In the study area this water erosion process has 
resulted in a mixture of soil types. For more information on the geology, 
geomorphology and soils of Guyana and the Mabura Hill region the reader is referred 
to FAO (1966), Khan et al. (1980), Jetten (1994), van Kekem et al. (1996). 
 
Forests cover about 80% of Guyana's land surface area. According to the "life zone 
classification system" by Holdridge et al. (1971) Guyana's forests are 'Tropical Moist 
Forests'. This classification is entirely based on the following environmental 
variables: mean annual precipitation, mean annual biotemperature 1) and altitude 
above sea level. The system developed by Holdridge et al. provides classification at a 
continental scale but with a low level of detail. Guyana's forests may be categorised 
in greater detail by using Fanshawe's classification system (Fanshawe, 1952). This 
system is based on intrinsic forest properties such as habitat, physiognomy and 
floristic composition. It provides a basis to distinguish many different forest types but 
can only be applied at a regional scale, i.e. within Guyana. Fanshawe's classification 
system consists of three levels that are denoted as formation-series, formations and 
associations. Formation-series group forests with corresponding habitats. Forests 
within a single formation-series are subdivided into formations on the basis of their 
physiognomy (outward appearance). Formations, in turn, are further subdivided into 
associations that represent forests of a comparable floristic composition. In this 
study, Fanshawe's formations are used. The subdivision into associations was not 
made as classification at this level requires information that cannot be obtained from 
 

                                                 
1)  Mean annual biotemperature is defined as the mean of unit-period temperatures with the 
substitution of zero for all unit-period values below 0°C and above 30°C (Holdridge et al., 1971). 
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the available radar remote sensing measurements. 
 
According to Fanshawe the forests of Guyana, Venezuela (State of Guyana), Trinidad 
(once geologically joined to Venezuela), Surinam, French Guiana and Brazil (States of 
Para and Amazonas) comprise closely allied associations. For this reason these 
territories are commonly referred to as the "Guiana hylaea" (phytogeographic region). 
Given that the forest types studied correspond to a higher aggregation level, i.e. to 
physiognomic classes (formations) rather than floristic classes (associations), they 
may be hypothesised to resemble forests beyond the "Guiana hylaea". This 
hypothesis is supported by the fact that Oldeman (1974) found similar forest 
architecture in rain forests in the Guianas and Africa. Forest physiognomy and forest 
architecture are not identical but the former may be seen as a derivative of the latter. 
While forest physiognomy is assessed from the overall appearance of sketched 
forest profile diagrams, forest architecture is analysed by using scale-drawings of 
forest transects on which precise criteria are coded. Architecture is an explanatory 
property of forests. Hallé et al. (1978) defined it as follows: "the visible, 
morphological, expression of the genetic blueprint of organic growth and 
development". Forest architecture is independent of species composition. An 
architecturally defined, similar niche in Asia, Africa or tropical America generally is 
occupied by taxonomically dissimilar species (Oldeman, 1996). 
 
The forests of Guyana have been observed to deviate from others in being frequently 
dominated by one or a few tree species (Davis and Richards, 1933, 1934; 
Fanshawe, 1952; Richards, 1952; ter Steege, 1993). A low diversity in tree species 
causes the architecture and physiognomy of a forest to be more clearly defined, 
because individuals of taxonomically and ecologically similar species are more alike 
in architecture than individuals of taxonomically different species. Species dominance 
thus facilitates the recognition of forest types on the ground, from the air and hence 
on remotely sensed images (Swellengrebel, 1959; ter Welle et al., 1988; ter Steege 
et al., 1996). At times, the identification of forest types is further simplified due to 
the presence of well defined forest type boundaries. Such boundaries generally occur 
at locations were the soil type changes abruptly (Fanshawe, 1952; ter Steege, 
1993). 
 
Table 4.1 shows the land cover classification system that is used in the present 
study. The first level consists of two classes, i.e. Forest and Non-forest. At the 
second level the Forest class is subdivided into Primary forest, Logged-over forest 
and Secondary forest. The primary forest is subdivided once again at the third level 
and consists of: Mixed forest, Wallaba forest, Xeric mixed forest, Low swamp forest 
and Mora forest. These third level classes correspond to Fanshawe's formations and 
are representative of three of his formation-series, i.e. Rain forest, Dry Evergreen 
forest and Swamp forest (Fanshawe, 1952). The study focusses on a total of eight 
classes at three different levels (classes 1 through 8 in Table 4.1). Mabura Hill only 
comprises six of these classes, namely, the five primary forest classes and the 
Logged-over forest class. None of the primary forest classes have been exposed to 
human impact. In contrast, the Logged-over forest class represents forests that have 
been subject to industrial selective logging, not clear-cut. The data for the classes 
that are not represented in Mabura Hill, i.e. Secondary forest and Non-forest, were 
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Table 4.1  Classification of land cover types considered in this study. 

Level  
 
I 

 
II 

 
III 

Formation-series 
according to Fanshawe 

Forest Primary forest Mixed  (1) Rain forest 

  Wallaba  (2) Dry evergreen forest 

  Xeric mixed  (3) Dry evergreen forest 

  Low swamp  (4) Swamp forest 

  Mora  (5) Swamp forest 

 Logged-over forest  (6)1)   

 Secondary forest  (7)   

Non-forest  (8)    

1)  Logged-over forest is primary forest that has been subject to industrial selective logging. 

obtained from radar images of the San José del Guaviare area in Colombia (see 
section 4.1.2). The land cover classes studied, with the exception of the Non-forest 
class, are described in detail in section 4.3. 
 

4.1.2 San José del Guaviare, Colombia 

An area near the Colombian city of San José del Guaviare was selected as an 
additional study site. Unlike Mabura Hill, this site represents the earlier identified 
Secondary forest and Non-forest classes (Table 4.1). The combined use of the San 
José del Guaviare area and the Mabura Hill area was possible because a near-
identical radar data set was available for both sites. This section gives a brief 
description of the San José del Guaviare area, for additional information the reader is 
referred to Bijker (1997). 
 
The study site is situated in the Colombian department of Guaviare, some 275 km 
south-east of the capital Bogota and south of San José del Guaviare (see Figure 4.2). 
To the north the site is bounded by the Guaviare river. This river marks the boundary 
between the Amazonian forests of south-eastern Colombia (Orinoco-Apaporis region) 
and the natural grass savannahs with gallery forests in the east of the country 
(eastern plains). The study area is part of the transitional zone and consists of both 
forests and savannahs. The general topography is gently undulating but also 
comprises a number of rocky outcrops and a sandstone plateau. This plateau is the 
natural habitat for the savannahs (Tropenbos, 1991b). The area's forests, according 
to the "life zone classification system" by Holdridge et al. (1971), are 'Tropical Moist 
transitional to Subtropical Wet Forests'. 
 
San José del Guaviare has a tropical seasonal climate. The mean annual rainfall is 
2600 mm while the mean annual temperature is 26°C. These figures are comparable 
to those of Mabura Hill. The climate of San José del Guaviare, however, is 
characterised by a distinct dry season during which water deficits often develop. This 
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dry season lasts from December to March, with January and February being the 
warmest and driest months. In January and February the fluctuations in the daily 
temperature may be as much as 15°C. There is no clear wet season but most rain 
falls during the months of May, June and July (Andrade and Etter, 1987). 
 
San José del Guaviare was first selected as a study site in 1990 by researchers from 
the Tropenbos Foundation (Tropenbos, 1991b). The main area of interest covers 
roughly 123,000 ha. In the past most of the area was covered with forests. 
Settlement by people from other parts of Colombia, however, has resulted in 
extensive conversion of natural forests into cropland, pasture and secondary forest. 
Remaining forests are not usually free of human disturbance as the most valuable 
trees have been extracted. The settlement of the region follows a specific land use 
sequence. It begins with the slash-and-burn of natural forests and ends with the 
establishment of 'permanent' pastures. The sequence includes periods of fallow 
during which secondary forests are left to develop. These secondary forests do not 
usually grow older than 15 years as the soils are not left fallow for more than this 
period of time (Andrade and Etter, 1987). They constitute one of the land cover 
classes studied in this text and are described in more detail in section 4.3.2. The 
Non-forest class studied is of a heterogeneous nature as it represents a wide variety 
of land cover types, i.e. grass savannahs, (degraded) pastures, agricultural crops, 
burned areas and bare soils. This class will not be discussed in more detail as the 
description given is sufficient for the aims of the study. 

 
Figure 4.2  Map showing the San José del Guaviare study area in Colombia. 
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4.2 Ground data collection 

4.2.1 Sampling in a highly complex forest context 

For the assessment of the information content of any type of remotely sensed data it 
is necessary to have an appropriate set of ground reference data. The denotation 
"appropriate" indicates that the ground data must correspond to the scale and 
variables measured by the sensor system applied. In radar remote sensing they must 
therefore relate to object properties that affect backscatter, i.e. to dielectrical and 
structural properties. Ground data collection for forests must account for the 
properties of both soil and vegetation. The dielectrical properties of soil and 
vegetation are governed by their water status and may be characterised by their 
gravimetric water content (see section 3.2.1). The most important structural property 
of forest soil is the soil surface roughness. This property may be described by the 
variation in surface height over a wavelength dependent horizontal distance (see 
section 3.2.2). Finally, there is a need for data on the structural or, in terms of 
Oldeman (1974), architectural forest properties. These data must describe the 
forest's architecture in terms of vegetation volume thickness and densities, sizes, 
shapes and orientations of architectural subsystems such as trunks, branches and 
leaves (see section 3.2.1). 
 
The above list of forest properties with relevance to radar remote sensing covers a 
tremendous number of variables to be recorded on the ground. Their relative 
importance, however, is strongly dependent on radar data acquisition parameters 
such as frequency, polarization and incidence angle. Hence, these parameters can 
often be used to set the bounds of the ground data collection. For example, in those 
cases where an X- or C-band radar system is operated over a closed forest, data on 
soil water content are not needed as the soil is not likely to contribute to the 
backscatter. In the present study, however, it was not possible to limit ground data 
collection on the basis of data acquisition parameters. This is due to the fact that the 
backscatter measurements from the NASA/JPL multiband polarimetric SAR system 
deployed (see section 4.4.2) may be affected by the structural/architectural and 
dielectrical properties of every single forest component. 
 
To conform with the main objectives of the present study (see section 1.1) ground 
data collection focused on the most important variables in view of the application of 
the radar data. These variables typically relate to the architecture of the forest and 
are among the ones that are traditionally recorded by foresters and forest ecologists. 
In addition, a restricted set of data relating to the forest's dielectrical properties was 
compiled. The ground data were collected at a scale in accordance with that of the 
radar data analysis (see section 4.1.1), namely at the forest type scale. An initial set 
of data was compiled in 1992 in conjunction with the first airborne radar campaign. 
Additional data were collected when the analysis of a radar data set indicated the 
need to do so. An overview of the forest dielectrical and architectural data is given in 
section 4.2.2 and 4.2.3, respectively. These sections, in addition, hold a detailed 
description of the ground data collection methods that were used. 
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Table 4.2  Rainfall data in conjunction with radar data acquisition in Mabura Hill. Numbers in 
〈 〉 are estimates based on average monthly rainfall. 

  Rainfall 
(mm) 

 
Date 

 
Overflight 

During week  
prior to date 

 
On that date 

8 April 1992 SAREX-92   17    0 

11 June 1993 AIRSAR   81    8 

29 April 1992 ERS-1 133    0 

3 June 1992 ERS-1 107    0 

30 December 1992 ERS-1   〈45〉 n.a. 

6 October 1993 ERS-1   15    0 

27 May 1994 ERS-1 266  20 

9 August 1994 ERS-1   66    0 

Within the framework of this study it was not feasible to collect detailed ground 
reference data for both Mabura Hill and San José del Guaviare. The fieldwork was 
concentrated in Mabura Hill since this was the main study area. The ground data for 
the Colombian site were borrowed from Quiñones (1995) and Bijker (1997). For the 
purposes of the study no detailed data were needed on the Non-forest class. All 
information required was confined to a simple "Non-forest" label. 

 
 
4.2.2 Collection of data on dielectrical properties 

Dielectrical properties reflect water status. Assessment is complicated by the fact 
that they are not constant but fluctutate with environmental conditions such as 
rainfall. Consequently, water status data are only of real value when collected at or 
close to the time of radar data acquisition. Near-simultaneous collection of 
soil/vegetation water content data and radar data would have required means out of 
proportion with this study. Hence, the ground data collection procedure adopted did 
not include the systematic assessment of soil or vegetation water status. To obtain a 
rough-and-ready parameter, fully grown leaves of a number of recently felled or 
windblown trees were collected and their gravimetric water content was determined. 
Using this method it was possible to get an approximate measurement of the leaf 
water status of trees in a tropical rain forest environment. The values of this 
parameter are given in section 4.3.3. 
 
Rainfall data are indicative of the water status of a forest and as such are useful for 
the interpretation of radar images. Tables 4.2 and 4.3 therefore list rainfall data for 
Mabura Hill and San José del Guaviare. Two figures are shown in conjunction with 
each radar data take, i.e. one for the amount of rain that fell during the week prior to 
the system's overflight and one for the rainfall on the day of overflight. The 1992 and  
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Table 4.3  Rainfall data in conjunction with radar data acquisition in San José del Guaviare. 
Numbers in 〈 〉 are estimates based on average monthly rainfall. 

  Rainfall 
(mm) 

 
Date 

 
Overflight 

During week  
prior to date 

 
On that date 

29 April 1992 SAREX-92   102 1)    0 

31 May 1993 AIRSAR 164    1 

26 May 1992 ERS-1   〈79〉 n.a. 

4 August 1992 ERS-1   〈78〉 n.a. 

17 November 1992 ERS-1   〈62〉 n.a. 

22 December 1992 ERS-1   〈27〉 n.a. 

20 July 1993 ERS-1   〈95〉 n.a. 

28 September 1993 ERS-1   〈60〉 n.a. 

1)  sum of rainfall for 4 days prior to overflight only. 

1993 figures for Mabura Hill originate from the meteorological station in the 
Tropenbos ecological reserve while those for 1994 were obtained from a nearby 
station in Great Falls. The figures for San José del Guaviare represent means based 
on observations by two nearby meteorological stations. In the cases where 
observations were missing, the rainfall during the week prior to the overflight was 
assumed to be equal to ¼ of the average monthly rainfall. 

 
 
4.2.3 Collection of data on architectural properties 

Ground data on architectural forest properties, unlike those on dielectrical forest 
properties, were collected in a systematic manner according to a predefined sampling 
methodology. Since the data were not intended for statistical analysis, no 
randomness of sample areas was required. Sample areas could thus be chosen at 
characteristic locations and because of this it was possible to obtain a good 
representation of the studied forest types with relatively few sample areas. The use 
of a random sampling method could have resulted in data of a comparable quality but 
in this case the number of sample areas would have had to have been much larger. A 
random sampling method therefore would have been much more time consuming 
(Randall, 1978). 
 
The initial set of forest architectural data was collected in the Tropenbos ecological 
reserve. This reserve was chosen intentionally to be well representative of the entire 
study area and comprises all of the studied primary forest types with exception of 
Low swamp forest. The latter type of primary forest hence remained unsampled as 
did Logged-over forest. This 'forest type' arises for the most part from Mixed forest. 
Its architecture, when compared to that of Mixed forest, is only locally different. The  
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Table 4.4  Number of sampling locations per forest type. 

Primary forest type Number of sampling locations 

Mixed forest 12 1) 

Wallaba forest 6 

Xeric mixed forest 4 

Low swamp forest - 

Mora forest 6 

1)  including seven with dominance of Greenheart. 

 
 
 

 

Figure 4.3  Map showing the sampling locations in the Tropenbos ecological reserve. 
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required information regarding the effects of logging on the architecture of the 
remaining forest was borrowed from other studies (see section 4.3.2). 
 
The segmentation basis for the collection of the ground data within the Tropenbos 
ecological reserve was provided by an existing forest type map. This map, shown in 
Figure 4.3, is a small but improved subset of a forest type map produced by the 
Guyana Forest Department (1970). The improvements were made by Tropenbos 
researchers. Within the boundaries of the primary forest types studied a minimum of 
four representative sampling locations were selected (see Figure 4.3, Table 4.4). At 
each location two concentric circular sample plots as well as a line transect were laid 
out (see Figure 4.4). The sample plots were used to collect the usual forest density 
and composition parameters, e.g. number of trees ha-1, basal area ha-1, proportion of 
trees in specific diameter classes. The line transect served to collect data on the 
architecture of the forest and form parameters of individual trees, e.g. total tree 
height, crown depth, crown diameter. Experience showed that a well trained team 
consisting of 3 members on average needed 1½ days to complete the work at a 
single sampling location. This included transportation by car between the Mabura Hill 
township and the Tropenbos ecological reserve (ca. 1 hour per day) and the time 
needed to hike into the sampling locations. 
 
The activities within the sample plots involved the enumeration of (palm) trees, lianas 
and stemless palms as well as the measurement of the diameter at breast height 1) 
(dbh; d ) for all but the stemless palms. The dbh measurements were rounded off to 
the nearest cm. In this study circular sample plots were preferred over other plot 
forms because of their high ratio of area to perimeter (thus less borderline trees or 
error sources) and their ease of lay out. The motive for using concentric sample plots 
was to compensate for a decreasing numerical density with an increasing 
diameter/height of the trees (Loetsch et al., 1973; de Vries, 1986). Within the inner 
circle only (palm) trees and lianas with d  ≥ 2 cm or stemless palms with a height  
≥ 2 m were considered, while the criteria for these two groups in the outer sample 
plot were ≥ 10 cm and ≥ 5 m, respectively. The adopted dbh and height criteria were 
borrowed from Gelens (1983). 
 
The inner and outer sample plots had areas of 100 and 1000 m2, respectively. 
Selecting the best size for sample plots is a complex problem. For the inventory of 
relatively homogeneous forests (e.g. Wallaba and Xeric mixed forests), according to a 
random sampling approach, plot sizes of ca. 0.08 ha have been suggested (Alder, 
1980). For more heterogeneous forests (e.g. Mixed forests) FAO (1981) recommends 
the use of plot sizes of ca. 0.4 ha. The larger plot size for more heterogeneous 
forests is suggested in order to ensure that the samples are sufficiently 
representative. The sample plot size proposed by FAO may be noted to exceed that of 
the nested plot in this study. Nevertheless, the plot size adopted is expected to yield 
reliable data for the characterisation of all forest types studied since the plots were 
not chosen at random but at representative locations. An area of 1000 m2 has been 
recommended as the maximum size of circular sample plots by both Loetsch et al. 
(1973) and Alder (1980). 

                                                 
1)  dbh is measured at 1.30 m above the ground or 0.30 m above the buttress. 

 80



4  Description of study sites and radar data 

 

Figure 4.4  Plan of sampling location for collection of ground data on architectural forest 
properties. At each location two concentric circular sample plots as well as a line transect 
were laid out. 

 

Figure 4.5 (a-b)  (a) Selection of trees for incorporation in line transect measurements. In 
order for a tree to be measured it had to be an "in" tree, i.e. its projection had to either 
intersect or touch the center line of the transect. (b) Overview of measurements of "in" trees: 
( )x y,  co-ordinates, diameter at breast height d , crown radii, height of the crown base hc , 
height of the greatest width of the crown periphery h , total height h . (After Koop, 1989). p t
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The radius of the outer sample plot was used as the center for the line transect. Its 
direction was chosen to be perpendicular to a distinct physiographic gradient (e.g. 
slope) or in the north-south direction where such a gradient was absent. The 
measurements in the line transect were restricted to (palm) trees and lianas with 

 or stemless palms with a height ≥ 2 m. In order for a tree, liana or palm to 
be incorporated in the transect measurements its projection had to either intersect or 
touch the center line of the transect. Specimens that met the measurement criterium 
were considered to be "in" trees, those that did not were considered to be "out" 
trees (see Figure 4.5a). Line transects provide a relatively quick method for the 
mapping of the forest's architecture. They compensate for the decreasing numerical 
density of larger specimens since these will have a higher chance of being "in" trees. 
Line transects as such include a fair proportion of all size classes present and yet 
remain easy to read (Oldeman, 1983b). 

d ≥ 2 cm

 
All "in" trees were measured according to a method developed by Koop (1989). The 
measurements performed are illustrated in Figure 4.5b. They relate to the 
x y, -position of the tree/palm/liana, the dbh d , the crown radii, the height of the 
crown base hc , the height at the greatest width of the crown periphery h  and the 

total height h . The dbh measurements were rounded off to the nearest cm, while the 
tree and crown position measurements were rounded off to the nearest 5 cm. Tree 
heights were measured with a Suunto clinometer. Measurements for trees with 
heights < 5 m, 5 to 10 m and > 10 m were rounded off to the nearest dm, 0.5 m 
and m, respectively (Cailliez, 1980). Comments on special stem characteristics (e.g. 
leaning, buttressed) were recorded in addition. 

p

t

 
Sample plot and line transect measurements were complemented with observations 
on: terrain condition (soil type, slope angle and direction, drainage), undergrowth and 
litter depth. In addition, some comments on the crown architecture, leaf types and 
leaf dimensions of dominant tree species were recorded. In this context the 
denotation "dominant" refers to canopy cover. It should be noted, furthermore, that 
only adult trees and fully grown leaves were considered. Leaf types were classified 
according to Roth (1984) as: hygromorph, mesomorph and xeromorph. These classes 
relate to the degree of coriaceousness and indicate how a leaf  reacts to alterations 
in water supply. Xeromorphic leaves are the most coriaceous (leathery) and as such 
are best designed to survive periods of water shortage. Typical and well known 
examples of hygromorphic, mesomorphic and xeromorphic leaves are those of 
lettuce, oak and holly, respectively. Leaf dimensions were classified according to 
criteria adapted from Raunkiaer (1934) as: nanophyll, microphyll, notophyll, 
mesophyll, macrophyll and megaphyll. The respective surface areas of these elliptical 
leaf classes were: ≤ 2.25, ≤ 20.25, ≤ 45.00, ≤ 182.25, ≤ 1640.25 and  
> 1640.25 cm2 (Webb, 1968; Givnish, 1984). During field visits in 1993 and 1994 
the length, width, surface area and thickness of a series of leaves from a number of 
canopy trees were measured. These measurements were done concurrently with the 
leaf water content measurements as described in section 4.2.2. The field 
measurements and observations were concluded with photographs of canopy cover 
and forest condition. The canopy photographs were taken with the use of a standard 
50 mm lens at five locations along the diameter of the outer sample plot and in the 
direction of the line transect. 
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The majority of the ground data were collected in 1992. Two additional field work 
periods in 1993 and 1994 were mainly used to confirm findings from radar data 
analysis with field information. With the help of the ground data collected and 
information from literature it was possible to roughly estimate the total dry biomass 
above the ground for the forest types studied. The starting points for these 
estimations were the d  and hc  transect measurements. They were used in a 
non-linear least squares regression procedure to establish the d -hc  relationship for 
each forest type. These relationships were then used to estimate the bole volume 
(volume of trunk in between stump and crown base). Bole volume V  for trees with 

dbh d  and crown base height h  was calculated according to: 

db b g
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where 0.7 represents the "form factor", i.e. a factor that compensates for the 
deviation of the conical tree trunks from a cylinder. This form factor was borrowed 
from Heinsdijk and de Miranda Bastos (1963, 1965). They calculated it on the basis 
of bole volume measurements for over 1500 sample trees in the Brazilian Amazon 
region. The factor was found to be appropriate for all species, dbh classes and bole 
heights. For each forest type the number of stems per hectare in each diameter class 

 could be derived from the sample plot dbh data. It follows that the estimated bole 
volume per hectare V  for a forest type is given by: 
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where d  is the maximum dbh. The average dry density of the wood was estimated 
to be 0.75 t m-3 (PRORADAM, 1979). Using this value it was possible to convert from 
trunk volume in m3 ha-1 to trunk dry biomass in t ha-1. Biomass measurements in 
mixed forests in French Guiana (Lescure et al, 1983) and Surinam (Ohler, 1980; 
Busink, 1981) show that the contributions of trunks, branches and leaves to the total 
amount of dry biomass above the ground are of the order of 69%, 30% and 1%, 
respectively. The forest types in Mabura Hill were assumed to have a comparable 
biomass distribution and hence it was possible to estimate their total dry biomass 
above the ground. According to Busink (1981) the water content of the trunk, 
branches and leaves is of the order of 0.4, 0.4 and 0.55 g g-1, respectively. The 
figure on leaf water content agrees well with the findings of the present study (see 
section 4.3.3). 

max

 83



Radar remote sensing to support tropical forest management 

4.3 Description of studied forest types 

The following descriptions of the forest types are based on information obtained from 
both literature research and ground data collection. Fanshawe's publication of 'The 
Vegetation of British Guiana' (Fanshawe, 1952) was the main literature source. 
Additional sources were Davis and Richards (1933, 1934), Richards (1952), 
Mennega et al. (1988), ter Welle et al. (1988), ter Steege (1990), Polak (1992) and 
ter Steege et al. (1996). The ground data collection procedures and the resulting 
data set were discussed in section 4.2. 

 
 
4.3.1 Primary forest types 

Figure 4.6a-c illustrates the variability in most of the primary forest types in terms of 
stem number, basal area and total dry biomass above the ground. Additional 
characteristics of the primary forest types are discussed below. 
 
Mixed forest 
The Mixed forest formation is part of Fanshawe's (1952) Rain Forest formation-
series. It is found on well drained sites from flat plains to broken country. 
Characteristic soil types are those that are associated with the Pre-Cambrian Plateau, 
i.e. Brown Loamy Sands, Sandy Loams and soils with a lateritic component. Mixed 
forests by definition comprise numerous tree species. Locally, however, they may be 
dominated by Greenheart 1) and/or Morabukea. The dominance of these species is 
thought to be related to soil properties such as drainage and nutrient content. Forest 
patches dominated by Greenheart and/or Morabukea are commonly referred to as 
"reefs" and may be considered as sub-classes, i.e. associations of the Mixed forest 
formation. Mixed forest dominated by Greenheart was considered as a separate 
class in the ground data collection because this particular forest type is the focus of 
the selective logging activities (see section 4.3.2). 
 
Mixed forests have an irregular upper canopy due to the clumped occurrence of 
dominant canopy trees and the presence of emergent trees. In Fanshawe's (1952) 
view they are comprised of three to four storeys 2). The main storey ranges from 20 to 
40 meters but emergent trees may reach as high as 50 m. Additional storeys range 
from 10 to 20 m and 3 to 10 m. The understorey (3 to 10 m) is usually fairly well 
marked. The shrub layer is most often composed of seedlings and saplings of 
dominant trees and small or stemless palms. Ground cover is sparse to very sparse 
(< 10%). There are about 70 to 90 woody species, over 5 m tall, per hectare and the 
maximum dbh is 80 to 120 cm. Predominating species are Greenheart, Morabukea, 
Wamara, Aromata and Kakaralli, while Crabwood and Clump wallaba can be locally  
 

                                                 
1)  In this text species are referred to by their vernacular names. The corresponding scientific names 
and family names are listed in Appendix II. 
2)  The description of forests as having several well recognizable storeys or strata has become almost 
obsolete since the time of Fanshawe (see Oldeman 1990 for a critical examination). They are given 
here for the sake of citing him completely. 
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Figure 4.6 (a-c)  Structural characteristics for a selection of primary forest types: (a) number 
of stems (b) stem basal area (c) total dry biomass above the ground. Representation of 
mean value ± standard deviation. 
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common. Morabukea is one of the few buttressed species. Buttresses are therefore 
not a marked feature of the Mixed forest in central Guyana. Lianas are occasional to 
common while epiphytes are scarce to fairly frequent. Palms are few and restricted to 
shrub layers or to the undergrowth (Fanshawe, 1952). Of all the primary forest types 
studied, Mixed forests have the most variable composition. 
 
Figures 4.7 and 4.8 give generalised drawings of the architecture of Mixed forest and 
Greenheart dominated Mixed forest, respectively. The profiles and crown projection 
plans shown were calculated and plotted with the ARBOPLOT program (Koop, 1989). 
Additional ground reference data can be found in Appendix III. 
 
Wallaba forest 
The Wallaba forest formation belongs to Fanshawe's Dry Evergreen Forest formation-
series. Forests of this series generally occur on sites with a consistent soil water 
deficit due to excessive drainage or excessive evapotranspiration. Wallaba forests 
are found on White Sands. This Guyanese soil type not only has a very poor water 
retention capacity but is also short in nutrients. Wallaba forests, when compared to 
Mixed forests, have a slightly xeromorphic character. This is expressed in the 
coriaceousness of the foliage and the fairly high proportion (33% of individuals with 
dbh > 10 cm) of semi-deciduous species. Wallaba forests are dominated by relatively 
few species most of which belong to the Leguminosae family. The most important 
species are Soft wallaba and Ituri wallaba. There are a large number of trees per 
hectare but their diameters are small. The maximum dbh is of the order of 70 cm. 
Fanshawe distinguishes three storeys: a continuous upper canopy that ranges from 
25 to 35 m, a discontinuous understorey ranging from 10 to 25 m and a dense but  
 

 

 
 
 Layer 

Total height 
 (m) 

Crown diameter 
(m) 

 Main canopy 25 - 30 10 - 15 (c)
 Emergent trees 35 - 40 15 - 20 

Figure 4.7 (a-c)  (a) Generalised profiles and (b) crown projection plans for Mixed forest 
plots according to Koop's method (1989). (c) Summary of data on total tree height and crown 
diameter for emergent trees and trees of the main canopy. 
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ill-defined storey with undergrowth from 5 to 10 m. The upper canopy is even, as 
emergent trees are absent. This evenness is hypothesised to be an aerodynamic 
adaptation of the forest to water deficiency (Whitmore, 1990). Trees with heavy 
buttresses are scarce, lianas are few and small epiphytes are plentiful. The shrub 
layer is dominated by seedlings and saplings of the dominant trees and immature 
stemless palms. Additional information on the architecture and composition of the 
Wallaba forest can be found in ter Steege (1990), Loubry (1994) and ter Steege et 
al. (1996). Some of the ground data collected are represented in Figure 4.9 and 
Appendix III. 
 
Xeric mixed forest 
Xeric mixed forests, like Wallaba forests, belong to the Dry Evergreen Forest 
formation-series. They occur on ridges covered with sheets or boulders of 
concretionary laterite (ironstone). The soil layer available for rooting is usually very 
shallow (≈ 25 cm), while the soil gravel content is markedly high (≈ 80%). Xeric mixed 
forest is characterised by a low stature and a high stocking of trees with small 
diameters. Fanshawe distinguishes two storeys, i.e. a densely packed main canopy 
that ranges from 6 to 20 m and a discontinuous layer of 'small' emergent trees that 
may reach up to 30 m. The maximum dbh is ca. 50 cm but the majority of the trees 
in the main canopy have much smaller diameters (15 to 20 cm). Shrubs are very rare 
and ground cover is sparse (< 20%). Wild guava is often dominant or at least 
common. Other frequently found species are: Guava skin, Micrandra elata and 
Uriridan. For a representation of the ground reference data see Figure 4.10 and 
Appendix III. Additional information on Xeric mixed forest can be found in ter Steege 
et al. (1996). 
 
Low swamp forest 
Low swamp forests are part of the Swamp Forest formation-series. The forests of this 
series all occur on permanently inundated or water-logged soils. Their architecture 
and species composition depend on inundation characteristics (i.e. duration, 
seasonal moment, water level). Extended periods of flooding generally result in poor 
forests, i.e. in forests with a low stature, a single open storey and relatively few 
species. The Low swamp forest occupies sites that are inundated during most of the 
year, i.e. riparian fringes and depressions behind river levees. It has a single open 
canopy layer that varies in height from 25 m in more elevated sites to 12 m in low-
lying sites. On higher sites, a larger number of tree species and trees with larger 
diameters (up to 60 cm) can be found, lower down trees tend to become more 
shrublike. Itikiboro, one of the dominant canopy species, has striking buttresses. 
Palms of the genus Euterpe and lianas are common while epiphytes are rare 
(Fanshawe, 1952). 
 
Mora forest 
Mora forests, like Low swamp forests, belong to the Swamp Forest formation-series. 
They are found along creeks on soils with high year round water tables. During the 
wet season, the Mora forest is usually flooded. Its architecture resembles that of 
Mixed forests rather than that of Low swamp forests. The main canopy ranges from 
20 to 35 m but emergent trees may be as high as 60 m. Fanshawe (1952) notes a  
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 Layer 

Total height 
 (m) 

Crown diameter 
(m) 

 Main canopy 30 - 35 10 - 15 (c)
 Emergent trees 40 - 50 15 - 20 

Figure 4.8 (a-c)  (a) Generalised profiles and (b) crown projection plans for Greenheart 
dominated Mixed forest plots according to Koop's method (1989). (c) Summary of data on 
total tree height and crown diameter for emergent trees and trees of the main canopy. 
 
 
 
 

 
 

 
 Layer 

Total height 
 (m) 

Crown diameter 
(m) 

 Main canopy 25 - 30 10 - 15 (c)
 Emergent trees --- --- 

Figure 4.9 (a-b)  (a) Generalised profiles and (b) crown projection plans for Wallaba forest 
plots according to Koop's method (1989). (c) Summary of data on total tree height and crown 
diameter for emergent trees and trees of the main canopy. 
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 Layer 

Total height 
 (m) 

Crown diameter 
(m) 

 Main canopy 15 - 20 5 - 10 (c)
 Emergent trees 25 - 30 10 - 15 

Figure 4.10 (a-c)  (a) Generalised profiles and (b) crown projection plans for Xeric mixed 
forest plots according to Koop's method (1989). (c) Summary of data on total tree height 
and crown diameter for emergent trees and trees of the main canopy. 
 
 
 
 

 
 

 
 Layer 

Total height 
 (m) 

Crown diameter 
(m) 

 Main canopy 30 - 40 10 - 15 (c)
 Emergent trees 40 - 60 20 - 30 

Figure 4.11 (a-c)  (a) Generalised profiles and (b) crown projection plans for Mora forest 
plots according to Koop's method (1989). (c) Summary of data on total tree height and crown 
diameter for emergent trees and trees of the main canopy. 
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lower canopy between 15 and 25 m, and an undergrowth stratum ranging from 5 to 
15 m. The shrub layer typically consists of a dense layer of saplings of the markedly 
dominant Mora trees. Mora is a strongly buttressed species and buttressing is 
therefore an outstanding feature of this forest type. The number of trees per hectare 
is smaller than in Mixed forests but the trees, on average, have larger diameters. 
Emergent Mora trees usually have fairly open crowns that consist of heavy branches 
with relatively few leaves. The latter contributes to the fact that Mora forests, as 
compared to Mixed forests, have a rather open canopy. Epiphytes profit from the 
rather high light conditions and are abundant, while lianas are only moderately 
abundant. For a representation of the ground reference data see Figure 4.11 and 
Appendix III. More information on the Mora forest can be found in ter Steege (1990) 
and ter Steege et al. (1996). 

 
 
4.3.2 Logged-over and secondary forest 

Logged-over forest 
Large parts of Mabura Hill's forests are subject to industrial logging. Selective logging 
is used, not clear-cutting. It involves the felling and extraction of a relatively small 
number of commercially valuable trees per hectare. According to the management 
plan felling is restricted to trees with a dbh ≥ 38 cm and carried out with an intensity 
of ca. 20 m3 ha-1 (≈ 8 trees, ≈ 22 t ha-1 total dry biomass above the ground). The 
intention is to log 12,000 ha per year and the specified logging cycle is 20 years. The 
planned system is in accordance with the Celos Silvicultural System (De Graaf, 
1986). In Mabura Hill logging is concentrated in Mixed forests, particularly those 
dominated by Greenheart. This preference for Greenheart is typical of most logging 
activities in Guyana. The high commercial value of the species is clearly reflected in 
Guyana's timber statistics. Greenheart accounts for some 45% of the harvested 
timber whereas it constitutes a mere 0.5 to 1.5% of the total volume of standing 
timber (Tropenbos, 1991a; ter Steege et al., 1996). 
 
Logging affects the process by which forest architecture is built. Hallé et al. (1978) 
and Oldeman (1983a) refer to this process as "silvigenesis" (forest-making). The 
process is cyclic and may be divided into four development phases, namely the: 
innovation phase, aggradation phase, biostatic phase and degradation phase. For a 
detailed discussion of these phases and their architectural characteristics please 
refer to Oldeman (1990). In short, the innovation phase is characterised by the 
development of herbs, weedy climbers and tree seedlings. It starts immediately after 
the destruction of the original forest cover. The innovation phase is followed by the 
aggradation phase which commences when woody plants close the canopy. The 
result of the aggradation phase is a "fully developed"/"matured" forest, i.e. a forest 
in the biostatic phase. Ultimately, the forest will enter the degradation phase. This 
phase is characterised by the death and decay of trees and eventually enables the 
forest to re-enter the innovation phase. Forest degradation may result from 
senescence of trees or accidents caused by natural factors such as wind, water and 
lightning. The surface on which at a particular moment in time one process of 
silvigenesis has begun is defined by Oldeman (1990) as an "eco-unit". Intact tropical 
forests may be conceived as a small-scale mosaic of uneven-aged eco-units because 
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they regenerate tree-wise or by small groups of even-aged trees. Occasionally, they 
may comprise larger eco-units due to large scale natural disturbances such as 
hurricanes, landslides, earthquakes or fire. In Guyana such disturbances are probably 
rare (Hammond and Brown, 1995). 
 
The impact of logging on silvigenesis varies with its intensity, frequency and spatial 
extent (e.g. Jonkers, 1987; Hendrison, 1990; Waide and Lugo, 1992). Non-industrial 
selective logging causes disturbances similar to those resulting from small-scale 
natural accidents and consequently has a low impact. The impact of clear-cutting or 
industrial selective logging is, at best, comparable to that of large scale natural 
accidents. Mechanised extraction of logs poses a greater threat to sylvigenesis than 
felling. Careless extraction may seriously damage the soil and under storey and as 
such obstruct the forest's regeneration (e.g. Jonkers, 1987; Hendrison, 1990; ter 
Steege et al., 1996). The direct result of felling is a canopy opening or, more 
popularly, a gap. The gap size determines the response of the remaining forest. 
Large gaps cause the forest to re-enter the innovation phase. They provide space for 
the establishment of one or more new eco-units (regeneration units). Small gaps do 
not induce such a development shift but are mostly 'repaired' by lateral crown growth 
of neighbouring trees (Oldeman, 1990). Logged-over forests, when compared to 
intact forests, are characterised by a reduced total aboveground biomass and a 
reduced number of stems (of particular species) in specific diameter classes. 
Moreover, logged-over forests have an ecologically disorganised architecture. The 
mosaic of recently logged forest comprises more regeneration units, a higher 
proportion of large regeneration units and regeneration units with an artificial 
architecture (e.g. due to destruction of under storeys). The most marked symptom of 
logging in the available radar images is the presence of an 'unnaturally' high density 
of gaps and/or of gaps with 'unnatural' sizes. However, if a gap is to be observed, it 
must be of a size larger than or equal to the spatial resolution of the radar system. 
Information on gap size and gap density in logged-over as well as intact forest was 
therefore of great importance to this study. In addition, there was a need for data on 
the closure rate of (un)natural gaps as this is relevant to the temporal resolution of 
radar observations. The information on these topics available from studies in Guyana 
(Mabura Hill), French Guiana and Surinam will be summarised in the following 
paragraphs. 
 
In Mabura Hill the gap characteristics of logged-over forest and Mixed forest were 
studied by Hammond and Brown (1992). Logged-over forest was found to have over 
50% more gaps than intact forest. Logging increased the total gap area by over 
400%, as the size of artificial gaps was considerably larger than the size of natural 
gaps. Gaps accounted for 12.6% of the area in logged-over forest compared to 2.7% 
in intact forest. The size of artificial and natural gaps was found to be ca. 800 ± 
200 m2 and 100 ± 20 m2, respectively. Gap size was noted to be largely influenced 
by the size and the number of trees contributing to the opening. In Mabura Hill gaps 
are often created by the felling of more than one tree, since the preferred species 
(Greenheart) usually grows in groups (Zagt, 1995). 
 
Hammond and Brown's findings regarding the gap characteristics of intact Mixed 
forest in  Mabura  Hill are  comparable to those  reported for similar  forest in  French 
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Guiana by Hallé et al. (1978) and van der Meer (1995). These authors both come to 
the conclusion that recent gaps account for some 5% of the area of natural forest in 
regions not subjected to large scale natural disturbances. Annually, ca. 1% of the 
forest canopy can be expected to be opened up due to natural disturbances. 
Depending on their size, these disturbances remain visible as canopy gaps for five to 
10 years. Measurements by van der Meer reveal an average gap size of 120 m2. 
Individual gaps, however, may range in size from as little as 4 m2 (caused by branch 
fall) to as much as 500 m2. It should be noted that gap sizes reported in literature 
vary widely due to the use of different definitions and measurement techniques. In 
fact, the 'borders' of gaps (notably of natural gaps) are merely transitions. 
 
Additional information on gap-formation due to logging may be derived from the 
experiments by Hendrison (1990) in Mapane (Surinam) and van der Hout (1996) in 
Mabura Hill. Hendrison compared the disturbances caused by directional felling to 
those resulting from conventional felling. Unlike conventional felling, directional felling 
aims to both position the felled trees in a direction favourable for extraction and to 
minimise the damage to the remaining forest. The felling intensity in both 
experiments was fixed at 8 to 10 trees ha-1 (ca. 20 m3 ha-1). Application of 
directional felling techniques was found to result in a reduction of ca. 50% in both 
gap size and total gap area. The average size of the gaps resulting from directional 
and conventional felling was 120 m2 and 250 m2, respectively. In directionally felled 
forest compartments the gaps accounted for ca. 7% of the total area. In 
conventionally felled forest compartments it was 14% of the total area. Hendrison, 
furthermore, reports that the conventional extraction of logs (skidding) creates an 
additional 5% loss in canopy cover. For controlled (pre-planned) skidding this extra 
loss is less than 2%. van der Hout's experiments were designed to compare the 
disturbances resulting from directional felling with different intensities. Intensities of 
4, 8 and 16 trees ha-1, or 10-15, 20-30 and 40-60 m3 ha-1, were shown to result in 
an average gap size of 150, 250 and 300 m2, respectively. The size of the individual 
gaps varied widely, i.e. from 30-350 m2 at the lowest felling intensity to 20-800 and 
15-1800 m2 at the highest intensities. The loss in canopy cover increased 
accordingly from 6 to 15 to 30% (Brils and Laan, 1995; van der Hout, 1996). 
 
These findings illustrate that logging does in fact result in an 'unnatural' forest 
architecture. For discrimination between logged-over forest and intact forest in remote 
sensing images either gap density or total gap area may be used. Gap size appears 
to be the least reliable discriminating characteristic since the size of artificial gaps 
and natural gaps may be comparable. 
 
Secondary forest 
Secondary forests consist of collections of eco-units in the innovation or early 
aggradation phases (regeneration units) (Oldeman, 1990). In San José del Guaviare 
they are part of a land use sequence that starts with the slash-and-burn of the 
natural forest and ends with the establishment of 'permanent' pastures. They 
develop in between periods of cultivation when the land is left fallow. Individual forest 
patches are usually 1 to 2 hectares in size. Generally speaking, the secondary 
forests in San José del Guaviare do not exceed 15 years in age due to the fast 
reutilization of the land (Andrade and Etter, 1987). 
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The architecture of the secondary forest is dependent on its age. Field 
measurements by Quiñones (1995) showed that a five year old forest was some 5 m 
high. Herbs, shrubs and tree seedlings constituted a dense vegetation that reached 
up to a level of ca. 2 to 3 m. A discontinuous growth consisting of slightly bigger 
trees and palms occupied the upper part of the forest. The number of trees per 
hectare with a dbh < 10 cm was approximately 11,000, the number of trees per 
hectare with a dbh ≥ 10 cm only 80. The basal area of the five year old forest was 
about 10 m2 ha-1, its total fresh biomass above the ground ca. 14 t ha-1. In terms of 
dry biomass this will be equal to approximately 7 t ha-1. As the forest grew older 
there was an increase in height, basal area, fresh biomass and the number of stems 
with dbh ≥ 10 cm. At the same time there was a reduction in the amount of 
herbaceous vegetation and the number of stems in the smaller diameter classes. 
Secondary forest of some 15 years in age was found to have a height of ca. 12 m, a 
basal area of 30 m2 ha-1 and a fresh biomass of 81 t ha-1 (≈ 40 t ha-1 dry weight). 
There were approximately 5,400 trees with dbh < 10 cm and 1,600 trees with  
dbh ≥ 10 cm per hectare (Quiñones, 1995). 
 
The architecture and development of secondary forests was studied by Gräfe (1981) 
in western Venezuela and by Lescure (1978) in southern French Guiana. Gräfe, like 
Quiñones, studied secondary forests found in areas with permanent, 'large scale' 
human activity. Lescure, on the other hand, studied secondary forests that developed 
on small fields resulting from the temporary activities of Amerindian shifting 
cultivators. The secondary forests studied in Venezuela appear to develop more 
rapidly than those in San José del Guaviare. This was concluded from differences in 
height growth. For five year old secondary forests Gräfe and Quiñones reported 
heights of ca. 15 and 5 m, respectively. The 15 year old secondary forests in 
Venezuela were found to be ca. 20 m high, those in Guaviare, ca. 12 m. 
 
The possible reasons for the height differences are not discussed in this study. The 
discrepancies in the development of the forests were pointed out to place the forests 
at the study site in San José del Guaviare in a wider framework. However, it is of 
interest to mention that the re-establishment of a forest at a particular site is strongly 
dependant on the site's history. Generally speaking, a forest will recover fully and 
swiftly as long as the upper soil horizons remain intact (Hallé et al., 1978). The 
presence of a fairly intact soil layer is probably the reason that the forests studied by 
Lescure (1978) developed more rapidly than either of those in Guaviare or Venezuela. 
four year old forests that developed on shifting cultivation sites were reported to be 
ca. 15 m high, 11 year old forests were found to be ca. 22 m high. The 
re-establishment of forests at such sites and in openings resulting from small-scale 
natural disturbances will be comparable. 

 
 
4.3.3 Leaf properties 

The fully grown leaves of most adult trees in Mabura Hill were observed to be 
xeromorphic or mesomorphic. Their leathery nature is reflected in the results of blade 
thickness measurements. A total of 500 fully developed leaves, derived from 10 
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canopy trees, were measured. Their thicknesses ranged from 0.2 to 0.4 mm and 
were 0.3 mm on average. These findings agree well with those reported for a wide 
variety of species in the tropical rain forests of Venezualan Guiana (Roth, 1984; 
Rollet et al., 1990). Earlier measurements of leaves from temperate regions, i.e. oak 
and beech, showed an average blade thickness of circa 0.2 mm (Droesen et al., 
1989). The leaves of canopy trees in a tropical rain forest environment have long 
been known to be considerably thicker than those of trees in a temperate region 
(Schimper, 1935, p.463). Leaf sizes were found to vary widely among trees and 
forest types. Based on visual observations the fully grown leaves of adult trees in the 
Xeric mixed forest were classified as notophyllous (20.25 to 45.00 cm2) or 
microphyllous (2.25 to 20.25 cm2), while those in the other forest types were 
categorised as mesophyllous (45.00 to 182.25 cm2) or notophyllous (20.25 to 
45.00 cm2). These observations seem to contradict with those of Richards (1952, 
p.80) who denotes the dominance of the 'mesophyll' size-class of Raunkiaer as "a 
most striking feature" of tropical rain forests. However, this apparent discrepancy is 
due to the fact that Raunkiaer's classification, unlike the one adopted in this study, 
does not differentiate between the 'notophyll' and 'mesophyll' size-class. His 
classification includes all leaf sizes in the range from 20.25 to 182.25 cm2 in the 
'mesophyll' size-class. The surface areas of the 500 leaves that were measured in 
this study were all within the range of the visually observed size-classes. 
 
In the field, no attempt was made to gather information on parameters representing 
the number of leaves, e.g. Leaf Area Index (LAI) or amount of leaf biomass. Some 
information on these parameters could be derived from literature (e.g. Cannell, 1982) 
but in many cases the reported figures were found to vary widely. In Cannell's "World 
forest biomass" review the LAI values for tropical rain forests range from 3.2 m2 m-2 
in Ivory Coast to 11 m2 m-2 in Thailand. Likewise, the values for dry foliage biomass 
range from 2.3 t ha-1 in Ivory Coast to 9.3 t ha-1 in Brazil. The LAI and dry foliage 
biomass values quoted for a rain forest area in Guyana's neighbouring country of 
Venezuela, are 5.2 m2 m-2 and 8.0 t ha-1. However, the dry foliage biomass for a 
Mixed forest in French Guiana is estimated to be much lower, i.e. ca. 4.5 t ha-1 
(Lescure et al., 1983). According to Lescure et al. leaves account for 1 to 2% of the 
total dry biomass. 
 
Measurements of fully grown leaves from adult trees in Mabura Hill revealed that the 
leaf gravimetric water content ranged from 0.4 to 0.5 g g-1 in the dry season and from 
0.5 to 0.6 g g-1 in the wet season. Busink (1981) reports a comparable value, i.e. 
0.55 g g-1, for leaves from trees in a mixed forest at Kabo, Surinam. Droesen et al. 
(1989) and Vissers and van der Sanden (1993) found the gravimetric water content 
of leaves from trees in The Netherlands to range from 0.6 to 0.8 g g-1. Apparently, 
the water content of leaves from trees in temperate regions is higher than that of 
leaves from trees in tropical regions. The relatively low gravimetric water content of 
leaves from tropical forest trees can be explained by their xeromorphic nature. 
 
The leaves in the secondary forests of San José del Guaviare were observed to be 
mesomorphous and either mesophyllous (45.00 to 182.25 cm2) or notophyllous 
(20.25 to 45.00 cm2). The leaf area index for a five year old secondary forest was 
estimated to be 12 m2 m-2, that for a 15 year old forest 4 m2 m-2 (Quiñones, 1995). 
Data on blade thickness and leaf water content are not available. 
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4.4 Sensor and data acquisition characteristics 

4.4.1 CCRS Airborne SAR 

Data acquisition with the airborne SAR from the Canada Centre for Remote Sensing 
(CCRS) took place in the framework of the 1992 South American Radar EXperiment 
(SAREX-92). The aim of the experiment was to study the radar signature of tropical 
forests in support of ERS-1 data interpretation and to define mission requirements 
for future space borne radar systems. SAREX-92 was funded through the Earth 
Observation Preparatory Programme (EOPP) by the European Space Agency (ESA). The 
experiment provided a contribution to the ESA / CEC project TREES (TRopical 
Ecosystem Environment observation by Satellite) (Wooding et al., 1992). 
 
Mabura Hill and San José del Guaviare constituted two of the 25 SAREX-92 test 
sites. The sites were located in six different countries in South and Central America: 
Venezuela, Guyana, French Guiana, Brazil, Colombia and Costa Rica. The data for 
Mabura Hill were acquired on April 8, while those for San José del Guaviare were 
taken on April 29. Additional information on the SAREX-92 data acquisition 
programme can be found in Bercha (1992). Technical specifications of the deployed 
CCRS Airborne SAR are given in Table 4.5. In Mabura Hill the aircraft made four 
successive runs along three different flight lines in order to obtain C- and X-band data 
in HH, VH, VV and HV polarization. Data acquisition in San José del Guaviare was 
restricted to C- and X-band, VV and HV polarization. These data were acquired in two 
runs along two different flight lines. All radar data were processed in real-time 

Table 4.5  Specifications of the CCRS Airborne SAR. 

  C-band system  X-band system 

Sensor characteristics   

   Central frequency 1)  5.30 GHz  9.25 GHz 

   Wavelength  5.66 cm  3.24 cm 

   Polarization HH, VH or VV, HV 

   Spatial resolution in range  4.8 m 

   Spatial resolution in azimuth  6.1 m 

Image characteristics  

   Number of looks  7 

   Pixel size in range  4.0 m 

   Pixel size in azimuth  4.31 m  3.44 m 

Operational characteristics     

   Platform Convair-580 aircraft 

   Mode nadir swath 

   Flight altitude  ca. 7000 m 

   Incidence angle range (usable)  ca. 20° to 65° 

1)  'time-coding' through frequency and pulse modulation (see section 3.1.1). 
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onboard the Convair-580 aircraft. 
 
Prior to analysis the C-band data were radiometrically calibrated with the help of 
calibration parameters provided by the CCRS. The methodology for the computation 
of these parameters is described by Hawkins and Teany (1992). Only the C-band VV 
data are calibrated in the absolute sense (see section 3.1.5). The high calibration 
level for these data was obtained through intercomparison of CCRS SAR backscatter 
values for a specific rain forest area with those from the, absolutely calibrated, ERS-1 
C-band VV scatterometer system. The C-band HH, VH and HV data were calibrated in 
the relative sense. This, according to Hawkins and Teany, should allow for the 
intercomparison of these data within the same image or from image to image within 
tolerances of approximately 1 dB. The X-band data could not be calibrated as the 
required calibration parameters were not made available. Comparison of backscatter 
levels for objects within those data, and notably for objects at different range 
distances or in different images, should therefore be undertaken with caution. 

 
 
4.4.2 NASA/JPL Airborne SAR 

Data acquisition with the airborne SAR (AIRSAR) from the Jet Propulsion Laboratory 
(JPL) of the National Aeronautics and Space Administration (NASA) took place in the 
framework of a campaign known as the "AIRSAR South American Deployment". The 
radar over flights were carried out in May and June 1993 at sites in: Mexico, Belize, 
Ecuador, Colombia, Peru, Bolivia, Argentina, French Guiana and Guyana. The nature 
of the sites varied widely, from volcanolic sites in Peru and Bolivia to rain forest sites 
in French Guiana, Guyana and Colombia. NASA/JPL funded and executed the 
campaign to facilitate fundamental research into the role of soils, vegetation and 
water in the global carbon cycle. In addition, the campaign was intended to familiarize 
researchers with polarimetric radar data and to prepare them for the analysis of data 
from SIR-C / X-SAR missions not yet carried out at that time. For more information on 
the campaign please refer to the plan of operations (NASA, 1993). 
 
The AIRSAR data for San José del Guaviare and Mabura Hill were acquired on May 31 
and June 11, respectively. In San José del Guaviare the system was operated in 
three runs along as many flight lines, while in Mabura Hill it was deployed in two runs 
along two flight lines. The flight lines were a selection of those that were flown during 
SAREX-92. Along each line of flight the system collected polarimetric radar data in P-, 
L- and C-band. The most important technical specifications of the NASA/JPL AIRSAR 
are listed in Table 4.6. A more detailed description of the system can be found in van 
Zyl et al. (1992). All data were processed on the JPL frame processor, which includes 
absolute radiometric calibration. However, the accuracy of the absolute calibration is 
questionable (see section 6.3.2 and Hoekman et al., 1996). 
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Table 4.6  Specifications of the NASA/JPL Airborne SAR. 

