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VOORWOORD 

In dit voorwoord beschrijf ik de aanleiding voor het tot stand komen van dit proefschrift. Ik 

geef je een kort terugblik op wat vooraf ging en ik neem de tijd om een aantal mensen te 

bedanken. 

 

Mijn belangstelling voor natuur- en scheikunde werd gewekt door de kadootjes die ik vroeger 

kreeg: technisch lego, een scheikundedoos waarmee je leuke proefjes kon doen en een doos 

met elektraonderdelen waarmee je bijvoorbeeld een alarmsysteem voor je slaapkamer kon 

maken. Ook mijn belangstelling voor biologie werd jong gewekt, het lijkt me dat de vele 

wandelingen door het bos, het vissen en het spelen op de boerderij hier sterk aan hebben 

bijgedragen.  

 

Een studie met veel aandacht voor biologie, natuurkunde, of scheikunde? Dat was de vraag 

waarmee ik worstelde bij mijn keuze voor hoger onderwijs. Deze drie vakken waren favoriet, 

al was handenarbeid natuurlijk ook erg leuk. Ik heb destijds met mijn vader drie hogescholen 

bezocht. Een school in Den Bosch ‘waar men iets deed met chemie’, een school in Velp ‘waar 

met zich bezig hield met de levende natuur’ en een school in Arnhem ‘voor technische 

zaken’. Na niet al te lang te hebben nagedacht koos ik voor werktuigbouwkunde aan de 

Hogere Technische School (HTS) te Arnhem. Hier kon je –volgens mijn vader– in ieder geval 

altijd wel een boterham mee verdienen in de toekomst, een argument dat ik destijds als 

onbelangrijk afdeed.  

 

Mijn belangstelling voor biologie bleef. Mijn eerste HTS stage liep ik dan ook bij het Instituut 

voor Milieu en Agritechniek (IMAG) te Wageningen. Hier werd onderzoek verricht naar de 

ontwikkeling van een oogstrobot voor komkommers. Een prachtige stage waarbij natuur en 

techniek samenkwamen. Ook mijn tweede stage periode heb ik te danken aan het IMAG. Ik 

heb namens dit instituut onderzoek verricht aan dierlijke tractie voor bodembewerking in 

Zambia. Ook hier kwam natuur en techniek bij elkaar. 

  

Na mijn studie werktuigbouwkunde het ik een aantal keer gesolliciteerd maar al snel werd 

duidelijk; ik wilde niet de hele dag technische tekeningen maken, zittend achter een 

computerscherm. Daarop besloot ik het internet af te struinen. Mogelijk kon ik met mijn HTS 

diploma aansluiten op een andere opleiding waarbij techniek en natuur centraal staan. De 
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opleiding Landbouwtechnische Wetenschappen aan de Wageningen Universiteit leek mij 

ideaal. Vakken over planten, over dieren, vaak met een flinke scheut techniek overgoten. Dat 

deze universiteit dicht bij Arnhem lag vond ik bovendien een groot voordeel omdat ik mij met 

deze stad vertrouwd voelde en daarom niet opnieuw wilde verhuizen. De opleiding 

Landbouwtechnische Wetenschappen werd voor een groot deel verzorgd door de 

leerstoelgroep Agrarische Bedrijfstechnologie. Toen Wim Huisman, destijds 

verbonden aan deze leerstoelgroep tijdens een college vroeg: “Wie wil er na zijn studie 

promotieonderzoek verrichten?” vloog mijn hand als enige omhoog. Onderzoeker, dat klonk 

toch een beetje magisch. 

 

Nu, vijf jaar later weet ik, onderzoek kent inderdaad zijn magische momenten. Dit zijn 

momenten waarbij mensen op je pad komen, juist als je ze nodig hebt, resultaten verschijnen 

die je totaal niet verwacht en ideeën opborrelen die je nooit eerder hebt gehad. Daarnaast kent 

onderzoek ook saaie, vermoeiende, en drukke momenten. Juist dan heb je hulp nodig. 

 

Vele mensen hebben me geholpen de afgelopen vijf jaar. Ik wil een aantal mensen graag 

speciaal noemen omdat ik donders goed besef dat zij zich hebben ingezet voor mij en daarmee 

dit proefschrift hebben mogelijk gemaakt. Ongetwijfeld vergeet ik hierbij een aantal mensen 

te benoemen, hierbij wil ik deze alvast bedanken. Onderstaand de mensen die ik wil 

onthouden. 

 

Om te beginnen, mijn 1e copromotor Jan Willem Hofstee. Je hebt mij begeleid, eigenlijk al 

vanaf de eerste dag dat ik in Wageningen ging studeren tot aan nu. Hij heeft me vaak laten 

zien hoe je nauwkeurig werkt en hoe je onderscheid kunt maken tussen rationele en 

emotionele aspecten. Deze kwaliteiten heb ik daardoor zelf een beetje kunnen ontwikkelen. 

Mijn dank daarvoor, maar nog veel meer voor je geduld en doorzettingsvermogen, nodig om 

een eigenwijs iemand als ik te kunnen begeleiden. 

 

Als nächstes möchte ich mich bei Jürgen Wildt, meinem zweiten Co-Promoter, bedanken. Es 

war für mich etwas Besonderes, mit dir zusammen gearbeitet zu haben. Du hast mich 

verschiedenste Dinge gelehrt, nicht nur in technischer und physikalischer Hinsicht, sondern 

auch in Bezug auf die Umgangsformen in den Wissenschaften. Dank dir habe ich erkannt, 

dass meine Art der schriftlichen Kommunikation oftmals viel zu direkt war und dass es der 
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Sache dienlich ist, wenn man seinem Gegenüber gegenläufige Ansichten auf möglichst 

taktvolle Art und Weise zu verstehen gibt. Vielen Dank aber vor Allem fur die Hilfe bei der 

Ausführung und Interpretation der vielen Messungen im Labor des Instituts „Phytosphere" in 

Jülich (Deutschland). 

 

Vervolgens wil ik Eldert van Henten bedanken, mijn eerste promotor. Bij jouw aanstelling in 

2005 kreeg jij te maken kreeg met mij, een beginnend promovendus, die dacht te kunnen 

jongleren met tien ballen tegelijkertijd. Je hebt mij duidelijk gemaakt dat met minder ballen 

vaak mooiere kunstjes zijn te maken. Bedankt voor je geduld en begrip voor de soms toch 

heftige discussies die we hadden. 

 

Natuurlijk bedank ik ook Harro Bouwmeester, mijn tweede promotor. Je stelde je fantastische 

laboratorium faciliteiten beschikbaar voor mijn ‘Wageningse’ metingen. Ik bewonder jouw 

enthousiasme, kunde en je betrokkenheid. Ik herinner me nog goed dat je mij spontaan 

opbelde om te vertellen dat er net een artikel verschenen was, dat mogelijk belangrijk was 

voor mijn onderzoek. 

 

Francel Verstappen, jij hebt me waanzinnig geholpen bij de metingen. Ongelooflijk hoe je 

telkens maar weer de spullen klaar had staan terwijl je ook zoveel andere dingen had te doen. 

Ongetwijfeld weet je hoe belangrijk goede metingen zijn voor goed onderzoek: de uitspraak 

“meten is weten” stond bij jou hoog in het vaandel. 

 

Een niet te onderschatten bijdrage komt van Jan van Kan. Je hebt mij vele malen geholpen bij 

het voorbereiden van de Botrytis sporenoplossing. Jan, het lijkt voor mij alsof je deze dingen 

belangeloos deed en zuiver handelde uit nieuwsgierigheid. Hierbij wil ik ook Maarten 

Posthumus bedanken, massa-spectrometrist bij het Laboratorium voor Organische Chemie. Je 

kantoor leek wel een museum. Ik als techneut vond het reuze interessant om de instrumenten 

te zien waarmee je de afgelopen 40 jaar hebt gewerkt.  

 

Verder wil ik Taede Stoker, Henk Meurs, Ton Blokzijl en Andre Maassen bedanken voor 

jullie ondersteuning bij de kasproeven. Na het afbranden van een kascompartiment gaven 

jullie blijk van betrokkenheid en professionaliteit door snel nieuwe planten te leveren. 
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Veel dank ben ik verschuldigd aan Ard Nieuwenhuizen. Jouw antwoorden op mijn talloze 

vragen waren groots. Niet alleen antwoorden op pragmatisch vragen over de gebruikte 

programmatuur maar ook vragen omtrent het doel van onderzoek, over samenwerking, en 

vele andere waarvan je de antwoorden niet eventjes opzoekt in een boek. Onze gesprekken 

hebben mij enorm geholpen en veel inspiratie opgeleverd. Jouw promotieonderzoek verloopt 

voorspoedig, een promotiedatum heb je inmiddels gekozen. Ik ben benieuwd naar je 

toekomst. Niet alleen op het gebied van je nieuwe beroep, maar misschien nog wel meer naar 

zaken daarbuiten.  

 

Ook ben ik dank verschuldigd aan Marco Miebach, Einhard Kleist en Ricarda Uerlings, allen 

werkzaam bij het instituut “Phytosphere” te Jülich. Wat hebben jullie veel tijd gestoken in het 

handmatig integreren van piekoppervlakken, het opmeten van bladoppervlakken en het 

schoon houden van het filament. Vielen Dank für die ganz tolle Wochen und vielleicht auf ein 

Wiedersehen! 

  

Kotaro Takayama, you have joined me as a postdoctoral researcher for more than 6 months. 

Thank you for your generous support. Hopefully I will get the opportunity to visit you and 

your family soon. Daarnaast bedank ik Jeremy Harbinson, onderzoeker en universitair docent 

bij de Leerstoelgroep Tuinbouwketens. Je bureau was soms nog rommeliger dan dat van mij. 

Maar wat maakt dat uit, je deskundigheid en oprechte interesse is wat mij bijblijft. Ook ben ik 

je collega’s Arjen van de Peppel en Joke Oosterkamp dankbaar voor assistentie bij de 

GC-FID metingen. 

 

Mana Saito, Paul Kok, John Thelen en Jullada Laothawornkitkul, jullie hebben mij enorm 

geholpen tijdens het afsluiten van jullie studie. Het is vaak heerlijk om ook met jonge mensen 

als jullie samen onderzoek te doen. Bedankt collega’s van de Leerstoelgroep Agrarische 

Bedrijfstechnologie. Ik kon me gelukkig prijzen met zulke vriendelijke mensen om me heen. 

Ik mis jullie. Hierbij wil ik ook Joachim Müller bedanken. Jij hebt me in 2004 aangenomen 

als onderzoeker. Zonder deze aanstelling was mijn promotieonderzoek waarschijnlijk nooit 

gestart. 
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De leerstoelgroep Agrarische Bedrijfstechnologie, het ESF (European Science Foundation) en 

het ministerie van Landbouw, Natuur en Voedselkwaliteit ben ik erkentelijk voor de 

financiering van het in dit proefschrift beschreven onderzoek.  

 

Als voorlaatste wil ik mijn ouders bedanken voor alles wat ze gedaan hebben om mij een 

prettige jeugd te bieden. Woorden zijn onvoldoende om uit te drukken wat ik bedoel. Als 

allerlaatste bedank ik mijn vrouw Annemarie Bakker. Wat ben je vaak heerlijk nuchter en zeg 

je gewoon waar het op staat. “Ga nu maar weer aan de slag” was wat je zei als ik weer eens 

was uitgeklaagd over het één of ander. Naar Wageningen gaan vond ik nooit erg, maar ook 

naar huis gaan zeker niet. Je weet best waarom. 
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SETTING THE STAGE: THE WORLD’S GREENHOUSE PRODUCTION AREAS 

The world’s greenhouse industry will attain ever greater importance since the cultivation of 

greenhouse crops offers an excellent opportunity to grow high-quality products in large 

quantities on a small surface area.  

 

Where are the world’s main greenhouse production areas? In order to evaluate published 

statistics, definitions are important. Unfortunately, there are few precise ones for 

“greenhouse”. In some cases, very simple plastic or shade-cloth structures are called 

“greenhouses”. For example, there is a reported 40.000 ha. of “greenhouse” vegetable 

production in Almeria, Spain (Costa, 2001). Most of this production is in very simple flat-

roofed structures covered with plastic. Mexico currently is producing in an estimated 2.200 

ha. of more advanced, passively ventilated, high-tunnel structures (Steta, 2004). These are 

unheated, plastic covered metal structures, with insect netting side walls, and have 

computerized irrigation and fertilization systems. The high end of the greenhouse structure 

spectrum is found in The Netherlands (Hickman, 2009). Here, more than 10.000 ha. of 

greenhouses are located which are mainly used to produce vegetables, flowers and pot plants. 

