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ABSTRACT 

 

 

 

 Mixed infections of baculoviruses in insect hosts are quite common in nature. 

This leads to ‘within-host’ and ‘between-host’ competition between virus variants. Because 

both levels of selection will contribute to overall biological fitness, both must be included in 

assessments of the fitness of fast-acting recombinant baculoviruses. We investigated 

baculovirus fitness parameters in single and mixed infection of insect larvae, in single and 

serial passage experiments in lepidopteran hosts (Helicoverpa armigera, Spodoptera exiqua 

and Trichoplusia ni) in laboratory, greenhouse and field settings. Median time to death in 

third instar larvae of H. armigera (Hübner) was lower in insects challenged with a mixture of 

wild type (HaSNPV-wt) and mutant (∆egt, HaSNPV-LM2) Helicoverpa armigera SNPV, 

than in larvae infected with only HaSNPV-wt. The results from a behavioral study on cotton 

(glasshouse, field) indicated that the transmission of HaSNPV-LM2 is not modified by the 

absence of the egt gene, whereas in the case of the HaSNPV-AaIT (∆egt, + AaIT) lower 

virus yield as well as altered caterpillar behavior could compromise virus fitness. Virus 

transmission in greenhouse and field was not reduced, when HaSNPV-LM2 was used in 

mixed infections with HaSNPV-wt. However, a reduction of ‘between host’ transmission 

was recorded when H. armigera larvae were co-infected with HaSNPV-wt and HaSNPV-

AaIT. Serial passage experiments with S. exigua and T. ni showed positive selection for wild 

type SeMNPV and AcMNPV over genetically modified variants (∆egt, + AaIT in the case of 

SeMNPV, and ∆egt in the case of AcMNPV) over passages. These findings can help to 

understand long-term dynamics of virus genotypes in virus-insect-host plant systems. They 

can also help foresee potential consequences of the introduction of genetically-modified or 

exotic baculoviruses in agro-ecosystems.  

 

Keywords:  baculovirus, insects, mixed infections, competition, transmissio 
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Chapter 1 
 
 

GENERAL INTRODUCTION 

 

Insects are the most diverse group of animals living on earth. Often they are 

considered beneficial (bumble bees), appreciated for their natural beauty (butterflies) or 

function as key players in the ecosystem (food chain, scavengers). However, from a 

human perspective insects are also quite often considered a nuisance (mosquitoes) or an 

indirect (disease vectors of plants and animals) or a direct (caterpillars) pest. Insects can 

indeed dramatically reduce food and fiber production in agriculture and forestry (Fig.1), 

with an estimated loss that reaches up to 30% of the total crop production in the field and 

in storage (Erlandson, 2008). Control of these pest insects is therefore pivotal to meet the 

current and future demands of food and fiber production and to improve and secure 

human and animal health. 

Since the 1940’s insect pests in agriculture and insects affecting human and animal 

health have been controlled using chemical insecticides. The overuse of these agents has 

not only induced resistance in target insects, but also contributed to the environmental 

pollution issue (residues) and caused major health problems in humans (intoxication, 

cancer).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Holometabolous life cycle of insect belonging to family Lepidoptera: Mostly 2 to 4 

generations occur in a year. (1) eggs, (2) larval stage which cause damage on crops, (3) pupa, (4) 

adult stage (5) females lay several hundred eggs on all parts of the plant (6) emergence of the 

larvae (7) mostly severe damage is caused by attack on reproductive parts such as flower buds and 

flower heads (8) overwintering in the soil (from: NSW Agriculture, 2006).  
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After Rachel Carson’s ‘Silent Spring’ (1962) alternatives for chemical insect pest 

control were sought. These alternatives were found using integrated pest management 

(IPM) strategies to harness beneficial and biological control strategies including the use of 

natural enemies, such as parasites, predators, nematodes and microbials. Among the latter 

are insect viruses, notably baculoviruses, and these disease agents are in focus in this 

thesis.  

 

Baculoviruses 

Viruses of the family Baculoviridae infect invertebrate, mostly insect larvae and 

often cause mortality. An early example has been a virosis decimating silkworm cultures 

in Italy and France in the 16
th

-19
th

 century. These baculoviruses have a large, double-

stranded circular DNA molecule, which is wrapped inside a protective protein capsid. The 

association of nucleic acid and capsid is called a nucleocapsid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Occlusion derived virus (ODV; foreground) and occlusion bodies (OB; background) in 

three groups of baculoviruses. Granuloviruses (GV; shown at the right) have a capsule-shaped OB 

that contains a single virion. The single nucleopolyhedroviruses (SNPV; shown in the middle) 

have a polyhedron-shaped occlusion body that contains multiple virions, and each virion contains 

a single nucleocapsid. The multiple polyhedroviruses MNPV; shown at the left) also have multiple 

virions per polyhedron, and each virion contains multiple nucleocapsids. (from Slack & Arif, 

2007). 

 

Nucleopolyhedroviruses are subdivided into two groups: the multiple 

nucleopolyhedrovirus group (more than one nucleocapsid in each virion) (MNPV) and 

single nucleopolyhedrovirus group (one nucleocapsid in each virion) (SNPV). The virus 

particles (virions) are rod-shaped, hence the family name (baculum = rod in Latin) (Fig. 

2). The virions are occluded into large proteinaceous capsules, often called polyhedra, 

OBOB
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granula or occlusion bodies (OB). These OBs are another very characteristic feature of 

this group of viruses. The family Baculoviridae is composed of four genera: the 

Alphabaculoviruses, containing nucleopolyhedroviruses (NPVs) of Lepidoptera, the 

Betabaculoviruses, encompassing the granuloviruses (GV) of Lepidoptera, the 

Gammabaculoviruses, accommodating NPVs of Hymenoptera, and the 

Deltabaculoviruses, encompassing NPVs of Diptera (Jehle et al., 2006; ICTV, 2008). The 

NPV of Autographa californica (AcMNPV) and the GV of Cydia pomonella granulovirus 

(CpGV) are the type species of Alphabaculoviruses and Betabaculoviruses, respectively. 

About 700 baculoviruses have been reported, but most of these are poorly characterized 

biologically or genetically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Schematic representation of per os infection of larvae with the contaminated food with 

baculoviruses. OBs pass through the foregut and enter the midgut where they dissolve in the 

alkaline midgut lumen and release occlusion derived virions (ODVs). Released ODVs past the 

peritrophic membrane (PM) to midgut columnar epithelial cells where they cause infection and 

replication of viruses takes place. (from Slack and Arif, 2007). 

 

Baculovirus infection is initiated by uptake of OBs while feeding on plants or from 

soil and dissolution of these capsules in the midgut lumen to release the occlusion-derived 

virions (ODV), which are then able to infect midgut epithelial cells (Fig. 3). Upon 

replication of the virus in the nucleus of these cells, a second virion morphotype is 

produced, which acquires its membrane from the basal side of the cell upon egress into 

the hemocoel or trachea. This budded virus (BV) form, which is genetically identical but 

phenotypically different to ODVs, is responsible for cell-to-cell transmission within the 
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infected insect. Within a few days the infected larva dies and disintegrates to release 

millions of OBs onto plants and soil. The virus in the form of OBs can persist for many 

years in the environment (Krell, 2008). So, BVs are responsible for the spread of the virus 

within the insect, whereas the OBs are the vehicles to spread the virus horizontally in 

insect populations. Baculoviruses also transmit vertically, from parent to offspring, but to 

which extent and in what mode is not well characterized. 

 

Baculoviruses as biological control agents 

Baculoviruses are natural disease agents and can cause epidemics that reduce the 

size of insect populations of agricultural and forest pest insects. This has led to successful 

inoculative and inundative control strategies using baculoviruses produced in insect 

larvae. To be successful microbial insecticides in the field, they must be sufficiently 

infectious and virulent to the target insect host in order to be able to limit economic plant 

damage (Erlandson, 2008). Baculoviruses are specific insect pathogens, which showed 

considerable success in biological control of lepidopteran and hymenopteran insect pests, 

such as the cotton bollworm, velvetbean caterpillar, codling moth, etc. (Bonning & 

Nusawardani, 2007). Baculoviruses provide an effective and selective means for 

biological insect control in agricultural crops, providing a welcome, ecologically sound 

and sustainable alternative to chemical pesticides (Moscardi, 1999). Baculoviruses are 

host specific, easy to apply, can be produced in a variety of formulations and are safe for 

non-target invertebrates and vertebrates including humans (Hunter-Fujita et al., 1998). 

Baculoviruses occur ubiquitously in nature. As a consequence their use should leave less 

of an environmental imprint in comparison with synthetic chemical insecticides (Krell, 

2008). Furthermore, insects quickly develop resistance against these chemical agents. 

Currently, a number of baculoviruses is registered as insect control product worldwide 

(Table 1). One of the first semi-commercial baculovirus pesticides was ‘Elcar’ (Sandoz) 

to control Heliothis zea in cotton (1975). In China HaSNPV is produced as a commercial 

biopesticide since 1991 and has been widely used for the control of H. armigera for many 

years on large acreages of cotton (Zhang, 1989; Sun & Peng, 2007) and vegetable crops 

(Table 2). In Thailand there is a record of successful small scale local production of 

HaSNPV and SeMNPV to control cotton, tomato and tangerine (Jones & Burges, 1998). 

SeMNPV of the beet armyworm, Spodoptera exigua (Hübner), forms the basis for a 

number of effective biopesticide products that are marketed in the USA, Southern Asia 

and some European countries (Hunter-Fujita et al. 1998; Kolodny-Hirsch et al., 1993, ibid 

1997; Smits & Vlak, 1994) and some new preparations of this virus are in the phase of 

testing (Lasa et al., 2007). The most successful commercial application of baculoviruses 

in Europe is the control of codling moth with a GV in more than 100,000 ha of orchards 

(Rechcigl, 1998).  
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There is natural variability in baculovirus isolates or preparations, some strains kill 

faster than others. Fast killing viruses are more suitable for crop protection, providing 

better control than slow killing viruses. In Spain and Portugal HaSNPV field strains were 

reported, which had higher pathogenicity and virulence compared with the already known 

Iberian genotypic variants of HaSNPV (Figueiredo et al., 2009).  

Many baculoviruses produce egt, an ecdysteroid UDP-glucosyl transferase, adding 

a sugar moiety to ecdysone, thereby inactivating this hormone. The egt gene is not 

required for the baculovirus infection or replication at the molecular and cellular level, but 

has a major effect on insect larvae (O’Reilly & Miller, 1991; Flipsen et al., 1995). The 

normal function of egt is delaying or blocking normal larval development, which prevents 

cessation of larval feeding (Harrison, 2009). Natural deletion of some or all of the egt 

coding sequences was observed in insect cell culture infected with AcMNPV (Kumar & 

Miller, 1987) and in natural isolates of AgipMNPV (Harrison, 2009). In the AgipMNPV 

case results indicated that egt deletion may have a growth advantage in cell culture, 

because the egt deletion genotype produced moderately higher BV quantities than the 

wild-type virus. It has been reported that deletion of the egt gene enhances the virus 

virulence, for example in the case of HaSNPV (∆egt) the LT50 (median time to death of 

infected hosts) decreased 27% compared to wild-type HaSNPV (Sun et al., 2004). A 

similar situation exists for LdMNPV (Slavicek et al., 1999). Absence of the egt gene is a 

common feature in the Spodoptera frugiperda MNPV. Variant genotypes with the 

deletion of the part of this gene were found in the Nicaraguan field isolate of SfMNPV 

(Simon et al., 2004) and field isolates from SfMNPV isolated in Missouri, USA (Harrison 

et al., 2008). Naturally occurring, fast-killing virus isolates may lead to further advances 

in the development of this NPV as an insecticide and ecologically friendly means of 

controlling insect pests. 

A limitation of wild-type baculoviruses as biocontrol agents is, among others, their 

slow speed of kill. To eliminate this drawback baculoviruses have been genetically 

engineered to improve their insecticidal properties and reduce crop damage (see Inceoglu 

et al., 2006; Szewczyk et al., 2006, Sun et al., 2009). Several approaches have been used 

to produce fast acting baculoviruses, such as (i) insertion of a foreign gene, e.g. specific 

toxin, hormone or enzyme, (ii) deletion of a baculovirus gene (exp. egt) or (iii) 

incorporation of a (Bt) toxin into the OB (Chang et al., 2003).  
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Table 1. Registered and experimental virus-based bioinsecticides developed as commercial 

microbial control agents for Lepidoptera (from Rechcigl, 1998; Huber, 1998; Moscardi, 1999; 

Erlandson, 2008) 
 

 

Virus 

 

Product names 

 

Target pest 

 

Production/crop system 

 
 

Baculoviruses 

   

Lymantria dispar multiple 

nucleopolyhedrovirus 

Gypcheck, Disparvirus, 

Virin-ENSH 

Gypsy moth Forestry 

Orgyia pseudotsugata 

multiple 

nucleopolyhedrovirus 

TM Biocontrol Douglas fir tussock 

moth 

Forestry 

Neodiprion sertifer 

nucleopolyhedrovirus 

Neocheck-S, Virox, 

Sentifervirus,  

Monisärmiövirus 

European spruce 

sawfly 

Forestry 

Neodiprion lecontei 

nucleopolyhedrovirus 

Leconteivirus Redheaded pine 

sawfly 

Forestry 

Adoxphyes orana 

granulovirus 

Capex 2 Summer fruit tortrix 

moth 

Orchard 

Cydia pomonella 

granulovirus 

Madex 3, CYD-X, 

Granupom,Granusal, 

Carposin, Virosoft CP-

4, Virin-Gyap 

 

Codling moth Orchard 

Autographa californica 

multiple 

nucleopolyhedrovirus 

VPN 80 Multiple pest targets Horticulture, Glasshouse 

and field crop, cottons 

Anagrapha falcifera multiple 

nucleopolyhedrovirus 

 Multiple pest targets Horticulture, Glasshouse 

and field Crops 

Anticarsia gemmatalis 

multiple 

nucleopolyhedrovirus 

Polygen, Multigen Velvet bean 

caterpillar 

Soybean 

Heliocoverpa armigera 

single nucleopolyhedrovirus 

Virin-Hs Heliothis/Helicoverpa 

complex 

Cotton 

Helicoverpa zea multiple 

nucleopolyhedrovirus 

Gemstar Heliothis/Helicoverpa 

complex 

Cotton, Horticulture 

Heliothis virescence multiple 

nucleopolyhedrovirus 

Elcar Heliothis/Helicoverpa 

complex 

Cotton 

Mamestra brassicae multiple 

nucleopolyhedrovirus 

 

Mamestrin, Virin-EKS Multiple pest target 

 

 

Mamestra configurata 

multiple 

nucleopolyhedrovirus 

 Bertha armyworm 

(M. configurata) 

Canola 

Spodoptera exigua multiple 

nucleopolyhedrovirus 

 

Spod-X, Ness-A, Ness-

E 

Beet armyworm 

(S. exigua) 

Horticulture, glasshouse, 

and field crops 

Spodoptera littoralis NPV  Spodopterin Spodoptera littoralis Cotton 

Cypoviruses 

 

   

Dendrolimus spectabilis 

cypovirus 1 

Matsukemin Pine caterpillar Forestry 

Anticarsia gemmatalis NPV VPN, Baculoviron Anticarsia gemmatalis Soybean 

Agrotis segetumGV AGROVIR   
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Table 2. Viruses authorized as commercial insecticide in China. 

(from Sun & Peng 2007).  

 

Virus name Target insects Crops 

 

No. of producers 

 

Helicoverpa armigera NPV Cotton bollworm Cotton, pepper, tobacco 12 

Spodoptera litura NPV Cotton leafworm Vegetable 2 

Autographa californica NPV Alfalfa looper Vegetable 3 

 

Spodoptera exigua NPV 
Beet armyworm Vegetable 2 

Gynaephora sp. NPV Meadow caterpillar Grass 1 

Buzura suppressaria NPV Tung tree geometrid Tea 1 

Ectropis oblique NPV Apple geometrid Tea 2 

Leucania separate NPV Oriental armyworm Wheat, corn 1 

Pieris rapae GV Cabbage white butterfly Vegetable 1 

Plutella xylostella GV Diamondback moth Vegetable 2 

Pseudaletis separate GV Armyworm Wheat, corn 1 

Dendrolimus punctatus CPV Masson pine moth Pine 1 

 

However, baculoviruses which lack the egt gene (∆egt) produce fewer OBs 

because the absence of egt (the enzyme) reduces the insect lifespan and OB yield 

(O’Reilly & Miller, 1991). The ∆egt virus genotypes are, therefore, assumed to be 

ecologically impaired and most likely have lower fitness than wild-type viruses. For crop 

protection ∆egt viruses are desirable because they act faster (O’Reilly & Miller, 1991; 

Treacy et al., 1997).  

Field trials were done to test generated baculoviruses which express neurotoxin 

from the scorpion Androctonus australis Hector (AaIT), such as AcMNPV-AaIT (Cory et 

al., 1994; Black et al.; 1997) and HaSNPV-AaIT (Sun et al. 2005, ibid 2009). Another 

toxin used to generate a fast-acting AcMNPV recombinant came from the scorpion 

Leiurius quinquefasciatus Hebraeus (LqhIT2). Expression of this toxin in AcMNPV- 

LqhIT2 recombinant protected cotton from damage better than the wild-type virus (Smith 

et al., 2000). AcMNPV recombinant with straw itch mite, Pyemotes tritici, Txp-1, has 
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higher pathogenicity and virulence for second and fourth instar Trichoplusia ni larvae 

(Burden et al., 2000). Also the insecticidal properties of baculoviruses were accelerated 

by incorporating basement membrane-degradating protease, cathepsin L (ScathL), from 

the flesh fly Sarcophaga peregrina (Harrison & Bonning, 2001). The HaSNPV-cathL 

protected cotton from H. armigera feeding damage better than wild-type virus (Sun et al., 

2009). 

The decision to release recombinant baculoviruses as biocontrol agents in the 

environment depends on the outcome of the risk assessment evaluation of the product. For 

that purpose the baculovirus fitness parameters (i) speed of kill and virus production 

(yield), (ii) behavior of infected larvae, (iii) transmission to the next generation and (iv) 

persistence in the soil compartments need to be assessed.  

 

Baculovirus fitness parameters 

Long-term persistence of virus genotypes in agricultural systems depends among 

others on their competitive interactions with other either closely related virus variants or 

different baculovirus species at the individual population and the eco-system level. It is 

quite common that wild-type baculovirus isolates consist of a mixture of genotypes (Knell 

and Summers, 1981; Gettig & McCarthy, 1982; Cherry & Summers, 1985; Muñoz et al., 

1998; Cory et al., 2005). Important elements (outcomes) of the competition between virus 

genotypes are lower virus yield in insects and changes in transmission characteristics 

(Figs. 4 and 5). The behavior of viruses and hosts in mixed infections is a key component 

of this competitive process between virus strains. The co-infecting pathogens during 

mixed infection can act independently (in status of equilibrium), synergistically 

(beneficial for both genotypes) (Tanada, 1959; Wang & Granados, 1997; Malakar, 1999; 

Washburn et al., 2000, Thomas et al., 2003) or antagonistically (negative for one or both 

of them) (Hackett et al., 2000; Ishii et al., 2002) depending on the environmental 

condition, order of infection, host response to infection, etc. Based on available literature 

until now we can not draw a firm conclusion about virus population dynamics over time 

and space in a microcosm or ecosystem. The effect of mixed virus infection on the 

population dynamics of insects is not known, but attracted considerable attention in recent 

years in view of the potential use of genetically engineered baculoviruses in insect control 

or the displacement of resident baculovirus populations. 

 

(i) Speed of kill and virus production (yield) 

The ability of the virus for OBs production (yield) is an important parameter to 

predict long-term fate of the baculoviruses in the environment. Competition of two 

genotypes in mixed infection may modify the survival of the co-infecting genotypes, but 

may also affect the within-host parasite growth, host survival and reproduction (Vizoso & 

Ebert, 2005). The difference in virus yield between wild-type and the recombinant 
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AcMNPV was used to predict the reduction of the secondary cycling of recombinant 

baculoviruses in the environment in comparison to wild-type baculoviruses (Hammock, 

1992). The yield of the wt AcMNPV was 1.25-2.42 times greater than a recombinant 

AcMNPV containing the AaIT gene (Ignoffo & Garcia, 1996). Sun et al., (2005) showed 

for three HaSNPV recombinants that the virus yields were significantly affected by the 

larval instar and related to time to death. Two recombinants HaSNPV-∆egt and HaSNPV-

AaIT caused larvae to die earlier, compared with the wild-type HaSNPV and the yield in 

the former case was significantly reduced. This can help to predict the capacity of a 

recombinant baculovirus in the environment relative to a wild-type baculovirus. It is 

known that in the environment insect hosts are exposed and frequently infected with more 

than one genotype of the same pathogen (Reed & Taylor, 2000). On the basies of the 

results from single infections we can not draw a firm conclusion about the outcome of 

mixed virus infections in nature. Also the genetic diversity in baculovirus isolates within 

naturally acquired infections has not been well studied so far. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4. Baculovirus fitness parameters in the ecosystem: speed of kill, virus        

productivity (virus yield), virus persistence and transmission. 

 

(ii) Influence of baculovirus on larval behavior 

The behavior of baculovirus-infected larvae differs from the behavior of healthy 

larvae and larvae infected with a genetically modified baculovirus as the virus infection 

plays a significant role in the transmission of baculoviruses. These behavioral changes in 

infected larvae are thought to enhance rapid dissemination of the virus and to increase 

horizontal transmission, an important factor in initiating new virus infections (Evans & 

Allaway, 1983; Cory & Myers, 2003). Mostly, larvae infected with a wild-type 

baculovirus move up their host plant, leading to a phenomenon known as ‘tree top 
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disease’ (Vasconcelos et al., 1996; Hernandez-Crespo et al., 2001) or ‘Wipfelkrankheit’. 

However, there is also evidence of an opposite behaviour, where larvae infected with an 

NPV moved downwards on their host plant and mostly die on the stem (Raymond et al., 

2005). AaIT expressing baculoviruses cause paralysis causing larvae to fall from the plant 

(Hails, 2001). This resulted in a reduction of contact rate between host and pathogen, 

which consequently led to reduction in baculovirus transmission. The recombinant 

baculoviruses were selectively removed from the plant, which means that they were 

protected from sunlight and inactivation by the UV light. However, this does not mean 

that they are less capable of causing a new infection, since there is evidence that they can 

be directly translocated from the soil to the plant by rain splash or wind blown dust (Fuxa 

et al., 2007). 

It is not known how the behavior of larvae with mixed infections of a fast and 

slow-acting baculovirus is affected, compared to larvae with infections with the respective 

single baculovirus genotypes. Detailed information on mixed infections influencing the 

effect on host insect behavior and dispersal characteristics are therefore of great interest. 

Larval behavior is an important parameter, which influences transmission of 

baculoviruses in the field, in terms of where infected insect die and the possibility of 

healthy insects to acquire the virus (Cory & Evans, 2007).  

 

(iii) Transmission of baculoviruses 

The epizootiology and use of baculoviruses as microbial control agents depends on 

their ability of host to host transmission (Fuxa, 2004). The transmission process is critical 

in the understanding of insect pathogen dynamics (Hails et al., 2002). Horizontal 

transmission of baculoviruses (from one insect to another) is affected by the encounter 

rate between infected and susceptible individuals, and the rate at which contacts result in 

new infections. This encounter rate depends on the density and behavior of larvae in the 

system, i.e. on the plant. Experimentally it was estimated that baculovirus transmission 

increased with inoculum density (Zhou et al., 2005). D’Amico et al., (1996) observed a 

decline in the transmission constant as the densities of both healthy larvae and pathogen 

increased. The number of cadavers remaining on the foliage has a greater influence on 

transmission than the yield of virus from those cadavers (Hails et al., 2002). Zhou et al., 

(2005.), study the influence of larval stage on transmission of baculovirus in H. armigera. 

They showed that horizontal transmission of HaSNPV variants was greatest when 3rd 

instar inoculated larvae were used as infectors, intermediate with 2nd instar infectors and 

lowest with 1st instar infectors. In contrast, Goulson et al., (1995) found no significant 

difference in transmission rate when different instars were used. Transmission of 

baculoviruses can be facilitated by birds and other vertebrates (aerial dispersal), which 

helps in their long distances dissemination (Entwistle et al., 1993). Alternative route of 
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horizontal transmission is when larvae transfer viable virus to the environment before 

death through either defecation or regurgitation (Vascancelos, 1996). 

Another way of virus dispersal in the eco-system is via vertical transmission from the 

adults to their progeny. This can be achieved by surface contamination of the eggs 

(transovum transmission) or when virus is passaged within the egg (transovarial 

transmission) (Kukan, 1999; Fuxa et al., 2004; Myers & Rothman, 1995). 

There are a number of different approaches available for the modeling insect-pathogen 

interactions (Dwyer & Elkington, 1993; Godfray et al., 1997; Dwyer et al., 2000; ibid, 

2005 Dushoff & Dwyer, 2001; Bianchi et al., 2002; Bonsall et al., 2005; Sun et al., 2006).  

Transmission is a very important fitness parameter of baculoviruses for further 

dissemination of the virus in the ecosystem, but this parameter has not been investigated 

in mixed infections. Interaction between baculovirus genotypes in mixed infections may 

strongly affect the likelihood of virus transmission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 5. The fate of lepidopteran BVs in the environment. BV transmission routes, solid arrow;      

BV dispersal routes, long-dash/short-dash arrow; BV inactivation, short-dash arrow (from   

Richards et al., 1998). 

 

(iv) Persistence of baculoviruses in the environment 

Soil is the natural reservoir for the baculoviruses where they can persist for 

decades, from which they can be translocated abiotically to new insect host plants to 

initiate epizootics (Fuxa et al., 2001, 2007). Studies on insect population dynamics pay 
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considerable attention to the long-term conservation of viruses in the insect habitat so that 

epizootics appear during population peaks increasing the probability of the insect-virus 

contact. It has been reported that the baculoviruses can persist in the soil for many years 

serving as a potential source of infection for the next generations of insects and causing 

natural epizootics (Il’inykh, 2007). Murray & Elkington (1989) reported that natural 

epizootic of LdMNPV virus from Massachusetts (United States) can cause infection of up 

to 24,000 caterpillars per ha. The virus of pine sawfly Diprion sertifer remained active on 

the needles (Kaupp, 1983) and in soil (Olofsson, 1988) for at least 2 and 13 years, 

respectively. One of the longest studies of virus persistence in the soil was the example of 

virus of the Douglas-fir tussock moth Orgyia pseudotsugata, which persisted in soil up to 

41 years (Thompson et al., 1981). Numerous factors influence the virus ability to 

accumulate and persist in the soil compartments (Young, 2001). Fuxa et al. (2001) 

showed that wild-type HzSNPV accumulated 2.3 times as many OBs as HzSNPV-LqhIT2 

in soil in the cotton-cotton bollworm system. This can be due to the fact that wild-type 

HzSNPV has a higher replication in the host insect and accumulates a greater number of 

OBs in the soil. The exposure to direct solar radiation can decrease virus infectivity. 

Recombinant AcMNPV- vHSGFP had in virus infectivity by a factor of 100, which 

occurred when virus was incubated at a temperature above 45ºC (Michalsky et al., 2008). 

CpGV larvicidal activity declined after 40 weeks at 35 ºC, compared to 3 years at 2 ºC 

(Lacey et al., 2008). There is a report that LdMNPV can be completely inactivated within 

one week (Podgwaite & Mazone, 1982). So, the literature shows wide variety in 

persistence of baculoviruses as affected by environmental factors such as UV radiation, 

temperature and plant chemicals.  

There is a limited knowledge on the persistence, i.e. the survival in the eco-system 

over time, of fast acting baculoviruses in pest populations, measured over multiple 

generations. Long-term persistence of genetically modified baculoviruses is seen as 

undesirable, because it would prolong the exposure time of non-target biota, even though 

the effects of such exposure are considered to be harmless because of the host specificity 

of baculoviruses. From a population genetic perspective it is expected that viruses with 

increased speed of kill, due to deletion of the egt gene or insertion of toxin genes (such as 

AaIT), would be ecologically less fit because the survival of infected insects is shortened, 

compared to insects infected with wild-type viruses. Hence, the virus yield of 

recombinants in terms of OBs is much lower than that of wild-type baculoviruses, 

generally by a factor of 10.  

To increase the biosafety of genetically modified baculoviruses in the environment 

it has been suggested to use baculovirus vectors lacking genes which could not replicate 

and spread naturally. This would reduce not only their environmental fitness in the 

environment, but also the viral load. The approach of using a polyhedron-negative 

baculovirus results in severely disabled viruses that are of little value in agriculture 
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(Hammock, 1992). A recent study from Zwart et al. (2009) suggests that AcMNPV–∆egt 

can be a safe biocontrol agent since such recombinant baculovirus will be outcompeted in 

mix-infected insect by the wild-type AcMNPV. These authors show that egt negative 

baculoviruses have a lower competitive fitness as a result of within host competition. It is 

important to quantify ‘within-host’ and ‘between-host’ competitive fitness of recombinant 

baculoviruses with altered insecticidal properties compared with wild-type baculovirus, as 

evidenced from serial passage experiments (Hamblin et al., 1990; Huang et al., 1991, 

Zwart et al., 2009). The ’within-host’ selection in mixed infections is very relevant for the 

risk assessment and environmental safety of recombinant viruses as biological control 

agent (Cory, 2000). 

The hypothesis tested in this thesis is that baculovirus recombinants, which have 

altered properties, such as higher speed of action and lower yield, are rapidly replaced in 

nature by the conspecific wild-type baculovirus because of the lower ecological fitness of 

the former. To make progress towards decisions on ecological safety of genetically 

modified baculoviruses, we also need to perform field studies directed towards 

baculovirus persistence, to approach the fundamental question on the ecological fitness of 

wild-type and recombinant baculoviruses.  

 

THE MAIN OBJECTIVES OF THE PROJECT AND OUTLINE OF THE THESIS 

 

The main objectives of the thesis are the following: 

1. to obtain insight in the competition between wild-type and genetically modified 

baculovirus genotypes in mixed infections in host insects;  

2. to determine the effect of the different baculoviruses in single and mixed infection on 

the larval behaviour.  