 P-band system L-band system C-band system 

Sensor characteristics    

   Central frequency 1)  0.44 GHz  1.25 GHz  5.26 GHz 

   Wavelength  68 cm  24 cm  5.7 cm 

   Polarization polarimetric 

   Spatial resolution in range  6.66 m 

   Spatial resolution in azimuth  12.1 m 

Image characteristics   

   Number of looks  16 

   Pixel size in range  6.66 m 

   Pixel size in azimuth  8.20 m 

   Processor version  3.56 

Operational characteristics  

   Platform DC-8 aircraft 

   Flight altitude ca. 8100 m 

   Incidence angle range ca. 20° to 65° 

1)  'time-coding' through frequency + pulse modulation (see section 3.1.1). 

4.4.3 First European remote sensing satellite ERS-1 

The first European remote sensing satellite ERS-1 was launched by the European 
Space Agency (ESA) on 17 July 1991. ERS-1 carries various sensor systems that 
provide world-wide coverage of oceans, sea-ice and land surface areas. The data from 
ERS-1 are very suitable for monitoring purposes since they are acquired in a synoptic, 
systematic and repetitive manner. This study makes use of a time series of data 
acquired by the ERS-1 Synthetic Aperture Radar (SAR) system. The acquisition dates 
for these images are listed in Table 4.7. The images were made available by ESA in 
the framework of the SAREX-92 campaign and ERS-1 Anouncement of Opportunity 
(AO) projects. 

Table 4.7  Acquisition dates of ERS-1 SAR images. 

Mabura Hill, Guyana San José del Guaviare, Colombia 

29 April 1992 26 May 1992 

3 June 1992 4 August 1992 

30 December 1992 17 November 1992 

6 October 1993 22 December 1992 

27 May 1994 20 July 1993 

9 August 1994 28 September 1993 
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Table 4.8  Specifications of the ERS-1 satellite system, the SAR sensor and the SAR image 
products. 

 C-band system 

Sensor characteristics   

   Central frequency 1)  5.3 GHz 

   Wavelength  5.6 cm 

   Polarization  VV 

   Spatial resolution in range  < 10 m 

   Spatial resolution in azimuth  < 10 m 

PRI image characteristics   

   Format  ground range 

   Number of looks  3 

   Spatial resolution in range  < 33 m 

   Spatial resolution in azimuth  < 30 m 

   Pixel size in range  12.5 m 

   Pixel size in azimuth  12.5 m 

SLC image characteristics   

   Format  slant range 

   Number of looks (nominal)  1 

   Spatial resolution in range  < 10 m 

   Spatial resolution in azimuth  < 10 m 

   Pixel size in range  7.9 m 

   Pixel size in azimuth  4.0 m 

Operational characteristics   

   Platform  satellite 

   Flight altitude (nominal)  782 km 

   Incidence angle range  ca. 19.5° to 26.5° (23° mid swath) 

   Swath width  100 km 

   Repeat cycle  35, 168 

1)  'time-coding' through frequency + pulse modulation (see section 3.1.1). 

Table 4.8 lists characteristics of the satellite, the SAR sensor and the two ERS-1 SAR 
data products that were used in this study. For a more extensive description of the 
ERS-1 system and data products please refer to ESA (1992a, 1992b, 1993). When 
compared to SAR Single Look Complex (SLC) data, SAR Precision (PRI) data have 
lower spatial resolutions in both azimuth and range directions. The lower spatial 
resolution in azimuth and range result from, respectively, 3-look averaging and slant-
to-ground range conversion (see section 3.1.3). In the production of PRI images, 
spatial resolution is sacrificed for the benefit of radiometric and geometric image 
properties. PRI images contain less speckle than SLC images and, unlike the latter, 
are free of slant range scale distortions. For these reasons they are the most widely 
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used ERS-1 SAR data product. The preference of most users for PRI images is 
strengthened by the fact that these images cover a larger ground surface area and 
yet constitute a smaller data volume. 
 
The ERS-1 SAR data set for this study consisted of PRI images for San José del 
Guaviare and both PRI and SLC images for Mabura Hill. SLC images were included 
because their better spatial resolution was hypothesised to result in a higher textural 
information content and as such in a better capacity for forest type classification. The 
value of image texture for this purpose had become clear from the analysis of the 
SAREX-92 data (see section 6.1.1). The study made use of a radiometrically 
enhanced SLC image rather than a standard SLC image provided by ESA. This 
enhanced image was generated by averaging three standard SLC images from 
different acquistion dates. In this text the enhanced image will be referred to as the 
SLC-av image. Its radiometric properties are comparable to those of a PRI image, 
while its spatial resolution is equal to that of a SLC image. The images used in the 
production of the SLC-av were acquired on the 29 April 1992, 3 June 1992 and 6 
October 1993. The SLC image from 30 December 1992 was not available. To study 
the effect of radiometric resolution on textural information content a radiometrically 
enhanced (9 looks) PRI product was created by averaging a series of three PRI 
images from Mabura Hill. In this text the enhanced PRI image will be referred to as 
the PRI-av image. The images used to produce the PRI-av image were acquired on the 
29 April 1992, 3 June 1992 and 30 December 1992. 
 
In order to create radiometrically enhanced images by look averaging in time, these 
looks must be statistically independent (uncorrelated). This will only be the case 
when the size and relative locations of the observed scatterers vary in time (see 
section 3.1.3). For forests and other types of vegetation this will almost always be 
the case due to growth and wind effects. In addition, decorrelation of looks in images 
from different acquisition dates results from small variations in the satellite's 
position. 
 
The ERS-1 SAR data studied resulted from descending overpasses. They were 
acquired during the day, at approximately 10.30 a.m. local solar time. The data were 
received at the ERS-1 groundstation in Cuiaba, Brazil and processed at the ESA 
Processing and Archiving Facility in Germany (D-PAF). Prior to analysis the PRI images 
were absolutely calibrated according to the procedure described by Laur (1992) and 
Laur et al. (1993). For the SLC images accurate radiometric calibration was not 
strictly necessary. They were used to study local backscatter variations (image 
texture) rather than absolute backscatter levels or temporal backscatter changes. 

 
 
4.4.4 ERASME scatterometer 

The ERASME scatterometer is an example of a non-imaging radar remote sensing 
system (see section 3.1.1). In the framework of SAREX-92 the system was deployed 
over the Tropenbos ecological reserve in Mabura Hill on April 7, 1992. The system 
was mounted in a low flying helicopter and operated in a nadir as well as forward-
looking mode to acquire C- and X-band, HH and VV polarised radar data (Dechambre 
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Table 4.9  Specifications of the ERASME scatterometer. 

 X-band system 

Sensor characteristics   

   Central frequency 1)  9.65 GHz 

   Wavelength  3.11 cm 

   Polarization  VV 

   Sample frequency  150 MHz 

   Range resolution  1.30 m 

Operational characteristics   

   Platform  Ecureuil helicopter 

   Looking mode  nadir-looking 

   Flight altitude  ca. 60 m 

   Antenna footprint  ca. 20 x 5 m 

1)  'time-coding' through frequency modulation (see section 3.1.1). 

et al., 1993). Simultaneously black-and-white video data were acquired. The video 
images served as a tool for linking the radar measurements to the objects observed 
and as such facilitated the radar data analysis. 
 
In this study only the nadir-looking X-band VV data are used. Unlike imaging radar 
systems, scatterometer systems have a "probing" capability. This implies that they 
can measure the backscatter from horizontal observation layers superimposed upon 
the forest. A single nadir-looking ERASME measurement, for example, represents the 
sum of the backscatter contributions from the scatterers within a 1.30 m high layer. 
In combination the measurements at a particular location reflect the vertical 
architecture of the forest. For an overview of the most relevant (operational) 
characteristics of the ERASME scatterometer please refer to Table 4.9. 
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The present chapter describes the methods and techniques used to extract 
information from the available radar data sets and to appraise the value of this 
information for the identification of forest types and other land cover types, in 
particular. The results of radar data analysis for the purpose of forest resource 
assessment and monitoring are discussed in Chapters 6 and 7, respectively. The 
findings of experiments aimed at optimising procedures for automated analysis of 
texture in radar images by means of the grey level co-occurrence technique are 
discussed in Appendix I. 

 

 

5.1 Textural analysis of radar images 

5.1.1 Description of image texture and textural attributes 

Image texture is defined by Haralick and Bryant (1976) as "the pattern of spatial 
distributions of grey tone". High frequency radar images are often rich in texture 
because of shadowing, layover and foreshortening at the surface of the observed 
object (see section 3.1.3). These effects, however, only occur when the object is 
comprised of structural elements with sizes greater than or equal to the size of the 
resolution cell. In other words, the object's intrinsic scale must match or exceed the 
measurement scale of the radar. Texture in radar images of forests relates to canopy 
roughness which is a parameter of canopy architecture. An effectively rough canopy 
results in a rougher image texture. 
 
Over the years a large number of techniques to measure and quantify texture in 
digital images have been investigated. These investigations underline the importance 
and ubiquity of texture in image data but at the same time reflect that a formal 
unambiguous definition of image texture is lacking. Available textural analysis 
techniques fall into two main categories, i.e. statistical and structural ones. 
Statistical techniques describe texture in terms of parameters that characterise the 
statistical properties of the spatial distribution of grey levels. Examples of such 
techniques are those that make use of: autocorrelation functions, Fourier power 
spectra, Gaussian Markov random fields, grey level run lengths, textural edginess, 
textural spectra, fractals and grey level co-occurrence. Structural techniques conceive 
of texture as an arrangement of a set of spatial sub-patterns according to certain 
placement rules. They describe texture in terms of parameters that characterise the 
organisation and/or the spatial distribution of the sub-patterns. The parameters used 
are often statistical, but sometimes they are not. Examples of structural textural 
analysis techniques are those that tessellate images into cells of a certain structure 
(e.g. squares, hexagonals etc.) or those that attempt to match sub-patterns with 
predefined geometric figures. Reviews of techniques for analysis of image texture can 
be found in Weszka et al. (1976), Haralick (1979, 1986), Ahuja and Rosenfeld 
(1981) and Kilpelä and Heikkilä (1990). 
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Textural analysis in the present study is based on a statistical technique that is 
known as the grey level co-occurrence technique. This technique proved to be 
effective in many earlier studies (e.g. Weszka et al., 1976; Conners and Harlow, 
1980; Hoekman, 1990; Kilpelä and Heikkilä, 1990; Marceau et al., 1990; Kushwaha 
et al., 1994). The grey level co-occurrence technique is based on the spatial 
distribution and the mutual spatial dependence of the grey levels in an image. 
Texture is quantified in terms of statistical parameters that are computed from the 
elements of a grey level co-occurrence (GLCO) matrix or a grey level difference (GLD) 
vector. In this text these parameters will be referred to as textural attributes. The 
elements of the GLCO matrix and GLD vector represent grey level second-order 
statistics of the pixel pairs contained in a certain image region or spatial window. The 
i j, -th entry in the GLCO matrix p i  is defined as the relative frequency of pixel 

pairs, for each possible pixel pair realisation in the area of interest, for which the 
"source" pixel with grey level i  is at position  and the "target" pixel with grey 

level 

j,b g

gx y,b
j  is at position . Vector d  is denoted the "displacement vector". The 

-th entry in the GLD vector 

x y,b g + d
i v ib g  is defined as the relative frequency of pixel pairs, for 

each poss l pair realisation, for which the source p rey l at 
position  and the target pixel with grey level k i

ible pixe ixel with g evel is 
g

 k  
x y,b + − 1b g g or k i  is at 

position  (Hoekman, 1990). 

− − 1b
x y,b g + d

 
The results of the GLCO and GLD technique depend strongly on displacement length 
d  and displacement direction α. The dependence on α, however, is not related to 

image texture. Instead of choosing another α the image might as well be rotated. 
Although a rotation does not change the image texture, it will generally result in a 
different GLCO matrix and GLD vector. Only rotations over 180°, i.e. displacements in 
opposite directions, yield identical GLD vectors and closely related GLCO matrices. 
The GLCO matrices that result from displacement in opposite directions are each 
other's transpose. They therefore are not substantially different. This notion is used 
in many studies, including the present one, to employ symmetrical GLCO matrices. 
These matrices allow for a speedier computation of textural attributes, while 
preserving the full textural information content. The lower computational load results 
from the fact that all relevant information is contained in just one matrix half. The  
 

 

Figure 5.1  Procedure to construct a grey level co-occurrence (GLCO) matrix and a grey level 
difference (GLD) vector for an image subset of 5 5×  pixels. Successive displacements along 
the vectors d  and d  are performed to attain that the GLCO matrix is 
symmetrical. 

= (2 0, ) = −( ,2 0)

102 



5  Methods and techniques for radar data analysis 

matrix entries represent the relative frequencies of pixel pairs with grey levels p i  

for displacement in both the 

j,b g
α and the α + 180o direction. Due to the consecutive 

displacement in two opposite directions p i j p j i,b g b , g= . The procedure for 

constructing a symmetrical GLCO matrix and a GLD vector for a 5  image subset 
with d  and d  is illustrated in Figure 5.1. 

5×
= 2 0,b g g

g

g

= −2 0,b
 
Both the GLCO matrix and GLD vector are intermediate components in the analysis of 
texture according to the grey level co-occurrence technique. They serve as input for 
computing one or more textural attributes (statistical parameters) that quantify image 
texture. The textural attributes used in this study are listed in Table 5.1. According to 
Baraldi and Parmiggiani (1995), Gerbrands (1986) and Zhan (1986), these attributes 
may be described as follows: 
 
GLCO-ASM  (Angular Second Moment) 
Measures textural uniformity; high values occur when few p i  are large (close to 1) 

and others are small (close to 0). This is the case when the area of interest is either 
homogeneous or texturally uniform, i.e. when the grey level distribution is constant. 

j,b

GLCO-CONT  (Contrast) 
Measures textural contrast, i.e. the presence of sharp grey level transitions (edges). 
Low values occur when edges are absent. In this case the matrix entries are 
concentrated around the principal diagonal. 
GLCO-COR  (Correlation) 
Measures linear-dependencies between the grey levels of pixels pairs. High values 
(close to 1) imply a strong relationship between pixel pair grey levels. GLCO-COR is 
uncorrelated to GLCO-ASM as high GLCO-COR values can be measured either in low 
or high GLCO-ASM situations. 
GLCO-ENT  (Entropy) 
Measures the disorder in an image, high values occur when many p i  have very 

small values. The parameter reaches its maximum when the pixels in the area of 
interest have completely random grey levels. GLCO-ENT is likely to be highly 
negatively correlated to GLCO-ASM. GLCO-ENT and GLCO-COR are uncorrelated. 

j,b

GLCO-IDM  (Inverse Difference Moment) 
Measures image homogeneity as it assumes larger values when pixel pairs have 
smaller grey level differences. The parameter is highly negatively correlated to 
GLCO-CONT. When compared to GLCO-ASM the parameter is less sensitive to the 
differences in the grey levels of pixel pairs. 
GLCO-MAX PROB  (Maximum Probability) 
Measures textural uniformity; high values occur when the area of interest is either 
homogeneous or texturally uniform, i.e. when the grey level distribution is constant. 
The parameter is positively correlated to GLCO-ASM and negatively correlated to 
GLCO-ENT. 
GLD-ASM  (Angular Second Moment) 
Measures uniformity in pixel pair grey level contrast; high values occur when few v ib g  
are large (close to 1) and others are small (close to 0). This is the case when the 
pixel pairs in the area of interest have set grey level differences, i.e. when the grey 
level distribution is constant, periodic or linear. 
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Table 5.1  Overview of textural attributes that were computed from the GLCO matrix (1-6) and 
the GLD vector (7-9). Ng  represents the number of image grey levels and m , m , s  and s  

represent, respectively, the mean values and standard deviations of the row and column 
positions of the counts in the GLCO matrix. 
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GLD-ENT  (Entropy) 
Measures the disorder in pixel pair grey level contrast; high values occur when many 
v ib g  have very small values. The parameter reaches its maximum when the pixels in 

the area of interest have completely random grey level differences. GLD-ENT is likely 
to be highly negatively correlated to GLD-ASM. 
GLD-MEAN  (Mean) 
Measures the magnitude of the contrast between pixel pairs, i.e. the presence of 
sharp grey level transitions (edges). High values will occur in areas that are rich in 
contrast, i.e. where edges are present. GLD-MEAN is positively correlated to 
GLCO-CONT. 

 

 

5.1.2 Textural analysis in the presence of speckle 

Grey level co-occurrence and other statistical textural analysis techniques generate 
parameters that characterise the spatial variation of grey levels. In radar images, 
however, these grey level variations do not only result from the spatial variability in 
the scattering properties of the object observed (texture) but also from the presence 
of speckle. In homogeneous regions of radar intensity images from forests and other 
types of distributed land targets the total grey level variance, i.e. the total variance in 
backscattered power Stot

2  is given by: 

S S S S Stot T F T F
2 2 2 2= + + 2                (5.1) 

Where ST
2 is the texture variance, SF

2 the speckle or fading variance and S ST F
2 2 an 

interaction term equal to the product of the texture and fading variance (Ulaby et al, 
1986a; Ulaby et al, 1986b, p. 1912). At the linear scale the fading variance is given 
by: 

S
I

kF
2

2

=                   (5.2) 

Where I 2  is the mean backscattered power and k  is the number of independent 
looks (see section 3.1.3). From substitution of Equation 5.2 in 5.1 it follows that Stot

2  
for a particular region of a linear scaled k -looks radar intensity image is dependent 
on the region's mean backscatter level. Hence, two regions with an identical texture 
variance but with a different backscatter level will have a different total variance, i.e. 
a different grey level variation. The presence of speckle and its dependence on the 
amount of backscattered power thus complicates textural analysis of radar images. 
 
Textural analysis only yields reliable results when the differences in image grey level 
variability can be attributed solely to differences in texture. This does not hold true for 
linearly scaled radar amplitude nor for linearly scaled radar intensity images and 
therefore this type of images is less suited for use in statistical textural analysis. 
Such images, however, may be made suitable by simply converting them to 
logarithmically scaled radar intensity images, i.e. to images in which the pixels 
represent backscattered power in dB. According to Hoekman (1990, 1991) the fading 
variance for this type of images is given by: 
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S aF
2 2 2= ζ ,b k g                 (5.3) 

with 

a =
10

10logeb g                   (5.4) 

and Riemann zeta function 
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Unlike the SF
2 for linearly scaled intensity images the SF

2 for logarithmically scaled 
radar intensity images is independent of the backscattered power. For the latter type 
of images SF

2 is dependent on the number of looks k  only. For logarithmically scaled 
radar intensity images the fading variance will be of a set value since k  is fixed. 
Substitution of Equation 5.3 in 5.1 shows that the total variance for logarithmically 
scaled radar intensity images is a function of a predetermined fading variance and a 
variable texture variance and is thus in effect dependent on texture variance only. 
Logarithmically scaled radar intensity images are therefore more fit for use in textural 
analysis than either linearly scaled radar amplitude or intensity images. 

 

 

5.1.3 Textural analysis in this study 

Grey level co-occurrence textural analysis techniques were only used in the handling 
of data from the CCRS SAR and ERS-1. The study adopted two complementary 
approaches which according to Hoekman (1985) may be denoted as Gross Textural 
Analysis (GTA) and Moving Window Analysis (MWA). GTA is intended to quantify the 
texture for predefined image regions while MWA is meant to do so for a relatively 
small spatial window around each image pixel. The textural attributes that result from 
GTA are computed on the basis of substantially more pixel pair realisations than 
those that result from MWA. GTA attributes therefore describe texture more 
accurately than MWA attributes. However, GTA requires a priori information on 
boundaries of regions of interest. In some situations this boundary information may 
be obtained from existing geographical data sets or through the use of image 
segmentation techniques. In many others, however, boundary information may be 
unobtainable. This applies in particular to tropical rain forests as these are 
environments poor in geographical information and as radar images of rain forest are 
difficult to segment. In such situations, the MWA is the only textural analysis method 
with potential for operational use. 
 
In this study GTA was used as a precursor for MWA. GTA, among others, served to 
investigate whether or not the land cover types studied had different textural 
properties from a grey level co-occurrence point of view. This  is in fact an 
assessment of the classification potential of MWA, since this approach will fail to 
discriminate land cover types with identical textural properties. GTA when compared 
to MWA is more economical as it requires considerably less computing time. This 
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makes GTA a useful tool for studies aimed at the development of optimised 
procedures for textural analysis according to the MWA approach. 
 
In this study GTA was used to investigate the textural information content of the 
available CCRS SAR and ERS-1 SAR images as a function of: 
- frequency and polarization (CCRS SAR) 
- spatial resolution (ERS-1 PRI and PRI-av versus time averaged ERS-1 SLC images; 

see section 4.4.4) 
- radiometric resolution (ERS-1 PRI versus PRI-av) 
- number of grey levels (ranging from 256 to 8) 
- textural attribute (see Table 5.1) 
- displacement length (ranging from 1 to 10 pixels) 
- displacement direction (range dir., azimuth dir., range and azimuth dir.) 
- window size (ranging from 3  to 633× 63×  pixels). 
 
The CCRS SAR and ERS-1 SLC images were analysed for texture (both GTA and MWA) 
in slant range format, the ERS-1 PRI and PRI-av images in ground range format. Slant 
to ground range conversions prior to textural analysis were avoided as this involves 
resampling of pixels and thus affects image texture. For ERS-1 PRI and PRI-av images 
the format could not be chosen freely since the PRI images are supplied by ESA in 
the resampled ground range format. 

 

 

5.2 Approach for extraction and analysis of data for image regions 

5.2.1 Extraction of radiometric attributes 

The radiometric attribute for a particular part of a radar image quantifies the 
backscatter, i.e. the observed amount of backscattered energy. In this study 
backscatter will be expressed in terms of gamma (γ ) (see section 3.1.4). The pixels 
in a radar image represent the smallest spatial elements for which the amount of 
backscatter is known. Radar backscatter analysis, however, is not usually based on 
backscatter values of individual pixels but on mean backscatter values for series of 
pixels, i.e. for image regions. The mean backscatter value for a region of interest is 
computed by averaging the values of all pixels within its boundaries. Region averaged 
backscatter values are less susceptible to the effects of image speckle than 
backscatter values for pixels. Hence, these averaged values make more accurate 
radiometric attributes. 
 
The effect of speckle can be regulated by introducing a lower limit with respect to 
number of pixels that has to be averaged. In this study it was assumed that the 
speckle induced standard deviation of the mean backscatter values should be 0.2 dB 
or less. According to Hoekman (1990) this criterion can only be met through the 
averaging of 500 or more independent backscatter measurements (looks). The 
number of looks per pixel may vary from one image to another. Consequently, the 
lower limit for averaging in terms of pixels depends on the applied image data set. 
The studied CCRS SAR, NASA/JPL SAR and ERS-1 PRI images include, respectively, 
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Table 5.2  Regions for which γ  values were extracted; number per land cover class, for each 
of the radar data sets studied. 

   
CCRS SAR 

NASA/JPL 
AIRSAR 

 
ERS-1 

 
Cover type 

X HH, X VH 
C HH, C VH 

X VV, X HV 
C VV, C HV 

All  
bands 1) 

C VV 
PRI, PRI-av 

C VV 
SLC-av 

Mixed forest 10 10 16 10 3 

Wallaba forest 14 11 12 10 3 

Xerix mixed forest   6   4   6   8 - 

Low swamp forest   5   5   6   7 3 

Mora forest 10 10 16 10 3 

Logged-over forest 11 11 12 10 3 

Secondary forest -   8 10 10 - 

Non-forest - 19 14 10 - 

1)  see Table 5.3. 

7, 16 and 3 looks per pixel. In accordance with the 500 looks criterion it is thus 
required to average the backscatter values of ca. 75 CCRS SAR pixels, 35 NASA/JPL 
SAR pixels and 170 ERS-1 PRI pixels. However, there is evidence that the values of 
neighbouring ERS-1 PRI pixels are interrelated (see section 6.2.2). For the ERS-1 PRI 
images the lower limit for averaging is therefore estimated to be of the order of 500 
pixels. 
 
In this study the computation of the mean gamma values γ  was restricted to image 
regions that represented the land cover classes studied. To define these regions 
their boundaries were digitised on the screen of an image processing system. The 
required boundary information was obtained from ancillary data sets such as maps 
and black-and-white aerial photographs (scale 1:40,000). The process of defining 
image regions was repeated for each of the available radar data sets, taking into 
account the appropriate lower limit for pixel averaging. A Landsat TM image from 
19 September 1992 was used as an aid for defining regions of interest for the ERS-1 
data sets. Table 5.2 lists the number of regions defined for each of the land cover 
classes and for each of the data sets studied. The Low swamp regions for the CCRS 
SAR data set were located in the 20° to 30° incidence angle range, the incidence 
angles for the other regions in this data set varied from 30° to 60°. The incidence 
angles for the AIRSAR image regions also ranged from 30° to 60°; those for the 
ERS-1 image regions from 20° to 25°. The relatively large incidence angle range for 
the regions in the CCRS SAR and AIRSAR data set was necessary to incorporate a 
fair number of regions in the analysis. 
 
In handling the CCRS SAR data the definition of image regions had to be repeated 
several times since the images for the different frequency/polarization combinations 
did not co-register, i.e. did not cover the same area on the ground. This lack of 
co-registration between the bands in the CCRS SAR data set is due to the fact that 
this data set was acquired in multiple overpasses. The γ  values for the different  
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Table 5.3  Definition of studied polarization combinations in terms of ψ  and χ ; equations for 

computation of σo from the region averaged elements of Stokes scattering operator M . The 
backscatter values for the shown polarization combinations were computed for C-, L- as well 
as P-band. 

 Polarization parameters  

Polarization  Receive wave  Transmit wave Computation of 

combination ψ  χ  ψ  χ  σo from M  

HH   0°    0°   0°    0°  M M11 12 222 M+ ⋅ +  

VH 90°    0°   0°    0°  M M11 22−  

VV 90°    0° 90°    0°  − ⋅ +11 12 222M M M  

RR * - 45° * - 45°  − ⋅ +11 14 442M M M  

LR *   45° * - 45°  −11 44M M  

LL *   45° *   45°  + ⋅ +11 14 442M M M  

TP - - - -  11M  

* indicates 'not defined' 
 - indicates 'not applicable' 

bands in the CCRS SAR data set therefore do not always correspond to exactly the 
same forest areas. The lacking co-registration also explains the differences in the 
number of image regions from one radar band to another. In San José del Guaviare 
the CCRS SAR did not acquire X HH, X VH, C HH or C VH data. Consequently, it was 
not possible to define secondary forest or non-forest regions for these radar bands. 
Similar co-registration problems did not occur in the handling of the AIRSAR and 
ERS-1 data sets. The AIRSAR system simultaneously acquires all of its data and 
therefore all radar bands are perfectly matched. The ERS-1 data set comprised 
images from different acquisition dates rather than from different frequencies and/or 
polarizations. Depending on the satellite's repeat cycle, these images represented a 
somewhat different ground surface area. For the analysis of the images this did not 
create problems since the selected image regions were confined to the area of 
overlap. Moreover, images from different dates could be easily co-registered through 
the use of simple linear transformations. 
 
Whereas the pixels in the CCRS SAR and ERS-1 data sets represent backscatter 
values, the pixels in the NASA/JPL AIRSAR data set represent Stokes scattering 
operators . Hence, two steps were needed to compute the region averaged 
backscatter values from the AIRSAR data set. To begin with, the M 's for all pixels 
within a specific region of interest were averaged linearly in order to obtain region 
averaged 's. Subsequently, region averaged backscatter values were computed 
through wave synthesis (see section 3.1.6). The wave synthesis process allows for 
the computation of the backscatter for any combination of receive and transmit 
polarizations. Selected combinations for this study include: horizontal - horizontal 
(HH), vertical - horizontal (VH), vertical - vertical (VV), right-hand circular - right-hand 
circular (RR), left-hand circular - right-hand circular (LR) and left-hand circular - left-
hand circular (LL). The HV and RL polarization combinations were not included 
because it follows from the reciprocity relation (see section 3.1.6) that these are 

M

M
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identical to, respectively, VH and LR. The set of backscatter values for the described 
polarization combinations was complemented with the so-called total backscattered 
power TP. According to Zebker et al. (1991)  may be defined as σTP

o

σ σ σ σTP HH VH VV
o o o o= + +2 4e j . Table 5.3 shows the orientation angle ψ  and ellipticity 

angle χ  for the polarization combinations studied as well as the equations for 

computing the corresponding σo values from the region averaged Stokes scattering 
operator elements. With the help of Equation 3.5 and information on the local grazing 
angle, the σo values could be easily converted to γ  values. 
 
For each region of interest in the NASA/JPL AIRSAR images a total of 21 
(7 polarizations x 3 frequency bands) γ  values was computed. The data set for each 
image region was extended with a series of indices that are denoted by Pope et al. 
(1994) as the: Canopy Structure Index CSI, Volume Scattering Index VSI and Biomass 
Index BMI. Like the γ  values, these indices were computed for C-, L- as well as 
P-band. They are defined as follows: 
 

CSI =
+
γ

γ γ
VV

VV HH

                 (5.6) 

 

VSI =
+

+F
HG

I
KJ

γ

γ γ γ
HV

HV
VV HH

2

                (5.7) 

BMI =
+γ γVV HH

2
                 (5.8) 

 
As a result of differences in vertical penetration relative to wavelength, the C-, L- and 
P-band indices apply to different forest components. Generally speaking, C-band 
indices apply to characteristics of the upper canopy (e.g. leaves, twigs and secondary 
branches), L-band indices apply to primary and thicker secondary branches, and 
trunks. P-band indices apply to thick primary branches, trunks and the forest soil (see 
section 3.2.2). CSI is a parameter of the relative importance of vertical versus 
horizontal forest components and as such relates to architectural tree models 
(Oldeman, 1974; Hallé et al., 1978). VSI is a parameter of the depolarization of the 
linear-like polarized incident radar signal and therefore strongly related to the 
occurrence of volume scattering (see section 3.2.3). It reflects the density of the 
scatterers in the vegetation volume and the thickness of this volume. The most 
relevant biophysical parameter associated with BMI is biomass. However, the value 
of BMI is critically dependent on the size of the biomass constituents relative to the 
incident wavelength. The effective size of the biomass components determines 
whether they act as backscattering or attenuating sources. Depending on wavelength, 
an increase in biomass may therefore result in a higher or lower backscatter and 
likewise in a higher or lower BMI value. Both BMI and CSI may be affected by double 
bounce scattering since this interaction mechanism favours γHH  (Pope et al., 1994). 
 
For each region of interest in the CCRS SAR and ERS-1 images, sd(γ ) the standard 
deviation of gamma in dB was calculated in addition to γ . This attribute is an 
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expression of the variation in backscatter and may therefore be used as a simple 
statistical descriptor for texture. It relates to first-order statistical concepts as it 
describes the probability density function of the individual grey levels. Grey level 
co-occurrence attributes, on the other hand, relate to second-order statistical 
concepts as they describe the joint probability density function of grey level pairs. In 
this study the value of sd(γ ) and the grey level co-occurrence statistics for 
description of texture will be compared. This is done because sd(γ ) can be computed 
at a lower computational expense than the grey level co-occurrence statistics. For 
textural analysis in an operational environment sd(γ ) hence is preferred over grey 
level co-occurrence statistics. However, this preference only holds as long as its 
capability to discriminate between different image textures is either similar or better 
than that of grey level co-occurrence statistics. 

 

 

5.2.2 Extraction of textural attributes 

Extraction of textural attributes according to the Gross Textural Analysis approach 
(GTA) was restricted to regions of interest within the CCRS SAR, ERS-1 PRI, ERS-1 
PRI-av and ERS-1 SLC-av images. The regions of interest for GTA were identical to the 
ones as defined for extracting radiometric attributes (see section 5.2.1; Table 5.2). 
 
To begin with, GTA served to evaluate the capability of the textural attributes in 
Table 5.1 for discriminating the land cover classes studied. The attributes were 
standard computed with consecutive displacements in both range and azimuth 
direction. This implies that the GLCO matrices and GLD vectors from which the 
attributes were derived contained summed entries, i.e. entries from displacement in 
range direction and entries from displacement in azimuth direction. The applied 
displacement length d  ranged from 1 to 10 pixels. In this text the combination of a 

textural attribute and a displacement length will be expressed as, e.g. GLCO-CONT[5]. 
The letter code represents the name of the GLCO attribute (see Table 5.1); the 
number between [ ] represents the displacement length. The denotation 
GLCO-CONT[5] thus refers to the GLCO Contrast attribute and a displacement length 
of 5 pixels. Textural analysis was preceded by a scaling procedure to convert the 
radar images from a 32 bit real to an 8 bit integer format. This scaling was done in 
such a way that the output images had 128 grey levels, i.e. had pixels with values 
ranging from 0 to 127. The backscatter input range for the CCRS SAR and ERS-1 
images was fixed at, respectively, 51 and 18 dB. The grey level steps in the rescaled 
CCRS SAR images therefore represented backscatter steps of ca. 0.4 dB, while 
those in the rescaled ERS-1 images represented steps of ca. 0.15 dB. These were 
the standard scalings; in a later study phase different scalings were applied to 
investigate the relationship between the number of grey levels and textural 
information content. 
 
The first step in the GTA of the CCRS SAR images was to establish which of the eight 
available radar bands contained the most textural information or, in other words, 
offered the most potential for textural classification of the land cover types studied. 
The most promising band was then used to evaluate the classification potential 
associated with the various textural attributes and displacement lengths. Next, the 
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preferred radar band was rescaled several times to obtain output images with 256, 
128, 64, 32, 16 and 8 grey levels. These images were then used to investigate how 
image scaling affects the classification potential of textural attributes. Similarly, the 
preferred radar band was used to study the effect of displacement direction. To this 
end the classification potential of attributes computed with standard displacement 
and displacement in either range or azimuth direction was compared. Finally, GTA 
was used to investigate the classification potential of textural attribute/displacement 
length combinations as a function of window size. A single window of a size varying 
from  to 63  pixels was located within the boundaries of each region of 
interest in the best performing radar band. Next, the texture within these windows 
was quantified according to the usual GTA approach. By comparing the classification 
potential associated with the resulting textural descriptions, the effect of window size 
could be evaluated. The described experiments with textural attributes, displacement 
lengths, scaling, displacement direction and window size were meant to support the 
development of optimised procedures for MWA textural analysis. 

3 3× 63×

 
In the case of ERS-1 the classification potential of the various textural attributes and 
displacement lengths was evaluated in connection with three images, i.e. the PRI 
image, the SLC-av image and the PRI-av image. The relationship between spatial 
resolution and textural information content was investigated by comparing the 
classification potential of PRI and SLC-av related textural attributes. Similarly, the 
effect of radiometric resolution was assessed by comparison of the classification 
potential of PRI and PRI-av associated textural attributes. The SLC-av image was 
rescaled to 256, 128, 64, 32, 16 and 8 grey levels to investigate the effect of image 
scaling on the classification potential of the textural attributes. In addition, this 
image was used to study the relationship between classification potential and 
displacement direction. This was done in a manner analogous to the one used in 
relation to the CCRS SAR images. Like the CCRS SAR GTA experiments, the ERS-1 
GTA experiments were meant to support the development of optimised procedures 
for MWA textural analysis. 

 

 

5.2.3 Extraction of polarimetric attributes 

Polarimetric attributes relate to the polarization transformation properties of the 
observed object and can be computed from polarimetric radar data only. Hence, their 
extraction was restricted to regions of interest within the NASA/JPL AIRSAR images. 
The selected regions were identical to those used for calculating radiometric 
attributes (see section 5.2.1; Table 5.2). For each region of interest the C-, L- and 
P-band polarization phase difference of HH and VV (PPD) and the corresponding 
standard deviation sd(PPD) were computed. The PPD was computed from spatially 
averaged C-, L- and P-band Stokes scattering operators according to: 
 

PPD =
−

−
F
HG

I
KJ

−tan 1 34

33 44

2M

M M
                (5.9) 
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PPD standard deviations were computed from PPD processed images, i.e. images in 
which the pixels represent PPD values. 
 
The PPD represents the difference in the phase angle for the HH and VV polarized 
signal. HH-VV phase angle differences arise if the HH and VV signal are received 
separated in time or if the phase angle of the H and/or V wave has been 
transformed. The former may happen in case the HH and VV backscatter sources are 
located at different range distances or in the event that the H and V waves travel 
through the object with different velocities. H and/or V phase angle transformations 
may result from specific mechanisms of scattering (Ulaby et al., 1987). Every single 
bounce scattering event causes the phase angle of the scattered H polarized wave 
(not V polarized wave!) to change by 180°. However, due to different conventions for 
defining the polarization of waves and antennas (see section 3.1.6) the phase angle 
of the received H wave shifts by 180° once again. Consequently, the resulting phase 
angle of the received H polarized wave is 360° (or 0°). This is equal to the phase 
angle of the received V polarized wave. The PPD for single bounce scattering 
therefore equals 0°. Similarly, it can be shown that double bounce scattering results 
in a PPD of 180°. Diffuse scattering usually results in PPD values that are 
considerably different from 0° or 180° (section 3.2.6; also see van Zyl, 1989). 
 
It should be noted that region averaged PPD values will rarely equal exactly 0° or  
180°. On the one hand, this results from the fact that scattering mechanisms are not 
exclusive within resolution cells and certainly not within image regions. On the other 
hand, specific scattering events are not the only possible cause of the HH-VV 
polarization phase difference. Generally speaking, however, high PPD values may be 
seen as indicators of double bounce scattering. Likewise, low PPD values are 
indicative of single bounce scattering and intermediate PPD values of diffuse 
scattering. Ulaby et al. (1987) show that objects such as crops and bare soils may 
have comparable region averaged PPD values but considerably different PPD 
distributions. The standard deviation of this distribution sd(PPD) therefore constitutes 
an additional information source. Low sd(PPD) values are indicative of objects with 
uniform scattering properties, i.e. of objects with a homogeneous structure. Similarly, 
high values are indicators of structural heterogenities. For tropical forests the 
sd(PPD), notably in C-band, is expected to reflect canopy closure and architecture. 
This makes sd(PPD), like the standard deviation of gamma (see section 5.2.1), a 
first-order textural descriptor. Evidence of the relationship between the PPD and 
canopy characteristics is found in Pope et al. (1994). 

 

 

5.2.4 Evaluation of relative classification capacities of extracted attributes 

The potential of the extracted attributes for classifying the land cover types studied 
was evaluated on the basis of a class separability measure known as pairwise 
transformed divergence (Swain and Davis, 1978). This measure represents the 
statistical distance between class pairs and is an indirect and a priori estimate of the 
probability of correct classification. The transformed divergence TD for class pair ( )i j,  
is given by: 
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TD
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2000 1 8               (5.10) 
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where: ci  is the covariance matrix, ci

−1  the inverse covariance matrix and mi  the 

mean vector for class i . Similarly, c j , c j
−1and m j  represent the statistics for class 

j . The trace of the matrix in question (sum of the diagonal elements) is indicated by 
tr, whereas T refers to the transposed matrix. Computation of TD  is based on the 

assumption that the classes have Gaussian (normal) probability density functions. 
ij

 
The study aimed to rank the various attributes and/or attribute combinations 
according to their ability to discriminate between the land cover classes studied, i.e. 
according to their classification potential. Pairwise transformed divergence on its own 
was not suited for this purpose since the study deals with eight rather than two 
classes. Transformed divergence was used to assess for  each attribute 
(combination) how many of the studied class pairs could be discriminated 
successfully. Subsequently, the number of discriminated class pairs was used for 
ranking the attributes. It was assumed that two classes could be discriminated if 
their  value was equal to or greater than 1900. The adopted decision rule is on 

the safe side, other authors (e.g. Lillesand and Kiefer, 1994; Singh, 1987) have 
used a TD  value of 1500 as a cut-off point between separable and unseparable 

class pairs. 

TDij

ij

 

Figure 5.2  Illustration of the relationship between pairwise transformed divergence and the 
likelihood of correct classification for a single variate case. Class pair (A,B) and (B,C) 
illustrate extreme cases for which TD = 1900. Class pair (B,C) have a relatively low likelihood 
of correct classification as a Gaussian maximum-likelihood classifier may erroneously 
contribute up to 22% of the observations for B to C. Class pair (A,B) and (A,C) have a high 
likelihood of correct classification. 
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A  value of 1900 corresponds to a lower bound for the likelihood of correct 

classification of close to 78%. A maximum of 22% of one of the two classes may 
thus be misclassified. This maximum is reached only in exceptional cases, i.e. when 
two classes have identical mean values. The situation in which two classes have 
different means but identical variances may also be considered exceptional. In this 
case the likelihood of correct classification for TD

TDij

ij = 1900 will be close to 100%. 

Higher  values imply higher probabilities for correct classification. The maximum 

value of 2000 is reached when the probability distributions of the two classes do not 
overlap, i.e. when the probability of correct classification is 1. The relationship 
between the adopted transformed divergence decision rule and the likelihood of 
correct classification for a single variate case is illustrated in Figure 5.2. Class pair 
(A,B) and (B,C) have a transformed divergence value of 1900 while TD . 
Class A and B have different means but identical variances whereas class B and C 
have different variances but identical means. Both class pair (A,B) and (A,C) can be 
seen to have a high likelihood of correct classification. The likelihood of correct 
classification for class pair (B,C) is much lower, as in this case, the probability 
density functions overlap considerably. In a Gaussian maximum-likelihood 
classification up to 22% of the observations in class B may be contributed 
erroneously to class C. 

TDij

AC = 2000

 
Following analysis based on pairwise transformed divergence, the data sets for highly 
ranked attributes and/or attribute combinations were used in a series of Gaussian 
maximum-likelihood classifications at a 95% confidence level. Successive evaluation 
of classification results allowed for a direct and a posteriori but more time-consuming 
assessment of the classification capacity of the attributes in question. For a 
discussion of the Gaussian maximum-likelihood classification theory the reader is 
referred to one of the many available handbooks, e.g. Swain and Davis (1978), 
Jensen (1986), Lillesand and Kiefer (1994) and Richards (1993). In each of the 
classification/evaluation procedures in this study the same data set was used for 
both the design (training) of the classifier and the evaluation of the classification 
results. It is known that this may cause the classification results to be optimistic, i.e. 
that this may lead to an overestimation of the likelihood of correct classification. 
However, this does not pose a problem for the present study since it is intended to 
assess the relative rather than the absolute classification capacities of the studied 
attributes. Assessment of the absolute probability of correct classification requires 
substantially larger sets of both remote sensing and ground reference data. 
 
The classification results were evaluated with the help of contingency tables and the 

 statistic. Contingency tables show the number of correctly and incorrectly 
classified data points. An example is given in Table 5.4. The columns represent the 
actual land cover type as verified in the field (ground reference) whereas the rows 
indicate the land cover type as assigned by the classifier. Contingency tables clearly 
present errors of omission (erroneous exclusion of points from a class) and errors of 
commission (erroneous inclusion of points in a class). Correctly classified data points 
are located on the major diagonal of the table. The ratio of the number of correctly 
classified data points and the total number of data points represents the actual 
agreement between the rows and columns of the table and may be used as a simple 
measure of the overall classification accuracy. However, in evaluating classification 

Κ̂
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Table 5.4  Example of a contingency table. Contingency tables were used to evaluate the 
Gaussian maximum-likelihood classification results. 

 Ground reference    Percent 
 Classification 

result 
 

  1 
 

  2 
 

  3 
 

    4
 

    5
 

  6 
 

  7 
 

  8 
  

Total 
 commission 

error 

1 Mixed   6   0   0     0     0   2   0   0    8    25 

2 Wallaba   0   4   1     0     0   0   1   0    6    33 

3 Xeric mixed   1   5   2     0     0   0   0   0    8    75 

4 Low swamp   0   0   0     5     0   0   0   7  12    58 

5 Mora   0   0   0     0   10   3   0   0  13    23 

6 Logged-over   2   0   0     0     0   6   0   0    8    25 

7 Secondary forest   0   2   1     0    0   0   6   1  10    40 

8 Non-forest   0   0   0     0     0   0   1 10  11      9 

 Unclassified   1   0   0     0     0   0   0   1    2  100 

 Total 10 11   4     5   10 11   8 19  78   

 Percent correct 60 36 50 100 100 55 75 53     

 Total correct  49  Total percent correct 63 

 Total error 29  Total percent error 37 

                 0.5763          Κ̂ 2 ˆσ̂ Κ∞ ⎡ ⎤⎣ ⎦                    0.0037 

results it is important not only to note the proportion of correctly classified data 
points, but also to assess the nature of the errors of omission and commission on a 
class-by-class basis. When comparing classification results for different data sets, 
'chance agreement' also has to be taken into account. Chance agreement in 
contingency tables results from the fact that any classifier will by chance assign data 
points to the correct class. It hinders direct comparison of classification results for 
different data sets as it is a function of the row and column totals (Congalton et al., 
1983; Bishop et al., 1984). 
 
With the use of the  statistic it is possible to evaluate classification results in 
contingency tables while taking into account errors of omission and commission and 
compensating for the effects of chance agreement. In remote sensing literature 

Κ̂

Κ̂  is 
commonly referred to as either KHAT (e.g. Aronoff, 1982; Congalton et al., 1983) or 
Kappa (e.g. Benson and DeGloria, 1985). The statistic is calculated by: 
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where I is the number of rows (columns) in the table, xii  the number of data points in 
row  and column i  (i.e. the i th diagonal element), xi i+ the total of row i , x i+  the 

total of column i and N  the total number of data points. In this equation  is 

proportional to the actual agreement and 

xii
i

I

=
∑

1

x xi
i

I

+ +i
=

⋅∑
1

 to the chance agreement. The 

maximum value for Κ̂  is equal to 1. This maximum is reached when all data points 
are correctly classified. The approximate large sample variance of KHAT is: 
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This variance may be used to compute confidence intervals for  and thus to 
construct a hypothesis test for significant difference between the 's for different 
contingency tables (Bishop et al., 1984). The test statistic for significant difference 
between two 's, i.e. for significant difference between two classification results, is 
given by: 
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             (5.18) 

 
At the 95% confidence level two classification results may be considered significantly 
different when  (Benson and DeGloria, 1985). In this study all tests for 
significant difference between classification results were carried out at this 95% 
confidence level. 

ˆ 1.96∆Κ >

 
The adopted procedure for evaluating classification capacity assumes that the 
attribute values are Gaussian (normally) distributed. Often this is tacitly assumed to 
be so, but careful thinking requires further consideration of this matter. In case the 
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actual distribution deviates from Gaussian, the classification results will be 
sub-optimal. Consequently, the classification capacity of the attribute in question will 
be underestimated. Probability density functions (pdf's) for radiometric attributes, 
unlike those for textural or polarimetric attributes, may be theoretically derived. 
Hoekman (1990) derives the pdf for linearly averaged power (backscatter) values at 
the logarithmic scale, e.g. γ  in dB. The derivation holds for homogeneous forests and 
other types of distributed land targets. Figure 5.3 shows the theoretical distributions 
and the corresponding Gaussian approximations for logarithmically scaled γ  values 
computed by linear averaging over 3, 7, 16 and 500 independent looks. According to 
specifications by ESA, linear averaging over 3 looks is part of the processing 
procedure for the ERS-1 PRI images (see Table 4.8). Similarly, the processing 
procedures for the CCRS SAR and NASA/JPL AIRSAR images include linear averaging 
over 7 and 16 looks, respectively (see Table 4.5 and 4.6). The shown 
'500-look-distribution' approximates that of the radiometric attributes studied since 
these were computed by regionally averaging over a minimum of 500 looks (see 
section 5.2.1). This distribution is clearly near-Gaussian. 
 
Figure 5.4 shows the actual distributions and the corresponding Gaussian 
approximations of linearly averaged, logarithmically scaled γ  samples for six land 
cover types found in the X-band HH CCRS SAR image. Individual samples were  
 

 

Figure 5.3  Theoretical probability density functions (pdf's) and corresponding Gaussian 
approximations for logarithmically scaled γ  values computed by linear averaging over 3, 7, 
16 and 500 independent looks. Linear averaging over 3, 7 and 16 looks is part of the 
processing procedure for the ERS-1 PRI, CCRS SAR and NASA/JPL AIRSAR images, 
respectively. The '500-look-distribution' approximates that of the radiometric attributes 
studied since these were computed by regionally averaging over a minimum of 500 looks 
(see section 5.2.1). This distribution is clearly near-Gaussian. 
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Figure 5.4  Actual distributions and Gaussian approximations of linearly averaged, 
logarithmically scaled γ  samples for 6 land cover types found in the X-band HH CCRS SAR 
image. Individual samples were averaged over an image region of 9 9×  pixels (567 looks). 
The distributions are in fact near-Gaussian. 
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averaged over an image region of 9 9×  pixels or 567 looks. The pdf's in this figure 
confirm the theoretical expectations and are in fact near-Gaussian. Deviations from 
Gaussian may arise because the backscatter of the studied land cover types, unlike 
that of fully homogeneous vegetation layers, will vary locally. In other words, the 
images of the studied cover types are not free of texture. 
 
Figure 5.5 and 5.6 show the distributions of the values for two textural attributes, 
namely GLCO-COR[1] and GLCO-CONT[5]. These values were computed from the 
X-band HH CCRS SAR data over image regions of 9 9×  pixels. The distributions for 
GLCO-COR[1] are close to Gaussian but those for GLCO-CONT[5] clearly deviate from 
Gaussian. As a result the classification capacities of the latter attribute will be 
underestimated in this study. It cannot be precluded that apart from GLCO-CONT[5] 
there are no other textural attributes with non-Gaussian distributions. At present  
there is little knowledge on the distribution of the values of textural attributes. In 
addition, there is little understanding of the relationship between these distributions 
and, for example, object or system properties (e.g. spatial resolution, incidence 
angle).  
 
 
 

 

Figure 5.5  Actual distributions and Gaussian approximations of GLCO-COR[1] values for 6 
land cover types found in the X-band HH CCRS SAR image. Individual values were computed 
over an image region of 9  pixels. The distributions are close to Gaussian. 9×
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Nevertheless, maximum likelihood or related classifiers that assume the variables to 
be Gaussian distributed are often used for classifying land cover based on GLCO 
textural variables (e.g. Hoekman, 1985; Ulaby et al., 1986a; Marceau et al., 1990). 
The motivation for this is that the Bayes decision rule which is found at the basis of 
these classifiers can be shown to yield the minimum number of erroneous 
classifications (Boekee and Boxma, 1976; Hoekman, 1990). 
 
Figure 5.7 shows the distributions of the PPD values for the eight classes studied in 
the JPL/AIRSAR P-band data. The individual PPD values represent the average for a 
region of 5  pixels (560 looks). It can be seen that these distributions do not 
deviate much from Gaussian. The distributions of the PPD in C- and L-band (not 
shown) are comparable. 

7×

 

Figure 5.6  Actual distributions and Gaussian approximations of GLCO-CONT[5] values for 6 
land cover types found in the X-band HH CCRS SAR image. Individual values were computed 
over an image region of 9  pixels. The distributions deviate from Gaussian. 9×
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Figure 5.7  Actual distributions and Gaussian approximations of PPD values for 8 land cover 
types found in the P-band NASA/JPL AIRSAR image. Individual values represent the average 
for a region of 5  pixels (560 looks). The distributions are close to Gaussian. 7×
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5.3 Pixel-by-pixel image processing approaches 

5.3.1 Textural analysis by means of a moving window 

In Moving Window Analysis (MWA) a textural attribute is computed for a relatively 
small spatial window around each image pixel. MWA results in a texturally 
transformed image, i.e. an image in which the pixel values are a measure of the local 
pattern of spatial distributions of grey tone or, in other words, texture. Texturally 
transformed images show different forest types as far as these forest types have 
different textural properties. They can be visually interpreted or used as input for 
(un)supervised classification procedures. MWA was preceded by Gross Textural 
Analysis (GTA) to determine the effect of frequency, polarization, number of grey 
levels, GLCO textural attribute, displacement length, displacement direction and 
window size (see section 5.1.3 and Appendix I). 
 
In the present study, various moving window analyses were performed. The current 
section describes the common methodology; the particulars of the different analyses 
are discussed together with the results in Chapter 6. In all cases MWA was preceded 
by a rescaling procedure to convert the logarithmically scaled radar intensity image 
from a 32 bit real to an 8 bit integer format. Rescaling was done in such a way that 
the resulting image had 128 grey levels, i.e. that its pixel values ranged from 0 to 
127. The reason for using logarithmically scaled intensity images as input for textural 
analysis was discussed in section 5.1.2. Rescaling to 128 grey levels was adopted 
as the standard. Yet, the results of GTA rescaling experiments in section I.2 of 
Appendix I indicate that a lower number of grey levels would not have resulted in a 
loss of textural information. The lower the number of grey levels, the lower the 
computational load and hence the more economical the textural analysis. 
 
GLCO attributes  were computed with consecutive displacements in range and 
azimuth direction. Results of GTA experiments in section I.3 show that this method of 
computing yields a better textural description than a  method with displacement in 
just one of these directions. The CCRS SAR and ERS-1 SLC images were analysed in 
the slant range format; the ERS-1 PRI images in the ground range format. Slant to 
ground range conversions prior to textural analysis were avoided as this involves 
resampling of pixels and thus deforms image texture. For the ERS-1 PRI images, 
however, the format could not be chosen freely since these were supplied by ESA in 
the ground range format. 
 
The forest type information  in the textural transforms resulting from MWA of the 
CCRS SAR images was assessed both numerically and visually; the forest type 
information in the MWA results for the ERS-1 SLC and PRI images was only evaluated 
visually. To numerically evaluate the results, the texturally transformed images were 
used as input for pixel-by-pixel supervised Gaussian maximum-likelihood 
classifications at a 95% confidence level. Subsequently, the outcome of the 
classifications was evaluated with the help of contingency tables and the  statistic. 
The pixels within half the number of the earlier defined regions of interest (see 
section 5.2.1) were used for designing the classifier; the pixels within the remaining 
regions of interest for evaluating the classification outcome. Thus, the training data 

Κ̂
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sets were different from the evaluation data sets. In this respect the 
classification/evaluation procedure associated with MWA differed from the one 
associated with GTA (see section 5.2.4). 
 
Visual evaluation of the MWA results was done on the basis of texturally enhanced 
colour composite images. These images were produced by applying Red-Green-Blue 
(RGB) colour space transformations to SAR images in combination with their textural 
transforms and fixed grey channels. The digital values of the SAR images and the 
textural transforms ranged from 0 to 255, the digital values of the grey channels 
were set equal to 127. Prior to RGB transformations the CCRS and ERS-1 SLC SAR 
images and textural transforms were converted from the slant range format to the 
geometrically correct ground range format. An RGB transformation is in fact a 
reversed Intensity-Hue-Saturation (IHS) transformation (e.g. Lillesand and Kiefer, 
1994). In the present study the SAR images were associated with intensity, the 
textural transformed images with hue and the grey channels with saturation. Hence, 
the brightness of the RGB transformed images relates to the backscatter level, the 
colour to the value of the textural attribute and the colour purity to the digital value of 
the grey channel. RGB transformed colour composite images are seen as SAR 
images with colour coded textural overlays. Their value for the purpose of forest type 
discrimination was assessed by visually comparing the spatial distribution of textural 
classes with the spatial distribution of forest types. The required ground information 
with regard to the spatial distribution of forest types was obtained from maps and by 
field visits. 