These greenhouses are primarily high technology metal structures covered with glass, with 

computer controlled environments. Due to the unclear definition of “greenhouse”, the 

estimates of the total worldwide greenhouse production area varies widely. An approximation 

of greenhouse production areas world-wide is presented in Table 1.1. 

 

Table 1.1 Greenhouse production areas world-wide (Giacomelli et al., 2008). 

 Plastic greenhouses and 

large plastic tunnels[ha] 

Glasshouses 

[ha] 

Total [ha]

Western Europe 140.000 29.000 169.000 

Eastern Europe 25.000 1.800 26.800 

Afrika 27.000 600 27.600 

Middle East 28.000 13.000 41.000 

North America 9.850 1.350 11.200 

Central/South America 12.500 0 12.500 

Asia/Oceania 450.000 2.500 452.500 

Total  692.350 48.250 740.600 
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Greenhouses in the Netherlands are ‘big business’. In 2005, the Dutch greenhouse 

horticultural sector had a total added value of €4.6 billion, representing more than 20% of the 

added value of the Dutch agricultural complex based on domestic raw materials (Breukers et 

al., 2008). Most of the greenhouse production areas in The Netherlands are used for food 

production in which tomato, cucumber and sweet pepper are the important crops. New, high 

yielding varieties contribute to improved incomes in the greenhouse production. Another way 

to improve income in to increase the scale in order to achieve greater efficiency and lower 

cost. For that reason, greenhouse industry moves toward large-scale systems while small 

greenhouses are being closed (Breukers et al., 2008). However, increases in scale tends to 

raise new problems. One particular problem is addressed in this thesis. 

 

PROBLEM DESCRIPTION 

The cultivation of crops in large-scale greenhouses is characterized by the monoculture of 

high-value crops at high plant density throughout the entire year. These conditions lead to 

increased productions per surface area. However, the year-round production of one single, 

high-density crop, also provides excellent circumstances to establish and disperse pathogen 

infections in the greenhouse (van Lenteren, 2000). At present, the initial introduction and 

subsequent dispersal of pathogen infections is mainly controlled by the preventative 

application of chemicals. However, chemical control methods have several important 

disadvantages. First, the human intake of pesticide residues on fruits and vegetables cause an 

increasing concern among consumers (Juraska et al., 2007). Second, chemical control 

methods are not sustainable since pathogens may quickly become resistant to the active 

ingredients (Elad and Evensen, 1995). Third, the exposure of chemicals has a negative effect 

on greenhouse workers health and also pollute the environment (Gil and Sinfort, 2005, Wang 

et al., 2008). 

 

In addition to chemical control, the threat of infection requires the regular human inspection 

in order to anticipate and do curative control. The inspections must be accurate in large-scale 

greenhouses since inaccurate inspections then allow pathogen infections to disperse rapidly 

over long distances which in turn result in large economic losses. These accurate, on-site 

inspections of crops are time-consuming and requires skilled personnel which in-turn leads to 

high costs. As a result, greenhouse managers become increasingly dependent on automation 
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to limit the demand for manual labour that carries out these on-site inspections. Thus, 

expansion and intensification of greenhouse industry have increased the demand for an 

automated system to detect pathogen infections at an early stage. 

 

Imaging techniques provide an important contribution to current research related to early and 

non-invasive disease detection in greenhouse horticulture (Boissard et al., 2008, Chaerle and 

van der Straeten, 2001). However, the disadvantages are that they can only provide 

information on outer canopy layers and they can only detect a late stage of infection when 

visual symptoms have developed. A more adequate method for the detection of pathogen 

infection should provide information on both inner and outer canopy layers and should warn 

for problems in an early stage before disease symptoms appear. Such a method would 

facilitate immediate actions and prevent further spread by controlling the problem right at the 

source. 

 

OBJECTIVE 

A novel approach to discover a pathogen attack would be the detection of specific volatile 

organic compounds (VOCs) emitted from pathogen infected plants. This idea is based upon 

the numerous laboratory studies which revealed that pathogen infections have an effect on the 

volatile blend released by plants (Cardoza et al., 2002, Deng et al., 2004b, Shulaev et al., 

1997, Vuorinen et al., 2007). This approach is non-invasive. But, in contrast to imaging, it has 

the potential to provide information on both inner and outer canopy layers and it has the 

potential to detect problems before visual symptoms appear. Based on this prospective, the 

main research objective was formulated. 

The main research objective of this study was to investigate whether plant emitted VOCs can 

be used to detect a pathogen infection in a large-scale greenhouse. 

 

SCOPE AND DELIMITATION 

This study is focused on the detection of the grey mould disease in tomato plants. The 

motivation to select tomato as our model plant was threefold. First, greenhouse production of 

tomato is an economically important industry worldwide. Second, tomato production suffers 

from yield losses caused by several diseases. Third, the tomato is a well established model in 

plant pathogen-interactions studies (Arie et al., 2007). 
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Grey mould is caused by the fungal pathogen Botrytis cinerea. Our motivation to select this 

pathogen was based on two aspects. First, this pathogen is one of the most comprehensively 

studied, and thus extensive body of literature exists. Second, this pathogen is a well-known 

cause for considerable damage in a broad range of plant species including tomato (Elad and 

Stewart, 2004). 

 

The picture in Fig. 1.1 shows an everyday situation in Dutch greenhouse tomato production: a 

stem infection of tomato with B. cinerea. An early warning would help greenhouse personnel 

to discover such infection at an early stage and allows them to cut it out before the whole stem 

is damaged and save the plant from dying. 
 

 

 
Fig. 1.1 Stem infection of tomato (Lycopersicon esculentum) with the necrotrophic 

pathogen Botrytis cinerea. Photo: Rudi Aerts 
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RESEARCH QUESTIONS 

The detection of a B. cinerea infection through plant emitted VOCs requires knowledge about 

B. cinerea induced emissions of VOCs from tomato. Consistent and unique emissions are 

required if these emissions would be the sole source of information to detect a B. cinerea 

infection. However, besides the effect of a B. cinerea infection, probably also other factors 

affect the emission rates of VOCs from tomato. One may think of other stressors, but also 

environmental factors such as an increase in temperature or light intensity. Perhaps, crop 

operations such as harvest also affect the emission rates of VOCs from tomato plants. These 

factors should be considered to determine the reliability of VOC emissions as sole 

information source. The final piece of the puzzle is a careful look at the B. cinerea-induced 

concentrations of VOCs in large scale greenhouses. They are essential parameters to consider 

when evaluating analytical instruments for sensing VOCs in large-scale tomato producing 

greenhouses. 

 

These thoughts and facts from literature lead to the following research questions: 

1. What is the effect of a B. cinerea infection on the emission of VOCs from tomato? 

a. What are the emission of VOCs from healthy, undisturbed tomato? 

b. What are the emission of VOCs from tomato upon a B. cinerea infection? 

c. Is there a relation between the severity of infection and the emission of VOCs 

from tomato? 

2. Are B. cinerea-induced emissions of VOCs from tomato specific for the infection with 

this pathogen? 

a. What are the effects of biotic and abiotic stresses on the emission of VOCs from 

tomato? 

b. What are the effects of environmental factors on the emission of VOCs from 

tomato?  

c. What are the effects of crop operations on the emission of VOCs from tomato? 

3. Are B. cinerea-induced concentrations of VOCs detectable in large-scale greenhouses? 

a. What are the B. cinerea-induced concentrations of VOCs in large-scale 

greenhouses? 

b. Are there analytical instruments available which are able to detect these 

B. cinerea- induced concentrations of VOCs in a large-scale tomato production 

greenhouse? 
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OUTLINE OF THIS THESIS 

The work presented in this thesis is outlined below. 

 

CHAPTER 1 is the general introduction. It gives an overview of the world’s greenhouse 

production areas, it introduces the problem and it presents arguments why there is need to 

study new ways for detecting plant pathogens in greenhouse horticulture. 

CHAPTER 2 describes the initial laboratory experiments which were undertaken to get familiar 

with equipment and to study the emissions of VOCs from non infected as well as B. cinerea 

infected tomato leaves. 

CHAPTER 3 describes the experiments to reveal changes in emissions of VOCs from whole 

intact tomato plants upon infection with B. cinerea. In these experiments, we monitored the 

emissions of tomato plants semi-continuously with a time interval of about one hour. 

Furthermore, VOC emissions were quantified. 

CHAPTER 4 is based on experiments performed in a small-scale greenhouse. In these 

experiments, two types of plant damage were applied to study whether they are detectable in a 

greenhouse through emissions of VOCs by the plants. Furthermore, the effects of picking 

fruits and removing side-shoots on volatile emissions were studied. 

CHAPTER 5 reports on a particular experiment performed in a small-scale greenhouse. This 

experiment was conducted to see whether plant emitted VOCs can be used to detect a 

B. cinerea infection in a small tomato producing greenhouse. 

In CHAPTER 6, a model is described to characterize the source/sink behaviour of plant emitted 

volatiles in a greenhouse This model was used to determine whether VOCs can be used to 

detect B. cinerea infections in large-scale tomato producing greenhouses. 

The research described in CHAPTER 7 aimed at studying whether complex data obtained 

during measurements on VOCs can be automatically processed in order to determine the 

concentrations of them. 

In CHAPTER 8, the results obtained in this study are summarised and placed in a broader 

perspective. Furthermore we give recommendations for further developments and an outlook 

on the possibilities for crop health monitoring based on plant emitted VOCs in the future. 
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CHAPTER 2 

The effect of Botrytis cinerea on the emission of volatile 

organic compounds from detached leaves 
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H.J. Bouwmeester (2006). The sesquiterpene α-copaene is induced in tomato leaves infected 

by Botrytis cinerea. Journal of Plant Interactions 1(3): 163-170. 



CHAPTER 2 

 

24 

 

INTRODUCTION 

Botrytis cinerea is a major fungal pathogen which is known to cause grey mould in at least 

235 host plant species, including greenhouse crops like tomato (Jarvis, 1977). Therefore, 

about $20m / year is spent worldwide on chemical control of B. cinerea in greenhouses (Elad 

and Stewart, 2004). This control depends upon first identifying the presence of a pathogen, a 

procedure which is currently dependent upon skilled personnel and is not automated. Current 

trends in glasshouse technology and management are founded on increasing automation and 

improved sensors, and this should also apply to disease or pathogen detection within the crop. 

These developments, and a drive to uncover how B. cinerea colonizes tomato tissue, are the 

motivation for this work. 

 

Plants produce a wide range of volatile and nonvolatile secondary metabolites (Croteau et al., 

2000). In the past these compounds received little attention from ecologists and evolutionary 

biologists as it was thought that they were waste products of primary metabolism. Today, 

secondary metabolites are widely studied (Dixon, 2001, Theis and Lerdau, 2003) and, because 

they can play a role in protecting plants against a wide variety of microorganisms (viruses, 

bacteria, and fungi) (Wink, 1988) they are increasingly the focus of breeding programmes 

including metabolic engineering (Aharoni et al., 2005). The monoterpenes (C10) and 

sesquiterpenes (C15) are secondary metabolite terpenoids that are volatile at temperatures 

commonly encountered under field and glasshouse conditions, thus contributing to the volatile 

organic compounds (VOCs) produced by plants. Monoterpenes are known as components of 

the volatile essences of flowers and of the essential oils of herbs and spices. Sesquiterpenes 

are also found in essential oils and, in addition, numerous sesquiterpenes act as phytoalexins, 

antibiotic compounds produced by plants in response to microbial challenge, and as 

antifeedants that discourage herbivory (for review see Croteau et al., 2000, Stoessl et al., 

1976). Volatile terpenoids that are induced by insect herbivory have also been shown to be 

implicated in the attraction of natural enemies of these insects (Kappers et al., 2005). 