3. to quantify the transmission rate of genetically modified and wild-type baculoviruses in 

the single and mixed infections, in the cotton-cotton bollworm system, particularly to test 

the influence of density and time post virus release on plant. 

4. to compare persistence of biological activity of wild-type, genetically modified and 

mixtures of both baculoviruses in soil. 

5. to obtain insight in the competition between wild-type and genetically modified 

baculovirus genotypes in mixed infections in host insects, in multiple insect host 

generations.  

To reach these objectives three virus-host systems have been used: firstly, the cotton-

cotton bollworm-HaSNPV system to relate laboratory with field evaluations, secondly, 

the beet armyworm-SeMNPV system and thirdly the beet armyworm-AcMNPV system. 

In all cases recombinant baculoviruses with different biological properties were available 

and allowed a comparative approach. 
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In Chapter 2 the biological properties of wild-type and recombinant HaSNPV were 

studied in single as well in mixed infections of cotton bollworm larvae, using a bio-assay 

in which pathogenicity and virulence of different HaSNPV genotypes were assessed. In 

Chapter 3 a combination of greenhouse and field experiments was performed to measure 

the effect of the different HaSNPV genotypes and their interaction via mixed infections 

on the behavior of cotton bollworm larvae. Chapter 4 is an extension of the experiments 

in chapter 3 and studies in more detail the relationship between inoculum density and the 

time post release of recipient larvae on the plant and the impact on transmission. 

Furthermore the persistence of wild-type and recombinant HaSNPVs in the soil was 

measured to help assessing the ecological safety of genetically modified viruses. Chapter 

5 describes the competition of SeMNPV viruses with different biological properties, when 

passaged several cycles in S. exigua insect larvae in different ratios. Chapter 6 describes 

the competition between an AcMNPV recombinant baculovirus lacking an egt gene, but 

with enhanced speed of action and wild-type AcMNPV in insect larvae level when 

different ratios of virus mixtures were used in single and multiple insect generations. 

Chapters 5 and 6 are meant to investigate whether, in a different baculovirus-insect 

system, the hypothesis that faster viruses are less fit, holds up.  Chapter 7 summarizes the 

most important results from this thesis and discusses these with reference to the current 

literature in the area of baculovirus ecology and to the use of baculoviruses and their 

genetically modified derivatives as biological control agents in crop protection.  
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Chapter 2 
 

 

DOSE DEPENDENCY OF SURVIVAL TIME IN SINGLE AND 

MIXED INFECTIONS WITH A WILDTYPE AND EGT 

DELETION STRAIN OF HELICOVERPA ARMIGERA 

NUCLEOPOLYHEDROVIRUS  

 

 

SUMMARY 

 

Recombinant insect nucleopolyhedroviruses lacking the egt gene generally kill 

their hosts faster than wild type strains, but the response of insects to mixtures of virus 

genotypes is less well known. Here, we compared the survival time, lethal dose and 

occlusion body yield in third instar larvae of H. armigera (Hübner) after challenge with 

wild type Helicoverpa armigera SNPV (HaSNPV-wt), a strain with a deletion of the egt 

gene, HaSNPV-LM2, and a 1:1 mixture of these two virus strains. A range of doses was 

used to determine whether the total number of OBs influenced the response to challenge 

with a mixture of virus strains versus single strains. At high virus doses HaSNPV-LM2 

killed H. armigera larvae significantly faster (ca. 20 h) than HaSNPV-wt, but at low 

doses, there was no significant difference in survival time between the viruses. The 

survival time after challenge with mixed virus inoculum was significantly different from 

and intermediate between that of the single viruses at high doses, and not different from 

that of the single viruses at low doses. No differences in lethal dose were found between 

single and mixed infections or between virus genotypes. The number of occlusion bodies 

produced per larva increased with time to death and decreased with virus dose, and no 

significant differences among virus treatments were found. These experiments show that 

the outcome of mixed infections depends on dose and this should be taken into account 

when evaluating the ecological consequences of release of viral types with different 

biological properties.  

 

 

 

Modified version has been submitted for publication: 

Liljana Georgievska, Kelli Hoover, Wopke van der Werf, Delia Muñoz, Primitivo 

Caballero, Jenny S. Cory & Just M. Vlak. (2009). Dose dependency of survival time in single 

and mixed infections with a wildtype and egt deletion strain of Helicoverpa armigera 

nucleopolyhedrovirus. 
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INTRODUCTION  

 

Baculoviruses occur naturally in insect populations, and some have been developed 

as microbial insecticides because, due to their specificity, they are generally safe to non-

target organisms and the environment. However, only few baculoviruses have become a 

commercial success because of their slow speed of action, UV sensitivity and limited host 

range (Fuxa, 1991; Moscardi, 1999; Szewczyk et al., 2006; Erlandson, 2008). 

Molecular engineering tools have been used to generate genetic modifications in 

wild type baculoviruses, in particular to accelerate speed of kill. These modifications 

include the deletion of viral genes and the insertion of genes that express insect specific 

toxins or metabolic enzymes (Bonning et al., 1992; Inceoglu et al., 2006). An important 

example of the former is the deletion of the baculovirus egt gene. This gene encodes the 

enzyme ecdysteroid UDP-glucosyltransferase (egt), which modifies ecdysteroid hormones 

by adding a carbohydrate moiety. These modifications render these hormones inactive 

thereby delaying or inhibiting the molt in virus-infected insects (O’Reilly & Miller, 1990, 

1991). Infection with an egt-deletion virus results in normal progression of the larval 

molt, and often produces a reduction in time to death of virus-infected insects and an 

attendant reduction in crop damage (Hoover et al., 1995; Cory et al., 2004). The 

(molecular) mechanism responsible for the shortened time to death in insects infected 

with egt deletion strains is not known, but the Malpighian tubules seem to be involved 

(Flipsen et al., 1995). 

In the field, baculoviruses occur as mixtures of conspecific genotypes (Miller, 

1995; Hodgson et al., 2001). This genotypic diversity in a baculovirus population can be 

the result of genetic drift from a single parent strain, due to mutations, deletions and 

insertions during virus replication; or it can result from mixing and recombination of 

baculovirus strains (Williams, & Otvos, 2005; Lauzon et al, 2005; Jakubowska et al., 

2005). How exogenous conspecific genotypes, such as genetically engineered 

recombinants, will interact with existing genotypes over time is unknown. The pertinent 

question is, what is the ecological fitness of fast killing, genetically modified, baculovirus 

strains, compared to more slowly killing, wild type strains? 

The persistence of genetically engineered baculoviruses in an ecosystem will 

depend on competitive processes between virus strains at several levels of organization. 

Both processes within host insects (e.g. virus production) and processes at the ecosystem 

level, e.g. virus transmission due to encounters between larvae and inoculum, may be 

involved. These competitive interactions between recombinant and wild type strains will 

determine whether recombinant baculoviruses will persist in an ecosystem, and for how 

long. Given the high levels of heterogeneity in natural populations of baculoviruses, 

competition between virus strains within hosts is highly likely. There are many reports of 

mixed virus infections in insects (Steinhaus, 1963; Tanada & Chang, 1964; Thomas et al., 
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2003). Co-infection of insect hosts with multiple viral species can be “antagonistic” 

[(Hackett et al. 2000 (GV/NPV); Muñoz & Caballero, 2000 (conspecific strains); Ishii et 

al. 2002 (NPV/EPV)], “neutral” [Milks et al. 2001 (conspecific including a recombinant)], 

or “synergistic” [(Tanada, 1985 (NPV/GV); Hukuhara et al., 1987 (NPV/GV); Wang et 

al., 1994 (GV/NPV); López-Ferber et al., 2003; Hodgson et al., 2004 (conspecific 

strains)]. 

When an insect is challenged with a mixture of a fast and a slow killing genotype 

of a baculovirus, different situations are theoretically possible: the time to kill could be 

similar to that of the fast acting virus strain in the mixture, it could be similar to that of the 

slow acting virus, or it could be intermediate. For an egt-deletion virus genotype the first 

possibility is less plausible because the faster speed of kill is due to the absence of a gene 

product in single infection. If a wild type virus is also present, then this gene product, egt, 

is again available. The second possibility, in which time to death is similar to that of 

infection with wild type virus, is plausible because the gene product of egt will be present 

in a mixed infection, as it is in a single infection with wild type virus. An intermediate 

time to kill is also possible since the quantity of egt in insects infected by a mixture of a 

wild type and egt-deletion virus may be reduced in comparison to the concentration in an 

infection with pure wild type virus. Thus, we have three alternate hypotheses: (1) time to 

death in larvae challenged with a virus genotype mixture is similar to that of larvae 

infected with the pure egt deletion strain, (2) time to death is similar to that of larvae 

infected with the wild type strain, and (3) time-to-death is intermediate between that of 

larvae with single genotype infections.  

Here, we study mixed infection with the baculovirus HaSNPV in the L3 stage of 

the cotton bollworm, Helicoverpa armigera. The cotton bollworm is an economically 

important pest insect that attacks at least 35 crop and 25 wild host plants (Greathead & 

Girling, 1982). In Asia, India, and South Africa, H. armigera is a key pest on cotton (van 

Hamburg & Guest, 1997; Cherry et al., 2003). Whilst transgenic resistance to the cotton 

bollworm is available in cotton, it is essential that alternative control options are also 

studied and optimized, because the transgenic resistance may be broken (Tabashnik et al., 

2003), transgenic resistance may not be available in minor crops, and the cotton bollworm 

is highly resistant to pesticides (Armes et al, 1992; Brèvault et al., 2008; Ugurlu & 

Gurkan, 2008). 

Experiments were conducted with a wild type HaSNPV (HaSNPV-wt) and an egt-

deletion mutant, HaSNPV-LM2, with enhanced speed of kill. Sun et al., (2004) reported 

that the egt-deletion mutant, HaSNPV-CXW1 showed significantly quicker speed of 

action than wild type virus in third instars. Therefore, cohorts of third instar larvaes were 

challenged with an equal dose of a 1:1 mixture of HaSNPV-wt and HaSNPV-LM2 or an 

equivalent dose of one of the two individual biotypes, using a range of 10 different doses. 
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The results of the experiments were analyzed to determine lethal dose (LD50), survival 

time (ST50) and occlusion body (OB) yield.  

 

MATERIALS AND METHODS 

 

Viruses 

The baculoviruses used in this study were: 1) purified wild type HaSNPV, isolated 

from H. armigera larvae from China (named HaSNPV-G4) (Sun et al, 1998), further 

referred to in the text as HaSNPV-wt; 2) a recombinant HaSNPV lacking egt and 

generated in cell culture, further referred to as HaSNPV-LM2, and 3) a 1:1 mixture of 

these two baculoviruses, further referred to as HaSNPV-mix.  

HaSNPV-LM2 was generated by co-infection with HaSNPV-CXW2 DNA (-egt; 

+GFP) (Chen et al., 2000) and plasmid pHaLM2. Most of the egt open reading frame 

(ORF) in this transfer vector was deleted by insertion of the AaIT gene (Inceoglu et al, 

2001) and a SV40 transcription termination sequence flanked by HindIII sites (Chen et 

al., 2000; Fig. 1). The AaIT gene is not expressed in this construct because the egt 

promoter is absent, which was confirmed by nucleotide sequencing. The co-transfection 

was carried out using Helicoverpa zea Hz-AM1 cells, grown in CCM3 medium 

supplemented with 10% fetal bovine serum. Recombinant HaSNPV-LM2 was re-isolated 

after three cycles of plaque purification in Hz-AM1 cells (McIntosh & Ignoffo, 1983). All 

viruses were amplified in fourth instar H. armigera reared in the laboratory on artificial 

diet (Green et al., 1976). Occlusion bodies (OBs) were purified from infected larvae by 

homogenization and sucrose gradient centrifugation (Allaway & Payne, 1984). 

Concentration of OBs of the viral stock solutions was determined in three independent 

counts using an Improved Neubauer chamber (Hawsksley, Lancing, UK) by phase-

contrast microscopy (× 400). Virus stocks were stored at 4°C until use.  

 

 

Insects 

H. armigera used in the experiments were obtained from an insect colony 

maintained at the Department of Entomology, Public University of Navarra, Pamplona, 

Spain. The colony was reared continuously on artificial diet (Green et al., 1976) at 25ºC, 

70% relative humidity (RH), and a 16L: 8D h photoperiod.  
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Figure 1. (a) Schematic representation of HaSNPV-wt (A) and HaSNPV-LM2 (B) at the egt gene 

locus of the HaSNPV genome (Chen et al., 2000). (B) The transfer vector pHaLM2 was used to 

construct the recombinant HaSNPV-LM2. The restriction sites indicated here are B, BamHI, RI, 

EcoRI, RV, EcoRV, H, HindIII, P, PstI, S, SstI. Thick arrows indicate the orientation of the genes 

ph (polyhedrin), egt and p10. Thin arrows indicate the forward and reverse primers on the egt and 

AaIT genes, respectively.  

 

 

Bioassays: Determination of lethal dose (LD50) and survival time (ST50) 

Third instar H. armigera were challenged with a range of doses of HaSNPV-wt, 

HaSNPV-LM2 or a 1:1 mixture of these two viruses to determine mortality and survival 

time. Second instar larvae exhibiting head capsule slippage were held without food for 16 

h at 25ºC. Larvae that had molted to the third instar were orally inoculated by the droplet 

feeding method (Hughes et al. 1981), by exposing the larvae to an aqueous suspension 

containing 10% (w/v) sucrose, 0.001% (w/v) Fluorella blue (food dye), and relevant 

concentrations of OBs. The following serial dilutions of each virus were used: 3 × 10
7
, 1 

× 10
7
, 3 × 10

6
, 1 × 10

6
, 3 × 10

5
, 1 × 10

5
, 3 × 10

4
, 1 × 10

4
 , 3 × 10

3
 and 1 × 10

3
 OBs/ml. 

Sun et al. (2004) determined that third instar H. armigera under the same conditions 

ingested a volume of approximately 1 µl; thus the mean ingested dosage was estimated at 

1, 3, 10, 30, 100, 300, 1000, 3000, 10000 and 30000 OBs/larva, respectively. Only larvae 

that imbibed the virus solution, as evidenced by the blue coloration of their midgut, within 

10 min after exposure to the virus solution, were transferred onto fresh artificial diet. 
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Controls (N = 25 larvae) consisted of larvae handled in the same manner but fed virus-

free solution instead. 

Inoculated larvae were reared individually at 25°C, 79 % RH, and a 16L: 8D light-

dark regimen; insects were monitored at approximately 8 h intervals until they died or 

pupated. Bioassays were repeated six times with minor variations in the range of doses 

used, i.e. each experiment included most of the above-mentioned doses but not 

necessarily all. The number of larvae was varied with dose to obtain a sufficient number 

of infected insects at each dose; from 25 larvae at high doses to 70 at low doses.  

Median lethal dose values (LD50) were determined by probit analysis using the computer 

program POLO-PLUS (Russell et al., 1977). Survival time (ST50) was estimated using the 

Kaplan-Meier Product Limit Estimator in JMP SAS (2008) in non-parametric survival 

analysis. Non-parametric Cox's Proportional hazards model was fitted to the data by dose 

with virus treatment and experiment as the independent variables in JMP SAS (2008).  

 

 

Bioassays: Determination of OB yield 

OB yield was determined for two out of the six bioassays from approximately five 

cadavers, randomly selected for each combination of dose and virus treatment. Individual 

cadavers were homogenized in 0.5 ml of sterile water, filtered through a plastic filter with 

a fine metal net (mesh size 120 to 200 µm, pore diameter 70 nm) and then centrifuged at 

6,000 g for 5 min. The supernatant was discarded and the OB pellet was resuspended in 

500 µl of sterile water. Virus yield was determined by counting the number of OBs using 

an Improved Neubauer hemocytometer by phase contrast microscopy, in three 

independent counts. Concentrations are reported as OBs/ml.  

OB yield was analyzed using regression analysis in SPSS (SPSS Inc., 2003 and 

Genstat (Procedure REML). The REML procedure in Genstat is equivalent to an ordinary 

least squares regression; in REML (Restricted Maximum Likelihood), the model is fitted 

using maximum likelihood instead of least squares. Yield was log-transformed before 

analysis to obtain identically distributed normal errors (IDNE). Residuals were checked 

visually for departures from the assumption of IDNE. Experiment (random) and virus 

treatment (fixed) were used as factors in the analysis, time to death as covariable, while 

dose was alternately included as a factor (10 levels) or as a covariable (1 df).  

 

RESULTS 

 

Mortality 

Mortality increased with dose in all treatments (Fig. 2). Mortality responses were 

shallow indicating large variation in susceptibility among individual larvae (Ridout et al., 

1993). The LD50 of the virus treatments were similar, and not significantly different in 
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pairwise comparisons any of the six experiments as shown by overlapping confidence 

intervals. For example, in Experiment 6, the LD50 for HaSNPV-wt was 13 (7-24) 

OBs/larva, df = 8, χ
2 

= 8.46), the LD50 for HaSNPV-LM2 was 10 (5-18) OBs/larva, df = 

8, χ
2 

= 8.25) and the LD50 for HaSNPV-mix was 18 (7-49) OBs/larva, df = 7, χ
2 

= 16.79). 

 

 

 

 

 

 

 

 

 

 

. 

 

 

 
 
Figure 2. Dose–logit mortality responses of third instar H. armigera exposed to one of three 

HaSNPV preparations (OBs/larva): HaSNPV-wt, the egt deletion mutant HaSNP-LM2, or a 1 : 1 

mixture of HaSNPV-wt and HaSNP-LM2.  

 

 

Survival time (ST50) 

ST50 decreased with increasing dose in all virus treatments, from approximately 

150 h at the lowest doses to approximately 80 h at the highest (Fig. 3). At virus doses of 

300 OBs/larva and higher, significant differences among virus treatments were observed. 

HaSNPV-mix killed larvae significantly faster than the wild type at most viral doses 

above 300 OBs (Table 1). 
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Table 1. Survival times (ST50s) of third instar Helicoverpa armigera infected with wild-type and 

recombinant viruses. 

 

Dose 

 

(OBs/larva) 

Virus ST50s 

 

(h.p.i.)
1
 

95% fiducial limits 

 

CI low    CI high 

 

SE 

 

df 

 

χ
2
 

 

P 

1 HaSNPV-wt 136 136 160 6.3 2 1.70 0.4269 

 HaSNPV-mix 144 128 160 5.1    

 

 

HaSNPV-LM2 160 136 160 7.0 

 

   

3 HaSNPV-wt 128 112 136 4.4 2 1.91 0.3839 

 HaSNPV-mix 128 120 136 3.2    

 

 

HaSNPV-LM2 136 120 144 4.1    

10 HaSNPV-wt 144 144 152 2.3 2 1.87 0.3924 

 HaSNPV-mix 136 136 144 2.6    

 

 

HaSNPV-LM2 136 128 136 3.3 

 

   

30 HaSNPV-wt 136 136 144 2.4 2 1.68 0.4315 

 HaSNPV-mix 152 136 160 2.6    

 

 

HaSNPV-LM2 136 136 144 2.3 

 

   

100 HaSNPV-wt 136 136 136 1.5 2 3.02 0.2201 

 HaSNPV-mix 136 136 136 1.9    

 HaSNPV-LM2 

 

136 136 144 1.6 

 

   

300 HaSNPV-wt 136 a 128 136 1.8 2 44.16 0.0001 

 HaSNPV-mix 128 a 120 136 2.1    

 HaSNPV-LM2 

 

120 b 112 120 1.5    

1000 HaSNPV-wt 120 a 120 128 1.7 2 24.60 0.0001 

 HaSNPV-mix 120 a 120 128 2.1    

 HaSNPV-LM2 112 b 104 112 1.6    
        

3000 HaSNPV-wt 120 a 120 128 1.9 2 29.34 0.0001 

 HaSNPV-mix 104 b 104 112 2.0    

 HaSNPV-LM2 

 

96 c 96 104 1.8    

10 000 HaSNPV-wt 112 a 104 120 1.8 2 25.87 0.0001 

 HaSNPV-mix 96 b 96 104 2.4    

 HaSNPV-LM2 

 

96 c 96 96 1.4    

30 000 HaSNPV-wt 104 a 96 112 1.8 2 11.71 0.0029 

 HaSNPV-mix 96 a 96 104 2.1    

 HaSNPV-LM2 

 

88 b 88 96 1.7    

100 000 HaSNPV-wt 96 a 96 96 3.5 2 12.25 0.0022 

 HaSNPV-mix 88 b 72 88 4.3    

 HaSNPV-LM2 

 

80 b 72 88 3.7    

300 000 HaSNPV-wt 88 a 88 96 3.5 2 26.48 0.0001 

 HaSNPV-mix 80 b 72 88 5.0    

 HaSNPV-LM2 72 c 63 72 2.6    

         
 

1 Median survival times were determined by survival analysis using the Kaplan Meier Product Limit 

estimator (Collett, 1994). h.p.i.= hours post inoculation. Different letters after ST50 values for each dose 

are significantly different at p < 0.05. 
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Figure 3. Survival time (ST50) of third instar H. armigera exposed to one of three HaSNPV preparations, 

plotted against dose (OBs/larva). Data were analyzed as the average of the median survival times (ST50) 

across the experiments, separately for each viral dose. Vertical bars represent standard errors of the means. 

Asterics were added on the treatments that are significantly different from each other, for each dose.  

Significant difference is at level P < 0.05. 

 

At low doses (1, 3, 10, 30 and 100 OB/larva), there was no significant difference in 

ST50 between wild type and HaSNPV-LM2 (Fig. 3, Table 1). At doses ≥ 300 OBs/larva 

the survival time (ST50) for HaSNPV-LM2 was approximately 8-24 h shorter than for 

HaSNPV-wt (Fig. 4). For the mixture of viruses, at the higher viral doses (> 300 

OBs/larvae), ST50 was approximately 8-16 h shorter than with HaSNPV-wt. When 

HaSNPV-LM2 and HaSNPV-mix were compared, the pure recombinant killed faster than 

the mixture at the doses of 300 OBs/larva or more, except at a dose of 100,000 OBs/larva 

(Table 1). 

Survival curves at doses of 10 and 100 OBs per larva in three experiments are 

shown in Fig. 5, to exemplify the variability in response among replicates, observed at 

low doses. At 10 OBs per larva, HaSNPV-LM2 killed faster than HaSNPV-wt in 

Experiment 1 (Fig.5A), but not in Experiments 2 and 3 (Fig 5 C and E). At a dose of 10 

OBs per larvae, the mixture killed the larvae faster than the wild type virus in Experiment 

1 (Fig. 5 A), but not in Experiments 2 and 3 (Fig.5 C and E). At 100 OBs per larva, these 
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trials show more consistency. In all replicates (Fig. 5 B, D, F) HaSNPV-LM2 killed faster 

than HaSNPV-wt and HaSNPV-mix. The large variability in treatment effects at low 

doses is reflected in large standard errors in Fig. 4, and wide confidence intervals for ST50 

(Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 4. Differences in survival time (ST50) of third instar H. armigera challenged with 

HaSNPV-LM2 or the mix in comparison with the ST50 of larvae challenged with HaSNPV-wt. 

Symbols represent the average survival time for the six experiments for each virus/dose 

combination. Standard error bars are shown.  
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experimental replicate as main effects in non-parametric survival analysis,
 
times to death 

differed significantly as a function of both main effects. Significant differences among the 

three virus treatments were found at doses ≥ 300 OBs/larva. Variability among 

experiments in the relative effect of viruses showed up as significant interactions when 

survival analysis was conducted separately at each dose (Table 2).  
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Table 2. Non-parametric survival analysis of larvae inoculated with 1 of 10 viral doses. The 

survival function was modeled using the factors of virus treatment (wild type HaSNPV-wt; 

recombinant HaSNPV-LM2 and 1:1 mix HaSNPV-wt and HaSNPV-LM2), experiment as 

(repetitions), and the interaction between treatments and experiments (Exp. × trt). 

 

 

Dose 

OBs/larva 

 

Term 

 

Log 

Likelihood 

 

 

χ
2
 

 

df 

 

P 

 

1 

 

Full model 

 

281.87 

 

16.5 

 

8 

 

0.0361 

 Experiments  7.7 2 0.0208 

 Treatments  2.1 2 0.3482 

 Exp. × trt  4.8 4 0.3090 

 

3 Full model 858.83 75.5 8 0.0001 

 Experiments  69.7 2 0.0001 

 Treatments  6.2 2 0.0445 

 Exp. × trt 

 

 9.9 4 0.0407 

10 Full model 1129.22 106.8 11 0.0001 

 Experiments  81.9 3 0.0001 

 Treatments  0.01 2 0.9915 

 Exp. × trt 

 

 16.9 6 0.0096 

30 Full model 1481.81 68.1 11 0.0001 

 Experiments  41.7 3 0.0001 

 Treatments  1.65 2 0.4390 

 Exp. × trt  15.8 6 0.0146 

 

100 

 

Full model 

 

3591.37 

 

73.2 

 

17 

 

0.0001 

 Experiments  31.8 5 0.0001 

 Treatments  1.0 2 0.5899 

 Exp. × trt 

 

 38.5 10 0.0001 

300 Full model 2832.32 89.2 17 0.0001 

 Experiments  43.2 5 0.0001 

 Treatments  34.3 2 0.0001 

 Exp. × trt 

 

 18.8 10 0.0429 

1000 Full model 2555.51 63.6 17 0.0001 

 Experiments  21.4 5 0.0007 

 Treatments  12.9 2 0.0016 

 Exp. × trt 

 

 19.4 10 0.0359 
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Table 2. Continued.     

 

Dose 

OBs/larva 

 

Term 

 

Log 

Likelihood 

 

 

χ
2
 

 

df 

 

P 

      

3000 Full model 2352.69 92.1 17 0.0001 

 Experiments  45.9 5 0.0001 

 Treatments  14.9 2 0.0006 

 Exp. × trt 

 

 188 10 0.0042 

10000 Full model 2177.8 87.3 17 0.0001 

 Experiments  38.4 5 0.0001 

 Treatments  19.3 2 0.0001 

 Exp. × trt 

 

 32.0 10 0.0004 

30000 Full model  2002.1 55.5 17 0.0001 

 Experiments  23.1 5 0.0003 

 Treatments  6.9 2 0.0313 

 Exp. × trt 

 

 21.6 10 0.0175 

100000 Full model  804.9 10.4 5 0.0654 

 Experiments  0.9 1 0.3363 

 Treatments  9.1 2 0.0104 

 Exp. × trt 

 

 0.7 2 0.7086 

 

300000 Full model  631.5 23.8 5 0.0002 

 Experiments  5.9 1 0.0144 

 Treatments  18.2 2 0.0001 

 Exp. × trt  0.09 2 0.9535 
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Figure 5. Cumulative mortality of third instar H. armigera larvae plotted over time (h) for three 

experiments at two viral doses: (A) Dose of 10 OBs/larva or (B) 100 OBs/larva. Data points are 

HaSNPV-wt: open circles; HaSNPV-LM2: black circles; HaSNPV-mix: grey triangles.  

 

 

Virus yield  

Yield varied with dose, and a tendency was observed towards higher yields at 

intermediate doses (Fig. 6) In an analysis of two replicate experiments with REML, using 

experiment (1 df), virus treatment (2 df), and dose (9 df) as factors, the effect of dose was 

significant (P <0.001; Table 3), while there was no effect of virus treatment or interaction 

between dose and virus treatment. There was a significant difference between the 

experiments (P < 0.001). Survival time in this two replicates was shortest at the highest 

doses (Fig. 7), and survival time was significantly influenced by dose (P < 0.001), virus 

treatment (P = 0.043) and their interaction (P = 0.013) (Table 3). When survival time was 

included in the regression analysis of virus yield (Table 3), it explained most of the 

variability in the yield data (Wald/d.f. = 70.34; P < 0.001) while there was also a 

significant effect of dose (Wald/d.f. = 2.11; P = 0.025). The relationship between survival 
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time and virus yield is illustrated in Fig. 8. A test for differences between the regression 

slopes for different virus treatment, using Procedure “F special” in Genstat, gave no 

significant results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Relationship between dose and average yield (OBs/larva) of third instar H. 

armigera larvae infected with 10 different doses of HaSNPV-wt; recombinant HaSNPV-LM2 

or a 1:1 mixture of wild type and recombinant HaSNPV. Standard errors show variation of 

yield among larvae per dose. (A) Experiment 1, and (B) Experiment 2. Different letters show 

significant difference at P < 0.05. 
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Figure 7. Dose-survival time relationship of third instar H. armigera larvae infected with 

HaSNPV-wt; recombinant HaSNPV-LM2 or a 1:1 mixture of wild type and recombinant 

HaSNPV. (A) Experiment 1, and (B) Experiment 2.  
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Figure 8. Relationship between time to death and yield of progeny virus (OBs/larva) of third 

instar H. armigera larvae infected with 10 different doses of HaSNPV-wt; recombinant HaSNPV-

LM2 or a 1:1 mixture of HaSNPV-wt and HaSNPV-LM2. Standard errors are shown for each 

dose. (A) Experiment 1, and (B) Experiment 2. 
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Table 3. Two-way ANOVA of the log-transformed OBs yield/larva of 3
rd

 instars H. 

armigera challenged with one of three HaSNPV preparations, HaSNPV-wt, HaSNPV-

LM2 or HaSNPV-mix. 

 

 

DISCUSSION 

 

Our experiments show that the survival time of larvae challenged with a mixture of 

a fast and slow killing genotype of HaSNPV is intermediate between the survival times of 

the two genotypes separately. Survival time decreased with increasing virus dose for all 

treatments. Differences in ST50 between virus treatments depended on dose, and were 

significant only at doses of 300 OBs per larva or higher. Survival time decreased 

substantially with dose, which is commonly observed in baculovirus infections (e.g. Milks 

et al., 2001), while variability in the estimated survival time increased at lower doses. 

This increase in variability may have multiple causes. One cause is the lower numbers of 

insects responding, even though the number of challenged insects had been raised at low 

doses to compensate for lower mortality. It is also conceivable that at lower challenge 

doses stochastic events in the infection process at the organismal level cause intrinsically 

greater variability in response. Finally, differences in dose due to the method of droplet 

feeding may have exacerbated variability especially at the low doses where the value of 

each OB in the infection processes is maximized (i.e. the flip side of the law of 

diminishing returns).  