 

 

5.3.2 Analysis of scattering behaviour by means of decomposition 

Polarimetric radar images such as those acquired by the NASA/JPL AIRSAR system 
hold information on the way in which the microwaves transmitted by the radar interact 
with the forest observed (see section 3.1.6). This information facilitates radar image 
analysis because it indirectly discloses the forest components that contribute to the 
total backscattered power TP. Information on the nature of the microwave-forest 
interaction process may be extracted from polarimetric radar images with the help of 
scattering models. 
 
The model applied in the present study was developed by Freeman and Durden 
(1992). It assumes that scattering from a vegetation layer is a combination of diffuse 
scattering from the vegetation volume, double (or even) bounce scattering from 
trunk-ground interaction and odd (or single) bounce scattering from a moderately 
rough surface. For diffuse scattering it is assumed that the backscatter is from 
randomly oriented, very thin cylinder-like scatterers. Trunk-ground interaction is 
modelled by scattering from a dihedral corner reflector and surface scattering is 
represented by the Bragg scattering model. It is assumed that linear like- and cross-
polarized return signals are uncorrelated and that the HV and VH backscatter are 
identical. Likewise, the diffuse, double bounce and odd bounce scattering 
components are presumed uncorrelated. 
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The model of Freeman and Durden is comprised of four components: 
 

′ = + +S f fhh s d v
2 2 2β α f              (5.19) 

′ = + +S f fvv s d v
2

f               (5.20) 

′ =S fhv v
2

3               (5.21) 

′ ′ = − +∗S S f f fhh vv s d vβ α  3            (5.22) 

 
where ′Shh , ′Svv  and ′Shv  are elements of matrix ′S  (see Equation 3.8); fs , fd  and fv  
are the odd bounce (or surface), double bounce and diffuse (or volume) scatter 
contributions to VV backscatter; β  is the HH VV amplitude ratio for odd bounce 

scattering and α the HH VV voltage ratio for double bounce scattering. ′Shh
2

, 

′Svv
2

 and ′Shv
2

 represent the expectation of the  backscatter power in HH, VV 

and HV, respectively. For each pixel in a NASA/JPL AIRSAR image the information 
required for solving the model is contained in the corresponding Stokes scattering 
operator M  (see Equations 3.16 through 3.25). 
 
The four equations in the model can be seen to include five unknowns. According to 
Equation 5.21, fv  can be estimated directly from the HV-polarized backscattered 
power since it is assumed that odd bounce and double bounce scattering do not 
contribute HV backscatter. Subtraction of the diffuse scattering contribution off the 
backscatter in HH, VV and the ′ ′∗S Shh vv  term leaves three equations with four 

unknowns. Based on the sign of the real part of the ′ ′∗S Shh vv  term or, in other words, 

the sign of the cosine of the HH-VV polarization phase difference PPD (see section 
5.2.3), it is then decided whether odd bounce or double bounce scatterin
dominant source of backscatter. If odd bounce scattering dominates (cos  is 

positive) 

g is the 
gPPDb

α is set to 1. Likewise, if double bounce scattering dominates (cos  is 

negative) 

PPDb g
β  is set to 1. In both cases this leaves 3 equations from which fs , fd  and 

either α or β  can be estimated. The expectation of the total backscattered power TP 
is given by: 
 

σTP hh hv vvS S So = ′ + ′ + ′FH IK
1

4
2

2 2 2
           (5.23) 

 
The contributions of odd bounce, double bounce and diffuse scattering to TP  can 
then be calculated by substituting the Equations 5.19, 5.20 and 5.21 in Equation 
5.23. 
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5.3.3 Processing of ERS-1 SAR Precision images 

The present section describes the digital processing techniques applied to improve 
the visual interpretability of the available ERS-1 PRI images and to prepare these 
images for automated detection of change. Processing of images to improve the 
visual interpretability by increasing the apparent distinction between the features in 
the scene is denoted image enhancement. Since visual interpretation is a qualitative 
analysis method, radiometric calibration is not a strictly necessary step in image 
enhancement procedures. In fact, the backscatter values of pixels in images used for 
visual interpretation are irrelevant. All that matters is that the differing features 
present can be clearly observed. Automated detection of change, on the other hand, 
is a quantitative analysis method. Hence, the procedure to prepare ERS-1 PRI images 
for change detection must include radiometric calibration (see section 3.1.5). 
 
Results of processing techniques applied to improve the visual interpretability of 
ERS-1 PRI images are illustrated in Figure 5.8. The image subsets in this figure show 
the West Pibiri compartment in Mabura Hill, Guyana. Figure 5.8a depicts the 
'unprocessed' ERS-1 SAR PRI image. The pixel values in this image represent the 
amplitude of the radar return signal (see section 3.1.2). This image was not 
enhanced other than by means of a linear stretch to optimise contrast. Figure 5.8b 
shows the contrast stretched result of a speckle filtering procedure applied to the 
'unprocessed' image in Figure 5.8a. The filter used is known as the "refined Gamma-
Gamma Maximum A Posteriori filter". Lopes and Nezry (1991) and Lopes et al. 
(1993) describe the working of this filter in detail. Unlike most speckle filters, the 
Gamma-Gamma MAP filter largely preserves strong scatterers and structural image 
features such as roads. Visual comparison of the images in the Figures 5.8a and 
5.8b shows that filtering resulted in drastic speckle removal. Evaluation of the 
corresponding image statistics confirms this observation as it indicates that the 
speckle standard deviation of the amplitude is lowered by a factor three. For a 
discussion on the cause of speckle in radar images please refer to section 3.1.3. 
 
Figure 5.8c illustrates the result of the next step in the enhancement procedure 
adopted. The image shown in essence represents the mean of the original amplitude 
image (Figure 5.8a) and the speckle filtered image (Figure 5.8b). Prior to averaging, 
the amplitude image and the filtered image were rescaled from 16 bits to 8 bits so 
that the pixel values ranged from 0 to 255. Subsequently, the contrast in the 
resulting image was optimised by means of a linear stretch. To those working in the 
radar remote sensing group of the department of Water Resources of the 
Wageningen Agricultural University, this averaging and scaling step is known as the 
'Martin enhancement'. The resulting image shows less speckle than the amplitude 
image and more spatial detail than the speckle filtered image. Hence, it provides a 
better basis for visual interpretation than either of these images. 
 
To obtain a further enhanced image, the described procedure was repeated three 
times using co-registered scenes from different acquisition dates. Next, the obtained 
images were averaged to further reduce the effects of speckle. The result of this final 
step in the enhancement procedure adopted is illustrated in Figure 5.8d. Like in 
Figures 5.8a through 5.8c, the contrast has been optimised. The ERS-1 PRI images 
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contributing to Figure 5.8d date from October 1993, May 1994 and August 1994. To 
emphasise the situation in August 1994 the images were weighted differently in the 
averaging process. The earliest image was weighted by a factor 1 6, the middle 
image by a factor 2 6 and the image from August 1994 by a factor 3 6. The 
information content of the image in Figure 5.8d is discussed in section 7.2.1. In this 
section the image is shown in the Figures 7.2b and 7.3. 
 
Like in image enhancement, the initial step in the procedure aimed at preparing an 
ERS-1 PRI image for automated detection of change involved filtering of the 
'unprocessed', amplitude image in order to reduce speckle. Subsequently, the 
filtered image was absolutely calibrated according to the procedure described by Laur 
(1992) and Laur et al. (1993). The pixel values in a calibrated image represent 
backscattered power in terms of σo in dB (see section 3.1.4). Filtered and absolutely 
calibrated ERS-1 PRI images provide suitable bases for automated detection of 
temporal change in backscatter. In the present study, the two images which served 
as the basis for change detection resulted from further processing. Each of these 
images was in fact the weighted average from a series of three filtered and calibrated 
ERS-1 PRI images from differing dates. Temporal averaging of images was applied to 
reduce the level of speckle further and hence to enable detection of smaller changes 
in the forest's backscatter behaviour. The averaging step is described and motivated 
in more detail in section 7.2.2. This section also discusses the method used for 
automated detection of backscatter change. 
 

127 







Radar remote sensing to support tropical forest management 

 

130 



 

6 Radar remote sensing to support forest resource assessment 

Forest resource assessment was defined in section 1.1 as the procedure for 
collecting, processing and presenting forest data. It usually results in a description of 
the location, extent and/or constitution of a certain forest area at a particular point in 
time. Radar remote sensing may be used in such procedures for the collection of 
data. The value of this tool in forest resource assessment strongly depends on its 
capacity to provide the required information. This chapter reports on the information 
content of the radar data sets described in section 4.4. 
 
The first step in a forest resource assessment is usually the stratification of the 
extant land/forest cover according to type. The present study, therefore, focused on 
the evaluation of radar data as a basis for the classification of the land cover types 
as defined in section 4.1.1 (see Table 4.1). The potential value of radar for 
estimating biomass parameters and forest architectural parameters was also 
studied. To assess the information content of the radar data, the study used three 
fundamentally different information sources from the radar return signal: its strength 
(backscatter), polarization and phase, and spatial variability. Spatial variations of the 
radar return signal are seen in images as texture. The methods and techniques used 
to obtain the results as presented in this chapter were discussed in Chapter 5. 

 

 

6.1 Results of the analysis of the CCRS SAR data 

The present section reports on the results of the analysis of the high resolution radar 
data as acquired by the CCRS airborne SAR system. The CCRS SAR operates in X- 
and C-band and in HH, VH, HV and VV polarization (see section 4.4.1). The aim of the 
analysis was to assess the value of the available radar data sets for the 
classification of land cover and the study of canopy architecture. The information 
content associated with the backscatter level is compared to that associated with the 
textural pattern. Particulars of the analysis of image texture according to the GLCO 
approach (see section 5.1.1) are discussed in Appendix I. 

 

 

6.1.1 Classification of land cover per region using backscatter and texture 

Table 6.1 illustrates the potential of γ , sd(γ ) and the best as well as the worst 
performing GLCO attribute for the classification per region of the land cover types 
studied. γ  quantifies radar backscatter while sd(γ ) and GLCO attributes quantify 
image texture (see section 5.2). The values given represent the number of class 
pairs that can be successfully discriminated, i.e. the number of class pairs for which 

 (see section 5.2.4). TDij ≥ 1900

 
The textural attributes can be seen to have a higher classification potential than γ  in 
all radar data sets. In addition, a considerable discrepancy is shown to exist in the 
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Table 6.1  Potential of γ , sd(γ ) and GLCO attributes for the classification per region of the 
land cover types studied. The values in this table represent the number of class pairs that 
can be successfully discriminated, i.e. the number of class pairs for which TD . ij ≥ 1900

   GLCO attribute 

 γ  sd(γ ) Best performing Worst performing 

Exclusive of Secondary forest and Non-forest 
(total number of class pairs is equal to 15) 

   X-band HH 3 10 11 1 

   X-band VH 2 10 11 1 

   X-band HV 0   5   9 2 

   X-band VV 0   5   8 1 

   C-band HH 0 10 10 0 

   C-band VH 2 10 10 0 

   C-band HV 5   7   9 0 

   C-band VV 4   7   9 0 

Inclusive of Secondary forest and Non-forest 
(total number of class pairs is equal to 28) 

   X-band HV 0 13 18 2 

   X-band VV 0 12 18 3 

   C-band HV 8 15 18 0 

   C-band VV 5 15 16 0 

classification potential of the best and worst performing GLCO attribute. The 
performance of these attributes differs because they either represent different 
statistical parameters or are computed for different displacement lengths (see 
section 5.1.1). The relative performance of the GLCO attributes studied (90 for each 
radar data set) is discussed in section I.4 of Appendix I. Finally, Table 6.1 shows a 
variability in the performance of the textural attributes in the different radar data 
sets. Apparently, the land cover classes are texturally more distinct in some data 
sets than in others. To some extent the texture of the classes in different data sets 
will be affected by radar frequency and polarization. This is discussed in detail in 
section I.1 of Appendix I. 
 
Apart from frequency and polarization there are other possible causes for the 
variation in the textural separability of the classes in different data sets. One of 
these is the difference in the size of the pixels in the X- and C-band data sets (see 
Table 4.5). This difference in pixel size, though small, may well affect the textural 
separability of the classes. Another possible cause relates to the manner in which 
the data sets were acquired. Data sets with HH and VH polarization were acquired 
along different flight lines than those with VV and HV polarization. Consequently, the 
associated radiometric and textural attributes do not necessarily cover the same  
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Figure 6.1 (a-d)  Gaussian approximations of pdf's for region averaged radiometric and 
textural attributes associated with land cover types present in the X-band HH CCRS SAR 
image: (a) pdf's for γ  (b) pdf's for sd(γ ) (c) pdf's for GLCO-COR[1] (d) pdf's for GLCO-
CONT[5]. 
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Figure 6.1  Continued. 

incidence angle range. Moreover, the attributes do not necessarily relate to exactly 
the same areas on the ground. A discrepancy in the incidence angle range for the 
Logged-over forest class is in fact the main cause of the deviating results for the VH 
and HV polarized channels of both X- and C-band. For more details please refer to 
section I.1 of Appendix I. The discrepancy in the results for the VH and HV channel 
contradicts the "reciprocity principle" which claims that the polarization states of 
radar signals are interchangeable (see section 3.1.6). 
 
For X-band HH and C-band VV the differences in the discriminating capacities of 
radiometric and textural attributes are illustrated in Figure 6.1 and Figure 6.2, 
respectively. X-band HH was selected because this radar band was found to be 
among the most suitable for textural analysis (see section I.1, Appendix I). C-band VV  
 

 

Figure 6.2 (a-d)  Gaussian approximations of pdf's for region averaged radiometric and 
textural attributes associated with land cover types present in the C-band VV CCRS SAR 
image: (a) pdf's for γ  (b) pdf's for sd(γ ) (c) pdf's for GLCO-COR[1] (d) pdf's for GLCO-
CONT[5]. 
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Figure 6.2  Continued. 
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was chosen to allow for a comparison with the results of the textural analysis of the 
ERS-1 data (see section 6.2.1). GLCO-CONT[5] (GLCO-Contrast at displacement 
length 5) and GLCO-COR[1] (GLCO-Correlation at displacement length 1) were used to 
demonstrate the discriminating capacities of the GLCO attributes as these are among 
the best performing ones. According to the transformed divergence decision rule 
adopted (see section 5.2.4) the GLCO-CONT[5] attribute can discriminate the most 
class pairs, i.e. 11 out of 15. Both sd(γ ) and GLCO-COR[1] can discriminate between 
10 out of 15 class pairs, while γ  can only discriminate between three out of 10 class 
pairs. GLCO-CONT[5] fails to discriminate between Mora forest and Logged-over or 
Mixed forest. Neither can it distinguish Wallaba forest from Mixed or Xeric mixed 
forest. 
 
In both Figure 6.1 and Figure 6.2, the positions of the probability density functions 
(pdf's) for the textural attributes of the individual forest classes very well reflect the 
classes' canopy architecture. Forests with a natural or, as in the case of Logged-over 
forest, artificial rough upper canopy can be found on the right hand side of the 
graphs. In contrast, forests with a smooth upper canopy are located on the left hand 
side (see Figures 4.7 through 4.11). Non-forest is positioned among the classes with 
a smooth upper canopy. The relation between GLCO textural attributes and canopy 
architecture is discussed in detail in section 6.1.2. 

 
Comparison of the positions of the pdf's in Figure 6.1a with those in Figure 6.1b, 
6.1c and 6.1d shows that sd(γ ) as well as GLCO-COR[1] and GLCO-CONT[5] offer a 
much superior classification capacity than γ . In C-band VV (Figure 6.2) sd(γ ), 
GLCO-COR[1] and GLCO-CONT[5] also show the most classification potential. 
However, in this case the difference in the apparent classification capacity of textural 
attributes and γ  is less pronounced. In X-band HH the classes are texturally more 
distinct than in C-band VV since their pdf's for sd(γ ), GLCO-COR[1] and 
GLCO-CONT[5] occupy a wider range and show considerably less overlap. A Gaussian 
maximum-likelihood classification on the textural attributes computed per region for 
X-band HH can therefore be expected to yield the best results. However, for reasons 
already mentioned above it may not be simply concluded that the difference in the 
apparent classification capacity of X-band HH and C-band VV results from differences 
in frequency and/or polarization. 
 
The results in Table 6.2 confirm the observations made in relation to Figures 6.1 and 
6.2 and quantify the classification capacities of radiometric and textural attributes in 
X-band HH and C-band VV. The table in addition contains some results from 
classifications based on attributes computed from the X-band HV data set in order to 
demonstrate the capacity of X-band for classifying Secondary forest and Non-forest. 
These two classes, unfortunately, are not represented in the X-band HH data set. 
Unlike the X-band HH data, the X-band HV data were acquired along the same flight 
lines as the C-band VV data. Therefore, possible differences in classification capacity 
for attributes associated with these data sets must result from differences in 
frequency, polarization and/or pixel size. 
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Table 6.2  Gaussian maximum-likelihood classification results. Classification based on 
radiometric and textural attributes computed per region from CCRS SAR images. 

   Percentage correct 

 

Κ^
 

Κ^^ [ ]σ 2
∞          

Exclusive of Secondary forest and Non-forest 

  X-band HH            

   γ  0.2702 0.0056 39   40     0 33   80 80 36 - - 

   sd(γ ) 0.7802 0.0039 82 100 100 67 100 40 82 - - 

   GLCO-COR[1] 0.5627 0.0056 64 100   79   0   60 40 73 - - 

   GLCO-CONT[5] 0.8024 0.0036 84 100   93 83 100 40 91 - - 

  C-band VV            

   γ  0.3056 0.0071 43     0   27 50 100   50 64 - - 

   sd(γ ) 0.5207 0.0062 61   80   73 25 100   90   0 - - 

   GLCO-COR[1] 0.5039 0.0062 59   70   45 50 100 100   9 - - 

   GLCO-CONT[5] 0.5444 0.0062 63   90   73 25 100   80   9 - - 

Inclusive of Secondary forest and Non-forest 

  X-band HV            

   γ  0.2047 0.0027 31     0     0   0     0 80 55 50 32 

   sd(γ ) 0.5626 0.0037 63   80   73 25   20 80   0 75 89 

   GLCO-COR[1] 0.5482 0.0037 62   80   55 25     0 90 18 63 89 

   GLCO-CONT[5] 0.5823 0.0037 64   80   64 25 100 70   0 75 84 

  C-band VV            

   γ  0.2584 0.0034 35     0   27 25   80   50 64 50 16 

   sd(γ ) 0.4725 0.0037 54   80   73   0 100   90   0 75 32 

   GLCO-COR[1] 0.3568 0.0033 42   70   18 50 100 100   9 63   5 

   GLCO-CONT[5] 0.4465 0.0037 51   90   55 25 100   80   9 63 26 
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Using Κ̂  and 2 ˆσ̂ Κ∞ ⎡ ⎤⎣ ⎦  it can be computed whether or not there are significant 

differences between the overall classification results shown (see section 5.2.4). At 
the 95% confidence level the classification results for GLCO-CONT[5] prove to be 
significantly better than those for γ  in all of the cases shown. The results for 
GLCO-COR[1] are significantly better than those for γ  in X-band HH and X-band HV 
only. sd(γ ) yields significantly better classification results than γ  in all but one case, 
namely the case of C-band VV when Secondary forest and Non-forest are being 
excluded. The overall classification results obtained with the textural attributes may 
be said to be reasonable to good as some 50 to 85% of the data points is classified 
correctly. Both GLCO-CONT[5] and sd(γ ) render significantly better results than 
GLCO-COR[1] in X-band HH. The difference in the overall classification results for 
sd(γ ) and GLCO-CONT[5] is not significant in any case. Since GLCO-CONT[5] is 
among the best performing GLCO attributes there is no reason to assume that any 
other of those attributes may yield results that are significantly better than those for 
sd(γ ). Taking into account the results shown in Table 6.1 there also is no reason to 
assume that this could be different in any other of the CCRS SAR data sets. 
 
The GLCO-CONT[5] and sd(γ ) attributes associated with X-band HH yield significantly 
better classification results than any of the textural attributes derived from the 
C-band VV data (excluding Secondary forest and Non-forest). There are no significant 
differences in the performance of C-band VV textural attributes and the X-band HH 
GLCO-COR[1] attribute. Comparison of the overall classification results for the 
textural attributes associated with X-band HV and C-band VV (inclusive of Secondary 
forest and Non-forest) shows that the C-band VV GLCO-COR[1] attribute yields 
significantly poorer discrimination than any of the attributes associated with X-band 
HV. Otherwise, there are no significant differences in the overall results for the 
textural attributes in X-band HV and C-band VV. 
 
Inclusion of data points for Secondary forest and Non-forest in the C-band VV data 
set does not yield significantly different classification results. This indicates that the 
textural characteristics of these classes in this data set are neither similar nor 
dissimilar to those of the other classes. In C-band VV there is in fact considerable 
confusion between Non-forest and Low swamp forest. This is not as much a problem 
in X-band HV. Taking into account the results for all data sets studied, the GLCO 
attributes fail to uniquely describe the texture of Logged-over forest, in particular. In 
the classifications Logged-over forest is confused repeatedly with Mora forest and, to 
a lesser extent, with Mixed forest, i.e. the forest type being logged. Other frequently 
confused classes are Non-forest and Secondary forest, as well as Xeric mixed forest 
and Wallaba forest. Although Logged-over forest and Mora forest represent similar 
textural patterns in radar images, the architecture of their canopies is different. For a 
more detailed discussion on the relationship between canopy architecture and GLCO 
textural attributes, please refer to section 6.1.2. 
 
The results show that sd(γ ) and selected GLCO attributes are equally suitable for 
classification per region of the land cover types studied. In practice, the use of both 
sd(γ ) and GLCO attributes has certain advantages as well as disadvantages. One 
advantage associated with the use of sd(γ ) is that its calculation requires a relatively 
small amount of computer time. It follows that sd(γ ) can be computed at a lower 
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expense than the GLCO attributes. This is only of moderate importance in the GTA 
approach followed thus far but may be considered an important benefit if complete 
images need to be processed (MWA approach). Another advantage of using sd(γ ) is 
that one can avoid the often difficult choices required in GLCO textural analysis, 
namely choices concerning the preferred statistical parameter, displacement length 
and displacement direction. The significance of these choices is reflected in the 
deviating classification potential of the best and worst performing GLCO attribute 
(see Table 6.1). Nevertheless, precisely these options cause GLCO attributes to be 
the more powerful descriptors of textural patterns. By selecting a specific statistical 
parameter, displacement length and/or displacement direction, one can in fact 
construct a textural attribute that is optimal for describing the textural pattern of 
interest. This cannot be done if one uses a simple textural descriptor like sd(γ ), 
which is not at all sensitive to the spatial organisation of the pixels, i.e. pattern. It 
merely describes the average difference in grey level between pixels and their mean. 
 
It will be clear that sd(γ ) is a less potent textural descriptor than the more complex 
and more flexible GLCO attributes. Yet, as pointed out before it is not always very 
simple to select the optimal settings for GLCO textural analysis. On the one hand, 
this is due to the fact that it is often difficult to conceive how GLCO attributes and 
textural patterns associate (see section 6.1.2). On the other hand, there will always 
be the problem that no single  GLCO analysis  setting is optimal for  discriminating all 

Table 6.3  Gaussian maximum-likelihood classification results. Classification based on 
combinations of two textural attributes computed from CCRS SAR images (data sets include 
Secondary forest and Non-forest). 

   Percentage correct 

 

Κ^
 

Κ^^ [ ]σ 2
∞          

X-band HV            
 GLCO-CONT[5] + 
 GLCO-COR[1] 

 
0.6728 

 
0.0033

 
72 

 
70 

 
  55

 
100

 
100

 
  90 

 
36 

 
  63 

 
  84

 GLCO-CONT[5] + 
 GLCO-CONT[10] 

 
0.7778 

 
0.0026

 
81 

 
90 

 
  73

 
100

 
100

 
  90 

 
64 

 
  75 

 
  79

 GLCO-CONT[5] + 
 GLCO-MPROB[4] 

 
0.8196 

 
0.0022

 
85 

 
90 

 
100

 
100

 
100

 
  80 

 
36 

 
  75 

 
100

C-band VV            
 GLCO-CONT[5] + 
 GLCO-COR[1] 

 
0.5763 

 
0.0037

 
63 

 
60 

 
  36

 
  50

 
100

 
100 

 
55 

 
  75 

 
  53

 GLCO-CONT[5] + 
 GLCO-CONT[9] 

 
0.5908 

 
0.0036

 
64 

 
80 

 
  36

 
  50

 
100

 
  80 

 
55 

 
100 

 
  47

 GLCO-CONT[5] + 
 GLCO-IDM[3] 

 
0.6187 

 
0.0036

 
67 

 
80 

 
  55

 
100

 
100

 
  80 

 
36 

 
  88 

 
  53
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patterns present. Usually, the 'optimal' setting can only be established empirically. 
The choices associated with the GLCO textural analysis in this study are discussed in 
detail in Appendix I. 
 
Combined use of GLCO attributes may enhance the possibilities for discriminating 
different textural patterns. The effects of using GLCO-CONT[5] in combination with 
some other GLCO attributes are illustrated in Table 6.3. For all combinations shown, 
the resulting classifications prove to be better than those for just GLCO-CONT[5] (see 
Table 6.2). At the 95% confidence level, however, the difference between 
GLCO-CONT[5] and the combination of GLCO-CONT[5] and GLCO-COR[1] in X-band HV 
is not significant. Likewise, there is no significant difference in the results for 
GLCO-CONT[5] and for combinations of this attribute with GLCO-COR[1] or 
GLCO-CONT[9] in C-band VV. The incorporation of a second GLCO attribute in the 
classification procedure does especially improve the identification of Xeric mixed 
forest and the Logged-over forest. Apparently, GLCO-CONT[5] alone cannot uniquely 
describe the patterns of these cover types. 

 

 

6.1.2 Analysis of canopy architecture using GLCO textural attributes 

Texture in radar images results primarily from radar "layover", "shadowing" and 
"foreshortening" effects (see section 3.1.3). In high frequency and high resolution 
radar images of forested areas (on flat terrain) these effects relate to canopy 
roughness which is a parameter of canopy architecture. The architecture of a forest 
canopy is an expression of the development phase, size and recurrence of the 
eco-units building the forest mosaic (Oldeman, 1990). Forests with different canopy 
architectures give rise to different textural patterns and thus to different values for 
textural descriptors. The relationship between GLCO textural attributes and canopy 
architecture can best be seen in plots that show the variation in their values as a 
function of displacement length. Figure 6.3 shows such plots for three GLCO 
statistics associated with the X-band HH data set, i.e. GLCO-COR, GLCO-CONT and 
GLCO-ENT. Unlike in the 'standard' GTA approach (see section 5.2.2), these 
statistics were computed with displacement in range direction only. In this direction 
the relationship between texture and canopy architecture is usually most pronounced 
because of the side-looking measurement geometry of imaging radar systems (see 
section 3.1.1). The plots in Figure 6.3 exemplify the behaviour of all GLCO statistics 
studied. The GLCO-CONT plots are similar to those for GLD-MEAN, whereas those for 
GLCO-ENT compare to the ones for GLCO-ASM, GLCO-IDM, GLCO-MAX PROB, 
GLD-ASM and GLD-ENT. 
 
The values of each textural attribute can be seen to be related to the canopy 
roughness of the forest type in question. Depending on the nature of the attribute 
this relationship can either be negative or positive. For example, rougher forest 
canopies have higher GLCO-CONT values but lower GLCO-ENT values. In case of 
GLCO-COR the relationship is more complex. At short displacement lengths the 
values for 'rough' forests are higher than those for 'smooth' forests but at longer 
displacements the opposite holds  true.  It follows that  GLCO textural attributes  may 
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Figure 6.3 (a-c)  Plots showing the relationship between the GLCO textural attributes for 
forest types present in the X-band HH CCRS SAR image and the displacement length in 
range direction: (a) plots for GLCO-COR (b) plots for GLCO-CONT (c) plots for GLCO-ENT. The 
plots mirror architectural characteristics of the observed forest canopies. 
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be used to rank the forest types according to their degree of canopy roughness. The 
studied forest types rank as follows, in order of increasing canopy roughness: Low 
swamp, Xeric mixed, Wallaba, Mixed, Mora and Logged-over forest. This sequence 
agrees with what one would expect based on the available set of ground reference 
data (see section 4.3). 
 
The values for GLCO-ENT can be seen to only vary slightly as a function of 
displacement length. Also, the variations present do not appear to be specific per 
forest type. In this respect, the behaviour of GLCO-ENT differs from that of GLCO-COR 
and GLCO-CONT. The variation induced by displacement length in the values for these 
attributes is considerable and clearly specific for each forest type. For Low swamp, 
Wallaba and Xeric mixed forest the GLCO-COR statistic reaches a minimum at a 
displacement of 3 pixels. For Mixed forest the minimum is reached at a displacement 
of 4 pixels, while the minima for Mora forest and Logged-over forest are found at a 
displacement of 6 and 7 pixels, respectively. Whenever GLCO-COR reaches a 
minimum, the value for GLCO-CONT reaches a maximum. It follows from the definition 
of the GLCO-COR statistic (see section 5.1.1) that its value is minimal if the 
displacement length matches the distance over which on average the grey levels are 
the least correlated or the most negatively correlated. Likewise, the value for 
GLCO-CONT is maximal when the displacement length is equal to the distance over 
which on average the sharpest grey level transitions occur. These minimum and/or 
maximum values occur when the "source" and "target" pixel are frequently located in 
different textural sub-patterns, i.e. when the displacement length equals the 
cross-section of the most occurring (dominant) textural sub-pattern. 
 
Textural sub-patterns are clusters of pixels with comparable grey levels. In 
combination they constitute the overall textural pattern. To a certain extent, the 
textural sub-patterns in the high resolution CCRS SAR images are congruent with 
canopy elements such as individual tree crowns, tree crown clusters or canopy 
openings. However, super-imposed on these textural sub-patterns related to the 
canopy there are sub-patterns resulting from radar "layover", "shadowing" and 
"foreshortening" effects (see section 3.1.3). For example, due to "foreshortening" 
the front (radar facing) side of a large tree crown may appear much brighter than the 
back side. Consequently, the two sides of this crown show up as two different 
textural sub-patterns. 
 
Figure 6.4 illustrates textural (sub-)patterns that are typical for the primary and 
logged-over forest types studied. The image subsets shown were taken from the 
CCRS SAR X-band HH data and have a size of 64 64×  pixels (≈ ×200 200 m). 
Logged-over, Mora and Mixed forest can be seen to have relatively large textural 
sub-patterns. Consequently, their textures are conceived as being 'coarse'. Wallaba, 
Xerix mixed and Low swamp forest have relatively small textural sub-patterns and are 
therefore conceived as being 'fine' textured. In addition, it can be seen that the grey 
levels of the textural sub-patterns for some forest types vary more widely than for 
others. Much variation in grey levels results in textures rich in contrast, e.g. 
Logged-over and Mora forest. Similarly, little variation in grey levels results in textures 
poor in contrast, e.g. Xeric mixed and Low swamp forest. Textures that are rich in 
contrast are characterised by high GLCO-CONT values, whereas textures that are poor 
in contrast have low GLCO-CONT values (see Figure 6.3b). 
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θinc =
oLogged-over  (               )60 θinc =

oMora  (               )55

Mixed  (               )θinc =
o50 Wallaba  (               )θinc =

o50

θinc =
oXeric mixed  (               )40 θinc =

oLow swamp  (               )35  

Figure 6.4  CCRS SAR X-band HH image subsets illustrating textural (sub-)patterns that are 
typical for the primary and logged-over forest types studied. 
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The results in Figures 6.3a and 6.3b show that the dominant textural sub-patterns for 
Logged-over and Mixed forest have different cross-sections, i.e. are of a different 
nature. This textural difference reflects the presence of artificial canopy openings in 
the Logged-over forest. Artificial openings constitute the only essential difference in 
the canopy of the two forest types. After all, Logged-over forests originate from Mixed 
forests. Ground reference data indicate that natural and artificial canopy openings 
may be of a comparable size (see section 4.3.2). Yet, natural openings do not 
dominate the texture of Mixed forest regions because of their relatively low 
frequency. Also natural openings, in contrast to openings resulting from logging, do 
not usually occur in clusters. Due to logging the canopy architecture of Mixed forest 
becomes ecologically disorganised (see section 4.3.2). 
 
Figures 6.3a and 6.3b indicate that the sub-patterns in the Logged-over forest have 
an average cross-section of 7 slant range pixels or 7 4 0 28× =. m. In the CCRS SAR 
X-band HH image most of the Logged-over forest areas are found at an incidence 
angle of ca. 60°. At this incidence angle a slant range cross-section of 28 m 
corresponds to a cross-section of 28 60 32sinb g ≈  m on the ground (see Figure 3.3 

and Equation 3.1). Results of GTA with displacement in azimuth direction show that 
the azimuth cross-section of the artificial canopy openings, on average, is 9 pixels or 
9 3 44 31× ≈.  m. If the artificial openings in the Logged-over forest are assumed to 
be approximately circular and have a cross-section equal to the average of the 
cross-sections in range and azimuth direction, then the average size of these 

openings can be estimated to be equal to π × =31 5 2 779
2

.b g  m2 . Field 

measurements by Hammond and Brown (1992) show an average size of ca.  
800 ± 200 m2 (see section 4.3.2). The two results compare very well. 
 
Figure 6.4 shows that the ecologically disorganised canopy of Logged-over forest and 
the canopy of Mora forest have a similar textural appearance. The textures of both 
forest types are dominated by dark textural sub-patterns. In the case of Mora forest, 
however, these sub-patterns are not primarily related to the presence of canopy 
openings since these are not frequent in the Mora forest canopy. The most important 
characteristic of the Mora forest canopy is the presence of many, large emergent 
trees (see section 4.3.1). These emergents induce radar "layover", "foreshortening" 
and "shadowing" effects, the latter of which may be assumed to be the principal 
cause of the observed dark textural sub-patterns. The dominant role of radar shadow 
areas in the Mora forest texture is also reflected in the high maximum GLCO-CONT 
value for this forest type in Figure 6.3b. It follows from this figure that the average 
cross-section of the radar shadow areas (in range direction) is equal to 6 pixels since 
a displacement length of 6 pixels yields the maximum GLCO-CONT value. This 
information may be used to compute the average height difference between the 
emergent trees and their surroundings. It should be remembered, however, that the 
results shown relate to multiple Mora forest areas with incidence angles ranging from 
ca. 50° to 60°. The observed average cross-section of the shadow areas can 
therefore not be associated to a particular incidence angle. Consequently, the 
average height difference between the emergents and their surroundings can be 
approximately assessed only. In the CCRS SAR image an average shadow length of 6 
slant range pixels equals 6 4 0 24× =. m. At a 50° incidence angle this shadow 
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length corresponds to an average height difference of 24 50 15× ≈cos( )  m. The 
same shadow length at an incidence angle of 60° corresponds to an average height 
difference of 12 m. The ground reference data agree quite well with these findings; 
they indicate that emergent trees may be up to ca. 20 m higher than the main canopy 
(see section 4.3.1). It follows that in the case of Mora forest the GLCO-COR, 
GLCO-CONT and GLD-MEAN textural attributes allow for a quantification of canopy 
roughness. 
 
The results in Figures 6.3a and 6.3b also indicate the presence of dominant textural 
sub-patterns in Mixed, Wallaba, Xeric mixed and Low swamp forests. Unfortunately, it 
is difficult to identify the canopy elements that constitute the dominant textural 
sub-patterns for these forest types. Identification of these canopy elements 
analogous to the manner in which those that dominate the texture for Logged-over 
forest were identified, i.e. through comparison, fails due to the absence of 
'reference' textures. Moreover, identification through visual interpretation of the sub-
images in Figure 6.4 fails because the dominant sub-patterns cannot be conceived. 
The inability to link the dominant sub-patterns (and corresponding cross-sections) to 
particular canopy elements prevents quantification of architectural properties of 
Mixed, Wallaba, Xeric mixed and Low swamp forest canopies. In a more qualitative 
way the information resulting from the computation of GLCO-COR, GLCO-CONT or 
GLD-MEAN statistics may still be put to use. Generally speaking, bigger tree crowns 
will give rise to larger textural sub-patterns. As such, it may be assumed that the 
forest canopy with the largest textural sub-pattern comprises the biggest tree crowns. 
Based on this assumption, the four forest types rank in two groups, i.e. Mixed forest 
and Wallaba, Xeric mixed and Low swamp forest (in order of decreasing crown size). 
Mora forest ranks higher than either of these groups. The ordering of the primary 
forest types with the help of the available ground reference data would have resulted 
in a comparable sequence. 
 
Because of their ability to describe dimensions of textural sub-patterns GLCO-COR, 
GLCO-CONT and GLD-MEAN may be said to be more sensitive to canopy architecture 
than any of the other GLCO statistics. Plots that show the changes in these GLCO 
attributes as a function of displacement length reflect physical properties of the 
observed canopy. 
 
In essence, GLCO-CONT is equal to a statistic known as semi-variance. Traditionally, 
semi-variance is used by geostatisticians to describe spatial interrelations between 
observations. According to Webster and Oliver (1990) the estimate of the average 
semi-variance is defined as: 
 

( ) ( ) ( )( )2
1

1
ˆ

2

pN

ip

z z
N

γ
=

= − +∑d i i d                (6.1) 

 
where z ib g and z i d+b g  represent the observed values of property Z  at the one, two 

or three dimensional positions i  and i d+ , d  is a vector embracing the distance and 
direction from one observation to the other (the "lag") and Np  represents the number 

of observation pairs (e.g. Webster and Oliver,1990). In grey level co-occurrence terms 
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z ib g and z i d+b g  stand for the grey levels of source pixel i  and target pixel j , vector 

d  is the displacement vector. 1

Np

 normalises ( )γ̂ d  for the number of observation pairs 

like p i j,b g normalises the GLCO-CONT statistic (see the equation for GLCO-CONT in 

Table 5.1). ( )γ̂ d  and GLCO-CONT ⎡ ⎤⎣ ⎦d  compare as 1 2:  and are thus essentially the 

same. Plots that show the variation in ( )γ̂ d  as a function of d  are referred to in 

geostatistics as semi-variograms. It follows that plots showing the variation in 
GLCO-CONT as a function of d  are in fact semi-variograms (see Figure 6.3b). 
 
The theory of semi-variance and the use of semi-variograms in geostatistics is 
discussed in detail in e.g. Journel and Huijbregts (1978), Isaaks and Srivastava 
(1989), Webster and Oliver (1990). The application of semi-variograms to analyse the 
spatial dependence of pixel values in remotely sensed images is discussed by: Dubé 
et al. (1986), Woodcock et al. (1988a, 1988b), Cohen et al. (1990), Miranda et al. 
(1992) and St-Onge and Cavayas (1995). None of these authors notes the link 
between semi-variance and GLCO-CONT, whereas some present semi-variograms as a 
'new' tool for image analysis. They all seem to have overlooked the capacities of the 
earlier available GLCO-CONT statistic (Haralick, 1973). 
 
GLCO-COR can be shown to be closely related to a statistic known as the 
autocorrelation coefficient. This coefficient has its origin in the analysis of time series 
but has also been used in image analysis, i.e. to investigate interrelations between 
spatially separated observations (e.g. Box and Jenkins, 1970; Haralick, 1979 and 
1986). According to Journel and Huijbregts (1978) the estimate of the average 
autocorrelation coefficient at lag d  is: 
 

( ) ( )( ) ( )( )
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d               (6.2) 

 
where z  is the mean and Sz

2 is the variance of the complete set of observations. The 
definition for ( )ρ̂ d  assumes second-order stationarity. This implies that z  is constant, 

Sz
2 is finite and that both z  and Sz

2 are independent on position i . Plots showing the 
variation in ( )ρ̂ d  as a function of d  are denoted autocorrelation functions.  

 
The definition for GLCO-COR (see Table 5.1) differs from the one for ( )ρ̂ d  because it 

is based on the means and standard deviations of the source and target pixel sets 
rather than on the mean and variance of the complete pixel set. The use of 
symmetrical GLCO matrices causes the means and the standard deviations of the 
source and target pixel sets to become identical. Nevertheless, this mean and 
standard deviation remain different from the mean and standard deviation of the 
complete pixel set. This may be exemplified with the use of Figure 5.1 (see section 
5.1.1). The mean of the source and target pixel set in this figure is equal to 1.40, the 
standard deviation is equal to 0.973. The mean grey level of the complete image 
subset equals 1.48, the corresponding standard deviation is 0.970. The differences 
result from the fact that the pixels in column 3 contribute to twice as many 
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source-target class pairs as those in the other columns. This, in turn, relates to the 
adopted displacement vector. For a particular d  the difference between 
GLCO - COR d  and ( )ρ̂ d  will become smaller as the number of observed pixel values 

increases. Given a particular series of pixels, GLCO - COR d  and ( )ρ̂ d  will become 

more alike as the displacement length decreases. In other words, the expectation of 
GLCO - COR d  is equal to the expectation of ( )ρ̂ d : 

 
( )GLCO COR ρ̂− =⎡ ⎤⎣ ⎦d d                 (6.3) 

 
Journel and Huijbregts (1978) show that when the assumptions of second-order 
stationarity hold, semi-variance and autocorrelation relate as: 
 
( ) ( )( )2 1 ˆˆ zSγ ρ= −d d                  (6.4) 

 
It follows that semi-variance and autocorrelation are equivalent but complementary 
descriptors of spatial interrelations between observations. Nevertheless, 
semi-variance is regarded as generally more useful because it demands weaker 
assumptions. If the number of observed pixel values is large, then 

( )GLCO COR ρ̂− ≈⎡ ⎤⎣ ⎦d d  and Equation 6.4 may be rewritten as: 

 

( )2GLCO-CONT 2 1 GLCO-CORzS≈ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦d d               (6.5) 

 
In section 5.1.2 the variance of the set of observations in a radar image, i.e. the set 
of pixel values, was shown to be equal to the total variance Stot

2 . Equation 6.5 can 
therefore also be written as: 
 
GLCO - CONT GLCO - CORd d≈ −2 12Stot d i             (6.6) 

 
Comparison of the plots for GLCO-CONT in Figure 6.5 with those in Figure 6.3b gives 
empirical evidence for the correctness of this equation. The GLCO-CONT values 
plotted in Figure 6.5 were computed from values for GLCO-COR according to Equation 
6.6, whereas those plotted in Figure 6.3b were calculated directly from the GLCO 
matrix. The plots in the two figures are in close agreement. The equation resolves why 
a maximum for GLCO-CONT was found to correspond to a minimum for GLCO-COR. 
 
Generally speaking, the degree of correlation between two observed pixels decreases 
as the distance d  between them increases. Therefore, when d → ∞, ( )ˆ 0ρ →d . It 

follows from Equation 6.4 that when ( )ˆ 0ρ →d , ( ) 2ˆ zSγ →d . Similarly, when d → ∞, 

GLCO - CONT d  approaches its upper limit value of two times the total image 

variance (GLCO - CONT d → 2 2Stot ). The total variance Stot
2  within a particular region of 

a radar image is equal to the sum of three terms, i.e. texture variance ST
2, fading 

(speckle) variance SF
2 and the product of texture and speckle variance S ST F

2 2 (see 

Equation 5.1, section 5.1.2). In theory, Stot
2  is always ≥ SF

2 since speckle is an 
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inherent feature of radar images. The theoretical lower limit for GLCO - CONT d , 

when d → ∞ will thus be equal to 2 2SF . GLCO-CONT will attain its lower limit in 

homogeneous or textureless image regions. In Figure 6.5 the lower limit for the 
GLCO-CONT values is marked. The level indicated corresponds to a variance of 
5.79 dB (two times the speckle variance in a logarithmically scaled 7 look radar 
image). 

 

 

6.1.3 Textural analysis by means of a moving window 

The common methodology for Moving Window textural Analysis (MWA) and the 
evaluation of the MWA results was described in section 5.3.1. The present section 
discusses the particulars and results of the MWA's carried out using the CCRS SAR 
X-band HH image. This specific CCRS SAR image was chosen because results of 
Gross Textural Analysis (GTA) show that it has a relatively high textural information 
content (see section I.1, Appendix I). The employed textural attributes were: 
GLCO-COR[1], GLCO-CONT[5] and sd(γ ). GLCO-COR[1] and GLCO-CONT[5] were 
selected since the GTA results in section 6.1.1 indicate that these are among the 
best performing GLCO attributes. Moreover, GLCO-COR and GLCO-CONT are, together 
with GLD-MEAN, the GLCO attributes most sensitive to canopy architecture (see 
section 6.1.2). Results in section I.4 of Appendix I show that the preferred 
displacement length is equal to one pixel for GLCO-COR and 5 pixels for GLCO-CONT. 
GTA with the help of the first-order statistic sd(γ ) also lead to good results. The 
advantage of sd(γ ) over the GLCO attributes is its relatively low computational load. 

2 2SF

 

Figure 6.5  Plots showing the relationship between the GLCO-CONT textural attribute for 
forest types present in the X-band HH CCRS SAR image and the displacement length in 
range direction. Unlike in Figure 6.3b the values plotted in this figure were computed from 
values for GLCO-COR according to Equation 6.6. The theoretical lower limit value for 
GLCO - CONT d  is equal to 2 2SF , i.e. two times the fading (speckle) variance. 
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All textural attributes were computed with a moving window 11 11×  pixels in size. To 
illustrate the effect of window size, the computation of GLCO-CONT[5] was repeated 
using a window of 25 25×  pixels. Based on the results of GTA (see section I.5, 
Appendix I) it is expected that a larger window size results in an improved 
quantification of textural patterns. However, a larger window will more often enclose 
image areas with different textures, i.e. image areas corresponding to different cover 
types. Consequently, the spatial extent of cover types will be defined less accurately 
when large windows are used. GTA results in section I.5 show that GLCO-CONT[5] 
yields better textural descriptions than most other GLCO attributes when small 
window sizes are used. The results of GTA also show that the performance of sd(γ ) 
as a function of window size is comparable to that of GLCO-CONT[5]. 
 
Table 6.4 allows a quantitative evaluation of the MWA results. It should be noted that 
the results of the classifications associated with MWA, in contrast to those 
associated with GTA, were evaluated using an independent data set, i.e. a data set 
different from the one used for designing the classifier (see section 5.3.1). The 
results of a classification per pixel using γ are given for reasons of comparison. At 
the 95% confidence level the overall classification result for γ is significantly poorer 
than that for the textural attributes. Given the window size of 11 11×  pixels, the best 
overall classification result is obtained when sd(γ ) is applied. The performance of 
sd(γ ) is significantly better than that for GLCO-CONT[5] but there is not a significant 
difference in the performance of sd(γ ) and GLCO-COR[1]. Similarly, there is no 
significant difference in overall result for GLCO-COR[1] and GLCO-CONT[5]. The 
 

Table 6.4  Gaussian maximum-likelihood classification results. Classification per pixel using 
γ  and textural attributes. Textural attributes were computed with the help of a moving spatial 
window. Input image CCRS SAR X-band HH. 

   Percentage correct 

 

Κ^
 

Κ^^ [ ]σ 2
∞          

Exclusive of Secondary forest and Non-forest 

   γ  0.0102 0.0001 14   4 22   5   17 31   1 - - 

  Window 11x11            

   sd(γ ) 0.2381 0.0001 38 42 46 36   92   4 47 - - 

   GLCO-COR[1] 0.2126 0.0001 36 36 44   0   83   0 65 - - 

   GLCO-CONT[5] 0.1894 0.0001 33 35 40 33   94   8 35 - - 

  Window 25x25            

   GLCO-CONT[5] 0.3592 0.0001 48 60 58 26 100 24 43 - - 
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increase in window size from 11 11×  to 25 25×  pixels improves the overall results 
for GLCO-CONT[5] significantly. Like in GTA, it is most difficult to discriminate 
between Mora and Logged-over forest. Two other classes frequently confused are 
Low swamp forest and Xeric mixed forest. 
 
Comparison of the results in Table 6.4 with those in Table 6.2 shows that the MWA 
results are significantly poorer than the GTA results. This agrees with the findings in 
section I.5 which show that textural descriptions improve with an increasing window 
size and are best if image regions are used. In general, textural decriptions resulting 
from MWA are less accurate than those resulting from GTA because they are based 
on considerably less pixel pair realisations (see section 5.1.1). The limited number of 
pixel pair realisations also make that MWA descriptions are easily disturbed by 
variations in the architecture of the forest canopy. This can be clarified by taking the 
Wallaba forest as an example. For the most part, the Wallaba canopy is even, 
homogeneous and closed. This general appearance causes its overall texture to be 
different from that of Mixed forest, for example. However, locally the architecture of 
the Wallaba canopy deviates from 'normal' due to the presence of canopy openings. 
These canopy openings are sources of textural noise, i.e. they cause the texture to 
be locally different. The extent to which textural noise shows up in textural 
descriptions depends on the applied window/region size and attribute. Textural 
descriptions based on large spatial windows or image regions are less troubled by 
textural noise because this noise will be mostly averaged out. Similarly, the effects of 
textural noise will be less disturbing if the applied attribute is less susceptible to 
noise or, in other words, is more stable. 
 
Texturally enhanced colour composite images provided the basis for a qualitative 
evaluation of the MWA results. The procedure for creating these images was 
described in section 5.3.1. Figures V.1 through V.3 in Appendix V illustrate this 
procedure for two subsets of the X-band HH CCRS SAR image. Image a covers the 
Tropenbos ecological reserve and its surroundings, image b covers a part of the 
logging concession known as West Pibiri. Figure V.1 shows the SAR image, Figure V.2 
the texturally transformed image and Figure V.3 the final product, i.e. the RGB 
transformed colour composite image. All of the images are in ground range format. 
The texturally transformed image is the result of a MWA using GLCO-CONT[5] and a 
window size of 11 11×  pixels. In Figure V.3 the areas marked by squares 
demonstrate the appearance of the forest types studied. Blue colours correspond to 
low GLCO-CONT[5] values, red colours to high GLCO-CONT[5] values and green/yellow 
colours to intermediate GLCO-CONT[5] values. The value for GLCO-CONT[5] increases 
with an increase in canopy roughness. Therefore, blue colours predominate in areas 
covered by forests with a relatively low degree of canopy roughness, e.g. in areas 
covered by Low swamp, Wallaba and Xeric mixed forest. For similar reasons, red 
colours prevail in areas of Logged-over and Mora forest, whereas green/yellow 
colours are preponderant in Mixed forest areas. 
 
In the present study a number of texturally enhanced colour composite images was 
visually interpreted to assess their value for forest type mapping. The resulting 
interpretations were checked in the field and compared with existing maps. It was 
concluded that texturally enhanced radar images provided a good basis for visual 
interpretation aimed at forest type mapping. However, Logged-over forest and Mora 
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forest have very similar textures. These two forest types cannot be discriminated 
other than with the use of contextual information. Examples of features found in 
association with Logged-over forests are logging roads and log landings. Mora 
forests, on the other hand, occur in the vicinity of streams and rivers. By comparing 
image interpretations checked in the field with the available 1:50,000 forest type 
map (Guyana Forest Department, 1970) it was found that the map was incorrect at 
various locations. In fact, the forest type patterns found in the present study proved 
to agree better with the patterns of the landforms and soils map by van Kekem et al. 
(1996). Figure V.4 shows the landform/soil map segments for the Tropenbos 
ecological reserve and the West Pibiri compartment. The resemblance in the patterns 
on the colour composites in Figure V.3 and the maps in Figure V.4 can be explained 
from the classical, strong connection between forest type and soil type (see section 
4.3.1). 
 
Figures V.5 and V.6 show colour composite images produced from, respectively, a 
GLCO-COR[1] and a sd(γ ) textural transform. Like in the case of GLCO-CONT[5], the 
employed window size was 11 11×  pixels. Comparison of Figure V.5 with Figure V.3 
shows that the images in Figure V.5 have a much noisier appearance. This suggests 
that GLCO-COR[1] is more sensitive to canopy architecture than GLCO-CONT[5]. Due 
to this sensitivity, the overall textural differences in Figure V.5 are less pronounced 
than in Figure V.3. Comparison of Figure V.6 and Figure V.3 shows that sd(γ ) is less 
sensitive to local variations in canopy architecture than GLCO-CONT[5]. Unlike 
GLCO-CONT[5] and GLCO-COR[1], sd(γ ) is not sensitive to the spatial organisation of 
the pixels, i.e. pattern. The attribute merely describes the average difference in grey 
level between pixels and their mean. Nevertheless, sd(γ ) proves to be well capable 
of distinguishing between textures of the land cover types studied. It is assumed that 
this is partly due to the fact that the studied textures lack a directional pattern, i.e. 
are isotropic. 

 

 

6.1.4 Conclusions 

Analysis of the CCRS SAR data leads to the following conclusions. 
 

 Texture, not backscatter is the most important source of information for 
identifying tropical land cover types in high frequency and high resolution radar 
images. 

 Using texture, high frequency and high resolution radar images make modest to 
good bases for region-based classification of tropical land cover types, including 
primary forest types. 

- In contrast to grey level co-occurrence (GLCO) attributes, the standard deviation of 
gamma in dB (sd(γ )) is not sensitive to textural pattern. Nevertheless, textural 
descriptions in the form of individual GLCO attributes and sd(γ ) make equally 
suitable bases for classifying tropical land cover types in high frequency and high 
resolution radar images. 
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- Combined use of two or more GLCO attributes results in improved textural 
descriptions and hence enhances the chances of classifying tropical land cover 
types correctly. 

- The classification potential associated with different GLCO attributes varies 
widely. 

 The combination of gross textural analysis and classification of tropical land cover 
per region yields better results than the combination of moving window textural 
analysis and classification per pixel. 

 Texturally enhanced high frequency and high resolution radar images make a good 
basis for the mapping of tropical primary forest types by means of visual 
interpretation. 

- Computerised and visual identification of logged-over forest in mono-temporal high 
frequency and high resolution radar images of Mabura Hill is complicated by the 
fact that the textural pattern of logged-over forest is very similar to that of Mora 
forest. This problem may be overcome by using contextual information. 

 Both GLCO attributes and sd(γ ) can be used to rank cover types according to the 
degree of canopy roughness. 

- Plots of GLCO-Correlation, GLCO-Contrast and GLD-Mean as a function of 
displacement length hold information on the dimensions of dominant textural sub-
patterns. This information enables the quantification of canopy architectural 
properties provided that the link between the dominating textural sub-pattern and 
the prevailing canopy element can be established. 

 GLCO-Contrast and semi-variance are essentially the same statistic. 

 The expectation of GLCO-Correlation is equal to the expectation of the 
autocorrelation coefficient. 

- GLCO-Contrast and GLCO-Correlation, like semi-variance and autocorrelation, are 
equivalent but complementary descriptors of the spatial interrelations between 
the grey levels of pixels. GLCO-Contrast and GLCO-Correlation are related through 
the total variance of the observed set of grey levels. 

 The GLCO-Contrast value for homogeneous or textureless regions in radar images 
is equivalent to two times the fading variance. 