 

Given their role in pest and disease response and their volatile nature it has been suggested 

that measuring the type and amounts of terpenoids in the air of a glasshouse might be a means 

of monitoring the health of glasshouse crops (Baratto et al., 2005). This idea is particularly 

relevant to future closed greenhouse designs which will have no free ventilation and within 

which VOCs could accumulate, thus making detection more feasible. An implication of this 
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is, of course, that these concentrated VOCs will have an increased effect on crops when they 

act as messengers of some kind (Wheeler et al., 2004). In research on other stresses, like 

herbivore damage (Ament et al., 2004) and mechanical damage (Maes, 2002), the stressed 

tomato plants produced a different spectrum of VOCs than control plants. The hypothesis 

tested here is that B. cinerea infected tomato plants produce a different spectrum of VOCs 

than healthy tomato plants. Measuring changes in the VOC fingerprint would therefore allow 

discrimination between a healthy tomato plant and an infected tomato plant, which could 

eventually lead to a disease detection system. The main research question to be answered is 

whether we can discriminate between a control plant and a plant infected with B. cinerea 

based on the VOC fingerprint. The second research question is to identify the VOCs that 

allow for this discrimination to be made, because these VOCs would be candidates for 

designing a disease detection system. 

 

MATERIALS AND METHODS 

Plant material 

Tomato seedlings (Lycopersicon esculentum Mill. cv. Moneymaker) were grown in 17 cm 

pots in potting compost (Lentse Potgrond, Lent, The Netherlands) in a greenhouse (natural 

light) with day and night temperatures of 20°C and 18°C, respectively. The relative humidity 

was always 70%. Prior to the experiments tomato plants were transferred to a climate room at 

25±1°C and 65±10% relative humidity. Irradiance was supplied by fluorescent tubes (TLD 

58W/84, Philips, Eindhoven, The Netherlands) for 15 h / 9 h light/dark photoperiod with a 

photosynthetically active radiation of 120 μmol m-2 s-1 at leaf height. The light intensity was 

measured with a Li-250 photosynthetically active quantum flux meter (LiCor, Lincoln, 

Nebraska, USA). 

 

Inoculation procedures 

Botrytis cinerea strain (B0510) was cultured on malt extract agar (CM0059, Oxoid, 

Basingstoke, UK) at 25±1°C in 9-cm Petri dishes in the dark. Plates were inoculated in a 

laminar flow hood with a small droplet of spore suspension. After four days, cultures were 

exposed for 24 h to near-UV light to stimulate sporulation. One to two weeks after near-UV 

stimulation, conidia were harvested from the sporulating mycelium by washing with sterile 

water, containing 0.05% Tween 20 (Merck-Schuchardt, Hohenbrunn, Germany), and rubbing 
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the mycelium. Conidia were filtered through glass wool, washed three times by centrifuging 

(8 min, 800 rpm, 20°C) and resuspended in sterile water. The spores were finally resuspended 

in an inoculum buffer prepared as described by Benito et al. (1998) at a density of 109 L-1. 

The inoculum buffer consisted of filter-sterilized water (0.2 μm, FP30 / 0,2 CA-S, Schleicher 

& Schuell, Dassel, Germany), supplemented with Gamborg’s B5 medium (Duchefa 

Biochemie bv, Haarlem, The Netherlands), 10 mM glucose and 10 mM potassium phosphate 

(pH 6). The conidia concentration was counted under a light microscope with the use of a 

haemocytometer. The suspension was pre-incubated for 2-3 h, with occasional shaking by 

hand. Leaves of 4- and 7-week-old tomato plants were inoculated on the upper surface with 

eight 2 ml droplets on each of 8 leaves per plant. After inoculation, the plants were placed 

inside a transparent plastic tent for 16 h at 95% RH to stimulate infection. Relative humidity 

was checked with a humidity sensor (HMP 233, Vaisala, Helsinki, Finland) and the air was 

humidified periodically with an ultrasonic humidifier (572011, Conrad Electronic GmbH, 

Hirschau, Germany) attached to a time switch. After a 16-h infection period, the relative 

humidity was reduced to 85%; this humidity level accelerated the spreading of infection. 

Control plants were treated in exactly the same way, except that the inoculation droplets 

contained no spores. The infected and control plants were separated from each other during 

the infection process to prevent contamination of the control plants. 

 

Sampling of volatiles  

Six hours before headspace sampling, inoculated plants were taken out of the humidifier to 

allow droplets on the leaf surfaces to evaporate. Plants were placed in a separate part of the 

climate room to prevent cross-contamination by other plants. Leaves (1±0.5 g fresh weight) 

were carefully removed from the plant with a scalpel and placed in a glass Petri dish (300 ml). 

Care was taken not to damage the trichomes on the leaf. The petiole of the detached leaf was 

placed in purified water (Milli Q, Millipore, Bedford, MA, USA) to prevent dehydration, 

which itself could have induced VOC release. The Petri dish was immediately closed by a 

glass lid containing rubber septum (7824, Alltech, Deerfield, IL, USA). 

 

For quantification, volatiles were statically collected on polydimethylsiloxane (PDMS) fibres, 

which were housed in a solid phase microextraction (SPME) portable field sampler (1 cm 

coating length, 100 µm film thickness, Supelco, Bellefonte, PA, USA). Prior to use, fibres 

were conditioned in a gas chromatograph (GC) injection port at 250°C and subjected to two 
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30-min GC runs to purge any contaminating volatiles. Sampling was carried out by inserting 

the SPME piercing needle through the septum and exposing the fibre to the headspace for 2 h. 

There were 5 replicate samples of both the infected and control leaves. For identification of 

VOCs, dynamic sampling had to be performed to increase absolute amounts of the volatiles 

absorbed. In the dynamic sampling procedure the volatiles were collected on cartridges 

containing 90 mg Tenax TA (20/30 mesh, Chrompack, Walnut Creek, CA, USA) and head-

space air was drawn through the tubes using a portable battery-operated air sampler with 

constant flow of 100 ml min-1 ±5% (Ametek / du Pont de Nemours & Co., type Alpha-2, 

DEHA International, Huizen, The Netherlands). The sample collection times were 30 or 60 

min and the flow-rate was checked with a soap bubble meter. Both infected and control leaves 

were sampled in three replicates. All glassware used in the experimental set-up was 

thoroughly cleaned with detergent and water and afterwards heated overnight in an oven 

(Binder, South Korea) at 25°C to remove any contaminating volatiles. 

 

Analysis of volatiles 

Volatiles were thermally desorbed for 5 min in a Varian 3400 CX gas chromatograph 

equipped with a flame ionization detector (Varian, Walnut Creek, CA, USA). The injections 

were made in splitless mode with a 0.75-mm inner diameter glass inlet liner (Supelco, 

Bellefonte, PA, USA). The GC-FID was operated with an injector temperature of 250°C and a 

detector temperature of 300°C. Compounds were separated on a capillary DB-5 column (30 m 

× 0.25 mm ID, film thickness 0.25 µm; J&W Scientific, Folsom, California) at 40°C for 5 min 

after which the temperature was increased at 8°C min-1 to 225°C; this temperature was then 

maintained for 5 min. Nitrogen was used as the carrier gas. After 5 min the split was opened 

at 1:50. Data were collected by a personal computer running the Peaknet software package 

(Dionex Corporation, Sunnyvale, CA, USA). An n-alkane mix (C10-C17) was run through the 

column to provide a scale for the calculation of the retention index (RI). For most VOCs the 

RI is known (Adams, 2001). Therefore we could identify the region in the chromatogram that 

was interesting for further analysis. For the VOCs from tomato plants the RI was between 

1000 and 1700. For GC-MS analysis, volatiles were transferred to a capillary DB-5 column 

(60 m × 0.25 mm ID, film thickness 0.25 μm) mounted in a Varian 3400 GC and connected to 

a Finnigan MAT 95 mass spectrometer. The oven temperature was set at 60°C for 4 min and 

then programmed to 220°C at a rate of 6°C min-1. The mass spectrometer was operated in the 

70 eV electron impact ionization mode and scanning was from mass 24 - 300 at 0.7 sD-1. 
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Compounds were identified by comparing the mass spectra and RI with those in the Adams 

collection (Adams 2001) and in the Wageningen Mass Spectral Library. 

 

Statistical analysis 

A fundamental problem in GC-FID data analysis is finding a suitable representation of this 

high-dimensionality data. Linear transformation is often chosen for dimension reduction in 

multivariate data (Hyvarinen, 1999). Principal component analysis (PCA) (Joliffe, 1986) is a 

well known linear transformation method for reducing the dimensionality of metabolomics 

datasets (Hendriks et al., 2005, Jansen et al., 2004, Norwich Research Park, 2006). PCA 

defines a model of multivariate data. This model is a lower dimensional subspace that 

explains the direction of maximum variance in the original data matrix. Our multivariate data 

is a matrix with 18000 columns with retention variables measured on a set of 10 rows of 

samples (called objects). These samples are the chromatograms from the headspace of control 

and infected leaves. The first few principal components (PCs) explain most of the variance in 

the original data. Between chromatograms the retention time of identical compounds can 

differ; this is a problem inherent to GC analysis (Hendriks et al., 2005, Pate et al., 1998, 

Rohrback and Ramos, 2003, Tomasi et al., 2004). Therefore, prior to PCA, the reduced 

chromatograms were pre-processed with the correlation optimized wrapping (COW) 

alignment algorithm (Tomasi et al., 2004). COW is a piecewise or segmented data pre-

processing method aimed at aligning a sample data vector to a reference vector by allowing 

limited changes in segment lengths on the sample vector (Tomasi et al., 2004). The 

chromatogram with the highest number of compounds was chosen as reference, as suggested 

by Tomasi et al. (2004). The COW algorithm was used as implemented in COWTool (v1.1, 

BioCentrum-DTU, Technical University of Denmark). The parameters were: segment length 

(m) was 25, so the number of segments (N) was therefore 720, and slack (t) was 2. After 

alignment the data was loaded into a multivariate statistics software package (Unscrambler 

v9.5, Camo A/S, Trondheim, Norway) for PCA analysis. First, the date was mean-normalized, 

which is a standard procedure when performing PCA on chromatography data, then the PCA 

was conducted for nine principal components. Mean normalization consists of dividing each 

chromatogram by its average peak height. Peak areas for the GC-FID data were calculated 

using the Gaussian function in PeakFit v4.12 (Seasolve Software Inc, Framingham, MA, 

USA) for peak fitting and calculation of peak area. The data was baseline corrected with the 

function Best 2D. GC-FID and GC-MS peak areas were first normalized by the area percent 
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method. Thus the total area of the identified peaks in each chromatogram was 100%. Then an 

independent t-test (SPSS Inc, Chicago, Il, USA) was performed to test whether the mean peak 

area of the identified peaks of healthy control leaves and infected leaves are statistically 

different from each other. 

 

RESULTS 

The penetration of the host tissue by B. cinerea is a process that can be divided into three 

sequential phases (Benito et al., 1998): Killing of the host tissue, formation of primary lesion, 

and formation of secondary lesion. After five days infected leaves had severe secondary 

lesions, whereas the control leaves had no visual lesions. These leaves were used for 

determination and identification of volatiles. In Fig. 2.1 and Fig.2.2, raw GC-FID 

chromatograms obtained from head-space samples of a healthy, control leaf and an infected 

leaf are shown. Clear differences between the control and infected leaf chromatograms are 

evident. An infected leaf emits a greater amount of VOCs, and the large peak at 20 min in 

infected leaves (Fig. 2.2) is nearly absent in control leaves (Fig. 2.1). 

 

 
Fig. 2.1 Raw GC-FID chromatogram of the headspace of a healthy detached leaf (A), a C7-

C17 n-alkane mix (B) is shown below as a reference.  
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Fig. 2.2 Raw GC-FID chromatogram of the headspace of an infected detached leaf (A), a C7-

C17 n-alkane mix (B) is shown below as a reference. 

 

The region between C10 and C17 contains the VOCs known to be emitted by tomato plants; 

therefore, for further analyses the data was reduced to the region between 10 and 25 min, 

which is equivalent to 18,000 data points.  

 

Principal component analysis 

Principal components build a link between samples (chromatograms) and variables (detector 

signal at the different retention times) by means of scores and loadings. The scatter plot of the 

scores on the first two principal components shows clustering of the five control and five 

infected samples (Fig. 2.3). 