The findings support the second of hypotheses formulated and indicate that the 

effect of egt on survival time depends on the quantity of gene product, and is not a 

qualitative response to either presence or absence in the inoculum of a virus coding for 

egt. The quicker death following challenge with an egt-negative HaSNPV genotype 

Mean effects of factors 

 SS df MS F P 

Exp. 1      

trt 0.72 2 0.36 2.85 0.0620 

dose 4.71 9 0.52 4.15 0.0001 

trt × dose 3.18 18 0.18 1.40 0.1440 

error 14.6 116 0.13   

total  12743 146    

Exp. 2      

trt  0.22 2 0.11 0.45 0.640 

dose  4.72 9 0.53 2.15 0.036 

trt × dose 2.21 16 0.14 0.56 0.901 

error  17.4 71 0.25   

total  7958 99    
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confirms findings of Sun et al. (2004) with another egt-negative HaSNPV variant, 

HaSNPV-CXW1. Also the same was observed in egt negative baculoviruses in other 

insect host-virus systems AcMNPV in T. ni (Cory, 2004). The relation between dose and 

survival time may be related to the number of founders of the viral infection. At low dose, 

with an attendant low mortality, the number of virions that initiate infection, may be very 

low (Zwart et al., in press). Virus spread may be slowed down by anti-viral responses that 

may occur in the host larva, particularly at the level of the midgut by sloughing of 

infected midgut cells (Hoover, et al., 2000; Li,. et al., 2007) making it less likely that 

multiple foci of infection are established. With a low number of foci of infection in the 

insect it night take longer for the virus to colonize the host and kill it.  

In a previous report, shorter ST50s resulted in lower OB yields (O’Reilly & Miller, 

1991; Cory et al., 1994; Ignoffo & Garcia, 1996 Burden et al., 2000; Hernandez-Crespo et 

al., 2001; Sun et al., 2005). Studies to date have shown overall lower OB yields and 

reduced virus transmission (Muñoz & Caballero, 2000; Sun et al., 2005). In contrast to 

these findings, Hodgson et al. (2001) reported increased yield in mixed genotype 

infections compared with single infections and the authors observed no difference in 

times to death. Here we found that the best predictor for the yield from virus-infected 

cadavers was the time to death, with no significant influence of virus treatment. To a large 

extent, the effect of virus dose on virus yield could be accounted for by survival time. 

Thus, our conclusion here is that in our system, the effect of mixed virus infection on 

virus yield can be entirely explained by the effect of survival time, i.e. the yield from 

mixed infections is expected to be intermediate between that of the pure virus variants 

used in the study.  

In summary, detailed analysis of a set of six independent bioassays comparing two 

biotypes of HaSNPV that differ in a single trait (egt) showed high variability in survival 

times within and among experiments at low viral dosages, but not at intermediate and 

high dosages. The results obtained in this paper imply that only at intermediate and high 

dose there will be an effect of mixed infections on the response of the larval host. This 

should be taken into account when the ecological consequences of release of viral types 

with different biological properties are evaluated.  
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Chapter 3 
 

 

EFFECTS OF SINGLE AND MIXED INFECTIONS WITH 

WILD-TYPE AND GENETICALLY MODIFIED HELICOVERPA 
ARMIGERA NUCLEOPOLYHEDROVIRUS ON MOVEMENT 

BEHAVIOUR OF COTTON BOLLWORM LARVAE 

 

 

SUMMARY 

 

Naturally occurring insect viruses can modify the behaviour of infected insects and 

thereby modulate virus transmission. Modifications of the virus genome could alter those 

behavioral effects. We studied the distance moved and the position of virus-killed 

cadavers of fourth instar larvae of H. armigera infected with a wild-type genotype of 

Helicoverpa armigera nucleopolyhedrovirus (SNPV) or with one of two recombinant 

genotypes of this virus on cotton plants. The behavioral effects of virus infection were 

examined both in larvae infected with a single virus genotype, and in larvae challenged 

with mixtures of the wild-type and one of the recombinant viruses. An egt-negative virus 

variant caused more rapid death and lower virus yield in fourth instars, but egt-deletion 

did not produce consistent behavioral effects over three experiments, two under controlled 

glasshouse conditions and one in field cages. A transgenic virus containing the AaIT-

(Androctonus australis Hector) gene, which expresses a neurotoxin derived from a 

scorpion, caused faster death and cadavers were found at lower regions of the cotton 

plants. Larvae that died from mixed infections of this recombinant and the wild-type virus 

died at intermediate positions, compared with infection to the pure viral strains. The 

results indicate that transmission of egt-negative variants of HaSNPV will likely be 

affected by lower virus yield, but not by behavioral effects of egt gene deletion. In 

contrast, the AaIT-recombinant will produce lower virus yields as well as modified 

behaviour, which together can contribute to reduced virus transmission under field 

conditions. 
 

A modified version of this chapter was submitted for publication as:  

Liljana Georgievska, Nina Joosten, Kelli Hoover, Jenny S. Cory, Just M. Vlak & Wopke 

van der Werf. (2009). Effects of single and mixed infections with wild type and genetically 

modified Helicoverpa armigera nucleopolyhedrovirus on movement behaviour of cotton 

bollworm larvae. 
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INTRODUCTION 
 

Baculoviruses are a large and diverse group of insect pathogens. They cause 

natural epizootics in insect pest populations, especially in forests (Cory & Myers, 2003), 

and they are used for insect pest management in forestry, horticulture and arable 

agriculture (Moscardi, 1999). Baculoviruses are slow killers compared to synthetic 

chemical insecticides. This is a disadvantage in curative crop protection strategies as it 

gives the insects more time to feed and cause damage. Their slow speed of kill has 

prompted attempts to develop faster acting recombinant baculoviruses, for example, 

through the incorporation of insect-specific toxin genes (Tomalski & Miller, 1991; 

McCutchen et al., 1991; Chejanovsky et al., 1995; Hughes et al., 1997; Chen et al., 2000). 

There is concern, however, about the ecological safety of such genetically modified 

baculoviruses, especially about possible effects of genetic modification on host range and 

long-term impacts after release in the environment (Cory & Hails, 1997; Hernandez-

Crespo et al., 2001; Hails et al., 2002; Cory & Myers, 2003;). It is therefore pertinent to 

study factors that affect the long-term persistence of wild-type (wt) and genetically 

modified viruses in agro-ecosystems. It is particularly relevant to study factors affecting 

the transmission of wt and modified viruses, especially in situations where genetically- 

modified viruses could occur in host insects in mixed infections with wild-type viruses.  

The persistence of virus genotypes in ecosystems depends on their competitive 

interactions at individual and eco-system level. These competitive interactions between 

genetically modified and wt genotypes will determine whether recombinant baculoviruses 

will persist in an ecosystem. Persistence of baculoviruses in the environment is directly 

related to their ability to be transmitted from one host to another, which in turn is related 

to host behaviour upon virus infection (Hoover et al., 1995). There is ample evidence that 

baculoviruses can induce modified behaviour in their hosts, including enhanced 

locomotor activity and a tendency to climb to elevated points on the host plant shortly 

before death (negative geotaxis); this climbing behaviour results in a phenomenon known 

as ‘tree top disease’ or ‘Wipfelkrankheit’ (Andreadis, 1987; Tanada & Kaya, 1993; 

Goulson, 1997). Elevation seeking behaviour is often accompanied with disintegration of 

infected larvae due to enzymes encoded by the viral cathepsin and chitinase genes 

(Hawtin et al., 1997). Thus, the occlusion bodies (OBs) containing the transmission stages 

of the virus can be spread over large parts of the plant when it rains, thereby potentially 

increasing the likelihood of transmission (Vasconcelos et al., 1996; Goulson, 1997; Zhou 

et al., 2005). In addition, cadavers at the ends of branches will be more apparent and 

accessible to scavenging birds that can carry the virus to distant locations (Entwistle & 

Evans, 1985; Fuxa, 2004). Behavioural changes in infected insects could also hamper 

virus transmission, however, and thereby be adaptive to the host. An upward movement 

of infected specimens, away from healthy conspecifics, could reduce virus transmission. 

A recent report (Raymond et al., 2005) shows negative phototaxis in baculovirus-infected 
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larvae of the winter moth, Operophtera brumata. In this system, most of the virus was 

deposited on the stems rather than on leaves. The more protected location of the virus 

could enhance virus persistence and hence foster transmission in the long term. All in all, 

the effects of baculoviruses on hosts appear diverse and different from one system to 

another. Likewise, the consequences of altered behaviour for transmission are system - 

specific.  

The cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is 

a polyphagous insect pest species with a worldwide distribution. It is an important pest in 

several crops, e.g. cotton, tomato, tobacco, maize, chickpea and sorghum (Zalucki et al., 

1986; Fitt, 1989). Cotton bollworm has developed resistance to most of the available 

insecticides (Torres-Vila et al., 2002; Ramasubramanian & Regupathy, 2004). The 

protection of cotton against H. armigera is nowadays mainly based on the use of 

transgenic cotton varieties that express Bacillus thuringiensis (Bt) toxins (Liang et al., 

1998; Liang et al., 2008). However, pesticides are also still used, e.g. on non-genetically 

modified varieties (Men et al., 2005). Resistance to Bt has already been demonstrated in 

field populations of Plutella xylostella (Huang, 2006) and glasshouse populations of 

Trichoplusia ni (Janmaat & Myers, 2005). There is, therefore, a continued need for 

sustainable control options. One such opportunity is offered by insect baculoviruses, even 

though they are also not immune to resistance development in pests (Asser-Kaiser et al., 

2007). H. armigera nucleopolyhedrovirus (HaSNPV) has been developed as a 

commercial biopesticide to control H. armigera on cotton in China (Sun et al., 2004, 

2009; Zhou et al., 2005) and on chickpea in India (Cherry et al., 2000).  

Two HaSNPV isolates have been sequenced (Chen et al., 2001, HaSNPV-G4; 

Zhang et al., 2005, HaSNPV-C1). HaSNPV-G4 has been used as the basis for the 

generation of a recombinant virus into which the AaIT-(Androctonus australis Hector) 

insect-selective toxin gene (McCutchen et al., 1991) has been inserted to replace the viral 

egt gene (Chen et al., 2000). Sun et al. (2004) demonstrated superior performance of an 

AaIT-positive recombinant of HaSNPV, compared to the wild-type virus, in cotton crop 

protection in the field.  

In this study we focus foremost on the behavioural effects of an egt-negative strain 

of HaSNPV (HaSNPV-LM2) in comparison with the wild-type virus, HaSNPV-G4, both 

in single infections with one virus strain and in mixed infections with both strains. 

Secondly, we included in one of the experiments an AaIT-positive HaSNPV, called 

HaSNPV-4A (Sun et al., 2004), with markedly shorter time to kill and expected 

behavioural consequences of the expressed toxin gene (Hernandez-Crespo et al., 2001). 

The inclusion of HaSNPV-4A is not only interesting in its own right, but it also provides a 

“positive” control, indicating whether the experimental approach and set up allows 

detection of behavioral effects, which – in the case of a gene deletion – might be subtle. 
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Studies were conducted with the L4 stage of H. armigera. Fourth instar larvae 

were chosen for this study because they cause more damage on the plant than younger 

larvae (Goulson et al., 1995). Earlier studies showed that egt-deletion variants of 

HaSNPV cause a faster death of infected L3 larvae of H. armigera (Georgievska et al., 

2009) and showed that virus yield was decreased (Sun et al., 2005).  

The preliminary questions that are addressed first are the following: 

Does deletion of the egt gene modify survival time and virus yield in the fourth 

larval instar of H. armigera like it does for the third instar larvae (Sun et al., 2004)?  

What is the survival time and virus yield upon challenge with a mixture of 

HaSNPV-G4 (wild-type) and HaSNPV-LM2 (egt-negative), compared to challenge with 

virus strains HaSNPV-G4 and HaSNPV-LM2 alone? 

These preliminary questions were addressed in laboratory studies. We then 

conducted glasshouse and field studies to address the following questions: 

Does infection with HaSNPV-G4 modify the behaviour of H. armigera and is a 

behavioral effect of virus infection altered when the virus is genetically modified by gene 

deletion (HaSNPV-LM2) or gene deletion and insertion (HaSNPV-4A)? 

How do mixed wild-type recombinant virus infections influence the behaviour 

(movement and location) of the larvae, as compared to single viruses? 
 
 
MATERIALS AND METHODS 

 

Virus stocks 

Wild-type HaSNPV was initially isolated from diseased H. armigera larvae 

collected in Hubei province in China in 1998. The genotype HaSNPV-G4 was isolated by 

in vivo cloning (Sun et al., 1998) and is called here HaSNPV-wt. The recombinant 

HaSNPV-LM2, lacking the egt gene (-egt), was generated by co-infection of Hz-AM1 

cells in cell culture with HaSNPV-CXW2 DNA (-egt; +GFP) (Chen et al., 2000) and 

plasmid pHaLM2. This recombinant thus, lacks the ecdysteroid UDP-glucosyltransferase 

(egt) gene. A second recombinant HaSNPV-4A (-egt; + AaIT) has a deletion of the egt 

gene and at the same time contains a LacZ marker gene and a selective insect neurotoxin 

gene (AaIT) from the scorpion Androctonus australis Hector (McCutchen et al., 1991), 

which is expressed from a chimeric promoter derived from the p6.9 and polyhedrin genes 

of HaSNPV (Sun et al., 2004). HaSNPV-wt and HaSNPV-LM2 were amplified by 

injecting budded virus from the original infected cell culture supernatant into fourth instar 

H. armigera larvae and harvesting OBs upon death.  

HaSNPV-4A was amplified by oral infection of third instar H. armigera larvae 

with a dose causing more than 99% mortality. OBs were isolated by grinding virus-killed 

cadavers in sterile water and filtering the homogenate through two layers of muslin. OBs 

were purified using centrifugation at 11,200 g for 60 min on a 30-60% continuous sucrose 
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gradient. OB concentration from the sediment was determined using the improved 

Neubauer counting chamber. Virus inoculum was prepared by serially diluting the OB 

stock solutions with sterile dH2O. The concentration was checked by three independent 

counts by phase contrast microscopy at × 400 magnification. OB stocks were maintained 

at 20°C until further use. 

 

Insect culture 

H. armigera used in Experiments 1-3 (see below) were from a colony maintained 

in the Laboratory of Virology, Wageningen, The Netherlands. Starting material for the 

culture was obtained from UPNA (Department of Entomology, Public University of 

Navarra, Pamplona, Spain). H. armigera larvae were reared individually in individual 1 

ml plastic containers to prevent cannibalism. They were fed on bean diet (Zenda, BBA, 

Germany) and were kept at constant temperature of 27 ± 3°C, 70% R.H. and a L:D 14:10 

h light regime. Pupae were sexed and transferred to 1.5 L plastic cylinders with 

vermiculite on the bottom and gauze on top. Thirty to forty male and female pupae were 

kept per cylinder. The inner walls were covered with paper for egg deposition by the 

adults after the pupae had eclosed and the adults mated. Eggs were surface-sterilized in 

4% formaldehyde for 15 min, rinsed in tap water and air-dried. Larvae were reared on 

cotton leaves to adapt them to the plant food until used in the experiments, except for 

Experiment 3, for which the insects were reared on artificial bean diet. The insects used in 

Experiment 4 were obtained from China Cotton Research Institute (CCRI), Anyang, 

China. To prevent cannibalism from first instar larvae until pupation, larvae were reared 

individually in glass tubes. Insects were reared on cotton leaves in a controlled 

environment (27°C, 70% relative humidity (RH) and a 14:10 light-dark (LD) regime). 

 

Experiment 1: Survival time and virus yield upon infection with HaSNPV-wt, 

HaSNPV-LM2 or a mixture of HaSNPV-wt and HaSNPV-LM2 

The first experiment addressed the preliminary questions on time to death and 

virus yield in L4 larvae infected with the virus recombinant HaSNPV-LM2, or a mixture 

of this variant and the wild-type virus. Newly molted fourth instar larvae were starved for 

16 h at 25ºC, and afterwards were inoculated with HaSNPV-wt, HaSNPV-LM2 or a 50:50 

mixture of HaSNPV-wt and HaSNPV-LM2, using the droplet feeding method (Hughes & 

Wood, 1981). Larvae were challenged with a previously determined LD90 dose for this 

instar, 42,000 OBs/larva (Sun et al., 2004). Further, larvae were reared individually in 

plastic cups with artificial diet and checked for mortality at 8 h intervals.  

Virus yield was measured by homogenizing individual cadavers in 1 ml of sterile 

water. The macerate was filtered through a plastic filter with a fine metal net (mesh size 

120 to 200 µm, pore diameter 70 nm) and centrifuged at 6000 g for 5 min. Supernatant 

was removed and 500 µl of sterile water was added to disperse the OBs. The 
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concentration of the OBs/ml was determined with an improved Neubauer counting 

chamber using phase contrast microscopy. 

 

Behavioural observations 

Three experiments were conducted to determine the effects on larval behaviour of 

infection with wild-type HaSNPV, a recombinant virus, or mixtures between a 

recombinant and the wild-type virus. Two experiments (Experiments 2 and 3) were 

conducted in a glasshouse in Wageningen and one experiment was conducted in the field 

in China (Experiment 4). In all three experiments early L4 larvae were inoculated and 

released on experimental plants, after which their position was recorded three times per 

day until the 5
th

 molt or virus-induced death. 

Distance travelled by each larva was measured by marking its position with a small 

sticker placed either on the plant (leaf or steam) or on the soil at each observation time 

point. Larvae were observed and positions marked daily at 8:00, 14:00 and 20:00 h, until 

infected insects died. The distance travelled between two time points was measured using 

a ruler (in cm) and total distance travelled calculated as the sum of all observations for 

each larva.  
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Figure 1. Diagram of a cotton plant, showing the coding system for recording the position of the larvae 

level 0 (ground); level 1 (branch 1 and 2); level 2 (branch 3 and 4); level 3 (branch 5 and 6) level 4 

(branch 7 and 8) level 5 (branch 9 and 10) etc.  
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The position of each larva on the plant was also recorded. Data recording was 

based on the separation of plant branches at different levels (Fig. 1). All leaves belonging 

to the first and second branch of the cotton plant were classified as level 1 and so on, 

moving up the plant. Insects found on the ground were recorded as level 0 (see Fig. 1 for 

cotton plant architecture). Larvae were initially placed on cotton plants at level 3 or 4 

(middle section of the plant). 

 

Experiment 2: Behaviour of H. armigera upon challenge with wild-type HaSNPV, 

HaSNPV-LM2, or a virus genotype mixture on cotton plants in a glasshouse 

Cotton plants (var. Zhongmiansuo #35) were sown on 3 January 2004 and grown 

in a glasshouse (UNIFARM, Wageningen University, The Netherlands) at a constant 

temperature of 28 ± 3°C, L:D 14: 10 h photoperiod and a relative humidity of 60-70%.  

Fourth instar H. armigera larvae were infected individually by feeding them a 5 

mm diameter cotton–leaf disc, coated with 200,000 OBs (5 × LD99 for this instar of H. 

armigera) (Sun et al., 2004). Larvae were assigned to one of four treatments: (1) 

uninfected (control), (2) HaSNPV-wt, (3) HaSNPV-LM2 and (4) a 1:1 mixture 

(HaSNPV-mix) of HaSNPV-wt and HaSNPV-LM2 (each 100,000 OBs/disk). Larvae 

were kept individually for 24 h in 24-well plates at 27°C until release. Larvae that had 

completely consumed the leaf discs were released on the middle section of the plant on 23 

April 2004, when the plants were 16 weeks old and in the boll formation stage. One larva 

was released on each plant and the plants were enclosed individually in nylon mesh nets 

to prevent larvae from escaping and avoid cross contamination of viruses. Each treatment 

was replicated 10 times. 

 

Experiment 3: Behaviour of H. armigera on cotton plants in a glasshouse upon 

challenge with wild-type HaSNPV, HaSNPV-LM2, HaSNPV-4A or with mixtures of 

wild-type and recombinant 

Cotton plants (var. Zhongmiansuo #35) were sown on 13 August 2007 and grown 

in a glasshouse (UNIFARM, Wageningen University, The Netherlands) at a constant 

temperature of 28 ± 3°C, L:D 14:10 photoperiod and a relative humidity of 60-70%. At 

the time of the experiment the plants were 8 weeks old (Fig. 2 A and B).  

In this experiment, larvae were assigned to one of six treatments: (1) uninfected 

(control), (2) HaSNPV-wt; (3) HaSNPV-LM2, (4) HaSNPV-4A, (5) a 1:1 mixture of 

HaSNPV-wt and HaSNPV-LM2, and (6) a 1:1 mixture of HaSNPV-wt and HaSNPV-4A.  

The fourth instars used in the second glasshouse experiment were infected using 

the droplet feeding method. Newly molted fourth instar H. armigera were individually 

separated to prevent cannibalism and were starved for about 16 h at 24 ºC. The virus 

solution consisted of an aqueous suspension of 10% (w/v) sucrose, 0.001% (w/v) 

Fluorella blue (food dye) and a dose of approximately 42 000 OBs/larvae, based on 
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ingested volume (Sun et al. 2004). Larvae showing blue coloration in the foregut after 10 

min were transferred to 24-well plates containing cubes of artificial diet and kept at a 

constant temperature of 27°C. After one day the larvae were released on the cotton plants, 

on 13 October 2007. The plants were approximately 50-60 cm high, in the vegetative 

stage, and they had 10-15 full grown leaves (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. For Experiment 3 cotton plants in a glasshouse were netted individually to prevent 

larvae from escaping. (A) Each plant represents one replicate. (B) Cotton plant in the 

flowering stage.  

 

 

 

Experiment 4: Behaviour of H. armigera on cotton plants in field cages upon 

challenge with wild-type HaSNPV, HaSNPV-LM2, or a virus genotype mixture 

A field experiment was carried out at the China Cotton Research Institute (CCRI) 

Anyang, Henan Province. Cotton plants (var. Zhongmiansuo #35) were sown on 15 April 

2005. Groups of six plants were grown in 2 × 2 × 2 m field cages with sides of fine mesh 

nylon netting and a plastic sheet roof top (Fig. 3 A and B). The sides of the cages were 

buried 10 cm into the soil to prevent larvae from escaping.  

H. armigera used in the field experiment were obtained from the insect culture 

reared at CCRI (China Cotton Research Institute, Anyang, China). When plants were in 

the fruiting and flowering stage on 5 September 2005, one fourth instar larva was released 

on each plant in each cage. Larvae were assigned to one of four treatments: (1) uninfected 

(control); (2) HaSNPV-wt; (3) HaSNPV-LM2; and (4) a 1:1 mixture of HaSNPV-wt and 

HaSNPV-LM2.  

 

A B 
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The method of infection and the viral dose were the same as in Experiment 2. 

There were 4 cages, each with six plants, and each plant per cage represented a separate 

replicate. The position of the larvae on each plant in each cage was recorded three times 

daily, at 7:00, 13:00 and 19:00 h, for seven days post release. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. (A) Field cages used in Experiment 4 in Anyang, China. The experiment consisted 

of four cages and each cage contained one of the virus treatments. (B) Per cage there were six 

cotton plants, each infested with a single larva. Each plant served as a replicate.  

 

 

 

Statistical analysis 

The survival time (ST50) values of fourth instar larvae were determined by survival 

analysis, using the Kaplan-Meier Product Limit Estimator in JMP SAS (2008). Virus 

yield was analysed, using virus treatment as a fixed factor, by ANOVA in the General 

Linear Model Procedure in SPSS (SPSS Inc., 2003). Daily distances (cm) travelled by 

larvae were square root transformed to normalize residuals. Differences in distance 

moved among treatments were analysed by univariate repeated–measures analysis of 

variance (ANOVA) using “virus type” as a “between-subject factor” and “time” (day) as a 

“within-subject (repeated) factor”. Tests of sphericity and normality were performed to 

verify the assumptions of ANOVA (SPSS Inc., 2003). The daily position of larvae was 

compared among treatments using Kruskal-Wallis parameter free ANOVA and Mann-

Whitney U-test for pairwise comparisons (SPSS Inc., 2003). In experiments each cotton 

plant was treated as a replicate. 
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RESULTS 

 

Experiment 1: Survival time and virus yield upon infection with HaSNPV-wt, 

HaSNPV-LM2 or a mixture of HaSNPV-wt and HaSNPV-LM2 

Survival time (ST50) of fourth instar H. armigera differed significantly among 

virus treatments, according to the log rank test in the survival analysis (χ 2 = 74.95, df = 

3, P < 0.0001) and all three pairwise comparisons between treatments were significantly 

different (Kaplan-Meier Product Limit Estimator, Table 1). The ST50 was 157 h in L4s 

infected with HaSNPV-wt; 133 h in larvae infected with the HaSNPV-LM2 and 109 h in 

larvae challenged with the 1:1 mixture of wild-type HaSNPV and HaSNPV-LM2, which 

was significantly shorter than wild-type-infected ones (Fig. 4A). 

There were significant differences in virus yield among treatments ANOVA (F = 

6.43, df = 2, 37, P = 0.004). The larvae infected with the recombinant virus produced 

significantly lower yields than the wild-type infected insects (t-test: t = 3.35, df = 28, P = 

0.002). However, there were no significant differences in virus yield between the wild-

type and the mixed infected larvae (t = 1.87, df = 23, P = 0.073) or between recombinant 

and mixed infected larvae (t = 1.61, df = 23, P = 0.12) (Fig. 4B).  

 

 
Table 1. Survival time of fourth instar Helicoverpa armigera following per os inoculation with different 

preparations of HaSNPV, including HaSNPV-wt, recombinant HaSNPV-LM2 (-egt) and genotype 

mixtures of wild type and the recombinant, in comparison with a wild type isolate. 

 

 

 

 

 

 

 

 

  

Survival time 

(ST50) 

 

95% Fiducial limits 

 

CI low                  CI high 

HaSNPV-wt 157 a 157 171 

HaSNPV-mix 109 b 109 123 

HaSNPV-LM2 133 c 133 140 
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Figure 4. (A) Median survival time of fourth instar H. armigera infected with wild type HaSNPV, 

recombinant HaSNPV-LM2 (-egt) and a mixture of the two viruses (mix 50:50). All three viruses 

are shown with standard error bars. (B) Log yield per larva for the different virus treatments with a 

different letter over the bar indicates a significant difference at P < 0.05 level.  
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3.2 Experiment 2: Behaviour of H. armigera on cotton plants in a glasshouse upon 

challenge with wild-type HaSNPV, HaSNPV-LM2 or a virus genotype mixture 

Total distance travelled by the control insects (mean ± SE) was 416 ± 43 cm, in 

contrast to the movement of the wild-type (308 ± 47 cm), HaSNPV-LM2 (185 ± 55 cm) 

and mixed infected (304 ± 65 cm) larvae (Fig. 5A). There was a significant difference in 

distance travelled among virus treatments (F = 5.0, df = 3, 27, P = 0.007; Figs. 7, 8). 

Larvae infected with the recombinant virus HaSNPV-LM2 moved significantly less than 

control larvae (t = 2.15, df = 15, P = 0.048), or wild-type-infected larvae (t = 2.91, df = 

15, P = 0.011). There was also a significant time effect on daily distance travelled (RM 

ANOVA, time, F = 5.0; df = 3, 81, P = 0.003), but the interaction between time and 

treatment was not significant (F = 0.9, df = 9, 81, P = 0.476) (Table 2). Fig. 7 provides a 

comparison of movement within treatment for each day following inoculation, where Fig. 

8 represents comparison of movement among treatments for each day. On day 2 after 

infection, HaSNPV-wt infected larvae moved more than larvae infected with HaSNPV-

LM2 (t = 3.71, df = 15, P < 0.05) (Fig. 8).  

 
Table 2. Repeated-measures ANOVA of the effects of three HaSNPV variants: HaSNPV-wt, 

HaSNPV-LM2 and HaSNPV-mix on distance traveled of 4th instar H. armigera in three 

experiments.  
 

Source of variation 

 

 

MS 

 

F 

 

df 

 

P 

Experiment 2 (glasshouse)     

Within subject effects      

time 74.1 5.0 3 0.003 

time × treatment 14.2 0.9 9 0.476 

Between subject effects      

treatment 63.6 5.0 3 0.007 

Experiment 3 (glasshouse)     

Within subject effects        

time  20.0 4.05 3 0.017 

time × treatment 4.8 0.98 15 0.499 

Between subject effects     

treatment 12 3.52 5 0.048 

Experiment 4 (field)      

Within subject effects     

time 82.6 7.57 4 0.001 

time × treatment 14.9 1.3 12 0.176 

Between subject effects     

treatment 44.3 1.3 3 0.27 
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There were no significant differences in movement among virus treatments on any 

of the other days. There was also no significant difference between the positions of the 

larvae on the plant among virus treatments (Fig. 6A, Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5. Total distance travelled (cm) by larvae by virus treatments in two glasshouse experiments (A: 

Exp. 2; B: Exp. 3) and one field experiment (C: Exp. 4). The number of larvae (N) in each treatment is 

indicated over the bars. Bars represent the total movement distance in four days ± standard error. 

Movement distances per day were square root transformed before statistical analysis with repeated 

measures ANOVA, the results of which are indicated with lettering above the bars. Significantly different 

means are indicated by a different letter over the bar (P < 0.05). 