 

 

6.2 Results of the analysis of the ERS-1 SAR data 

The present section reports on the results of the analysis of the SAR data as 
acquired by the ERS-1 satellite system. The ERS-1 SAR operates in a single frequency 
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and polarization, i.e. C-band VV. In addition to two single date SAR Precision images, 
a radiometrically enhanced SAR Single Look Complex image as well as a 
radiometrically enhanced SAR Precision image was studied. The Precision image 
used for Mabura Hill was acquired on 29 April 1992, that for San José del Guaviare 
on 26 May 1992. The radiometrically enhanced image products were generated by 
averaging images from three different acquisition dates (see section 4.4.3). The aim 
of the analysis was to assess the value of the different ERS-1 data sets for the 
classification of land cover and the study of canopy architecture. The information 
content associated with the backscatter level is compared to that associated with the 
textural pattern. Particulars of the analysis of image texture according to the GLCO 
approach (see section 5.1.1) are discussed in Appendix I. 

 

 

6.2.1 Classification of land cover per region using backscatter and texture 

Table 6.5 illustrates the potential of γ , sd(γ ) and GLCO attributes for the 
classification per region of the land cover types studied. The results relate to three 
different data sets, namely: a single date ERS-1 SAR Precision image (PRI), a 
time-averaged SAR Single Look Complex image (SLC-av) and a time-averaged SAR 
Precision image (PRI-av) (see section 4.4.3). The values shown represent the number 
of class pairs that can be successfully discriminated, i.e. the number of class pairs 
for which TDij ≥ 1900 (see section 5.2.4). 

 
The SLC-av data set proves most suitable for use in a textural analysis. The best 
performing GLCO attribute derived from this image can both in the absolute and the 
relative sense discriminate the most class pairs (six out of 10). This finding confirms 
the hypothesis that the image with the highest spatial resolution contains most 
textural information and will thus be best suited for analysis of texture (see section 
4.4.3). The second-order GLCO statistics offer a better potential for classification  
 

Table 6.5  Potential of γ , sd(γ ) and GLCO attributes for the classification per region of the 
land cover types studied. The values given represent the number of class pairs that can be 
successfully discriminated, i.e. the number of class pairs for which TDij ≥ 1900. 

   GLCO attribute 

 γ  sd(γ ) Best performing Worst performing 

Exclusive of Xeric mixed forest, Secondary forest and Non-forest 
(total number of class pairs is equal to 10) 

   C-band VV, PRI 0 0 2 0 

   C-band VV, SLC-av 0 0 6 0 

   C-band VV, PRI-av 0 1 3 0 

Inclusive of Xeric mixed forest, Secondary forest and Non-forest 
(total number of class pairs is equal to 28) 

   C-band VV, PRI 5 0 5 0 
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Figure 6.6 (a-d)  Gaussian approximations of pdf's for region averaged radiometric and 
textural attributes associated with land cover types present in the ERS-1 C-band VV PRI 
image: (a) pdf's for γ  (b) pdf's for sd(γ ) (c) pdf's for GLCO-COR[1] (d) pdf's for GLCO-
CONT[5]. 
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than the first-order statistic sd(γ ). A similar discrepancy in the performance of first- 
and second-order textural descriptors was not found in the analysis of the CCRS SAR 
data (see Table 6.1). Like in the case of the CCRS SAR data there is a distinct 
difference in the performance of the best and worst performing GLCO attribute. 
 
The classification potential of γ  appears to be low. However, in the case of the PRI 
image when data for all classes are included, its classification potential matches that 
of the best performing GLCO attribute. In this particular data set both γ  and the best 
performing GLCO attribute can discriminate five out of 28 class pairs. In the CCRS 
SAR C-band VV data set γ  could also distinguish between five out of 28 class pairs. 
However, in this case the performance of the best performing GLCO attribute was 
much better since it could discriminate 16 out of 28 class pairs (see Table 6.1). In 
the ERS-1 PRI images the textural differences between the land cover types studied 
are obviously much smaller than in the CCRS SAR images. Table 6.5 shows that 
averaging of PRI images from different acquisition dates does not result in an image 
with a much higher textural information content. The performance of the best GLCO 
attribute associated with the SLC-av data can be shown to be comparable to that of 
the best GLCO attribute associated with the C-band VV CCRS SAR data. In general, 
however, the performance of GLCO attributes derived from the SLC-av data is 
considerably poorer. On average, GLCO attributes derived from the SLC-av data can 
discriminate 1.7 out of 10 class pairs; those associated with the C-band VV CCRS 
SAR data can distinguish 4.2 out of 10 class pairs. 
 
Figure 6.6 illustrates the discriminating capacities of four attributes associated with 
ERS-1 PRI image regions, namely γ , sd(γ ), GLCO-COR[1] and GLCO-CONT[5]. 
Likewise, Figure 6.7 depicts the discriminating capacities of attributes computed 
from the ERS-1 SLC-av data. Figure 6.7 does not show pdf's for γ , since these are 
similar to the ones shown in Figure 6.6. After all, the PRI and SLC-av image have 
comparable radiometric characteristics. These two images possess different spatial 
properties only (see section 4.4.3). The pdf's for attributes associated with the  
 

 

Figure 6.6  Continued. 
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Figure 6.7 (a-d)  Gaussian approximations of pdf's for region averaged radiometric and 
textural attributes associated with land cover types present in the ERS-1 C-band VV SLC-av 
image: (a) pdf's for sd(γ ) (b) pdf's for GLCO-COR[1] (c) pdf's for GLCO-CONT[5] (d) pdf's for 
GLD-ASM[9]. 
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Figure 6.7  Continued. 

PRI-av image are not shown since their mutual positions are very much like those 
shown in Figure 6.6. It was chosen to  present the pdf's for GLCO-COR[1] and 
GLCO-CONT[5] in order to allow for comparison with Figure 6.2. Figure 6.7 also shows 
the pdf's for GLD-ASM[9] since this attribute is best performing for the SLC-av image. 
GLCO-CONT[5], although not the best performing attribute associated with the PRI 
image does in fact represent the capacities of GLCO attributes for this data set very 
well. Just like 80 (out of 90) other attributes, it cannot discriminate any of the class 
pairs studied. The best performing attribute distinguishes between five out of 28 
class pairs. Furthermore, there are nine GLCO attributes that can discriminate just 
one class pair. GLCO-COR[1] is among these, it can successfully discriminate 
between Secondary forest and Logged-over forest. 
 
In Figure 6.6 the pdf's can be seen to have much overlap. This is indicative of the 
poor classification capabilities of the attributes in question. The pdf's for γ  overlap 
the least; the pdf for Non-forest is well separated from those for most other classes. 
When compared to Figures 6.6b, 6.6c and 6.6d the pdf's shown in Figure 6.7 show 
less overlap. The higher spatial resolution of the SLC-av image results in higher 
textural information content and causes the classes to be separated more easily with 
the help of textural attributes. GLD-ASM[9] can more easily discriminate the various 
classes than either GLCO-COR[1] or GLCO-CONT[5]. Likewise, GLCO-COR[1] can more 
easily distinguish between classes than GLCO-CONT[5]. The pdf's in Figures 6.7a, 
6.7b and 6.7c are confined to a narrower range and have more overlap than those 
associated with the CCRS SAR C-band VV image (see Figure 6.2). This fits the 
general perception that high resolution images are more suited for use in textural 
analysis than low resolution images. 
 
Comparison of Figures 6.6a and 6.2a shows that the relative positions of the pdf's 
for Non-forest, Secondary forest and Mixed forest in the CCRS SAR data set differ 
from those in the ERS-1 PRI data set. In the CCRS SAR data set the γ  for Non-forest 
matches the γ  for Mixed forest, whereas the γ  for Secondary forest exceeds the γ  
for Mixed forest by ca. 4 dB. In the ERS-1 PRI data set the γ  for Non-forest is  
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Table 6.6  Gaussian maximum-likelihood classification results. Classification based on 
radiometric and textural attributes computed per region from ERS-1 images. 

   Percentage correct 

 

Κ^
 

Κ^^ [ ]σ 2
∞          

Exclusive of Xeric mixed forest, Secondary forest and Non-forest 

  C-band VV, PRI            

   γ  0.3930 0.0078 51   60 40 -   86   30 50 - - 

   sd(γ ) 0.3649 0.0071 49   30 70 -   86     0 70 - - 

   GLCO-COR[1] 0.3316 0.0069 47   60 70 -   29     0 70 - - 

   GLCO-CONT[5] 0.3580 0.0074 49   50 60 -   57     0 80 - - 

   GLD-ASM[9] 0.3847 0.0073 51   30 80 -   57   10 80 - - 

  C-band VV, SLC-av            

   sd(γ ) 0.5833 0.0210 67 100 33 -   67 100 33 - - 

   GLCO-COR[1] 0.5833 0.0221 67 100 67 -   67   33 67 - - 

   GLCO-CONT[5] 0.5000 0.0238 60   67 33 -   67 100 33 - - 

   GLD-ASM[9] 0.8333 0.0117 87 100 67 - 100 100 67 - - 

  C-band VV, PRI-av            

   sd(γ ) 0.4443 0.0080 55   40 60 -   86   60 40 - - 

   GLCO-COR[1] 0.2627 0.0060 40     0 10 -   71   80 50 - - 

   GLCO-CONT[5] 0.4698 0.0079 57   60 70 -   86   50 30 - - 

   GLD-ASM[9] 0.5494 0.0075 64   70 70 -   86   50 50 - - 

Inclusive of Xeric mixed forest, Secondary forest and Non-forest 

  C-band VV, PRI            

   γ  0.3094 0.0036 39     0 40   0   86   10 30 60 91 

   sd(γ ) 0.2243 0.0031 32     0 60 50   86     0 50 30   0 

   GLCO-COR[1] 0.2805 0.0032 37   20 70 25   14     0 70 90   0 

   GLCO-CONT[5] 0.2924 0.0032 38     0 50 63     0     0 80 10 91 

   GLD-ASM[9] 0.2630 0.0033 36   30 70   0   57   10 80 40   0 
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Table 6.7  Gaussian maximum-likelihood classification results. Classification based on 
radiometric and textural attributes computed per region from CCRS SAR images. 

   Percentage correct 

 

Κ^
 

Κ^^ [ ]σ 2
∞          

Exclusive of Xeric mixed forest, Secondary forest and Non-forest 

  C-band VV            

   γ  0.3787 0.0086 51 20   27 - 100   50 82 - - 

   sd(γ ) 0.6244 0.0063 70 80 100 - 100   90   0 - - 

   GLCO-COR[1] 0.6251 0.0064 70 70   91 - 100 100   9 - - 

   GLCO-CONT[5] 0.6511 0.0062 72 90 100 - 100   80   9 - - 

   GLD-ASM[9] 0.6509 0.0063 72 80 100 - 100   90   9 - - 

Inclusive of Xeric mixed forest, Secondary forest and Non-forest 

  C-band VV            

   γ  0.2584 0.0034 35   0   27   25   80   50 64 50 16 

   sd(γ ) 0.4725 0.0037 54 80   73     0 100   90   0 75 32 

   GLCO-COR[1] 0.3568 0.0033 42 70   18   50 100 100   9 63   5 

   GLCO-CONT[5] 0.4465 0.0037 51 90   55   25 100   80   9 63 26 

   GLD-ASM[9] 0.3846 0.0034 45 80   18 100 100   90   9 63   5 

ca. 2 dB lower than the γ  for Mixed forest, whereas the γ 's for Secondary forest and 
Mixed forest match. The situation in the ERS-1 PRI data set is comparable to the one 
in the C-band VV NASA/JPL AIRSAR data set (see Figure 6.14c). Hence, it is 
concluded that in the CCRS SAR data set the backscatter levels for Non-forest and 
Secondary forest are exceptionally high. The generally acknowledged high radiometric 
accuracy of the ERS-1 data supports this conclusion (e.g. Laur et al., 1993). 
 
Unlike the data for the primary forest types, the data for Non-forest and Secondary 
forest were not obtained from the images for Mabura Hill but from the images for San 
José del Guaviare (see sections 4.1.1, 4.1.2). The high CCRS SAR C-band VV 
backscatter values for Non-forest and Secondary forest with respect to Mixed forest 
suggest a discrepancy in the absolute calibration of the two image data sets. Rainfall 
data indicate that the conditions at the time of the CCRS SAR data acquisition were 
moister in San José del Guaviare than in Mabura Hill (see Table 4.2 and Table 4.3). 
This may have enhanced the backscatter levels for Non-forest and Secondary forest, 
but cannot explain an apparent increase in backscatter of the order of 2 to 4 dB. 
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Table 6.6 shows the classification results for a selection of radiometric and textural 
attributes derived from the three types of ERS-1 images. For reasons of comparison, 
Table 6.7 does the same for attributes derived from the CCRS SAR C-band VV image. 
 
The results in Table 6.6 show that at the 95% confidence level γ  and the PRI derived 
textural attributes perform equally well. Moreover, there is no significant difference in 
the performance of γ  and that of the textural attributes associated with the PRI-av 
data set. From the textural attributes computed for the SLC-av data, only GLD-ASM[9] 
performs significantly better than γ . This attribute also performs significantly better 
than any of the PRI and PRI-av derived textural attributes. However, at the 95% 
confidence level the difference in the classification results for GLD-ASM[9] and the 
other SLC-av associated textural attributes is not significant. This results primarily 
from the considerable variance of the KHAT statistic, which, in turn, is due to the 
limited number of data points in the SLC-av data set. Textural attributes computed for 
the PRI and PRI-av data sets perform equally well. It may thus be concluded that 
radiometric enhancement of PRI images does not significantly improve the 
possibilities for textural classification. 
 
Comparison of Tables 6.6 and 6.7 shows that most of the PRI derived textural 
attributes have a significantly poorer classification capacity than the CCRS SAR 
derived textural attributes. The performance of most textural attributes computed for 
the SLC-av and PRI-av data is not significantly different from that of the C-band VV 
CCRS SAR associated textural attributes (exclusive of Xeric mixed forest, Secondary 
forest and Non-forest). The CCRS SAR derived γ  values are shown to be considerably 
less suited for classifying Non-forest than ERS-1 PRI derived γ  values. This difference 
in classification capacity can be explained from the earlier noted relatively high 
backscatter levels for Non-forest in the CCRS SAR data set. Moreover, the 
backscatter level for Non-forest is much more variable in the CCRS SAR data set than 
in the ERS-1 PRI data set. The backscatter levels for the other cover types vary 
accordingly. The high variability of the CCRS SAR derived backscatter values results 
from a more variable incidence angle. In the CCRS SAR data set the incidence angle 
ranges from 30° to 60°; in the ERS-1 data set from 20° to 25°. 
 
Like the results for the CCRS SAR (see section 6.1.1), the results for ERS-1 indicate 
that Logged-over and Mora forest are among the classes most difficult to 
discriminate. The percentage of correctly classified Mora regions in the SLC-av data 
set often equals 100%, but a considerable proportion of the Logged-over class will be 
classified as Mora forest. Wallaba forest is frequently confused with Low swamp 
forest and Mixed forest because of its intermediary texture. Generally speaking, the 
inclusion of additional classes results in more confusion between classes and hence 
yields poorer classification results. In Table 6.6 this is illustrated by the classification 
of the ERS-1 PRI data set without and with inclusion of data points for Xeric mixed 
forest, Secondary forest and Non-forest. Inclusion of data points for these classes in 
the SLC-av data set can therefore also be expected to lead to poorer classifications. 
It follows that a reduction in the number of classes may have the opposite effect: it 
may enhance the classification results. Depending on the objective of the study, one 
may, for example, decide to group all primary forest data points into one class. This 
results in a data set that requires a lower level of classification. The effects of 
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Table 6.8  Gaussian maximum-likelihood classification results. Classification based on 
radiometric and textural attributes computed per region from ERS-1 images. Different primary 
forest types are not distinguished but grouped into one class. 

   Percentage correct 
    

Total 
Primary
forest 

Logged-over 
forest 

Secondary 
forest 

Non- 
forest 

C-band VV, PRI        

  γ   0.2958 0.0056 49 38 30   70   91 

  sd(γ ) 0.1405 0.0034 32 16 70   80   18 

  GLCO-COR[1] 0.4807 0.0057 66 69 80   90   18 

  GLCO-CONT[5] 0.3510 0.0049 50 29 90   60   91 

  GLD-ASM[9] 0.1752 0.0037 34 18 80   70   27 

        

  γ  + sd(γ ) 0.4584 0.0055 61 44 70   90   91 
  γ  + 
  GLCO-COR[1] 

 
0.8144 

 
0.0034

 
88 

 
82 

 
90 

 
100 

 
100 

Κ^^ [ ]σ 2
∞Κ^

grouping on the classification results for data derived from the ERS-1 PRI image are 
shown in Table 6.8. Moreover, this table illustrates the results of two classifications 
that use a combination of γ  and a textural attribute. 
 
The grouping of the primary forest classes has resulted in better overall classification 
results for γ , GLCO-COR[1] and GLCO-CONT[5]. In the case of γ  the grouping has not 
improved the classification results for Logged-over forest and Non-forest. Both the 
textural attributes and γ  have difficulty in distinguishing between Logged-over and 
primary forest. In classifications based on γ  Logged-over forest is frequently 
classified as primary forest, whereas in classifications based on texture, primary 
forest is often classified as Logged-over forest. Similarly, γ  and textural attributes 
other than GLCO-COR[1] have difficulty to discriminate between primary forest and 
Secondary forest. Primary forest data points are often contributed to the Secondary 
forest class. 
 
Combined use of γ  and sd(γ ) or GLCO-COR[1] yields improved classification results. 
The results associated with γ  + sd(γ ) are significantly better than those for sd(γ ) 
and GLD-ASM[9]. γ  in combination with GLCO-COR[1] performs significantly better 
than all other attributes, including γ  + sd(γ ). In classifications based on 
γ  + GLCO-COR[1] all Non-forest and Secondary forest data points are correctly 
classified. Moreover, primary forests are no longer confused with Secondary forests. 
However, there is still confusion between primary forest and Logged-over forest. The 
result associated with γ  + GLCO-COR[1] is a good result but one should bear in mind 
that it is obtained by classifying data extracted from image regions. In the present 
study it was possible to define these regions with the help of ground reference data 
(see section 5.2.1). However, in many practical situations such data may not be 
available. Under such circumstances, a region-based approach is feasible only if one 
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is able to delimit regions of interest with the help of automated image segmentation 
techniques. In this case, the success of the applied segmentation technique will 
govern the success of the classification. 
 
Computerised definition of Logged-over forest regions will be problematic since these 
regions are far from homogeneous and do not usually have clear boundaries. 
Attempts to segment areas of primary forest into regions representing different forest 
types will meet similar problems. Tropical rain forests do not generally consist of a 
collection of homogeneous, well-defined forest types with distinct boundaries. A high 
variability in species composition and architecture, the presence of transitional forest 
types as well as of transitions between forest types are more characteristic. This not 
only poses problems for mapping tropical rain forest types by means of remotely 
sensed images, but also for mapping methods based on data from forest inventories. 
These problems motivated van Rompaey (1993) to develop a technique to map the 
gradual changes (gradients) in the species composition of West African rain forests. 
The technique is based on data from forest inventories and provides an alternative to 
mapping by forest types. 

 

 

6.2.2 Analysis of canopy architecture using GLCO textural attributes 

In section 6.1.2, GLCO-CONT was shown to be among the GLCO attributes most 
sensitive to canopy architecture. The architectural properties of the observed canopy 
are reflected in plots that show the changes in GLCO-CONT as a function of 
displacement length. Figure 6.8 shows the GLCO-CONT plots for the cover types 
present in the ERS-1 PRI, PRI-av and SLC-av data sets. The plots for the ERS-1 PRI 
and PRI-av image result from computations with displacement in range direction. In 
association with the SLC-av image, two plots are shown, i.e. one for each 
displacement direction. The two SLC-av plots show the canopy architectural 
properties at different measurement scales since the pixel size in range direction is 
around two times the pixel size in azimuth direction (see Table 4.8). The PRI and 
PRI-av image consist of pixels with identical sizes. Consequently, the corresponding 
GLCO-CONT plots show the architectural characteristics at identical measurement 
scales. However, the measurement scales of these plots differ from those of the 
SLC-av plots. In each figure, the level of contrast or semi-variance resulting from the 
presence of image speckle 2 2SF  is indicated. This level is equivalent to 14.89 dB for 
the 3 look ERS-1 PRI and SLC-av images and 4.43 dB for the 9 look PRI-av data. The 
lower speckle level in the PRI-av data is reflected in the relatively low GLCO-CONT 
values; less speckle implies less variation in grey levels and thus less grey level 
contrast. 
 
The plots in Figures 6.8a through 6.8d show that all of the GLCO-CONT[1] and some 
of the GLCO-CONT[2] values are lower than the theoretical lower limit of 2 2SF  (see 
section 6.1.2). Apparently, the variation in the grey levels of neighbouring pixels is 
lower than the speckle variance. This suggests that these pixels do not represent 
independent radar measurements. The relationship between the grey levels of 
adjoining pixels in ERS-1 images may be explained by the ERS-1 image  
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2 2SF

2 2SF

2 2SF

 

Figure 6.8 (a-d)  Plots showing the relationship between the GLCO-CONT textural attribute for 
land cover types present in the ERS-1 SAR image data sets and the displacement length: (a) 
plots associated with PRI image (b) plots associated with PRI-av image (c) plots associated 
with SLC-av image, displacement is in range direction (d) plots associated with SLC-av image, 
displacement is in azimuth direction. 
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2 2SF

 
Figure 6.8  Continued. 

specifications in Table 4.8. According to this table the range resolution of a PRI 
image is ca. 33 m, however, the pixel size in range direction is only 12.5 m. This 
implies that the measurement of a single resolution cell contributes to the grey levels 
of ca. 2.6 adjoining pixels in range direction. As a result, all ERS-1 PRI pixels with an 
inter-pixel spacing less than 2.6 pixels will have related grey values. This agrees with 
the fact that the values for GLCO-CONT in Figure 6.8a do not exceed the 2 2SF  value, 
i.e. are not independent, if the displacement is less than 3 pixels. 
 
The sizes of the pixels in the PRI-av image are identical to those of the pixels in the 
PRI image. However, the 2 2SF  line crosses the GLCO-CONT plots in Figure 6.8b at a 
shorter displacement length than those in Figure 6.8a. This suggests that the pixel 
values in the PRI-av are not as spatially correlated as those in the PRI image. The 
added variance between the pixels in the PRI-av image results from the fact that this 
image was created through the averaging of a series of three PRI images (see section 
4.4.3). The sizes of the pixels in the SLC-av image differ from those in the PRI and 
PRI-av image. According to Table 4.8 the pixel size of a ERS-1 SLC image, and thus of 
the employed SLC-av image, is 7.9 m in range direction and 4.0 m in azimuth 
direction. The range and azimuth resolution are of the order of 10 m. Hence, the 
measurement of a single resolution cell contributes to the grey levels of ca. 1.3 
pixels in range direction and of ca. 2.5 pixels in azimuth direction. Like in the case of 
the PRI-av image, the interrelationship of the pixels in the SLC-av image is affected by 
the averaging process involved in its production (see section 4.4.3). Nevertheless, 
Figures 6.8c and 6.8d show a difference in the spatial dependence of SLC-av pixels 
in range and azimuth direction. 
 
In comparison to the GLCO-CONT plots as computed from the CCRS SAR data, those 
as computed from the ERS-1 data are less well defined. This is due to the high 
degree of variability in the GLCO-CONT values for particular cover types. The variability 
in the ERS-1 PRI and SLC-av associated GLCO-CONT values for Logged-over forest 
and Low swamp forest (two cover types with an extreme difference in canopy 
roughness) is illustrated in Figures 6.9a and 6.9b. The areas represent 95%  
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Figure 6.9 (a-c)  Illustration of differences in the degree of within class and between class 
variability for GLCO-CONT values associated with (a) ERS-1 PRI image data (b) ERS-1 SLC-av 
image data and (c) X-band HH CCRS SAR image data. The areas shown represent 95% 
confidence intervals; the interrupted line marks the boundary of the confidence interval for 
Logged-over forest. In the case of the ERS-1 image data the confidence intervals overlap 
even for the two cover types with the most extreme difference in canopy roughness, i.e. 
Logged-over forest and Low swamp forest. 
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confidence intervals. For reasons of comparison, Figure 6.9c depicts the variability in 
the CCRS SAR derived GLCO-CONT values for Logged-over, Mixed and Low swamp 
forest. The variability in the GLCO-CONT values associated with the ERS-1 images is 
so high that even the confidence intervals overlap for the two cover types with the 
most extreme difference in canopy roughness. Clearly, the confidence intervals for 
the other cover types will also overlap. The CCRS SAR derived GLCO-CONT values are 
much less variable. The differences in the variability of the CCRS SAR and ERS-1 
derived GLCO-CONT values are reflected in the classification results in section 6.1.1 
and 6.2.1. The higher the variability within the cover types, the poorer the 
classification results. 
 
The high variability in the ERS-1 derived GLCO-CONT values has to be kept in mind 
when interpreting the plots in Figure 6.8. Many of the plots in this figure do not reach 
a maximum value within the adopted range of displacement lengths (e.g. 
Logged-over, Mixed and Non-forest in PRI image; Mora, Mixed, Xeric mixed and 
Wallaba in PRI-av image; all plots in SLC-av image with azimuth displacement). This 
indicates the absence of a dominant textural sub-pattern. Other plots are essentially 
flat (e.g. Low swamp in PRI-av; Low swamp and Wallaba in SLC-av with range 
displacement), exhibiting a behaviour similar to the expectation for random data (see 
Woodcock et al., 1988). Based on the ERS-1 PRI GLCO-CONT plots, the cover types 
rank in the following order of increasing canopy roughness: Non-forest, Low swamp, 
Secondary forest, Wallaba, Xeric mixed/Mixed, Mora, Logged-over. A ranking based 
on the plots as derived from the PRI-av or SLC-av data leads to a comparable 
sequence. The arrangement also agrees with the one found in association with the 
CCRS SAR data (section 6.1.2) as well as with the available ground reference data 
(section 4.3). Although the ERS-1 PRI(-av), ERS-1 SLC-av and CCRS SAR plots relate 
to different measurement scales, the canopy roughness appears to present itself in a 
similar fashion. Canopy roughness has been identified as an indicator of species 
diversity by Oldeman (1983a), Brünig and Huang (1989) and Brünig and Mohren 
(1989). 

 

 

6.2.3 Textural analysis by means of a moving window 

The common methodology for Moving Window textural Analysis (MWA) and the 
evaluation of the MWA results was described in section 5.3.1. This section 
discusses the particulars and results of the MWA's carried out using the ERS-1 PRI 
and SLC-av images. The ERS-1 results were evaluated qualitatively, i.e. by means of 
visual interpretation of texturally enhanced colour composite images. Texture was 
computed using GLCO-CONT[5]. For the ERS-1 PRI image the window was 11x11 
pixels in size, for the ERS-1 SLC-av image 11x33 pixels (11 in range, 33 in azimuth). 
The corresponding area on the ground is comparable since the azimuth pixel size of 
the SLC-av image is roughly 1 3 of the azimuth pixel size of the PRI image (see Table 
4.8). 
 
Figure V.7 in Appendix V shows two texturally enhanced colour composite images for 
the West Pibiri compartment. Figure V.7a was produced from the texturally 
transformed ERS-1 PRI image, Figure V.7b from the texturally transformed ERS-1 
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SLC-av image. The area shown overlaps with the area as shown in the images b of 
Figures V.1 through V.6. The marked Wallaba and Mora forest regions in Figure V.7 
and Figures V.3b, V.5b, V.6b correspond approximately to the same area on the 
ground. The significance of the colours in Figure V.7 conforms to the colours in Figure 
V.3 (see section 6.1.3). 
 
Compared to the images in Figure V.7a, those in Figure V.7b show better defined 
textural patterns. The higher textural information content of the ERS-1 SLC-av image 
is in agreement with the findings of GTA (see section 6.2.1). Yet, the textural 
information content of this image is not sufficient for forest type mapping. Patterns 
and/or forest types readily recognised in the texturally transformed CCRS SAR X-band 
HH image (Figures V.3b, V.5b and V.6b) can only be recognised with difficulty in 
Figure V.7b. Texture in ERS-1 images should be interpreted with care as a large 
proportion of the coarse textures results from relief rather than from canopy 
architecture. 

 

 

6.2.4 Conclusions 

Analysis of the ERS-1 SAR data leads to the following conclusions. 
 

 Texture and backscatter are equivalent sources of information for identifying 
tropical land cover types in single date and time-averaged ERS-1 SAR Precision 
(PRI) images. 

 Single date and time-averaged ERS-1 SAR PRI images make modest bases for 
region-based classification of tropical land cover at the level of primary forest, 
logged-over forest, secondary forest and non-forest. 

 Single date and time-averaged ERS-1 SAR PRI images make poor bases for region-
based classification of tropical land cover at the level of primary forest types. 

- Compared to single date and time-averaged ERS-1 SAR PRI images, time-averaged 
ERS-1 SAR Single Look Complex (SLC) images have higher textural information 
contents. 

- Using texture, time-averaged ERS-1 SAR SLC images make modest bases for 
region-based classification of tropical land cover at the level of primary forest 
types. 

- Grey level co-occurrence (GLCO) attributes make better bases for classifying 
tropical land cover types in ERS-1 images than the standard deviation of gamma 
in dB (sd(γ )). 

- The classification potential associated with different GLCO attributes varies 
widely. 

 

167 



Radar remote sensing to support tropical forest management 

 Texturally enhanced single date ERS-1 SAR PRI and time-averaged ERS-1 SAR SLC 
images make an inadequate basis for the mapping of tropical primary forest types 
by means of visual interpretation. 

- A large proportion of the coarse textures in ERS-1 SAR images results from relief 
rather than from canopy architecture. 

 Canopy roughness, which has been identified as an indicator of species diversity 
by Oldeman (1983a), Brünig and Huang (1989) and Brünig and Mohren (1989), 
presents itself in a similar fashion in the texture of high frequency radar images 
with differing measurement scales. 

 

 

6.3 Results of the analysis of the NASA/JPL AIRSAR data 

The present section reports on the results of the analysis of the data as acquired by 
the NASA/JPL airborne SAR system. The NASA/JPL AIRSAR is an example of a 
polarimetric radar system and operates in three frequency bands, i.e. C-, L- and 
P-band (see section 4.4.2). The aim of the analysis was to assess the value of the 
different frequency bands and polarizations for the classification of land cover and 
the estimation of biomass and architectural parameters. The study makes use of 
information contained in the strength, polarization and phase of the radar return 
signal. The textural information content of the AIRSAR images was not studied in 
detail. However, visual comparison of C-, L- and P-band images showed that the 
textural information in L- and P-band is minimal. This can be explained by the fact 
that L- and P-band radar waves penetrate the forest canopy to a greater depth than 
C-band radar waves (see Equation 3.30). Consequently, the scattering of L- and 
P-band microwaves is not affected by the surface roughness of the forest canopy and 
hence L- and P-band images are free of canopy induced radar "layover", "shadowing" 
and "foreshortening" effects (see section 3.1.3). These geometrical effects are the 
most important cause of texture in C-band (and X-band) radar images. 

 

 

6.3.1 Scattering behaviour of land cover types studied 

Figures 6.10, 6.11 and 6.12 illustrate the scattering behaviour of the land cover 
types studied in C-, L- and P-band. The individual graphs depict the relative 
importance of the odd (or single) bounce, double (or even) bounce and diffuse 
scattering mechanisms by showing the frequency with which they contribute a 
specific fraction of the total backscattered power TP. The procedure at the basis of 
these graphs is the following. Firstly, for each pixel within an area of interest (see 
section 5.2.1) the fraction of the total backscattered power TP (in %) resulting from 
odd bounce, double bounce and diffuse scattering was computed. Secondly, the TP 
fractions computed for each of the scattering mechanisms were grouped into five 
classes, i.e. from 0 to 20%, 21 to 40%, 41 to 60%, 61 to 80% and 81 to 100%. In  
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Figure 6.10  Scattering behaviour of land cover types studied in C-band. The relative 
importance of the single bounce, double bounce and diffuse scattering mechanism is 
illustrated by showing the frequency with which these mechanisms contribute a specific 
fraction of the total backscattered power TP. 
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Figure 6.11  Scattering behaviour of land cover types studied in L-band. The relative 
importance of the single bounce, double bounce and diffuse scattering mechanism is 
illustrated by showing the frequency with which these mechanisms contribute a specific 
fraction of the total backscattered power TP. 
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Figure 6.12  Scattering behaviour of land cover types studied in P-band. The relative 
importance of the single bounce, double bounce and diffuse scattering mechanism is 
illustrated by showing the frequency with which these mechanisms contribute a specific 
fraction of the total backscattered power TP. 
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effect, this resulted in a total of 15 classes, i.e. three scattering classes consisting 
of five TP fraction classes each. Thirdly, the pixels associated with the land cover 
types studied were assigned to three out of the 15 classes, i.e. one odd bounce, one 
double bounce and one diffuse scattering class. Fourthly, the pixels in each of the 15 
classes were enumerated. Finally, the number of pixels in each class was charted per 
land cover type in the manner as shown in Figures 6.10, 6.11 and 6.12. The 
decomposition of the total backscatter into the contributions of the three scattering 
mechanisms was achieved with the help of the MAPVEG program by Freeman et al. 
(1993). The three-component scattering model at the basis of this program was 
briefly explained in section 5.3.2. A more detailed description of this model can be 
found in Freeman and Durden (1992). 
 
The results in Figure 6.10 show that in C-band, for all of the land cover types studied, 
the diffuse scattering mechanism is the most important contributor to the TP. For the 
majority of the pixels in each land cover type it is responsible for 61 to 100% of the 
TP. The odd bounce scattering mechanism usually contributes ≤ 40% of the TP. 
Contributions up to 60% of TP are less common and contributions up to 80% of TP 
are rare. The double bounce scattering mechanism does not generally contribute 
more than 20% of the TP. In C-band, the scattering behaviour of the primary forest 
types is comparable to that of Logged-over forest and Secondary forest. For 
Non-forest the contribution of odd bounce scattering to the TP is less important than 
for the forest types; the contribution of diffuse scattering is more important. 
 
In L-band (see Figure 6.11), when compared to C-band, the diffuse scattering 
mechanism has gained importance and the odd bounce scattering mechanism has 
lost importance for all but the Non-forest class. For more than half of the pixels 
belonging to the different forest classes, diffuse scattering is responsible for ≥ 81% 
of the TP. Odd bounce scattering generally contributes ≤ 20% of the TP. Like in 
C-band the backscatter resulting from double bounce scattering is usually ≤ 20% of 
the TP. Nevertheless, this scattering mechanism has gained some importance since 
in L-band the number of pixels for which it contributes 21 to 40% of the TP is larger 
than in C-band. The scattering behaviour of the various forest classes in L-band is 
well comparable but different from that of Non-forest. Going from C- to L-band the 
number of Non-forest pixels for which diffuse scattering contributes ≥ 61% of the TP 
has decreased considerably. The lower contribution of diffuse scattering to TP is 
compensated by higher contributions from both the odd bounce and the double 
bounce scattering mechanism. 
 
Going from L- to P-band (see Figure 6.12) there is a decrease in the contribution of 
diffuse scattering to the TP. For the primary forest classes as well as the Logged-over 
forest class the loss in backscattered power resulting from diffuse scattering is 
small. For these classes the lower diffuse scattering contribution is made up for by a 
higher contribution from double bounce scattering. However, double bounce 
scattering can be seen to rarely contribute ≥ 41% of the TP. The loss in power 
resulting from diffuse scattering and the gain in power resulting from double bounce 
scattering is the highest for the Low swamp forest. For Secondary forest and 
Non-forest the loss in backscattered power resulting from diffuse scattering is 
considerable. It is compensated by a higher contribution from both odd bounce and 
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double bounce scattering. Odd bounce and double bounce scattering make the most 
important contribution to TP in the Non-forest class. For close to half of the pixels in 
this class the diffuse scattering mechanism contributes ≤ 40% of the TP. 
 
The above findings with regard to the role of odd bounce, double bounce and diffuse 
scattering in the scattering behaviour of tropical land cover types in C-, L- and P-band 
agree well with the results from an unsupervised classification of scattering 
behaviour according to van Zyl (1989). These results are reported in van der Sanden 
and Hoekman (1994, 1995). 
 
It is interesting to note the discrepancy in the scattering behaviour of Secondary 
forest and Low swamp forest. In the case of Secondary forest the loss in power from 
diffuse scattering (when going from L- to P-band) is compensated by equivalent 
contributions from the odd and the double bounce scattering mechanism. However, 
in the case of Low swamp forest the reduction in power from diffuse scattering is 
primarily compensated by a contribution from the double bounce scattering 
mechanism. It is hypothesised that this difference in the backscatter behaviour of the 
two forest types is related to forest flooding. The AIRSAR data were acquired during 
the rainy season. Consequently, the Low swamp forest was more than likely to be 
inundated. Due to sheltered conditions underneath the forest canopy the water 
surface will have been smooth. This caused the water to reflect the incident power in 
the forward direction and not in the backscatter direction. Hence, odd bounce 
scattering did not generate backscatter. The only way the deeply penetrating P-band 
microwaves could be reflected towards the sensor was through double bounce 
interaction between the water surface and primary branches or tree trunks. Different 
authors have reported on the relationship between forest flooding and double bounce 
scattering (e.g. Hoffer et al., 1985; Imhoff et al., 1986; Richards et al., 1987; 
Freeman and Durden, 1992). The scattering behaviour of the Low swamp forest 
supports their findings. Mora forest, like Low swamp forest, is generally flooded in 
the rainy season. Yet, the scattering behaviour of this forest type shows little 
evidence of double bounce interaction. This is probably due to the forest's high 
aboveground biomass (see Figure 4.6). High biomass levels have a strong 
attenuating effect on the incident as well as the reflected waves and hence obstruct 
double bounce (back)scattering. 
 
Figure 6.13 shows γ  as a function of incidence angle in C-, L- and P-band, HH, VH 
and VV polarization, for a stretch of dense tropical rain forest on flat to gently 
undulating terrain. In C- and L-band, regardless of polarization, the effect of the 
incidence angle on γ  is minimal. This suggests the dominance of diffuse scattering 
which agrees well with the results shown in Figures 6.10 and 6.11. In P-band γ  can 
be seen to increase by 2 to 3 dB as the incidence angle increases from ca. 20° to  
60°. This contradicts the earlier observation that most of the backscattered power for 
tropical forest in P-band results from diffuse scattering. However, the small difference 
in HH and VV backscatter supports this observation. The shown change in γ  as a 
function of incidence angle also does not indicate the dominance of either odd 
bounce or double bounce scattering. If the backscatter resulted from odd bounce 
scattering, i.e. from scattering at the forest soil, one would expect a decrease in γ   
 

173 



Radar remote sensing to support tropical forest management 

 
Figure 6.13 (a-c)  Plots of γ  as a function of the incidence angle for a stretch of dense 
tropical rain forest on flat to gently undulating terrain: (a) in C-band HH, VH and VV (b) in 
L-band HH, VH and VV (c) in P-band HH, VH and VV. 

174 



6  Radar remote sensing to support forest resource assessment 

with an increase in incidence angle. This may be explained by the reduced depth of 
vertical penetration at larger incidence angles (see Equation 3.30, section 3.2.4). If, 
on the other hand, the backscatter resulted from double bounce scattering, i.e. 
trunk-ground interaction, one would generally find  a maximum value for γ  at around 
the 45° incidence angle and certainly no increase in γ  beyond this angle of 
incidence. The apparent variation induced by the incidence angle in P-band HH, VV 
and VH backscatter cannot be explained by physics and is most likely a calibration 
artefact. 

 

 

6.3.2 Classification of land cover per region using backscatter and PPD 

Results of classifications based on a single radiometric or polarimetric attribute 
Table 6.9 shows the results of Gaussian maximum-likelihood classifications using γ , 
PPD and sd(PPD) values computed per region for a selection of polarizations in the C, 
L and P frequency band. The results are sorted, in descending order, according to the 
value of the  statistic (see section 5.2.4). Of the combinations listed, L VV yields 
the best and C PPD the poorest overall classification results. At the 95% confidence 
level the results for the highest ranking L VV combination are not significantly 
different from those for the series of combinations beginning with P HH and ending 
with P VH. In the table this is indicated by a vertical line at the left-hand side of the 
first column. Likewise, the line at the right-hand side of the last column marks the 
combinations for which the results are not significantly different from those for lowest 
ranked C PPD combination. 

Κ̂

 
All C-band combinations are clustered in the lower half of the table. The results for 
these combinations do not differ significantly from those for the lowest ranked 
combination. It is evident that the C-band combinations provide a poor basis for 
classifying the land cover types studied. L- and P-band combinations other than 
L PPD, L sd(PPD), P PPD and P sd(PPD) yield significantly better overall classification 
results. Among these L HH, P VV and P RL are the least discriminative. Figure 6.14 
illustrates the classification capacities for L VV, P RR and C VV. From C VV to L VV 
and from L VV to P RR the backscatter differences between the classes increase. 
However, in P RR the larger between class backscatter differences are accompanied 
by larger within-class variances. This contributes to the fact that the maximum-
likelihood classification results for P RR and L VV are not significantly different. 
 
Comparison of Figures 6.14c and 6.6a shows that the C-band VV backscatter values 
computed from the NASA/JPL AIRSAR data set are ca. 4 dB higher than the 
backscatter values derived from the ERS-1 SAR PRI data. ERS-1 SAR data are known 
to have a high radiometric accuracy (e.g. Laur et al., 1993). It is therefore plausible 
that the difference in the absolute backscatter level for the two data sets is due to a 
defect in the absolute calibration of the AIRSAR data. Multiple incidence angle 
backscatter measurements by the ERS-1 windscatterometer support this supposition 
(Wismann et al., 1996). The observed calibration defect does not modify the 
classification results discussed in this text as it affects the backscatter levels of all 
classes in a similar manner. 
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Table 6.9  Gaussian maximum-likelihood classification results. Classification based on γ , 
PPD and sd(PPD) values computed per region for selected polarizations in the C, L and 
P frequency band. 

   Percentage correct 

 
Κ^

 
Κ^^ [ ]σ 2

∞          

L VV 0.5322 0.0035 60 63 83   0 100 44 58 50 71 

P HH 0.5228 0.0034 59 38 42 17   83 81 75 50 71 

P LL 0.4853 0.0034 55 13 67   0   50 56 83 80 79 

L TP 0.4579 0.0035 53 69 67   0   83 19 58 50 71 

L VH 0.4575 0.0036 53 38 33   0   83 50 67 90 64 

P RR 0.4473 0.0034 52   6 58   0   67 56 75 80 71 

P TP 0.4222 0.0035 50 13 75   0   50 38 75 80 64 

L RL 0.4209 0.0034 50 63 75   0   83 13 42 50 71 

L LL 0.4078 0.0036 49 56 42   0   83 25 67 50 64 

L RR 0.4051 0.0037 49 50 42   0   83 38 58 50 64 

P VH 0.3925 0.0030 47   0 75 33   33   0 92 90 71 

L HH 0.3436 0.0035 43 63 25   0   83 19 42 40 71 

P RL 0.3272 0.0032 41   0 67   0   50 25 58 70 64 

P VV 0.3140 0.0030 40   0 83   0   67   6 67 30 79 

L PPD 0.2824 0.0033 38 25   0   0 100 56 50 60 29 

C sd(PPD) 0.2714 0.0026 36   6 83   0   83   6 25 20 79 

P sd(PPD) 0.2251 0.0026 32 19   0 83   67 38 58 40   0 

L sd(PPD) 0.2130 0.0023 29 31   0 67   83   0 67   0 36 

C VH 0.2114 0.0023 32   0 75   0   83 63   0   0 36 

C LL 0.1974 0.0023 30   0 75   0   83 63   0 10 21 

P PPD 0.1932 0.0027 30 19 17   0   50 31 92 40   0 

C VV 0.1845 0.0023 28   0 42   0   67 56   8   0 50 

C TP 0.1826 0.0021 28 13   8   0   83 69   0   0 50 

C RR 0.1783 0.0020 28   0 67   0   83 63   0   0 21 

C RL 0.1708 0.0021 27   6   8   0   67 63   8   0 57 

C HH 0.1634 0.0024 28 44   0   0   50 63   8   0 36 

C PPD 0.1484 0.0017 23   0 67 33   83   0 42   0   7 
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Figure 6.14 (a-c)  Gaussian approximations of pdf's for γ  values associated with land cover 
types present in the NASA/JPL AIRSAR data set: (a) pdf's for L-band VV (b) pdf's for P-band 
RR (c) pdf's for C-band VV. 
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Comparison of Figures 6.14c and 6.6a furthermore shows that the within-class 
variance in the AIRSAR data set is larger than in the ERS-1 data set. This is due to 
the fact that the two systems operate with a different incidence angle (range) (see 
Tables 4.6 and 4.8). An incidence angle range as wide as in the AIRSAR data causes 
backscatter variations which are not related to the object observed and therefore 
reduces the likelihood of correct classification. The question as to whether the small 
ERS-1 or large AIRSAR incidence angles are to be preferred cannot be answered 
adequately with the help of the data sets available. It is evident, however, that the 
answer will not be unequivocal since the 'optimal' incidence angle will strongly 
depend on the wavelength. 
 
The advantage of microwaves with long wavelengths such as L- and P-band is their 
vertical penetrating capability. This capability is higher at small than at large 
incidence angles (see Equation 3.30). For most of the areas of interest in the AIRSAR 
data set the incidence angle ranges approximately from 40° to 60°. At these 
incidence angles the capability of L- and P-band microwaves to penetrate the dense 
tropical forest is limited. This follows from the generally small contributions of the 
odd bounce and double bounce scattering mechanisms to the total backscattered 
power (see section 6.3.1). Due to the limited vertical depth of penetration of the 
incident microwaves, the information present in the lower quarters of the forest is not 
observed. This restricts the possibilities to discriminate between different forest 
types and suggests that a smaller incidence angle (ca. 30°) could be advantageous. 
On the other hand, the importance of microwaves with short wavelengths relates to 
their ability to observe architectural properties of the forest canopy. Since these 
properties are best reflected in image texture (see sections 6.1.1 and 6.2.1) the 
'optimal' incidence angle is the one at which the textural differences between cover 
types are most pronounced. From the results in section I.1 of Appendix I it follows 
that this is the case at large incidence angles. 
 
Table 6.9 shows that L- and P-band have comparable capabilities for discriminating 
between Non-forest and other cover types. Based on a single L- or P-band 
combination, ca. 65 to 80% of the Non-forest data points are classified correctly. 
Non-forest is not generally confused with any class other than Secondary forest. P VH 
and L VH are able to classify Secondary forest with a 90% accuracy. Other L- and 
P-band combinations yield less accurate results; the results for P-band are generally 
better than those for L-band. P TP and the circular polarized P-band combinations 
yield more accurate results than P HH and P VV. Secondary forest is easily confused 
with Logged-over forest and, to a lesser extent, with Mixed forest and Xeric mixed 
forest. Generally speaking, Logged-over forest is classified more accurately by P-band 
combinations than by L-band combinations. P VH and P LL yield the best results  
(≥ 83% accuracy), P VV and P RL the poorest. Logged-over forest is primarily confused 
with Mixed forest, i.e. the forest type being logged, Secondary forest and Mora forest. 
 
On the average, the primary forest types are most difficult to classify. Within a 
particular frequency band the results vary strongly as a function of polarization. L VV 
and P HH yield the best overall results. They correctly identify 59% and 54% of the 
primary forest data points. However, no single combination may be denoted as  
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Table 6.10  Gaussian maximum-likelihood classification results after grouping all of the 
primary forest type data points into a single Primary forest class. Classification based on γ , 
PPD and sd(PPD) values computed per region for selected polarizations in the C, L and 
P frequency band. 

   Percentage correct 

 
Κ^

 
Κ^^ [ ]σ 2

∞

 
Total 

Primary
forest 

Logged-over 
forest 

Secondary 
forest 

Non- 
forest 

P LL 0.6898 0.0040 80 80   83 80 79 

P RR 0.6874 0.0039 80 82   83 80 71 

L VH 0.6832 0.0040 80 84   75 90 64 

P HH 0.6442 0.0043 78 84   83 50 71 

L TP 0.6093 0.0041 75 79   83 50 71 

L RR 0.6032 0.0042 75 80   83 50 64 

P TP 0.6001 0.0043 74 73   83 80 64 

L HH 0.5940 0.0047 75 80   83 40 71 

L LL 0.5935 0.0041 74 79   83 50 64 

P VH 0.5850 0.0043 72 64   92 90 71 

L VV 0.5738 0.0044 73 77   75 50 71 

L RL 0.5711 0.0044 73 79   67 50 71 

P VV 0.4855 0.0043 65 64   83 30 79 

P RL 0.4835 0.0046 65 64   67 70 64 

C sd(PPD) 0.3426 0.0051 55 54   67 20 79 

P sd(PPD) 0.3290 0.0042 57 68   67 40 14 

L sd(PPD) 0.2469 0.0044 47 43   83 40 36 

C HH 0.1768 0.0050 46 50   25 30 57 

P PPD 0.1510 0.0018 27   4 100 70 29 

C RL 0.1498 0.0058 47 55   25 10 57 

C RR 0.1415 0.0051 48 63   25 20 29 

L PPD 0.1404 0.0023 30 13 100 60 21 

C VH 0.1086 0.0047 42 52   33 10 36 

C PPD 0.1017 0.0048 42 50   58 20 14 

C TP 0.0946 0.0051 45 57   17   0 50 

C VV 0.0670 0.0024 25 14   67   0 50 

C LL 0.0592 0.0031 29 27   50 30 21 
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'the best' for classifying all of the primary forest types studied. Mixed forest and 
Xeric mixed forest are especially difficult to classify. Mixed forest is easily confused 
with Mora, Wallaba and Logged-over forest. Xeric mixed forest is confused with every 
other class with the exception of Non-forest and Secondary forest. For the 
classification of Logged-over forest, Secondary forest and Non-forest, the L- and 
P-band combinations are clearly more suitable than the C-band combinations. A 
similar discrepancy in the classification results for L- or P- and C-band is not seen in 
connection with the primary forest types. The C-band results for Mora forest, for 
example, exceed those for most L- and P-band combinations. Since C-band radar 
waves are sensitive to differences in canopy architecture it may be concluded that 
such differences are an important basis for discriminating primary forest types in 
radar images. 
 
Comparison of Table 6.9 and Table 6.2 shows that the overall classification results 
as associated with the L VV through L RL γ  values and the X HV and/or C VV sd(γ ) 
and GLCO-CONT[5] values are not significantly different. Hence, it is concluded that 
textural patterns in high resolution X- and C-band SAR images and backscatter levels 
in L- and P-band SAR images are equally suitable information sources for classifying 
the land cover types studied. 
 
Table 6.10 shows the results of a lower level classification, i.e. a classification in 
which all primary forest type data points are grouped into a single Primary forest 
class. This table has the same layout as Table 6.9. Thanks to the grouping of the 
most easily confused cover types, the overall classification results have become 
better. An overall classification accuracy of ca. 70% to 80% is judged good. At the 
95% confidence level, however, the improvement in the classification results is not 
significant. The grouping of the primary forest types also resulted in higher 
classification accuracy for Logged-over forest and Secondary forest. The classification 
results for Non-forest generally did not improve since this cover type is not easily 
confused with primary forest types. 
 
The grouping of the primary forest types has had little effect on the ranking of the 
various combinations. L HH is added to the series of combinations for which the 
results do not differ significantly from those of the best performing combination. 
C sd(PPD), L sd(PPD) and P sd(PPD) no longer belong to the series of worst 
performing combinations but this series is otherwise unchanged. Interesting to note 
are the high percentages of correctly classified Logged-over forest data points for L 
PPD and P PPD. A closer look at the data shows that this is due to the fact that data 
points for Logged-over forest are confined to a much narrower range than those for 
Primary forest, Secondary forest and Non-forest. Consequently, the pdf's for 
Logged-over forest are high and narrow while those for the other classes are low and 
wide. This results in good classification results for Logged-over forest despite the fact 
that the L PPD and P PPD values for this class and, in particular, Primary forest, are 
not substantially different. Unfortunately, the good results for Logged-over forest are 
accompanied by poor results for Primary forest since many of the data points 
belonging to this class are classified as Logged-over forest. 
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Table 6.11  Differences in γ  values for Mixed forest and Logged-over forest as well as for 
Primary forest and Logged-over forest, Secondary forest and Non-forest in frequency bands 
and polarizations studied. 

 Polarization 

 HH VH VV RR RL LL TP 

γ  Mixed forest minus γ  Logged-over forest  (dB) 

C-band  0.10  0.12  0.05  0.04  0.07  0.15  0.08 

L-band  0.40  0.46  0.47  0.46  0.41  0.48  0.44 

P-band  0.77  0.53  0.45  0.66  0.51  0.68  0.60 

γ  Primary forest minus γ  Logged-over forest  (dB) 

C-band -0.09 -0.02 -0.07 -0.08 -0.09  0.02 -0.07 

L-band  0.67  0.63  0.71  0.73  0.60  0.75  0.67 

P-band  1.51  0.75  0.99  1.32  0.95  1.26  1.14 

γ  Primary forest minus γ  Secondary forest  (dB) 

C-band -0.08  0.16  0.15 -0.03  0.08  0.11  0.06 

L-band  0.90  1.92  1.38  1.37  1.22  1.43  1.31 

P-band  1.83  3.96  2.90  3.06  2.20  2.93  2.62 

γ  Primary forest minus γ  Non-forest  (dB) 

C-band  0.47  0.57  1.36  0.12  1.47 -0.07  0.82 

L-band  3.87  6.38  4.51  4.86  4.42  4.67  4.59 

P-band  5.42  8.69  6.07  6.96  5.53  6.73  6.20 

The results in Table 6.10 show that many radar bands, notably those involving long 
wavelengths, can accurately discriminate between Primary forest, Logged-over forest, 
Secondary forest and Non-forest. Yet, the difference in the mean backscatter level of 
these cover types is often small. In order to discriminate between them, a SAR 
system with a high radiometric resolution is needed. Depending on the radar band 
and the cover types in question, the backscatter difference and hence the required 
radiometric resolution may vary. The differences in the γ  values for Mixed forest (the 
forest type being logged) and Logged-over forest as well as for Primary forest and 
Logged-over forest, and Secondary forest and Non-forest are listed in Table 6.11. The 
incidence angle for most of the data points in these classes ranges from roughly 40° 
to 60°. In L- and P-band the backscatter differences are more distinct than in C-band. 
This largely explains the good results for classifications based on L- and P-band data. 
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Results of classifications based on two and three radiometric attributes 
The relatively low accuracy in Table 6.9 for classifying primary forest types lead to an 
analysis of the classification capabilities of dual and triple frequency and/or 
polarization radar band combinations. The analysis concerned a total of 210 dual and 
1330 triple frequency and/or polarization combinations. Combinations inclusive of 
the polarimetric PPD or sd(PPD) attributes were not considered. 
 