 
Fig. 2.3 PCA score scatter plot of the first two principal components, after alignment of GC-

FID chromatograms of the headspace of five control tomato leaves and five infected tomato 

leaves. 
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The first two principal components explained 96% of the variance present in the data set. The 

loading plot is used to identify which compounds are most responsible for separating of the 10 

chromatograms into two groups. In Fig. 2.3, it is shown that infected leaves have a positive 

first principal component and healthy control leaves have a negative first principal 

component. The loading plot of the first principal component is shown in Fig. 2.4. If a 

variable has a high positive loading, it means that all chromatograms with a positive first 

principal component have higher than average values for that value. Thus the high positive 

loading in Fig. 2.4 of the variable at data point 11500 explains why all infected leaf 

chromatograms have a positive first principal component. The data point at 11500 is 

equivalent to a retention time of 20 min.  

 

 
Fig. 2.4 PCA loading plot of the first principal component, after alignment of GC-FID 

chromatograms of the headspace of five control tomato leaves and five infected tomato 

leaves. 

 

Identification of the volatile fingerprint 

The VOCs detected by GC-MS were mostly mono and sesquiterpenes. In Table 2.1, the 

VOCs present in control and infected samples are shown (excluding all Tenax-derived 

impurities). Six out of the 27 different VOCs that were detected occurred in each 

chromatogram. The dominant peak at 20 min in the GC-FID chromatograms of the headspace 

of infected leaves could now be identified as α-copaene. Injection of an authentic α-copaene 

standard (27814, Fluka, Buchs, Switzerland) into the GC-FID showed an identical retention 

time to the major peak located at 20 min in the GC-FID chromatograms of headspace air from 

infected leaves. Cyclosativene and β-cubebene have a retention index close to α-copaene, as 
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shown in Table 2.1, but different mass spectra. To be sure, the mass spectrum of the α-

copaene peak was carefully checked for any deviations in intensity or extra peaks which could 

point to a co-eluting other compound.  

 

 

Table 2.1 All detected volatiles emitted by tomato leaves by GC-MS analysis. Compounds 

are ordered according to their calculated retention index (RI). Samples of type I are peak areas 

from chromatograms of the headspace of infected leaves, samples of type C are peak areas 

from chromatograms of the headspace of control leaves. The compounds that are marked with 

an A occurred in each sample. Peak areas marked with B also contain impurities and peak 

areas marked with C also contain other terpenes. Trace levels are marked ‘tr.’, ‘n.d.’ means 

not detected in the mass spectra and ‘-’ means not in this chromatogram. 

 

 Sample 1 2 3 4 5 6 

 Type I C I C I C 

Compound  RI Peak area 

α-pineneA 939 3 4 40 15 24 4 

myrcene  991 - - 22 9B - - 

2-careneA 1002 21 100 419 158 119 24 

sabinene   - 21 - - - - 

α-phellandrene  1003 - 4 6 4 - - 

3-carene   - - 1 - - - 

p-cymeneA 1025 1 4 28 6 18 2 

limoneneA 1029 8 58 199 64 71 15 

β-phellandreneA  1030 53 330 1340 394 405 43 

β-ocimene   - - - - - 2 

methyl salicylate   - 4 - - tr.B 2 

γ-terpinene  1060 - - 3 - - - 

DMNT1  - - 1 - - - 

cyclosativene  1371 3 - 34 2 12 - 

α-copaeneA 1377 37 14 656 48 208 tr. (0.6) 

β-cubebene  1388 - - 12 n.d. 4 - 

β-elemene2  - - tr. 2C - - 
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sativene  1392 - - 7 n.d. 3 - 

β-ylangene  1420 - - tr. - tr. - 

β-caryophyllene  1421 - - 13 3 4 - 

α-gurjunene   - - - 4 1 3 

β-copaene  1432 - - 29  6 11 - 

γ-muurolene  1480 2  - 33  2 11 - 

germacrene D  1485 - - 4  1 2 - 

α-muurolene  1500 - - 7  - 3 - 

δ-cadinene  1523 - - tr. n.d. tr. - 

TMTT3 1579 - 7 11 11 23 4 

Number of identified VOCs   8 10 23 16 19 10 

1 4,8-dimethyl-1,3,7-nonatriene (DMNT) 
2 β-elemene is likely to indicate of the presence of germacrene A, which becomes thermally 

rearranged to β-elemene in the injection port of the GC-MS (de Kraker et al., 1998). 
3 (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) 

 

Statistical analyses of GC-FID and GC-MS data 

For proper statistical tests of the possible significance of differences in volatile production, 

normalization of the peak area is needed. In dynamic sampling this is done by injection of a 

standard with a known concentration into the sampling tube. In static sampling with SPME, 

which was done for acquiring the GC-FID data, this is not practical (Zabaras and Wyllie, 

2001). In SPME analysis headspace concentrations are calculated by injection of a 

monoterpene and sesquiterpene solution of which the concentration is known. The GC-FID 

should be equipped with a special 100% PDMS column (Maes, 2002). This column was 

however not available in our laboratory. Normalization by the area percent method is then the 

most convenient method for normalization. 

 

Peak areas of identified peaks in the GC-FID and GC-MS chromatograms were calculated and 

a t-test was done on these peak areas to discriminate between healthy control leaves and 

infected leaves. The GC-FID peak area of two major tomato volatile compounds (Ament et 

al., 2004, Buttery et al., 1987, Maes, 2002) (11.70 and 12.40 min) previously identified by 

GC-MS as 2-carene and β-phellandrene, and the peak (described here) at 20 min, which was 
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identified as α-copaene, were used. These three peaks were also identified by calculating their 

retention index. In Table 2.2, the result of that test is shown. All three compounds were found 

to be significantly different between control and infected samples (p ≤ 0.05). The peak areas 

of the five peaks that were present in all GC-MS chromatograms were tested for statistical 

significance. Table 2.3, shows the results of that test. In this case, 2-carene and α-copaene 

were found to be significantly different between control and infected samples (p ≤ 0.05). 

 

Table 2.2 Volatiles emitted by tomato leaves, t-test on the GC-FID data. Compounds are 

ordered according to their calculated Retention index (RI). The values indicate the means of 

the normalized peak areas in percentages and standard deviation of each treatment group. The 

p-values have been calculated with an independent t-test (n = 5). Independent samples, 

normality, and equal variances were assumed. The compounds that are marked with an 

asterisk (*) were found to be significantly different (p ≤ 0.05) for infested leaves versus 

control leaves. 

Compound  RI  Control leaves [%]  Infected leaves [%]  p value  

2-carene 1001 14.12 ± 5.20 4.04 ± 2.48 0.04* 

β-phellandrene 1031 83.59 ± 4.37 14.53 ± 10.67 0.00* 

α-copaene 1377 2.29 ± 2.70 81.43 ± 13.12 0.00* 

 

Table 2.3 Volatiles emitted by tomato leaves, t-test on the GC-MS data. Compounds are 

ordered according to their calculated Retention index (RI). The values indicate the means of 

the normalized peak areas in percentages and standard deviation of each treatment group. The 

p-values have been calculated with an independent t-test (n = 3). Independent samples, 

normality, and equal variances were assumed. The compounds that are marked with an 

asterisk (*) were found to be significantly different (p ≤ 0.05) for infested leaves versus 

control leaves. 

Compound RI Control leaves [%] Infected leaves [%] p value 

α-pinene  939 2.50 ± 1.88  2.26 ± 0.69  0.85 

2-carene  1002 23.25 ± 3.74  15.59 ± 1.50  0.03* 

p-cymene 1025 1.31 ± 0.83  1.33 ± 0.70  0.97 

limonene 1029 12.55 ± 3.93  7.44 ± 0.95  0.09 

β-phellandrene  1030 56.92 ± 8.10  46.99 ± 3.53  0.12 

α-copaene 1377 3.48 ± 3.23 26.39 ± 3.20 0.00* 
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DISCUSSION 

This study was undertaken to identify volatile compounds associated to Botrytis infection of 

tomato plants. The production of volatiles may be used as a non-destructive measurement of 

plant health. Here we have shown that infected tomato leaves produce increased amounts of 

VOCs and that α-copaene is the most prominent volatile induced by the tomato leaf-

B. cinerea interaction. This conclusion is based upon the principal components analysis of the 

GC-FID data which identified a peak with an RI of 20 min as the major contributor to the 

dominant axis separating healthy and infected leaves, and the identification of this 20-min 

peak as α-copaene using GC-MS. The limonene peak (RI 1029), one of the other major 

compounds observed in the GC-MS chromatograms (Table 2.1), could not be identified in the 

GC-FID chromatograms. This is possibly because this compound is masked in the 

β-phellandrene peak (RI 1030), which has an almost identical RI. VOCs marked with an ‘A’ 

in Table 2.1 were also found in studies on herbivore stressed tomato plants by Dicke et al. 

(1998), Farag et al. (2002), Thaler et al. (2002), Kant et al. (2004), and Maes (2002). Notably, 

the production of α-copaene was not found to increase significantly in any of these studies. 

This suggests that α-copaene production may be associated with fungal infections in tomato. 

So, α-copaene may be at the least specific for infections and possibly specific for fungal 

infections or even those of Botrytis.  

 

It is known that other compounds are formed during the interaction between tomato leaves 

and B. cinerea, especially nitric oxide (NO), hydrogen peroxide (H2O2) (Mahalingam and 

Fedoroff, 2003) and ethylene (C2H4) (Díaz et al., 2002). These are of low molecular weight 

and, in the case of NO and H2O2, they are highly reactive with fast degradation times. The 

release of NO and H2O2 is related to programmed cell death, which occurs in response to 

pathogens and various abiotic stresses (Levine, 2004). It is possible to detect C2H4, and (in 

spite of their reactive nature) NO and H2O2 online (Conrath et al., 2004, Cristescu et al., 

2002). These volatiles are, however, not suitable for monitoring fungal infection because they 

are emitted after most biotic and abiotic stresses. Botrydial (C17H26O5) is a bicyclic 

sesquiterpene produced in plant tissues infected by B. cinerea (Deighton et al., 2001). The 

vapour pressure of this compound is, however, too low for it to make a significant 

contribution to the VOCs produced by the infected leaves at ambient temperatures, and it 

could, therefore, not be detected. 
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Ideally the identification of plant disease marker compounds should be correlated with 

measurements of the enzymes responsible for the synthesis of the compounds and the genes 

which encoded the enzymes. By this more complete analysis of volatile production, and its 

control, can the association of a specific volatile with a particular stimulus be better 

understood (Dicke et al., 2003). However the reactions catalyzed by many of these enzymes 

are complex and diverse, often generating one to upwards 30 reaction products (Steele et al., 

1998). In the case of volatile production by Arabidopsis flowers, only two enzymes are 

responsible for the complex mixture of sesquiterpenes (Tholl et al., 2005). To our knowledge, 

no α-copaene synthase has been so far identified (Cane P, Tholl D, Croteau R, Fraga D, 

personal communication), and until this enzyme (or its gene) has been identified a more 

complete analysis of the control of α-copaene synthesis will not be possible. Nonetheless the 

physiological data presented here do strongly suggest that α-copaene is a good candidate 

molecule for the detection of Botrytis (and possibly other fungal) infections in crops. 
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CHAPTER 3 

The effect of Botrytis cinerea on the emission of volatile 

organic compounds from whole plants 
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INTRODUCTION 

Gray-mold rot or Botrytis blight, caused by the widespread necrotrophic fungus Botrytis 

cinerea, affects most vegetable and fruit crops. This pathogen cause severe losses to 

greenhouse-grown tomato all over the world (Elad and Stewart, 2004). It affects leaves, 

petioles, stems and fruits and consequently the quantity and quality of the harvested produce. 

A common management strategy to control B. cinerea in greenhouse tomato production is to 

spray fungicides. But fungicide spraying is costly and may have consequences in terms of 

health risk for the greenhouse employees, consumer risks due to residues on the produce and 

pollution of the environment. Fungicide use can be reduced if B. cinerea infestation is 

detectable at a very early stage. Then local treatment of the infested plants can be employed 

instead of full field treatment. However, early detection of B. cinerea infection is quite a 

challenge. Today, in horticultural practice, detection of B. cinerea is based on visual 

inspection. Visual inspection is time consuming and therefore expensive. It requires a 

considerable amount of expertise, is subjective, and fails in case plants carry latent infections 

which effects are not yet visible on the plant surface. With PCR and the ELISA test (Lievens 

et al., 2006) B. cinerea can be detected at an early stage, but these procedures are invasive, 

time consuming, expensive, and demand careful sampling methods when investigating whole 

populations of plants.  