 

 

 

0

50

100

150

200

250

300

350

400

450

500

control wt LM2 wt:LM2

to
ta

l 
d
is

ta
n
c
e
 m

o
v
e
d
 (

c
m

)
A N=10

   a

N=10

   a

N=7

   b

  N=8

   a,b

 

0

50

100

150

200

250

300

350

400

450

500

control w t LM2 w t:LM2

to
ta

l d
is

ta
n
c
e
 m

o
v
e
d
 (

c
m

)

C
N=11

   a

N=11

   b N=7

   b

  N=6

   a,b

 

0

50

100

150

200

250

300

350

400

450

500

Control Wt LM2 4A Wt:LM2 Wt:4A

to
ta

l 
d

is
ta

n
c
e

 m
o

v
e

d
 (

c
m

)

N =3

   a

N =2

   c

N =3

   a,c
N =2

   a,b

N =2

   a,c

N =3

   b,c

B

 



Chapter 3 

60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Daily position of Helicoverpa armigera larvae on cotton plants in different virus 

treatments in 3 experiments: (A) Experiment 2 and (B) Experiment 3 (two glasshouse 

experiments) and (C) Experiment 4 (the field experiment). Error bars indicate standard error of the 

mean. Asterisk =control; open circle = HaSNPV-wt; black circle = HaSNPV-LM2; grey circle = 

HaSNPV-wt: HaSNPV-LM2; triangles = HaSNPV-4A and squares = HaSNPV-wt: HaSNPV-4A 
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Figure 7. Mean distance travelled (cm) per day by fourth instar Helicoverpa armigera on cotton 

plants in a glasshouse (Exp. 2). There were four virus treatments: (A) control; (B) HaSNPV-wt; 

(C) HaSNPV-LM2 (-egt) and (D) 1:1 mixture of HaSNPV-wt and HaSNPV-LM2. Error bars 

indicate standard error of the mean.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Mean distance travelled (cm) per day by fourth instar Helicoverpa armigera on cotton 

plants in a glasshouse (Exp. 2). There were four virus treatments: control (white); HaSNPV-wt 

(dotted); HaSNPV-LM2 (-egt) (black) and 1:1 mixture of HaSNPV-wt and HaSNPV-LM2 (grey). 

Error bars indicate standard errors of the mean. Different letters over the bar on the same day 

indicate a significant difference between treatments at P < 0.05.  
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Experiment 3: Behaviour of H. armigera on cotton plants in a glasshouse upon 

challenge with wild-type HaSNPV, HaSNPV-LM2, HaSNPV-4A or with mixtures of 

wild-type and recombinant virus 

Total distance moved by wild-type HaSNPV-infected larvae on cotton plants was 

significantly greater than that of control larvae (189 ± 20.3 cm) and that of larvae 

challenged with HaSNPV-4A (248.5 ± 65.5 cm) (Fig. 5B). Larvae infected with the 

mixture of HaSNPV-wt and HaSNPV-4A (292 ± 44.7 cm) travelled more compared with 

the control larvae (189 ± 20.3 cm) (Fig. 5B). There were no other pairwise significant 

differences. 

There was a significant effect of time on daily distance travelled, (RM ANOVA, 

time, F = 4.05, df = 3, 27, P = 0.017) while the interaction between the time and treatment 

was not significant (F = 0.98, df = 15, 27, P = 0.499) (Table 2; Fig. 9). There was a 

significant effect of virus treatment on distance moved (F = 3.52, df = 5, 9, P = 0.048). 

Differences between treatments were first seen on the second day post infection 

when larvae infected with HaSNPV-wt moved more than those infected with HaSNPV-

LM2 (t = 2.47; df = 13; P = 0.028). At the third day post infection, larvae infected with 

HaSNPV-LM2 moved more than insects with the mixture of HaSNPV-wt and HaSNPV-

4A (t = 2.81; df = 8; P = 0.023) (Fig. 10). No further pairwise comparisons within days 

were significant. 

As expected many larvae infected with the recombinant virus HaSNPV-4A (egt-

deletion, AaIT-positive) dropped from the plants around 5 days post infection. A few 

cadavers were found on the lower parts of the plant (level 1.5), whereas cadavers infected 

with HaSNPV-wt were found much higher up the plant (level 6.3).  
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Figure 9. Mean distance travelled (cm) per day by fourth instar Helicoverpa armigera on cotton 

plants in a glasshouse (Exp.3). There were six virus treatments: (A) control; (B) HaSNPV-wt; (C) 

HaSNPV-LM2 (-egt); (D) HaSNPV-4A (-egt; +AaIT); (E) 1:1 mixture of HaSNPV-wt and 

HaSNPV- LM2 (F) and a 1:1 mixture of HaSNPV-wt and HaSNPV-4A. Error bars indicate 

standard errors of the mean.  
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Table 3. Final position of dead larvae on cotton plants 

 

 

 

 

 

There was a significant difference in the position of cadavers infected with 

HaSNPV-wt compared with those infected with HaSNPV- 4A (U = 2.5, z = −1.94, P = 

0.052) and cadavers infected with a mixture of HaSNPV-wt and HaSNPV-LM2 (U = 1.0, 

z = − 1.95, P = 0.052). Dead larvae infected with recombinant HaSNPV-4A containing 

the AaIT insect toxin gene were found at lower positions on the plant compared with 

HaSNPV-LM2 (U = 2.5, z = −2.2, P < 0.05). Dead larvae inoculated with a mixture of 

HaSNPV-wt and HaSNPV-LM2 were found on positions significantly lower than the 

singly infected HaSNPV-LM2 (U = 1.0, z = −2.1, P < 0.05) (Table 3). 

 During the course of the experiment HaSNPV-4A infected larvae were found 

mostly on the lower part of the plant or on the soil (Fig. 6B). 
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Figure 10. Mean distance travelled (cm) per day by fourth instar Helicoverpa armigera on cotton 

plants in a glasshouse (Exp. 3). There were six virus treatments: control (white); HaSNPV-wt 

(dotted); HaSNPV-LM2 (-egt) (black); HaSNPV-4A (-egt; +AaIT) (diagonally cross-hatched); 1:1 

mixture from HaSNPV-wt and HaSNPV-LM2 (grey) and a 1:1 mixture from HaSNPV-wt and 

HaSNPV-4A (vertically striped). Error bars indicate standard errors of the mean. Different letters 

over the bars within the same day indicate significant differences between treatments at P < 0.05. 

 

 

Experiment 4: Behaviour of H. armigera on cotton plants in field cages upon 

challenge with wild-type HaSNPV, HaSNPV-LM2 or a virus genotype mixture  

The total distance moved by the control larvae (384 ± 62 cm) was greater than the 

distance covered by larvae infected with HaSNPV-wt (146 ± 30 cm) or HaSNPV-LM2 

(95 ± 28 cm). The insects with mixed infections of wild-type and HaSNPV-LM2 covered 

a total distance of 173 ± 58 cm (Fig. 5C). Fig. 11 shows comparisons of mean distance 

travelled of larvae within treatments, and Fig. 12 of larval movement among all four 

treatments in the experiment.  

There was a significant difference between times (F = 7.57, df = 4, 104, P = 0.001). 

There was no significant interaction between time and the treatment (F = 1.3, df = 12, 

104, P = 0.176) and there were not significant differences among virus treatments in 

distance traveled by larvae (F = 1.3, df = 3, 26, P = 0.27; Table 2). There were significant 

differences in the position of the larvae on the plant (Fig. 6C, Table 3).  
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Figure 11. Mean distance travelled (cm) per day by fourth instar Helicoverpa armigera on cotton 

plants in the field (Exp. 4). There were six virus treatments: (A) control; (B) HaSNPV-wt; (C) 

HaSNPV-LM2 (-egt); (D) 1:1 mixture of HaSNPV-wt and HaSNPV-LM2 (-egt; +AaIT). Error 

bars indicate standard error of the mean.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Figure 12. Mean distance in (cm) traveled by fourth instar Helicoverpa armigera on cotton plants 

in the field. Observations were done each 8 h in a period of 5 days. (Exp. 4). There were four virus 

treatments, as in Experiment 2: control (white); HaSNPV-wt (dotted); HaSNPV-LM2 (-egt) 

(black), and a 50:50 mixture of HaSNPV-wt and HaSNPV-LM2 (grey). Error bars indicate 

standard error of the mean. 
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DISCUSSION 

 

We found ambiguous effects of virus infection on the behaviour of 4
th

 instars of H. 

armigera. In one glasshouse study virus infected larvae moved more than healthy larvae, 

indicating a restlessness induced by virosis. However, in the other glasshouse experiment 

and the field study, the movement of infected larvae was less than that of healthy larvae, 

which was not surprising since once infected larvae are symptomatic they are often 

subsequently less mobile (Vasconcelos et al., 2006). Behaviour of larvae infected with the 

egt-negative variant HaSNPV-LM2 was mostly indistinguishable from that of larvae 

infected with the wild-type HaSNPV, whereas the toxin-positive recombinant HaSNPV-

4A caused significantly reduced movement and a change in location of the cadavers, 

compared with larvae infected with the wild-type virus. The effect of a virus mixture of 

wild-type and HaSNPV-4A was intermediate between that of the pure infections, while 

larvae infected with the mixture of the HaSNPV-wt and HaSNPV-LM2 assumed a lower 

position on plants at death compared with those from single infections of these two 

viruses.  

Differences in results from glasshouse and field experiments may be due to many 

factors, including differences in climatic conditions, phenological stage of the plant or 

influences of cages and nets. Temperatures in the field were extremely high (40ºC) during 

the day and cold (15ºC) during the night, while in the glasshouse temperature fluctuations 

between night and day were much more moderate.  

The influence of mixed pathogen infections on host behaviour has received little 

attention. Consistent with our findings for HaSNPV-4A, Cory et al. (1994), Hoover et al. 

(1995) and McCutchen & Hammock (1995), reported that Trichoplusia ni and H. 

virescens larvae, respectively, infected with AcMNPV-AaIT, fell off the plants. In 

agreement with the data for M. brassicae, infected larvae with HaSNPV-G4 moved 

upwards (Vasconcelos et al., 1996) (Fig.6A, B, C).  

Most insects infected singly with HaSNPV-4A (-egt; +AaIT) fell off the plants. 

This was expected as a result of expression of the AaIT gene, which causes tetanic 

paralysis and subsequently death. This knockdown induced behaviour from the 

recombinant virus reduces horizontal transmission (Hails et al., 2002; Zhou et al., 2005), 

but on the other hand it also might enhance deposition of virus in the soil and thus 

enhance virus persistence in agro-ecosystems. This might be beneficial in terms of longer 

term control by a biological control agent, but may be considered a negative attribute with 

respect to biosafety of using baculovirus recombinants.  

The mobility of virus-infected larvae in the field and the position on host plants 

where they die, can affect the spread of the virus on the plant. Such behavioural effects 

could be altered when recombinant baculoviruses are introduced. Some preliminary 

conclusions can be drawn based on the movement of virus-infected larvae and where 
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larvae died on the plant. The HaSNPV-4A (-egt, AaIT) larvae showed the characteristic 

symptoms of paralysis before death and exhibited a different behaviour from HaSNPV-wt 

infected larvae, which may influence survival of the recombinant virus for the next 

generation of larvae (Table 3). By inducing larvae to fall off the plant, the 4A 

recombinant might result in reduced transmission of the virus to the next generation since 

survival time of these larvae will also be shortened, compared with larvae infected with 

wild-type virus. Also reduced transmission is expected as a result of reduced yields of 

OBs from larvae infected with 4A (Sun et al., 2005). This may be a useful property in the 

case of a multivoltine pest such as H. armigera. However, final position of insects 

infected with a mixture of HaSNPV-wt + HaSNPV-4A tends to be not different from the 

single virus infections.  

In the introduction, we note that the effects of baculoviruses on the behaviour of 

insect hosts are system specific. Our experiments indicate that even within one system, 

cotton – H. armigera – HaSNPV, effects on behaviour vary from one experiment to 

another. Under field conditions (Experiment 4), virus-infected larvae moved less than 

healthy insects. In one of the glasshouse experiments (Experiment 3), virus infected 

larvae moved more than healthy larvae, but in another glasshouse experiment 

(Experiment 2) the virus infected larvae moved less. Clearest effects on behaviour were 

obtained with a toxin expressing recombinant, HaSNPV-4A, which caused larvae to take 

a low position on the plant. All in all, the behavioral effects of virus infection in these 

trials were modest, and varying from one experiment to another, indicating that virus 

transmission is influenced by the interplay between virus genotype and environmental 

conditions.  

Transmission of HaSNPV might be impaired as the larvae are spatially separated 

from healthy larvae on the plant. Therefore, based on these findings, we predict that 

transmission of HaSNPV variants with an egt deletion is similar to that of the wild type, 

while that of variants with a toxin gene might be reduced. Based on the position of the 

diseased larvae on the plant, we predict that transmission of toxin variants might be 

enhanced when larvae are co-infected with the wild type virus, as these larvae were not so 

strongly separated from healthy larvae on the host plant. However, the transmission of 

such a toxin variant depends also on the competitive interaction between wild type and 

genetically modified virus within the host insect, and result in Chapter 5 and 6, and of 

Zwart et al. (in press) indicate that the competitive fitness of egt deletion variants within 

insect hosts is reduced. 

The overall ecological fitness of genetically modified baculoviruses depends on the 

interaction between within host and between host competitive processes, and remains 

difficult to predict. Models can help to assess these interactions (Bianchi et al., 2002; 

Bonsall et al., 2005; Sun et al., 2006). A critical parameter that may be needed in models 

for competitive fitness of baculoviruses genotypes at agro-ecosystem level is the 
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transmission of virus genotype from mixed infected hosts. Almost no information on this 

is available, and hence, modelling studies remain explorative rather than predictive tools 

for the moment. In models at agro-ecosystem level, the possibility of spatial separation 

between infected hosts and healthy hosts is a factor to take into account.  
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Chapter 4 
 
 

TRANSMISSION AND PERSISTENCE OF WILD-TYPE 

AND RECOMBINANT HaSNPV BACULOVIRUS BY LARVAE 

OF THE COTTON BOLLWORM, HELICOVERPA ARMIGERA, 
ON COTTON 

 
SUMMARY 

 

Horizontal transmission of insect viruses is a key factor in their cycling in agro-

ecosystems. Here we study the transmission of the baculovirus HaSNPV among larvae of 

the cotton bollworm in the cotton agro-ecosystem. Transmission of three HaSNPV 

genotypes was studied, from larvae infected with a single virus genotype as well as from 

larvae infected with two different genotypes. Genotypes included a wild-type virus, an egt 

deletion mutant with slightly enhanced speed of kill, and a neurotoxin-expressing 

genotype with a substantially increased speed of kill.  

In three field experiments, no significant differences in virus transmission between 

treatments were demonstrated; i.e. the wild type and egt deletion virus variants and a 

mixture of the two had similar rates of transmission. Transmission increased with density 

of infector insects and decreased with time lapsed since the inoculation of the infector 

larvae. Side observations suggest that virus persistence of these HaSNPVs in soil is 

affected by solar radiation. Transmission of the neurotoxin expressing virus was lower 

than that of the other two genotypes in the glasshouse. 

The studied genotypes of HaSNPV have significant differences in time to kill and 

virus yield. We found no significant consequences of these differences for rates of virus 

transmission at the crop level when HaSNPV-LM2 (-egt) was used. However, HaSNPV-

4A (-egt; AaIT) had significantly reduced transmission. Based on these findings, we 

hypothesize that differences between virus genotypes (wild type and HaSNPV-LM2) 

expressed at the “within host” level may be more important determinants of the outcome 

of competition between viruses in the cotton agro-ecosystem than differences that are 

expressed at crop level. 

 

A modified version of this chapter was submitted for publication: 

Liljana Georgievska, Rozemarijn S.M. de Vries, Peijie Gao, Xiulian Sun, Jenny S. Cory, 

Just M. Vlak & Wopke van der Werf (2009). Transmission of wild-type and recombinant 

HaSNPV baculovirus by larvae of the cotton bollworm, Helicoverpa armigera, on cotton. 
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INTRODUCTION  

Pathogens play an important role in the population dynamics of herbivorous insects 

and they sometimes cause a dramatic reduction in pest populations (Doane, 1970; Begon 

et al. 1996). Baculoviruses have been used worldwide against many insect pests, mainly 

Lepidoptera (Moscardi, 1999). Upon death of an insect host infected with a baculovirus, 

the integument disintegrates, the occlusion bodies (OBs) are released and when they are 

consumed by a susceptible host they can initiate a new virus infection (Miller et al., 

1983). This horizontal, i.e. “within generation” transmission of baculoviruses is 

complemented by several modes of vertical transmission, i.e. transmission between 

generations. Here, the persistence of baculoviruses in the soil and on the plant is quite 

important, in addition to the transmission of virus infection from parent to offspring 

(Fuxa, 2004). 

Horizontal transmission of baculoviruses depends primarily on the contact rate 

between susceptible hosts and infectious pathogens and on the susceptibility of the host 

(Reeson et al., 2000; Hails et al., 2002). Infection with a baculovirus can alter the 

behaviour of the host, resulting in a modified contact rate (Vasconcelos et al., 1996). Host 

plant architecture further affects the contact rate between ‘infector’ (= infected larvae 

producing OBs) and ‘recipient’ (= uninfected) larvae. 

According to the literature, the relationship between baculovirus transmission and 

host density is not a matter of simple “mass action”, indicating that rate of disease 

transmission is not directly proportional to the product of healthy larvae and the virus 

density (D’Amico et al., 1996). More is known about transmission of single viruses than 

about transmission of mixtures of viruses with different biological traits. Transmission 

from mixtures may be affected by the behavioral effects of both viruses that are expressed 

in the same insect host and do not necessarily have to be additive or average of the effect 

of single viruses. Multiple infections of a host by different genotypes of the same 

microparasite are common in nature (Ben-Ami et al., 2008). 

Soil is reported to be a major reservoir for baculoviruses, as they are occluded in a 

protein matrix (OBs) to protect them against decay. The reservoir function of the soil 

facilitates the transmission of baculoviruses between hosts of the same or subsequent 

generations over space and time (Hostetter & Bell, 1985; Entwistle & Evans 1985; Fuxa, 

2004, Olofsson, 1988 a, b; Young & Yearian, 1979, ibid.1986). Survival of baculovirus in 

the soil has been demonstrated for different amounts of time (Mohamed et al., 1982; 

Kaupp, 1983), e.g. for the Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: 

Lymantriidae), in forest soil for 41 years in undisturbed soil (Thompson et al., 1981). OBs 

on plant foliage and on the soil are, however, rapidly inactivated by exposure to sunlight 

(Jaques, 1964, ibid. 1969; David et al., 1966, Roome & Daoust, 1976). Sun et al. (2004b) 

reported that a recombinant HaSNPV (-egt; AaIT) variant has a similar inactivation rate 
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on cotton tissue as the wild type virus. As inactivation of baculoviruses on foliage is very 

fast, within days, synchronization between ‘infectors’ and ‘recipients’ is potentially an 

important determinant of the transmission. Efficient virus transmission can be expected if 

‘recipients’ encounter baculovirus deposited by ‘infectors’ on the host plant before the 

virus is inactivated by solar radiation. However, Zhou et al., (2005) showed that 

baculovirus transmission was not affected significantly by the different time of the release 

of the recipient larvae on the cotton plant. 

The cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is 

an economically important pest in numerous agricultural and industrial crops including 

fiber crops and vegetables (Fitt, 1989; Zalucki et al., 1986). The H. armigera 

nucleopolyhedrovirus (HaSNPV) is one of the most common pathogens attacking field 

populations of H. armigera and is a potentially important bioinsecticide (Zhang, 1989).  

The questions that are addressed in this study are: (i) How is transmission affected 

by genetic traits of the virus that affect time to death and virus yield, and how is 

transmission affected when the ‘infector’ larvae undergo a mixed infection? (ii) How does 

the density of ‘infectors’ influence transmission? (iii) How is transmission affected by the 

time that has elapsed between inoculation of infector larvae and release of the test larvae?  

 

MATERIAL AND METHODS  

 

Insects 

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) insects used in the first 

field transmission experiments in 2005 were maintained at the China Cotton Research 

Institute (CCRI), Anyang, China. To prevent cannibalism, larvae were reared individually 

in glass tubes. Insects were reared on cotton leaves in a controlled environment (27°C, 

70% relative humidity (RH) and a 14:10 light-dark (LD) regime). The insects used in 

experiments 2 and 3 were obtained from Wuhan Kernel Bio-pesticide Co., Ltd., Hubei, 

China. H. armigera used in Experiment 4 (2007) were from a colony maintained at the 

Laboratory of Virology, Wageningen University, Wageningen, The Netherlands, and 

originating from the Department of Entomology, Public University of Navarra, Pamplona, 

Spain. The colony was reared continuously on artificial diet (Green et al., 1976) at 25ºC, 

70% RH, and a 16:8 h LD photoperiod. 

 

Viral inoculum 

Wild type HaSNPV (HaSNPV-wt) was initially isolated from diseased H. 

armigera collected in Hubei province in China. Genotype HaSNPV-G4 was isolated by in 

vivo cloning (Sun et al., 1998). HaSNPV-LM2 was generated after co-infection of 

HaSNPV-CXW2 DNA (-egt; +GFP) and plasmid pHaLM2 in HaAM1 cells (Chen et al., 

2000). HaSNPV-4A is a genetically modified variant (-egt, +AaIT) of HaSNPV-LM2 
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showing enhanced speed of action through the deletion of the egt gene and expression of 

an insect-selective scorpion toxin (AaIT) (Sun et al., 2004a). Viruses were propagated in 

fourth instar H. armigera larvae. OBs were isolated by grinding cadavers in a mortar. The 

resulting homogenate was filtrated through two layers of muslin, and the OBs in the 

eluate were separated from insect material using centrifugation at 11,000 g or 60 min on a 

30 - 60% continuous sucrose gradient. Concentration of OBs of the viral stock solutions 

was determined in three independent counts using an Improved Neubauer chamber 

(Hawsksley, Lancing, UK) and phase-contrast microscopy (× 400). Virus stocks were 

stored at 4°C until use.  

 

Overall experimental approach 

The laboratory-reared H. armigera larvae were inoculated individually with the 

various HaSNPV strains or with HaSNPV genotype mixtures, and were released as 

‘infectors’ on cotton plants in field cages (experiments 1-3) or single plant enclosures in 

the greenhouse (experiment 4) (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1. Schematic representation of Experiment 1. Second instar H. armigera were inoculated 

at time 0, and released on the plants, second instar H. armigera infector larvae (red) were 

released two days post infection. Six 3rd instar healthy larvae were released per plant at time 

point 1 (3 d.p.i.); time point 2 (5 d.p.i.) and time point 3 (7 d.p.i.) and recovered after one day.  

 

 

Subsequently, test larvae (‘recipients’) were exposed to the same plants, and the 

proportion of these recipients contracting virus infection was scored. Factors investigated 

were: (1) virus treatment (all experiments); (2) infector density (experiments 2 and 4); (3) 

temporal coincidence between infectors and test larvae (experiment 1). As a side 

observation, availability of virus inoculum in soil was quantified in experiment 3. 

Time point 1 Time point 2 Time point 3

Time (days) 

Time point 1 Time point 2 Time point 3

Time (days) 

Time point 1 Time point 2 Time point 3

Time (days) 
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Quantitative PCR was used to measure HaSNPV genotype ratios in a sample of virus-

killed test larvae in Experiment 4. Details are given below. 

 

Experiment 1: Anyang, China 2005  

Experiment 1 was conducted at CCRI, Anyang, in 2005. Treatments were: (1) 

control (uninfected ‘infectors’); (2) infectors inoculated with HaSNPV-wt; (3) infectors 

inoculated with HaSNPV-LM2 (-egt), (4) infectors inoculated with a 1:1 mixture of 

HaSNPV-wt and HaSNPV-LM2 (mix-in) and (5) mixture of infectors inoculated with 

either HaSNPV-wt or HaSNPV-LM2 (mix-pl). In treatment 5, equal numbers of larvae 

with either genotype were released on the same plant. The two different mixed infected 

treatments (4 and 5) were designed to measure at which level the competition takes place, 

at insect level (mix in) or at the crop level (mix pl). Cotton (var. Zhongmiansuo #35) was 

sown on 23 April 2005. To prevent larvae from escaping and exclude predators and rain, 

treatments were applied in 2 × 2 × 2 m metal framed cages with fine mesh nylon netting 

on the sides and plastic sheeting on top. The cages were buried up to 10 cm into the soil. 

Forty-five cages were used in the experiment: 5 treatments x 3 release times of test larvae 

x 3 repetitions. At the time of the experiment, the cotton plants had flowers and bolls. 

Second instar H. armigera larvae were used as infectors. They were inoculated in the 

laboratory with a dose of 10,000 OBs/larva, enough to reach 100% mortality. After two 

days, six HaSNPV-treated larvae were released onto each cotton plant and allowed to 

disperse and die. They were not recovered. At 3, 5 and 7 days post release of the infectors 

(i.e. 5, 7 and 9 days after the infector larvae had been inoculated) six third instar healthy 

H. armigera larvae were released onto each cotton plant. They are further referred to as 

‘recipient’ larvae. The recipient larvae were recovered after one day, placed individually 

in a well of a 24-well tissue culture plate with artificial diet and reared at 27°C. The 

larvae were monitored daily until death or pupation. 

 

Experiment 2: Ezhou, China 2006 

Experiment 2 was conducted in a cotton field near Ezhou, Hubei Province, China 

from June until August 2006. Ezhou lies close to the Yangtze River, 750 km south of 

Anyang, and has a much hotter climate than Anyang. The physical setup was the same as 

in Experiment 1. (2005). There were five treatments: (1) control (uninfected infectors); (2) 

infectors inoculated with HaSNPV-wt; (3) infectors inoculated with HaSNPV-LM2; (4) 

infectors inoculated with a 1:1 mixture of HaSNPV-wt and HaSNPV-LM2 (mix in) and (5) 

mixture of infectors inoculated with either HaSNPV-wt or HaSNPV-LM2 (mix-pl). Cotton was 

sown on 15 April in beds and transplanted in the field on 25 May 2006, when the plants 

were in the 4-leaf stage. At the time of the experiment, the cotton plants were flowering. 

Second instar H. armigera larvae were inoculated on 8 July, with a dose 10,000 OBs per 

larva, which is 5 times the LD99 for this instar (Sun et al., 2004a). The virus solution was 
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applied onto 15 mm cotton leaf discs placed on a 1% agar support. Insects were kept on 

the leaf disc until they had finished it and taken up all the virus suspension. On 10 July the 

infected larvae (infectors) were released on the plants at one of two different densities: 

two or six infected larvae per plant. On 15 July four third instar healthy larvae were 

released per plant as recipient larvae, resulting in 24 larvae per cage. Recipient larvae 

were recovered after 2 days on 17 July, and reared individually until pupation or death in 

24-well tissue culture plates containing artificial diet.  

 

Experiment 3: Ezhou China, 2006 

Experiment 3 was conducted in the same cotton field as Experiment 2, but a 

different section of the field was used. Experiment 3 started on 20 July and lasted until 2 

August. 2006. The same virus treatments were applied as in Experiment 2, but only the 

higher level of infectors was used (six per plant), and there were now 10 repetitions for 

each treatment. At the time of the experiment, the cotton plants had bolls. Second instar 

larvae were inoculated on 20 July with a dose of 10,000 OBs per larva, using the leaf disk 

method as in Experiment 2 and released on the plant on 24 July, 4 days after inoculation. 

On 29 July, twenty third instar healthy larvae were released per plant as recipients. They 

were recovered after 4 days, on 2 August and reared individually on artificial diet until 

death or pupation.  

 

Experiment 4: Wageningen (glasshouse), 2007 

Experiment 4 was conducted on cotton plants in the glasshouse at Wageningen 

University, The Netherlands in October 2007. At the time of the experiment the cotton 

plants, sown on 14 August 2007, were two months old and in the vegetative stage. There 

were two factors: virus treatment and density of infectors. The experiment was laid out as 

a randomized block experiment, with location in the glasshouse as blocking factor. There 

were five blocks, and each plant constitutes one experimental unit. Virus treatments were: 

(1) control (uninfected infectors); (2) infectors inoculated with HaSNPV-wt; (3) infectors 

inoculated with HaSNPV-LM2 (-egt), (4) infectors inoculated with HaSNPV-4A (-egt, 

+AaIT), (5) infectors inoculated with a 1:1 mixture of HaSNPV-wt and HaSNPV-LM2  

and (6) infectors inoculated with a 1:1 mixture of HaSNPV-wt and HaSNPV-4A. Two 

densities of infectors were used: one or ten per plant. On 10 October 2007, fourth instar 

larvae were inoculated with 200,000 OBs/larva, using droplet feeding. This dose is 

approximately a 5 × LD99 for four-instar larvae of H. armigera (Sun et al., 2004a). Four 

days later, on 14 October 2007, these larvae were released onto cotton plants in the 

glasshouse. The cotton plants were enclosed individually in nylon mesh nets to prevent 

larvae from escaping and to avoid cross contamination of viruses. Seven days later, on 21 

October 2007, ten third instar healthy larvae were released onto each of the 60 plants. 

These recipient larvae were recovered at 48 h after their release and placed individually 
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into 24-well tissue culture plates containing artificial diet. They were reared at 26°C and 

70 % R.H. until death or pupation. Cadavers were kept individually in Eppendorf tubes at 

− 20°C until analysis. 