Table 6.12 lists the overall classification potential of the γ  values for dual frequency 
and/or polarization combinations. The entries of this table represent the number of 
class pairs that can be successfully discriminated, i.e. the number of class pairs out 
of a total of 28 for which TD  (see section 5.2.4). Tables IV.1 through IV.4 in 

Appendix IV show the potential of the 
ij ≥ 1900

γ  values for dual frequency and/or polarization 
combinations for classifying primary forest types, Logged-over forest, Secondary 
forest and Non-forest, respectively. 
 
Table 6.12 shows that the highest overall classification potential is generally offered 
by a combination of C- and P-band. C VH, C RR and C LL are the best performing 
C-band channels, P HH, P RR, P LL and P TP the best performing P-band channels. 
Table IV.1 reveals that even dual frequency and/or polarization radar band 
combinations have difficulty to distinguish between the primary forest types studied. 
The maximum number of primary forest class pairs that can be successfully 
discriminated is six out of a total of 10. Combinations of C- and P-band offer the 
highest classification potential. C VH, C LL, P HH, P RR, P LL and P TP are among the 
best performing channels. The results in Table IV.2 show that the availability of 
P-band HH data is important for classifying Logged-over forest. Combinations 
consisting of two P-band channels, one of which is P HH, are performing the best. 
Such combinations successfully discriminate six out of seven class pairs. The one 
class pair causing problems comprises Logged-over forest and the forest type that is 
being logged, i.e. Mixed forest. 
 
Table IV.3 shows that combinations of either L VH or P VH with C-band (any 
polarization) offer the best possibilities for classifying Secondary forest. These 
combinations are able to discriminate between all class pairs involving Secondary 
forest. Classification of Non-forest does not generally create problems. Any 
combination involving L- or P-band (with exception of C HH, P VV) can at least 
discriminate between six out of seven Non-forest class pairs (see Table IV.4). 
Combinations that include C LL or L VH perform better than others. In classifying 
Non-forest one does not usually gain much by using double frequency and/or double 
polarization combinations since all individual L- and P-band channels (with exception 
of P VV) are already capable of discriminating between six out of the seven Non-forest 
class pairs. In absence of L- and P-band, the combined use of C-band channels does 
enhance the Non-forest classification possibilities. The best performing C-band 
combinations are those that include a circular polarized channel. 
 
Table 6.13 presents the Gaussian maximum-likelihood classification results for a 
limited selection of the dual frequency and/or polarization combinations studied. The 
selection includes the combinations offered by currently available radar satellite  
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Table 6.13  Gaussian maximum-likelihood classification results for a selection of dual 
frequency and/or polarization combinations. Classification based on γ  values computed per 
region. 

   Percentage correct 

 
Κ^

 
Κ^^ [ ]σ 2

∞
         

C RR, P LL 0.6889 0.0028 73 38 67 83 100 56   92   90 93 

C VH, P LL 0.6882 0.0028 73 31 75 67 100 63   92   90 93 

P HH, P VH 0.6755 0.0028 72 56 42 67   83 75 100   90 71 

C LL, P RR 0.6752 0.0029 72 25 67 83 100 75   83   90 86 

C LL, P TP 0.6640 0.0029 71 19 83 83 100 75   75   90 79 

C VH, P TP 0.6026 0.0031 65 19 67 67 100 63   83   80 79 

C VV, P RR 0.5897 0.0031 64 13 58 50   67 69   92   90 86 

C HH, P RR 0.5851 0.0034 64 44 67 33   83 56   75   80 79 

L HH, P RR 0.5851 0.0034 64 44 67 33   83 56   75   80 79 

C HH, L VV 0.5478 0.0035 61 69 33 50 100 44   92   60 57 

C VV,  P VH 0.5339 0.0031 59   0 50 67   83 44   75 100 93 

C VV,  L VV 0.5096 0.0036 58 25 83 33 100 56   58   60 64 

C HH, L HH 0.4854 0.0035 55 69 42 17   83 50   58   50 64 

C VV, L HH 0.4610 0.0035 53 19 67 17   83 69   50   40 79 

C HH, C VV 0.3181 0.0031 40 19 75 17   83 44   17   20 57 

systems, i.e. ERS-1/2 (C VV), RADARSAT (C HH) and JERS-1 (L HH). The layout of the 
table conforms to Table 6.9. C RR, P LL is the best performing combination: the 
associated overall classification accuracy is 73%. This is 45% and 18% higher than 
the overall accuracy for C RR and P LL, respectively. For individual classes the 
increase in classification accuracy may be much higher. For example, separately C RR 
and P LL cannot classify any of the Xeric mixed forest data points correctly. Yet, in 
combination they classify the data points for this forest type with an accuracy of 83%. 
Generally speaking, dual frequency and/or polarization combinations do not suffice 
for classifying Mixed forest. Various combinations yield good results for Logged-over 
forest, Secondary forest and Non-forest. At the 95% confidence level the overall 
classification accuracy for both C RR, P LL and C VH, P LL is significantly better than 
that for the best performing single frequency and/or polarization combination in 
Table 6.9, i.e. L VV. The combinations consisting of radar bands similar to the ones 
available in current satellite systems are clustered in the lower part of the table. The 
overall classification result for C HH, L HH and C VV, L HH is not significantly different 
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Table 6.14  Gaussian maximum-likelihood classification results for a selection of triple 
frequency and/or polarization combinations. Classification based on γ  values computed per 
region. 

   Percentage correct 

 
Κ^

 
Κ^^ [ ]σ 2

∞
         

C LL, P VH, P TP 0.8616 0.0015 88 69 92 100 100 88   83 100 93 

C VH, P HH, P VH 0.8367 0.0018 86 69 67   83 100 88 100 100 93 

P HH, P TP, P RL 0.8123 0.0020 84 81 75 100   83 63   92 100 93 

C RR, P HH, P RR 0.7993 0.0021 83 69 75   67 100 81 100 100 79 

C VH, P VH, P RR 0.7870 0.0022 82 50 67 100 100 81   92 100 93 

C VH, LRL, P VV 0.7381 0.0025 77 56 83 100   83 56   92   90 86 

C HH, L HH, P RR 0.7246 0.0026 76 69 67   83   83 50 100   90 86 

L HH, L VH, L LL 0.6499 0.0030 70 56 75   67 100 56   75   90 64 

C VV, L HH, P RR 0.6398 0.0029 68 19 75   50   83 69   92   90 86 

C VV, C TP, C RR 0.4778 0.0034 54 19 83   50 100 50   50   40 71 

from the result for L HH. Likewise, the result for C HH, C VV does not differ 
significantly from the result for C VV. 
 
Table 6.14 presents the Gaussian maximum-likelihood classification results for a 
selection of triple frequency and/or polarization combinations. The layout of the table 
conforms to Table 6.9. The combinations shown were selected following an 
evaluation of the potential classification capacity for all combinations possible (see 
section 5.2.4). The results of this analysis showed that the combination of C LL, P 
VH, P TP had the highest classification potential. This is confirmed by the maximum-
likelihood classification results in Table 6.14. Both C LL, P VH, P TP and C VH, P HH, 
P VH perform significantly better than the best performing dual frequency and/or 
polarization combination, i.e. C RR, P LL. Scatter diagrams in Figure 6.15 illustrate 
the measurement space of the different cover types in the C LL, P VH, P TP 
combination. The centre of the ellipses coincides with the mean backscatter values. 
The eigenvectors and eigenvalues of the inverse covariance matrices define the 
direction and length of the ellipse axes. The ellipses include measurements within a 
distance of once the standard deviation from the mean values. It is evident from 
Figure 6.15 that P VH provides a good basis for discriminating Non-forest and 
Secondary forest from each other as well as from the other cover types. The 
backscatter differences between the primary forest types and between those and 
Logged-over forest are small. For these cover types the classification results are  
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Figure 6.15  Scatter diagrams illustrating the measurement space of the land cover classes 
studied in the C LL, P VH, P LL band combination. The ellipses include measurements within 
a distance of once the standard deviation from the mean values. 
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primarily governed by shape and orientation of their probability density functions. The 
ellipses in Figure 6.15 do in fact represent the contours of these probability density 
functions. The probability for a measurement in a particular class to be located within 
the boundaries of the corresponding ellipse is equal to 0.68. 
 
Triple frequency and/or polarization combinations in the first place yield better 
results for the primary forest types. Generally speaking, the best performing 
combinations consist of the following frequency bands: C,P,P or C,C,P or C,L,P or 
P,P,P. Combinations including linear cross-polarized or circular like-polarized channels 
often yield better results than others. This suggests that canopy architecture is 
important for discriminating forest types in radar images since radar return signals 
with such polarizations typically result from diffuse scattering in the forest canopy. 
 
 
Recapitulation 
Figure 6.16 shows the percentage of primary forest, Logged-over forest, Secondary 
forest and Non-forest class pairs that is discriminated by the best performing single, 
dual and triple frequency and/or polarization combination(s). Assuming that a 
combination provides a successful classification basis if it can discriminate at least 
80% of the class pairs, then it may be concluded that successful classification of 
primary forest types requires a triple frequency and/or polarization combination, 
successful classification of Secondary forest and Logged-over forest requires a dual 
frequency and/or polarization combination, and successful classification of 
Non-forest requires a single frequency and/or polarization combination. 
 

 
Figure 6.16  Potential of single, dual and triple frequency and/or polarization combinations 
for the classification per region of primary forest, Logged-over forest, Secondary forest and 
Non-forest. The values on the ordinate represent the percentage of class pairs that can be 
successfully discriminated by the best performing combination(s), i.e. the percentage of 
class pairs for which TD . ij ≥ 1900
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Combinations most suitable for classifying primary forest types comprise the 
following frequency bands: C,P,P or C,C,P or C,L,P or P,P,P. Combinations inclusive of 
linear cross-polarized or circular like-polarized channels are usually more suited than 
others. For the classification of Logged-over forest a dual combination consisting of P 
HH and one other P-band channel is most appropriate. However, other combinations 
such as P HH with C- or L-band (any polarization) or P RR with C VH or C LL also yield 
good results. Combinations of either L VH or P VH and C-band (any polarization) are 
most capable of classifying Secondary forest. Finally, Non-forest is classified best by 
L- or P-band (any polarization). 

 

 

6.3.3 Backscatter as a function of aboveground biomass and architecture 

Figure 6.17 shows the variation in the mean backscatter level of the cover types 
studied in C-, L-, P-band and in HH, VH, VV, RR, RL, LL and TP polarization. In this 
figure the cover types are ordered based on the total amount of dry biomass above 
the ground. Non-forest has the lowest aboveground biomass; Mixed forest the 
highest (see section 4.3). In all frequency bands and polarizations the backscatter 
increases with an increase in biomass up to a point corresponding to the biomass 
level of Low swamp forest. Beyond this point the radar return signal essentially 
reaches a plateau and saturates. The total aboveground dry biomass of Low swamp 
forest is in between that of Secondary forest and Xeric mixed forest, i.e. between 40 
and 240 t ha-1. A more accurate assessment cannot be made since Low swamp 
forest was not among the forest types for which ground data on structural forest 
properties were collected (see section 4.2.3). Other researchers have studied the 
relationship between the radar backscatter and the aboveground biomass of mostly 
coniferous forest plantations in temperate regions. They have shown that the 
backscatter in L- and P-band saturates at a dry biomass level of the order of  
100 t ha-1 and 200 t ha-1, respectively (Dobson et al., 1992; Le Toan et al., 1992). 
These results agree with the findings in the present study. 
 
With a sensitivity to dry biomass up to 200 t ha-1, P-band SAR systems will be 
capable of mapping the biomass of tropical forests in the innovation and early 
aggradation phase but not in the biostatic or mature phase (see section 4.3.2). This 
statement is based on the assumption that the forest to be mapped is of a type 
similar to that of the forests present in Mabura Hill. However, various empirical and 
backscatter modelling studies show that the radar return signal not only depends on 
the quantity of biomass above the ground, but also on forest architecture, i.e. on the 
size, shape and orientation distributions of trunks, branches and foliage (e.g. Sader, 
1987; Westman and Paris, 1987; McDonald et al., 1991; Imhoff, 1995; Hoekman, 
et al., 1996). The modelling study by Imhoff (1995) clearly illustrates that forest 
stands with equal biomass levels but differing architectures may generate very 
different radar return signals. This holds true for both stands with biomass levels 
below and above the threshold at which the backscatter saturates. It follows that 
forest architectural differences complicate the development of universal formulations 
for estimating biomass from radar backscatter. Yet these architectural differences 
provide a basis for discriminating forest types with biomass levels above the  
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Figure 6.17 (a-c)  Plots of γ  as a function of total aboveground biomass: (a) in C-band HH, 
VH, VV, RR, RL, LL and TP polarization (b) ditto in L-band (c) ditto in P-band. The cover types 
studied are presented as a series from low to high total aboveground biomass. 
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threshold, i.e. for discriminating forest types such as the ones studied in the present 
text. 
 
Architectural differences are hypothesised to be the main cause of the backscatter 
variations present in the plateaux of the plots in Figure 6.17. In C-band these 
variations primarily result from differences in the size, shape and/or orientation 
distributions of leaves, twigs and/or secondary branches. The backscatter variations 
in L-band are most likely due to architectural differences in secondary branches, 
primary branches and/or trunks, and in P-band to architectural differences in primary 
branches and/or trunks (see section 3.2.2). 
 
With regard to the scattering behaviour of the primary forests and Logged-over forest 
in C-band, the following observations may be made. In comparison to the other forest 
types, Wallaba forest and to a lesser extent Xeric mixed forest show a noticeably 
larger difference in HH and VV backscatter. In both cases the VV backscatter is larger 
than the HH backscatter. This suggests that the scatterers in the canopies of these 
forest types are mostly oriented in the vertical plane, i.e. the presence of a special 
architecture. The scatterers in the other forest types have a more randomly 
distributed orientation. Generally speaking, the return signals for Xeric mixed and 
Mora forest are somewhat lower than those for the other forest types. In C-band the 
different forest types may be considered to constitute an "opaque" vegetation layer. 
This implies that the backscatter is only dependent on the ratio between the 
scatterers' radar cross section and extinction cross section (see Equation 3.28, 
section 3.2.1). The lower backscatter levels for Xeric mixed forest and Mora forest 
thus indicate either a smaller radar cross section or a larger extinction cross section. 
Ground observations show that many of the species in Xeric mixed forest have a 
relatively small leaf size (see section 4.3.3). A small leaf size implies a small radar 
cross section. The, on average, small leaf size for Xeric mixed forest fits in well with 
the noted low backscatter levels, since in C-band, the leaves are important 
scatterers. The available ground reference data do not explain the scattering 
behaviour of the Mora forest. 
 
In L-band the backscatter signatures associated with the different polarizations show 
more similar trends than in C- and P-band. This suggests that the orientation of the 
L-band scatterers is randomly distributed. The backscatter levels for Low swamp 
forest are somewhat higher than those for the other forest types. According to the 
results discussed in section 6.3.1 double bounce scattering does not contribute 
much to the backscatter for Low swamp forest in L-band. It may be assumed, 
however, that the relatively high L-band backscatter levels for Low swamp result from 
an enhancement of double bounce scattering by forest flooding. After all the 
backscatter difference between Low swamp forest and the other primary forest types 
is small. Moreover, the assumption is supported by the fact that Low swamp forest 
displays a similar behaviour in P-band. In this frequency band the backscatter of Low 
swamp forest was found to include contributions resulting from double bounce 
interaction. 
 
The backscatter level for Logged-over forest, when compared to that of primary forest 
types other than Low swamp forest, is slightly lower. Logged-over forest originates 
from Mixed forest. The backscatter difference between these forest types may thus 
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be attributed to logging. Logging results in a reduced total biomass above the ground 
and affects forest architecture. Felled and extracted trees represent a dry biomass of 
the order of 22 t ha-1 (see section 4.3.2). The total reduction in aboveground 
biomass, however, is usually considerably larger due to logging inflicted damage to 
the remaining forest (e.g. Jonkers, 1987; Hendrison, 1990). Nevertheless the 
biomass decrease due to logging will usually be small in comparison to the biomass 
level of the Mixed forest (ca. 650 t ha-1, see Figure 4.6). On average per hectare, the 
dry biomass level of Logged-over forest will be well above the threshold value of ca. 
100 t ha-1 at which the L-band backscatter saturates. However, the actual felling of 
trees is generally concentrated in relatively small areas. This especially holds true in 
Mabura Hill since the preferred species grows in groups (see section 4.3.2). At felling 
locations the biomass may well be reduced to a level below that of backscatter 
saturation. Hence, the corresponding regions in radar images may show considerably 
decreased backscatter levels. 
 
The small difference in the L-band backscatter for Logged-over and Mixed forest can 
be explained by the fact that the backscatter values studied are mean values for 
image regions. The image regions for Logged-over forest are much more 
heterogeneous than those for the other forest types. They comprise a mixture of 
smaller areas where trees have been felled (artificial gaps) and larger areas where 
the forest is more or less intact. By computing the mean backscatter values for such 
regions the low backscatter values associated with locations of felling are largely 
averaged out. Consequently, the backscatter values for Logged-over forest are 
relatively high, i.e. not much lower than those for Mixed forest. In the analysis of 
radar data the averaging of backscatter values is necessary to limit backscatter 
variations due to speckle. The studied NASA/JPL AIRSAR backscatter values were 
computed by averaging over a region of at least 2500 m2 in order to meet the 500 
looks criterion adopted (see section 5.2.1). According to Hammond and Brown 
(1992) the average size of the felling gaps in Mabura Hill is 800 m2. 
 
Like in L-band, the backscatter values for Low swamp forest in P-band are higher than 
those for the other primary forest types. Results in section 6.3.1 show that the 
microwave interaction in P-band includes double bounce scattering. Double bounce 
scattering involves trunk-ground and/or crown-ground interaction and thus benefits 
from a highly reflective ground surface, i.e. from forest flooding. It is therefore 
hypothesised that forest flooding contributes to the high P-band backscatter values 
for Low swamp forest. Similar to in L-band, the backscatter values for Logged-over 
forest in P-band are lower than those for Mixed forest and the other primary forest 
types. The difference in backscatter between Logged-over forest and Mixed forest is 
the largest in HH polarization, i.e. 0.77 dB. An explanation for the relatively small 
difference in the backscatter for Logged-over forest and primary forest was given 
above. 
 
The P-band backscatter levels for Wallaba forest are high in comparison to those for 
the other primary forest types (excluding Low swamp forest). This cannot be an effect 
related to the amount of biomass present, for more than one reason. First, the 
aboveground biomass of Wallaba forest is lower than that of Mora forest and Mixed 
forest. Second, the dry biomass level of all primary forest types exceeds 200 t ha-1, 
i.e. the threshold at which the backscatter in P-band saturates. The relatively high 
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Table 6.15  Available dynamic range for each of the radar bands studied. The values in this 
table represent the backscatter difference in dB between the cover types with the lowest and 
highest aboveground biomass, i.e. Non-forest and Mixed forest. 

 Polarization 

 HH VH VV RR RL LL TP 

C-band 0.66 0.71 1.48 0.24 1.63 0.07 0.97 

L-band 3.60 6.21 4.27 4.59 4.22 4.41 4.36 

P-band 4.68 8.48 5.53 6.30 5.09 6.14 5.66 

backscatter levels for Wallaba forest most likely result from specific architectural 
properties of the main backscattering sources, namely primary branches and trunks. 
In a study by Loubry (1994) on the architectural properties of Soft wallaba, i.e. one of 
the two most important species in Wallaba forest, it is in fact observed that the 
crowns of mature trees comprise big complexes of reiterated branches. Further 
evidence of a high concentration of branches and leaves in the upper quarters of the 
Wallaba forest is found in the ERASME scatterometer data (see section 6.4.1). The 
presence of a dense layer of primary branches could well be the cause of the 
relatively high backscatter levels for Wallaba forest in P-band. The absence of similar 
effects in L-band suggests that in this frequency band, like in C-band, the upper 
forest canopy is equivalent to an "opaque" layer (see section 3.2.1). 
 
The backscatter difference between the cover type with the lowest and highest 
aboveground biomass, i.e. Non-forest and Mixed forest, reflects the sensitivity of a 
radar band to biomass. This backscatter difference is commonly referred to as the 
dynamic range. Table 6.15 lists the dynamic range for each of the radar bands 
studied. The dynamic range and hence the sensitivity to biomass is shown to 
increase with an increase in wavelength. This phenomenon is well known and may be 
explained by the relationship between wavelength and the scattering behaviour of the 
different forest components (see Table 3.2). The C-, L- and P-band combinations 
most sensitive to biomass are C RL, L VH and P VH. The high sensitivity of the L- and 
P-band linear cross-polarizations, relative to that of the linear like-polarizations, was 
also observed in studies based on data from temperate forest plantations by e.g. Wu 
and Sader (1987), Hussin et al. (1991), Dobson et al. (1992), Le Toan et al. (1992) 
and Moghaddam et al. (1994). According to these authors the dynamic range 
between clear-cuts and the highest biomass forest stands is 5 to 10 dB in L-band 
and 10 to 15 dB in P-band. The ranges shown in Table 6.15, in particular in P-band, 
are considerably smaller. This is probably due to the fact that the Non-forest class 
represents a mixture of non-forest cover types with varying degrees of aboveground 
biomass rather than clear-cuts. Results by Rignot et al. (1995) suggest that RR 
polarized P-band data are less suited for biomass mapping than linear polarized 
P-band data. P-band RR data are found to overpredict biomass in relatively open 
flooded and non-flooded forests where trunk-ground scattering is a strong contributor 
to total backscatter. The Low swamp forest studied exhibits equally enhanced P-band 
backscatter levels in all polarizations with the exception of VH (see Figure 6.17c). 
This does not seem to agree with the findings by Rignot et al. (1995). However, the  
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Figure 6.18 (a-c)  Plots of indices according to Pope et al. (1994) as a function of total 
aboveground biomass in C-, L- and P-band: (a) 'Canopy Structure Index' CSI (b) 'Volume 
Scattering Index' VSI (c) 'Biomass Index' BMI. The cover types studied are presented as a 
series from low to high total aboveground biomass. 
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backscatter behaviour of the Low swamp forest may well be affected by the relatively 
large angle of incidence (ca. 60°). Large incidence angles result in a reduced depth of 
vertical penetration and hence hinder trunk-ground scattering. 
 
Figure 6.18 shows the C-, L- and P-band Canopy Structure Index CSI, Volume 
Scattering Index VSI and Biomass Index BMI of the cover types studied (see section 
5.2.1). Like in Figure 6.17, the cover types are presented as a series from low to 
high total aboveground biomass. The results as discussed in section 6.3.1 need to 
be taken into account in the interpretation of Figure 6.18 since the indices are 
meaningful only in the context of the scattering mechanism. 
 
The CSI for cover types dominated by diffuse scattering is a parameter of the 
proportion of vertical and horizontal scatterers. Dominance of vertically oriented 
scatterers results in high CSI values, whereas dominance of horizontally oriented 
scatterers results in low CSI values. Trunk-ground double bounce scattering may give 
rise to reduced CSI values since this type of interaction in particular results in HH 
backscatter (e.g. Dobson et al., 1992; Pope et al., 1994). In C-band, Xeric mixed 
forest and Wallaba forest can be seen to have the highest CSI values. For all cover 
types studied, the C-band backscatter primarily results from diffuse scattering (see 
section 6.3.1). Hence, it appears that Xeric mixed forest and Wallaba forest have a 
relatively high proportion of vertically oriented scatterers, i.e. leaves, twigs and 
secondary branches. The low CSI value for Secondary forest in P-band is most likely 
due to the strengthening effect of trunk-ground scattering on the HH backscatter in 
particular. In P-band and to a lesser extent in L-band there is also evidence of 
trunk-ground scattering in the flooded Low swamp forest. Yet the P- and L-band CSI 
values for Low swamp forest are relatively high. This is may be explained by the large 
angle of incidence (ca. 60°) which causes diffuse scattering to be more important 
than trunk-ground scattering. 
 
VSI is a parameter of the depolarization of the linear-like polarized incident radar 
signal. High VSI values occur when cross-polarized backscatter is large with respect 
to the like-polarized backscatter. VSI is indicative of diffuse or volume scattering as 
this is the most important depolarizing interaction mechanism (see section 3.2.3). It 
reflects the density of scatterers in the vegetation volume and the vegetation volume 
thickness. In C-band the different cover types are shown to have comparable VSI 
values. It follows that the different cover types have a comparable number density of 
C-band scatterers such as leaves, twigs and secondary branches. Since the 
Non-forest cover type is poor in twigs and branches it may be concluded that leaves 
are the most important source of cross-polarized C-band backscatter. In L-band the 
VSI values increase over the range from Non-forest to Xeric mixed forest and then 
become saturated. An increase in the L-band VSI values signifies an increase in the 
volume or the density of the most important sources of cross-polarized L-band 
backscatter, i.e. of secondary and primary branches. The point where the VSI value 
becomes saturated corresponds to the point where the scatterer volume becomes 
"opaque". In P-band the VSI values appear to become saturated at a point similar to 
in L-band but then rise again for Logged-over and Mixed forest. However, the relatively 
high VSI values for Logged-over and Mixed forest do not result from especially high 
γVH  values but rather from low γHH  values (see Figure 6.17). HH backscatter mostly 
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results from trunk-ground interaction. It appears that this interaction mechanism is 
even less common in Logged-over and Mixed forest than in Xeric mixed, Wallaba and 
Mora forest. 
 
The most relevant biophysical parameter associated with BMI is biomass. However, 
the value of BMI depends strongly on the size of the biomass constituents relative to 
the incident wavelength. The effective size of the biomass components determines 
whether they act as backscattering or attenuating sources. Depending on wavelength, 
an increase in biomass may therefore result in a higher or lower backscatter and 
likewise in a higher or lower BMI value. The value of BMI may be elevated due to 
double bounce scattering since this interaction mechanism enhances γHH . 
Comparison of Figure 6.18c with Figures 6.17a-c shows that the BMI and backscatter 
plots are essentially the same. The BMI plots do not contain new information and 
therefore need no further discussion. BMI appears to be of little value to this study. 

 

 

6.3.4 Conclusions 

Analysis of the NASA/JPL AIRSAR data leads to the following conclusions. 
 

 The backscatter of primary and logged-over tropical forests in C-, L- and P-band 
results primarily from the diffuse scattering of microwaves in the forest canopy. 

- Double bounce or trunk-ground interaction of P-band microwaves in primary 
tropical forests, with the exception of flooded swamp forests, is uncommon. 

 Backscatter measurements in L- and P-band make considerably better bases for 
classifying tropical land cover types than backscatter measurements in C-band. 

 Backscatter values computed from L- and P-band radar data and textural values 
computed from high resolution X- and C-band radar data are equally suitable 
bases for region-based classification of tropical land cover types, including primary 
forest types. 

- Regardless of the frequency band, the HH-VV phase difference PPD and the 
corresponding standard deviation sd(PPD) are poor bases for region-based 
classification of tropical land cover types. 

 Backscatter measurements in either a single L- or P-band channel make good 
bases for region-based classification of tropical land cover at the level of forest / 
non-forest. 

 Backscatter measurements in a minimum of two radar channels make good bases 
for region-based classification of secondary and logged-over forest. 
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- Reliable classification of secondary forest requires inclusion of at least one L- or 
P-band channel. Reliable classification of logged-over forest requires inclusion of 
at least one P-band channel. C-band is of little value for classification of 
secondary and logged-over forest. 

 Backscatter measurements in a minimum of three radar channels make good 
bases for region-based classification of primary tropical forest types. 

- Reliable classification of primary tropical forest types requires inclusion of at least 
one P-band channel. C-band is of value for classification of primary forest. 

- Inclusion of linear cross-polarized or circular like-polarized channels enhances the 
chances of classifying primary forest types correctly. 

- Architecture and not biomass governs the backscatter behaviour of primary 
tropical forests in C-, L- as well as P-band. Hence, architectural differences are the 
key to identifying primary tropical forest types in radar images. 

 The potential of L- and P-band radar systems to map biomass is limited to tropical 
forests in early developmental phases. 

- Regardless of the frequency band, the Canopy Structure Index (CSI), Volume 
Scattering Index (VSI) and Biomass Index (BMI) contribute little to the 
understanding of the backscatter behaviour of the land cover types studied. 

 
 
6.4 Results of the analysis of the ERASME scatterometer data 

In the present study the data acquired by the ERASME scatterometer system were 
not analysed in detail. The results presented in this section just serve to illustrate 
the information content and application potential of scatterometer data in a tropical 
forest environment. ERASME's technical specifications and operational 
characteristics are discussed in section 4.4.4. Other authors who report on the use 
of this system in a tropical forest environment are: Dechambre et al. (1993), 
Dechambre (1994), Riéra et al. (1994) and Dechambre and Bourdeau (1996). 

 

 

6.4.1 Capabilities of ERASME: an illustration 

ERASME's main feature is its "probing" capability. This enables the system to 
measure the backscatter from 1.30 m high horizontal observation layers 
superimposed upon the forest. The combined measurements hold information on the 
vertical architecture of the forest and the changes in this architecture along the 
system's ground track. Observed architectural characteristics are forest height and 
vertical distribution of backscatterers such as leaves and branches. Tree trunks did 
not act as backscattering sources since ERASME operated in the nadir-looking mode. 
The measurements in addition reflect changes in the topography of the terrain. 
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Figure V.8 in Appendix V illustrates the deployment of ERASME over the Tropenbos 
ecological reserve in Mabura Hill and shows the corresponding transect of radar 
measurements. The colour coding expresses the relative strength of the radar return 
signal. The first radar return signal at a particular location along the flight path flown 
corresponds to the upper boundary of the forest canopy. Successive return signals 
from the same location result from consecutive observation layers. The strength of 
these signals is a function of the forest's backscatter and extinction properties. Due 
to the nadir-looking operating mode of ERASME, the forest soil has the potential to 
create a relatively high radar return signal. However, the strength of this return signal 
depends strongly on the attenuating properties of the overlying vegetation. In the 
ERASME data from Mabura Hill, unmistakable high return signals from the forest soil 
are not always present. Whenever such a signal is lacking, forest height cannot be 
estimated accurately. The absence of a clear return signal from the soil indicates that 
the forests in Mabura Hill have a strong attenuating capacity, i.e. that the forests 
have a high leaf and branch biomass. 
 
Figure V.8 illustrates how ERASME measurements show the changes in the 
topography of the terrain observed. The higher parts of the terrain are locations 
where Wallaba and Mixed forests are found. The system's ground track intersects 
twice with an area of low lying, swampy grounds. On these grounds a forest type 
known as Swamp wallaba is found. The transect clearly shows the difference in the 
canopy roughness for Wallaba forest and Mixed forest. The canopy of the latter forest 
type can be seen to be substantially rougher. This agrees with the findings based on 
the textural analysis of the CCRS SAR and ERS-1 data sets (see sections 6.1.2 and 
6.2.2). Data from systems like ERASME appear very suitable for the assessment of 
quantitative canopy roughness parameters. 
 
Data on the surface roughness of forests or other types of land cover are valuable 
information for land surface - atmosphere interaction studies. Surface roughness 
affects the exchange processes between the land and the atmosphere. These 
exchange processes in turn influence the dynamics of the entire atmosphere. 
Consequently, surface roughness is an important parameter in weather models and 
General Circulation Models (GCM's) (see Wood, 1991; van den Hurk, 1996). 
Oldeman (1983a), Brünig and Huang (1989) and Brünig and Mohren (1989) suggest 
that canopy roughness is a good indicator of species diversity. The reasoning behind 
this hypothesis is the following: a rough canopy is indicative of a high architectural 
diversity, of the presence of many environmental gradients and consequently of a 
high diversity in ecological niches and species. In this ecological context, the 
conclusion by Duivenvoorden and Lips (1995) that plant diversity is predictable by 
physiography and forest canopy height is also of interest. For some applications, a 
qualitative characterisation of the canopy roughness may suffice. Such a 
characterisation may be obtained from data from both imaging and non-imaging radar 
systems (see section 6.1.2 and 6.2.2). Weather and global circulation modelling, on 
the other hand, requires quantitative surface roughness information. In the 
microwave region of the electromagnetic spectrum this information can be derived 
from data acquired by non-imaging scatterometers such as ERASME or by high 
resolution imaging radar systems with interferometric capabilities. 
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The ERASME transect in Figure V.8 shows the vertical distribution of the scatterers, 
and thus of the leaf and branch biomass, in Wallaba and Mixed forests. In the higher 
quarters of the Wallaba forest there proves to be a high concentration of scatterers. 
This agrees with the findings by Loubry (1994) with respect to the architectural 
properties of one of the two most important Wallaba forest species, i.e. Soft wallaba. 
According to this author, the crowns of mature Soft wallaba trees are characterised 
by big complexes of reiterated branches. The scatterer density is increased further by 
the fact that the forest has a well-defined and continuous upper canopy (see Figure 
4.9). In Mixed forest a similar dense layer of scatterers is absent; within the range 
from the canopy boundary to the forest floor the leaf and branch biomass of this 
forest type is more evenly distributed. The opportunity of distinguishing between 
sources of scattering leads to a better notion of the forest's scattering behaviour and 
supports backscatter modelling studies (see Hoekman, 1990). From the viewpoint of 
forest management, scatterometer data are useful because they reflect both the 
vertical and horizontal architecture of the forest. Scatterometer data can complement 
hand-measured profile diagrams like the ones in Figures 4.7 through 4.11. Hence, 
these data support the analysis of forest architecture and forest dynamics and so 
can contribute to the development of forest management procedures. 
 
Figure 6.19 presents ERASME spectra (backscatter profiles) for Mixed, Wallaba and 
Mora forest. The forest height as derived from the ERASME data agrees well with the 
ground reference data in section 4.3.1. It is shown that ERASME is capable of 
discriminating between an emergent Mora tree and the Mora forest's main canopy. 
The variability of the backscatter with the height is indicative of inhomogenities in the 
vertical distribution of the scatterers. The high backscatter levels for Wallaba forest 
at a height somewhere between 20 and 30 m illustrate the high concentration of 
scatterers in this particular part of the forest. Descending from ca. 20 to 5 m, the 
scatterer density decreases rapidly. The vertical distribution of the backscatterers in 
Mixed forest and especially in Mora forest is much more uniform. 
 
Unlike most Mixed and Mora forest backscatter profiles, the ones presented in Figure 
6.19 show a radar return signal from the forest soil. This indicates that the forest 
patches corresponding to these profiles have a relatively low leaf and branch 
biomass. The total amount of power as received by ERASME for Mixed forest and 
Mora forest can be shown to be approximately -25 dB. For Wallaba forest, on the 
other hand, the total received power is of the order of -20 dB. It follows that the total 
power received for Wallaba forest is about three times higher than that for Mixed 
forest and Mora forest. The total received power is a function of the scattering and 
extinction properties of the leaves and branches but cannot be directly related to leaf 
and/or branch biomass. In other words, a high amount of total received power is not 
necessarily indicative of a high quantity of leaf and/or branch biomass. 
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6.4.2 Conclusions 

Analysis of the ERASME scatterometer data leads to the following conclusions. 
 

 Data from ERASME and comparable nadir-looking scatterometer systems enable 
the assessment of quantitative canopy roughness parameters. 

- The frequent absence of return signals from the forest soil illustrates the high leaf 
and branch biomass levels of the forests in Mabura Hill and complicates the 
assessment of forest heights. 

- Scatterometer measurements, like hand-measured profile diagrams, support 
analysis of forest architecture and forest dynamics and hence contribute to the 
development of forest management procedures. 
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Forest resource monitoring was defined in section 1.1 as the process of continuously 
knowing the state of the forest environment and the changes that have and are 
taking place. The starting point for a monitoring process is a description of the 
forest's state at time t . This description is obtained through forest resource 
assessment. The aim of forest resource monitoring is to check the state of the forest 
by collecting information on the location, extent and nature of changes. In order to 
plan and guide changes it is also important to gather information on the cause and 
rate of change. As in forest resource assessment, radar remote sensing may be used 
in forest resource monitoring as a tool for collecting data. However, in the case of 
forest monitoring there is a need for repetitive and systematic data coverage. Orbiting 
remote sensing satellite systems can fulfil these requirements at lower expense than 
airborne remote sensing systems (see section 2.2.1). Therefore, provided that data 
can be acquired of the necessary type and spatial detail, satellite systems are the 
preferred platform for use in forest resource monitoring. 

0

 
The present chapter reports on the capability of the ERS-1 SAR to provide information 
in support of tropical forest monitoring. The emphasis is on the main study area in 
Mabura Hill, Guyana. ERS-1's capabilities to detect land cover change in the 
settlement area of San José del Guaviare, Colombia are discussed by Bijker (1997). 
Unlike San José del Guaviare, Mabura Hill is a relatively stable area. Forest cover 
changes result from either natural causes or relatively small scale human impacts. 
During the period of observation there were no large scale natural disturbances, such 
as those resulting from hurricanes, landslides, earthquakes or fire. Small scale 
natural disturbances due to e.g. tree senescence, windblow or lightning must have 
been abundant as these drive the process of silvigenesis (see section 4.3.2 and 
Oldeman, 1990). Disturbances of a human origin primarily result from industrial 
selective logging. Clear-cut or shifting cultivation are not practised. The present study 
focuses on an assessment of ERS-1's capabilities to image change related to 
selective logging. Results in section 6.2.1 indicate that ERS-1 backscatter 
measurements may be used for discriminating between forest and non-forest regions. 
Therefore, it may be assumed that ERS-1 offers a good potential for monitoring the 
large scale disturbance resulting from clear-cut or forest/non-forest conversion. This 
is confirmed by findings of other authors (e.g. Conway et al., 1994; Keil et al., 1994; 
Leysen et al., 1994; Le Toan et al., 1996 and Bijker, 1997). 
 
Forest cover disturbances will appear in radar images as long as they are 
accompanied by changes in backscatter or texture. Detection of forest cover 
disturbance is complicated by the fact that the backscatter of forest stretches free of 
natural disturbance or human impact may also vary. Backscatter fluctuations in such 
forest patches may result from phenological changes (e.g. leaf-fall or -flush) or 
changes in environmental conditions (e.g. rainfall fluctuations). Often, this type of 
change is not of special interest to forest management. Nevertheless, there is a 
need to assess to what extent such changes affect radar backscatter. This 
information allows for better founded decisions with regard to the cause of observed 
backscatter changes and thus supports the application of radar images in monitoring 
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procedures. Moreover, information on the variation of the backscatter for tropical rain 
forests is of interest to engineers involved in the development and operation of radar 
satellite systems. The interest of this community is dictated by the idea that tropical 
rain forests have very steady backscatter levels and therefore make good calibration 
targets (e.g. Bernard and Vidal-Madjar, 1989; Kennett and Li, 1989; Laur, 1992; 
Shimada, 1993). 
 
The present study on the value of ERS-1 data for tropical forest resource monitoring 
uses SAR Precision (PRI) products. A series of six images was analysed both for 
Mabura Hill and San José del Guaviare. The acquisition dates of these images were 
listed in Table 4.7, section 4.4.3. Temporal backscatter changes in intact forest and 
other cover types were assessed by extracting γ  values for fixed regions of interest 
from images of different dates. The employed image regions were identical to those 
used for assessing the value of ERS-1 PRI images for land cover classification (see 
section 6.2.1). The method for extracting γ  values for image regions was discussed 
in section 5.2.1. ERS-1's capabilities for detecting forest cover changes were 
evaluated by visual comparison of multi-date enhanced image products and 
application of an image ratioing technique. Texture was taken into account only in the 
visual analysis of the multi-date images. Computerised textural analysis of ERS-1 PRI 
images from successive dates was not implemented because the results in section 
6.2.1 indicate that this would yield inadequate results. 

 

 

7.1 Temporal change in ERS-1 SAR backscatter measurements 

Figure 7.1 shows the variations in the γ  values for the land cover classes studied as 
a function of time. The figure also presents the sum of the amounts of rain that fell in 
the week prior to data acquisition and on the day of data acquisition. In case 
measurements around the date of data acquisition were lacking, rainfall was 
estimated from average monthly rainfall figures (see section 4.2.2). Measured and 
estimated rainfall quantities are represented by columns with dark and light grey 
tones, respectively. The abscissas indicate the seasonal variation in rainfall. Months 
inside the dry season are shown as unfilled line-elements, whereas months inside 
the wet season are represented by solid line-elements. In the case of San José del 
Guaviare an additional class is introduced, i.e. a Primary forest class. The data for 
this class served to verify whether the backscatter signature for the Secondary forest 
class was governed by either forest type characteristics or environmental conditions. 
The resemblance in the signatures for the two forest types suggests dominance of 
environmental conditions. 
 
Most striking in Figure 7.1 is the difference in the backscatter behaviour of the 
forests in Mabura Hill and those in San José del Guaviare. The backscatter of the 
forests in Mabura Hill varies considerably with time, whereas the backscatter of the 
forests in San José del Guaviare is much more stable. The large backscatter 
variability in Mabura Hill is shown to be accompanied by large fluctuations in rainfall. 
In San José del Guaviare the changes in both backscatter and rainfall are  
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Figure 7.1  Variation in γ  values for land cover types studied and rainfall as a function of 
time. The rainfall columns represent the sum of the amounts of rain that fell in the week prior 
to data acquisition and on the day of data acquisition. The abscissas indicate the seasonal 
variation in rainfall. Dry months are represented by unfilled line-elements and wet months by 
solid line-elements. 
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considerably smaller. Backscatter level and rainfall quantity appear to be well 
correlated. High backscatter values are found in connection with high rainfall 
quantities, and the inverse. The Mabura Hill data show this correlation more clearly 
than the San José del Guaviare data. In the latter case, the relationship between 
backscatter and rainfall is probably obscured by the fact that rainfall was not 
measured at the time of data acquisition but estimated from average monthly rainfall 
figures. Altogether, Figure 7.1 strongly suggests that rainfall governs the temporal 
backscatter behaviour of tropical rain forests. 
 
Leaves, twigs and secondary branches are the most important C-band backscattering 
sources in forests. Rainfall influences the scattering properties of these canopy 
elements in different ways. The direct effect of rainfall is the wetting of the canopy 
due to interception. According to Bernard et al. (1987) and Lichtenegger (1996) this 
effect may cause the backscatter in C-band to increase by about 0.6 dB. This effect 
is relatively short-lived. Following rainfall it diminishes and finally ceases to exist as a 
result of evaporation and through fall. It may have contributed to the high backscatter 
levels for the forests in Mabura Hill on March 27, 1995. On this particular date 
rainfall amounted to 20 mm (see Table 4.2, section 4.2.2). In contrast, the rain 
quantities as shown in connection with the other acquisition dates all fell during the 
week prior to these dates. 
 
The more indirect effect of rainfall is of a seasonal nature. Seasonal increases in 
rainfall and humidity are likely to result in higher proportions of water within tree 
components, i.e. in higher gravimetric water contents. Evidence for this is found in 
the results of water content measurements on fully grown leaves in Mabura Hill. In 
the dry season the leaf gravimetric water content ranged from 0.4 to 0.5 g g-1, 
whereas in the wet season it ranged from 0.5 to 0.6 g g-1 (see section 4.3.3). Other 
investigators have reported seasonal (and diurnal) changes in the water status of 
trees in temperate regions (e.g. Gates, 1991; Mcdonald et al., 1991; Weber and 
Ustin, 1991; Salas et al., 1994). For radar observations in C-band a tropical forest 
canopy may be assumed to make up an "opaque" vegetation layer. Hence, its 
backscatter is governed by the average radar cross section and the average 
extinction cross section of the dominant vegetation component, i.e. the leaves. 
Figure 3.20 in section 3.2.1 illustrates that if the water content of the average leaf 
grows from 0.4 to 0.5 g g-1 or from 0.5 to 0.6 g g-1 the radar backscatter increases 
by ca. 1.5 dB. According to the Cloud model the radar return signal for the forest 
canopy at large will increase correspondingly (see Equation 3.29). This increase is of 
the same order of magnitude as the variability in the backscatter measurements for 
Mabura Hill. 
 
The phenological processes of leaf-fall and leaf-flush are likely to affect the 
backscatter of forests in C-band. After all, leaves are the most important C-band 
scattering sources. In Mabura Hill and other tropical regions where water stress 
situations are uncommon, leaf-fall and -flush peak in the period of maximum solar 
irradiation (e.g. ter Steege, 1993; Loubry, 1994; Brouwer, 1996). In Mabura Hill this 
is the case from September through November, i.e. in the driest period (Jetten, 
1994). Tropical rain forest trees do not drop their leaves collectively or for extended 
periods of time. Consequently, the rain forest does not lose its evergreen 
appearance. Loubry (1994) in French Guiana reports an average leaf-off period of 
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24.5 days. The time series of backscatter measurements for the forests in Mabura 
Hill holds no clear evidence of leaf-fall and/or leaf-flush effects. The influence of 
these phenomena on the backscatter of the forest at large is difficult to predict 
because different trees shed and flush at different points in time. Moreover, leaf-fall 
does not necessarily result in a reduced C-band backscatter, nor does leaf-flush 
always result in an enhanced C-band backscatter. Evidence for this can be found in 
studies that address the temporal change in the backscatter for deciduous trees in 
temperate regions (e.g. Cihlar et al., 1992; Hoekman et al., 1994). 
 
The Non-forest and forest classes in San José del Guaviare display a different 
backscatter behaviour (see Figure 7.1). Unlike the backscatter of the forest classes, 
the backscatter of the Non-forest class varies considerably in time. Also, the trends 
in the backscatter for non-forest and forest are slightly different. For non-forest the 
relationship between rainfall and backscatter level appears somewhat poorer than for 
forest. However, it should be taken into account once again that the rainfall figures 
for Guaviare were estimated from long-term monthly figures. The difference in the 
backscatter behaviour of non-forest and forest is partly due to a difference in the size 
of the vegetation volume. Relative to forests, the cover types in the Non-forest class 
constitute small vegetation volumes. This results in a small storage capacity for 
water, an unstable water status and hence a variable backscattering behaviour. 
Moreover, the overall backscatter behaviour of non-forest cover types is likely to be 
affected by the backscattering properties of the underlying soil layer. Hence, the soil 
makes an additional source of backscatter variations. Finally, the backscatter 
variability for non-forest cover types such as crops and pastures may be enhanced as 
a result of farming practices or natural vegetation regeneration processes. Temporal 
backscatter variability has been used successfully as a parameter for discriminating 
between forest and non-forest classes (e.g. Le Toan et al., 1996). For the combined 
data sets of Mabura Hill and San José del Guaviare this method would not work since 
the backscatter variability of the forest cover classes in Mabura Hill is not much 
different from that of the Non-forest class in San José del Guaviare. 
 
According to Figure 7.1 the temporal change in the ERS-1 backscatter from the intact 
forests in Mabura Hill is of the order of 1 dB. This is about two times as high as the 
temporal change in the backscatter values for the forests in San José del Guaviare. 
Yet it may not be concluded that the backscatter changes in Mabura Hill are 
exceptionally high. Le Toan et al. (1996) quote exactly the same figure for the 
temporal backscatter variation of forests in Sumatra. The temporal change in the 
backscatter for the Logged-over forest class is ca. 1.2 dB, which is slightly higher 
than for intact forest. Non-forest displays the largest temporal backscatter 
fluctuations, i.e. ca. 1.3 dB. In this context it is important to note that the radiometric 
stability value of the ERS-1 SAR system is 0.2 dB (Laur et al., 1993). This value 
corresponds to the smallest temporal backscatter difference that can be measured 
reliably. 
 
Rainfall is shown to slightly enhance the backscatter contrasts between the primary 
forest types in Mabura Hill (e.g. compare backscatter levels for 29 April 1992 and 
6 October 1993). On the other hand, the backscatter contrast between logged-over 
forest and primary forest is marginally higher in dry conditions. A similar phenomenon 
may be observed with regard to the contrast between non-forest and primary or 
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secondary forest. However, in this case the difference in the backscatter contrast for 
wet and dry periods is much more pronounced. Enhanced forest/non-forest 
backscatter contrasts during dry conditions were also observed by Conway et al. 
(1994) in the Ivory Coast and Keil et al. (1994), Luckman et al. (1997) in Brazil. The 
data in Figure 7.1 suggest that different primary forest types can be discriminated 
best in ERS-1 images acquired during wet periods. Images acquired during dry spells 
seem to offer better possibilities for discriminating logged-over forest from primary 
forest and non-forest from primary or secondary forest. Clearly, the chances of 
acquiring data during wet (dry) conditions will be the highest in the wet (dry) season. 
 
By using images from wet and dry periods the possibilities for classifying the land 
cover types studied can be improved. The improvement, however, will be marginal 
since there is no point in time at which the primary forest types may be considered 
'separable' from each other, from logged-over forest or from secondary forest. This 
follows from an evaluation of the separability of the different class pairs according to 
the method described in section 5.2.4. Multi-temporal ERS-1 data do not 
substantially enhance the chances for discriminating between tropical forest types 
because these forests exhibit very similar temporal backscatter signatures. 
Moreover, the temporal changes in backscatter are often small in comparison to the 
within-class backscatter variations. The variance within the Non-forest class appears 
to be higher in dry conditions than in wet conditions. This reduces the possibilities to 
discriminate between forest and non-forest when conditions are dry. It follows that 
the high non-forest variance counteracts the effect of earlier noted high forest/non-
forest backscatter contrast. 

 

 

7.2 Detection of change in forest cover 

7.2.1 Capability of ERS-1 to image forest cover disturbance 

Figure 7.2 shows two ERS-1 image products for Mabura Hill's West Pibiri 
compartment. The images in Figures 7.2a and 7.2b represent the situation in 1992 
and 1994, respectively. During this period the compartment was the location of 
logging activities by the concessionaire and of directional felling experiments by van 
der Hout (van der Hout, 1996). Figure 7.2a is the weighted average of three 
enhanced PRI images from 29 April 1992, 3 June 1992 and 30 December 1992. The 
respective weights for the images were 3 6, 2 6, 1 6. Similarly, Figure 7.2b 
represents the weighted average of enhanced PRI images from 6 October 1993 
(weight 1 6), 27 May 1994 (weight 2 6) and 9 August 1994 (weight 3 6). The 
method used to enhance the PRI images was described in section 5.3.3. Images 
from different acquisition dates were averaged to create a product with better 
qualities for visual interpretation. The applied weights are meant to suppress change 
within the first image series, to enhance change within the second image series and 
thus to emphasise changes that occurred over the period from April 1992 to August 
1994. 
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The most prominent changes in Figure 7.2b relate to the road network. Some 
locations where changes took place are marked with arrows. Arrow 1 marks a 
location where a new logging road has been put in. Arrow 2 points to an enlarged 
log-market, i.e. a cleared area alongside a road where felled logs are assembled 
pending transportation to the sawmill. Arrow 3 indicates a small, newly constructed 
road and log-market. Finally, arrow 4 points to the widened and extended main 
access road. The larger canopy gaps resulting from selective logging may be 
observed by trained interpreters with a priori knowledge of logging locations. This is 
illustrated in Figure 7.3, which is an enlargement of the image in Figure 7.2b. A 
number of image parts showing logging gaps have been encircled, the two arrows 
mark locations where the directional felling experiments were carried out (van der 
Hout, 1996). The gaps that resulted from these experiments do not show clearly in 
the image. Gaps resulting from selective logging and natural gaps often appear very 
similar and are therefore difficult to discriminate. Observables indicative of logging 
are the clustered occurrence of gaps, the systematic occurrence of gaps and the 
occurrence of gaps in the vicinity of logging roads. 
 
It may be concluded that roads are by far the best observable indicators of selective 
logging in ERS-1 images. Canopy gaps are difficult to recognise primarily because 
their size is too small with respect to the satellite's spatial resolution. According to 
Hammond and Brown (1992) the average logging gap size is ca. 800 m2; this equals 
little more than 5 pixels in an ERS-1 PRI image. For comparison, a full ERS-1 PRI 
scene covers an area of 10,000 km2 and comprises 64 million pixels. The visibility of 
logging roads in ERS-1 images depends on their orientation relative to the sensor 
(viewing geometry) and their geometrical properties. The relationship between viewing 
geometry and the visibility of linear features such as roads was discussed in section 
3.2.5. The most important geometrical property of a road is its width. Road width 
obviously depends on the road's status within the road network. However, in Mabura 
Hill, road width is also a function of soil type. Roads on white sand soils are usually 
narrower than roads on loamy and lateritic soils. The motivation for building relatively 
narrow roads on white sands is to keep the road surface moist so it provides good 
traction. On the other hand, roads on loamy and lateritic soils tend to get wet and 
slippery. By making these roads wider they are more exposed to sunlight and thus 
stimulated to dry. Whenever accessibility requires a white sand road to be wide, the 
road is paved with loam or laterite. In Mabura Hill the width of the main access road, 
inclusive any shoulders, is of the order of 10 to 25 m (Hammond, 1997). Skidding 
trails with widths of ca. 4 m are found at the other end of the road spectrum. These 
trails are used to haul the logs from the tree stump to the nearest road and are 
usually completely overtopped by surrounding vegetation. 
 
For reasons similar to the ones discussed, roads on white sand soils are often less 
crooked than roads on loamy and lateritic soils. White sands soils are well drained 
and therefore enable roads to be laid out in straight lines. Since loamy and lateritic 
soils are less well drained, the roads on these soils are preferably built along water 
divides on higher terrain parts. In particular, for road construction on less well 
drained soils, forest management may benefit from information on physiographic 
terrain characteristics such as topography and drainage. In fact some roads in the 
Mabura Hill concession were found to come to a dead end in swamps. Physiographic  
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features are clearly represented in radar images and hence such images can support 
road planning. Obviously, airborne radar images will show these terrain properties in 
more detail but the information in ERS-1 images may well suit the purpose. ERS-1's 
capabilities to image topography and drainage patterns is illustrated in Figure 7.4. 
This figure shows the Tropenbos ecological reserve and surrounding areas. The arrow 
marks the location of the Tropenbos field station. Like the images in Figures 7.2b 
and 7.3, the image in Figure 7.4 represents the weighted time average of PRI images 
from 6 October 1993, 27 May 1994 and 9 August 1994. It is interesting to compare 
the information content of the images in Figures 7.2 through 7.4 with that of the 
CCRS SAR images in Figure V.1 and the soil maps in Figure V.4 of Appendix V. 
 
Certain parts of the road network in Mabura Hill were difficult to recognise in single 
date ERS-1 images. By averaging ERS-1 images from different dates this problem 
could be eased. At other sites the situation may be different. This depends on the 
local conditions and the scale of the logging operations. Evidence of this is shown in 
Figure 7.5. This figure shows single date ERS-1 PRI images from 8 December 1992 
and 12 October 1995 for a tropical forest area near the village of Apura in Guyana's 
neighbouring country Surinam (ca. 5°10' North, 57°5' West). In 1994 the Apura 
region received considerable attention in Dutch newspapers. Environmentalists 
expressed their concern about the willingness of the newly established 
concessionaire to comply with regulations for sustainable management. The fact that 
the road network shows so clearly in the 1995 image suggests that large scale 
logging operations took place. However, it is not possible to tell from this image 
whether or not the operations resulted in serious forest degradation. All that may be 
observed with certainty is that the forest was not clear-cut. 