 

The present study focuses on an alternative approach for non-invasive early detection of B. 

cinerea based on the detection of volatile organic compounds (VOCs) emitted by infected 

plants. There are a limited number of studies in which pathogen-infected plants have been 

shown to release VOCs that differ from those released by uninfected plants. For example, 

silver birch (Betula pendula) infected with the fungus Marssonina betulae emitted an 

increased amount of VOCs (Vuorinen et al., 2007); an increase in emissions was also reported 

upon infection of tobacco plants (Nicotiana tabacum) with tobacco mosaic virus (Shulaev et 

al., 1997); and a similar increase was observed upon infection of tobacco plants with the 

bacterial pathogen Pseudomonas syringae (Heiden et al., 2003). These plant emissions might 

serve as signals for detection of infected plants at the greenhouse scale. 

 

De Moraes et al. (2004) first suggested the detection of infected plants at an early stage based 

on measurement of released volatiles. In the same year, Holopainen (2004) concluded: ‘Non-
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destructive metabolic profiling of VOC emissions is a promising tool for quickly detecting the 

physiological status of crop plants as well as for identifying the initial phase of pathogen and 

herbivore infections’. To the best of our knowledge Baratto et al. (2005) were the first group 

to report experiments on monitoring plant health status based on measurement of emitted 

volatile compounds. Their research indicated that a gas sensor is able to detect the onset of 

plant stress due to insect damage or herbicide spraying.  

The objective of this study was to assess the potential of VOC sensing as a non-invasive 

method for plant diagnosis. To test this premise, we measured the emission of VOCs from 

tomato plants infected with the fungus B. cinerea. 

 

 

MATERIALS AND METHODS 

Plant chamber 

The chamber used for the experiments was described in Heiden et al. (2003). In brief, a glass 

chamber with a volume of 1.1 m3 was mounted in a temperature-controlled housing (Fig. 3.1). 

This plant chamber was supplied with entries for temperature and light intensity sensors and 

connected tubings for gas-phase analysis and air supply. Only glass and Teflon was used in 

construction because these materials are known to reduce adsorption of VOCs on walls of the 

apparatus (Stewart-Jones and Poppy, 2006). The glass chamber was illuminated with metal 

halide lamps (Powerstar HQI 400 W/D lamps; Osram, Munich, Germany). To prevent 

overheating of the plants by infrared radiation, filters (Prinz Optics GmbH, Stromberg, 

Germany, type IR3) that reflect wavelengths between 750 and 1050 nm were used as heat 

shields. Digital mass flow controllers were used to control the air flow through the chamber at 

50 and 80 L min-1. Incoming air was purified through an adsorptive drying device (Zander 

Aufbereitungstechnik GmbH & Co. KG, Essen, Germany) and by a palladium catalyst. 

Humidity was maintained by passing incoming air through a glass vessel containing 

bidistilled water. The CO2 concentration in the chamber could be adjusted by adding CO2 to 

the chamber inlet. A Teflon fan was used to mix the air in the chamber and to reduce 

boundary layer resistance at leaf level. A personal computer with a data-acquisition system 

based on LabVIEW software (National Instruments, Austin, TX, USA) recorded temperature, 

dew point, and light intensity in the chamber, airflow through the chamber, and the 

differences in concentration of CO2 and water vapour between the chamber inlet and outlet. 
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Teflon sheets were used to separate the aerial part of the plants from the roots and substrate to 

prevent contamination of the air in the chamber by emissions from the substrate and roots. 

The plant stems were positioned through holes in these sheets and sealed airtight with Optosil 

P (Heraeus Kulzer GmbH, Hanau, Germany). 

 

 

 

 

Fig. 3.1 Schematic overview of the experimental set-up: (1) personal computer, (2) light control, (3) 

light intensity sensor, (4) dew point sensor and (5) temperature sensor, (6) air filters, (7) humidifier, 

(8) chamber inlet, (9) lights, (10) Teflon fan, (11) chamber outlet, (12) temperature-controlled 

housing, (13) CO2 supply, (14) thermal desorption system, (15) cryofocussing device and (16) gas 

chromatography – mass spectrometry (GC/MS). 

 

 

Gas chromatography – mass spectrometry 

Two different gas chromatography – mass spectrometer systems (GC/MS) were used for the 

measurements. The first GC/MS system (system A) is described in detail by Heiden et al. 

(1999). This system is based on a HP 5890 Series II gas chromatograph with a quadrupole 

mass selective detector HP-MSD 5972A. System A was optimised to quantitatively detect 

volatiles such as products from the lipoxygenase pathway (LOX products) and mono- and 

sesquiterpenes. The second GC/MS system (system B) is thoroughly described in Folkers 

(2002). This system is based on a Hewlett Packard HP 6890 gas chromatograph with a 

quadrupole mass selective detector HP-MSD 5973. System B was optimized to quantitatively 
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detect volatiles such as methanol, LOX products and monoterpenes. Both systems used 

thermal adsorption/desorption for pre-concentration (Gerstel online TDS G) connected to a 

cooled injection system (Gerstel; KAS 3 for system A and KAS 4 for system B) where 

samples were cryofocused before injection onto the column (BPX-5 column, SGE, 50 m × 

0.22 mm × 1 μm for system A; CP Wax 52 CB, Chrompack, 60 m × 0.25 mm × 0.5 µm for 

system B). 

 

In ten out of twelve experiments, system A was used but in two experiments, system A was 

not available and therefore system B was used. The results and discussion are focused, 

therefore, primarily to volatile compounds measurable with both systems, i.e. LOX products 

and monoterpenes. Both systems were calibrated at regular intervals to allow intercomparison 

of data from the individual systems. 

 

Calibration of both GC/MS systems was performed using a permeation source containing 

pure chemicals in individual vials in combination with a dynamic dilution system. Details of 

the calibration procedure for these GC/MS systems were described in Heiden et al. (2003). 

Concentrations of the compounds released from the calibration source were determined from 

the mass loss rates of the individual compounds and the dilution fluxes. The VOC mixing 

ratios of this source were in the lower ppb to ppt range. The reproducibility of VOC 

concentration measurements was in the range of 10 and 15% in the upper ppt level. 

Depending on the fractionation of the individual VOCs, the detection limit of our system was 

in the range of 0.02 to 0.05 ng for the monoterpenes (≈1.0–2.4 ppt per 4 L sampling volume) 

and 0.05–0.95 ng for the LOX products (≈3–6 ppt per 4 L sampling volume). To check for 

losses of VOCs in the empty chamber, isoprene, cis-3-hexenol, n-decane, α-pinene, β-pinene, 

3-carene, limonene, methyl salicylate (MeSA) and the sesquiterpene longifolene were added 

to the inlet of an empty chamber. Concentrations of the individual VOC in the inlet air and 

outlet air of the empty chamber were measured and found to be equal proving that losses 

through gas phase reactions and adsorption on chamber walls and tubings were negligible for 

these VOCs. 

 

LOX products and monoterpenes were identified by comparing the mass spectra with mass 

spectra libraries i.e. Wiley mass spectral library, NIST library and a reference library built by 

measuring commercially available standards (Fluka and Sigma). Corresponding peak areas 
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were then used to calculate the concentrations of the individual VOC in the sample. It was 

expected that volatile emission might be influenced by the biomass of the plants and we used 

the leaf area of the plants to consider the biomass. Flux densities (ΦM) for the detected VOCs 

were calculated as follows: 

 

( ) ( )( )McMc
A
F

ioM −⋅=Φ          

 

where F is the air flux through the chamber, A is the one-sided leaf area of the investigated 

plants, co is the VOC concentration measured at the chamber outlet and ci is the VOC 

concentration measured at the chamber inlet. M represents the VOC of interest. This flux 

density is the amount of the respective VOC emitted within a certain period of time 

normalized to the leaf area. As previous measurements indicated that VOC concentrations of 

incoming air are below the detection limit of the GC/MS, ci was set to zero. 

 

Plant material 

Seeds of tomato (Lycopersicon esculentum Mill.) cv Moneymaker were germinated in a 

commercial mixture of soil, peat, and compost (Pikiererde, Plantaflor, Vechta, Germany). 

After 10 days, the seedlings were transplanted into individual containers containing standard 

substrate (Einheitserde, type ED 73). The plants were germinated and grown in a controlled 

climate chamber at 20°C and 50% relative humidity (RH). Plants were grown at a 

photosynthetic photon flux density (PPFD) of 300–400 μmol m–2 s–1 with a 12-h light/12-h 

dark day-night photoperiod. Typically, plants were 6–8 weeks of age when used in the 

experiments. At that age, the individual plants were between 0.6 and 0.8 m high. During the 

experiments the plants were regularly watered to prevent drought stress. After each 

experiment, the leaves were cut from the plants to determine total leaf area. This total leaf 

area was used to calculate gas flux per unit area. 

 

 

Botrytis cinerea inoculum 

Botrytis cinerea strain B0510 was prepared on malt extract agar (CM0059, Oxoid, 

Bastingstoke, UK) as described by Benito et al. (1998). The final spore suspension consisted 

of 50 ml filter-sterilized water supplemented with 0.6 g potato dextrose medium (Duchefa 



The effect of Botrytis cinerea on the emission of volatile organic compounds from whole plants 

43 

 

Biochemie BV, Haarlem, The Netherlands). The concentration of spores in the suspension 

was counted using microscopy and adjusted to 1 ×106 spores ml-1. Per experiment, leaves of 

three or four tomato plants were inoculated on the ventral leaf surface using a micro-sprayer. 

Each plant was sprayed with ~15 ml of the spore suspension. The climate in the chamber was 

then set to 15°C and a RH exceeding 95%. 

 

Experimental design 

In total, 12 independent experiments with a total of 40 plants were conducted. For each 

experiment, three or four tomato plants were inserted into the plant chamber. The plants were 

allowed to adapt to the climate in the plant chamber before spraying. Then, in six out of the 

12 experiments the plants were sprayed with a suspension of potato dextrose medium 

containing B. cinerea spores (three to four plants per replicate). In the six control experiments, 

plants were sprayed with the identical suspension of potato dextrose medium lacking 

B. cinerea spores (three plants per replicate). After application of the suspension, the lights 

were turned off for 16 h, the RH was increased to above 95%, and chamber temperature was 

15°C. Such a high RH is known to favour penetration of B. cinerea into tomato leaves. After 

16 h in darkness, the lights were manually switched on for 8 h followed by 12-h/12-h 

light/dark regime. The four different phases used in all experiments as listed in Table 3.1. 

 

Table 3.1 Definition of phases for plants sprayed with or without Botrytis cinerea spores. 

Photosynthetic photon flux density (PPFD) in each light phase was 480 μmol m-2 s-1. Temperature 

during light phases was 18°C, and during darkness was 15°C. 

Phase   Interval (± 1 h) Illumination 

1 0 – 16 h after spraying Dark 

2 16 – 24 h after spraying Light 

3 24 – 36 h after spraying Dark 

4 36 – 48 h after spraying Light 

 

 

The temperature during the light and dark phases was maintained at 18°C/15°C, respectively. 

PPFD during all light phases was 480 μmol m-2 s-1. CO2 concentration was maintained at 

approximately 350 ppm to mimic as much as possible natural environmental conditions. VOC 



CHAPTER 3 

 

44 

 

emissions depend on temperature and light (Schuh et al., 1997). Therefore control of these 

environmental conditions is important to obtain reliable quantitative results in VOC analyses 

Helsper et al. (2002). To allow reliable interpretation of volatile emissions from plants the 

variations in temperature and light were strictly maintained for all investigated plants. 

 

Volatile organic compounds were measured at hourly intervals starting two h after spraying. 

This procedure was followed because the high RH directly after spraying can cause severe 

technical problems to the GC/MS equipment. Development of necrotic spots on plants during 

the experiments was visually monitored. Unfortunately, the thick glass walls of the chamber 

prevented accurate monitoring with a camera system. After the experiments, leaves were 

removed from the plants and total leaf area was determined for calculating the flux density, as 

described earlier. Digital images of detached leaves were recorded for leaf area assessment. 