 

Measurements on virus persistence in soil 

Following the release of infector larvae in Experiment 2, it is expected that the soil 

may become contaminated. To measure the flow of inoculum from the plant onto the soil 

compartment, samples were taken from soil underneath inoculated cotton plants at 3, 5, 8, 

11, 15 and 22 days after release of the infectors. A bulk sample of soil (~ 200g) was 

collected from each cage, by scooping 5-6 table spoons of soil from the soil surface below 

the plants, to a depth of approximately 5 cm. Soil samples were returned to the laboratory 

and virus activity was measured by releasing 20 second instar H. armigera larvae onto 

100 g of soil in a Petri dish and left to acquire the virus directly from the soil, for a period 

of 24 h (Roome & Daoust 1976). Larvae were subsequently reared individually on diet in 

24-well tissue culture plates until death or pupation. Different spoons were used for 

different treatments to prevent cross contamination. After sampling the spoons were 

decontaminated with 0.5 % NaOH. During the first 5 sampling dates, the cotton plants 

were covered with cages, but 15 days after release of the infectors, the cages were moved 

for conducting experiment 3, and the sites were uncovered  

 

Isolation of DNA and qPCR (Quantitative Polymerase Chain Reaction) 

A sensitive qPCR analysis was used to quantify the ratio of each baculovirus 

present in the DNA isolated from the cadaver of each single larva of recipients for the mix 

infection treatment for glasshouse experiment. Quantitative PCR was performed using a 

RotorGene 2000 thermal cycler (Corbett Research, Germany). For each cycle, target 

nucleic acids were amplified and monitored by a fluorescence assay. Primers used for the 

amplification of viral genomic DNA for the qPCR assays were designed to target unique 

genes, i.e. the egt gene for HaSNPV-wt and the AaIT gene sequence that is specific for 

HaSNPV-LM2. The sequence of the specific egt primers were as follows: forward primer 

5’GAAGAACTCGGAATCGGACGCAAC-3’ and reverse primer 5’ 

CTGTGTAGCGACTCTTGTTGTTGACGG-3’. A 100 bp product was produced. This 

100 bp fragment derived from the egt gene was cloned into the pGMT-easy plasmid 

(Promega, Wisconsin) according to the manufacturers’ instructions (Sambrook et al., 

1989). Plasmid DNA was purified from the transformed bacteria using a midi prep kit 

(Geomed, Germany) and the DNA concentration was measured by UV 

spectrophotometry. The DNA was subjected to PCR and automated sequence analysis to 

confirm the expected egt sequence. This plasmid was used to set up standard curves in the 

qPCR, which were used to calculate the amount of viral DNA in OBs from cadavers using 

known copy numbers from the plasmid to make standard curves. A 100 bp coding 
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sequence for AaIT was targeted by using the forward primer 5’- 

ATGTCGTCAACAGTAATGTGGGTGTCAAC-3’ and reverse primer 5’-

TTGTTGCAGTAGTTAGACAGCAGG CATTC-3’.  The same procedure was used for 

the AaIT sequence, where a fragment was cloned into pGMT-easy, and checked by PCR 

and DNA sequencing. The DNA was quantified with a Nanodrop (Nanodrop 

Technologies) and the number of plasmid copies were calculated based on DNA 

concentration.  

OB DNA samples from individual larvae were analyzed in triplicate with both sets 

of primers, with sterile water as a negative control. For calibration, 10–fold dilutions of 

plasmids containing the cloned gene of interest were made to produce concentrations of 

10
8
, 10

7
, 10

6
, 10

5
, 10

4
 plasmid copies per µl. A ‘master mix’ for PCR was prepared with 

Qiagen Quantitect SYBR Green Master Mix (Qiagen, UK), to which the primers (10 µM 

each) and sterile water were added. Each PCR tube was filled with 20 µl of reaction 

mixture and a 5 µl aliquot of the isolated DNA sample at a 1:100 dilution. qPCR was 

performed with the following cycling program: 95°C for 15 min followed by 40 cycles of 

15 sec at 94°C, 30 sec at 58°C, and 30 sec at 72°C. The products were examined by 

melting-curve analysis, followed by an increase in temperature from 58 to 99°C and 

continuous fluorescence recording. The CP (crossing points) and slope values for each 

treatment were used for the calculation of genotype ratios. The CP is defined as point at 

which fluorescence rises appreciably above background. Results are expressed as the ratio 

of the two amplified genes. Quantification analysis of the PCR amplification and melting 

curves were performed using LightCycler software (Rotor-Gene 6.0, Corbett Research). 

After plotting and analyzing of the melting curve from the PCR product generated from 

egt and AaIT primers, the results confirmed that the signal was due to the amplification of 

the desired product and not a random one. The total amount of the plasmid copies number 

per µl was calculated by direct comparison with a standard curve. In each run along with 

the sample DNA was used plasmid with desired insert in 10-fold serial dilutions, to serve 

as standard curves. The calculation of ratios between copy numbers of wild-type and 

recombinant viruses either (HaSNPV-LM2 or HaSNPV-4A) was done following the 

procedure by Zwart et al. (2008). 

 

Statistical analysis 

Virus transmission in the four experiments (Exp. 1-4) was analyzed with Genstat 

procedure REML. The REML procedure in Genstat is similar to an ordinary regression; 

however, in REML (Restricted Maximum Likelihood), the model is fitted using 

maximum likelihood instead of least squares. Significance was evaluated by comparing 

calculated deviance ratios to F-distributions (P = 0.05) (GenStat(r) Release 11, 2008). In 

the case of a significant effect of virus species, density or time post infection, a t-test was 

used to compare means in SPSS (SPSS 13, Inc.). The bioassay data (mortality) from the 
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persistence measurements were square root transformed, and analyzed with repeated 

measures ANOVA. Least significant differences (LSD) were used for comparisons among 

means (SPSS 13, Inc.). The non-parametric Mann-Whitney test was used to compare 

genotype ratios obtained by q-PCR on OBs of mixed infected cadavers (recipient). This 

test was performed separately for the two different mixtures wild-type: HaSNPV-LM2 

and wild type: HaSNPV-4A in SPSS (SPSS 13, Inc.). 
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Figure 2. Percentage of third instar H. armigera larvae contracting virus when exposed for one 

day on cotton plants infested with virus-challenged H. armigera L2 larvae (Experiment 1). Virus 

treatments were (1) control; (2) HaSNPV-wt; (3) HaSNPV-LM2; (4) infectors were challenged 

with a 1:1 mixture of the two virus genotypes; (5) 50% of infectors with HaSNPV-wt and 50% of 

infectors with HaSNPV-LM2. Time between release of the infectors and the exposure of the 

recipients was varied: 3 days (white bars), 5 days (black bars), and 7 days (grey bars).  

 

 

 

Experiment 1: Anyang, China, 2005 

This experiment was meant to investigate whether there is a difference in the 

transmission rate between wild-type (HaSNPV-wt) and recombinant (HaSNPV-LM2) and 

a mixture of these viruses. Transmission from L2 infectors to L3 recipients diminished as 

the infectors were released onto the plants for a longer period of time (Fig. 2). Average 

mortality (across virus treatments) of recipients was 52.9 % with release at 3 d.p.i. (days 

post infection) of infectors on the plant), 41.4 % with release at 5 d.p.i., and 28.5 % with 

release at 7 d.p.i.. The differences between times were significant (Wald/df = 10.01; P < 
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0.001; Table 1), but differences between virus treatments were not significant (Fig. 2). 

(Wald/df = 1.2; P > 0.05; Table 1). 

 
 

Table 1. REML (Restricted Maximum Likelihood) analysis, of transmission of viruses 

in terms of larval mortality for three field experiments (different virus treatments, virus 

density or time post infection) and one glasshouse experiment (different virus treatment 

and density). 

 

 

Fixed term 

 

Wald 

statistic 

 

d.f. 

 

χ
2   

probability 

(a) Field experiment 1 –Anyang 2005    

Virus Treatment 3.65 3 0.327 

Time 20.03 2 < 0.001 

Treatment x time 

 

5.81 6 0.470 

(b) Field experiment 2– Ezhou 2006    

Virus Treatment 0.63 3 0.733 

Density 5.59 1 0.028 

Treatment x density 

 

3.16 3 0.230 

(c) Field experiment 3– Ezhou 2006    

Virus Treatment 

 

2.04 3 0.573 

(d) Glasshouse experiment– 2007    

Virus Treatment 4.15 4 0.413 

Density 9.70 1 0.005 

Treatment x density 3.60 4 0.482 

 

 

Experiment 2: Ezhou, China, 2006 

A second transmission experiments was carried out, this time in Ezhou. The setup 

was similar to experiment 1, but in a different environmental setting. Mortality of the L3 

recipients was 15.6 % at a density of 2 L2 infectors per plant and 29.8 % at a density of 6 

infectors per plant (Table 1) and this difference is significant (Wald/df = 5.59; P = 0.028. 

(Fig. 3). There were no significant differences between virus treatments (Wald/df = 0.31 P 

> 0.05; Table 1). 
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Figure 3. Percentages of third instar H. armigera larvae contracting virus when exposed for one 

day on cotton plants infested with virus-challenged H. armigera L2 larvae (Experiment 2). Virus 

treatments were (1) control; (2) HaSNPV-wt; (3) HaSNPV-LM2; (4) infectors were challenged 

with a 1:1 mixture of the two virus genotypes: (5). 50% of infectors with HaSNPV-wt and 50% of 

infectors with HaSNPV-LM2. White bars pertain to low density of infectors (2 / plant) and black 

bars to a high density of infectors (6 / plant). 

 

Experiment 3: Ezhou China, 2006 

In this experiment, also carried out at the Ezhou field site, the virus treatments of 

experiment 2 were repeated, now using only a high infector density of six larvae/plant, 

and a double number of replicates (10), in order to increase the power of the experiment 

to identify virus treatment effects. Mortality was very similar among treatments (mean ± SE):  

20.7 ± 2.8% for HaSNPV-wt, 18.7 ± 4.6% for HaSNPV-LM2, 18.4 ± 3.3% for the infectors 

carrying HaSNPV-wt or HaSNPV-LM2 as a virus mixture (mix-in), and 25.4 ± 8.4% for the 

mixture of infectors carrying either HaSNPV-wt or HaSNPV-LM2 (mix-pl). Mortality was of the 

same order of magnitude as in Experiment 2, and no significant differences between virus 

treatments were identified (Wald/df = 0.68; P > 0.05 (Table 1). 

 

Experiment 4: Wageningen (glasshouse), The Netherlands, 2007 

In this experiment, L4 infectors were used to enhance transmission, compared to 

Experiments 1-3 in which L2 larvae were used as infectors. A toxin expressing 

recombinant, HaSNPV-4A, was included to obtain potential for greater differences in 

response between virus treatments. As in Experiment 2, density of infectors significantly 

affected transmission (Wald/df = 9.7; P = 0.005; Table 1), with an average (over virus 

treatments) of 73% mortality with 10 infectors per plant, and 33% mortality with a single 

infector per plant) (Fig. 4). There was no overall significant virus treatment effect in 
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analysis (Wald/df = 1.04; P = 0.41; Table 1). The pairwise contrast analysis testing of the 

means in IRREML showed that HaSNPV-4A treatment gave a significantly lower 

transmission rate than the HaSNPV-wt and mixture of HaSNPV-wt + HaSNPV-4A virus 

treatments at the higher density of infectors, but there was no significant difference at the 

lover density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Percentage of fourth instar H. armigera larvae contracting virus when exposed for one 

day on cotton plants infested with virus-challenged H. armigera L4 larvae (Experiment 4). Virus 

treatments were (1) control; (2) HaSNPV-wt; (3) HaSNPV-LM2; (4) HaSNPV-4A; (5) infectors 

were challenged with a 1:1 mixture of the HaSNPV-wt and HaSNPV-LM2; (6) infectors were 

challenged with a 1:1 mixture of the HaSNPV-wt and HaSNPV-4A. White bars pertain to low 

density of infectors (1/plant) and black bars to a high density of infectors (10/plant). Standard 

error of the mean is indicated. 

 

Persistence  

This experiment was set up in order to determine the persistence of wild-type and 

recombinant HaSNPV in the soil. This was done alongside Experiment 2. Virus was 

recovered from the soil samples at multiple times after release of the infectors, including 

the first time, which was only 3 days after release of the infectors, equivalent to 5 days 

after the infectors had been inoculated with HaSNPV. The trend of virus availability in 

the soil at different times is erratic and does not show any clear pattern (Fig. 5). The 

strong decrease of virus availability on the last day of sampling, day 22 may be related to 

the removal of the cages on day 15, and exposure of the soil to intensive solar radiation. 

In repeated measures ANOVA no significant differences between the different HaSNPV 

variants were identified, while several time effects were significant (Table 2).The last 

sampling day (day 22) had a reduced mortality in all treatments in comparison with the 

rest of the days (Fig. 5). 
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Figure 5. Virus persistence in soil. Y-axis is mortality (%) of second instar H. armigera larvae 

when exposed to soil from plots from different virus treatments in Experiment 2. Virus 

treatments were (1) control (asterix); (2) HaSNPV-wt (open circles); (3) HaSNPV-LM2 (black 

circles); (4) infectors were challenged with a 1:1 mixture of the two virus genotypes (grey 

squares); (5) 50% of infectors with HaSNPV-wt and 50% of infectors with HaSNPV-LM2 (black 

triangles). (A) At a low density of infectors of 2 L2s / plant and (B) – At a high density of 

infectors of 6 L2s / plant.  

 

The results from the persistence experiment showed that persistence of the virus in 

the soil, when low density of infectors were used on the plants, was significantly affected 

by the day of sampling [F (5, 50) =  3.56, P = 0.008] (Table 2). In the case of the high 

density of infectors on the plants the Mauchy’s test indicated that the assumption of 

sphericity had been violated [χ
2 

(14) = 33.31, P < 0.05]. Therefore degrees of freedom 
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were corrected using Greenhouse-Geisser estimates of sphericity. The persistence of the 

virus in the soil, when high density of infectors were used on the plants, was significantly 

affected by the sampling day [F (3.4, 67.9) = 13.1, P = 0.0001]. Although there was a 

noticeable decrease of mortality over time, the soil-bioassay percentages of mortality did 

not differ significantly within virus treatment between low and high larval densities at all 

virus treatments.  

 
 

Table 2. Repeated measures ANOVA of  persistence in soil of three HaSNPV variants: 

HaSNPV-wt, HaSNPV-LM2 and HaSNPV-mix in a field experiment. 

 

 

Source 

 

df 

 

MS 

 

F 

 

 

P > F 

 

 

Measuring persistence when low density of infectors were used 

 

Within -subject effects     

Sampling date 5 29.25 3.56 0.008 

Treatment * date 20 8.57 1.04 0.432 

Error (date) 

 

50 8.21   

Between- subject effects     

Treatment 4 10.94 19.88 0.0001 

Error 10 0.55   

 

Measuring persistence when high density of infectors were used 

 

Within - subject effects     

Sampling date   3.39 158.31 13.10 0.0001 

Treatment * date 13.58 14.88 1.23 0.275 

Error (date) 

 

67.92 12.08   

Between- subject effects     

Treatment 4 9.81 7.30 0.001 

Error 20 1.34   

 

qPCR (Quantitative Polymerase Chain Reaction) 

QPCR was used to measure the relative success of the competing genotypes within 

the individual host in mixed infected recipients insects with wild-type: HaSNPV-LM2 and 

wild-type : HaSNPV-4A at a high density of infectors from the glasshouse transmission 

experiment (Experiment 4).  
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Figure 6. Co-infection of larvae with wild-type and HaSNPV-LM2 (-egt) (samples 1-6-black 

bars) and wild-type and HaSNPV-4A (samples 7-11-grey bars). Genotype ratios in mixtures 

obtained by qPCR for fourth instar H. armigera larvae obtained by infecting with a 1:1 ratio of 

polyhedra mixture of both viruses. Log-ratios greater than 4 in absolute value indicate that the 

larvae were singly infected. Error bars are the standard error of the log ratios. Values greater than 

1 indicate that the copy number of egt (wild-type) exceeds that of AaIT (signaling recombinant 

virus), HaSNPV-LM2 or HaSNPV-4A, respectively. 

 

The number of copies of recognized sequence for HaSNPV-wt (+ egt) was also 

compared to that of the AaIT sequence for the recombinant viruses HaSNPV-LM2 (where 

the AaIT gene is present, but not producing an active toxin) and HaSNPV-4A (where the 

AaIT gene is not only present but also active) (Fig. 6, samples 1-6). and HaSNPV-4A (where 

the AaIT gene is not only present but also active) (Fig. 6, samples 7-11). Six individual cadavers 

were tested from each treatment. Multiple infections were detected in the majority of insects, 

which had received an inoculum containing a mix of genotypes. The mean of the log 

transformed data shifted towards HaSNPV-wt although the starting ratio for infection was 

an equal mixture of genotypes (not shown), where first mixture set consists of (HaSNPV-

wt : HaSNPV-LM2) (Fig. 6, samples 1-6) (Mann- Whitney test Z = − 2.739, significance 

(2-tailed) = 0.006) and second sample set of HaSNPV-wt : HaSNPV-4A (Fig.6 samples 7-

11) (Mann- Whitney test Z = − 2.205; significance (2-tailed) = 0.032). The results from 

the analysis on the DNA isolated from single larvae initially infected with both viruses in 

equal ratio showed that the HaSNPV-wt was more prevalent after one passage compared 

with the recombinant viruses HaSNPV-LM2 and HaSNPV-4A. These findings indicate 

that the recombinant viruses have a lower fitness within the insect than the wild type 

virus.  
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DISCUSSION 

 

The horizontal transmission of wild-type and egt-negative genotypes of HaSNPV 

was not identifiably different at the crop level, but there was a significant change in 

transmission when HaSNPV-AaIT expressing the AaIT toxin gene was used. The results 

lead us to conclude that significant differences in virus transmission among treatments, 

depends from various factors, different biological properties of virus genotypes, 

synchronization of infectors and recipients, and density of host insects. This is an 

important conclusion because from a biological safety point of view, a reduced 

transmission of genetically modified, fast killing, viruses, would count as a bonus.  

Recombinant HaSNPV-LM2 is characterized by the absence of a functional egt 

gene (Chen et al., 2000). H. armigera larvae which are infected with this virus have a 

shorter survival time than larvae, which are infected with the wild type virus HaSNPV-wt 

(Sun et al., 2004a; O’Reilly & Miller., 1991). As a result, such insects cover a shorter 

distance on the host plant, and presumably they leave less of a virus trace on the plant as a 

result of lower virus yield. Furthermore, virus yield is decreased (Sun et al., 2005 and 

Chapter 3). An effect of these modifications on virus transmission was plausible, but did 

not materialize in our field experiments. Recombinant HaSNPV-4A is characterized by 

the absence of a functional egt gene, and the presence of a functional gene coding for an 

insect specific toxin (AaIT). Such a modification of baculoviruses in general results in a 

shortened survival of the larvae, in a reduced OB yield (Cory et al., 1994; Burden et al., 

2000; Harrison, & Bonning 2000; Hernandez-Crespo et al., 2001; Sun et al., 2005, 2009) 

and often results in them falling off the plant, thereby diminishing the scope for virus 

transmission in the short term. These modifications are expected to result in reduced 

transmission, compared to the wild-type baculovirus (Hoover et al., 1995; Hails et al., 

2002). Indeed, Zhou et al. (2005) observed reduced transmission of HaSNPV-4A 

compared to HaSNPV-wt on cotton in field-cages. Here, we confirm this effect from a 

glasshouse trial, but the difference in transmission between HaSNPV-wt and HaSNPV-4A 

was moderate, and the significance marginal. There was a minor difference in 

transmission among the individual viruses under the experimental conditions, as well as 

between HaSNPV-wt and the mixture of HaSNPV-wt and HaSNPV-4A.  

Hails et al. (2002) and Dwyer, (1991) pointed out that the number of cadavers that 

remains on the plant has a greater influence on the transmission than the yield of the virus 

itself. Statistical analysis from our data showed that there was a significant reduction of 

transmission of HaSNPV-4A and mixture of HaSNPV and HaSNPV-4 A, when low 

density of the infectors was released in the glasshouse experiment.  
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In this study we were in particular interested in horizontal transmission of 

baculoviruses from mixed infected larvae. To be able to determine the ‘winning’ genotype 

in our study, we developed genotype specific primers. Results obtained from the qPCR 

analysis of the cadavers mixed infected with the wild-type and recombinant virus 

(HaSNPV-LM2 or HaSNPV-4A) in the glasshouse experiment demonstrated that both 

viruses were present. Although most of the larvae were positive for both types of 

HaSNPV-wt and recombinant (HaSNPV-LM2 or HaSNPV-4A), there was a significant 

shift towards the wild-type HaSNPV genotype from the 1 : 1 ratio. It might be that wild 

type HaSNPV has a higher fitness compared with the genetically modified HaSNPVs. 

Outcompetition of one genotype by another in a mixed baculovirus inoculation has been 

demonstrated earlier (Clarke et al. 1994; Zwart et al., 2009). This competitive 

displacement will depend on the ability of the genotypes to be more efficient in their 

resource use, which will help them to outcompete the less efficient genotypes (Vizoso et 

al, 2005).  

Larvae dying from a baculovirus infection on the cotton plants are exposed and 

they may be washed off by rain or blown away by wind (Room & Daoust, 1976). The 

cotton plant has been recognized as a barrier for effective establishment and spread of 

baculoviruses in insect populations, because persistence of virus on the leaf surface is 

compromised (Streett et al., 1999). Our result showed that HaSNPV-wt and HaSNPV-

LM2 (lacking the egt gene) and the mixture of these two baculoviruses are equally 

persistent in the soil. However, decrease of the amount of virus present in the soil over 

time was indicated. The sharp decrease in the persistence of the viruses at the last 

sampling date at 22 days post release of the infectors on the plant might be as a result of 

intensive exposure of the cotton plants to sunlight, after removal of the cages (Fig. 6). 

Although this study focuses on the short term persistence of the HaSNPV viruses in the 

soil, it is important to expand the study over a longer period of time, particularly to test 

how much virus is able to overwinter, to test what are the chances of starting new 

epizootics during the next growing season. 

In terms of releasing of HaSNPV-LM2 (-egt) and HaSNPV-4A (-egt, +AaIT ) as a 

microbial insecticide in the ecosystem, our data suggest that when these recombinants 

have HaSNPV-wt as a co-inoculant the former may be outcompeted within hosts.  
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Chapter 5 
 

 

 

COMPETITION IN INSECT LARVAE BETWEEN WILD-

TYPE BACULOVIRUS (SPODOPTERA EXIGUA 

NUCLEOPOLYHEDROVIRUS) AND A MARKED 

RECOMBINANT WITH ENHANCED SPEED OF ACTION 

 

SUMMARY 

 

Competition between virus genotypes in insect hosts is a key element of virus 

fitness, affecting their long-term persistence in agro-ecosystems. Little information is 

available on virus competition in insect hosts or during serial passages from one cohort of 

hosts to the next. Here we report on the competition between two genotypes of 

Spodoptera exigua nucleopolyhedrovirus (SeMNPV), when serially passaged as mixtures 

in cohorts of 2
nd

 instar S. exigua larvae. One of the genotypes was a SeMNPV wild-type 

isolate, SeUS1, while the other was a SeMNPV recombinant (SeMNPV-XD1) having a 

greater speed of kill than SeUS1. SeXD1 lacks a suite of genes, including the ecdysteroid 

UDP-glucosyl transferase (egt) gene. SeXD1 expresses the green fluorescent protein 

(GFP) gene, enabling the identification of SeXD1 in cell culture and in insects. The 

relative proportion of SeUS1 and SeXD1 in successive passages of mixed infections in 

various ratios was determined by plaque assays of budded virus from infected larvae and 

by polymerase chain reactions and restriction enzyme analyses. The SeUS1 genotype 

outcompeted recombinant SeXD1 over successive passages. Depending on the initial 

virus genotype ratio, the recombinant SeXD1 was no longer detected after six to twelve 

passages. A mathematical model was developed to characterize the competition 

dynamics. Overall, the ratio SeUS1/XD1 increased by a factor 1.9 per passage. The 

findings suggest that under the experimental conditions recombinant SeXD1 is displaced 

by the wild-type strain SeUS1, but further studies are needed to ascertain that this is also 

the case when the same baculoviruses would be used in agro-ecosystems. 

 
Modified after:  

Liljana Georgievska, Renate Velders, Xiaojiang Dai, Felix J.J.A. Bianchi, Wopke van der 

Werf & Just M. Vlak (2005). Competition in insect larvae between wild-type baculovirus 

(Spodoptera exigua nucleopolyhedrovirus) and a marked recombinant with enhanced speed of 

action. IOBC/WPRS Bulletin 28: 141-145. 
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INTRODUCTION 

 

The beet armyworm, Spodoptera exigua, is a moth (Lepidoptera: Noctuidae) 

whose larvae cause economic losses in a wide range of cultivated crops throughout the 

temperate and subtropical regions of the Northern hemisphere. Control of S. exigua has 

for a long time relied almost exclusively on insecticides, resulting in widespread 

insecticide resistance in the insect (Brewer et al., 1995) and a quest for biological 

alternatives.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Mixed infection of S. exigua larvae with both wild-type SeUS1 (black) and recombinant 

SeXD1 (white) SeMNPV genotype. Upon successive passaging in insects three types of progeny 

genotypes are possible: the recombinant will dominate, co-exist with the wild-type virus or 

disappear. 

 

Baculoviruses are naturally occurring insect pathogens that are suitable biological 

agents to control pest insects (Moscardi, 1999). They are often specific, are natural 

pathogens, safe for humans (vertebrates) and have little or no environmental impact. S. 

exigua multicapsid nucleopolyhedrovirus (SeMNPV) is an attractive bio-insecticide, since 

the virus is specific to the beet armyworm and highly virulent (Smits & Vlak, 1994). A 

successful product (Spod-X
R
), produced by the Certis USA, has been on the market for 

well over a decade. A major drawback of baculoviruses is the long incubation time to 

show effect or cause disease, i.e. their action is relatively slow (a matter of days/weeks) 

when compared to most chemical insecticides (< day). Improvement of the speed of kill 

of SeMNPV has been achieved either by strain selection (Muñoz et al., 2000a) or by 
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genetic engineering (Dai et al., 2000). Genetic engineering approaches have been used 

predominately to increase the speed of action (McCutchen et al, 1991; Black et al., 1997; 

Inceoglu et al., 2001), such as deletion of the egt gene, encoding an ecdysteroid UDP-

glucosyl transferase, or insertion of various insect-specific toxin genes. The question is 

whether recombinant baculoviruses can cause any harm to the environment or ecosystem, 

e.g. as a result of effects on non-target hosts. From the point of view of ecological safety 

and precaution it would be advantageous if genetically modified baculoviruses would not 

persist in agro-ecosystems after their use as pest control agents, but be outcompeted by 

wild-type baculoviruses over time. It is therefore pertinent and timely to study the fitness 

of recombinants as related to virus reproduction and survival (Bull et al., 2003).  

Here we describe one aspect of the issue of virus fitness by setting up a model 

system to study competition of baculovirus genotype mixtures. Mixed infections with 

different ratios of wild-type and recombinant SeMNPV were carried out in serial transfers 

(passaging) in S. exigua larvae (Fig. 1); the progeny was used to infect a subsequent 

cohort of larvae. The relative proportion of each virus was measured over successive 

passages in the insects and a preliminary model to predict the competitive fitness was 

developed.  

 

MATERIALS AND METHODS 

 

Virus genotypes 

The wild-type SeMNPV (SeUS1) was provided by Dr. B.A. Federici (UC 

Riverside, USA) and was propagated in laboratory-reared 4
th

 instar S. exigua larvae. 

SeMNPV recombinant XD1 (SeXD1) was generated and described by Dai et al. (2000). 

This recombinant contains a gene for the green fluorescent protein (GFP) as a screening 

marker in lieu of the dispensable SeMNPV p10 gene. It further has a deletion of 10.6 kb 

sequence information, located between nucleotide 18513 to 29106, a region 

encompassing fourteen open reading frames (ORFs 15-28) (Fig. 2). Deleted genes include 

egt, gp37, chitinase, cathepsin and several other genes unique to SeMNPV and with 

unknown function. SeXD1 was isolated after recombination of SeUS1 and a plasmid 

construct carrying the GFP gene flanked by sequences of the p26 and p74 gene of SeUS1. 

The recombination was followed by alternate infection of Se301 insect cells, plaque 

purification of GFP-positive plaques and oral infection of S. exigua larvae. Budded virus 

(BV) was isolated from hemolymph and used to infect Se301 cells for a second round of 

plaque purification. This alternation between insect cells and insects was required to 

secure oral infection properties of SeXD1. SeXD1 has a significantly lower median 

survival time (ST50) (-25%) than wild-type SeUS1, but a similar median lethal dose 

(LD50) (Dai et al., 2000). 
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The S. exigua cell line Se301 was a gift from Dr. T. Kawarabata (Institute of 

Biological Control, Kyushu University, Kyushu, Japan). The cells were propagated at 

27ºC in Grace’s supplemented medium containing 10% fetal calf serum (FCS; Gibco). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Schematic representation of wild-type SeMNPV (SeUS1) and recombinant SeMNPV 

(SeXD1). Deletion of p10 gene and insertion of gfp are indicated in SeXD1 virus.  

 

Serial transfers 

Serial transfers were started by infecting 4
th

 instar S. exigua larvae with mixtures of 

SeUS1 and SeXD1 in one of three different ratios: 5:1, 1:1 and 1:5, at a total challenge 

dose of 10
6
 OBs per larva. This dose is 25 times the LD50 for this instar (Bianchi, 2001) 

and was administered to the larvae on diet plugs (Smits & Vlak, 1988). At least 30 larvae 

were used for each treatment. After the inoculated larvae had died OBs were extracted 

from 10 larval cadavers and purified by sucrose gradient centrifugation. The OB 

concentration of the viral stock solutions was determined in three independent counts 

using an Improved Neubauer chamber (Hawsksley, Lancing, UK) by phase-contrast 

microscopy (× 400). Virus stocks were stored at 4°C until use. The resulting virus 

suspensions were used for the next inoculation through contaminated diet (passage) in S. 

exigua larvae with a dose of 10
6
 OBs/larva. Only larvae that consumed the entire dose 

were considered. Twelve successive challenges were conducted for each SeMNPV 

mixture. 

 

Plaque assay  

A plaque assay in cell culture was carried out to count foci (plaques) with OBs 

(SeUS1 + SeXD1) and plaques showing GFP as well (SeXD1 only). BV was isolated 

from the haemolymph of twelve infected larvae 4 days post infection (d.p.i.). Insect 

haemolymph was collected in 200 µl Grace’s medium and filtered using a 0.45 µm filter. 

The plaque-assay was performed as described by King & Possee (1992) using about 106 

SeMNPV DNA (131 kb)
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Se301 cells per dish. A haemolymph dilution of 10
4
 or 10

5
 was used to infect the cells 

using a 500 µl virus suspension. The plaque assay dishes were incubated in a moisted box 

at 27ºC for about 1 week. The plaques were analyzed and counted using light and a 

fluorescence microscopy. As each plaque originates from a single BV, absence of GFP 

means that a plaque with OBs started from a SeUS1 infection. The relative proportion of 

SeUS1 and SeXD1 plaques was recorded.  

 

 

 

 

 

 

   

 

 

 

 

 

 
 
Figure 3. Phase-contrast and UV micrograph of the S. exigua Se301 cells. Se301 cells (A) were 

infected with wild-type SeMNPV (SeUS1) (B) and with SeXD1 (C and D) at 48 h p.i. OBs were 

observed in phase-contrast images of SeUS1- (B) and SeXD1-infected cells (C). The expression of 

GFP in SeXD1 infected cells is shown under UV light (D). From Dai et al., 2000. 