 

 

7.2.2 Techniques for automated change detection 

Because of large data volumes associated with forest resource monitoring, in 
particular at the global and national level, there is a need for automated change 
detection techniques. Change detection techniques bring about data reduction and 
as such assist human interpreters or subsequent computer algorithms in data 
analysis. The ideas behind different techniques may vary, e.g. from simple temporal 
comparison of pixel values to more complex temporal tracking of shape, size and/or 
location of specific image features. To ensure reliable results all techniques require 
accurate spatial registration of the multi-temporal data set (see Townshend et al., 
1992). Detection of temporal differences in pixel values in addition requires the data 
to be radiometrically stable. 
 
To date there has been considerably more experience with change detection in 
optical remote sensing data than with change detection in microwave remote sensing 
data. Singh (1986) gives an overview of techniques frequently used for detecting 
change in data from optical remote sensing systems. The author compares the 
performance of several techniques using Landsat MSS data for a tropical forest 
region in North-eastern India. Results indicate that sophisticated techniques such as 
image regression, principal component analysis and post-classification comparison 
do not perform better than simpler image differencing or ratioing techniques. All 
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techniques discussed by Singh are based on detecting temporal change in pixel 
values. 
 
Rignot and van Zyl (1993) discuss the effectiveness of image differencing and image 
ratioing techniques in relation to microwave remote sensing data, i.e. ERS-1 SAR 
data. The authors conclude that image ratioing is preferred to image differencing 
because it is better adapted to the statistics of SAR images. When image ratioing is 
applied the detection of change is independent of the backscatter level of the pixels. 
In contrast, the image differencing technique will not detect change in the same 
fashion in regions of high backscatter compared to regions of low backscatter. 
Another advantage of the ratioing technique is that it eliminates systematic 
radiometric inaccuracies in repeat-pass images. Such inaccuracies may arise during 
SAR processing in those cases where the flat Earth assumption is violated. Since 
radar images are often logarithmically and not linearly scaled it is good to note that 
image ratioing at the linear scale is equal to image differencing at the logarithmic 
scale. 
 
Detection of temporal backscatter changes in SAR images is complicated by the 
presence of speckle. Like change in object properties, speckle causes backscatter 
fluctuations. In change detection the two causes of backscatter change may easily be 
confused. Rignot and van Zyl (1993) derive the relationship between speckle level 
(expressed by number of looks), backscatter change and the level of confidence for 
detecting this change by means of image ratioing. This relationship is illustrated in 
Figure 7.6. The level of confidence for detecting change is shown to increase slowly 
with a decreasing speckle level, i.e. an increasing number of looks k. In practice the 
negative impact of speckle may be reduced by applying speckle filters and/or the 
averaging of independent backscatter measurements. 
 
The effectiveness of the image ratioing technique was tested at the local spatial level 
for detecting forest cover change in Mabura Hill's West Pibiri compartment. Input 
image for time t  was the weighted average of the ERS-1 PRI images from 29 April 
1992, 3 June 1992 and 30 December 1992. The weighted average of the images 
from 6 October 1993, 27 May 1994 and 9 August 1994 was used as the input 
image for time t . Applied weights were mentioned above (section 7.2.1). Prior to 
averaging individual images were speckle filtered and calibrated (see section 5.3.3). 
Speckle filtering in combination with temporal averaging reduced the backscatter 
fluctuations per pixel to a level equivalent to that in a 96 looks image. 

0

1

 
Figure V.9a of Appendix V shows the ratioed image. This image was used to generate 
the change map which is shown in Figure V.9b in combination with the time averaged 
PRI image for 1994. The red colours in this change map indicate image regions for 
which the backscatter over the 1992-1994 time period decreased by > 1 dB. 
Similarly, green colours indicate image regions with a > 1 dB increase in backscatter. 
Results in section 7.1 suggest that backscatter differences up to ca. 1 dB may just 
as well result from changing environmental conditions as from forest cover 
disturbance. Hence, a threshold value of 1 dB may be considered as the lower limit 
for detecting forest cover disturbance. Given an equivalent number of looks of 96 the 
backscatter standard deviation resulting from speckle is of the order of 0.44 dB. This 

213 



Radar remote sensing to support tropical forest management 

is considerably less than the threshold value. Therefore the mapped changes are not 
likely to result from the presence of image speckle. Figure 7.6 shows that with 96 
looks per pixel the ratioing technique is capable of detecting a backscatter change of 
1 dB with an accuracy of approximately 79% (Rignot and van Zyl, 1993). The only way 
to improve this accuracy is by further reducing the speckle level of the input images. 
A simple method of doing so is by averaging backscatter values of neighbouring 
pixels. However, in the present study this was not considered as it would reduce the 
effective spatial resolution of the input images. The maximum possible spatial 
resolution was required to optimise the chances of detecting the relatively small 
canopy openings resulting from selective logging. 
 
Change maps like the one in Figure V.9b accurately show locations with changed 
backscatter properties. However, detection of change is just an initial step in a forest 
monitoring procedure. The real monitoring problem is that of change management. 
For the management of detected changes, information on the nature of the changes 
is indispensable. It is particularly important to know whether changes are due to 
human intervention or natural processes. At the local spatial level, in an environment 
managed like Mabura Hill it is often difficult to make this distinction. In this respect 
change maps are of little help. In fact there is considerable change in areas of Figure 
V.9b where loggers have never been near. This problem in discriminating human and 
natural disturbances is primarily due to the fact that they are of a similar scale. 
Moreover, the scale of these disturbances (intrinsic scale) is small in comparison to 

 
Figure 7.6  Confidence level of image ratioing technique for detecting change in backscatter 
∆ Gamma between two observation dates, for a number of looks k ranging from 3 to 96. 
(Adapted from Rignot and van Zyl, 1993.) 
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the spatial resolution (measurement scale) of ERS-1. This implies that possible 
spatial particulars of human and/or natural disturbance go unobserved. The 
statement by Baltaxe (1987) that "monitoring becomes progressively more difficult 
and therefore less reliable as the individual areas of change to be detected, mapped 
and measured become smaller" is very much applicable to the situation in Mabura 
Hill. At spatial levels where selective logging or other small scale human 
disturbances are an issue, automated monitoring with ERS-1 is not a simple 
procedure. It requires a sophisticated approach that uses contextual information and 
field knowledge. 
 
In addition to image ratioing Rignot and van Zyl (1993) propose a change detection 
method based on the temporal decorrelation of speckle. In section 3.1.3 speckle 
was mentioned to result from the interference of radar echoes from different 
scatterers within a resolution cell. Provided that scatterers do not change in nature or 
position over time, repeat-pass radar measurements will have identical speckle. 
However, if for some reason scatterers do change, images from successive dates will 
have different or decorrelated speckle. Hence, temporal decorrelation of speckle is 
an indicator of change in the observed object. The proposed decorrelation method 
was not tested in this study because image speckle is not expected to remain 
correlated in images from forests or other types of vegetation. Certainly not over time 
intervals as long as those in the available ERS-1 data set. Important causes of 
speckle decorrelation in images from vegetated terrain are growth and wind 
movement. 
 
In section 7.2.1 roads were concluded to be the best observable indicators of 
selective logging in ERS-1 images. Detection of new or changed road networks in 
ERS-1 images could be the first step in procedures that aim to monitor forest 
resources notably at the national spatial level. In the present study, techniques for 
automated detection and extraction of roads from SAR images were not examined. 
The interested reader is referred to literature e.g. Touzi et al. (1988), Adair and 
Guindon (1990), Samadani and Vesecky (1990) and Hellwich (1994). 

 

 

7.3 Conclusions 

Analysis of the multi-temporal ERS-1 SAR Precision data leads to the following 
conclusions. 
 
- Temporal variations in ERS-1 SAR backscatter measurements of tropical rain 

forests can be of the order of 1 dB. 

- Temporal variations in ERS-1 SAR backscatter measurements of tropical rain 
forests result primarily from daily and seasonal fluctuations in rainfall. 

 ERS-1 SAR images acquired during dry conditions show better contrast between 
non-forest and primary or secondary forest than ERS-1 SAR images acquired 
during wet conditions. 
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- ERS-1 SAR images acquired during dry conditions show marginally better contrast 
between logged-over forest and primary forest than ERS-1 SAR images acquired 
during wet conditions. 

- ERS-1 SAR images acquired during wet conditions show marginally better 
contrasts between differing primary forest types than ERS-1 SAR images acquired 
during dry conditions. 

 Multi-temporal ERS-1 SAR data sets do not offer substantially better opportunities 
for discriminating among primary tropical forest types than mono-temporal ERS-1 
SAR data sets. 

- ERS-1 SAR Precision (PRI) images clearly show physiographic terrain 
characteristics such as topography and drainage and can therefore support road 
planning in poorly known tropical forest areas. 

 Multi-temporal ERS-1 SAR PRI images make a good basis for monitoring tropical 
forest cover disturbances resulting from the construction of roads. 

- Averaging of ERS-1 SAR PRI images from different acquisition dates improves the 
chances for detecting roads. The need to do so depends on the local conditions 
and the scale of the logging operations. 

 Enhanced ERS-1 SAR PRI image products show the larger of the canopy openings 
resulting from selective logging. However, monitoring of forest cover disturbance 
due to selective logging will require an approach that uses contextual information 
and field knowledge. 
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8 Radar remote sensing to support tropical forest management: 
 General conclusions and recommendations 

Radar remote sensing has long been known as a useful source of information in 
support of tropical forest management. In fact, much of the data acquired by the 
earliest airborne radar programmes in the humid tropics were used for this purpose 
(see section 2.2.3). Since that time, radar remote sensing technology and hence the 
application potential of radar data have improved considerably. The introduction of 
the following are examples of some of the important technological advances that 
have been made: digital recording techniques, synthetic aperture radar, satellite 
radar, multi-frequency and/or -polarization radar. In parallel with the refinement of 
radar technology, increasingly sophisticated facilities and techniques for digital 
analysis of radar images have been developed. The radar systems that acquired the 
data analysed in the present study largely represent the 'state-of-the art' in radar 
technology. Their potential for application to tropical forest management is evaluated 
in section 8.1. Recently, however, airborne radar systems with enhanced spatial 
resolutions and three dimensional imaging capabilities have been introduced. The 
application potential of these new types of radars is currently being studied by 
researchers of the Wageningen Agricultural University at sites in Indonesia. 
 
Potential users will have to consider the information content of radar data and decide 
whether radar remote sensing is an attractive option for them or not. Information 
requirements will be the primary motive in this decision process. Other important 
considerations concern the availability of: alternatives to obtain the required 
information, time to fulfil the requirements, financial resources, human resources, 
facilities for data analysis and expertise. Once the decision to apply radar remote 
sensing has been made, users at different spatial levels must follow differing 
strategies to acquire radar data in attempt to fulfil their information needs. Data 
acquisition strategies for the global, national and local spatial level are discussed, in 
general terms, in section 8.2.1. Section 8.2.2 discusses strategies for radar data 
analysis, i.e. for extracting information on tropical forests from radar data. Section 
8.3 concludes this text with some final remarks. 
 

 

8.1 Potential of radar to fulfil user requirements 

8.1.1 Applicability at the global level 

Due to the enormous extent of the area of interest, radar satellite systems are the 
only radar systems with good potential for application to tropical forest management 
at the global spatial level. To date, the optical satellites in the NOAA AVHRR series 
have been the main source of data for this purpose (see section 2.2.2). The 
preference for these data can be explained by the fact that the NOAA AVHRR 
satellites were the only ones capable of providing up-to-date and world-wide coverage 
of usable (cloud-free) data. However, with the introduction of operational radar 
satellite systems the monopoly of the NOAA AVHRR satellites as providers of 
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remotely sensed data for application to global assessment and monitoring of tropical 
forest resources has come to an end. Early evidence of this can be found in the 
TREES ERS-1 Central Africa mosaic project CAMP of the Space Applications Institute 
of the European Commission Joint Research Center. In this project over 400 ERS-1 
images were assembled to map the forests in the Central African tropical belt (De 
Grandi et al., 1997). 
 
In section 2.1.1 the information requirements of the parties operating at the global 
spatial level were shown to be governed by major environmental issues. Moreover, it 
was shown that the emphasis is on information for the purpose of forest resource 
monitoring rather than forest resource assessment. To enable effective monitoring 
the remote sensing data that are to be used should be available for an extended 
period of time. Hence, only satellite systems for which successors are foreseen 
make good bases for operational monitoring of the world's tropical (and non-tropical) 
forest resources. This qualifies two out of the three currently orbitting radar satellites, 
namely ERS-1/2 and RADARSAT, but disqualifies the third one, i.e. JERS-1. 
 
Table 2.1 in section 2.1.1 lists the parameters on which parties involved in the 
management of (tropical) forests at the global spatial level require information. 
Table 8.1 re-lists these parameters and shows appraisals of the possibilities for 
assessing and/or monitoring them on the basis of ERS-1/2 SAR Precision data. The 
most important parameters are shown in a bold typeface. These are parameters that 
according to Table 2.1 are rated "essential" in relation to two or more global 
environmental issues. Results in section 6.2 indicate that the use of time-averaged 
ERS-1/2 SAR Single Look Complex (SLC) data could enhance the possibilities for 
assessing parameters that are reflected in image texture, e.g. actual forest 
vegetation type. However, at the global spatial level in particular, it is not practical to 
apply such images since the production is involved and their geometrical properties 
are adverse. Table 8.1 lists a brief comment on each parameter and/or the appraisal 
given. These comments are elaborated upon in the paragraphs following. 
 
With respect to the parameter 'logged areas' a distinction should be made between 
areas of selectively logged or logged-over forest and areas of clear-cut. Results, 
notably in section 7.2.1, indicate that multi-temporal ERS-1 image products can show 
forest disturbance resulting from selective logging. At the global spatial level, 
however, operational monitoring of selective logging is not deemed to be feasible. 
The most important reason being that it requires considerable knowledge of local 
conditions and practices. Unlike detection of logging gaps, detection of road networks 
requires minimal local knowledge. Roads are very distinctive indicators of foregoing 
and/or forthcoming (selective) logging and other human activities. Information on 
recently established roads is critical to those involved in forest management as roads 
identify locations where, unless appropriate actions are taken, the continued 
existence of the forest is at risk. The capacity of ERS-1/2 to support the monitoring 
of road networks is therefore of great importance (see section 7.2.1). 
 
The difficulties in detecting areas of logged-over forest result primarily from the fact 
that the disturbance in forest cover is small in comparison to the resolution cell size 
of the ERS-1/2 SAR sensor. Considering this, it is expected that ERS-1/2 images will  
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Table 8.1  Parameters of interest to parties involved in (tropical) forest management at the 
global spatial level; indication of the possibility for assessing each of the parameters 
specified based on ERS-1/2 SAR Precision data. Key: '++' good, '+' possible, '+/-' difficult, '-
' impossible, ' ' not assessable using remote sensing. The most important parameters are 
shown in a bold typeface. 

 
 
 
Parameter 

Assessment 
/monitoring 

using  
ERS-1/2 

 
 
 

Comments 

Ecofloristic zones  Not assessable using remote sensing 

Forest cover: 
- Forest / non-forest 
- Burned areas 
- Logged areas 
- Regeneration 
- Biomass degraded areas 
- Deforested 

 
+ 
+ 

+/- 
+/- 
- 
+ 

 
Evidence in this study 
Evidence in e.g. Hoekman (1997) 
Evidence in this study 
Evidence in this study 
ERS-1/2 radar little sensitive to biomass 
Evidence in this study 

Forest categories: 
- Potential forest vegetation type 
- Actual forest vegetation type 
- Administrative / legal status 
- Management type 
- Plantation / natural 

 
 

+/- 
 
 

+/- 

  
Not assessable using remote sensing 
Evidence in this study 
Not assessable using remote sensing 
Not assessable using remote sensing 
Follows from difficulty in assessing 'actual 
forest vegetation type' 

Fires (numbers, distribution) - Assessable using optical remote sensing 

Percentage of vegetation cover - Follows from difficulty in assessing 
'regeneration' 

Crown cover / leaf index - Follows from difficulty in assessing 
'regeneration' 

Tree species composition - Follows from difficulty in assessing 'actual 
forest vegetation type' 

Diameter distribution - Not assessable using ERS-1/2 images 

Stand height - Assessable using airborne nadir looking 
scatterometer and Lidar systems 

Stand architecture +/- This study shows that ERS-1/2 images 
mirror canopy roughness 

Soil characteristics / topography: 
- Soil organic matter 
- Texture and slope 

 
 

-, + 

  
Not assessable using remote sensing 
Slope assessable not soil texture 

Socio-economic factors 
 

+/- Mostly not assessable using remote 
sensing; roads are among the exceptions 
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facilitate the monitoring of forest depletion resulting from clear-cut as long as the 
cleared areas are sufficiently large. According to Forster (1993) the minimum size of 
a feature to be displayed and interpreted is 1.2 mm at map scale. Given the ERS-1/2 
compatible image map scale of smaller than or equal to 1:200,000 (see Table 2.6) it 
follows that clear-cuts can be mapped reliably if their size is greater than 
approximately 6 ha. 
 
Table 8.1 indicates that ERS-1/2 Precision images provide limited information on 
regenerating or secondary forests. This can be explained by the short operating 
wavelength and the restricted spatial resolution of the radar onboard ERS-1/2. Due 
to its short wavelength the ERS-1/2 radar is not particularly sensitive to differences 
in aboveground biomass. Hence, the tonal appearance of closed secondary forests 
and primary forests is very similar. Secondary forests in early phases of regeneration, 
i.e. non-closed secondary forests, are easily confused with non-forest cover types. 
Apart from differing biomass levels, secondary and primary forests have different 
canopy architectural properties. Canopy roughness, which is a parameter of canopy 
architecture, is mirrored in radar images in the spatial variation of image tone, i.e. in 
image texture. However, in ERS-1/2 Precision images the textural differences 
between secondary and primary forests are often small because of the relatively low 
spatial resolution of the radar. Evidence of this can be found in section 6.2.1 of the 
present text. 
 
In contrast to single-date ERS-1/2 images, long-term series of these images can 
contain significant information on the location, extent and/or age of secondary 
forests. Image areas that appear deforested at one point in time and forested at a 
subsequent point in time must correspond to areas of secondary forest. Hence, 
inter-comparison of images from differing years facilitates the identification of newly 
developed secondary forests. Moreover, it enables the estimation of their year of 
origin and hence age. 
 
ERS-1/2 is of limited value for the assessment and monitoring of a parameter 
denoted in Table 8.1 as the 'actual forest vegetation type'. Results in section 6.2.1 
show that ERS-1/2 Precision images make modest bases for classifying tropical land 
cover at the level of primary forest, logged-over forest, secondary forest and non-
forest but poor bases for classifying different primary forest types. Of all classes 
named, non-forest was found to be most easy to identify. These results hold for 
classification per region rather than per pixel. Compared to classification per pixel, 
classification per region will yield better results. However, the region-based approach 
assumes a capability to delimit regions of interest using automated image 
segmentation techniques. Hence, the success of this approach depends strongly on 
the success of the segmentation technique. Computerised definition of logged-over 
forest regions will be problematic since these regions are far from homogeneous and 
do not usually have clear boundaries. Attempts to segment areas of primary forest 
into regions representing different forest types will meet similar problems. Like 
discriminating between differing 'actual forest vegetation types', discriminating 
between 'plantation forest' and 'natural forest' will be difficult. The key to identifying 
forest plantations is expected to be in their homogeneous nature and man-made 
geometry, e.g. presence of straight boundaries. 
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The assessment possibility for 'stand architecture' is rated 'difficult' in Table 8.1. 
Because of its short operating wavelength the ERS-1/2 radar mainly observes the 
forest canopy. Hence, ERS-1/2 images do not contain information on stand 
architectural parameters other than those relating to the architecture of the canopy. 
Results in section 6.2.2 indicate that textural attributes computed from ERS-1/2 
images can be used to rank land cover types according to the degree of canopy 
roughness. Canopy roughness, which is a parameter of canopy architecture, has 
been identified as an indicator of species diversity by Oldeman (1983a), Brünig and 
Huang (1989) and Brünig and Mohren (1989). 
 
Unlike the majority of the parameters listed in Table 8.1, 'socio-economic factors' do 
not relate to the state of the forest ecosystem but rather to the social system 
interacting with the forest. Most socio-economic factors do not present themselves 
spatially at the Earth's surface and therefore cannot be assessed and/or monitored 
using remote sensing techniques. Infrastructural facilities such as roads are among 
the exceptions. The importance of roads in relation to tropical forest management 
and the capability of ERS-1/2 to support road monitoring were discussed earlier in 
this section. 
 
The assessment possibility for the parameters listed in Table 8.1 can be seen to 
range from 'impossible' to 'possible'. Higher ratings, i.e. 'good', are lacking. This can 
be explained by the fact that the ERS-1/2 radar system was not specifically 
developed for application to (tropical) forest resource assessment and/or monitoring. 
The main application fields foreseen, relate to oceans and sea-ice rather than land 
surface areas. As a rule, the capabilities of ERS-1/2 will be adversely affected by the 
presence of large topographic variations. Apart from geometrical effects these 
variations induce differences in image tone that can easily be confused with tonal 
differences resulting from, for example, cover type transitions. Topographic variations 
therefore complicate the interpretation and application of radar images. 
 
The applicability of RADARSAT data, although not evaluated in the present study, is 
expected to be comparable to that of ERS-1/2 data. Compared to ERS-1/2, 
RADARSAT offers more flexibility from an operational point of view. However, the 
information content of ERS-1/2 Precision and RADARSAT Standard beam images will 
be comparable since the spatial resolution is essentially the same and the signals of 
both radars interact with forest in a very similar manner. Like ERS-1/2, RADARSAT 
was primarily developed with a view to ocean and sea-ice applications. 

 

 

8.1.2 Applicability at the national level 

The information requirements associated with tropical forest management at the 
national spatial level can best be fulfilled by a combination of spaceborne and 
airborne radar systems. Spaceborne systems have good potential to support forest 
resource monitoring over extended areas but are (presently) unable to provide the 
spatial detail required for forest resource assessment. Airborne systems, on the 
other hand, have good potential to enable forest resource assessment at the 
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commonly required map scale of 1:50,000 but are less cost effective tools to 
monitor expansive forest areas. 
 
As at the global spatial level, the information needs for forest resource monitoring at 
the national spatial level focus on the primary indicators of the forest's state, i.e. on 
parameters relating to forest cover and forest categories (see section 2.1.2). Section 
8.1.1 discussed the potential of the currently available ERS-1/2 and RADARSAT 
satellites for application to forest resource monitoring at the global level. The 
potential of these systems to support the monitoring of tropical forests at the 
national level is comparable since the national and global information requirements 
for monitoring are essentially the same. Both ERS-1/2 and RADARSAT provide 
sufficient spatial detail to enable monitoring at the minimally required map scale of 
1:250,000. The option to deploy airborne radar systems allows for refinement of 
national procedures for forest resource monitoring as it creates opportunities to 
'zoom in' on areas where forest disturbance is suspected and/or expected. This 
approach is discussed in more detail in section 8.2.1. 
 
Although airborne radar systems may be used to support the monitoring of national 
forest resources, their main asset is the potential for application to forest resource 
assessment. Currently available airborne radars have differing technical 
specifications and hence different potential for application to forest management. In 
view of application, the operating wavelength of the radar is the most important 
characteristic as it dominates the information content of the resulting images. 
Images from radar systems that operate with short wavelengths mostly contain 
information on the surface of the forest canopy, whereas images from radar systems 
that operate with long wavelengths contain information on lower lying forest quarters. 
In accordance with Table 2.2, Table 8.2 lists parameters of interest to parties 
involved in tropical forest management at the national spatial level. The most 
important parameters are shown in a bold typeface. Table 8.2 also shows appraisals 
of the possibilities for assessing the parameters listed on the basis of two types of 
high resolution, airborne radar data, i.e. short wavelength data (X-, C-band) and long 
wavelength data (L-, P-band). The studied CCRS SAR data are examples of the former 
type of data, whereas the studied NASA/JPL AIRSAR data are examples of the latter 
data type. 
 
Results in section 6.1 of the present study clearly showed that texture rather than 
backscatter is the most important source of information for identifying tropical forest 
cover types in short wavelength radar images. The appraisals of the possibilities for 
assessing forest cover on the basis of X- or C-band radar images therefore assume 
the use of textural information. Due to the greater depth of vertical penetration of 
microwaves with long wavelengths the textural information content of L- and P-band 
radar images is limited. Hence, the use of backscatter information is assumed in the 
case of the L- and P-band data. The appraisals in Table 8.2 typically assume the 
assessment to be based on information contained in a single radar band. The 
following paragraphs elaborate upon some of the shown appraisals and/or 
comments. 
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Table 8.2  Parameters of interest to parties involved in (tropical) forest management at the 
national spatial level; indication of the possibility for assessing each of the parameters 
specified based on high resolution, short wavelength (X-, C-band) and long wavelength (L-, 
P-band) airborne radar data. Key: '++' good, '+' possible, '+/-' difficult, '-' impossible, ' ' 
not assessable using remote sensing. The most important parameters are shown in a bold 
typeface. 

 Assessment 
using radar 
operating in 

 

 
Parameter 

X-, C- 
band 

L-, P- 
band 

 
Comments 

Forest cover: 
- Forest / non-forest 
- Logged-over forest 
- Secondary forest 
- Primary forest types 

 
+ 
++ 
+ 
++ 

 
++ 
+ 
++ 
+ 

 
Evidence in this study 
Evidence in this study 
Evidence in this study 
Evidence in this study 

Forest categories: 
- Administrative / legal status 
- Management type 
- Plantation / natural 

 
 
 

+ 

 
 
 

+ 

 
Not assessable using remote sensing 
Not assessable using remote sensing 
Geometrical features of plantations 
should enable identification 

Tree species composition - - Not feasible due to large number of 
species in most natural tropical forests 

Timber volume/woody biomass - +/- Evidence in this study 

Biodiversity indicators: 
- Canopy roughness 
- Terrain physiography 
 
- Cover fragmentation 
 
- Road density 
 
- Net primary production 
- Actual evapotranspiration 
- Leaf chemistry 
- Leaf biomass, leaf area index 

 
++ 
++ 
 
+ 
 

++ 
 
- 
- 
- 
- 

 
- 

++ 
 
+ 
 

++ 
 
- 
- 
- 
- 

 
Evidence in this study 
Terrain physiography well represented 
in radar images (see Figure V.1) 
Follows from capabilities for assessing 
forest cover parameters 
Roads clearly visible in high resolution 
radar images (see Figure V.1) 
Assessable using optical remote sens. 
Assessable using optical remote sens. 
Assessable using optical remote sens. 
Assessable using optical remote sens. 

Socio-economic factors 
 

+/- 
 

+/- 
 

Mostly not assessable using remote 
sensing; roads are among the 
exceptions 
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Generally speaking, both the textural information in X- and C-band radar images and 
the backscatter information in L- and P-band radar images enable discrimination 
between forest and non-forest. The latter image types, however, have the best 
capabilities for this purpose since the L- and P-band backscatter contrasts between 
forest and non-forest usually exceed the X- and C-band textural contrasts. Using 
texture, non-forest cover types are easily confused with secondary forests. L- and 
P-band radar images were shown to offer comparable capabilities for forest / 
non-forest identification (see sections 6.1.1 and 6.3.2). 
 
The key to identifying logged-over forests is in texture and not in backscatter. Results 
in sections 6.1.1 and 6.3.2 show that the X- and C-band textural contrasts between 
logged-over and intact forest are large, whereas the L- and P-band backscatter 
contrasts are small. Unlike textural attributes computed from individual X- and C-band 
images, backscatter values computed from individual L- and P-band images do not 
enable reliable classification of logged-over forest. Classification of logged-over forest 
based on backscatter was shown to require observations in a minimum of two C-, L- 
and/or P-band radar channels with high radiometric resolutions. Channel 
combinations including two P-band images, one of which has HH polarization, were 
shown to be most suited for identifying logged-over forest. 
 
In single date X- and C-band images from Mabura Hill, the texture of logged-over 
forests was found to be easily confused with that of a primary forest type known as 
Mora forest. However, this does not obstruct the identification of logged-over forests 
over time since forest types do not change from one year to another and logging is 
concentrated in forest types other than Mora forest. Consequently, a forest area with 
the textural appearance of, for example, Mixed forest in one year and with the 
textural appearance of either logged-over or Mora forest in the year following must 
have been subject to selective logging. In those cases where multi-temporal data are 
lacking the identification of logged-over and Mora forest can be greatly facilitated by 
the use of contextual information. Logged-over forests generally occur as patches and 
are always found in the vicinity of logging roads. The riparian Mora forests, on the 
other hand, are elongated and always found in connection with streams. Both roads 
and the locations of streams can be clearly observed in high resolution airborne radar 
images (see Figure V.1). 
 
In Table 8.2 L- and P-band radar images are shown to offer better opportunities for 
identifying secondary forests than X- and C-band radar data. Using the texture present 
in X- and C-band images, secondary forests up to about 15 years in age were 
regularly confused with non-forest cover types in particular (see section 6.1.1). Linear 
cross-polarized (VH) L- and P-band images were found to make the most suitable 
bases for detecting secondary forests. Image combinations including L-band VH or 
P-band VH and C-band (any polarization) offer even better opportunities for this 
application (see section 6.3.2). The strong capabilities to map secondary forests 
using backscatter measurements in L- and P-band can be explained by the sensitivity 
of these radar bands to aboveground biomass (see section 6.3.3). 
 
Backscatter in L- and P-band increases with increasing biomass until it saturates at a 
certain threshold level. Findings in literature indicate that the thresholds for L- and 
P-band correspond to total aboveground dry biomass levels of about 100 t ha-1 and 
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200 t ha-1, respectively. Roughly speaking, L- and P-band radar images will enable 
discrimination between secondary forests and non-forest cover types as long as the 
biomass levels of the secondary forests exceed those of the non-forest cover types. 
Similarly, L- and P-band radar images will enable discrimination between secondary 
forests and primary forests as long as the biomass levels of the secondary forests 
are below the thresholds at which backscatter saturates. The biomass levels of 
primary forest types are often well above the indicated threshold levels. 
 
Due to the restricted sensitivity to biomass, L- and P-band radar systems are only 
able to map the biomass of tropical forests in early phases of development. Although 
this limits the application potential of radar to forest inventory, it does not so much 
constrain the potential of radar to support studies that aim to model the global 
carbon cycle. For these types of studies, the capability to map forests in early 
developmental phases is most important since such forests represent locations 
where biomass accumulation and carbon intake are at a maximum. The limited 
sensitivity of L- and P-band radars to biomass was the reason for appraising the 
associated assessment possibility for 'timber volume / woody biomass' as 'difficult'. 
Biomass estimation is further complicated by the fact that the backscatter in L- and 
P-band is not only a function of biomass but also of forest architecture, species 
composition and soil moisture content. 
 
In general, the differing primary forest types are by far the most difficult to identify. 
This is partly due to the fact that tropical rain forests do not generally consist of a 
collection of homogeneous, well-defined forest types with distinct boundaries. In fact, 
a high variability in species composition and architecture, the presence of transitional 
forest types as well as of transitions between forest types are more characteristic. 
Results in sections 6.1.1 and 6.3.2 show that, similar to the case of logged-over 
forest, image texture and not backscatter offers the best opportunity for identifying 
primary forest types. Relative to textural attributes computed from individual X- and 
C-band images, backscatter values computed from individual L- and P-band images 
make considerably less reliable bases for primary forest type classification. Field 
checked image interpretations of texturally enhanced X- and C-band radar images 
showed that the existing 1:50,000 forest type map of Mabura Hill was incorrect at 
several locations (see section 6.1.3). Reliable identification of primary forest types 
using backscatter was shown to require observations in a minimum of three C-, L- 
and/or P-band radar channels with high radiometric resolutions. The best performing 
combinations were found to consist of the following channels: C,P,P or C,C,P or C,L,P 
or P,P,P. Combinations that include linear cross-polarized or circular like-polarized 
channels are most suitable (see section 6.3.2). 
 
The appraisals in Table 8.2 and the above discussion lead to the general conclusion 
that textural patterns in high resolution X- or C-band radar images and backscatter 
levels in L- or P-band radar images make equally suitable but complementary sources 
of information for assessing the land cover types studied. 
 
High resolution radar images, regardless of wavelength, are able to support the 
assessment of biodiversity indicators such as terrain physiography, cover 
fragmentation and road density. Information on canopy roughness, however, is 
restricted to X- and C-band radar images. The absence of this type of information in L- 
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and P-band images can be explained by the greater depth of vertical penetration of 
microwaves with long wavelengths. Results in section 6.1.2 of the present text show 
that the textural attributes computed from high resolution X- and C-band images can 
be used to rank cover types according to the degree of canopy roughness. In 
particular cases, textural attributes were also shown to enable quantification of 
canopy architectural properties, i.e. average logging gap size and average height 
difference between emergent trees and the main canopy. 

 

 

8.1.3 Applicability at the local level 

Parties involved in the management of tropical forests at the local level typically need 
information of a fine spatial detail. The review in section 2.1.3 indicates that the 
minimum required scales of maps for use in support of forest assessment and forest 
monitoring are of the order of 1:10,000 and 1:25,000, respectively. Mapping at such 
large scales requires deployment of radar systems with very high spatial resolutions 
(ca. 1 to 3 m). Consequently, the only radars with real potential for application to 
tropical forest management at the local spatial level are airborne radars. This holds 
true both for application to forest resource assessment and forest resource 
monitoring. It is evident that descending from the global to the local spatial level the 
application potential of satellite radar systems decreases, whereas the application 
potential of airborne radar systems increases. 
 
Radar systems with very high spatial resolutions are a recent development. In fact, 
neither of the airborne imaging radars deployed over the sites presently studied offer 
such spatial resolutions. As shown in section 8.1.2, analysis of the available radar 
data has resulted in considerable knowledge of the capabilities of airborne radar to 
fulfil the information requirements associated with tropical forest management at the 
national spatial level. This knowledge makes a good basis for formulating prognoses 
concerning the potential of airborne radar to fulfil the information requirements of 
parties involved in tropical forest management at the local spatial level. After all, the 
information requirements at the national and local spatial level are often closely 
related. 
 
Images from radar systems with spatial resolutions that are higher than those of the 
systems studied make improved information sources and hence support more 
applications (assuming comparable radiometric resolutions). This holds more strongly 
for X- and C-band images than for L- and P-band images. As explained previously, 
texture is the most important information source in X- and C-band images, whereas 
most of the information in L- and P-band images is contained in the backscatter level. 
Both the textural and the backscatter information contents of a radar image are a 
function of the properties of the incident microwaves as well as of the properties of 
the object observed. However, the textural information content also depends heavily 
on the spatial resolution of the deployed radar system. This explains why a higher 
spatial resolution will enhance the application potential of X- and C-band radar 
images, in particular. 
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Table 8.3  Parameters of interest to parties involved in (tropical) forest management at the 
local spatial level; prognosis of the possibility for assessing each of the parameters 
specified based on very high resolution, short wavelength (X-, C-band) and long wavelength (L-
, P-band) airborne radar data. Key: '++' good, '+' possible, '+/-' difficult, '-' impossible, ' ' 
not assessable using remote sensing. 

 Assessment 
/monitoring 
using radar 
operating in 

 

 
Parameter 

X-, C- 
band 

L-, P- 
band 

 
Comments 

Terrain characteristics: 
- Topography 
- Water courses and drainage 
  patterns 
- Infrastructure 

 
++ 
 

++ 
++ 

 
++ 
 

++ 
++ 

 
Well represented in radar images 
 
Well represented in radar images 
Will be clearly visible due to very high 
spatial resolution 

Forest cover: 
- Primary forest types 
- Logged-over forest 
- Clear-cuts 
 
- (Natural) regeneration 
- Burned areas 

 
++ 
++ 
++ 
 

+/- 
++ 

 
+ 
+ 
++ 
 

+/- 
++ 

 
Same rating as at national level 
Same rating as at national level 
Large textural/backscatter contrasts 
will enable identification 
Nature of regrowth difficult to establish 
Large textural/backscatter contrasts 
will enable identification 

Forest categories: 
- Management type 
- Plantation / natural 

 
 

++ 

 
 

++ 

 
Not assessable using remote sensing 
Geometrical features of plantations will 
enable identification 

Forest composition and 
structure: 
- Tree species composition 
 
- Diameter distribution 
- Standing volume (by species) 
- Growth rates 
- Harvestable volume 
- Positions of harvestable trees 

 
 

+/- 
 
- 

+/- 
 
 
 

 
 
- 
 
- 
- 

 
 
 

 
 
Difficult due to large number of 
Species in most natural tropical forests 
Not feasible for natural tropical forests 
Species identification will be difficult 
Not assessable using remote sensing 
Not assessable using remote sensing 
Not assessable using remote sensing 

Site class +/- +/- Only partially assessable using remote 
sensing 

Sustainable management 
indicators 

 
 

 
 

 
Please refer to Table 8.4 
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In accordance with Table 2.3, Table 8.3 lists the parameters of interest to parties 
involved in tropical forest management at the local spatial level. Table 8.3 also 
shows prognoses of the possibilities for assessing these parameters on the basis of 
two types of very high resolution, airborne radar data, i.e. short wavelength data (X-, 
C-band) and long wavelength data (L-, P-band). The actual applicability of very high 
resolution X- and C-band radar is currently being studied at sites in Indonesia. As in 
Table 8.2, the use of textural information is assumed in relation to X- and C-band 
radar data, whereas in the case of the L- and P-band data the use of backscatter 
information is assumed. The prognoses in Table 8.3 typically assume the 
assessments to be based on the information contained in a single radar band. The 
following paragraphs elaborate upon some of the shown prognoses and/or 
comments. 
 
Compared to the X- and C-band data studied, very high resolution X- and C-band radar 
data will offer enhanced capabilities for identifying primary forest types and 
logged-over forests. The wealth of textural information present in these images may, 
for example, enable detection of logged-over forests with different logging histories 
(e.g. different years of logging, differing intensities of logging). Very high resolution L- 
and P-band images will offer enhanced capabilities for identifying primary forest types 
in the sense that due to the finer spatial detail the transitions between forest types 
can be established more accurately. The higher resolution, however, does not 
enhance the differences between the mean backscatter values for the various 
primary forest types. 
 
Due to the manner in which mean backscatter is computed, the higher spatial 
resolution can be expected to enhance the difference in the mean backscatter values 
for logged-over and intact forest. Logging gaps of given sizes occupy more pixels in a 
very high resolution image than in an image with a lower spatial resolution. If it is 
assumed that the individual pixels in the two images represent an equal number of 
backscatter measurements or looks (see section 3.1.3), than it follows that gaps 
represent more backscatter measurements in the very high resolution image than in 
the image with the lower resolution. In other words, in the very high resolution image 
gaps contribute a larger proportion of the measurements required to accurately 
compute the mean backscatter value for logged-over forest (see section 5.2.1). In 
general, backscatter measurements corresponding to gaps will resemble those of 
non-forest and hence be low in value. Due to the high proportion of low backscatter 
measurements, the mean backscatter values for logged-over forests computed from 
very high resolution images will be relatively low. The mean backscatter values for 
intact primary forests, on the other hand, will be largely unaffected by spatial 
resolution. Consequently, a higher spatial resolution results in enhanced differences 
in the mean backscatter values for logged-over forests and intact primary forests. 
 
Detection of clear-cuts and burned forest areas in very high resolution X-, C-band and 
L-, P-band radar images is not expected to create problems. After all, the radar data 
studied were shown to be suitable bases for discriminating between forest and 
non-forest cover types (see section 8.1.2). Both clear-cuts and burned areas can be 
seen as special cases of non-forest. In Table 8.3 the assessment possibility for 
'(natural) regeneration' is rated to be 'difficult'. Unlike for most other forest cover 
parameters, the main interest with respect to regeneration is not so much in the 

228 



8  General conclusions and recommendations 

location and extent of the regrowing forests but in the success with which preferred 
(possibly planted) species establish themselves. Although very high resolution radar 
images are expected to show the establishment of vegetation, these images are not 
likely to provide the detail required to discern whether or not this vegetation is 
comprised of the preferred species. 
 
The parameters listed in Table 8.3 under the heading 'Forest composition and 
structure' differ from most others in the sense that their assessment requires 
information at the level of individual trees. Forest composition and structural 
parameters have long been assessed in conventional forest inventories by means of 
extensive fieldwork. Very high resolution radar images, like large scale aerial 
photographs (see Swellengrebel, 1959; Loetsch et al., 1973), cannot be expected to 
substantially facilitate the assessment of such parameters in natural tropical forests. 
The backscatter levels in L- and P-band images, for example, do not relate to 
properties of individual trees but rather to properties of the forest as a whole. 
Although microwaves with long wavelengths are sensitive to biomass, L- and P-band 
radar images of mature tropical forests will often show very little biomass differences 
because many of these forests have biomass levels in excess of the level of 
backscatter saturation (see section 6.3.3 or 8.1.2). 
 
Similar to aerial photographs, very high resolution X- and C-band radar images will 
show canopy architectural properties. However, due to the complexity of this 
architecture and the high diversity in species, individual tree crowns will be difficult to 
observe and identify. Hence, tree species composition will be at least difficult to 
assess. This prognosis is supported by the fact that investigators who attempted to 
identify tropical tree species on stereoscopic, large scale aerial photographs have 
met with little success (see Swellengrebel, 1959 and Loetsch et al. 1973). For 
similar reasons it will be difficult to measure tree crown diameters on very high 
resolution radar images. These measurements in combination with allometric 
equations provide the basis for assessing other structural parameters such diameter 
at breast height, crown base height and bole volume. Growth rates, harvestable 
volume or locations of harvestable trees cannot be derived from any type of remote 
sensing data. Calculation of growth rates requires accurate in situ measurements of 
tree diameters. Assessment of harvestable volume and positions of harvestable 
trees involves judgements concerning the qualities of tree trunks (e.g. bole form, 
presence of rot). Such judgements can be made in the field only. 
 
Both X-, C-band and L-, P-band radar images contain information on terrain 
characteristics and forest types. Hence, these images have potential to support 
forest management in assessing 'site classes'. However, radar images lack sufficient 
information on other relevant parameters such as species composition, proportion of 
harvestable trees, physical and chemical soil properties. For this reason the 
associated assessment possibility is rated in Table 8.3 as 'difficult'. 
 
Table 8.4 lists a subset of the indicators of sustainable forest management as given 
in Table 2.4. Results presented in sections 6.1 and 6.3 of this text indicate that the 
airborne radar data studied would make good bases for assessing and/or monitoring 
the indicators shown. Hence it may be assumed that comparable radar data of an 
even higher spatial resolution, i.e. data that are better suited for application at the 
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Table 8.4  Examples of indicators of sustainable forest management that can be readily 
assessed and/or monitored with the use of very high resolution X-, C-, L- and P-band radar 
images. The indicators are categorised on the basis of related sustainability principles. 

The forest resource shall be sustained. 

- Area and percentage of forest; not further classified. 

- Area and percentage of forest affected by fire and storm beyond the range of historic 
variation 1). 

- Extent of illegal exploitation and encroachment 2). 

- Rate of conversion of forest cover to other uses (e.g. mining, ranching, energy, 
infrastructure). 

The protection function of the forest shall be sustained. 

- Infrastructure (primary and secondary roads, timber yards, skidding tracks) is located 
on natural benches, ridges and flatter slopes. 

- Sizes of infrastructure are reduced to the barest minimum possible. 

- Presence of infrastructure or logging gaps in buffer zones around watercourses or 
areas of protected forest 2). 

Yields of forest products (timber and non-timber) shall be sustained. 

The biodiversity of the forest shall be sustained. 

- Extent of forest disturbance due to logging (e.g. gap size and frequency). 

- Presence of representative protected areas 2). 

- Presence of ecological infrastructure (e.g. corridors of unlogged forest). 

The long-term social and economic well-being of local communities shall be sustained.  

- Sites of special cultural, ecological, economic or religious significance to indigenous 
peoples are excluded from forestry operations 2). 

1)  Assessment requires additional historic data. 
2)  Assessment requires maps showing data on management/legal status of forest areas. 

local spatial level, make equally suitable or even better bases for assessing and/or 
monitoring these indicators. As indicated in Table 8.4 the assessment of certain 
indicators may require ancillary (map) information. Indicators listed in Table 2.4 but 
not in Table 8.4 are not necessarily impossible but at least more difficult to assess 
and/or monitor with the use of radar remote sensing. This is especially true of 
indicators that relate to the sustainability principle 'Yields of forest products (timber 
and non-timber) shall be sustained'. As in the case of the 'Forest composition and 
structure' parameters in Table 8.3, assessment of these indicators often requires 
information at the level of individual trees. 
 
 

8.2 Implementation of radar remote sensing 

8.2.1 Data acquisition strategies 

Data acquisition strategies will be discussed at the global, national and local spatial 
levels. At present, only two truly operational radar satellites are in orbit with potential 
for application to tropical forest management at the global level, i.e. ERS-1/2 and 
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RADARSAT. RADARSAT offers more flexibility from an operational point of view when 
compared to ERS-1/2. It has, for example, the capability to acquire so-called 
ScanSAR images. These images are of a low but adequate spatial resolution for 
application at the global spatial level and have the advantage of covering an area 25 
times the size of the area covered by a RADARSAT standard image or an ERS-1/2 
image (see Table 2.6). As a rule, the use of data with an unnecessarily high spatial 
resolution and hence an unnecessarily small spatial coverage should be avoided 
because of the high costs involved in both data acquisition and analysis. 
 
RADARSAT ScanSAR data are expected to make a suitable source of information for 
the first phase of a procedure for the world-wide assessment and/or monitoring of 
tropical forest resources. In the second phase of such a procedure, selected areas 
can be observed in more detail using ERS-1/2 data or RADARSAT Standard beam 
data. The selected areas can represent sub-samples for use in a multistage or 
permanent sampling procedure or 'hot spots', i.e. areas where forest cover change is 
either suspected or expected. In a possible third phase the spatially more detailed 
RADARSAT Fine beam data may be put to use. ERS-1/2 Single Look Complex data 
are less suited for this purpose because of poor geometric properties. Both 
RADARSAT Fine beam and ERS-1/2 Single Look Complex data have unfavourable 
radiometric properties. 
 
The traditional frequency for collecting information on the world's forest resources is 
once every five years. Results in section 7.1 of the present text indicate that images 
acquired during the dry season are most suited for discriminating between forest and 
non-forest cover types. From an application point of view it is important that the data 
become available in a regular, consistent and timely manner. Unfortunately, this was 
not found to be the case for the ERS-1 data analysed in the present study. This was 
not due to problems in the functioning of the satellite but rather of the ground 
stations in South America. With onboard data storage facilities like those available 
on RADARSAT these problems can be largely overcome. The successor of ERS-1/2, 
i.e. ENVISAT-1, will also carry an onboard recorder for SAR data. The capabilities of 
this satellite which is scheduled for launch in 1999 resemble those of RADARSAT in 
other ways as well. 
 
Alternative systems that can provide global coverage at a low spatial resolution are 
the NOAA AVHRR satellite, the ERS-1/2 thermal infrared radiometer and the ERS-1/2 
windscatterometer. Although of comparable resolution, the data from the Landsat 
and SPOT satellites cannot be considered as genuine alternatives for ERS-1/2 and 
RADARSAT standard beam data. Notably for areas in the humid tropics, Landsat and 
SPOT will often fail to provide the required data due to the presence of clouds or 
smoke. However, if available the data from these satellites can greatly complement 
the information present in satellite radar data (see section 2.2.2). It should be noted 
that since RADARSAT is a relatively new satellite system its exact capabilities for the 
application studied are still under investigation. Due to their history as sites for radar 
remote sensing research, Mabura Hill and San José del Guaviare would make good 
locations for RADARSAT studies. 
 
The information needs associated with the management of tropical forests at the 
national spatial level can best be fulfilled by a combination of spaceborne and 
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airborne radar data. Both ERS-1/2 data and RADARSAT Standard beam data provide 
the spatial detail required for monitoring. For 'hot spots' additional information can 
be obtained with the help of RADARSAT Fine beam and/or airborne radar data. Good 
examples of 'hot spots' are areas where new or changed road networks are detected 
(see sections 7.2.1 and 8.1.1). The preferred observation frequency for monitoring is 
once every two years. Airborne data acquired to enable detailed monitoring can also 
be put to use in ongoing forest assessment procedures. To meet the requirements 
associated with forest resource assessment, airborne radars should be deployed 
over areas of interest with a frequency of once every five to ten years. At present, the 
potential of airborne radar to support forest assessment over extended areas is 
restrained by the available data processing capacity in particular. As at the global 
spatial level, available Landsat and SPOT data can be used to complement radar 
data sets. 
 
Forest managers operating at the local spatial level typically need data acquired by 
airborne radar systems with very high spatial resolutions. The only local application 
for which the information in radar and/or optical satellite data is of real value is the 
reconnaissance inventory. Data for use in forest resource monitoring can be of a 
lower spatial resolution (ca. 3 m) than data for use in forest resource assessment 
(ca. 1 m). Forest monitoring requires annual data takes over the management unit at 
large. Assessment of specific forest areas requires overflights with a time-interval of 
five years. Most likely, however, differing parts of the management unit will need to 
be assessed in different years (see section 2.1.3). To reduce costs, the yearly data 
takes in support of monitoring and assessment can best be carried out concurrently. 
The data intended for forest monitoring can support the activities of both forest 
managers and organisations involved in the control of forestry operations and/or the 
certification of forest products. 
 
The results discussed in the present text illustrate that radar systems with differing 
technical specifications (e.g. wavelengths, polarizations, spatial resolutions) offer 
different capabilities for application to tropical forest management. An important 
aspect of any data acquisition strategy is therefore the choice of a particular radar 
system or combination of systems. The number of available airborne radar systems 
largely exceeds the number of available satellite radar systems. Moreover, the 
airborne systems offer a much wider range of capabilities than the satellite systems. 
Hence, users with the option to apply airborne data have a better chance of satisfying 
their information needs by means of radar remote sensing than users that are 
dependent on satellite data. Unfortunately, airborne radars that operate with long 
wavelengths such as L- and P-band are mostly experimental and hence not yet readily 
available for operational use. 
 
Both of the currently available, truly operational, radar satellite systems have a 
largely comparable but modest potential for application to tropical forest 
management (see section 8.1.1). With the development of a dedicated system, the 
applicability of satellite radar could be enhanced greatly. The two user requirements 
that make the highest demands on the technical specifications of such a system are 
the assessment and/or monitoring of primary forest types and logged-over forests. 
Results of the present study indicate that radar satellites in order to be able to fulfil 
both these requirements must carry a system that either acquires multi-look, high 
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resolution (ca. 5 m) data in a single X- or C-band channel or multi-look data in a 
minimum of three channels with differing wavelengths and/or polarizations. Inclusion 
of at least one P-band channel is essential for the latter type of radar. Given the 
current status of the technology for (non-military) spaceborne radars, the 
development of either of these systems will be very challenging. Requirements 
relating to the assessment of forest/non-forest cover types and the monitoring of 
forest/non-forest conversion are less demanding and can be readily fulfilled by a 
system operating in a single L- or P-band channel. 

 

 

8.2.2 Data analysis strategies 

Following acquisition, the radar data must be analysed in order to obtain the 
information required. Although some users may be able to fully analyse the data 
themselves, others will depend at least partly on services of remote sensing 
specialists. Notably users at the local spatial level will often lack the required image 
processing facilities and/or expertise. For these users radar remote sensing will only 
be an option if others can provide them with dedicated image products for visual 
analysis and/or extracted thematic information (e.g. thematic maps, statistical data). 
 
In practice, forest resource assessment and monitoring procedures require that the 
information obtained from radar images be evaluated prior to use. It can then be 
used to formulate and/or revise forest management plans. Evaluation of the remotely 
sensed information must include verification by means of field observations. Often, 
the remote sensing information will need to be complemented with information from 
other existing sources such as maps and statistical data. The need for integrated 
analysis of mostly georeferenced information from differing sources links remote 
sensing supported forest assessment and/or monitoring with the Geographic 
Information System (GIS) concept. Information on, for example, slope, aspect and 
elevation residing in geographically-referenced data bases can also be used to 
facilitate the extraction of information from radar images. 
 
To ensure compatibility of extracted information from one forest area to another as 
well as for successive points in time, there is a need to standardise methods for 
radar data analysis. Standardised analysis, in other words, is a prerequisite for 
aggregating extracted information for use at higher spatial levels as well as for 
effective monitoring. Clearly, standardisation of methods for radar data analysis will 
require standardisation of procedures for data acquisition and hence continued 
availability of the preferred radar remote sensing data. Sections 8.1.1 through 8.1.3 
reviewed the information content of the radar data studied. The remainder of the 
present section describes methods for extracting this information from the radar 
images. 
 
Of the radar systems studied, the first European remote sensing satellite ERS-1 is 
most suited for the monitoring of global and national forest resources and likewise 
for the assessment of global forest resources. Although ERS-1 operates with a short 
wavelength, results reported in section 6.2.1 showed that most of the information in 
its images is contained in backscatter and not in texture. The absence of substantial 
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textural information in ERS-1 images can be explained by the systems limited spatial 
resolution and small angle of incidence. ERS-1 images mainly provide information on 
the location and extent of forest, non-forest and roads. Since roads mark areas of 
potentially significant deforestation ERS-1 can fulfil a deforestation alert function. The 
strongest point of the ERS-1 satellite is its capacity to routinely image every part of 
the Earth's surface at fixed time intervals. A series of ERS-1 images from different 
dates comprises substantially more information than a single date ERS-1 image. The 
information in a time-series of ERS-1 images not only enables the monitoring of 
forest resources but also allows for improved assessment of forest resources. 
 
Extraction of information from the ensemble of backscatter measurements in ERS-1 
images (i.e. the pixels) is complicated by the presence of backscatter differences 
that do not relate to the cover types observed but rather to the presence of image 
speckle (see section 3.1.3). Due to the confusing effect of speckle, pixel-by-pixel 
classification of forest and non-forest will meet with little success. Pixel-by-pixel 
detection of forest/non-forest conversion (or the opposite) using ERS-1 images from 
two different dates will fail for similar reasons. In single date images the adverse 
effects of speckle can be reduced either by means of specially designed speckle 
filters (e.g. Gamma-Gamma MAP filter; see section 5.3.3) or the averaging of 
adjacent backscatter measurements. Both techniques will improve the chances of 
success for subsequent forest/non-forest classification and, if applied to images 
from differing dates, for subsequent detection of change. Compared to speckle 
filtering, averaging of adjacent pixels is more economical because it requires less 
computer time. In particular for application at the global spatial level this is a distinct 
advantage. Unfortunately, spatial averaging of pixels is accompanied by a loss in 
spatial detail. Following averaging over a window of 8 8×  pixels (resulting pixel size is 

m), however, assessment and monitoring of forest/non-forest at the 
required mapping scales of ≤ 1:250,000 is still feasible. 
100 100×

 
An alternative method for analysis of single date ERS-1 images for the purpose of 
forest/non-forest mapping involves: automated image segmentation, computation of 
average backscatter per image segment and subsequent classification of segments 
using averaged backscatter values. This method which is illustrated in Bijker (1997) 
is similar to the region based approach adopted in the present study. In the present 
study, however, the regions (or segments) were defined interactively using a priori 
knowledge (see section 5.2.1). Backscatter values resulting from this method are 
mostly free of speckle effects and hence make a good basis for classification. The 
success of the method, however, depends strongly on the success with which the 
segmentation algorithm applied identifies the boundaries between forest and 
non-forest areas. Like speckle filtering, image segmentation has the disadvantage of 
requiring much computer time. 
 