 

 

RESULTS AND DISCUSSION 

Visual observation of infection symptoms 

There was a variation in the number and expansion rate of lesions between the replicates. In 

four experiments, the first symptoms were small necrotic spots on some of the leaves 

approximately 24 h after inoculation. These spots remained small and restricted throughout 

the whole experiment, i.e. for two days after inoculation. Hereafter, these four replicates will 

be referred to as “mild infection”. In two experiments, the lesions expanded rapidly, resulting 

in large unrestricted dry regions on leaves. These two replicates will hereafter be referred to 

as ‘severe infection’. Such large differences in leaf lesion expansion rates between different 

inoculation experiments are common and have been observed on tomato plants have been 

infected with B. cinerea (ten Have et al., 2007). Typical examples of mild and severe 

infection symptoms are provided in Fig. 3.2. 
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Fig. 3.2 Visible symptoms as observed after the experiments. A: Mild infection symptoms 

characterised by the presence of small necrotic spots. B: Severe infection symptoms, in which the 

lesions expanded and covered almost 50 % of many leaves. 

 

Emissions of LOX products  

Volatile products from the lipoxygenase pathway (LOX products) are often called green leaf 

volatiles and can account for > 50% of emissions from damaged plant parts (Holopainen, 

2004). Up to nine different LOX products were identified in the volatile emission from tomato 

plants after inoculation with the fungus B. cinerea. The most dominant LOX products were 

the C6-compounds cis-3-hexenal, cis-3-hexenol, and trans-2-hexenal; the C5-compound 

1-penten-3-ol; and the C8-compound cis-3-hexenyl-acetate. In all experiments resulting in 

LOX product emission, the sum of these five compounds contributed about 90% to total LOX 

product emission (data not shown). Therefore, we consider these compounds as the sum of all 

LOX products, hereafter referred to as Σ LOX. As emissions were analysed every hour, it was 

possible to study the time courses of Σ LOX. Fig. 3.3 shows typical examples for time courses 

of Σ LOX products from control plants and plants developing mild and severe infections. 
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Fig. 3.3 Typical time courses of the combined emission (Σ LOX) of the five most dominant volatiles 

from the lipoxygenase pathway (cis-3-hexenal, cis-3-hexenol, trans-2-hexenal, cis-3-hexenyl-acetate, 

1-penten-3-ol) by tomato plants inoculated with Botrytis cinerea and by control plants. Squares (left) 

refer to an experiment in which plants developed a severe infection. Open circles (right) refer to an 

experiment in which plants developed a mild infection. Triangles refer to a control experiment. Shaded 

areas represent dark phases. GC/MS measurements started at 2 h after spraying in order to prevent 

technical problems with the GC/MS equipment due to the high humidity directly after spraying. 

 

In all experiments in which plants were inoculated with B. cinerea, emissions of LOX 

products were found. These emissions were not found from control plants sprayed with a 

suspension without fungal spores. The emissions of LOX products reached a maxima during 

phase 1 i.e. within the first 16 h after inoculation. Thereafter, the emissions steadily decayed 

on time scales of hours in three cases. However, in three other cases (see Fig. 3.3) small 

additional pulses of LOX product emissions were observed 16-40 after inoculation. These 

latter pulses were lower than those found during phase 1 and lasted for shorter times. 

 

The delay between inoculation and maximum LOX product emissions of the first large pulses 

differed in each experiment. In particular, large differences were observed between mild and 

severe infection. For mild infections, the maximum emission appeared approximately 10 h 

after inoculation whereas for the severe infections the maximum emission seemed to have 

appeared already before the start of measurements. 
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Concurrent with the earlier emission of LOX products from tomato plants showing severe 

symptoms, the absolute amount of emitted LOX products was also about three orders of 

magnitude higher compared to plants showing mild symptoms. Table 3.2 lists the minima and 

maxima of LOX product emissions for the different experiments and different phases.  

 

Table 3.2 Range of emission of Σ LOX products (mol m-2 s-1).  

 Botrytis cinerea severe (n=2)  Botrytis cinerea mild (n=4)  Control (n=6) 

 Min Max  Min Max  Min Max 

Phase 1 5.19E-9 4.44E-8  2.2E-16* 3.59E-11**  n.d. n.d. 

Phase 2  6.83E-10 2.65E-8  8.15E-16 1.98E-11  n.d. n.d. 

Phase 3  2.28E-10 1.27E-9  1.1E-16* 8.92E-12  n.d. n.d. 

Phase 4 3.93E-10 9.93E-10  2.1E-16* 7.60E-12  n.d. n.d. 

* data near to the detection limit; ** n=3  

n.d. = not detected, i.e. < 5E-17 which is the detection limit for the conditions used here. 

 

Grades of infection were classified as mild or severe, although such a qualitative classification 

is arbitrary and no clear limits for such classes. The severity of infection in the case of tomato 

plants infected with B. cinerea might span the whole range of data listed in Table 3.2 or may 

be even higher. Despite this arbitrary classification of infection grade, we found severe 

symptoms of injury accompanied by larger emission of LOX products. Similarly, mild 

symptoms were accompanied by lower emissions of LOX products. We attribute this relation 

between the amount of LOX product emissions and the severity of infection to the degree of 

leaf membrane degradation (see Fig. 3.2). Such relations between the emissions of LOX 

products and the degree of membrane degradation of plant tissue are consistent with those of 

Fall et al. (1999) and Beauchamp et al. (2005). Fall et al. (1999) reported an increase in LOX 

product emissions from aspen leaves that was proportional to the extent of wounding and thus 

to the degree of membrane degradation. Beauchamp et al. (2005) reported a close relationship 

between the amount of emitted LOX products and the degree of stress due to ozone exposure 

of Nicotiana tabacu. where increased ozone levels results in the formation of necrotic lesions 

(Iriti et al., 2006) and hence membrane degradation. Similarly, in the case of B. cinerea 

infection of tomato plants, the amount of LOX product emitted as well as well as the timing 

of emission, depends on membrane damage caused by the infection.  
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The timing of the emissions of individual LOX products differed slightly from that of the sum 

of LOX products (not shown). This behaviour was also observed for tobacco plants infected 

with Pseudomonas syringae (Heiden et al., 2003). These authors reported time shifts between 

the pulses of individual volatile LOX products up to 2 h that could be attributed to the 

consecutive production of LOX products. Such time shifts are caused by the parallelism of 

production and emission and hint at processes after the production of the first volatile C6 LOX 

product, cis-3-hexenal (e.g. Croft et al., 1993). Because we wanted to examine the influence 

of B. cinerea attack on induction of the enzyme sequence producing all LOX products, we 

summed the emission rates of the main LOX products. This procedure cancels out the impact 

of conversion of one VOC into another and provides the temporal course of the steps until the 

production of cis-3-hexenol. It is likely that the time course of this sum of LOX product 

emissions basically reflects the time course of membrane degradation as observed in 

Phragmites australis exposed to high temperature (Loreto et al., 2006). 

 

Emissions of monoterpenes 

In addition to the emissions of LOX products, up to 16 different monoterpenes were identified 

in the volatile emissions from tomato plants. The most dominant were of β-phellandrene, 2-

carene, limonene, α-phellandrene, and α-pinene. These five monoterpenes contributed to 

more than 95% of the volatile monoterpene emission in all experiments (data not shown). 

Therefore we considered these compounds as the sum of all monoterpene emissions, hereafter 

referred to as Σ monoterpenes. Fig. 3.4 shows an example of the time course of 

Σ monoterpene emission after mild and severe infection as well as for control plants. 
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Fig. 3.4 Time course of combined emission of monoterpenes (Σ monoterpenes) for the five most 

dominant monoterpenes (β-phellandrene, 2-carene, limonene, α-phellandrene, α-pinene) by tomato 

plants inoculated with Botrytis cinerea and by control plants. Data are shown from three experiments: 

one experiment resulted in severe infection (squares), one experiment resulted in mild infection 

(circles) and one is from control plants (triangles). Shaded areas represent dark phases. GC/MS 

measurements started at 2 h after spraying in order to prevent technical problems with the GC/MS 

equipment due to high humidity directly after spraying. 

 

 

After starting the measurements, large monoterpene emissions were observed in case of 

severe B. cinerea infection. These emissions decreased over a time scale of hours and varied 

according to the day/night rhythm thereafter. Light-dependent emissions of monoterpenes by 

plants has been frequently described (Tarvainen et al., 2005), as has temperature-dependent 

emissions (Schuh et al., 1997). Both factors may simultaneously control the emission of 

VOCs from plants. However, for tomato, we believe that the day/night rhythm of 

monoterpene emissions is mainly temperature controlled. Such temperature dependent 

emission of monoterpenes has been found in plant species that store volatile organic 

compounds in pools e.g. pine trees, which store monoterpenes in their needles (e.g. Loreto et 

al., 2000) and tomato plants which store monoterpenes in trichomes (van Schie et al., 2007). 

These studies support our assumption that temperature is the main factor controlling the 
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day/night rhythm of monoterpene emission in tomato. One method to elucidate the role of 

volatile storage pools with respect to pathogen-induced plant emissions is labelling of 

inoculated plants with 13C-CO2 in parallel with GC/MS analysis of volatile compounds 

released (for details, see Paré and Tumlinson, 1997). 

 

Table 3.3 lists the ranges of Σ monoterpenes (the five monoterpenes listed above) measured 

for 2 days after spraying. The baseline emissions of monoterpenes due to diffusion out of 

trichomes have been described for tomato and other crops (Bäck et al., 2005, Loughrin et al., 

1994, Maes and Debergh, 2003). It is possible that the release of monoterpene emissions may 

depend on the amount of trichomes on a plant. In such case the emission strength may vary 

from individual to individual, which explains the variability of monoterpene emissions from 

control plants. 

 

Table 3.3 Range of emissions of Σ monoterpenes (mol m-2 s-1). 

 Botrytis cinerea severe (n=2)  Botrytis cinerea mild (n=4)  Control (n=6) 

 Min Max  Min Max  Min Max 

Phase 1 3.2E-10 8.6E-10  2.8E-13* 5.4E-11*  2.3E-12 9.2E-12 

Phase 2 3.2E-10 1.4E-9  3.0E-13 2.3E-11  2.1E-12 2.2E-11 

Phase 3 1.3E-10 5.1E-9  1.1E-13 8.5E-11  1.7E-12 5.3E-12 

Phase 4 3.0E-10 5.1E-10  2.3E-13 3.4E-11  4.7E-12 1.71E-11 

* n=3. 

 

To further evaluate the emission of monoterpenes, we examined the pattern of this class of 

compounds. Interestingly, the emission patterns of monoterpenes were independent of the 

time after inoculation; there was an almost perfect linear correlation (Pearson r > 0.9) between 

the emissions of individual monoterpenes. Fig. 3.5 shows the correlation of emission rates of 

limonene, α-phellandrene, 2-carene and α-pinene versus β-phellandrene for an experiment 

that resulted in severe infection.  
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Fig. 3.5 Correlation between emission rates of limonene, α-phellandrene, 2-carene and 

α-pinene versus β-phellandrene. Data are shown from an experiment that resulted in severe 

infection. HAI = hours after inoculation. 

 

The monoterpene emission pattern was constant over time, independent of the treatment and 

independent of the extent of infection. Control plants as well as inoculated plants showed this 

pattern in monoterpenes, suggesting the same mechanism controls the emission of all of these 

compounds. This mechanism is probably related to diffusion rates from trichomes.  

 

In plants with severe symptoms, there was an increase in monoterpene emissions (Table 3.3). 