 

DNA isolation and PCR 

OBs were purified from 10 larvae. The DNA was isolated from OBs by incubation 

in a dissolution buffer (0.1 Na2CO3, 0.01 M EDTA and 0.17M NaCl), followed by 

proteinase-K, phenol/chloroform extraction and dialysis (Sambrook et al., 1989). The 

purity and amount of the DNA was determined spectrophotometrically.  

To monitor the presence of the two baculoviruses (SeUS1 and SeXD1) in the 

various samples after each passage, a semi-quantitative PCR was set up and the results 

were analyzed by agarose gel electrophoresis (Fig. 4). A PCR was performed with the 

Expand Long Template PCR system (Boehringer Mannheim) using forward primer p10-F 

(5«CGATTGGACGGACCTCTG3«) and reverse primer p10-RW 

(5«ATTTACGACGACAAACCAAC3«). These primers correspond to nt 123,624 to 

123,642 and 124,121 to 124,141 of the SeMNPV genome (IJkel et al., 1999), 

respectively. This primer set has recognition sites outside the p10 open reading frame on 

the SeMNPV genome and gives PCR products with different sizes. This helps to 

distinguish the two baculovirus genotypes, with or without a p10 gene and with and 

without the GFP gene. For the wild-type SeMNPV genome the target gene was p10, 
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giving a product of 517 bp, and for the recombinant SeXD1 the gene of interest was the 

GFP gene, giving a product of 998 bp (Fig. 2). The GFP gene in SeXD1 has replaced the 

p10 gene. The following PCR program was used: denaturation at 94ºC (5min), 30 cycles 

of denaturation at 94ºC (40 sec), annealing at 45ºC (1 min), elongation at 72ºC (1 min) 

and final elongation at 72ºC (7 min) in GeneAmp PCR System 2400 (Perkin Elmer).  

 

Restriction enzyme analysis 

Fifteen µl of extracted DNA (about 1.5 µg) was digested in a total volume of 100 

µl, using either HindIII or PstI restriction enzymes according to the protocol as 

recommended by the manufacturer (Boehringer Mannheim). Digestions were performed 

for about 12 h in a 37ºC water bath. After digestion DNA was subjected to agarose gel 

electrophoresis for about 3 h in 0.5% agarose in 1 × TAE (TRIS, acetic acid, EDTA) 

buffer to separate the restriction fragments. The DNA was visualized using ethidium 

bromide in a 0.5 µg/ ml concentration. The size of the fragments, as bands on the gel, was 

estimated using a HindIII-restricted lambda (λ) DNA marker. After subjection to gel 

electrophoresis, the gel DNA fragments were analyzed for intensity using the ‘Gel Pro’ 

densitometer computer program (Muñoz et al., 2000b). 

 

Model development 

A model was developed to describe the dynamics of the competition between two 

baculoviruses with distinctive fitness (De Wit, 1960; Godfray et al., 1997). Following 

Godfray et al. (1997) we assumed that the ratio between baculovirus A (SeUS1) and B 

(SeXD1) evolves geometrically:  

 

 

 

 

where z (k) is the proportion of baculovirus A (SeUS1) after the k
th

 passage and z 

(0) the initial value of z. The proportion of baculovirus B (SeXD1) is 1-z(k). The 

parameter w is the (fixed) factor by which the genotype ratio changes upon each 

baculovirus passage in insect larvae. This model embodies a geometric time course of the 

genotype ratio, towards fixation of either the baculovirus A or B, depending upon whether 

w is greater than or smaller than 1, respectively. If w is not significantly different from 1, 

the competition between the two baculoviruses is neutral, i.e. both genotypes are equally 

fit. The relative proportions of SeUS1 and SeXD1 in samples, based on the plaque assays, 

were used as input for fitting the model. 

To fit the model to data, the above equation was linearized by taking logarithms: 
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Linear regressions were conducted with SPSS v.13. A genotype ratio of 199:1 was 

used if one of the virus genotypes was not detected in the plaque assay.. 

 

RESULTS 

 

Most of the larvae were successfully infected at the challenge dose of 106 

OBs/larva: larvae usually died after about 6 days. Larvae infected with SeXD1 alone or 

with the virus mixture containing SeUS1 and SeXD1 in a 1:5 ratio usually turned black 

after death and showed limited liquefaction. This may be due to lack of chitinase and 

cathepsin genes in SeXD1 (Dai et al., 2000; Hauxwell, 1999). For each passage the OBs 

were used for PCR and restriction enzyme analysis, as well as for inoculum to initiate the 

next passage of infection. BVs were isolated from infected larvae at 3 d.p.i and subjected 

to a plaque assay 

 

Plaque assay of BVs upon passage 

The relative proportion of SeUS1 versus SeXD1 was determined by a plaque assay 

using BVs of infected larvae. SeXD1 expresses GFP giving a strong green signal (Fig. 3), 

which enables plaques of SeXD1 to be distinguished from those of the wild-type SeUS1. 

The counting of the plaques was done in two steps. First the total number of plaques that 

showed OBs was counted (wild-type SeUS1 and recombinant SeXD1). The second step 

was counting the OB-containing plaques that also showed GFP fluorescence (only 

SeUS1). From the total number of plaques counted the recombinant ones were deducted 

to generate the number of wild-type plaques (Table 1). 

The proportion of SeXD1 decreases over passage (Table 1). After 6-9 passages in 

S. exigua larvae the proportion of SeXD1 approached zero. In mix 1 (SeUS1:SeXD1 = 1 : 

1) the proportion of SeXD1 dropped quickly and recombinant was not observed after 6 

passages. SeXD1 was still present after 9 passages, but was absent at passage 12 in mix 2 

(SeUS1:SeXD1 = 1 : 5), whereas in mix 3 (SeUS1:SeXD1 = 5 : 1) SeXD1 was absent 

already in passage 9. Although the kinetics are somewhat irregular, the results clearly 

show that the proportion of SeXD1 decreases and finally disappears, independently of the 

proportions tested. 
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Table 1. The proportion of plaques formed from wild-type SeUS1 and recombinant SeXD1 virus 

for the three different starting ratios of mixtures of these two viruses, mix 1 (1 : 1) Se-US1 : Se-

XD1, mix 2 (1 : 5) and mix 3 (5 : 1). 

 

  Number of plaques Proportion (%) 

mix Passage SeUS1 SeXD1 total SeUS1 SeX

1 1 90 45 135 7 33 

1 3 110 39 149 74 26 

1 6 142 0 142 100 0 

2 1 58 49 107 54 46 

2 3 50 203 253 20 80 

2 6 74 135 209 35 64 

2 9 340 14 354 96 4 

2 12 150 0 150 100 0 

3 1 44 36 80 55 45 

3 3 81 50 131 62 38 

3 6 349 147 496 70 30 

3 9 175 0 175 100 0 

3 12 324 0 324 100 0 

 

 PCR analysis of viral DNA upon passage 

Viral DNA was isolated from OBs produced by infected larvae upon each passage 

and subjected to PCR using SeMNPV primers from the flanking regions of the p10 gene. 

Expected products for SeUS1 and SeXD1 are 517 bp and 998 bp, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. Agarose gel electrophoresis showing PCR results of mix 1 (SeUS1:SeXD1 = 1:1) as an 

example. Arrows indicate the visible bands with the given sizes. The band sizes are estimated 

using the 100 bp DNA ladder and λ DNA. Lane 1-6: passage 2-7, Lane 7: 100bp DNA Ladder, 

Lane 8: λ DNA marker. 
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For the mix with a virus ratio of 1 : 1 (SeUS1 : SeXD1) a p10-specific PCR 

product (517 bp) was present in roughly equal amounts in all passages. However, a 

SeXD1-specific PCR product (998 bp) gradually disappeared after 4 passages (Fig. 4). 

For mix 2 and mix 3 the GFP containing PCR fragments disappeared after passage 10 and 

7, respectively (data not shown). These results are roughly in line with the results 

obtained from the plaque assay analysis presented in Table 1, indicating that the SeUS1 

finally overtakes SeXD1 in a competitive situation.  

 

Restriction enzyme analysis of viral DNA upon passage 

Restriction enzyme analysis was performed to measure the relative proportion of 

wild-type (SeUS1) and recombinant (SeXD1) genotypes at the DNA level. The restriction 

digestion was performed on DNA from mix 5 : 1 (SeUS1 : SeXD1) (not shown). On the 

gel it was possible to visualize the expected bands (PstI-C and D) and to distinguish 

between SeUS1 and SeXD1 by fragment intensity. 

The gel was analyzed for intensity using densitometry and the ‘Gel Pro’ computer 

program. The relative proportions were calculated based on the relative presence of 

fragments PstI-C and D (Table 2). Fragment PstI-C is present both in SeUS1 and SeXD1 

and fragment PstI-D is only specific for the SeUS1. In SeXD1 this fragment is spliced 

because of the insertion of the GFP gene. On basis of the presence of both fragments the 

relative proportion was calculated and the results showed that the proportion of SeUS1 

increases as the passage number goes up. The opposite was observed for recombinant 

SeXD1, where the relative proportion decreases in comparison to the SeUS1 over passage 

(Table 2).  

 

 
Table 2. Average quantity of fragments PstI-C and D from DNA isolated from the mix 5:1 (Se-

US1:Se-XD1) upon digestion with the PstI restriction enzyme. Gel fragment intensity (average 

box size of 0.8) was calculated using the ‘Gel Pro’ densitometer computer program.  

 

 Relative quantity Proportion (%) 

Passage PstI-C PstI-D wt Se-XD1 

8 140.22 117.93 84 16 

9 203.17 106.87 53 47 

10 112.42 101.14 90 10 

11 167.55 162.56 96 4 

12 185.53 181.82 98 2 
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Modeling the competitive fitness 

The logarithm of the ratio US1/XD1, as quantified in plaque assay, increased 

approximately linearly in all three mixes (Fig. 4). The slope of the regression was 0.96 ± 

0.34 in mix 1, 0.54 ± 0.14 in mix 2, and 0.55 ± 0.18 in mix 5. The mean regression slope 

was 0.68, and the selection coefficient was quantified as exp (0.68) = 1.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5. Relative proportion of wild-type SeMNPV (SeUS1) in serial passages of a mixture of 

wild-type and recombinant SeMNPV (SeXD1) in 4
th
 instar S. exigua. Genotype ratios were 

measured by plaque-assay experiments. R(t) is the ratio US1/XD1 after passage t.  

 

The value of w best fitting our data is 1.9, indicating that after each passage the 

ratio of SeUS1 over SeXD1 has increased by a factor of 1.9, signalling SeUS1 dominance 

upon passaging in insects. 

 

DISCUSSION 

 

The introduction of recombinant baculoviruses in the environment may result in 

their uncontrolled spread and in replacement of wild-type baculovirus populations. 

Information on the parameters that influence baculovirus behavior in the field may allow 

predictions on the behavior of recombinant baculoviruses in the environment (Vlak et al., 

1995). Results from this preliminary study on the competition between wild-type 

SeMNPV (SeUS1) and recombinant SeMNPV (SeXD1) in mixed infections of S. exigua 

larvae clearly showed dominance of SeUS1 after several successive passages. This trend 

was noted using three independent techniques: plaque assay analysis of BVs from 
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infected larvae (Fig. 3, Table 1), analysis of OB DNA by PCR (Fig. 4, Table 2) and 

restriction enzyme analysis (densitometry). The cause of SeUS1 gaining dominance is not 

known. The virulence of both viruses in terms of LD50 is very similar (Dai et al., 2000). 

The genes that were deleted in SeXD1 apparently are not essential for virus infectivity 

and are not known to be related to baculovirus virulence in vivo (Heldens et al., 1998). It 

may be that SeXD1 has a replication disadvantage in the insect, although the genome 

itself is of smaller size (- 10.6 kb) and would therefore be expected to replicate faster. 

SeXD1 also lacks the egt gene as part of the suite of genes that is missing from the 

wild-type SeMNPV genome. Our results of reduced fitness of SeXD1 as compared to 

SeUS1 are in agreement with those of Zwart et al. (2009), who found that an egt deletion 

mutant of AcMNPV was less fit in competition experiments with wild-type AcMNPV in 

T. ni. These findings collectively suggest that egt has a role in virus multiplication, spread 

or packaging in the insect. Lack of the egt gene may result in reduced budded virus 

production or spread in the larva as compared to SeUS1, or in incomplete packaging of 

occluded virions in OBs.  

The outcome of this competitive fitness experiment clearly shows wild-type 

dominance over time and thus ‘within host’ competition. It is not clear whether this is at 

the organismal or at the cellular level. Experiments in cell culture with SeMNPV are 

difficult to value due to the severe ‘passage effect’ in S. exigua cells infected with 

SeMNPV (Pijlman et al., 2003). This effect results in the generation of defective 

SeMNPV that can only replicate in the presence of wild-type SeMNPV and reduce the 

production of BVs and OBs. This passage effect is also cell line dependent (Pijlman et al., 

2003). Other cell lines may be found or developed that do not show this effect.  

The results from these preliminary experiments may imply that also in the field 

wild-type SeMNPV will get dominance over time over a recombinant virus. This would 

imply that recombinant baculoviruses should be applied as mixtures with wild-type 

baculoviruses rather than as recombinants alone. The outcome of our experiments may 

also have implications for the introduction of new fast-acting ‘wild-type strains’ from 

elsewhere for biocontrol. When these new strains are selected for improved insecticidal 

activity, they also may displace the existing baculovirus population. However, our 

experiments suggest that this is not very likely to occur. These results are a good starting 

point for the field evaluation of recombinant baculoviruses in general and of SeMNPV in 

particular. 
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Chapter 6 
 
 

MIXED GENOTYPE INFECTIONS OF AUTOGRAPHA 
CALIFORNICA MULTICAPSID NUCLEOPOLYHEDROVIRUS 

IN TRICHOPLUSIA NI LARVAE; SPEED OF ACTION AND 

PERSISTENCE OF A RECOMBINANT IN SERIAL PASSAGE  

 

 

Fast-acting recombinant baculoviruses have potential for improved insect pest 

suppression. However, the ecological impact of using such viruses must be given careful 

consideration. One strategy for mitigating risks of recombinant baculoviruses might be 

simultaneous release of a wild-type baculovirus, so as to facilitate a rapid displacement of 

the recombinant baculovirus by a wild-type. However, at what ratio must the two 

baculoviruses then be released? An optimum release ratio would ensure both fast action 

and the eventual fixation of the wild type baculovirus in the insect population. Here we 

challenged Trichoplusia ni larvae with different ratios of wild-type Autographa 

californica multicapsid nucleopolyhedrovirus (AcMNPV) and a derived recombinant 

vEGTDEL, which has the endogenous egt gene (encoding for ecdysteroid UDP 

glucosyltransferase) deleted, and measured time to death and virus occlusion body (OB) 

yield. Five serial passages of three different mixtures of OBs of the two viruses were also 

performed. For the serial passage experiment (SPE), OBs from 10 larval cadavers were 

pooled and used to start the following passage. A 1:10 ratio (wild-type to recombinant) 

resulted in quick insecticidal action, while the wild-type baculovirus was maintained over 

five passages. However, the wild-type virus did not go to fixation in most replicates of the 

SPE, and there was no evidence for selection against the recombinant. Long term 

maintenance of a recombinant in serial passage suggests an ecosystem safety risk. We 

conclude that for assessing ecological impact of recombinant viruses, SPEs in both single 

and multiple larvae are relevant because of potential modulating effects at the between-

host level. 

 

 
 

This chapter has been submitted for publication: 
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Vlak & Jenny S. Cory. (2009). Mixed genotype infections of Autographa californica 

multicapsid nucleopolyhedrovirus in Trichoplusia ni; speed of action and persistence of a 

recombinant in serial passage. Biological Control. 
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INTRODUCTION 

 

Baculoviruses have shown potential as agents for biological control of pest insect 

species (Moscardi, 1999). These viruses are highly virulent (Bianchi et al., 2000b; Cory & 

Myers, 2003), and have a restricted host range (Federici, 1997). A major drawback of the 

use of baculoviruses for pest control is their slow speed of action (Moscardi, 1999). 

Therefore, crop damage after application of a baculovirus spray can be substantial, even if 

mortality in target insects is eventually high (Bianchi et al., 2000a). With the advent of 

recombinant DNA techniques, it has become possible to engineer baculoviruses with 

faster speeds of action (Stewart et al., 1991; Inceoglu et al., 2006). These fast-acting 

baculoviruses can provide improved protection of crops in comparison with wild-type 

baculoviruses (Cory et al., 1994; Sun et al., 2004b). However, the ecological impact of the 

release of fast-acting recombinant baculoviruses is not fully understood and deserves 

further consideration to avoid unintended non-target impacts on non-target insects.  

Many studies have addressed different aspects of recombinant baculovirus fitness. 

The general tenor of these studies is that fitness of recombinant viruses is not 

distinguishable from that of the parental wild-type baculovirus (Bianchi et al., 2000b; Sun 

et al., 2004a) or reduced (Cory et al., 1994; Cory et al., 2004; Sun et al., 2005; Zhou et al., 

2005). At the between-host level, genetically modified viruses are generally thought to be 

less fit than wild-type baculoviruses. This is due to the lower virus yield associated with 

shorter survival time of infected insects (Cory et al., 2004). These patterns do not 

necessarily extend to all susceptible species, however (Hernández-Crespo et al., 2001). In 

some instances insect behavior is also altered, which removes the virus-infected cadavers 

from plant surfaces (Hoover et al., 1995) and hereby reduces secondary transmission 

(Hails et al. 2002).  

Two studies have addressed the within-host fitness of fast-acting recombinant 

baculoviruses derived from Autographa californica multicapsid nucleopolyhedrovirus 

(AcMNPV). Milks et al. (2001) found that a recombinant AcMNPV expressing the 

scorpion-derived, invertebrate-specific toxin AaIT had unaltered within-host fitness, when 

in direct competition with its parental wild-type virus. Zwart et al. (2009) studied the 

behavior of vEGTDEL, an AcMNPV derived recombinant lacking the endogenous egt 

gene, and found decreased within-host fitness compared to its parental wild-type virus. 

Egt encodes the ecdysteroid UDP glucosyltransferase enzyme, which inactivates 

ecdysteroids and thereby modulates host development in a manner that results in a greater 

OB yield (O’Reilly & Miller, 1989; Cory et al., 2004; Zwart et al., 2009). Deletion of egt 

leads not only to a reduction in OB yield, but also to reduced cadaver weight and shorter 

time to host death (O’Reilly & Miller, 1989; Cory et al., 2004).  

The available evidence thus suggests that fast-acting baculoviruses lacking the egt 

gene may be ecologically impaired at both the within-host and between-host levels, and 



Mixed genotype infections in serial passage 

113  

could be displaced by wild-type baculoviruses after release. Therefore, to hasten 

competitive displacement of the fast-acting recombinant, a wild-type baculovirus strain 

could be added to the inoculum of recombinant virus. However, can an application of 

both recombinant and wild-type baculovirus retain the improved speed of action of the 

recombinant virus, and at the same time result in the displacement of the recombinant 

virus in the longer term in agro-ecosystems? 

Other strategies for mitigating the persistence of recombinant baculoviruses have 

been previously suggested. For example, Hamblin et al. (1990) suggested releasing ‘co-

occluded’ OBs containing both a wild-type virus and a recombinant incapable of 

generating OBs autonomously (an AcMNPV-derived virus missing the polyhedrin gene, 

Ac-E10). Wood et al. (1993) and Hughes & Wood (1996) suggest releasing Ac-E10 

virions (i.e. preoccluded virions) for biological control because (i) they are highly 

infectious, ensuring effective biological control, and (ii) they remain infectious only for 

short periods of time, ensuring that the virus will be quickly lost from the environment. 

The approach we study here releasing a mixture of OBs would be an attractive alternative 

because it is relatively simple, requiring only quantification of the different OBs. 

Moreover, because recombination between wild-type and recombinant viruses will occur 

in the field, understanding the competitive fitness of recombinant baculoviruses with 

polyhedrin is also relevant to evaluate the approaches suggested by Hamblin et al. (1990) 

and Hughes & Wood (1996).  

Zwart et al. (2009) found that Trichoplusia ni (Hübner) larvae challenged with an 

LD80 dose of AcMNPV at a wild-type to recombinant ratio of 1:100 most larvae were 

solely infected by the recombinant virus, putatively because the founder number at an 

LD80 dose is too low to enable the presence of the wild type at such a low ratio (see Zwart 

et al., in press). On the other hand, at a wild-type to recombinant ratio of 1:10, all larvae 

contained both the wild-type and recombinant viruses at death, indicating a founder 

number well-above 10 virions per larva (Zwart et al., 2009). Thus, at an LD80 dose and a 

wild-type to recombinant ratio of 1:10, the wild-type virus will be present in a majority of 

infected insects. This inoculum fulfills one of the requirements for a strategy of use of a 

recombinant virus based on co-packaging of a wild-type virus in a biological control 

product, but we also need to know: (1) What is the speed of action at this dose and ratio? 

(2) Will the wild type virus go to fixation, and displace the fast-acting recombinant virus? 

To answer these questions, we studied the co-infection behavior of the fast-acting 

vEGTDEL and its parental virus, AcMNPV Wt L1, in T. ni larvae. We first determined 

time to death for a range of different OB mixtures in a bioassay with an LD80. An LD80 is 

suitable for initial evaluation of recombinant baculoviruses because medium to high OB 

doses will be required for effective biological control (Cory et al., 1994; Bianchi et al., 

2002). A serial passage experiment (SPE) with different initial inoculum mixtures of the 

wild-type and recombinant viruses was then performed to test whether the wild-type virus 
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would outcompete the recombinant completely, and go to fixation. Alternatively, the 

recombinant might compete out the wild-type virus, or both viruses might be maintained 

in the population. Sustained maintenance of two genotypes over many generations would 

indicate that competition is neutral (no stronger competitor), or it could also indicate that 

both virus genotypes occupy somewhat different niches within the host, such that their co-

occurrence is stable. Note that by ‘maintenance’ we mean that a genotype remains present 

over time in the virus population, irrespective of its frequency. By ‘fixation’ we mean that 

only a single genotype is represented in the population, and other genotypes have been 

competitively displaced. 

In previously reported SPEs with recombinant baculoviruses, each replicate was 

performed in a single larva (Milks et al., 2001; Zwart et al., 2009). This experimental 

design focuses on the competitive process within a single host. In the field, however, a 

larva may ingest OBs originating from multiple larval cadavers. This is especially likely 

to happen when, during an epizootic, infectious larval cadavers occur at high densities. 

The two situations passaging in a single larva or passaging in ten larvae probably 

represent extremes compared to what may happen in the field. We chose to perform an 

SPE with inoculum preparation from multiple larvae at each passage. This approach 

complements previously reported data, as the ensemble of previous results and those 

reported here bracket the relevant range of the number of OB sources for insect larvae. 

 

MATERIALS AND METHODS 

 

Insects and viruses 

Trichoplusia ni larvae were reared as previously reported (Zwart et al., 2009; see 

also Smits et al., 1986). Larvae were reared communally on artificial diet based on wheat 

germ, in plastic boxes with a paper towel as a lid. Diet composition was identical to that 

described by Smits et al. (1986), except that cornmeal was replaced with wheat germ. 

Larvae were allowed to spin cocoons and pupate on the paper towel lids. Moths were kept 

in cages, with paper towels placed along the sides for egg-laying. Paper towels with eggs 

were collected daily and surface sterilized as described by Smits et al. (1986). Eggs were 

occasionally kept at 4°C or 16°C for one or two days, in order to keep the insects in a 

regular rearing scheme. Larvae, pupae and moths were kept with a 16-hour photoperiod 

and at 27°C. 

AcMNPV Wt L1 and vEGTDEL (O’Reilly & Miller, 1991) were amplified in 30 

T. ni L4 larvae, inoculated at a high dose (approx. 100 × LD99). Larval cadavers were 

collected upon death, stored at –20° C, and OBs were subsequently purified as described 

by Zwart et al. (2008). Briefly, larval cadavers were macerated, filtered through 

cheesecloth, centrifuged (2500 g for 15 min) washed thrice and then stored in 50% (v/v) 
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glycerol. Note that all virus ratios whether quantified OBs or quantitative real-time PCR 

ratios are given as the ratio Wt L1 to vEGTDEL. 

 

Time to death bioassays and OB yield 

We obtained developmentally synchronous final instar T. ni larvae (L5) by 

selecting insects which had slipped their head capsules within a 12-h interval. The chosen 

larvae were subsequently reared on diet at 27° C for a further 24 h, and then challenged 

with OBs. The artificial diet used for rearing purposes was also used for bioassays. 

We quantified OBs of Wt L1 and vEGTDEL by counting with a haemocytometer 

(20 counts per virus). The OBs were subsequently serially diluted in water to give 

suspensions of 10
6
 OBs ml-1. Two µl of the OB suspension was pipetted onto small diet 

plugs placed in 12-well plates. This should give a dose of 2000 OBs per larvae, which is 

equivalent to an LD80 for a 1:1 mixture according to dose-response data reported by Cory 

et al. (2004). The following OB suspensions were used: vEGTDEL alone, 1:1000 (Wt L1 

to vEGTDEL), 1:100, 1:10, 1:1, 10:1 100:1, 1:1000, and Wt L1 alone. For a non-virus 

control 24 larvae were taken and 2 µl water added to the diet plug. For each of the 9 virus 

treatments 36 larvae were used. After 12 hours at 27°C those larvae which had eaten all 

the diet were individually transferred to new 12-well plates containing diet, and again 

kept at 27°C. The amount of diet added was usually sufficient to rear the larva to 

pupation, but more diet was added if necessary. Mortality was recorded every 12 hours 

until all larvae had died or pupated. The cadavers of dead larvae were collected and 

individually stored at -20°C in 1.5 ml Eppendorf tubes. The bioassay was performed 

thrice. For each replicate of each treatment mean time until death was calculated. A 

Jonckheere-Terpstra test was used to determine if more Wt L1 OBs in the inoculum 

mixture resulted in a longer mean time to death. This test is applicable because it is a non-

parametric procedure and the independent variable (treatment) is ordinal (i.e. increasing 

amounts of Wt L1 OBs). Tukey’s HSD, a post hoc multiple comparison test,  was used to 

test for significant differences in mean time to death. All statistical analyses were 

performed in SPSS 15.0 (SPSS Inc., Chicago, IL). 

A second bioassay was performed as described above, but with only two 

treatments: vEGTDEL alone and a 1:100 mixture of OBs. Five replicates of the bioassay 

were performed. Mean time until death was calculated and significant differences 

between treatments tested for with a pair-wise t-test.  

All larvae which died in the first bioassay replicate were used for analyzing larval 

OB yield. Larval cadavers were macerated in 500 µl milliQ water. Counting of OBs with 

a haemocytometer was performed twice for a 1:100 dilution of each sample. Analysis of 

variance (ANOVA) was performed on square-root transformed OB yield, and between-

treatment variation was partitioned into linear and quadratic components. Tukey’s HSD 
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post hoc multiple comparison test was used to test for significant differences between 

treatments in OB yield. 

 

Serial passage experiment with OB mixtures 

A serial passage experiment (SPE) was performed with three different starting 

mixtures of OBs: 1:10, 1:1 and 10:1. Three replicates with a 1:1 starting mixture were 

performed; two replicates were taken for the 1:10 and 10:1 initial mixtures. Five serial 

passages were performed. Twenty-four larvae were challenged per replicate, with the 

same procedure and dose (2000 OBs) as described above. All larval cadavers were 

individually collected at death and stored. A random selection of 10 larvae for use in the 

next passage was then made. The 10 selected cadavers were pooled in 50 ml plastic tubes, 

and used for OB purification as described above. The concentration of OBs was then 

determined by counting in a haemocytometer (at least 2 counts per replicate). The next 

round of passage was then initiated with a dose of 2000 OBs. As a control the Wt L1 and 

vEGTDEL were passaged in a single larva.  

 

DNA isolation and qPCR 

For each replicate and every passage the Wt L1 to vEGTDEL ratio in OBs of the 

pooled larvae was determined by quantitative real-time PCR (qPCR). DNA isolation from 

OBs was performed as previously described (Zwart et al., 2008). All qPCR reactions and 

analyses were performed as described by Zwart et al. (2009), with all qPCR reactions 

being performed twice. In summary, specific primers for Wt L1 and vEGTDEL were used 

in separate PCR reactions, with SYBR Green I used as a fluorophore. Template 

concentration was then determined by comparative analysis, using RotorGene 6.0 

software (Corbett Research, Sydney) and the virus ratio (Wt L1 to vEGTDEL) could then 

be calculated.  

 

Calculation of selection rate constants 

A model was developed to describe the dynamics of the competition between two 

baculoviruses with distinctive fitness (De Wit, 1960; Godfray et al., 1997). We assumed 

that the ratio between genotypes evolves geometrically over passages:  
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where z(k) is the proportion of wild-type after the kth passage and z(0) the initial 

value of z. The proportion of recombinant is 1-z (k). The parameter w is the fixed factor 

by which the genotype ratio changes upon each baculovirus passage in insect larvae. This 

model embodies a geometric time course of the genotype ratio, towards fixation of either 
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genotype, depending upon whether w is greater than or smaller than 1. If w is not 

significantly different from 1, the competition between the two baculoviruses is neutral 

(i.e. both genotypes are equally fit). The relative proportions of wild-type and 

recombinant, determined from the qPCR-derived virus ratio, were used as input for fitting 

the model. The qPCR assay used cannot quantify virus ratios of less than 1:1000 and 

greater than 1000:1 (Zwart et al., 2009) and the model does not allow for fixation of either 

virus. We therefore considered all data less than 1:1000 or greater than 1000:1 including 

only vEGTDEL or Wt L1 signal to be a ratio of 1:1000 or 1000:1, respectively. 