Similar to forest/non-forest identification, detection of roads is complicated by the 
presence of image speckle. In the present study the visibility of roads in ERS-1 image 
products was enhanced by the averaging of images from different dates (see section 
7.2.2). Unlike spatial averaging, temporal averaging of backscatter measurements 
does not adversely affect the spatial detail in the images (assuming they have been 
co-registered accurately). Temporal averaging, however, only yields distinctive  
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backscatter measurements for features that remain essentially unchanged over the 
period considered. Hence, speckle reduction by means of temporal averaging is not a 
suitable method for analysis of images from highly dynamic environments. 
Techniques for automated detection and extraction of roads from radar satellite 
images deserve further investigation because of the potentially important role of 
roads in procedures for forest resource monitoring. 
 
The method described for enhancing road detection illustrates the value of 
multi-temporal data sets for the purpose of forest resource assessment. Availability 
of images from multiple dates also improves the chances of cover type classification 
as differing cover types may well display differing backscatter behaviours as a 
function of time. Hence, temporal variation in backscatter may make a valuable basis 
for discriminating cover types. For example in San José del Guaviare, the temporal 
variation in the backscatter of the non-forest cover types was shown to be distinctly 
different from that of the forest cover types (see Figure 7.1). 
 
Procedures for forest resource monitoring require information on changes in forest 
cover, in particular. The preferred method for detecting change in backscatter 
measurements represented in multi-temporal linearly scaled ERS-1 images is that of 
image ratioing. Image ratioing at the linear scale translates to image differencing at 
the logarithmic (dB) scale. Following the ratioing or differencing of images from 
differing dates, a grey-level thresholding algorithm can be used to generate a change 
map, i.e. a map showing locations where backscatter levels have increased, 
decreased and/or remained the same (see Figure V.9b). Depending on local 
circumstances the optimum threshold value may differ. Results for the Mabura Hill 
study area indicate that backscatter changes up to ca. 1 dB may result from changing 
environmental conditions rather than disturbance of forest cover (see section 7.1). 
Hence, a threshold value of 1 dB is the lower limit for detecting forest cover change 
at this site. The level of confidence for detecting change in backscatter 
measurements by means of image ratioing increases with a decreasing speckle level. 
According to Figure 7.6 in section 7.2.2 the probability of detecting a 1 dB 
backscatter change in ERS-1 images with standard speckle levels (3 looks) is only 
55%. To ensure more accurate detection of change the outlined method should be 
preceded by one of the earlier described techniques for reduction of speckle. 
 
Detection of change can be seen as the first step in a procedure for forest resource 
monitoring. The real monitoring problem, however, is that of change management. 
This requires additional information, i.e. information on the nature of the changes 
detected. Information showing whether changes detected result from human 
intervention or natural processes is of particular importance. In some cases, the 
cause of the change will be deducible from radar image information. In others, 
establishment of the cause will require information from sources other than remote 
sensing data. Examples of indicators of human intervention in radar images are 
deforested areas with straight boundaries, presence of roads and presence of 
population centres. 
 
Like in ERS-1 images, the information in L- and P-band radar images is mainly 
contained in backscatter. The procedure for extracting information from these types 
of images therefore in essence agrees with the one described earlier for analysis of 
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single date ERS-1 images. The main components of this procedure are reduction of 
image speckle effects and classification of cover types of interest. To reduce costs of 
data analysis, users with access to multi-frequency, multi-polarization images will 
have to select the images best expected to meet their information needs. The results 
presented in sections 6.3.2 and 6.3.3 of this text can support this selection process. 
Certain multi-frequency and/or multi-polarization image combinations were shown to 
contain considerable information on forest types. Pixel-by-pixel classification of image 
combinations with reduced speckle levels is expected to be the most practical 
computerised approach to extract forest type information. Analysis by means of 
automated image segmentation and subsequent classification of segments will meet 
with little success. Image segmentation is likely to fail since tropical rain forests do 
not generally consist of homogeneous, well-defined forest types with clear 
boundaries. Computerised generation of image segments representing areas of 
logged-over forest will fail for similar reasons. 
 
L- and P-band radar images can be applied to estimate the aboveground biomass of 
forests in early phases of development (see section 6.3.3). Extraction of biomass 
information from radar images requires models that describe the relationship 
between the level of backscatter and the level of biomass. To date, universally 
applicable models for estimating biomass from radar backscatter are lacking. 
Development of such models is being hampered by the fact that the backscatter in L- 
and P-band not only depends on aboveground biomass but also on forest architecture 
and, if biomass levels are low, on the moisture status of the forest soil. 
 
Most of the information on tropical forests in high resolution X- and C-band radar 
images is contained in texture. Radar intensity images with logarithmic scaling were 
shown to be more fit for use in textural analysis procedures than radar intensity (or 
radar amplitude) images with linear scaling (see section 5.1.2). When cover types of 
interest display textural characteristics that are distinctly different, both grey level 
co-occurrence (GLCO) statistics and standard deviation of gamma (in dB) make 
equally suitable bases for analysis. However, in general, GLCO statistics are more 
powerful descriptors of image texture because they are sensitive to the spatial 
organisation of the pixels, i.e. pattern. The standard deviation of gamma, on the 
other hand, is merely determined by the average difference in grey level between 
pixels and their mean. Unlike other GLCO statistics, GLCO-CONT (Contrast) and 
GLCO-COR (Correlation) can be directly related to the statistics of radar images (see 
section 6.1.2). Moreover, these two textural attributes are more sensitive to canopy 
architecture than most other GLCO attributes. Plots showing the variability of these 
attributes as a function of displacement length do in fact reflect physical properties 
of the canopies observed. In summary, GLCO-COR and GLCO-CONT are the most 
explanatory GLCO descriptors of texture in radar images from tropical forests. Hence, 
these two attributes are most suited for use in analysis of texture according to the 
GLCO approach. 
 
Analysis of image texture according to the grey level co-occurrence approach involves 
a number of choices. One of these, i.e. the choice of a particular GLCO attribute, was 
discussed above. Other choices concern displacement direction, displacement length 
and, for analysis by means of a moving window, window size. Displacement direction 
is of particular importance for analysis of textures from cover types with directionally 
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organised canopies, e.g. plantation forests. Although, canopies of natural tropical 
forests tend to be organised isotropically most textural information was obtained 
using displacement in range direction (i.e. the direction perpendicular to the line of 
flight) (see Appendix I, section I.3). This can be explained by the side-looking 
measurement geometry of radar systems and holds as long as the spatial resolution 
and pixel size in range and azimuth direction are comparable. 
 
Displacement length has to be chosen in accordance with the textures of the cover 
types of interest and the GLCO attribute applied. The discriminating capability of the 
GLCO-COR attribute was found to deteriorate rapidly for displacement lengths 
exceeding one pixel. The performance of GLCO-CONT, on the other hand, improves up 
to a certain displacement length and then saturates. To enable a well founded 
decision on the displacement length for GLCO-CONT, an assembly of training data is 
recommended. This involves the generation of GLCO-CONT textural signatures for 
image areas representing cover types of interest, i.e. training areas. The training 
process is commensurable with the Gross Textural Analysis (GTA) approach adopted 
in the present study (see section 5.1.3). Training results in textural signatures 
showing the variation in GLCO-CONT values as a function of displacement length and 
cover type. These signatures will be of a form comparable to the plots shown in, for 
example, Figure 6.3b. At displacement lengths suitable for use in further textural 
analysis the sum of the differences in the GLCO-CONT values for the various cover 
types must be at or near maximum. 
 
In the present study image texture was analysed according to two complementary 
approaches, i.e. Gross Textural Analysis (GTA) and Moving Window Analysis (MWA). 
GTA is intended to quantify the texture for predefined image regions while MWA is 
meant to do so for a relatively small spatial window around each image pixel. In 
general, GTA yields considerably better textural descriptions than MWA. In practice, 
however, the applicability of GTA will often be hampered by the fact that its use 
requires a priori information on boundaries of cover types of interest. This type of 
information may be available in existing geographically-referenced data bases. If this 
is not the case, then use of GTA is feasible only if one is able to delimit regions of 
interest with the help of automated image segmentation techniques. Given the 
complex nature of tropical forests, however, such techniques have little chance of 
success. Incidentally, for an image segmentation technique to have any chance of 
success in a tropical forest environment it will have to make use of textural 
information. 
 
Textural analysis by means of a moving spatial window (MWA) involves an additional 
choice, i.e. the choice of a window size. The window should be large enough to 
enable the textural attribute used to capture the essence of the grey level patterns 
present and yet be small enough to avoid that the window consistently encloses 
image areas with differing textures and hence cover types. In general, the optimum 
window size will vary as a function of the spatial resolution of the radar used, the 
architecture of the forest and the capability of the textural attribute applied. In the 
present study MWA's were carried out using windows 11 11×  and 25  pixels in 
size. The larger window size yielded the best overall results (see section 6.1.3). 
GLCO-COR (using displacement length of one pixel) was found to be more sensitive to 
local variations in canopy architecture (textural noise) than GLCO-CONT (using 

25×
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displacement length of five pixels). Consequently, GLCO-COR has more difficulty in 
capturing the essence of textures if small windows are used (see Appendix I, section 
I.5). Due to the heterogeneous nature of tropical forests, moving window analysis of 
texture followed by automated classification of forest types on a pixel-by-pixel basis 
yields modest results. However, texturally processed radar image products make a 
good basis for assessment of tropical forest types by means of visual interpretation 
(see Appendix V, Figures V.3 through V.6). 
 
Results in sections 6.2.1 and 6.2.3 of the present text illustrate that ERS-1 Single 
Look Complex (SLC) images are more suitable for use in textural analysis than ERS-1 
Precision (PRI) images. In an operational environment, however, textural analysis of 
ERS-1 SLC images is not recommended because the results will usually be out of 
proportion to the analysis effort required. 

 
 
8.3 To conclude 

In this study the capabilities and limitations of modern radar sensors for application 
to tropical forest management at global, national and local spatial levels were 
discussed. The findings illustrate that radar sensor systems have considerable 
potential for this purpose. Although the implementation of radar remote sensing in 
tropical forest management was addressed, much work in the development of 
tailor-made data acquisition and analysis strategies remains to be done. To be 
successful, the development of such strategies must be undertaken in close 
cooperation with forest managers. Work also remains to be done in background 
research because the technical capabilities of both spaceborne and airborne radar 
systems are being expanded constantly. The recently-introduced, very high resolution 
airborne SAR systems which have interferometric capabilities are examples of radars 
whose application potential deserves further investigation. 
 
Meanwhile, forest managers may be able to adjust their procedures and information 
requirements in such a way that they are better matched with the capabilities of radar 
remote sensing. However, it should be noted that radar data alone can never provide 
a complete basis for a forest assessment or monitoring procedure. Assessment 
and/or monitoring of certain forest properties will require auxiliary information but, 
more importantly, the information extracted from radar images should always be 
verified by ground data. Furthermore, it should be emphasised that radar is only a 
tool for collecting information. In the end, the differing parties involved in tropical 
forest management will have to judge all the information obtained and decide 
whether or not to act upon it. 
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Summary 

Radar remote sensing to support tropical forest management 

The objective of the present study is to assess the potential of radar or microwave 
remote sensing for application to the management of tropical rain forests. To this 
end, the information content of images acquired by different radar systems is 
evaluated and compared to the information requirements of parties involved in 
tropical forest management. The study makes use of existing techniques for radar 
image analysis and investigates how these techniques can be optimised for the 
application studied. 
 
Radar images have potential to support forest resource assessment as well as forest 
resource monitoring procedures. Forest resource assessment involves the collection, 
processing and presentation of forest data to obtain a description of the location, 
extent and/or constitution of a certain forest area at a particular point in time. Forest 
resource monitoring, on the other hand, is a continuous process involving the 
collection, processing and presentation of data on the location, extent, nature, cause 
and rate of change. Data that result from monitoring enable the inference of the 
forest's state at any point in time and provide a basis for planning and guiding future 
change. Forest resource assessment and monitoring are essential parts of 
procedures for sustainable forest management. 
 
Individuals and organisations involved in the management of tropical forest resources 
presently operate at the global, national and local spatial levels. Descending from the 
global to the local level the following trends in information requirements of these 
managing parties can be observed. First, the area for which information is needed 
decreases. Second, the information required is of an increasingly fine spatial detail. 
Third, the information needs diversify and become more specific. Because of their 
need for spatial information, the parties involved in tropical forest management can 
be considered potential users of radar remote sensing data. 
 
Parties operating at the global spatial level typically require information for use in 
forest resource monitoring procedures. Their requirements, which are usually inspired 
by major environmental issues, concentrate on parameters relating to: forest cover 
(e.g. forest, non-forest, logged), forest categories (e.g. vegetation type, 
administrative / legal status) and socio-economic factors (e.g. population density, 
infrastructure) (see Table 2.1). Nationally operating parties also require information 
on forest cover, forest category and socio-economic factors. Moreover, these parties 
have a growing need for information on indicators of biodiversity (see Table 2.2). 
Depending on their objectives, locally operating parties may require information on a 
variety of parameters relating to forest cover, forest category, terrain physiography, 
infrastructure, forest composition, forest structure and site class. Due to pressure of 
consumers, environmental and social groups, those involved in forest industry have a 
(future) need for information on indicators of sustainable management (see Tables 
2.3 and 2.4). 
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Remote sensing systems as tools for collecting information offer some distinct 
advantages for application in extensive and/or inaccessible areas, in particular. First, 
these systems are able to acquire data in a synoptic, systematic and repetitive 
manner. Second, remotely sensed data can be geographically-referenced. In contrast 
to optical sensor systems, radar systems are able to acquire usable images when 
atmospheric conditions are poor due to the presence of moisture, clouds and/or 
smoke. In environments where tropical rain forests occur, adverse atmospheric 
conditions are in fact prevalent. Consequently, radar systems are the preferred 
remote sensing systems for application to tropical forest management. Nevertheless, 
in cases where data from optical sensor systems are available, these data can 
greatly complement the information present in radar remote sensing data. This is 
explained by the fact that optical and radar sensor systems operate in different parts 
of the electromagnetic spectrum. To illustrate the information on tropical forests 
present in optical and radar remote sensing data, the sections 2.2.2 and 2.2.3 of 
the present text review a selection of earlier publications. 
 
To create an image, radar systems transmit electromagnetic waves towards the 
object of interest and subsequently record the waves that are reflected back towards 
the sensor. Waves reflected by the object in the direction of the sensor are referred 
to as the radar return signal or radar backscatter. The information content in radar 
images of a given forest area depends strongly on the properties of the wave signal 
with which the sensor operates. Relevant wave parameters include: frequency (or 
wavelength), polarization, incidence angle and viewing geometry. If wave parameters 
are fixed by system design and flight plan, then the received backscatter will only vary 
as a function of the scattering properties of the objects observed. Variables known to 
govern the radar return signal from the forest soil are: random surface roughness, 
periodic surface patterns and relative dielectric constant. The backscatter from the 
forest vegetation volume is a function of the volume's thickness and the densities, 
sizes, shapes, orientations and the relative dielectric constants of the component 
particles (e.g. leaves, branches and trunks). The relative dielectric constants of the 
forest soil and the vegetation particles are primarily determined by the water content. 
The principles of radar remote sensing and the interaction of radar waves with forest 
are discussed in detail in Chapter 3. 
 
The radar data studied were acquired over tropical rain forest areas near the 
township of Mabura Hill in Guyana (5°10' N, 58°42' W) and the city of San José del 
Guaviare in Colombia (2°34' N, 72°38' W). The Mabura Hill study area is comprised 
of differing intact, primary forest types and forests that have been subject to 
industrial selective logging. Primary forests free of human impact are a rare 
occurrence in San José del Guaviare. Instead, this study area is characterised by the 
presence of secondary forests and a variety of non-forest cover types such as 
pastures, agricultural crops, burned areas and bare soils. In 1992 both study areas 
were imaged by the high resolution, X- and C-band airborne synthetic aperture radar 
(SAR) from the Canada Centre for Remote Sensing (CCRS). The year following, both 
sites were imaged by the high resolution, C-, L- and P-band airborne radar polarimeter 
from the Jet Propulsion Laboratory (JPL) of the National Aeronautics and Space 
Administration (NASA). Moreover, the data sets for the two study areas include time 
series of images acquired by the C-band SAR onboard the first European remote 
sensing satellite ERS-1. A collection of low altitude, nadir-looking, X-band 
measurements by the ERASME scatterometer system complements the data set for 
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Mabura Hill. Detailed descriptions of the study areas and available radar data can be 
found in Chapter 4. 
 
To assess the information content of the available data, the study makes use of 
three fundamentally different information sources from the radar return signal: its 
strength (backscatter), polarization and phase, and spatial variability. Parameters 
concerning these sources of information are computed for predefined image regions 
and/or individual pixels. Spatial variations of the radar return signal are conceived as 
image texture. Texture in radar images of forests relates to canopy roughness which 
is a parameter of canopy architecture. In the present study, analysis of texture is 
largely based on the grey level co-occurrence (GLCO) technique. Use of this technique 
results in textural descriptors or attributes that represent grey level second-order 
statistics of pixel pairs. Like other methods and techniques, the method of textural 
analysis according to the GLCO technique is elaborated in Chapter 5. 
 
Chapter 6 discusses the results of investigations into the potential of radar remote 
sensing to support forest resource assessment. The emphasis is on the application 
of radar to land cover type classification because this usually makes up the first step 
in assessment procedures. The paragraphs following summarise the results of the 
analysis of data acquired by the CCRS SAR, ERS-1, NASA/JPL AIRSAR and ERASME, 
respectively. 
 
Analysis of images acquired by the CCRS airborne SAR shows that texture and not 
backscatter is the key to identifying tropical land cover types in high resolution, high 
frequency radar images. Region-based analysis of texture followed by classification of 
land cover at the level of primary forest types yields modest to good results. The 
combination of textural analysis and classification of images on a pixel-by-pixel basis 
yields less satisfactory results. However, texturally enhanced, high resolution and 
high frequency radar images make good bases for mapping of primary tropical forest 
types by means of visual interpretation. The textural appearance of the logged-over 
forest present in Mabura Hill is very similar to that of a riparian primary forest type 
known as Mora forest. In mono-temporal images the two forest types can only be 
discriminated by means of contextual information. Textural attributes enable the 
ranking of forest types according to the degree of canopy roughness. Moreover, 
certain textural attributes allow for quantification of canopy architectural properties. 
Findings by Oldeman (1983a), Brünig and Huang (1989) and Brünig and Mohren 
(1989) show that canopy roughness is an indicator of species diversity. 
 
Textural attributes and backscatter values computed per region from mono-temporal 
ERS-1 SAR Precision (PRI) images are equivalent sources of information for 
identifying tropical land cover types. The two variables make modest bases for 
classifying at the level of primary forest, logged-over forest, secondary forest and 
non-forest and poor bases for classifying at the level of primary forest types. Textural 
attributes computed per region from time-averaged ERS-1 SAR Single Look Complex 
(SLC) images make modest bases for classifying tropical land cover at the level of 
primary forest types. The difference between the results for the ERS-1 PRI and 
time-averaged ERS-1 SLC images can be explained by the higher spatial resolution of 
the latter images. Neither texturally enhanced ERS-1 PRI images nor texturally 
enhanced time-averaged ERS-1 SLC images make an adequate basis for the mapping 
of tropical primary forest types by means of visual interpretation. In fact, a large 
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proportion of the coarse textures in these images results from relief and not from 
canopy architecture. Despite differences in measurement scale, the canopy 
roughness of the land cover types studied presents itself in a like manner in the 
texture of ERS-1 SAR and CCRS SAR images. 
 
Analysis of the NASA/JPL AIRSAR data shows that backscatter measurements in 
radar bands with long wavelengths (i.e. L- and P-band) make considerably better 
bases for classifying tropical land cover types than backscatter measurements in 
radar bands with short wavelengths (i.e. C-band). Yet, comparison of results 
associated with the CCRS SAR and NASA/JPL AIRSAR data sets indicates that 
backscatter values computed from L- and P-band radar data and textural attributes 
computed from high resolution X- and C-band radar data are equally suitable bases 
for region-based classification at the level of primary forest types. The chances of 
classifying tropical land cover can be improved by the combined use of backscatter 
measurements in different frequency bands and/or polarizations. In general, 
measurements in either a single L- or P-band radar channel suffice for region-based 
classification at the forest / non-forest level. Reliable classification of secondary 
forest and logged-over forest requires measurements in a minimum of two radar 
channels. Similarly, reliable classification of primary forest types requires backscatter 
measurements in a minimum of three radar channels. For classification of primary 
forest types, inclusion of at least one P-band channel is essential. C-band channels 
are valuable for classifying primary forest types but not for classifying secondary and 
logged-over forests. The primary forest types studied have aboveground biomass 
levels over the threshold at which the backscatter in C-, L- and P-band saturates. This 
suggests that the potential of radar systems to map biomass is limited to tropical 
rain forests in early developmental phases. 
 
Data from the ERASME scatterometer system contain information on the vertical and 
horizontal architecture of the forest. Hence, these data can support the analysis of 
forest architecture and forest dynamics and contribute to the development of forest 
management procedures. The capability of systems like ERASME to locate sources of 
scattering leads to a better notion of the scattering behaviour of the forest and can 
therefore support backscatter modelling studies. 
 
Chapter 7 reports on investigations into the potential of radar remote sensing to 
support forest resource monitoring. These investigations are based on images 
acquired by the first European remote sensing satellite ERS-1. The paragraphs 
following summarise the most important results. 
 
Results of analysis of the available time-series of ERS-1 SAR PRI images suggest that 
daily and seasonal fluctuations in rainfall can cause the backscatter of forests free of 
natural disturbance and human impact to vary by approximately 1 dB. Knowledge of 
daily and seasonal variations in the forest's backscatter allows for better founded 
decisions on the cause of backscatter changes observed and hence supports the 
application of radar in monitoring procedures. Images acquired during dry conditions 
show the most contrast between non-forest and primary and/or secondary forest and 
are therefore best suited to mapping (change in) the extent and location of forest and 
non-forest cover types. Availability of multi- rather than a mono-temporal ERS-1 data 
does not in essence improve the chances of discriminating between primary forest 
cover types. 
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ERS-1 SAR PRI images make a good basis for road detection. This is of great 
importance in view of the potential role of these images in forest monitoring 
procedures as roads are very distinctive indicators of foregoing and/or forthcoming 
human activities, including (selective) logging. Roads do in fact mark locations where 
the continued existence of the forest is at risk unless appropriate action is taken. 
Enhanced ERS-1 image products show the larger of the canopy openings resulting 
from selective logging. Yet, monitoring of selective logging is complicated by the fact 
that logging gaps often appear very similar to natural gaps. Monitoring of logging 
related disturbance in forest cover requires an approach that makes use of 
contextual information and field knowledge. Indicators of logging are the clustered 
and/or systematic occurrence of gaps and the presence of gaps in the vicinity of 
roads. 
 
Considering the user requirements and the data analysis results, Chapter 8 
elaborates upon the application and implementation of radar remote sensing to 
tropical forest management at the global, national and local spatial level. The final 
chapter of this text can be summarised as follows. 
 
Table 8.1 shows appraisals of the potential of ERS-1 and equivalent systems to 
support the assessment and/or monitoring of the parameters of interest to parties 
involved in tropical forest management at the global spatial level. Based on ERS-1 
SAR PRI images the assessment and/or monitoring of forest, non-forest, burned 
areas, deforested areas, clear-cuts and roads is judged to be 'possible'. Assessment 
and/or monitoring of logged-over forest, regenerating forest, actual forest vegetation 
type, plantation / natural forest and stand architecture is deemed to be 'difficult'. 
 
The national and global information requirements associated with the monitoring of 
tropical forests are essentially the same. Hence, the capacities of the SAR onboard 
ERS-1 to support monitoring at national spatial level are comparable to those at the 
global spatial level. Assessment of national forest resources will often require data 
from airborne radar systems. Table 8.2 shows appraisals of the potential of two 
types of high resolution airborne radar data for this purpose, i.e. data acquired by 
systems operating in short wavelengths such as X- and C-band and long wavelengths 
such as L- and P-band. Appraisals relating to X- and C-band data assume the use of 
textural information, whereas appraisals concerning L- and P-band data assume the 
use of backscatter information. Both data types are judged to have 'good' potential 
for assessing terrain physiography and road density. Using either type of data, 
assessment of plantation / natural forest and cover fragmentation is deemed to be 
'possible'. High resolution, short wavelength and long wavelength airborne radar data 
make equally suitable but complementary sources of information for identifying the 
cover types studied. Because of a limited sensitivity of L- and P-band radar signals to 
biomass, the possibilities for estimating timber volume and woody biomass are rated 
as 'difficult'. 
 
Parties involved in forest management at the local spatial level require information of 
a very fine spatial detail. Prognoses of the potential of very high resolution X- or 
C-band and L- or P-band radar data for locally operating forest managers are given in 
Table 8.3. Based on either data type, the possibilities for assessing and/or 
monitoring of terrain characteristics, clear-cuts, burned areas and plantation / natural 
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forests are rated 'good'. Very high resolution X- and C-band radar data are judged to 
make better bases for the assessment and/or monitoring of primary forest types and 
logged-over forest than very high resolution L- and P-band data. Using either type of 
data, assessment and/or monitoring of (natural) regeneration is deemed to be 
'difficult' because the data are not likely to provide the detail required to discern 
whether or not a regrowing vegetation is comprised of the preferred species. 
Assessment and/or monitoring of parameters relating to forest composition and 
forest structure requires information at the level of individual trees. In a natural 
tropical forest environment, radars operating with very high resolutions will at best 
have difficulty to provide this type of information. This also holds true for large scale 
(stereoscopic) aerial photography. Table 8.4 complements Table 8.3 and lists 
indicators of sustainable forest management with good potential to be assessed 
and/or monitored by very high resolution radars. 
 
Forest managers who decide to make use of radar remote sensing data will have to 
follow different strategies to acquire the data most suited to their purposes. In turn, 
the radar data type selected will direct the strategy to be followed to extract the 
information desired. In the development of a data acquisition strategy it is important 
to consider: the spatial level, the nature of the required information and the 
requested observation time and frequency. These variables determine the choice of 
the data from a particular radar system or a combination of systems. The number of 
available airborne radar systems largely exceeds the number of available satellite 
radar systems. Moreover, the airborne systems offer a much wider range of technical 
capabilities than the satellite systems. Currently available radar satellite systems 
were not specifically developed for application to tropical forest management and 
therefore have only modest potential for this purpose. In general, forest managers 
with the option to apply airborne data have a better chance of satisfying their 
information needs by means of radar remote sensing than forest managers who are 
dependent on satellite data. 
 
To ensure compatibility of information extracted from radar data from one forest area 
to another as well as for successive points in time, there is a need to standardise 
methods for radar data analysis. Strategies for analysis of the radar data as studied 
are the topic of section 8.2.2. The analysis strategy for a particular type of radar data 
is directed by the dominant source of information. Hence, analysis of data acquired 
by the ERS-1 satellite and airborne radars operating with long wavelengths focuses 
on backscatter, whereas analysis of data acquired by high resolution airborne radars 
operating with short wavelengths focuses on texture. 
 
The findings of the present study illustrate that radar sensor systems offer 
considerable potential for application to tropical forest management. Radar data 
alone, however, can never provide a complete basis for a forest assessment or 
monitoring procedure. Assessment and/or monitoring of certain forest properties will 
require auxiliary information but more importantly the information extracted from 
radar images should always be verified by ground data. It should also be emphasised 
that radar is only a tool for collecting information. In the end, the differing parties 
involved in tropical forest management will have to judge all the information obtained 
and decide whether or not to act upon it. 
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APPENDIX  I 
Details of GLCO textural analysis 

The value of texture as a source of information in high frequency, high resolution 
radar images of forested terrain in the humid tropics was clearly illustrated in 
sections 6.1 and 6.2. Analysis of image texture according to the grey level 
co-occurrence (GLCO) approach involves choices concerning: GLCO attribute, 
displacement direction, displacement length and, for analysis by means of a moving 
spatial window, window size. The current appendix discusses the effects of these 
choices on the potential of GLCO textural descriptors to identify the land cover types 
studied. The results presented relate to the X-band HH CCRS SAR and the ERS-1 
SLC-av data sets. Unless stated differently, the image data had the 'standard' 
scaling, i.e. pixels values ranging from 0 to 127 (see section 5.2.2). The effects of 
radar frequency, polarization, incidence angle and the number of grey levels (scaling) 
of the input image are also discussed. 

 

 

I.1 Texture as a function of frequency, polarization and incidence angle 

Depending on frequency, polarization and/or incidence angle, radar images of one 
and the same area may contain differing amounts of textural information. The higher 
the textural information content, the better the chances for GLCO attributes to 
discriminate classes. Figure I.1 illustrates the differences in the textural information 
content of the radar bands present in the CCRS SAR data set. The value on the 
ordinate represents the total number of class pairs that is discriminated successfully 
by all GLCO attributes studied (see section 5.2.4). The data sets for the radar bands 
shown in Figure I.1a include six classes (Secondary forest and Non-forest are 
excluded). These six classes make up 15 different class pairs for each GLCO 
attribute to discriminate. The total number of available GLCO attributes equals 90, 
i.e. nine statistical parameters each computed for 10 displacement lengths. Hence, 
the maximum number of class pairs that can possibly be discriminated is 1350. The 
data sets for the bands shown in Figure I.1b include five classes (Secondary forest, 
Non-forest and Logged-over forest excluded) and for those shown in Figure I.1c eight 
classes (no classes excluded). Consequently, the maximum number of class pairs is 
900 in Figure I.1b and 2520 in Figure I.1c. 
 
The results in Figure I.1 should be interpreted with care since, apart from frequency 
and polarization, there are other possible methodological causes for the apparent 
differences in textural information content. Only the results for the following band 
combinations can be compared directly: XHH/XVH, XHV/XVV, CHH/CVH and 
CHV/CVV. Results for HH or VH polarized bands cannot be compared directly with 
those for HV or VV polarized bands since these data were acquired along different 
flight lines. Consequently, the samples in the HH/VH and HV/VV data sets do not 
relate to exactly the same areas on the ground. Also, certain areas of interest may be 
located at varying range distances in images from differing flight lines. Hence, these 
areas may be observed at different angles of incidence which in turn may change the 
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textural appearance. Both facts induce unwanted variation in the textural 
characteristics of the sample points in the HH/VH and HV/VV data sets. This 
influences the discriminating capacity of the GLCO attributes and obstructs the direct 
comparison of the corresponding transformed divergence analysis results. Likewise, 
the results for X-band cannot be compared directly with those for C-band because the 
pixels in these data sets are of a slightly different size (see Table 4.5). 
 
Most striking in Figure I.1a is the difference in the performance of the GLCO 
attributes associated with the HH/VH and HV/VV data sets. The apparent difference 
for the VH and HV polarized bands is in conflict with the reciprocity principle (see 
section 3.1.6). Further study reveals that these differences are mostly due to 
variations in the textural appearance of Logged-over forest regions. In the HV/VV 
polarized bands the within class variation for Logged-over forest is larger than in the 
HH/VH polarized bands. Comparison of the Figures I.2a and I.2b show this to result 
from the fact that the Logged-over sample plots in X-band HV (likewise in: XVV, CHV 
and CVV) occupy a larger incidence angle range than in X-band VH (likewise in: XHH, 
CVH, CHH). Because of the larger within class variation, Logged-over forest is more 
easily confused with other classes (notably Mora forest and Mixed forest) in the 
HV/VV polarized bands than in the HH/VH polarized bands. This artefact can easily 
be 'compensated' for by excluding all class pairs involving Logged-over forest. The 
results of this procedure are shown in Figure I.1b. The noted artefact illustrates the 
importance of incidence angle in relation to textural analysis. The effect of incidence 
angle on the textural attributes will be discussed in more detail below. 
 
 

 
Figure I.1 (a-c)  Textural information content of radar bands present in the CCRS SAR data 
set. The columns represent the total number of class pairs that is discriminated successfully 
by all of the GLCO attributes studied: (a) class pairs comprising Secondary forest and 
Non-forest excluded (b) class pairs comprising Secondary forest, Non-forest and Logged-over 
forest excluded (c) no class pairs excluded. The maximum number of class pairs that can 
possibly be discriminated is 1350 in the case of a, 900 in the case of b and 2520 in the 
case of c. 
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Despite the aforementioned complications, Figure I.1 allows the following 
observations. Overall, the differences in the suitability of the various radar bands for 
textural analysis appear small. In X-band the results for HH are slightly better than 
those for VH, likewise those for HV are better than those for VV. If one equates the 
results for the two cross polarizations, the results for HH are better than for VV. In 
descending order, the suitability of the various X-band channels for textural analysis 
is therefore: HH, VH/HV and VV. In C-band, HH and VH/HV are equally suitable and 
both somewhat more suited for use in analysis of texture than VV. The question 
whether X- or C-band is more suited for textural analysis is addressed below. 
 
Texture in high frequency, high resolution radar images of forested areas (on flat 
terrain) is governed by the roughness of the canopy surface which is a parameter of 
the canopy's architecture. Consider two radar systems imaging the same stretch of 
forest. Of these two systems, the one operating with the highest frequency (shortest 
wavelength) is likely to produce the image with the highest textural information 
content since its signal penetrates the canopy surface to a lesser depth. Similarly, 
the radar image with the highest spatial resolution and/or smallest pixel size can be 
expected to contain the most textural information because it gives the most detailed 
representation of canopy roughness. This holds as long as the radar systems in 
question have the same radiometric resolution. In practice, this may not be the case 
because a higher spatial resolution can usually be achieved at the expense of 
radiometric resolution only. The CCRS SAR X- and C-band images are acquired by one 
and the same radar system, i.e. using identical spatial and radiometric resolutions. 
However, the X-band images are processed to a smaller pixel size than the C-band 
images (see Table 4.5). Given that the X-band images have both a shorter wavelength 
and a smaller pixel size than the C-band images, one would assume the X-band 
images to contain the most textural information. Yet, the results in Figure I.1 do not 
show evidence of such. Indeed, the results for XHH/XVH are slightly better than 
those for CHH/CVH, but the results for XHV/XVV are in fact somewhat poorer than for 
CHV/CVV. It follows that there is no distinct difference in the suitability of X- and 
C-band radar data for use in analysis of texture. 
 
The most important causes of texture in high frequency, high resolution radar images 
are the geometrical effects that occur when a radar observes terrain with varying 
relief, e.g. an irregular forest canopy (see section 3.1.3). The nature and extent of 
these effects depends strongly on the geometry of the observed surface and the 
elevation and/or incidence angle (see Figure 3.8). A forest canopy of a given 
roughness will be conceived differently at small incidence angles than at large 
incidence angles. The effects of radar "shadowing" and "foreshortening" become 
more pronounced as the incidence angle increases, whereas the effects of "layover" 
decrease with an increasing incidence angle. Texture in radar images is the result of 
all these effects. Hence, the textural appearance of a forest with a specific canopy 
roughness changes with a change in incidence angle. Moreover, changes in ground 
range resolution give rise to changes in texture as a function of incidence angle (see 
Equation 3.1, section 3.1.1). At higher incidence angles, a radar system is capable of 
imaging a forest canopy with more spatial detail. This affects the canopy's textural 
appearance. 
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Figure I.2 (a-b)  GLCO-CONT[5] textural values for image regions representing cover types 
studied as a function of incidence angle: (a) texture computed from the X-band VH CCRS SAR 
image (b) texture computed from the X-band HV CCRS SAR image. 
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Figure I.2 illustrates the changes induced by the incidence angle in the GLCO-CONT[5] 
textural attribute for the land cover types present in the X-band VH and HV images. 
The texture of forest types with rough upper canopies (Mora, Mixed and Logged-over 
forest) is shown to depend strongly on the angle of incidence. In contrast, the texture 
of Non-forest and forest types with smooth upper canopies (Low swamp and 
Secondary forest) can be seen to be almost independent of the incidence angle. 
Wallaba forest and Xeric mixed forest take up intermediate positions in the sense 
that their textures do not vary as much with the incidence angle as for the rough 
cover types, but more so than for the smooth ones. The differences in the effect of 
incidence angle on the textural appearance of the cover types studied can be  

 
Figure I.3  Different GLCO textural values and sd(γ ) for image regions representing cover 
types studied as a function of incidence angle. The textural attributes shown were computed 
from the X-band HV CCRS SAR image. 

267 



Radar remote sensing to support tropical forest management 

 
 

 
Figure I.3  Continued. 
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explained by differences in the relative importance of the geometrical effects. In the 
imaging of rough canopies, these effects play a major role, whereas in the imaging of 
smooth canopies, these effects are almost absent. The implication of the incidence 
angle effect for the analysis of texture is twofold. On the one hand, it complicates the 
analysis of images that cover a wide incidence angle range. In certain cases, 
however, one may be able to take advantage of the incidence angle effect. For 
example, Figure I.2b shows that the textural differences between the cover types 
studied are largest at large angles of incidence. Therefore, by selecting images 
acquired at large incidence angles, one can facilitate the discrimination of these 
cover types. It also follows that the small incidence angle of the ERS-1 SAR system is 
not beneficial for the textural information content of its images. 
 
In Figure I.2 a representation was chosen that shows the GLCO-CONT[5] data points 
derived from the X-band VH and HV data. Plots of data points associated with C-band 
or other polarizations and textural attributes (including sd(γ )) would have allowed 
similar observations. Figure I.3 holds additional plots of textural attributes versus 
incidence angle for X-band HV. These plots illustrate that GLCO-CONT[5] is among the 
attributes most sensitive to incidence angle. This can be explained by the fact that 
this attribute measures the sharp grey level transitions resulting from "layover", 
"foreshortening" and "shadowing" (see section 5.1.1). The GLCO-COR[1] attribute 
appears to be the least sensitive to incidence angle effects. 

 

 

I.2 Texture as a function of the number of grey levels 

The relationship between the number of grey levels (image scaling) and the textural 
information content is assumed to be reflected in the discriminating capacity of the 
GLCO attributes studied. Figure I.4 shows the results of a scaling experiment with the 
X-band HH CCRS SAR data. The value on the ordinate represents the total number of 
class pairs that is discriminated successfully by the statistical parameter in question, 
regardless of displacement length. The maximum number of class pairs that can 
possibly be discriminated by the GLCO attributes equals 150, since there are 15 
class pairs and 10 displacement lengths. For sd(γ ) the maximum value is equal to 
15. Similarly, Figure I.5 shows the results of a scaling experiment with the ERS-1 
SLC-av data. In this particular case the maximum number of class pairs that can 
possibly be discriminated by the GLCO attributes equals 100 since there are only 10 
class pairs. In the present study it was chosen to rescale the radar images prior to 
textural analysis. Alternatively, rescaling may be incorporated in the textural analysis 
procedure. 
 
The backscatter input range for the scaling of the CCRS SAR and ERS-1 SLC-av image 
was fixed at 51 and 18 dB, respectively. Rescaling of the CCRS SAR image to 8 grey 
levels therefore results in backscatter steps of 51 8 6 4≈ . dB. In the ERS-1 SLC-av 
image with 8 grey levels each level represents a backscatter step of ca. 2.4 dB. 
Backscatter steps for images with a different number of grey levels can be calculated 
accordingly. The figures illustrate that a reduction in the number of grey levels does 
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γ

 
Figure I.4  Effect of the number of grey levels in the X-band HH CCRS SAR image on the 
discriminating capacity of the textural attributes studied. Discriminating capacity is expressed 
in terms of the number of class pairs that can be discriminated successfully. The maximum 
number of class pairs that can possibly be discriminated equals 150 in the case of the GLCO 
attributes and 15 in the case of sd(γ ). 
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γ

 
Figure I.5  Effect of the number of grey levels in the ERS-1 SLC-av image on the 
discriminating capacity of the textural attributes studied. Discriminating capacity is expressed 
in terms of the number of class pairs that can be discriminated successfully. The maximum 
number of class pairs that can possibly be discriminated equals 100 in the case of the GLCO 
attributes and 10 in the case of sd(γ ). 
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not necessarily diminish the discriminating capacity of the GLCO attributes. In other 
words, rescaling of data to a lower number of grey levels does not automatically 
result in a loss of textural information. This is of importance in view of the operational 
use of methods for textural analysis, in particular for those that make use of a 
moving spatial window. A low number of grey levels reduces the computational load 
considerably, so textural analysis becomes more economical. It is the author's 
experience that textural processing by means of a moving window of images as 
acquired by the CCRS SAR can easily take three days on a SUN workstation 
(specifications system: SUN IPX, 32 Mbyte RAM; specifications scene/processing: 
size , 128 grey levels, window 112048 10000× 11× , attribute GLCO-CONT[5], 
displacement in range direction). 
 
The results in Figure I.4 indicate that the X-band HH CCRS SAR data could have been 
rescaled to 16 rather than 128 grey levels (128 is standard in the present study; see 
section 5.2.2) without noticeable loss of textural information. In this case each grey 
level would have represented a backscatter step of ca. 3.2 dB, which is equal to 
about 1 6 of the backscatter range of the individual forest pixels. Further rescaling 
from 16 to 8 grey levels makes textural attributes lose the ability to discriminate 
between forest types with more comparable canopy architectures, e.g. Low 
swamp/Xeric mixed, Low swamp/Wallaba and Wallaba/Xeric mixed. This can be 
explained by the fact that after rescaling to 8 grey levels, image regions representing 
these forest types no longer comprise backscatter differences and hence become 
textureless. Following rescaling to 8 grey levels, only image regions that contain 
backscatter differences in excess of 6.4 dB will remain to show texture. In general, 
such large differences in backscatter result from radar "layover", "foreshortening" 
and/or "shadowing" effects. Hence, such backscatter differences are concentrated in 
image regions representative of forest areas with rough canopy surface. 
Discriminating between forest types with rough and smooth canopy surfaces has thus 
become a matter of distinguishing between regions with and without texture. 
 
Most attributes associated with the ERS-1 SLC-av data demonstrate a discriminating 
capacity that is essentially independent of the number of grey levels (see Figure I.5). 
This includes GLCO-COR, GLCO-CONT and GLD-MEAN, i.e. the GLCO attributes most 
sensitive to canopy architecture (see section 6.1.2). Exceptions are those measuring 
textural uniformity (GLCO-ASM, GLCO-MAX PROB) or disorder (GLCO-ENT). The 
performance of these attributes is hampered by both excessively high and low 
numbers of grey levels. This is illustrated most clearly in Figure I.5 but can also be 
seen in Figure I.4. The adverse effects of too high a number of grey levels can be 
explained by the fact that the attributes only relate to the relative frequency and not 
to the grey levels of pixel pairs. A large number of grey levels (a GLCO matrix with 
many elements) causes the differences in the relative frequencies of pixel pairs to be 
small. Consequently, the GLCO-ASM, GLCO-MAX PROB and GLCO-ENT values of 
differing textures are less discriminative. Because of the sensitivity to under- and 
over-scaling the application of the named attributes is more complex. In the case of 
the ERS-1 SLC-av data the performance is best if the number of grey levels equals 
64, i.e. if each grey level represents a backscatter step of ca. 0.3 dB. Figure I.5 
illustrates that of all attributes studied, GLCO-ASM is the best performing one. This is 
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due to the fact that its performance, unlike that of most other attributes, shows little 
dependence on displacement length (see section I.4, Figures I.10 and I.11). 
 
Comparison of the Figures I.5 and I.4 shows that the discriminating capacities of the 
textural attributes associated with the ERS-1 SLC-av data are considerably poorer 
than of those associated with the X-band HH CCRS SAR data. There appears to be a 
clear discrepancy in the textural information content of the two data types. This can 
be explained by differences in spatial resolution and angle of incidence. Both these 
parameters are much more determining for the textural information content of an 
image than scaling. 

 

 

I.3 Texture as a function of displacement direction 

The GLCO-matrices used in the GTA approach were standard computed with 
consecutive displacements in both azimuth and range direction (see section 5.2.2). 
An experiment was carried out to compare the efficiency of this approach to one with 
displacement in either azimuth or range direction. Figure I.6 illustrates the results for 
the X-band HH CCRS SAR data, while Figure I.7 does so for the ERS-1 SLC-av data. 
 
In the case of the X-band HH data consecutive displacements in azimuth and range 
direction yield results that are as good as or better than those from displacement in 
azimuth or range direction only. This holds true for each of the GLCO attributes 
applied. One profits most from two directional displacements when using attributes 
that measure textural uniformity (GLCO-ASM, GLCO-MAX PROB) or disorder 
(GLCO-ENT). Otherwise, the benefits of this approach are negligible since equally 
good results may be obtained by displacement in range direction. Needless use of 
displacement in two directions should be avoided as it increases the computational 
load. Left-over computer time is better spent on the computation of additional 
textural attributes. Economical use of computer time is especially of importance in 
textural analysis by means of a moving window approach. 
 
For GLCO-ASM, GLCO-MAX PROB and GLCO-ENT displacement in range or azimuth 
direction yields comparable results. Other GLCO attributes perform better when 
displacement is in range direction. In range direction the grey tone patterns are most 
prominent and therefore most easily described by textural attributes. This may be 
explained by the side-looking measurement geometry of imaging radar systems (see 
section 3.1.1). 
 
The statement that grey tone patterns are most prominent in range direction 
assumes the spatial resolution in range direction to be higher than or equal to the 
spatial resolution in azimuth direction. Moreover, it assumes the pixel size in range 
direction to be smaller than or equal to the pixel size in azimuth direction. This holds 
true for the CCRS SAR X-band HH image but not for the ERS-1 SLC-av image. In the 
latter case, the range and azimuth size of the pixels are in the proportion of 2 to 1. 
Consequently, the ERS-1 SLC-av image has a relatively low textural information 
content in range direction and a relatively high textural information content in azimuth 
direction. This is reflected in Figure I.7 by the fact that displacement in azimuth 
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direction can result in a better discriminating capacity than displacement in range 
direction. 
 
In the case of the ERS-1 SLC-av image, consecutive displacements in azimuth and 
range direction generally lead to poorer and not to better discriminating capacities. In 
this respect the results for this image differ from those for the X-band HH image (see 
Figure I.6). Nevertheless, both directions contain textural information. The reduced 
discriminating capacities most likely result from the fact that identical displacement 
lengths are used for both the azimuth and range direction. The optimum length for 
displacement in azimuth and range direction must be different because of the 
smaller pixel size in the former direction (see also Figures I.10 and I.11). Application 
of two attuned displacement lengths is expected to yield results that are at least as 
good as those from displacement in azimuth direction. Usage of non-optimal 
displacement lengths just introduces 'textural noise' and therefore has a negative 
impact on the results. 
 

 
Figure I.6  Effect of displacement direction on the discriminating capacity of GLCO textural 
attributes computed from the X-band HH CCRS SAR image. Discriminating capacity is 
expressed in terms of the number of class pairs that can be discriminated successfully. The 
maximum number of class pairs that can possibly be discriminated equals 150. 
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In the case of the ERS-1 SLC-av data there is no agreement as to which displacement 
direction is preferred for GLCO textural analysis. Despite the higher spatial detail, 
displacement in azimuth direction does not necessarily result in a better 
discriminating capacity. GLCO-CONT and GLCO-COR, i.e. the attributes that reflect 
canopy architecture best and are most closely related to radar image statistics (see 
section 6.1.2), yield the best results if displacement is in azimuth direction. This also 
holds for GLCO-ENT. Yet, GLCO-IDM, GLCO-MAX PROB and all of the GLD parameters 
perform best if displacement is in range direction. GLCO-ASM is an exception, it 
performs equally well with displacement in either direction. GLCO-MAX PROB is the 
only parameter that benefits from consecutive displacements in azimuth and range 
direction. 

 

 
Figure I.7  Effect of displacement direction on the discriminating capacity of GLCO textural 
attributes computed from the ERS-1 SLC-av image. Discriminating capacity is expressed in 
terms of the number of class pairs that can be discriminated successfully. The maximum 
number of class pairs that can possibly be discriminated equals 100. 
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Figure I.8  Effect of displacement length on the discriminating capacity of GLCO textural 
attributes computed from the X-band HH CCRS SAR image. Computation using consecutive 
displacements in both azimuth and range direction. Discriminating capacity is expressed in 
terms of the number of class pairs that can be discriminated successfully. The maximum 
number of class pairs that can possibly be discriminated equals 15. 
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Figure I.9  Effect of displacement length on the discriminating capacity of GLCO textural 
attributes computed from the ERS-1 SLC-av image. Computation using consecutive 
displacements in both azimuth and range direction. Discriminating capacity is expressed in 
terms of the number of class pairs that can be discriminated successfully. The maximum 
number of class pairs that can possibly be discriminated equals 10. 
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I.4 Texture as a function of displacement length 

The way in which textural patterns are being described by GLCO statistical 
parameters depends strongly on the displacement length used. A given statistical 
parameter can only discriminate forest types for which the displacement length 
adopted renders unique textural descriptions. Displacement length must be chosen 
in accordance with the statistical parameter used and the textural appearance of the 
cover types of interest. In situations like in the present study where one wants to 
discriminate more than two cover types, the preferred displacement length is the one 
yielding the best overall results. The preferred length of displacement is not 
necessarily the best choice for identifying each of the cover types involved. 
 
The effect of displacement length on the capacity of GLCO statistical parameters to 
discriminate between the cover types studied is illustrated in the Figures I.8 and I.9. 
Figure I.8 illustrates this capacity for parameters derived from the X-band HH CCRS 
SAR data, while Figure I.9 does so for parameters derived from the ERS-1 SLC-av 
data. The results shown relate to the 'standard' GTA approach, i.e. the approach with 
consecutive displacements in both range and azimuth direction. In the case of the 
ERS-1 SLC-av data the most effective lengths for displacement in azimuth and range 
direction were presumed to be different (see section I.3). Therefore, Figures I.10 and 
I.11 show the results obtained for this data set with displacement in either azimuth 
or range direction. 
 
Of all statistical parameters shown in Figure I.8, GLCO-COR is clearly the one most 
sensitive to displacement length. Its discriminating capacity is best when the 
displacement length equals one pixel and deteriorates rapidly when the displacement 
is over a length of more than two pixels. It can be shown that this is due to the fact 
that the variability in the GLCO-COR values for the differing classes increases strongly 
with an increase in displacement length. The effect of displacement length on the 
discriminating capacity of the other statistical parameters is much less pronounced 
or, like in the case of GLCO-ASM and GLCO-ENT, absent. Parameters that express 
grey level contrast statistics (GLCO-CONT, GLD-ASM, GLD-ENT and GLD-MEAN) 
perform best when the displacement length is greater than or equal to approximately 
five pixels. The relationship between displacement length and the discriminating 
capacity of GLCO-IDM and GLCO-MAX PROB is not well defined. Most statistical 
parameters prove to possess comparable discriminating capacities, provided that an 
appropriate displacement length is used. GLCO-MAX PROB is shown to be least 
capable of discriminating the classes studied. 
 
The Figures I.9, I.10 and I.11 show that the effect of displacement length on the 
discriminating capacity of most GLCO parameters associated with the ERS-1 SLC-av 
data is dramatic but poorly defined. It should be noted that due to the discrete nature 
of the approach adopted to evaluate the separability of class pairs (see section 
5.2.4) the shown effect of displacement length on overall discriminating capacity is 
probably exaggerated. In the case of Figure I.9 the poor relationship between length 
of displacement and discriminating capacity is at least in part due to the earlier noted 
difference in the size of the pixels in azimuth and range direction. However, in the 
case of Figure I.10 and I.11, i.e. when displacement is restricted to one direction 
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only, the relationships are not any clearer. It follows that the preferred displacement 
length for analysis of texture in ERS-1 SLC-av data is difficult to identify. The 
observed dramatic changes in the discriminating capacity of GLCO parameters as a 
function of displacement length seem to indicate that the SLC-av data are only 
marginally suited for use in GLCO textural analysis. More evidence of such can be 
found in the fact that the within class variability in GLCO parameters derived from the 
SLC-av data is often large in comparison to the between class variability in these 
parameters. In Figure 6.9b (section 6.2.2) this was illustrated using GLCO-CONT data 
for Logged-over forest and Low swamp forest. 
 
Given a GLCO parameter, the classification potential associated with a certain 
displacement length depends strongly on the spatial resolution and/or pixel size of 
the radar data used and the canopy architecture of the cover types of interest. 
Consequently, the findings discussed cannot be used as guidelines for studies that 
deal with different radar data sets and/or different cover types. The presented 
results, however, clearly illustrate the importance (and difficulty) of selecting the 
'optimum' displacement length. In analysis of texture according to the GTA approach, 
it is feasible to compute one or more textural parameters using a series of 
displacement lengths. Subsequent evaluation of the discriminating capacity of the 
extracted textural attributes enables the selection of the preferred length of 
displacement for each parameter computed. This GTA approach was illustrated in the 
present section. However, a similar a posteriori approach to resolve the 'optimum' 
length of displacement is neither practical nor economical in textural analysis by 
means of a moving window (MWA). This is due to the fact that MWA requires a 
considerable amount of computer time (see section I.2). A more efficient approach is 
to carry out a GTA prior to a MWA and use the obtained results to optimise the MWA 
procedure. GTA in this case can be seen as a training procedure, i.e. a procedure 
aimed at determining the optimum displacement length for further textural analysis 
and classification. 
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Figure I.10  Effect of displacement length on the discriminating capacity of GLCO textural 
attributes computed from the ERS-1 SLC-av image. Computation using displacement in 
azimuth direction. Discriminating capacity is expressed in terms of the number of class pairs 
that can be discriminated successfully. The maximum number of class pairs that can 
possibly be discriminated equals 10. 
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Figure I.11  Effect of displacement length on the discriminating capacity of GLCO textural 
attributes computed from the ERS-1 SLC-av image. Computation using displacement in range 
direction. Discriminating capacity is expressed in terms of the number of class pairs that can 
be discriminated successfully. The maximum number of class pairs that can possibly be 
discriminated equals 10. 
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I.5 Texture as a function of window size 

For textural analysis according to the moving window approach (MWA), one needs to 
decide on the size of the required spatial window. The size of this window must be 
attuned to the spatial resolution and the pixel size of the image used, the 
architecture of the forest under scrutiny and the capability of the textural attribute 
applied. On the one hand, the window should be large enough to enable the textural 
attribute to describe the essence of the grey level patterns present in an accurate 
and unique manner. Yet, on the other hand, the window should be small enough to 
avoid that the window consistently encloses image areas corresponding to differing 
textures (and hence differing cover types). 
 