A severe B. cinerea infection resulted in large unrestricted dry regions on leaves (Fig. 3.2B) 

with destruction of the trichomes in such regions. These tomato leaf glandular trichomes 

contain a rich spectrum of monoterpenes (Colby et al., 1998). It is therefore likely that 

damage of trichomes as a result of severe B. cinerea infection caused the observed increase in 

monoterpene emissions. In case of mild symptoms, no impact of B. cinerea infection on the 

monoterpene emissions was detectable (Table 3.3). In these cases inoculation with B. cinerea 

resulted in small restricted spots on the leaves (Fig. 3.2A) suggesting that few trichomes were 

damaged, which resulted in levels of monoterpene emissions that are indistinguishable from 

the baseline emissions of control plants. 
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If baseline monoterpene emissions are due to diffusion out of trichomes and increased 

monoterpene emissions are due to mechanical damage to trichomes, the monoterpene pattern 

should stay constant and should be independent of the type of stress. This was observed in the 

present experiments, suggesting that the main part of the strong monoterpene emissions from 

tomato with severe symptoms is due damaged trichomes. Several studies have showed 

increased monoterpene emissions upon damage to tomato plants (Dicke et al., 1998, Farag 

and Paré, 2002, Kant et al., 2004, Maes, 2002, Sanchez-Hernández et al., 2006, Thaler et al., 

2002, Wei et al., 2007) as a result of herbivore infestation. Nevertheless, the increase in 

monoterpene emission from tomato upon herbivory also probably resulted from damaged 

trichomes since herbivore species have the ability to damage trichomes (e.g. Gibson, 1971). If 

our assumption of damaged trichomes being the main reason for the increased monoterpene 

emissions after B. cinerea infestation is correct, it follows that the monoterpene emission 

pattern after herbivore attack or B. cinerea infestation would be the same. Monoterpene 

emissions from tomato therefore cannot be used to identify the stressor leading to the damage. 

 

Many plants respond systemically to stressors and then emit VOCs not only at the site of 

damage, but also from remote, undamaged tissues (e.g. Tingey et al., 1991, Turlings and 

Tumlinson, 1992). In addition to trichome damage, a second possibility for an increase in 

monoterpene emissions may be such a systemic response following a de novo synthesis of 

monoterpenes in the whole plant. Farag & Paré (2002) found that tomato plants treated with 

chemicals release trans-2-hexenal, a LOX product emitted by tomato after B. cinerea 

infestation; therefore an induced systemic response cannot be strictly excluded. Furthermore, 

Farag & Paré (2002) also reported that the local response i.e. a mechanical damage of 

trichomes might lead to a stronger increase in these monoterpene emissions. This is consistent 

with our assumption that trichome damage is the main reason for increased monoterpene 

emissions. However, independent of whether the increase in monoterpene emissions was due 

to a systemic or a local response, the emission pattern did not change. Hence, systemic 

induced emission would be indistinguishable from local damage. Without further information 

the exact mechanism of increased monoterpene emissions can therefore not be identified.  

 

Systemic wound responses appear to be ubiquitous in plant-insect interactions (Heil and Ton, 

2008). For example, an increase in the systemically emitted compounds methyl salicylate and 

(E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) was reported upon herbivore 
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infestation of cotton (Röse et al., 1996). Results from our study indicated a similar increase in 

emissions of methyl salicylate and TMTT after infection with B. cinerea. According to van 

Schie et al. (2007), these compounds are not stored in trichomes of tomato; therefore, they are 

likely to be systemically induced upon infection with B. cinerea. However, also these 

emissions are probably not specific to any type of stress since stress due to enclosure of 

tomato plants –a prerequisite for analysing plant emission- also led to increased emissions of 

methyl salicylate and TMTT (Kant et al., 2004). 

 

CONCLUSION 

The objective of this study was to assess the potential for VOC sensing as an early and non-

invasive method for diagnosis of tomato plant infection by B. cinerea. This approach seems 

applicable; infection of tomato plants with B. cinerea resulted in rapid changes in VOC 

emissions. Among the volatile compounds measured, products from the lipoxygenase 

pathway (LOX products) were the strongest indicator of the stress response. Besides 

emissions of LOX products, there were also increases in monoterpene emissions . However, 

neither emissions of LOX products nor increased monoterpene emissions can be used to 

identify the stressor. LOX products emissions basically reflect membrane injury and therefore 

emission of LOX products can only be used to identify plant tissue damage in an unspecific 

way. Also monoterpene emissions seem to be independent of the origin of the plant tissue 

damage. In order to draw conclusions about the elicitor of plant tissue damage it is necessary 

to find volatile emissions that are unique for an elicitor. 

 

Among the main compounds emitted from tomato infected with B. cinerea, we found no such 

unique emission pattern. Nevertheless, unspecific emissions can be used for early stress 

detection. For identification of the stressor itself, additional information is necessary from 

several additional criteria. For example, outbreaks often involve a single disease with specific 

factors for the outbreak, such as high humidity. Such criteria should thus be taken in account 

when evaluating VOC emissions from plants. For practical purposes, it is advisable that most 

common diseases known to occur in greenhouses should be studied. Furthermore, scale-up 

experiments are required to obtain more information regarding the applicability of VOC 

sensing as a non-invasive method for diagnosis of disease prevalence in greenhouses. 
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CHAPTER 4 

The effect of trichome damage and cell membrane damage on 

the concentration of volatiles in a small-scale greenhouse 
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INTRODUCTION 

Pathogen attack and herbivore infestation have a major impact on plant health and therefore 

cause considerable crop yield losses in greenhouse cultivation (de Clercq, 2001). A 

monitoring system to reveal plant health problems at an early stage would facilitate immediate 

interventions and possibly diminish adverse effects. Imaging techniques to monitor plant 

health have recently been reported (Boissard et al., 2008, Chaerle et al., 2006). These imaging 

techniques provide an important contribution to current research related to early and non-

invasive plant diagnosis (see Liew et al., 2008). Critical disadvantages of imaging techniques 

are that they cannot provide information on inner canopy layers and can detect disease 

problems only after visual symptoms have developed. A more adequate method for 

monitoring plant health should provide information on both inner and outer canopy layers and 

should warn for problems at an early stage. 

 

An attractive method to provide plant health information is the analysis of volatile organic 

compounds (VOCs) in greenhouse atmosphere. This new idea originates from the numerous 

laboratory experiments, which revealed that stresses of plants change the volatile blend 

released by the plant. For example, pathogen infection of various plants has elicited the 

emission of several VOCs (Deng et al., 2004b, Shulaev et al., 1997, Vuorinen et al., 2007). 

Also herbivore infestation resulted in the release of many different types of VOCs (Röse and 

Tumlinson, 2005, Takabayashi et al., 1994). 

 

In the present study, three mechanisms were regarded as important with respect to stress-

induced emissions from plants. The first factor is the damage of storage pools in plants that 

contain liquids that are readily emitted after damage. An example of this is the emission of 

monoterpenes as a result of damage to glandular trichomes due to the necrotic pathogen 

Botrytis cinerea (Jansen et al., 2009c). The second factor is cell membrane damage. When 

cell membranes are damaged, several chemical substances are emitted due to the breakdown 

of membrane lipids (Paré and Tumlinson, 1999). These emissions consist of a blend of 

saturated and unsaturated six-carbon alcohols, aldehydes, and esters derived from the 

lipoxygenase pathway and thus commonly referred to as LOX products (Beauchamp et al., 

2005). The third factor concerns the systemic response in which plants emit VOCs not only at 

the site of damage, but also at undamaged leaves (Turlings and Tumlinson, 1992). 
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In this study, tomato plants were used to study the feasibility of monitoring plant health 

through analysis of VOCs in greenhouse atmosphere. Several plant health issues are relevant 

in tomato-producing greenhouses. For example, herbivorous spider mites (Tetranychus 

urticae) form a serious pest in tomato crops (van Leeuwen et al., 2005). Also grey mould, 

caused by the necrotrophic pathogen B. cinerea, is a well-known cause for considerable 

damage in tomato production (Elad and Stewart, 2004). Although we aimed to investigate 

whether plant health monitoring based on plant VOCs is feasible, we decided not to use 

herbivores or pathogens because these types of stressors are difficult to control and might 

fully destroy the crop within a short period not allowing any replicate measurements. To 

simulate pathogen attack and herbivore infestation, we repeatedly applied two types of 

controlled damage to the crop: (1) damage as a result of stroking the stems, and (2) damage 

due to removing side shoots. 

 

Stems of the plants were stroked with the intention to damage the trichomes located on the 

stem. To use simulated pathogen attack and herbivore infestation by trichome damage is 

relevant because also pathogens and herbivore species have the ability to damage trichomes 

(e.g. Gibson, 1971). Therefore, the first objective of this research was to study the effect of 

trichome damage on plant-emitted VOCs in greenhouse atmosphere. 

 

Removal of side shoots was applied with the intention to inflict cell-membrane damage. To 

use simulated pathogen attack and herbivore infestation by cell membrane damage was 

supposed to be adequate because cell membranes are also damaged as a consequence of 

pathogen infection and herbivore feeding (Levin, 1976). Therefore, the second objective of 

this research was to study the effect of cell membrane damage on plant-emitted VOCs in 

greenhouse atmosphere. 

 

During the commercial cultivation of tomato, the mature fruits are often harvested. Likely, 

this treatment also results in the modification of plant emission and thus the concentration of 

plant-emitted VOCs in the greenhouse air. Because fruit picking occurs frequently in 

commercial greenhouses, this treatment might obstruct the interpretation of pathogen- and 

herbivore-induced volatiles during the monitoring of plant health status. Therefore, the third 

objective of this research was to study the effect of fruit picking on the concentration of plant-
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emitted VOCs in greenhouse atmosphere. The findings presented in this paper focus on the 

feasibility of monitoring plant health through the analysis of VOCs in greenhouse air, but we 

also note the atmospheric significance of regular crop activities such as harvest. 

 

 

MATERIALS AND METHODS 

Plant material 

Seeds of tomato plants (Lycopersicon esculentum Mill.) of the cultivar Moneymaker were 

germinated in a standard greenhouse at 20°C and 50% relative humidity. When plants were 

about seven weeks old, 60 plants were transferred to a small experimental greenhouse. At that 

age the individual plants were about 80 cm high. Plants were placed on rockwool slabs and 

irrigated with standard nutrient solution with the aid of a trickle irrigation system. 

Experiments were carried out until the plants had nearly reached the lamps located at 2.5 m 

above ground level (usually about 12 weeks after planting). 

 

Experiments 

Four tomato crops were grown over a period of 1 year. Three of these were mainly used for 

the analysis of greenhouse air before and after stroking of the plants. One was mainly used to 

study the effect of shoot removal. The first study was from February to March 2007, the 

second from April to May 2007, the third from June to July 2007, and the fourth from 

November 2007 to January 2008. During the time period of six weeks, on Wednesday, shoots 

were removed and plants stems were tied up to hanging wires for support. On Thursday, 

trichomes were mechanically damaged on a weekly interval by stroking the full length of the 

stem of each individual plant using a stainless steel bar. Several times, the tomato fruits were 

picked at the red-ripe stage. Trichome damage, shoot removal, and fruit picking were 

performed at a fixed starting time point i.e. 13.00 h. 

 

Greenhouse equipment and climate control 

The experimental greenhouse used for the experiments has been described by Körner et al. 

(2007). In short, the floor area of the greenhouse was 44 m2 and the total volume including the 

basement underneath was 270 m3. Using tracer gas measurements, the air exchange was 

determined to be 2 mol air sec-1 (data not shown). A fan located in the basement was used to 
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maintain a constant internal air circulation of 20 × 103 m3 h-1. Electrical heating and direct 

mechanical cooling situated in the basement controlled temperature and humidity. A day 

length of 16 h (6:00 h–22:00 h) was maintained with 30 luminaries (SGR; Philips, Somerset, 

NJ, USA) equipped with one 200 W lamp each (SON-T Agro; Philips). During this period, 

light was switched on when outside global radiation dropped below 150 W m-2 and switched 

off again when the radiation outside increased above 250 W m-2. The temperature was set at 

22.0/16.0 ±1.0°C day/night. The relative humidity inside the greenhouse was maintained at 

about 70/90 ±5% day/night. Temperature and relative humidity of the air in the greenhouse 

were measured with dry and wet bulb platinum-resistance temperature sensors. A third sensor 

measured temperature and relative humidity for climate control purposes. Pure CO2 was 

injected into the greenhouse proportionally to the difference between measured CO2 

concentration and the CO2 set point concentration (420 ppm) using an infrared gas analyser 

(URAS 3G; Hartmann & Braun, Frankfurt, Germany) and a mass-flow controller (5850E; 

Brooks, Veenendaal, The Netherlands). 