 

To fit the model to data the above equation was linearized by taking logarithms: 
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Linear regressions were conducted with SPSS 15.0, combining replicates of each 

initial inoculum mixture (1:10, 1:1, 10:1). Following analysis the selection rate constant w 

was estimated by taking the antilogarithm of the slope of the regression. Based on the 

chain rule of mathematical calculus: 
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the standard error of w is calculated by multiplying the standard error of the slope 

of the regression with the estimate of w: 
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where b is the slope of the regression, SE(b) is the standard error of this slope, and 

w the selection rate constant.  

 

 

RESULTS 

 

Mean time to death for OB mixtures 

In order to understand how virus mixtures affected time until death, bioassays were 

performed and mean time until death determined (Figure 1). A Jonckheere-Terpstra test 

indicated that mean time until death increased significantly as the amount of Wt L1 virus 

was increased (Standardized JT = 4.536, N = 27, P < 0.001). Tukey’s post hoc multiple 
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comparison test showed that treatments with more than a 1:1 (Wt L1 to vEGTDEL) ratio 

of the viruses killed the host significantly slower than the vEGTDEL alone (Figure 1). 

Different OB mixtures caused similar levels of mortality (Kruskal-Wallis test; χ
2
 = 2.134, 

degrees of freedom = 8, P = 0.977) and there was no significant effect of the proportion of 

Wt L1 virus on mortality (Jonckheere-Terpstra test; Stand. JT = -0.42,  N = 27, P = 

0.966). 
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Figure 1. Mean time until death in hours is on the y-axis (with standard errors), for different 

bioassay occlusion body (OB) mixtures (dotted bars), vEGTDEL alone (white bar), and Wt L1 

alone (black bar), on the x-axis. All ratios for OB mixtures are given as Wt L1 to vEGTDEL. 

Tukey’s post hoc multiple comparison test was used to test for differences between treatments. 

Treatments that are not significantly different from the vEGTDEL treatment are marked with an 

‘a’. Treatments that are not significantly different from the Wt L1 treatment are marked with a ‘b’. 

Note that for all significant differences P-values were smaller than 0.01. 
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Trends in the data (Fig. 1) suggest that the 1:1000 and 1:100 ratios may be killing 

larvae faster than the vEGTDEL virus alone, but differences were not significant with a 

post hoc test. A second bioassay comparing time to death between vEGTDEL alone and 

with a 1:100 mixture of wild-type and vEGTDEL was therefore performed. No significant 

difference in mean time until death was found (pair-wise t-test, t4 = -0.911, P = 0.414), 

confirming that the speed of kill of pure recombinant virus and mixtures with a small 

amount of wild-type virus is not appreciably different. 

OB yield was determined for all larval cadavers from the first replicate of the mean 

lethal time bioassay (Figure 2). A one-way ANOVA indicated that there are differences in 

mean between inoculum OB mixtures (F8, 239 = 2.541, P = 0.011), although none of the 

OB mixtures differed significantly from the Wt L1 or vEGTDEL only conditions 

according to a post hoc test (Figure 2). There were statistically significant linear (F1, 239 

= 7.491, P = 0.007) and quadratic (F1, 239 = 6.095, P = 0.014) components in the 

between-treatment variation for OB yield. 
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Figure 2. Mean occlusion body (OB) yield per cadaver is on the y-axis (with standard errors), for different 

bioassay occlusion body (OB) mixtures (dotted bars), vEGTDEL alone (white bar) and Wt L1 alone (black 

bar), on the x-axis. All ratios for OB mixtures are given as Wt L1 to vEGTDEL. None of the mixtures differ 

significantly from either single virus condition (Wt L1 or vEGTDEL alone), according to Tukey’s post hoc 

multiple comparison test, but ANOVA showed significant linear and quadratic components in the response 

of yield to genotype ratio.   
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Serial passage experiment results 

Mixtures of Wt L1 and vEGTDEL were serially passaged in T. ni L5, with an OB 

inoculum from 10 pooled larvae used for the next round of passage. The qPCR derived 

ratio of Wt L1 to vEGTDEL was determined for each replicate for every passage (Figure 

3). Note that Zwart et al. (2009) previously reported that the Wt L1 produces larger 

polyhedra with 83% more virions than vEGTDEL. Hence, although a 1:1 mixture of OBs 

of the two viruses was used to start the experiment, the starting ratios of virions are biased 

towards the Wt L1 virus. When the initial OB ratio was 10:1, Wt L1 went to fixation in 

one of the two replicates, while in the other replicate both viruses were maintained. In all 

replicates starting with a 1:1 or 1:10 ratio, both viruses were maintained over five 

passages. Calculated selection rate constants (w) were not significantly different from 1 

for any inoculum ratio (for 10:1 ratio: w = 1.65 ± 0.65; for 1:1 ratio: w = 1.00 ± 0.08; for 

1:10 ratio: w = 1.05 ± 0.11; mean ± SE given).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3. qPCR data of serial passage experiments. Within each treatment different replicates are 

denoted as R1-R2 or R1-R3. On the x-axis is the passage number, and on the y-axis the base 10 

logarithm of qPCR ratio (Wt L1 to vEGTDEL) measured in ten pooled larval cadavers used for 

passaging. 

 

 

-3

-2

-1

0

1

2

3

0 1 2 3 4 5

Passage

L
o

g
 [

W
t 

L
1
:v

E
G

T
D

E
L

]

1:1 R1 - R3

1:10 R1 - R2

10:1 R1 - R2

Wt L1

vEGTDEL 

Wt L1 
Only

vED
Only



Mixed genotype infections in serial passage 

121  

 

DISCUSSION 

 

We investigated the behavior of vEGTDEL, an AcMNPV-derived recombinant 

baculovirus, in mixed infections with its parental wild-type virus, Wt L1. We specifically 

considered what ratios of Wt L1 to vEGTDEL would result in (1) faster speed of action as 

compared to the wild-type, and (2), whether introduction of the wild-type virus ensured 

maintenance and eventual fixation of the wild-type virus in infected larvae, over multiple 

passages. Speed of kill is an indicator for biological control efficacy (Cory et al., 1994; 

Sun et al., 2004b) while fixation of the wild-type in serial passage is an indicator for 

ecological safety. A 1:10 mixture gave a time until death similar to vEGTDEL alone, 

differing in mean by only 2 hours, which was not a statistically significant difference 

(Figure 1). Zwart et al. (2009) previously demonstrated that with this ratio and dose, the 

Wt L1 virus will be present in all infected larvae. Therefore, a 1:10 mixture appears to be 

an optimum ratio for field applications of the two viruses used here; it pairs rapid speed of 

kill with the maintenance of the wild-type virus in infected larvae. However, will the 

wild-type virus then also go to fixation and displace the recombinant virus? A serial 

passage experiment was performed with different initial inoculum ratios (1:10, 1:1 and 

10:1). Although the wild-type virus was maintained in all seven replicates, the wild-type 

virus went to fixation in only one replicate (Figure 3). Selection rate constants were not 

significantly greater than 1 at any of the initial inoculum ratios. We therefore conclude 

that while the wild-type virus is maintained when an inoculum mixture of 1:10 is used, 

there is no evidence that the wild-type virus is selected for or that it will go to fixation. 

We previously found that there is within-host selection against vEGTDEL in an 

SPE in passage experiments in single larvae (Zwart et al., 2009). On the contrary, in the 

SPE with inoculum from pooled larvae, reported here, there is no sign of selection for the 

wild-type virus. The main difference in the experimental setups is the number of larvae 

used for passaging. How could the use of multiple larvae for producing inoculum nullify 

the selection for wild-ype virus observed in single larva passages? The SPEs in single and 

multiple larvae represent highly different experimental designs: when passaging in single 

larva virus genotypes compete only within the host; however when passaging in multiple 

larvae there is also between-host competition between virus genotypes.  

One important factor in between host-competition is OB yield and previous 

experimental data (Zwart et al., 2009) suggest that intermediate mixtures may produce 

higher OB yields in T. ni L5 larvae. OB yield data obtained here (Figure 2) had a 

significant negative (i.e. downward curving) quadratic component in the between-

treatment variation, indicating that intermediate mixtures may produce a higher OB yield. 

These observations may explain why there is little or no selection for the wild-type virus 

when passaging in multiple larvae: the within-host selection for the wild-type virus is 
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counterbalanced by higher OB yields for intermediate mixtures. Maintenance of both 

genotypes in the majority of SPE replicates could indicate that the virus genotypes occupy 

somewhat different niches within host larvae, congruent with a subtle but significant 

increase in virus yield at intermediate genotype ratios. Although this explanation requires 

further testing, the results indicate that selection for the wild-type virus in the field may 

not be as strong as suggested by our SPE in single larvae (Zwart et al., 2009), because 

larvae may typically ingest OBs originating from multiple cadavers. The exact patterns of 

baculovirus horizontal transmission are therefore relevant for evaluating the ecological 

safety of fast-acting recombinant baculoviruses, but there have been few theoretical or 

experimental studies which have addressed this topic.  

We have conducted our experiments with a fixed dose (LD80) in L5 larvae, which 

are more resistant than earlier instars (e.g. Bianchi et al., 2000b; Cory et al., 2004). This 

means that the infection probability per OB is the lowest in L5 larvae and that when 

exposing larvae of all instars to the same OB dose, the average number of viral founders 

of infection will be the smallest in L5 larvae, and higher in all the other instars. Co-

infection with the wild-type virus should be expected in all treated stages, when the dose 

is high enough to give high frequency of co-infection in the least susceptible instar.  

We have shown that mixtures of a wild-type and a fast-acting recombinant 

baculovirus may be advantageous for biological control. Our results show that in 

laboratory settings the OB ratio can be optimized for achieving fast speed of action and 

the maintenance of the wild-type virus. However, our SPE results do not provide evidence 

that the wild-type virus will go to fixation in due course. On the contrary, results obtained 

here point to long term maintenance of a deletion mutant of AcMNPV in serial passages, 

even though the same recombinant was outcompeted by wild-type AcMNPV in previous 

passage experiments with single larvae. Thus, selection for the wild-type virus may 

depend on the number of larvae used for passaging. Patterns of baculovirus transmission 

in the field are not clear, and are likely to vary depending on host density. Both SPE 

results from single or multiple larvae must therefore be given consideration. Although 

optimization of OB ratio could result in both efficient pest control and maintenance of the 

wild-type virus, there remain concerns for ecosystem safety, as the recombinant is also 

maintained if larvae typically ingest OBs originating from multiple larval cadavers. This 

means that the approach of mixing OBs from a wild-type and fast-acting recombinant is 

not in itself a satisfactory alternative to previously suggested strategies for mitigating the 

persistence of recombinant baculoviruses (Hamblin et al., 1990; Hughes & Wood, 1996). 

However, our approach could be combined with that of Hamblin et al. (1990): one could 

generate co-occluded OBs containing a 1:10 ratio of wild type virus and a fast-acting 

recombinant virus missing the polyhedrin gene. High in vivo multiplicity of cellular 

infection (Bull et al., 2001, 2003) ensures that such co-occluded OBs could even be 

generated in insect larvae. The resulting OBs would presumably be fast acting, while the 
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deletion of polyhedrin would further reduce fitness of the recombinant virus. Overall, the 

results presented here indicate that processes at the within-host and between-host levels 

co-determine the outcome of competition between insect virus genotypes in agro-

ecosystems. Both levels of competition need to be considered in an ecological risk 

assessment for the use of genetically engineered virus in the biological control of insects. 
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Chapter 7 
 
 

GENERAL DISCUSSION 
 

 

Lepidopteran insect pests are limiting factors in the successful cultivation of 

agricultural crops. One of the main principles of applied ecology over the last decades has 

been the natural control of populations of economically damaging insect species, 

particularly agricultural and forest insect pests, using natural control agents such as 

parasites, predators and pathogens.  This in addition to the more conventional methods of 

chemical and integrated control using synthetic pesticides sometimes in combination with 

biological control agents. More recently transgenic crops are used that express one or 

more insect toxins, derived from Bacillus thuringiensis, which protect the crop effectively 

(Cannon, 2000). Extensive use of chemicals resulted and still results in the problem of 

resistance development in insects, in chemical waste and environmental decay, and cause 

human health risks. The evolution of resistance by insect and weed pests to commonly 

used chemical pesticides and to transgenic crops is a problem of increasing importance 

worldwide (Brattsten et al., 1986).  

The future perspective in biological control of crops is to develop a more effective 

approach to control phytophagous insects. Baculoviruses are associated with insects living 

in different habitats, on different plants, in and on soil, and in fresh water. Baculovirus 

diseases are widespread in insects and often reduce insect populations by causing 

epizootics. A number of baculoviruses are commercially available on the market (Chapter 

1) for inundative and inoculative control of pest insects. Control using baculoviruses is 

compatible with other insect control strategies such as biological and integrated control. 

However, they have a few drawbacks, such as slow speed of action, limited biological 

activity, UV sensitivity and a limited host range. Baculovirus recombinants have been 

engineered for improved insecticidal properties and tested in the field for their efficacy, 

but there is concern about their biosafety. In-depth analyses have been carried out on 

environmental impact of these genetically-modified baculoviruses in nature and to what 

extent they comply with safety regulations. 

A major question is to what extent genetically-engineered baculovirus are able to 

transfer the transgene into another host. This possibility is related to the chance of 

encounter and related to the survival of the recombinant baculovirus in the ecosystem. 

Long term presence of recombinant insect viruses depends on their ecological fitness in 

comparison with wild-type viruses. The hypotheses presented in this PhD thesis require, 
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in order to be tested, basic information to predict what will be the consequence of mixed 

baculovirus infections in insect populations, when genetically modified baculoviruses are 

used as biocontrol agents. Different experimental settings and approaches in laboratory, 

glasshouse and in the field are used to obtain quantitative insight in components of 

competitive fitness (Figure 1). The work especially concentrated on the fate of the 

released recombinant baculovirus when it comes into contact with naturally existing wild-

type genotypes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of the Chapters in the thesis. 

 

Mixed infections  

Multiple infections of the same host by different microparasite strains are 

commonly observed in natural populations (Taylor et al., 1997, Lipsitch & Moxon, 1997). 

Infection of one host by multiple pathogen genotypes is an important force in disease 

ecology and evolution. Recently, experimental and theoretical studies have provided more 

information on the mechanisms and conditions that could influence coexistence or 

exclusion of pathogens (Reed & Taylor, 2001). The interaction between different virus 

genotypes can only be fully appreciated if it is studied at multiple levels, within insects, as 

well as in insect populations in the laboratory, or in the field. There is relatively little 

information on the behaviour of mixed infections and how these affect the fitness of 

baculoviruses and their ecological impact upon release into the environment. 

The work described in this thesis focuses on mixed infections of different 

baculovirus genotypes in a range of virus-host systems. Studies were made at the 

individual insect level (intra-host competition) and at population level (crop level or 

laboratory trials with insect cohorts). The overarching aim was to obtain insight in the 

ecology of mixed genotype baculovirus infections, and particularly in competitive 
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interactions between coinfecting baculovirus genotypes within mixed infected hosts, and 

the consequences of these interactions for virus cycling and persistence of genotypes in 

agro-ecosystems.  

Theoretical studies of the pathogen interactions have emphasized the role of 

pathogenicity, transmission and interference in determining the outcome of the 

competition between the pathogens (Bremermann & Pickering, 1983; Hochberg, 1998; 

Ebert, 1998; May & Nowak, 1994; 1995). Invertebrate pathologists have multiple 

definitions for the term pathogenicity and virulence. According to Thomas & Elkinton 

(2004), virulence is defined as a severity of disease manifestation in infected individuals. 

Median time to death of an infected host (LT50) is a measure of virulence. Pathogenicity is 

the ability of a pathogen to produce infectious disease in an organism. Pathogenicity 

includes transmission. It is characterized by median lethal dose, LD50, and is measured in 

dose response bioassays.   

 Models of multiple infections fall into two classes. One class allows coexistence 

within the host under exploitative competition (coinfection models, May & Nowak, 

1995). The second class is interference competition, where resident pathogens may be 

rapidly replaced by a superior genotype (superinfection models May & Nowak, 1994). 

There are a number of models of multiple co-infections (Bremermann, & Pickering, 1983; 

Ebert, 1998; Briggs, & Godfray  1995, Bell et al., 2001, Bonsall, et al., 2005), but there is 

lack of empirical evidence for the outcome of the competing pathogen genotypes at the 

population level. 

In this study was addressed the issue of multiple infections among others with two 

biologically different, but near isogenic baculovirus genotypes (Helicoverpa armigera 

SNPV = HaSNPV) at the population level on cotton (Chapter 3 and 4). Two approaches 

were used to understand the dynamics of multiple infections by HaSNPV in this system. 

First, the behaviour of the larvae infected with a mixture of the both viruses was 

investigated. Secondly the virus transmission was studied under glasshouse and field 

experimental situations. The results indicate that larvae infected with HaSNPV–LM2 do 

not have major difference in behaviour in comparison with the wild type infected larvae. 

In contrast, the AaIT-recombinant induces modified behaviour in the infected insects: 

they drop off the plants. This together with lower yield can contribute to reduced virus 

transmission and lower virus fitness under field conditions. Larvae that died from mixed 

infections of this recombinant and the wild-type virus died at intermediate positions 

compared to those that died from either of the pure viral strains. 

Insect virus fitness in an ecosystem depends on virus transmission and behaviour 

and these responses are influenced by survival time and virus yield. Therefore also data 

on a number of biological parameters were collected which might be important in 

determining the impact of within-host competition and competition at the population 

level. Chapter 2 and 3 measure properties of host –virus interactions (at insect level), 
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which may be relevant for competition at the population level. We also assessed the effect 

of dose (inoculum size) on mixed infections. It was found that the HaSNPV genotypes 

differ in survival time and OB yield. Later killing of the host is correlated with a higher 

production of the transmission stages (OBs). A wild-type genotype, with a lower 

virulence (e.g. a longer ST50), is superior in terms of yield production in single infections, 

so this genotype will have an advantage in case when there will be a low incidence of 

multiple infections.  

Since the fitness of most pathogens depends on horizontal transmission from host 

to host, this issue was addressed in Chapter 4. Our interest was to determine the influence 

of density of infectors and time post virus release on the plant, particularly in horizontal 

transmission of mixed baculoviruses. Here we demonstrated a few important findings 

related to the transmission of the virus depended on the virus genotype. Transmission 

increased with density of infector insects and decreased with time lapsed since the 

inoculation of the infector larvae. The genetic modifications in HaSNPV-4A influencing 

survival time and yield were positively correlated with reduced transmission. Effects on 

transmission were not observed in HaSNPV-LM2, a recombinant with a deletion of the 

egt gene but without an additional transgene. Results of quantitative PCR indicate that the 

wild-type virus dominates in the recipient insect hosts, suggesting that the wild-type virus 

was transmitted more successfully than recombinants from mixed infected infector larvae 

to the next generation of insects. This suggests that a recombinant will be competitively 

displaced over time. Furthermore, comparison in persistence of biological activity of 

wild-type, genetically modified and mixtures of both baculoviruses in soil was performed 

in the field. Our result showed that HaSNPV-wt and HaSNPV-LM2 (lacking the egt gene) 

and the mixture of these two baculoviruses are equally persistent in the soil. However, 

decrease of the amount of virus present in the soil over time was indicated. 

Generally, host-pathogen interactions have been identified experimentally, in terms 

of pathogenicity, sublethal effects, disease transmission and so on, typically determined 

from short-term studies (a single generation). In order to evaluate the true impact of 

pathogens on host population dynamics, however, insect-pathogen relationships need to 

be studied continuously over multiple / many generations. Within-host dynamics is an 

important level of interaction between genotypes. Virus strains competing for a shared 

limited resource are in a “tragedy of the commons” situation. The expected situation is 

that the outcome of this competition will be that the strain with the highest growth rate 

will outcompete slower growing strains at the within-host level. These experiments mimic 

a scenario where viruses with different genetic properties co-infect the same host. In both 

cases prior to serial passaging of the viruses several larvae were pooled together. 

The most successful competitor is the one that most effectively exploits shared 

resources. Chapters 5 and 6 have a different outcome from serial passage experiments. In 

Chapter 5 there is a competitive replacement of the recombinant with the wild-type virus, 
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which was not observed in Chapter 6. In Chapter 5 it was found that a fast acting 

recombinant virus (Spodoptera exigua MNPV recombinant Se-XD1) exhibits reduced 

‘within host’ competitive fitness, i.e. at within host insect level. Since most of the 

experimental models predict that the genotype which has higher fitness (higher 

reproduction, speed of kill etc) will be more competitively fit and will overcome the wild-

type baculovirus. The latter is bigger in DNA size and therefore requires more time for 

replication and thus has slower speed of action. However, our findings have a different 

outcome and the wild-type SeMNPV was found to be a superior competitor, despite a 

larger genome than the recombinant SeXD1. It has been reported that the expression of a 

heterologous marker gene (β-gal) leads to the reduced fitness of AcMNPV in mixed 

infections with wild-type AcMNPV in cell culture (Huang et al., 1991). The presence of 

the GFP marker gene in Se-XD1 might also influence the ‘within-host’ fitness of this 

virus since was proven that the marker genes are not neutral. Thus the findings suggest 

that under the experimental conditions recombinant Se-XD1 is displaced by the wild-type 

strain SeUS1, over successive passages. 

To further explore and understand the competition between wild-type and 

genetically modified baculovirus genotypes in mixed infections, experiments were 

performed with wild-type and recombinant AcMNPV in multiple insect host generations 

in 5
th

 instar Trichoplusia ni larvae, (Chapter 6). Continuous presence of two genotypes, 

wild-type and the recombinant, after several passages in the insect host indicates that the 

recombinant virus may be maintained over time in an infect population over many 

generations. In one serial passage line, started with a recombinant : wt ratio of 1 : 10, the 

wild-type virus eventually displaced the recombinant genotype completely. The findings 

in Chapter 6 contrast with those in Chapter 5, where the wild type virus was a superior 

competitor that displaced the recombinant virus. This might be related to a difference in 

the cell culture  ‘in vitro’ in Chapter 5 versus a more complex environment in the insect 

body ‘in vivo’ in Chapter 6. In contrast, Zwart et al. (2009) previously found that an egt-

deletion mutant of AcMNPV was outcompeted in serial passage experiments using 

inoculum from single infected larvae to infect the next generation of larvae. The 

explanation for such a difference in outcome, even though the same virus genotypes and 

insects were used in performing the two sets of experiments, might be a difference in 

methodology.  

 

Conclusion and further perspectives 

The results presented in this work are a further step in understanding the behaviour 

of insects mixed-infected with baculoviruses. However, in our case we always release the 

insects on a certain position of the plants, but in the future it might be interesting they be 

placed on the plastic container and are free to wander and search on the plant, because it 

was reported that there is learning process involved in the H. armigera (Cunningham, 
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2004). Further epizootical studies on the influence of the mix infection on the behaviour 

of the larvae movement should include also the different instars of the H. armigera larvae, 

because from recent studies there were indications that the distribution of the larvae in 

various instars is different (Vascancelos,1996).  

Using the fast-acting HaSNPV-4A genotype in glasshouse transmission 

experiments confirmed the importance of the integration of several parameters involved 

(speed of kill, production of OBs), which are responsible for a difference in the 

performance of the various baculovirus genotypes. Also a question, which was not 

experimentally approached in this thesis, is the possibilities in future studies to include 

wild-type HaSNPV in mixed infections along side with the faster killing virus HaSNPV-

4A in a field setting. This latter virus has better biocontrol properties than wild-type 

HaSNPV in terms of speed of kill, reduced yield, and reduced transmission in the co-

infection studies in a field setting. In our field studies we have been able to investigate the 

host-pathogen interaction in a contained environment (cages), which is an approximation 

of the real situation. However, open field experiments are needed since many other factors 

play a role in insect-pathogen interaction and dynamics.  

Our results from the QT-PCR analysis on the DNA isolated from single larva 

initially infected with both viruses in equal ratio, showed that the wild type is taking over 

the recombinant virus due to this results we assume that this virus has a lower fitness.  

There is potential to further broaden our understanding of mixed infections by 

further empirical and theoretical studies. In the current study, the larvae were always 

challenged simultaneously, and we did not try sequential (asynchronous) infection of the 

larvae. Milks et al. (2001) found that the wild-type AcMNPV and genetically modified 

AcMNPV-AaIT are equally fit during intra host competition, but the outcome of the 

competition was strongly influenced by the dose and the synchrony of the infection of the 

two viruses. The virus that was administrated first to a larvae gained competitive 

dominance in asynchronous infections, which was not the case in synchronous infection 

where both viruses have a level playing field. This situation is analogous to competition 

between crop plants and weeds, where the outcome of competition depends on the timing 

of seedling emergence (e.g. Kropff & Spitters, 1991; Kropff & van Laar, 1993) 

The fact that the ∆egt baculoviruses result in lower yield of OBs/larva can be of 

concern, as secondary transmission of baculoviruses is important for the success of the 

baculoviruses as a biological insecticide. The amount of virus produced per gram of dead 

larva, although lower in larvae killed by the egt, may be sufficient to allow efficient 

secondary transmission in the field. On the other hand the reduced yield from the ∆egt 

baculoviruses is positive since it may contribute to rapid disappearance from ecosystems 

after use, and thus enhance ecological safety.  

The knowledge of baculovirus biology and ecology needs to be broadened further 

to not leave any doubt that biopesticides based on baculovirus formulations will cause 
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lower risk to the environment than classical chemical pesticides. This can be achieved by 

the combination of theoretical and empirical studies utilizing new advanced molecular 

techniques. For the time being, the evidence for ecological safety and non-persistence of 

genetically-modified baculoviruses in agro-ecosystems is insufficient to justify their 

release for large-scale practical use. Further studies will be needed to enhance familiarity 

and insight in the long term behaviour of virus genotypes in agro-ecosystems and build 

confidence that they can be used safely, or – alternatively – show that they pose intrinsic 

risks that cannot be ruled out beyond reasonable doubt.  
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SAMENVATTING 

 

 

 

Insectenplagen vormen een groot probleem in de gewasproductie en zijn steeds 

moeilijker verantwoord onder controle te houden met conventionele (chemische) 

middelen. Baculovirussen zijn ontwikkeld als een alternatief bestrijdingsmiddel en zijn 

reeds vele jaren ook commercieel in gebruik als biopesticide. Genetische modificatie is 

toegepast om de biologische eigenschappen van baculovirussen verder te verbeteren o.a. 

door het verwijderen van sommige baculovirusgenen (egt) of juist virusvreemde genen in 

te brengen (toxines, hormonen, etc.) zodat geïnfecteerde insecten sneller worden gedood 

en minder schade veroorzaken. Baculovirussen, die niet beschikken over een egt-gen 

(codeert voor een ecdysteroïd UDP-glycosyltransferase) of een insertie hebben van het 

insectspecifieke toxine-gen AaIT (afkomstig van Androctonus australis Hector), doden 

hun gastheer sneller dan wildtype baculovirussen. Er is weinig bekend over de respons 

van insectenlarven op een mengsel van wildtype en genetische veranderde virussen en 

ook is er nog betrekkelijk weinig kennis over de relatieve fitness van verschillende 

baculovirus varianten als deze gelijktijdig een insectenlarve infecteren. De relatieve 

fitness bepaalt de langetermijndynamiek en persistentie van deze recombinanten in agro-

ecosystemen. Specifieke aandacht in dit proefschrift gaat uit naar het gedrag van 

menginfecties van wildtype en recombinante baculovirusvirusvarianten op insecten in het 

plant-insect-virus (katoen – katoendaguil – HaSNPV) systeem (hoofdstuk 1) 

In hoofdstuk 2 worden metingen beschreven van de mediane overlevingstijd (ST50) 

van derde stadium larven van de katoendaguil Helicoverpa armigera, wanneer deze 

besmet worden met het wildtype HaSNPV (HaSNPV-wt), een HaSNPV variant met een 

verwijderd egt-gen (HaSNPV-LM2) of met een 1:1 mengsel van deze twee 

virusvarianten. Bovendien zijn de mediane letale dosis (LD50) en opbrengst aan ‘occlusion 

bodies‘ (OB = eiwitlichaampjes die virions bevatten) vastgesteld. Verschillende 

doseringen zijn ondermeer gebruikt om te bepalen of de virusdosis invloed heeft op de 

totale opbrengst aan OB’s of op de interactie tussen virusvarianten. Bij hoge 

virusdoseringen doodde HaSNPV-LM2 H. armigera-larven significant sneller (ongeveer 

20 uur) dan HaSNPV-wt, maar bij lage doseringen was er geen significant verschil in 

overlevingstijd tussen de virusvarianten. De overlevingsduur na blootstelling aan een 

hoge dosis van een virusmengsel was significant verschillend van de overlevingsduur bij 

blootstelling aan één van de afzonderlijke virussen. Deze duur lag tussen die van de twee 

afzonderlijke virussen in, maar verschilde niet van die van een enkele virusvariant bij lage 

dosering. Er werden geen verschillen in (LD50) gevonden tussen de virusvarianten of 

tussen enkele en menginfecties. Het aantal geproduceerde OB's per larve nam toe met 
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langere overleving en nam af met hogere dosis. Deze experimenten tonen aan dat de 

gevolgen van gemengde infecties voor insectenlarven afhangen van de ontvangen 

virusdosis. Dit zou in de beschouwing moeten worden betrokken wanneer de mogelijke 

ecologische gevolgen worden ingeschat van het toepassen van baculovirussen met 

verschillende biologische eigenschappen.  