In the present study the effect of window size on the capacity of textural attributes to 
identify textural patterns was evaluated with the help of the X-band HH CCRS SAR 
data. To this end, a single window of a size varying from 3 3×  to 63  pixels was 
located within the boundaries of each of the earlier defined regions of interest (see 
section 5.1.3). Next, the texture within these windows was computed according to 
the GTA approach and the discriminating capacity of the resulting attributes 
evaluated with the help of the pairwise transformed divergence measure (see section 
5.2.4). Figure I.12 shows the results for a limited selection of GLCO attributes and 
for sd(

63×

γ ). Since a displacement length of one pixel was found to be most 
discriminative in connection with the GLCO-COR statistical parameter it was chosen 
to present the results for GLCO-COR[1] (see section I.4). For similar reasons, the 
results shown for the other GLCO parameters correspond to a displacement length of 
five pixels. GLCO-COR[1] and sd(γ ) were computed for the full range of window sizes. 
GLCO attributes with displacements of five pixels were only computed for windows 
with sizes larger than or equal to 7 7×  pixels. The results of the 'standard' GTA 
approach in which texture is computed for the image regions at large are also 
presented. 
 
An increase in window size is shown to result in improved discriminating capacities 
for all textural attributes concerned. The results of analysis by means of spatial 
windows only match those of analysis by means of image regions if the window size 
equals  pixels and provided that GLCO-COR[1], GLCO-ENT[5] or GLCO-MAX 
PROB[5] is used. The effect of window size on the discriminating capacity of 
GLCO-CONT[5] and sd(

63 63×

γ ) is relatively small. These two attributes perform 
considerably better than the others in case of small window sizes. If computed using 
a window 7  pixels in size both GLCO-CONT[5] and sd(7× γ ) can discriminate 6 out of 
15 class pairs. This is over 50% of the number of class pairs these attributes can 
discriminate if computed by means of image regions. GLCO-COR[1] is shown to have 
difficulty in identifying textural patterns if small spatial windows are used. It requires 
an image window of at least 1  pixels to discriminate any of the textures of the 
classes studied. 

15 × 5

 
Larger spatial windows generally improve the discriminating capacities of GLCO 
attributes. This can be explained by the fact that larger windows comprise more pixel 
pair realisations (grey level co-occurrences) and hence yield more accurate  
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γ

 
Figure I.12  Effect of window size on the discriminating capacity of textural attributes 
computed from the X-band HH CCRS SAR image. Discriminating capacity is expressed in 
terms of the number of class pairs that can be discriminated successfully. The maximum 
number of class pairs that can possibly be discriminated equals 15. 
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representations of textural patterns. Results in section 6.1.3 of the present text 
suggest that the differences in the performance of the textural attributes as a 
function of window size primarily result from the fact that some attributes are more 
sensitive to the presence of 'textural noise' than others. Textural noise originates 
from local variations in canopy architecture, e.g. the presence of openings in a 
predominantly homogeneous and closed canopy. Radar images from tropical rain 
forests can be expected to contain considerable textural noise because these forests 
are of a heterogeneous nature. The extent to which textural noise shows up in 
textural descriptions depends on the window size and the attribute applied. Textural 
descriptions computed using large spatial windows (or image regions) are less 
affected by textural noise because this noise will be mostly averaged out. This 
contributes to the noted increase in discriminating capacity of textural attributes with 
an increasing window size. Similarly, the effects of textural noise will be less 
disturbing if the applied attribute is less susceptible to noise or, in other words, is 
more stable. It follows that more stable attributes require less large window sizes to 
produce identifiable textural descriptions. According to the results shown in Figure 
I.12, GLCO-CONT[5] and sd(γ ) are among the most stable textural attributes, 
whereas GLCO-COR[1] is one of the least stable textural attributes. 

 

 

I.6 Conclusions 

Evaluation of the effects of radar image properties and analysis settings on the 
potential of GLCO attributes and sd(γ ) to identify the textures of the land cover types 
studied leads to the following conclusions. 
 

 High resolution, X- and C-band radar data with linear like- and cross-polarizations 
make equally suitable bases for use in textural analysis aimed at identifying 
tropical land cover types including primary forest types. 

- Large angles of incidence enhance the differences in the textural appearance of 
tropical land cover types in high resolution, high frequency radar images. 

 Rescaling of radar images to a lower number of grey levels does not necessarily 
reduce the images' textural information content and hence is a good method to 
reduce the computational load associated with textural analysis. 

 The range direction is the preferred direction of displacement for GLCO textural 
analysis of high frequency and high resolution airborne radar images. 

- Results of GLCO textural analysis of high frequency and high resolution airborne 
radar images do not generally improve when consecutive displacements in both 
range and azimuth direction rather than displacement in range direction is 
implemented. 
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 The preferred direction of displacement for GLCO textural analysis of the ERS-1 
SLC-av depends on the attribute used. GLCO-COR and GLCO-CONT, i.e. the 
attributes that reflect canopy architecture best and are most closely related to 
radar image statistics, perform best when displacement is in azimuth direction. 

- GLCO textural analysis of ERS-1 SLC-av images using a fixed displacement length 
for consecutive displacements in both range and azimuth direction yields poorer 
results than analysis using an identical displacement length but a single 
displacement in either range or azimuth direction. 

- Relative to that of most other GLCO attributes, the capacity of GLCO-COR to 
identify the textural patterns of tropical land cover types in high frequency, high 
resolution airborne radar images is more strongly dependent on displacement 
length. 

- The effect of displacement length on the discriminating capacity of most GLCO 
parameters associated with the ERS-1 SLC-av data is dramatic but poorly defined. 
Hence, the preferred length of displacement for analysis of texture in ERS-1 
SLC-av data is difficult to identify. 

 Discriminating capacities of textural attributes computed by means of a moving 
spatial window increase with an increase in window size. 

- Compared to other textural attributes, GLCO-CONT[5] and sd(γ ) require smaller 
spatial windows to identify the land cover types studied. In contrast, GLCO-COR[1] 
requires relatively large spatial windows. 

285 



Radar remote sensing to support tropical forest management 

 
 

286 



APPENDIX II 
Alphabetical list of vernacular names used in the text 

Names and authorities are according to Mennenga et al. (1988). 

 

Vernacular name Scientific name Family 

Aromata Clathrotropis brachypetala (Tul.) Kleinhoonte Papilionaceae 

Clump wallaba Dicymbe altsonii Sandw. Caesalpiniaceae 

Crabwood Carapa guianensis Aublet Meliaceae 

Greenheart Chlorocardium rodiei (Schomb.) Rohwer, Richter & 

v.d.Werff 

Lauraceae 

Guava skin Eschweilera alata A.C. Smith Lecythidaceae 

Itikiboro Pterocarpus officinalis Jacq. Papilionaceae 

Ituri wallaba Eperua grandiflora (Aublet) Benth. Caesalpiniaceae 

Kakaralli Lecythis spp. Lecythidaceae 

Mora Mora excelsa Benth. Caesalpiniaceae 

Morabukea Mora gonggrijpii (Kleinhoonte) Sandw. Caesalpiniaceae 

Soft wallaba Eperua falcata Aublet Caesalpiniaceae 

Uriridan Pithecellobium collinum Sandw. Mimosaceae 

Wamara Swartzia leiocalycina Benth. Papilionaceae 

     -- Micrandra elata (Didr.) Muell. Arg. Euphorbiaceae 
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APPENDIX  III 
Data on structure of primary forest types in Mabura Hill 

Table III.1a  Summary of structural data for Mixed forest; number density and basal area of 
trees per diameter class. 

 Stems ha-1  1) Std. deviation Basal area 2) Std. deviation

dbh class Palm trees Other trees stems ha-1  1) (m2 ha-1) basal area 2) 

  2 -   5 20 2140   980   1.0 0.5 

  5 - 10 20   680   330   2.5 1.0 

10 - 15   0   210     90   2.5 1.0 

15 - 25   0   135     30   4.0 1.0 

25 - 35   0     90     40   6.0 2.5 

35 - 45   0     40     20   5.0 2.0 

45 - 55   0     25     20   4.5 3.5 

55 - 65   0     20     15   6.0 4.5 

65 - 75   0       5       5   2.0 2.0 

    ≥ 75   0     15     10   8.5 6.0 

all classes 40 3360 1155 42.5 5.0 

1)  numbers rounded off to nearest multiple of  5. 
2)  numbers rounded off to nearest multiple of  0.5. 

  

  

  

  
Table III.1b  Summary of structural data for Mixed forest; number density of stemless palms 
and lianas. 

Life form Number ha-1  1) Std.deviation 1) 

Stemless palms with height ≥ 2 m   10   10 

Stemless palms with height ≥ 5 m     0     0 

Lianas with ∅ < 10 cm 100 140 

Lianas with ∅ ≥ 10 cm   10   15 

1)  numbers rounded off to nearest multiple of  5. 
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Table III.2a  Summary of structural data for Mixed forest with Greenheart dominance; 
number density and basal area of trees per diameter class. 

 Stems ha-1  1) Std. deviation Basal area 2) Std. deviation

dbh class Palm trees Other trees stems ha-1  1) (m2 ha-1) basal area 2) 

  2 -   5 15 2330   410   1.0   0.0 

  5 - 10   0   500   225   2.0   0.5 

10 - 15   0   130     45   1.5   0.5 

15 - 25   0   150     35   4.0   1.0 

25 - 35   0     50     30   3.5   2.0 

35 - 45   0     30     20   4.0   2.5 

45 - 55   0     20     15   4.0   2.5 

55 - 65   0     15     10   4.0   2.5 

65 - 75   0     15     15   6.5   4.5 

    ≥ 75   0     30     10 25.0 17.0 

all classes 15 3280   325 55.5 16.5 

1)  numbers rounded off to nearest multiple of  5. 
2)  numbers rounded off to nearest multiple of  0.5. 

  

  

  

  
Table III.2b  Summary of structural data for Mixed forest with Greenheart dominance; 
number density of stemless palms and lianas. 

Life form Number ha-1  1) Std.deviation 1) 

Stemless palms with height ≥ 2 m   0     0 

Stemless palms with height ≥ 5 m   0     0 

Lianas with ∅ < 10 cm 85 155 

Lianas with ∅ ≥ 10 cm   5   10 

1)  numbers rounded off to nearest multiple of  5. 
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Table III.3a  Summary of structural data for Wallaba forest; number density and basal area 
of trees per diameter class. 

 Stems ha-1  1) Std. deviation Basal area 2) Std. deviation

dbh class Palm trees Other trees stems ha-1  1) (m2 ha-1) basal area 2) 

  2 -   5 50 3715 1865   2.5 1.0 

  5 - 10   0 1285   405   4.0 1.0 

10 - 15   0   190     30   2.0 0.5 

15 - 25   0   210     55   6.0 1.5 

25 - 35   0   105     25   7.0 1.5 

35 - 45   0     65     10   7.5 1.5 

45 - 55   0     40     15   7.5 3.0 

55 - 65   0     10     10   2.0 2.0 

65 - 75   0       5     10   2.0 3.5 

    ≥ 75   0       0       0   0.0 0.0 

all classes 50 5625 2200 41.0 4.5 

1)  numbers rounded off to nearest multiple of  5. 
2)  numbers rounded off to nearest multiple of  0.5. 

  

  

  

  
Table III.3b  Summary of structural data for Wallaba forest; number density of stemless 
palms and lianas. 

Life form Number ha-1  1) Std.deviation 1) 

Stemless palms with height ≥ 2 m    0     0 

Stemless palms with height ≥ 5 m    0     0 

Lianas with ∅ < 10 cm 135 150 

Lianas with ∅ ≥ 10 cm   15   10 

1)  numbers rounded off to nearest multiple of  5. 
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Table III.4a  Summary of structural data for Xeric mixed forest; number density and basal 
area of trees per diameter class. 

 Stems ha-1  1) Std. deviation Basal area 2) Std. deviation

dbh class Palm trees Other trees stems ha-1  1) (m2 ha-1) basal area 2) 

  2 -   5 0 3050 495   2.0 0.5 

  5 - 10 0 1000 430   3.5 1.5 

10 - 15 0   490 125   5.5 1.5 

15 - 25 0   370   40   9.5 1.0 

25 - 35 0     85     5   6.0 0.5 

35 - 45 0     40   25   5.0 3.5 

45 - 55 0     20   15   3.5 2.5 

55 - 65 0       5     5   0.5 1.0 

65 - 75 0       0     0   0.0 0.0 

    ≥ 75 0       0     0   0.0 0.0 

all classes 0 5050 700 35.0 2.5 

1)  numbers rounded off to nearest multiple of  5. 
2)  numbers rounded off to nearest multiple of  0.5. 

  

  

  

  
Table III.4b  Summary of structural data for Xeric mixed forest; number density of stemless 
palms and lianas. 

Life form Number ha-1  1) Std.deviation 1) 

Stemless palms with height ≥ 2 m   0     0 

Stemless palms with height ≥ 5 m   0     0 

Lianas with ∅ < 10 cm 75 150 

Lianas with ∅ ≥ 10 cm 10   10 

1)  numbers rounded off to nearest multiple of  5. 
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Table III.5a  Summary of structural data for Mora forest; number density and basal area of 
trees per diameter class. 

 Stems ha-1  1) Std. deviation Basal area 2) Std. deviation

dbh class Palm trees Other trees stems ha-1  1) (m2 ha-1) basal area 2) 

  2 -   5   0 2050 340   1.0 0.0 

  5 - 10 15   500 185   1.5 0.5 

10 - 15   0     95   60   1.0 0.5 

15 - 25   0     70   30   2.0 1.0 

25 - 35   0     70   40   4.5 2.5 

35 - 45   0     25   20   3.0 2.0 

45 - 55   0     15   15   3.0 2.5 

55 - 65   0     15   20   3.5 4.5 

65 - 75   0     15     5   5.5 2.0 

    ≥ 75   0     20   10 17.5 9.0 

all classes 15 2870 415 42.5 4.5 

1)  numbers rounded off to nearest multiple of  5. 
2)  numbers rounded off to nearest multiple of  0.5. 

  

  

  

  
Table III.5b  Summary of structural data for Mora forest; number density of stemless palms 
and lianas. 

Life form Number ha-1  1) Std.deviation 1) 

Stemless palms with height ≥ 2 m 50 80 

Stemless palms with height ≥ 5 m   0   0 

Lianas with ∅ < 10 cm 35 80 

Lianas with ∅ ≥ 10 cm   5   5 

1)  numbers rounded off to nearest multiple of  5. 
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APPENDIX  IV 
Classification potential of backscatter measurements in two 
frequencies and/or polarizations 
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Samenvatting 

Radar remote sensing ter ondersteuning van tropisch bosbeheer 

Het doel van de huidige studie is de potentiële mogelijkheden van radar remote 
sensing, ofwel aardobservatie met behulp van radar, voor toepassing in het beheer 
van tropisch regenwoud te bepalen. Hiertoe wordt de informatie-inhoud van 
verschillende typen radarbeelden beoordeeld en vergeleken met de 
informatiebehoeften van partijen betrokken in het tropisch bosbeheer. De studie 
maakt gebruik van bestaande technieken voor de analyse van radarbeelden en gaat 
na hoe deze technieken geoptimaliseerd kunnen worden voor de beoogde 
toepassing. 
 
Radarbeelden bieden potentiële mogelijkheden ter ondersteuning van procedures 
voor zowel het inventariseren als het monitoren van bossen. Bosinventarisatie omvat 
het verzamelen, verwerken en presenteren van gegevens ten einde een beschrijving 
van de locatie, omvang en/of samenstelling van een zeker bosgebied op een bepaald 
tijdstip te verkrijgen. Bosmonitoring, daarentegen, is een continu proces dat bestaat 
uit het verzamelen, verwerken en presenteren van gegevens met betrekking tot de 
locatie, omvang, aard, oorzaak en snelheid van veranderingen. Uit gegevens, die door 
middel van monitoring worden verkregen kan op ieder gewenst tijdstip de toestand 
van het bos worden afgeleid. Tevens vormen deze gegevens een basis voor het 
plannen en sturen van toekomstige veranderingen. Bosinventarisatie en -monitoring 
zijn essentiële onderdelen van procedures voor duurzaam bosbeheer. 
 
Mensen en organisaties, die betrokken zijn bij het beheer van tropisch bos, opereren 
op het mondiale, nationale en lokale ruimtelijke niveau. Afdalend van het mondiale 
naar het lokale niveau kunnen de volgende tendensen in de informatiebehoeften van 
betrokken beheerders worden waargenomen. Ten eerste: De omvang van het gebied 
waarvoor informatie nodig is neemt af. Ten tweede: De benodigde informatie dient in 
ruimtelijke zin steeds gedetailleerder te worden. Ten derde: De informatiebehoeften 
gaan verder uiteenlopen en worden steeds specifieker. Vanwege hun behoefte aan 
ruimtelijke informatie kunnen de partijen, die betrokken zijn in het beheer van 
tropisch bos gezien worden als potentiële gebruikers van radar remote sensing data. 
 
Kenmerkend voor partijen, die opereren op het mondiale niveau is de behoefte aan 
informatie ten behoeve van bosmonitoringsprocedures. De informatiebehoeften op dit 
niveau zijn veelal ingegeven door belangrijke milieuvraagstukken en richten zich op 
parameters aangaande het bosareaal (b.v. oppervlakte bos, niet-bos en gekapt bos), 
boscategoriën (b.v. vegetatie type en administratieve c.q. wettelijke status) en 
sociaal-economische factoren (b.v. bevolkingsdichtheid en infrastructuur) (zie Tabel 
2.1). Nationaal opererende partijen hebben ook behoefte aan informatie met 
betrekking tot bosareaal, boscategoriën en sociaal-economische factoren. Bovendien 
hebben deze partijen een groeiende behoefte aan informatie omtrent indicatoren van 
biodiversiteit (zie Tabel 2.2). Afhankelijk van hun doelstellingen kunnen lokaal 
opererende partijen behoefte hebben aan verscheidene parameters met betrekking 
tot bosareaal, boscategoriën, fysiografische terreinkenmerken, infrastructuur, 
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bossamenstelling, bosstruktuur en terreinklasse. Als gevolg van druk uitgeoefend 
door consumenten, milieu- en maatschappelijke groeperingen hebben, dan wel 
krijgen, zij die betrokken zijn bij industriële bosbouw behoefte aan informatie 
betreffende indicatoren van duurzaam beheer (zie Tabellen 2.3 en 2.4). 
 
Toepassing van remote sensing systemen, als hulpmiddelen voor het verzamelen van 
informatie, biedt met name voordelen in uitgestrekte en/of moeilijk toegankelijke 
gebieden. Ten eerste: Deze systemen zijn in staat data te verzamelen op 
overzichtelijke, systematische en periodieke wijze. Ten tweede: Remote sensing data 
kunnen eenvoudig van een geografisch referentiekader worden voorzien. In 
tegenstelling tot optische sensorsystemen kunnen radarsystemen bruikbare beelden 
verwerven indien de toestand van de atmosfeer slecht is door aanwezigheid van 
vocht, wolken en/of rook. In gebieden waar tropisch regenwoud voorkomt zijn 
ongunstige atmosferische condities in feite overheersend. Bijgevolg zijn 
radarsystemen de meest geschikte remote sensing systemen voor toepassing in het 
beheer van tropisch regenwoud. Evengoed kunnen voorhanden zijnde optische en 
radar remote sensing data elkaar, wat betreft aanwezige informatie, in belangrijke 
mate aanvullen. Dit kan verklaard worden uit het feit dat optische en radar 
sensorsystemen in verschillende delen van het elektromagnetische spectrum werken. 
Ter illustratie van de informatie-inhoud van optische en radar remote sensing data 
met betrekking tot tropische bossen, geven de secties 2.2.2 en 2.2.3 van de huidige 
tekst een overzicht van een selectie van eerder verschenen publikaties. 
 
Om beelden te vormen, zenden radarsystemen eerst elektromagnetische golven uit in 
de richting van het te registreren object. Vervolgens leggen ze de door het object in 
de richting van de sensor weerkaatste golven vast. Deze golven worden aangeduid 
als het radar-ontvangstsignaal of de radarbackscatter. De informatie-inhoud van 
radarbeelden voor een bepaald bosgebied hangt sterk af van de eigenschappen van 
het golfsignaal waarmee de radar werkt. Relevante golfparameters zijn: frequentie (of 
golflengte), polarisatie, invalshoek en kijkrichting. Indien de golfparameters 
vastgesteld zijn door een systeemontwerp en door een vluchtplan, dan zal het radar-
ontvangstsignaal nog slechts als een functie van de reflectiekarakteristieken van de 
waargenomen objecten veranderen. Variabelen, waarvan bekend is, dat zij de 
radarbackscatter van de bosbodem in sterke mate beïnvloeden zijn: willekeurige 
oppervlakte-ruwheid, regelmatige oppervlakte-patronen en relatieve diëlektrische 
constante. De backscatter van het volume, zoals gevormd door de bosvegetatie, is 
een functie van de dikte van dit volume en de dichtheid, afmetingen, vormen, 
oriëntaties en relatieve diëlektrische constanten van de samenstellende deeltjes (b.v. 
bladeren, takken en stammen). De relatieve diëlektrische constanten van de 
bosbodem en de vegetatie deeltjes worden voornamelijk bepaald door de aanwezige 
hoeveelheid water. De principes van aardobservatie met behulp van radar en de 
interactie van radargolven met bos worden in detail beschreven in Hoofdstuk 3. 
 
De bestudeerde radardata werden verworven op locaties in tropisch regenwoud nabij 
het dorp Mabura Hill in Guyana (5°10' N, 58°42' W) en de stad San José del 
Guaviare in Colombia (2°34' N, 72°38' W). Het Mabura Hill studiegebied omvat 
verschillende typen ongeschonden, primair bos, alsmede bossen die op industriële 
wijze selectief gekapt zijn. Primaire bossen welke niet door de mens zijn beschadigd, 
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komen in San José del Guaviare maar zelden voor. Dit studiegebied wordt 
daarentegen gekenmerkt door de aanwezigheid van secondaire bossen en 
verscheidene niet-bos vegetatietypen zoals graslanden, landbouwgewassen, 
verbrande gebieden en kale gronden. In 1992 werden beide studiegebieden 
geregistreerd met behulp van de hoge resolutie, X- en C-band synthetische apertuur 
(SAR) vliegtuigradar van het "Canada Centre for Remote Sensing" (CCRS). Het daarop 
volgend jaar werden ze vastgelegd door de polarimetrische, hoge resolutie, C-, L- en 
P-band vliegtuigradar van het "Jet Propulsion Laboratory" (JPL) van de "National 
Aeronautics and Space Administration" (NASA). De datapakketten van de twee 
studiegebieden omvatten bovendien tijdseries van beelden geregistreerd door de C-
band SAR aan boord van de eerste Europese remote sensing satelliet ERS-1. Een 
verzameling van door het ERASME scatterometersysteem verticaal uitgevoerde, X-
band radarmetingen complementeert de dataset voor Mabura Hill. Uitgebreide 
beschrijvingen van de beide studiegebieden en de beschikbare radardata zijn 
gegeven in Hoofdstuk 4. 
 
Om de informatie-inhoud van de beschikbare data te bepalen, maakt de studie 
gebruik van drie fundamenteel verschillende bronnen van informatie in het radar-
ontvangstsignaal: signaalsterkte (backscatter), polarisatie, fase en ruimtelijke 
variabiliteit. Parameters met betrekking tot deze informatiebronnen zijn berekend voor 
vooraf gedefinieerde beeldsegmenten en/of voor individuele beeldelementen oftewel 
pixels. De ruimtelijke variabiliteit van het radar-ontvangstsignaal wordt in de beelden 
waargenomen als textuur. Textuur in radarbeelden van bossen houdt verband met de 
ruwheid van het kronendakoppervlak, welke op haar beurt een parameter is van de 
kronendakarchitectuur. In de huidige studie wordt voor analyse van textuur 
voornamelijk gebruik gemaakt van een techniek die is gebaseerd op de grijswaarden 
van pixelparen. De textuurbeschrijvingen of -attributen, die deze zogenaamde GLCO 
techniek oplevert, vertegenwoordigen tweede orde statistieken. Overeenkomstig 
andere methoden en technieken, wordt de GLCO techniek uitgebreid beschreven in 
Hoofdstuk 5. 
 
Hoofdstuk 6 behandelt de resultaten van onderzoek naar het vermogen van radar 
remote sensing om bosinventarisatie te ondersteunen. De nadruk ligt hierbij op het 
gebruik van radar voor classificatie van typen landbedekking, omdat dit veelal de 
eerste stap vormt in inventarisatieprocedures. De paragrafen hierna vatten 
achtereenvolgens de resultaten samen van de analyse van de CCRS SAR, ERS-1, 
NASA/JPL AIRSAR en ERASME data. 
 
Analyse van beelden vastgelegd door de CCRS vliegtuigradar, toont aan dat niet 
backscatter, maar textuur de sleutel is tot herkenning van tropische 
landbedekkingstypen in hoog frequente radarbeelden met een hoge resolutie. 
Segmentsgewijze analyse van textuur, gevolgd door classificatie van landbedekking 
op het niveau van primaire bostypen, levert bescheiden tot goede resultaten op. 
Pixelgewijze analyse van textuur en classificatie levert minder bevredigende 
resultaten op. Desalniettemin vormen hoog frequente radarbeelden met hoge 
resolutie, die met behulp van de GLCO techniek zijn bewerkt, een goede basis voor 
visuele interpretatie gericht op het karteren van primaire tropische bostypen. De 
textuur van het in Mabura Hill aanwezige selectief gekapt bos lijkt sterk op die van 
een rivierbegeleidend bostype, dat bekend staat als Mora bos. In beelden van één 
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bepaalde opnamedatum kunnen de twee bostypen slechts onderscheiden worden 
met behulp van contextuele informatie. Textuurattributen maken het mogelijk 
bostypen te rangschikken overeenkomstig de mate van ruwheid van het 
kronendakoppervlak. Bovendien kunnen op basis van bepaalde textuurattributen 
architecturele eigenschappen van het kronendak gekwantificeerd worden. Resultaten 
van Oldeman (1983a), Brünig en Huang (1989) en Brünig en Mohren (1989) duiden 
erop dat de ruwheid van het kronendakoppervlak een indicatie vormt voor de 
diversiteit aan soorten. 
 
Textuurattributen en backscatterwaarden, segmentsgewijs berekend uit ERS-1 SAR 
"Precision" (PRI) beelden van één bepaalde opnamedatum, vormen gelijkwaardige 
bronnen van informatie voor identificatie van tropische landbedekkingstypen. De twee 
variabelen vormen een bescheiden basis voor classificatie op het niveau van primair 
bos, selectief gekapt bos, secondair bos en niet-bos en een slechte basis voor 
classificatie op het niveau van primaire bostypen. Textuurattributen, segmentsgewijs 
berekend uit tijdsgemiddelde ERS-1 SAR "Single Look Complex" (SLC) beelden, 
vormen een bescheiden basis voor classificatie van tropische landbedekkingstypen 
op het niveau van primaire bostypen. Het verschil tussen de resultaten behaald met 
de ERS-1 PRI beelden en de tijdsgemiddelde ERS-1 SLC beelden kan verklaard 
worden uit de hogere ruimtelijke resolutie van de laatstgenoemde beelden. Aan 
texturele analyse onderworpen ERS-1 PRI en ERS-1 SLC beelden vormen geen 
geschikte basis voor visuele interpretatie gericht op het karteren van primaire 
tropische bostypen. Een groot deel van de ruwe texturen in deze beelden resulteert in 
feite van reliëf en niet van de architectuur van het kronendak. Ondanks verschillen in 
de schaal waarmee gemeten wordt, toont de ruwheid van het kronendak van de 
bestudeerde landbedekkingstypen zich op vergelijkbare wijze in de textuur van de 
ERS-1 SAR en CCRS SAR beelden. 
 
Analyse van de NASA/JPL AIRSAR data toont dat backscattermetingen in 
radarbanden met lange golflengten (d.w.z. L- en P-band) een aanzienlijk betere basis 
vormen voor classificatie van tropische landbedekkingstypen dan 
backscattermetingen in radarbanden met korte golflengten (d.w.z. C-band). 
Vergelijking van resultaten voor de NASA/JPL AIRSAR met die voor de CCRS SAR 
duidt er echter op dat backscatterwaarden berekend uit L- en P-band radardata en 
textuurattributen berekend uit hoge resolutie X- en C-band radardata gelijkwaardige 
bases vormen voor segmentsgewijze classificatie op het niveau van primaire 
bostypen. De mogelijkheden voor classificatie van tropische landbedekkingstypen 
kunnen worden verbeterd door gecombineerd gebruik van backscattermetingen in 
verschillende frequentie banden en/of polarisaties. Metingen in een enkel L- of P-
band radarkanaal zijn over het algemeen voldoende voor segmentsgewijze 
classificatie op het niveau van bos / niet-bos. Betrouwbare classificatie van 
secondair bos en selectief gekapt bos vereist metingen in tenminste twee 
radarkanalen. Backscattermetingen in een minimum van drie radarkanalen zijn vereist 
voor betrouwbare classificatie van primaire bostypen. Tenminste een van deze drie 
kanalen moet een P-band kanaal zijn. C-band kanalen zijn nuttig voor classificatie van 
primaire bostypen maar niet voor classificatie van secondair en selectief gekapt bos. 
De bovengrondse biomassa van de bestudeerde typen primair bos ligt boven het 
niveau waarbij verzadiging van de backscatter in C-, L- en P-band optreedt. Dit doet 
vermoeden dat de potentie van radarsystemen voor het karteren van de biomassa 
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van tropisch regenwoud zich beperkt tot bossen die zich in een vroeg 
ontwikkelingsstadium bevinden. 
 
De data zoals geregistreerd door het ERASME scatterometersysteem bevatten 
informatie met betrekking tot de verticale en horizontale architectuur van het bos. 
Derhalve kunnen deze data van nut zijn in de analyse van de architectuur en de 
dynamiek van het bos en tevens bijdrage leveren aan de ontwikkeling van procedures 
voor bosbeheer. Het vermogen van systemen, zoals ERASME om objecten te 
lokaliseren die invallende radargolven reflecteren, leidt tot een beter begrip van het 
backscattergedrag van het bos. Het toepassen van dergelijke systemen kan als 
zodanig van nut zijn voor studies gericht op het modelleren van de radarbackscatter 
van bossen. 
 
Hoofdstuk 7 doet verslag van onderzoek naar de mogelijkheden, die radar remote 
sensing biedt om het monitoren van bossen te ondersteunen. Dit onderzoek is 
gebaseerd op beelden geregistreerd door de eerste Europese remote sensing 
satelliet ERS-1. De volgende paragrafen vatten de meest belangrijke bevindingen 
samen. 
 
De resultaten van analyse van de beschikbare tijdreeks ERS-1 SAR PRI beelden 
duiden erop dat dagelijkse en seizoensgebonden schommelingen in regenval de 
backscatter van bossen, welke vrij zijn van natuurlijke verstoring of menselijk invloed, 
met circa 1 decibel kunnen doen variëren. Kennis van dagelijkse en 
seizoensgebonden variaties in de backscatter van het bos maakt beter overwogen 
beslissingen met betrekking tot de oorzaak van waargenomen backscatter 
veranderingen mogelijk en ondersteunt dus het gebruik van radar in 
bosmonitoringsprocedures. Beelden, die zijn geregistreerd gedurende droge periodes 
tonen het meeste contrast tussen niet-bos en primair c.q. secondair bos en zijn 
daarom het geschiktst voor het karteren van (veranderingen in) de omvang en locatie 
van bos en niet-bos landbedekkingstypen. Beschikbaarheid van ERS-1 data, die zijn 
vastgelegd op meerdere tijdstippen, in plaats van data vastgelegd op één enkel 
tijdstip, leidt niet tot essentieel betere kansen voor het onderscheiden van primaire 
bostypen. 
 
ERS-1 SAR PRI beelden vormen een goede basis voor de detectie van wegen. Dit is 
van groot belang met het oog op de mogelijke rol van deze beelden in 
bosmonitoringsprocedures, omdat wegen bijzonder markante indicatoren zijn van 
voorbije en/of toekomstige menselijke activiteiten met inbegrip van (selectieve) kap. 
Wegen markeren in feite locaties waar, tenzij gepaste actie wordt ondernomen, het 
voortbestaan van het bos op het spel staat. ERS-1 beelden die met behulp van 
beeldbewerkingstechnieken zijn verbeterd, tonen de grotere van de kroonopeningen 
die ontstaan door selectieve kap. Het monitoren van selectieve kap wordt echter 
bemoeilijkt door het feit dat kapgaten vaak sterk lijken op natuurlijke gaten. 
Monitoring van door kap veroorzaakte verstoring in het bos vereist een 
benaderingswijze, die gebruik maakt van contextuele informatie en veldkennis. 
Indicatoren van kap zijn het gegroepeerd en/of stelselmatig voorkomen van gaten 
dan wel de aanwezigheid van gaten in de nabijheid van wegen. 
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In Hoofdstuk 8 worden de gebruikersbehoeften en de analyse resultaten nader 
beschouwd en wordt ingegaan op de toepassingsmogelijkheden van radar voor en de 
invoering van radar in het tropische bosbeheer op het mondiale, nationale en lokale 
ruimtelijke niveau. Het laatste hoofdstuk van deze tekst kan als volgt worden 
samengevat. 
 
Tabel 8.1 toont taxaties van het vermogen van ERS-1 en vergelijkbare 
satellietsystemen om hulp te bieden bij de inventarisatie c.q. het monitoren van 
parameters van interesse voor partijen, die betrokken zijn in het beheer van tropisch 
bos op het mondiale ruimtelijke niveau. Op basis van ERS-1 SAR PRI beelden wordt 
inventarisatie en/of monitoring van wegen, bos, niet-bos, alsmede van verbrande, 
ontboste en kaalgekapte gebieden 'mogelijk' geacht. Inventarisatie en/of monitoring 
van selectief gekapt bos, bosvegetatietype, plantage / natuurlijk bos en 
opstandsarchitectuur wordt als 'moeilijk' beoordeeld. 
 
De nationale en mondiale informatiebehoeften voor het monitoren van tropisch bos 
zijn vrijwel identiek. De mogelijke rol van de ERS-1 SAR bij het monitoren op nationaal 
niveau is daarom vergelijkbaar met die op mondiaal niveau. Inventarisatie van 
nationale bosbezittingen vraagt vaak om gebruik van data van vliegtuig-
radarsystemen. Tabel 8.2 toont taxaties van de mogelijkheden, die twee typen hoge 
resolutie vliegtuig-radardata voor dit doel bieden, dat wil zeggen van data zoals 
geregistreerd door systemen werkend met korte golflengten zoals X- en C-band en 
lange golflengten zoals L- en P-band. Taxaties met betrekking tot de X- en C-band 
data veronderstellen het gebruik van informatie in textuur, terwijl taxaties betreffende 
L- en P-band data het gebruik van informatie in backscatter veronderstellen. De 
mogelijkheden die de twee datatypen bieden voor inventarisatie van fysiografische 
terreinkenmerken en wegen worden als 'goed' beoordeeld. Met gebruikmaking van 
beide datatypen wordt inventarisatie van plantage / natuurlijk bos en van 
versnippering van bosareaal 'mogelijk' geacht. Hoge resolutie vliegtuig-radardata met 
korte dan wel lange golflengten vormen gelijkwaardige maar aanvullende bronnen van 
informatie voor het onderscheiden van de bestudeerde landbedekkingstypen. 
Vanwege de beperkte gevoeligheid van L- en P-band radarsignalen voor biomassa, 
wordt het schatten van houtvolume en houtige biomassa op basis van L- en P-band 
data als 'moeilijk' beoordeeld. 
 
Bosbeheerders, die opereren op het lokale niveau, hebben behoefte aan ruimtelijk 
uiterst gedetailleerde informatie. Prognoses van de mogelijkheden, die zeer hoge 
resolutie X- of C-band en L- of P-band radardata bieden voor lokale bosbeheerders 
worden gegeven in Tabel 8.3. De mogelijkheden, die de beide datatypen bieden voor 
inventarisatie dan wel monitoring van terreinkenmerken, plantage / natuurlijk bos en 
kaalgekapte c.q. verbrande gebieden worden als 'goed' beoordeeld. X- en C-band 
radardata met zeer hoge resoluties worden geacht betere bases te vormen voor 
inventarisatie en/of monitoring van primaire bostypen en selectief gekapt bos dan 
zeer hoge resolutie L- en P-band data. Het inventariseren en/of monitoren van 
(natuurlijke) regeneratie wordt als 'moeilijk' ingeschat, omdat de beide datatypen 
waarschijnlijk niet het ruimtelijke detail tonen dat vereist is om te kunnen zien of de 
hergroeiende vegetatie al dan niet bestaat uit gewenste soorten. Voor inventarisatie 
en/of monitoring van parameters met betrekking tot de samenstelling en de structuur 
van het bos is informatie vereist op het niveau van individuele bomen. 
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Radarsystemen, die worden toegepast in gebieden met natuurlijk tropisch bos zullen 
dergelijke informatie moeilijk kunnen verschaffen. Overigens kan dit type informatie 
ook moeilijk verkregen worden indien gebruik wordt gemaakt van luchtfotografie. 
Tabel 8.4 vult Tabel 8.3 aan en toont een lijst van indicatoren van duurzaam 
bosbeheer die naar verwachting goed met behulp van hoge resolutie radar kunnen 
worden geïnventariseerd en/of gemonitord. 
 
Bosbeheerders die besluiten om van radar remote sensing gebruik te maken, zullen 
verschillende wegen moeten volgen om de voor hen meest geschikte data te 
bemachtigen. Het geselecteerde type radardata bepaalt op zijn beurt de bewerkingen 
die zullen moet worden uitgevoerd om de gewenste informatie te verkrijgen. Bij het 
ontwikkelen van een strategie om geschikte data te verkrijgen is het belangrijk dat 
men nadenkt over: het ruimtelijke niveau, het benodigde type informatie, het vereiste 
opnametijdstip en de noodzakelijke opnamefrequentie. Op basis van deze variabelen 
zal een keuze gemaakt moeten worden voor data van één of meerde radarsystemen. 
Het aantal beschikbare vliegtuig-radarsystemen is aanmerkelijk groter dan het aantal 
beschikbare satelliet-radarsystemen. Bovendien bieden vliegtuigsystemen veel meer 
technische mogelijkheden dan satellietsystemen. De satelliet-radarsystemen, die op 
dit moment beschikbaar zijn, werden niet ontwikkeld voor toepassing in het tropisch 
bosbeheer en bieden daarom slechts bescheiden mogelijkheden voor dit doel. 
Bosbeheerders, die de mogelijkheid hebben vliegtuigdata te gebruiken, hebben in het 
algemeen een betere kans om hun informatiebehoeften met behulp van radar remote 
sensing te vervullen dan bosbeheerders, die afhankelijk zijn van satellietdata. 
 
Om de compatibiliteit van informatie, zoals verkregen voor verschillende bosgebieden 
en/of opnametijdstippen, te kunnen verzekeren is het nodig methoden voor analyse 
van radardata te standaardiseren. Strategieën voor de analyse van de bestudeerde 
typen radarbeelden worden besproken in sectie 8.2.2. De te volgen analyse strategie 
wordt bepaald door de belangrijkste bron van informatie in het radar-
ontvangstsignaal. Daarom ligt bij de analyse van ERS-1 satelliet data en van 
vliegtuigradar data met lange golflengten de nadruk op backscatter. Daarentegen ligt 
bij de analyse van data geregistreerd door hoge resolutie vliegtuig-radarsystemen met 
korte golflengten de nadruk op textuur. 
 
De resultaten van de studie tonen aan dat radarsystemen het beheer van tropisch 
regenwoud in belangrijke mate kunnen ondersteunen. Op zichzelf vormen radar data 
echter geen afdoende basis voor bosinventarisatie- en bosmonitoringsprocedures. 
Voor de inventarisatie en/of het monitoren van bepaalde boskarakteristieken kan 
additionele geografische informatie benodigd zijn. Daarnaast is er ter controle van uit 
radarbeelden verkregen informatie altijd behoefte aan veldgegevens. Het is belangrijk 
dat men zich realiseert dat radar slechts een hulpmiddel is voor het verzamelen van 
bosinformatie. Uiteindelijk zijn het de partijen die betrokken zijn bij het beheer van 
tropisch bos die deze informatie moeten beoordelen. Op basis van hun bevindingen 
zullen deze partijen moeten besluiten of ingrijpen gewenst is en vervolgens zullen ze 
overeenkomstig hun besluit moeten handelen. 
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Glossary 

Aggradation phase:  The phase in the development of a forest eco-unit which commences 
when woody plants close the canopy (Oldeman, 1990). 

Amplitude:  The maximum deviation of the electrical field of an electromagnetic wave; an 
indication of the strength of an electromagnetic wave. 

Angle of incidence:  See Incidence angle. 

Architecture:  See Forest architecture. 

Azimuth direction:  In radar images, the direction in which the aircraft or satellite is heading; 
also called flight direction. 

Backscatter:  See Radar backscatter. 

Biostatic phase:  The phase in the development of a forest eco-unit during which the average 
formation and dieback of living mass are equal to each other (Oldeman, 1990). 

Calibration:  See Radiometric calibration. 

Channel:  See Spectral band. 

Classification:  The arrangement of individual pixels or groups of pixels into classes and the 
assignment of a label (class name) to each of these pixels (Buiten and Clevers, 1993). 

Deforestation:  Change of land use with depletion of tree crown cover to less than 10 % 
(FAO, 1993). 

Degradation phase:  The phase in the development of a forest eco-unit when biostasis 
breaks down and loss of living mass exceeds its formation. This phase enables the forest to 
re-enter the innovation phase (Oldeman, 1990). 

Dielectric constant:  See Relative dielectric constant. 

Differential radar cross-section:  The radar cross-section per unit of area (of the region 
illuminated by radar) (Buiten and Clevers, 1993). See also Radar cross section. 

Eco-unit:  See Forest eco-unit. 

Electromagnetic spectrum:  The total wavelength range of electromagnetic waves (Buiten 
and Clevers, 1993). 

Foreshortening:  See Radar foreshortening. 

Forest architecture:  The visible, morphological, expression of the genetic blueprint of 
organic growth and development (Hallé et al., 1978). 

Forest degradation:  Changes within the forest class (from close to open forest), which 
negatively affect the stand or site and, in particular, lower the production capacity (FAO, 
1993). 
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Forest eco-unit:  Every surface on which at one moment in time a vegetation development 
has begun, of which the architecture, ecophysiological functioning and species composition 
are ordained by one set of trees until the end (Oldeman, 1990). 

Forest structure: The mathematical expression of structure of the trees in a forest sample 
plot, e.g. as expressed by size (diameter or height) class distribution. 

Forest:  An ecosystem with a minimum of 10 % crown cover of trees and / or bamboos, 
generally associated with wild flora, fauna and natural soil conditions, and not subject to 
agricultural practices (FAO, 1993). 

Frequency:  The number of recurrences of a periodic phenomenon per unit of time. 
Electromagnetic waves are usually specified in Hertz (Hz), which is a unit of frequency equal 
to one cycle per second. See also Wavelength. 

Frequency band:  See Spectral band. 

Gamma (γ ):  See Radar cross-section per unit projected area. 

Geographical-referencing:  Registration of images to the reference geometry of a map; also 
called georeferencing or geocoding (After Buiten and Clevers, 1993). 

Grazing angle:  Angle of viewing relative to the horizontal at the point of the object observed 
(Buiten and Clevers, 1993). 

Ground range distance:  The distance along the earth's surface from the nadir point to the 
object observed. 

Image:  A (usually latent) two-dimensional representation (in a formal sense) of the spatial 
structure of an object with respect to its spectral features, also called image raster (grid) 
(After Buiten and Clevers, 1993). 

Image segmentation:  The subdivision of an image in coherent parts or components, each 
being more or less homogeneous in a particular property. In addition, the neighbouring areas 
should be mutually different (Buiten and Clevers, 1993). 

Image texture:  The pattern of spatial distributions of grey tone (Haralick and Bryant, 1976). 

Incidence angle:  Angle of viewing relative to the vertical at the point of the object observed 
(After Buiten and Clevers, 1993). 

Innovation phase:  The phase in the development of a forest eco-unit which starts after the 
destruction of the original forest cover and which is characterised by the development of 
herbs, weedy climbers and tree seedlings (Oldeman, 1990). 

Interferometry:  Here SAR interferometry; a technique using the phase difference of two SAR 
observations of a same area on the ground taken from slightly different sensor positions. The 
interferogram derived from different observations has been demonstrated to be either a 
measure of terrain height (spatial interferometry) or of movement in the scene (time delay 
interferometry) (After CCRS, 1997). 

Layover:  See Radar layover. 

Look:  See Radar look. 
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Microwave window:  No firm definition exists for the microwave window but a reasonable 
convention is that it is the window in the electromagnetic spectrum referring to radiation of 
wavelengths ranging from 0.1 to 100 cm (After Ulaby et al., 1981). 

Microwaves:  Electromagnetic radiation in the microwave window  (Buiten and Clevers, 
1993). 

Monitoring:  Following changes with the aim to correct them if necessary. 

Nadir point:  The point on the surface of the earth directly below the sensor system (After 
Lillesand and Kiefer, 1994). 

Optical sensor (system):  Sensor system operating in the optical window of the 
electromagnetic spectrum. 

Optical window:  The window in the electromagnetic spectrum from ultraviolet to thermal 
infrared inclusive (wavelengths ranging from 0.30 to 14 µm) (Buiten and Clevers, 1993). 

Phenology: Science of regular yearly patterns of visible events in a natural system, such as 
flowering, fruiting, leaf-fall and -flush and growth (After ter Steege, 1993). 

Pixel:  Acronym for picture element, the position of which is determined by means of the 
position in the image raster, and the appertaining numerical value is taken artificially from 
complete or partial resolution cells (Buiten and Clevers, 1993). 

Polarization:  The polarization of an electromagnetic wave describes the manner in which its 
electrical field vibrates.  The electrical field can be seen as the vector sum of two 
components that vibrate in the horizontal and vertical plane, respectively. At any fixed point in 
space the electrical field vector is a function of time. As time changes, the tip of the 
electrical field vector traces a curve in the plane perpendicular to the direction of 
propagation. The nature of this curve can be defined by means of the ellipticity angle and 
orientation angle of the so-called polarization ellipse. When the curve is a straight line, the 
wave is said to be linearly polarized. When the curve is a circle, the wave is circularly 
polarized and when it forms an ellipse, the wave is elliptically polarized. In case of circular or 
elliptic polarization, the tip may move either clockwise or counter clockwise. To distinguish 
between the two, the wave is said to be right-handed polarized, when the right-hand thumb 
points in the direction of propagation while other fingers point in the direction of the tip 
motion. Similarly, if that description fits the left-hand thumb and fingers, the wave is left-hand 
polarized (After Ulaby et al., 1981). 

Power density:  The power incident on a surface, expressed per unit of area (Wm-2) (Buiten 
and Clevers, 1993). 

Power:  The quantity of energy in the form of electromagnetic waves or photons moving from 
one point to another per unit of time. For a given signal, the power is proportional to the 
amplitude, squared, per unit of time (After Buiten and Clevers, 1993). 

Radar:  Acronym for radio detection and ranging; a device for transmitting microwaves and 
the subsequent recording of waves reflected by objects within its volume of coverage (After 
Buiten and Clever, 1993). 

Radar backscatter:  Radar echo; the process of scattering of microwave energy by an object 
in the direction of the radar antenna, after actively being irradiated by the radar source 
(Buiten and Clevers, 1993). 
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Radar cross-section per unit projected area:  The radar cross-section per unit of area 
projected in the direction of transmission (Buiten and Clevers, 1993). See also Radar cross 
section. 

Radar cross-section:  A hypothetical area of an object of such an extent that if the power 
intercepted by this area is distributed isotropically over the space, it renders the same power 
density at the receiving antenna as the power density brought about in reality by the 
presence of the object. Usually the radar cross section concerning compound objects 
(distributed targets) is normalised: either as a radar cross section per unit of area (sigma 
nought or differential radar cross-section) or as a radar cross section per unit of area 
projected in the direction of transmission (gamma or radar cross-section per unit projected 
area) (Buiten and Clevers, 1993). 

Radar echo:  See Radar backscatter. 

Radar foreshortening:  The phenomenon by sideways-looking radar that the base of a sloped 
surface is imaged earlier than the top; the size of the sloped surface is compressed on the 
image (After Lillesand and Kiefer, 1994). 

Radar layover:  The phenomenon by sideways-looking radar that the top of a high object is 
imaged earlier than the foot, as the top is nearer to the antenna than the foot (or its fictitious 
vertical projection on to the ground reference plane) (Buiten and Clevers, 1993). 

Radar look:  A single measurement of the backscatter from an object observed. 

Radar sensor (system):  Sensor system operating in the microwave window of the 
electromagnetic spectrum. 

Radar shadow:  The phenomenon that the terrain behind high objects cannot be observed by 
sideways-looking radar, so that no echo returns (Buiten and Clevers, 1993). 

Radiometric calibration:  The process of characterising the performance of the end-to-end 
radar system, in terms of its ability to measure the amplitude (and phase) of the 
backscattered signal (Curlander and McDonough, 1991). 

Radiometric resolution:  The smallest observable difference in energy in the form of 
electromagnetic waves or photons with respect to reflection, emission, temperature 
differences, power differences, etc. (After Buiten and Clevers, 1993). 

Range direction:  The direction in which pulses of microwave energy are transmitted by a 
radar system. The range direction is normal to the azimuth or flight direction.  

Relative dielectric constant:  Electrical property of material, relative to that of free space, 
partly determining the radar backscatter (After Buiten and Clevers, 1993) 

Remote sensing:  The instrumentation, techniques and methods to observe the earth's 
surface at a distance and to interpret the images or numerical values obtained in order to 
acquire meaningful information of particular objects on earth (Buiten and Clevers, 1993). 

Rescaling:  Application of a change of scale to observed values, where usually a linear 
mathematical function is employed (After Buiten and Clevers, 1993). 
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Resolution cell:  In radar, a three-dimensional cylindrical volume surrounding each point in 
the scene. The cell range depth is slant range resolution, its width is azimuth resolution, and 
its height, which is conformal to the illumination wavefront, is limited only by the vertical 
beam width of the antenna pattern. Resolution cell often is defined with respect to the local 
horizontal (CCRS, 1997). 

Scatterer:  Any object capable of reflecting incident radar waves. 

Scatterometer:  In general, a non-imaging instrument to measure either the sigma nought or 
gamma (After Buiten and Clevers, 1993). 

Segmentation:  See Image segmentation. 

Sensor:  Instrument sensitive to a particular physical quantity (radiation). It is able to 
transpose this quantity into a photographical or electrical value (Buiten and Clevers, 1993). 

Sigma nought (σo):  See Differential radar cross-section. 

Silvigenesis:  Forest-making; the complex process by which forest architecture is built 
(Oldeman, 1983a). 

Slant range distance:  The direct distance from the radar to the object observed. 

Spatial resolution:  A theoretical measure of the smallest detail that can be detected (or the 
smallest spatial distance between two objects, usually expressed in radians or metres) (After 
Buiten and Clevers, 1993). 

Speckle:  The phenomenon of a strong variation of echo signals from one resolution cell to 
another occurring in radar, because the echo received consists of the summation of the 
contributions of a collection of scatterers in each resolution cell, in continuously changing 
combinations (interference) (After Buiten and Clevers, 1993). 

Spectral band:  A well-defined continuous range (interval) of wavelengths in the 
electromagnetic spectrum; wavelength band, frequency band, channel (Buiten and Clevers, 
1993). 

Sustainable forest management:  The process of managing permanent forest land to achieve 
one or more clearly specified objectives of management with regard to the production of a 
continuous flow of desired forest products and services without undue reduction of its 
inherent values and future productivity and without undue undesirable effects on the physical 
and social environment (ITTO, 1992). 

Synthetic aperture radar (SAR):  radar system with a high spatial resolution in the flight 
direction as every terrain element observed in the flight direction for a longer time. Each 
return signal is recorded in amplitude and phase for a slight displacement of the antenna in 
the flight direction. The effect of a considerable larger antenna is obtained synthetically by 
storing and combined processing of these multiple echoes. The SAR method operates only 
when the radar radiation is coherent (Buiten and Clevers, 1993). 

Textural attribute:  Function assigning a numerical value to the original image texture (After 
Buiten and Clevers, 1993). 

Texture:  See Image texture. 

Transmission:  The process of transmitting electromagnetic waves (Buiten and Clevers, 
1993). 

329 



Radar remote sensing to support tropical forest management 

Wavelength:  The distance a wave will travel in the time required to generate one cycle. The 
distance between two consecutive wave peaks (or other reference points) in space. See also 
Frequency. 

Wavelength band:  See Spectral band. 
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Stellingen 

1. High resolution X-, C-, L- and P-band radar images make equally suitable bases 
for classifying tropical land cover at the level of primary forest types. 

 This dissertation, Chapter 6. 

 
2. Assessment and monitoring of primary and logged-over forests make the 

greatest demands on the technical specifications of a radar satellite that is to 
be dedicated to tropical forest management. 

 This dissertation, Chapters 6 and 7. 

 
3. Roads are the most easily observable indicators of selective logging in images 

from the ERS-1 satellite. 

 This dissertation, Chapter 7. 

 
4. Canopy roughness, which has been identified as an indicator of species 

diversity, presents itself in a similar fashion in the texture of high frequency 
radar images with different spatial resolutions. 

 This dissertation, Chapter 6. 

 
5. The use of semi-variance to describe spatial interrelations between pixels in 

remotely sensed images is an old idea presented as a new one. 

 This dissertation, Chapter 6. 
 Dubé, C., H. Proulx and K.P.B. Thompson, 1986. 'Analysis of the spatial structure of 

synthetic aperture radar (SAR) imagery for a better separability of cereal crops, 
wheat and barley'. In: Proceedings of the IGARSS 1986 symposium; Remote 
sensing today's solutions for tomorrow's information needs. Zürich, 8-11 September 
1986, ESA SP-254, pp.745-750. 

 Woodcock, C.E., A.H. Strahler and D.L.B. Jupp, 1988. 'The use of variograms in 
remote sensing: I. Scene models and simulated images'. Remote Sensing of 
Environment, vol.25, no.3, pp.323-348. 

 
6. Het fotomodel vormt een uitzondering op de regel dat een model de 

werkelijkheid vereenvoudigd weergeeft. 

 
7. Mensen die zich in een bepaalde functie onmisbaar maken verkleinen hiermee 

hun kansen op bevordering. 

 
8. Het feit dat in Nederland fraude met visquota mogelijk is gebleken, geeft te 

denken over de controleerbaarheid van bepalingen met betrekking tot de 
duurzame produktie van tropisch hardhout. 

 
9. Ontario Hydro could shut down more of its controversial nuclear power stations if 

lights in office buildings throughout the province were switched off at night and 
climate control in these buildings was less extreme. 

 



 

 
10. The quality of English desserts does not conform with the poor reputation of 

other English cooking. 

 
11. Het proefschrift is naast een proeve van de wetenschappelijke bekwaamheid van 

de promovenda of promovendus ook een bewijs van de wetenschappelijke 
capaciteiten van haar of zijn promotoren en co-promotoren. 

 
12. Remote sensing does not provide a solution to the ongoing destruction of 

tropical forest resources. 

 
 
 
 
 
 

Stellingen behorende bij het proefschrift: 
Radar remote sensing to support tropical forest management. 
J.J. van der Sanden, Wageningen, 9 december 1997. 
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