Een verandering in het gedrag van larven tijdens de virusinfectie kan de overdracht 

van het virus beïnvloeden, en als gevolg daarvan de fitness. In hoofdstuk 3 is onderzocht 

hoe actief de larven zich verplaatsen over de plant, en op welke plek ze doodgaan. Beide 

factoren zijn potentieel van invloed op de ontmoetingskans van virus met gezonde larven, 

met consequenties voor de virusoverdracht. De gedragseffecten zijn onderzocht met 

vierde stadium larven op katoenplanten, zowel met larven die geïnfecteerd waren met een 

afzonderlijke virusvariant als met larven die waren blootgesteld aan een mengsel van een 

wildtype HaSNPV en een deletiemutant. Het egt-ve virus, HaSNPV-LM2, veroorzaakte 

een snellere dood en een lagere  virusopbrengst in het vierde larvestadium van de 

katoenrups, maar er werd over drie experimenten geen consistent effect op het gedrag van 

de geïnfecteerde larven gevonden. Twee gecontroleerde experimenten vonden plaats in 

een beschermde omgeving (kas), en een derde in een plastic kooi in een katoenveld. Een 

recombinant HaSNPV, dat het AaIT-gen bevatte (HaSNPV-4A), veroorzaakte een 

snellere dood en de kadavers werden gevonden op de lagere delen van de plant of op de 

grond. Larven die stierven door de ‘gemengde’ infecties van HaSNPV-4A en het wildtype 

virus deden dat op vergelijkbare plaatsen als larven geïnfecteerd met een van de 

afzonderlijke virusvarianten. De resultaten impliceren dat de overdracht van egt-negatieve 

varianten van HaSNPV te lijden kan hebben van de lagere virusopbrengst per larve, maar 

niet van gedragseffecten als gevolg van de afwezigheid van het egt-gen. In tegenstelling 

daarmee heeft het AaIT-gen een lagere OB productie tot gevolg en veroorzaakt het 

aangepast gedrag. Tezamen kan dit leiden tot een geringere overdracht van het virus en 

een lagere virusfitness onder veldomstandigheden.  

In hoofdstuk 4 is de overdracht van het baculovirus HaSNPV bij larven van de 

katoendaguil bestudeerd in een katoen-agrosysteem. De overdracht van drie genetisch 

verschillende HaSNPV varianten is onderzocht, variërend van larven die zijn geïnfecteerd 

met een enkel virusgenotype tot larven die zijn gecoïnfecteerd met twee verschillende 

genotypen. Onder deze genotypen bevonden zich een wildtype virus, HaSNPV, een 

variant zonder egt gen (HaSNPV-LM2) met een licht verhoogde dodingssnelheid, en een 

HaSNPV-variant (HaSNPV-4A), die een neurotoxine tot expressie brengt en een 

versnelde dood van het insect veroorzaakt. In drie veldexperimenten zijn geen duidelijke 

verschillen gevonden in de virusoverdracht bij verschillende behandelingen, bijv.: zowel 

twee virusvarianten afzonderlijk als virusmengsels hadden een gelijke snelheid van 

virusoverdracht. De overdracht nam toe naarmate de dichtheid van het aantal gastheren 

toenam en nam af met het verstrijken van de tijd sinds de inoculatie van de geïnfecteerde 
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larve met virus. Andere waarnemingen gaven de indruk dat de persistentie van deze 

HaSNPV's in de bodem beïnvloed wordt door zonlicht. Significante verschillen in 

virusoverdracht tussen de virusgenotypen en hun mengsels zijn waargenomen in het 

kasexperiment. De onderzochte HaSNPV genotypen hebben duidelijke verschillen in 

dodingstijd en virusopbrengst. Er werd echter geen duidelijk gevolg van deze verschillen 

waargenomen op gewasniveau voor de snelheid van virusoverdracht, wanneer het egt-

negatieve HaSNPV-LM2 gebruikt werd. Echter, HaSNPV-4A (egt-negatief, AaIT-

positief) had een significant lagere overdracht. Gebaseerd op deze bevindingen werd de 

hypothese opgesteld dat de competitie tussen virusgenotypen (het wildtype HaSNPV en 

HaSNPV-LM2) op het gastheerinterne niveau een belangrijkere factor is in de competitie 

tussen baculovirussen in het katoen-agro-ecosysteem is dan de verschillen die optreden op 

gewasniveau. 

De laatste twee hoofdstukken van dit proefschrift gaan nader in op de competitie 

tussen virusgenotypen binnen het insect, aan de hand van twee andere baculovirussen, 

SeMNPV en AcMNPV in twee andere gastheren, de floridamot Spodoptera exigua en de 

spanrups Trichoplusia ni. In hoofdstuk 5 wordt de competitie tussen twee genotypen van 

het S. exigua kernpolyedervirus  (SeMNPV) bestudeerd in zogenaamde seriële passages. 

Daarbij werd een virusmengsel gedurende een aantal generaties overgezet in 

opeenvolgende cohorten van tweede-stadium larven van S. exigua. Een van deze 

genotypen was een SeMNPV wildtype (SeUS1); de ander was een SeMNPV-recombinant 

(SeMNPV-XD1). De laatste veroorzaakt een snellere doding dan SeUS1. SeXD1 mist een 

aantal genen, waaronder het egt gen; SeXD1 produceert een groenfluorescerend eiwit 

(GFP). Dit eiwit maakt de identificatie mogelijk van SeXD1 infecties in celkweken en in 

insecten.  Het relatieve aandeel SeUS1 en SeXD1 in OB’s van seriële gemengde infecties 

is bepaald door middel van plaque testen van virus uit geïnfecteerde larven op groeiende 

cellen (wit/groen screening), door polymerase kettingreacties (PCR) en restrictie-

enzymanalyse (REN). Het SeUS1-genotype concurreerde het SeXD1-genotype volledig 

weg in achtereenvolgende passages. Afhankelijk van de oorspronkelijke verhouding 

tussen virusgenotypen werd de SeXD1-recombinant niet meer aangetroffen na zes tot 

twaalf passages in larvencohorten. De dynamica van de competitie werd beschreven met 

een eenvoudig wiskundig model. Gemiddeld nam de verhouding SeSU1/SeXD1 toe met 

een factor 1,9 per passage. Onder deze specifieke omstandigheden werd de SeXD1-

recombinant vervangen door het wildtype virus SeUS1. Verder onderzoek is echter nodig 

om er zeker van te zijn dat dit ook het geval is wanneer deze baculovirussen gebruikt 

worden onder de complexere omstandigheden van een agro-ecosysteem.  

In hoofdstuk 6 zijn Trichoplusia ni-larven blootgesteld aan diverse verhoudingen 

van het wildtype A. californica MNPV (AcMNPV) en de daarvan afgeleide recombinant 

vEGTDEL dat het endogene egt-gen mist. De mediane overlevingstijd (ST50) werd 

bepaald voor beide genotypes, en uitgaande van drie verschillende mengverhoudingen 
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(1:10, 1:1 en 10:1) werd de genotype verhouding in vijf seriële passages bepaald. Bij elke 

passage werden tien geïnfecteerde larven de OB’s geïsoleerd als inoculum voor de 

volgende passage. Een 1:10-verhouding (wildtype AcMNPV tegenover vEGTDEL) 

veroorzaakte een snelle actie van het virus, terwijl het wildtype virus na vijf passages 

behouden was gebleven. Het wildtype virus (AcMNPV) concurreerde in dit geval de egt-

negatieve virusvariant vEGTDEL niet weg, en na vijf passages waren in vijf van zes 

passagelijnen beide virusgenotypen nog aanwezig. De persistentie van vEGTDEL plaatst 

vraagtekens bij de veronderstelde superieure competitiviteit van het wildtype virus.  Dit 

suggereert wellicht een risico voor de veiligheid van het ecosysteem, omdat het 

recombinante virustype niet geheel weggeconcurreerd wordt, althans in deze 

laboratoriumopzet. 

De resultaten beschreven in dit proefschrift laten zien dat de ecologische fitness 

van de baculovirussen bepaald wordt door zowel gastheerinterne als -externe factoren. 

Menginfecties kunnen resulteren in een tussenliggende uitkomst vergeleken met infecties 

door een afzonderlijk genotype (bijv. overlevingstijd; hoofdstuk 2) of in reacties die niet 

voorspeld hadden kunnen worden op basis van experimenten met enkele virussen 

(bijvoorbeeld de overmatig opbrengst bij een infectie met gemengde virussen; hoofdstuk 

6). Precieze en gedetailleerde experimenten zijn noodzakelijk om genotypen van 

baculovirussen te selecteren met een lagere fitness vergeleken met een wildtype virus, 

opdat deze eerste, wellicht recombinante baculovirussen het in de competitie afleggen 

tegen het wildtype baculovirus en verdwijnen in de tijd. Deze experimentele resultaten en 

inzichten kunnen van waarde zijn voor het ontwikkelen van ecologisch veilige strategieën 

voor het gebruik van genetisch gemodificeerde baculovirussen in de biologische 

bestrijding van insectenplagen. 
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SUMMARY 

 
 

 

Insect pests are a major impediment to the production of food crops and are 

increasingly difficult to control with conventional chemical insecticides. Baculoviruses 

have been developed as an alternative control method and they have been used as 

commercial biopesticides for many years. Genetic modification has been exploited to 

improve the biological properties of baculoviruses, by deletion of baculovirus genes or by 

insertions of foreign genes such as toxins, hormones, etc. Recombinant baculoviruses, 

which lack the egt gene (encoding for ecdysteroid UDP glucosyltransferase), or have an 

insertion of the AaIT (Androctonus australis Hector) insect specific toxin gene, generally 

kill their hosts faster than wild type strains. The response of insects to mixtures of virus 

genotypes – not unusual in nature - and its influence on several important baculovirus 

fitness parameters is less well known. Also the long-term fate of these recombinants in 

agro-eco systems is not well known, which depends on their ecological fitness. This thesis 

presents work on elements of ecological fitness. Particular attention is given to the 

behavior of mixed infections of two virus variants in insects and the plant-insect-virus 

cotton – cotton bollworm – HaSNPV (Helicoverpa armigera nucleopolyhedrovirus). 

In Chapter 2 the median survival time (ST50), median lethal dose (LD50) and 

occlusion body (OB) yield were compared for third instar larvae of the cotton bollworm, 

H. armigera (Hübner) after challenge with wild-type HaSNPV (HaSNPV-wt), a strain 

with a deletion of the egt gene, HaSNPV-LM2, and a 1:1 mixture of these two virus 

strains. A range of doses was used to determine whether the total number of OBs 

influenced the response to challenge with a mixture of virus strains versus single strains. 

At high virus doses HaSNPV-LM2 killed H. armigera larvae significantly faster (ca. 20 

h) than HaSNPV-wt, but at low doses, there was no significant difference in survival time 

between the two viruses. The survival time after challenge with mixed virus inoculum 

was significantly different from and intermediate between that of the single viruses at 

high doses, and not different from that of the single viruses at low doses. No differences 

in lethal dose were found between single and mixed infections or between virus 

genotypes. The number of OBs produced per larva increased with time to death and 

decrease with virus dose, and no significant differences among virus treatments were 

found. These experiments show that the outcome of mixed infections depends on dose 

and this should be taken into account when evaluating the ecological consequences of 

release of viral types with different biological properties.  

Modifications of larval behaviour upon virus infection can influence virus fitness 

as a result of affecting the rate of virus transmission. In Chapter 3 the distance moved and 

position of virus-killed cadavers of fourth instar H. armigera larvae infected with 
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HaSNPV-wt or one of two recombinant genotypes of this virus (HaSNPV-LM2 and 

HaSNPV-AaIT) on cotton plants were studied. The behavioral effects of virus infection 

were examined both in larvae infected with a single virus genotype and in larvae 

challenged with mixtures of HaSNPV-wt and one of the recombinant viruses. HaSNPV-

LM2 caused more rapid death and lower virus yield in fourth instars, but an egt-deletion 

did not produce consistent behavioral effects over three experiments, two under controlled 

glasshouse conditions, and one in field cages. A transgenic virus containing the AaIT 

gene (HaSNPV-AaIT), caused faster death and larvae died in lower strata of the cotton 

plants. Larvae that died from mixed infections of this recombinant and the wild-type virus 

died at intermediate positions compare to those that died from either of the pure viral 

strains. The results indicate that transmission of egt-negative variants of HaSNPV may be 

affected by lower virus yield, but not by behavioral effects of the egt gene deletion. In 

contrast, the AaIT-recombinant will produce lower virus yields and show modified 

behaviour, which together can contribute to reduced virus transmission and lower virus 

fitness under field conditions. 

In Chapter 4 the transmission of the baculovirus HaSNPV among larvae of the 

cotton bollworm in the cotton agro-ecosystem was studied. Transmission of the three 

HaSNPV genotypes was studied, from larvae infected with a single virus genotype as well 

as from larvae infected with two different genotypes. Genotypes included (HaSNPV-wt 

HaSNPV-LM2 and HaSNPV-AaIT). In three field experiments no significant differences 

in virus transmission between treatments were demonstrated; i.e. two virus genotypes, as 

well as genotype mixtures, had similar rates of transmission. Transmission increased with 

density of host insects and decreased with time lapsed since the inoculation of the infector 

larvae. Side observations suggest that virus persistence of these HaSNPVs in soil is 

affected by solar radiation. Significant differences in transmission rate between virus 

genotypes and their mixtures were observed in the glasshouse experiment. The studied 

genotypes of HaSNPV have significant differences in time to kill and virus yield. No 

significant consequences of these differences were found for rates of virus transmission at 

the crop level when HaSNPV-LM2 (-egt) was used. However, HaSNPV-4A (-egt; AaIT) 

had significantly reduced transmission. Based on these findings, it was hypothesized that 

the competition between virus genotypes (HaSNPV and HaSNPV-LM2) at the “within 

host” level may be more important determinants of the outcome of competition between 

viruses in the cotton agro-ecosystem than differences that are expressed at crop level.  

The remaining two chapters in this thesis describe the “within host” competition 

between virus genotypes using two different insect host species and two virus species 

different from HaSNPV. In Chapter 5 an account is given on the competition between two 

near-isogenic genotypes of Spodoptera exigua NPV (SeMNPV) when serially passaged as 

mixtures in cohorts of 2
nd

 instar S. exigua larvae. One of the genotypes was a wild-type 

isolate SeMNPV, SeUS1, while the other was a SeMNPV recombinant (SeMNPV-XD1) 
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having a greater speed of kill than SeUS1. SeXD1 lacks a suite of genes, including the egt 

gene. SeXD1 expresses the green fluorescent protein (gfp) gene enabling the 

identification of SeXD1 in cell culture and in insects. The relative proportion of SeUS1 

and SeXD1 in successive passages of mixed infections was determined by plaque assays 

of budded virus from infected larvae and by polymerase chain reactions and restriction 

enzyme analyses. The SeUS1 genotype outcompeted recombinant SeXD1 over successive 

passages. Depending on the initial virus genotype ratio, the recombinant SeXD1 was not 

anymore detected after six to twelve passages. A mathematical model was developed to 

characterize the competition dynamics. Overall, the ratio SeUS1/XD1 increased by a 

factor 1.9 per passage. The findings suggest that under the experimental conditions 

recombinant SeXD1 is displaced by the wild-type SeMNPV strain SeUS1, but further 

studies are needed to ascertain that this is also the case when the same baculoviruses 

would be used in agro-ecosystems such as greenhouses and field. 

In Chapter 6 Trichoplusia ni larvae were challenged with different ratios of wild-

type Autographa californica NPV (AcMNPV) and recombinant vEGTDEL, which has the 

endogenous egt gene deleted specifically. Five serial passages of three different mixtures 

of OBs of the two viruses were also performed. For the serial passage, OBs from 10 

infected larvae were pooled and used to start the following passage. Then time to death 

was measured. A 1:10 ratio (AcMNPV versus recombinant vEGTDEL) ensures quick 

virus action, while the wild-type virus is also maintained over five passages. However, the 

wild type virus did not go to fixation in most replicates of the serial passage experiment, 

and there was no evidence for selection of the wild-type AcMNPV. This result suggests 

an ecosystem safety risk, as the recombinant virus may not be competitively displaced. 

Results in this thesis illustrate that the ecological fitness of baculoviruses is 

determined both at ‘within-host’ and ‘between-host’ level, and that mixed infections may 

result in intermediate response compared to pure virus infections (e.g. survival time; Ch. 

2) or in responses that cannot be predicted on the basis of experiments with pure viruses 

(e.g. over yielding in mixed virus infections; Chapter 6). Precise and detailed experiments 

and analyses are needed to select baculovirus genotypes with higher insecticidal activity 

but with lower fitness in comparison to a wild-type virus. This would result in competitive 

displacement of the recombinant baculovirus over time. These experimental results and 

insights can be of value for developing ecologically safe strategies for use of genetically 

modified baculoviruses in biological pest control. 
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KRATKA SODRZINA 

 

 

 

Stetnite insekti se glaven limitiracki factor vo proizvodstvoto na prehranbeni 

kulturi i osobeno tesko se kontroliraat so konvencionalnite hemiski insekticidi. 

Bakulovirusite se razvieni kakao alternativnen kontrolen metod i se koristat mogu godini 

kako komercijalni biopesticidi. Genetskata modifikacija bese iskoristena za da se 

podobrat biloskite karakteristiki na bakulovirusite, preku otstranuvanje na bakulovirusnite 

geni ili preku vnesuvanje (vmetnuvanje) na nepoznati (tugji) geni kako sto se toksini, 

hormoni, itn.  

Rekombinantnite bakulovirusi, na koi im nedostasuva egt genot ( koj e odgovoren 

za proizvodstvo na ecdysteroid UDP glucosyltransferase), ili imaat vgradeno AaIT 

(Androctonus australis Hector) specificen gen na toxin za insekti, voobicaeno pobrgu go 

ubivaat domakinot od diviot vid na virusi. Reakcijata na insektite na mesavinata od 

virusni genotipovi- sto ne e nevoobicaeno vo prirodata-i nivnoto vlijanie na nekoi od 

vaznite bakulovirusni zivotni parametri ne e dovolno prouceno. Isto taka, ishodot od 

nivnoto dolgorocno prisustvo vo agro-eco sistemot ne e dovolno proucen, sto zavisi od 

nivnion ekoloska sposobnost. Ovaa teza gi iznesuva istrazuvanjata na elementite na 

ekoloska sposobnost. Posebno vnimanie se dava na odnesuvanjeto na insektite inficirani 

so mesavina od dvata virusi i odnosot pomedju rastenieto-insektot-virusot , pamukot-

pamukovata gasenica-HaSNPV (Helicoverpa armigera nucleopolyhedrovirus). 

Vo vtoroto poglavje, srednoto vreme na prezivuvanje (ST50), srednata letalna doza 

(LD50) i proizvodstvoto na virus (OB) bea sporedeni za H. armigera (Hübner) larva od 

tret stepen na razvoj, posle infekcija so div vid na virus (HaSNPV-wt), virus so otstranet 

egt gen, HaSNPV-LM2, i 1:1 mesavina od ovie dva virusi.  Nekolku razlicni dozi bea 

koristeni so cel da se odredi kako vkupniot broj na virusni cesticki (OBs) vlijae na 

reakcijata na insektite na mesavina od virusi nasprema eden virus. Pri koristenje na visoki 

dozi, virusot HaSNPV-LM2 gi ubiva insektite znacitelno pobrzo (ca. 20 h) otkolku diviot 

vid na virus HaSNPV-wt, no pri niski dozi,  ne bese zabelezana poglema razlika  vo 

periodot na prezivuvanje pomedju dvata virusa. Vremeto na prezivuvanje na insektite 

inficirani so mesavina od dvata virusa bese znacitelno razlicno od  vremeto na 

prezivuvanje na insektite inficiraani so visoki dozi od samo eden virus, a bez vidna razlika 

koga bea koristeni virusi vo niski dozi. Ne bese pronajdena znacitelna razlika vo letalnite 

dozi pomegju edinecnite i mesovitite infekcii ili pomegju virusnite genotipa. Brojot na 

virusi proizvedeni po edinica larva se zgolemi proporcionalno so vremeto do nastapuvanje 

na smrt na insektite i se namali so  koristenata doza na virusite, no ne bese zabelezana 

nekoja pogolema  razlika pomedju razlicnite metodi na tretiranje na virusite. Ovie 

eksperimenti potvrdija deka ishodot od infekcijata na insekti so mesavina na virusi zavisi 
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od dozata koja se koristi, i ova treba da zeme vo predvid koga se vrsi procenka na 

ekoloskite posledicite od upotreba na virusi so razlicni biloloski karakteristiki.  

Modifikacijata vo odnesuvanjeto na larvite posle virusna infekcija moze da vlijanie 

na ekoloskata sposobnost na bakulovirusite kako resultat na vlijanieto vrz transmisijata na 

virusite. Vo tretoto poglavje bese ispituvano totalnoto rastojanie pominato od cetvrt 

stadium na larvi na pamukovo rastenie i pozicijata na mrtvite insekti koi bea inficirani so 

div vid na HaSNPV-wt ili genetski modificiranite virusi (HaSNPV-LM2 i HaSNPV-

AaIT). Efektot na odnesuvanjeto na larvite bese ispituvano kora larvite bea inficirani so 

eden virusen genotip ili so mesavina od div vid (HaSNPV-wt) i eden od rekombinantnite 

virusi. HaSNPV-LM2 predizvikuva pobrza smrt i pomala produkcina na virus vo cetvrt 

stadium na razboj na insektite, dodeka kaj insektite inficirani so virus koj ima nedostatok 

od egt gene ne se dobi konstanten efekt vo odnesuvanjeto na insektite pomedju trite 

eksperimenti, dva eksperimenti bea izvedeni vo kontrolirani oranzeriski uslovi i eden bese 

izveden vo polski uslovi. Genetski modificiraniot virus koj sodrzi AaIT gen (HaSNPV-

AaIT), predizvikuva pobrza smrt kaj larvite i tie uginuvaat na dolnite granki od 

pamukovite rastenija. Laravite koi umrele od mesana infekcija od div i rekombiniran virus 

najcesto umiraat na sredna pozicija sporedeno so larvite koi umiraa inficirani so eden od 

virusite. Rezultataite indiciraat deka prenesuvanjeto na HaSNPV virusot koj ima 

nedostatok na egt gen, moze da bide pod vlijanie na namalenata produkcija na virus, no ne 

e pod vlijanie na efektot koj egt-negativniot virus go ima na odnesuvanjeto na ovie 

inficirani insekti. Od druga strana, recombinantniot virus koj sodrzi AaIT gen kje ima 

namaleno proizvodstvo na virus i kje pokaze modificirano odnesuvanje, taka sto 

kombinacijata od ovie dva faktora moze do doprinese da se namali prenesuvanjeto na 

virusot i da se namali ekoloskata sposobnost na virusot vo polski uslovi.  

Vo cetvrtoto podglavje bese ispituvana transmisijata (prenesuvanjeto) na HaSNPV 

virusot pomedju H. armigera larvite na pamukot vo pamukoviot agro-ekosistem. 

Transmisijata na tri HaSNPV genotipa bese ispituvana, i toa na larvi inficirani samo so 

eden virus ili na larvi inficirani so dva razlicni genotipa. HaSNPV genotipovite koi bea 

ispituvani se (HaSNPV-wt, HaSNPV-LM2 and HaSNPV-AaIT). Vo trite polski opiti, ne 

bese zabelezana pogolema razlika pomedju razlicnite virusni tretmani, kako na primer, 

dvata genotipa na virus kako i nivnata mesavina so diviot vid, imaa slicen stepen na 

transmisija. Transmisijata se zgolemuvase so gustinata na larvite koi sluzea kako izvor na 

infekcija i se namaluvase so vremeto pominato posle infekcija na larvite koi sluzat kako 

izvor na infekcija. Dopolnitelnite ispituvanja dadoa indikacija deka postojanosta na 

virusot vo pocvata zavisi od soncevata radijacija. Znacitelnata razlika vo stapkata na 

transmisija pomedju virusnite genotipovi bese zabelezana vo oranzeriskite opiti. 

Ispituvanite virusni genotipovi na HaSNPV imaat znacitelna razlika vo pogled na vremeto 

na ubivanje i virusna produkcija. Pri upotreba na HaSNPV-LM2, ne bese zabelezana 

pogolema razlika vo pogled na transmisijata. Medjutoa, HaSNPV-4A (-egt; AaIT) pokaza 
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sznacitelno namalena transmisija. Vrs osnova na ovie soznanija, bese postavena 

hipotezata deka konkurencijata pomedju virusnite genotipa (HaSNPV and HaSNPV-

LM2) na nivo na “konkurencija vo samiot domakjin” moze da bide mnogu povazen factor 

za ishodot od konkurencijata pomedju dvata virusi vo pamukoviot agro-eko sistem, 

otkolku razlikite koi se pokazuvaat na nivo na rastenie.  

Preostanatite dve poglavja vo ovaa teza ja opisuvaat “konkurencijata vo samiot 

domacin” pomedju virusnite genotipovi koristejkji dva razlicni vidovi na insekti kako 

domakjin i dva virusi razlicni od HaSNPV. Vo pettoto poglavjeto  se opisuva 

konkurencijata pomedju dva genotipa od Spodoptera exigua NPV (SeMNPV) koga 

seriski se ispituvaat vo opiti od seriski pasaz vtor instar S. exigua larva inficirani so 

mesavina od virusi.  

Eden od virusnite genotipovi bese div tip na izolat od SeMNPV, SeUS1, dodeka 

drugiot bese rekombinat od  SeMNPV (SeMNPV-XD1), koj ima pogolema brzina na 

deluvanje od SeUS1. SeXD1 ima nedostatok na nekolku gena vklucuvajki goi egt genot. 

SeXD1 go proizveduva zeleniot fluroscenten (gfp) genkoj ovozmozuva negova 

identifikacija vo kultura na tkivo i insekti. Relativniot soodnos na SeUS1 and SeXD1 vo 

posledovatelni opiti na infekcii od mesavina na ovie virusi bese odredena so “plaque 

assays” (plaque analizi), od virus od inficirani larvi i koristenje na PCR i analiza so 

restrikcioni enzimi. SeUS1 genotipot go nadmina rekombinantniot SeXD1vo nekolku 

posledovatelni pasazi. Vo zavisnost od pocetniot soodnos na virusniot genotip, 

rekombinantniot SeXD1 ne bese povekje prisuten posle 6 do 12 pasazi (posledovatelni 

ispituvanja). So cel da se opise dinamikata na konkurencijata, bese napraven matematicki 

model. Opsto zemeno, soodnosot pomedju SeUS1/XD1 se zgolemuvase za koeficient od 

1.9 po pasaz. Naodite posocuvaat deka pod ekperimentalni uslovi rekombinantniot 

SeXD1 se zamenuva so diviot vid od SeMNPV- SeUS1, no neophodni se ponatamosni 

ispituvanja za da se potvrdi deka ova kje bide slucaj koga istite bakulovirusi kje se 

koristat vo agro-eco sistemi kako sto se oranzeriite i polskite uslovi.  

Vo sestoto poglavje, larvite od Trichoplusia ni bea inficirani so razlicen soodnos 

od div vid virus Autographa californica NPV (AcMNPV) and recombinanaten vid 

vEGTDEL, koj ima otstranet egt gen. Pet seriski pasazi od tri razlicni mesavini na OB od 

ovie dva virusi bea izvedeni. Za seriskiot passage, OB od 10 inficirani larvi bea grupirani 

i iskoristeni da se se zapocne sledniot pasaz. Potoavremeto od infekcija do nastapuvanje 

na smrt na insektite bese izmereno. Soodnos od 1:10 (AcMNPV nasproti recombinanten 

vEGTDEL) ovozmozuva brza virusna aktivnost, dodeka  diviot vid na virus e istotaka 

prisuten i posle 5 pasazi. Vo sekoj slucaj, diviot vid na virus ne bese fiksiran vo povekjeto 

replikacii od seriskiot pasazen opit, i  ne postoese dokaz za selekcija na diviot vid na 

AcMNPV. Ovoj resultat implicira bezbedonosen rizik za eco-sistemot, ako se zeme vo 

predvid deka  rekombiniraniot virus mozebi nema celosno da bide zamenet.  
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Rezultatite vo ovaa teza ilustriraat deka ekoloskata sposobnost na bakulovirusite e 

odreden na nivo na dva vida na konkurencija: “ vo domakjinot” i “pomegju domakjinot”, i 

deka infekciite so mesavina od dvata virusa moze da rezultiraat so neposreden odgovor 

sporedeno so cisto virusna infekcija (na pr. vreme na prezivuvanje, vtoro poglavje) ili da 

dadat rezultati koi mozat da bidat tesko predvidlivi vrz baza na opiti so cisti virusi ( na pr. 

zgolemeno proizvodstvo pri infekcii so mesavina od virusi,sesto  podglavje). Precizni i 

detalni opiti i analizi se neophodni za da se izbere bakulovirusen genotip so povisoka 

insekticidna aktivniost, no so pomal fitness vo sporedba so diviot vid na bakulovirus. Po 

izvesen period, ova kje rezultira so konkurentska  zamena na rekombiniraniot virus. Ovie 

eksperimentalni rezultati i sogleduvanja  mozat da bidat od znacenje za razvivanje na 

ekoloski bezbedni strategii za upotreba na genetski modificirani bakulovirusi vo 

bioloskata zastita od stetnici.  
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ABBREVIATIONS 
 

 
 

General 
 

AaIT Androctonus australis (Hector) insect 

toxin 

bacmid Full-length, biologically active 

baculovirus genome as a bacterial 

plasmid 

bp Base pair 

BV Budded virus 

EGTDEL Recombinant AcMNPV missing the 

egt gene 

GV  Granulovirus 

h hours 

IPM Integrated pest management 

kbp kilo bp 

LD50 Dose at which 50% of the larvae die 

MNPV Multiple Nucleopolyhedrovirus 

MOI Multiplicity of infection: the mean 

number of infectious virions offered 

per cell 

NC Nucleocapsid 

MNPV Multi-capsid nucleopolyhedrovirus 

NPV Nucleopolyhedrovirus 

nt Nucleotide 

OB Occlusion body 

ODV Occlusion derived virion 

ORF Open reading frame 

NTC Non template control 

p.i. Postinfection 

PCR Polymerase chain reaction 

qtPCR Quantitative real time PCR 

SNPV Single-capsid nucleopolyhedrovirus 

SPE Serial passage experiment 

ST50 Median survival time  

 

 

 

 

 

 

 

 

 

 

 

 

 

Viruses 
 

AcMNPV Autographa californica MNPV  

AgipMNPV Agrotis ipsilon MNPV 

CpGV Cydia pomonella GV 

HaSNPV Helicoverpa amigera SNPV 

HaSNPV-LM2 HaSNPV missing the egt gene 

HzSNPV  Helicoverpa zea SNPV 

LdMNPV Lymantria dispar MNPV 

SeMNPV Spodoptera exigua MNPV 

SeMNPV-US1 Wild type SeMNPV 

SeMNPV-XD1 Recombinant SeMNPV missing 

the egt gene 

SfMNPV Spodoptera frugiperda MNPV 

TnMNPV Trichoplusia ni MNPV
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