 

Air sampling in the greenhouse  

Continuous flow pumps were used to purge 18 L of air from the greenhouse through stainless 

steel cartridges (Markes International Ltd, Lantrisant, UK) packed with 200 mg of Tenax-TA 

20/35 (Grace-Alltech, Breda, The Netherlands). Air was drawn through these cartridges at 

300 mL min-1 for 60 min. Air samples were collected before and directly after stroking the 

plants as well as before and directly after shoot removal. In the initial experiments, the 

greenhouse atmosphere was sampled at three locations within the greenhouse to provide 

insight into the spatial distribution of VOCs inside the greenhouse. These three sampling 

points were located in the left-rear, centre, and right-front location of the greenhouse at a 

height of 1 m. Results indicated that the concentration differences between the three locations 

were small (approximately 10%). The similarity in concentration was expected because of the 

large internal air circulation. Therefore, samples obtained in the centre were used in the 

remainder of this study. After sampling, the cartridges were immediately capped and 

transferred to the lab for analysis. In between the replicates, we performed empty greenhouse 

tests which showed no indication of VOCs emitted from greenhouse materials or VOC-

transfer from outside to inside of the greenhouse that could be misleadingly interpreted as 

plant emissions. 
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Volatile analysis 

The analysis of volatile compounds using gas chromatography coupled to mass spectrometry 

(GC-MS) has been described before (Jansen et al., 2008). Before analysis, the cartridges were 

dry-purged with helium at ambient temperature with a flow of 100 mL min-1 for 10 min to 

remove water. Analytes were desorbed from the cartridges using thermal desorption at 250°C 

for 5 min under a flow of 30 mL min-1 of helium, and subsequently concentrated in an 

electronically-cooled focusing trap at -5°C (UltrA-TDTM and UnityTM; Markes International 

Ltd.). Analytes were then transferred to the column by heating the cold trap to 250°C at 

approximately 40°C sec-1. The column (Rtx-5 MS, 30 m × 0.25 mm internal diameter × 1 μm 

film thickness; Restek, Bellefonte, PA, USA) was held at the initial temperature of 40°C for 

3.5 min followed by a linear gradient of 10°C min-1 to 280°C and a hold of 2.5 min resulting 

in an overall runtime of almost 33 min. The column flow was approximately 1 mL min-1. A 

multitube conditioning unit was used for cleaning the cartridges in between the measurements 

at 310°C for 40 minutes under a flow of 50 mL min-1 of helium. To prevent overloading of the 

analytical system, most samples were split prior to injection. Air samples obtained when 

plants were relatively small were analysed in splitless mode while samples obtained in case of 

large plants were analysed at split inlet modes between 1:6 and 1:24. To correct for the split 

levels used, data were normalized to naphthalene. Naphthalene was selected for normalization 

because this compound is not released from plants and was always present in almost constant 

concentration inside the greenhouse (Jansen et al., 2008). The response of the GC-MS to the 

standard naphthalene was also used to correct for variability in GC-MS sensitivity (e.g. 

because of contamination of the ion source and after cleaning the ion source). 

 

For quantification purposes, an experimental set-up to provide well defined concentrations of 

relevant VOCs was used (Heiden et al., 2003). The set-up consisted of several 1 L double 

walled glass containers that were temperature controlled at 30°C. Each of these containers 

contained one 4 mL amber glass vial closed by a Teflon plate. These vials contained GC-

grade standards of (Z)-3-hexenol, α-pinene, β-caryophyllene and methyl salicylate (Fluka, 

Milwaukee, WI, USA). Standards with high vapour pressure permeated through the Teflon 

plate. In case of VOCs with low vapour pressure small holes were punched in the Teflon 

plates to allow diffusion of the VOC through the small holes. After inserting the vials in the 

individual containers, the containers were flushed with nitrogen (0.5 to 2 L min-1, purity > 

99.99%). At the outlet of the container, a T-piece allowed to split the nitrogen flow containing 
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the corresponding VOC. About 95% of the flow was discarded and about 5% of the nitrogen 

flow was mixed with clean air (10 to 30 L min-1). Similar cartridges as used for greenhouse 

sampling were used for taking samples from this air stream. To calculate evaporation rates, 

the vials containing the individual VOCs were regularly weighed in time intervals of about 

two weeks. To calculate the dilution, also the air streams of the splits and the calibration air 

flow were measured regularly. In a preliminary experiment, two identical cartridges were put 

in series to test the breakthrough volume, which represents the gas volume above which a 

given compound is no longer totally trapped. No compounds were trapped in the second 

cartridge when the sampling volume was 4 L, indicating that the sampling procedure can be 

used for quantification of the VOCs. 

 

Immediately after analysing the cartridges containing the standards, a sample collected in the 

greenhouse was analysed to provide an external standard (naphthalene). The response to 

naphthalene was used to calculate the absolute concentration of compounds in the greenhouse 

by assuming the responses to be the same as the response of α-pinene for the 

C10-monoterpenes, methyl salicylate for the phenolics, and β-caryophyllene for the 

C15-sesquiterpenes and the C16-homoterpene (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene 

(TMTT). 

 

 



CHAPTER 4 

 

62 

 

RESULTS 

The effect of stroking the plants on VOCs in the greenhouse atmosphere 

Chromatographic profiles obtained from the analysis of VOCs in the greenhouse atmosphere 

contained several peaks that represented compounds from the analytical system itself such as 

siloxanes, and compounds commonly found in the Earth’s atmosphere such as toluene and 

benzene (Warneke et al., 2001). Besides these signals, the profiles consisted of peaks 

representing the chemical substances emitted by the plants. Using specific mass-to-charge 

ratios (m/z), we could filter out signals representing plant-emitted VOCs such as terpenes and 

C6-alcohols; two classes of hydrocarbons generated by plants (Gershenzon and Dudareva, 

2007, Hatanaka, 1993, Kesselmeier and Staudt, 1999). A typical chromatographic profile and 

the effect of filtering out some plant-generated terpenes are presented in Fig. 4.1. 

 
Fig. 4.1 Typical chromatographic profiles obtained from analysing volatile organic 

compounds in the greenhouse atmosphere. The sample was obtained before stroking when 

plants were nearly eight weeks old. A) Total ion current (TIC) chromatogram; B) selective ion 

current (SIC) chromatogram for a selected part of the chromatographic profile using m/z 93 as 

representative for monoterpenes. 1 = toluene, 2 = siloxane, 3 = 2-carene, 4 = β-phellandrene, 

5 = decanal, 6 = unidentified impurity, 7 = α-pinene, 8 = α-phellandrene, 9 = limonene. 

 

Based on the mass spectra and retention times we could identify up to 17 plant-emitted VOCs 

in the greenhouse atmosphere before stroking of the plants (Table 4.1). All these compounds 

were previously described after lab studies in which volatiles emitted from tomato plants were 
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studied (Deng et al., 2004b, Dicke et al., 1998, Maes and Debergh, 2003, Sanchez-Hernández 

et al., 2006, Vercammen et al., 2001, Wei et al., 2007). 

 

Table 4.1 Plant-emitted volatile organic compounds detected in the greenhouse before 

stroking of the plants.* 

Compounds Formula MW [m/z] BP [m/z] Rt [min] 

MONOTERPENES     

α-terpinene C10H16 136 121 13.59 

β-phellandrene C10H16 136 93 13.89 

α-phellandrene C10H16 136 93 13.38 

α-pinene C10H16 136 93 12.07 

limonene C10H16 136 68 13.84 

2-carene C10H16 136 93 13.32 

β-pinene C10H16 136 93 12.96 

(E)-β-ocimene C10H16 136 93 13.99 

γ-terpinene C10H16 136 93 14.32 

     

SESQUITERPENES     

β-caryophyllene C15H24 204 41 20.20 

δ-elemene C15H24 204 121 18.83 

α-copaene C15H24 204 161 19.48 

α-humulene C15H24 204 93 20.66 

     

PHENOLICS     

tert-butylphenol C10H14O 134 119 12.79 

methyl salicylate C8H8O3 152 120 16.35 

p-cymene C10H14 134 119 13.73 

     

OTHER     

(E,E)-4,8,12-trimethyl- 

1,3,7,11-tridecatetraene 

C16H26 

 

218 

 

69 21.40 

 

BP, base peak; m/z, mass-to-charge ratio; MW, molecular weight; Rt, retention time. 

* Formula, MW, BP, Rt and chemical classes are given for these compounds. 
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The five most dominant plant compounds in greenhouse atmosphere were the 

C10-monoterpenes β-phellandrene, 2-carene, limonene, α-phellandrene and α-pinene. The 

dominance of these five compounds was independent of the age of the plants. Before stroking, 

concentrations of these five VOCs in greenhouse atmosphere were between 7 pptv and 

0.06 ppbv when plants were 7 weeks of age. These concentrations increased to levels between 

35 pptv and 0.14 ppbv when plants were at the 12th week of age. 

 

Stems of the plants were stroked with the intention to damage the trichomes located on the 

stem. This intention was achieved because visual assessment confirmed that most trichomes 

located on the stems were broken as a result of the strokes. 

 

An increase in concentration of all mono- and most sesquiterpenes was observed after 

stroking of the plants. The relative increase (concentration after stroking / concentration 

before stroking) was up to 60-fold for the monoterpene β-phellandrene. A typical increase of 

three monoterpenes and the sesquiterpene β-caryophyllene is provided in Table 4.2. 

 

Table 4.2 Relative increase (concentration after stroking / concentration before stroking) of 

three monoterpenes (β-phellandrene, 2-carene, α-pinene) and the sesquiterpene 

β-caryophyllene in greenhouse atmosphere after stroking the stems of 60 tomato plants.* 

 Relative increase (Concentration after / Concentration before stroking) 

Compounds 7 Weeks 8 Weeks 9 Weeks 10 Weeks 11 Weeks 12 Weeks 
β-phellandrene 57.0  (18.1) 59.8  (50.8) 36.9  (9.5) 48.0  (24.8) 35.3  (18.6) 32.8  (13.6) 
2-carene 54.5  (20.9) 64.4  (51.3) 39.7  (13.7) 52.4  (13.7) 38.3  (18.0) 40.4  (22.6) 
α-pinene 26.9  (14.8) 21.8  (7.12) 10.9  (4.7) 26.2  (3.8) 15.8  (1.1) 19.3  (7.5) 
β-caryophyllene   4.7  (2.3)   7.1  (3.2)   5.9  (0.8)   7.7  (2.2) 7.6    (2.8) 5.5    (3.3) 

* Results are shown for plants between 7 and 12 weeks old. Means and standard deviations 

are presented for three independent replicates. 

 

Besides the relative increase, also the absolute increase in concentration of plant-emitted 

VOCs was studied. The effect of stroking on the absolute concentration of the monoterpene β-

phellandrene, and the sesquiterpene β-caryophyllene is shown in Fig. 4.2. 
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Fig. 4.2 Concentrations of the monoterpene β-phellandrene, and the sesquiterpene 

β-caryophyllene in greenhouse atmosphere before (white bars) and after stroking (grey bars) 

of the plants. Means and standard deviations are presented for 3 independent replicates. Note 

the different y-axes. 

 

 

To determine whether the increase in concentration directly after stroking persisted, air 

samples were collected at 12 h after stroking. Results showed that the concentration decreased 

to values near to the concentration before stroking (data not shown). 

 

In contrast to the large number of detected mono- and sesquiterpenes, LOX products were 

undetected in the greenhouse atmosphere before stroking of the plants. The LOX products 

were also undetected in any of the replicates after stroking of the plants. In addition to the 

numerous mono- and sesquiterpenes, the phenolic compound methyl salicylate, and trace 

level amounts of the homoterpene (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) 

were detected in greenhouse atmosphere before stroking the plants. Stroking the plants did not 

result in substantial increased concentrations of methyl salicylate (Fig. 4.3). Also the 

concentration of TMTT did not increase after stroking the plants. However, TMTT 

concentration could not always be quantified since the corresponding signal-to-noise ratio 

(s/n) was often too low (s/n < 10). In contrast to all other sesquiterpenes detected in 

greenhouse atmosphere, stroking the plants did not result in substantial increased 

concentrations of the sesquiterpene α-copaene (Fig. 4.3). 
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Fig. 4.3 Concentrations of methyl salicylate and α-copaene in the greenhouse atmosphere 

before (white bars) and after stroking (grey bars) of the plants. Means and standard deviations 

are presented for three independent replicates. Note the different y-axes. 

 

In addition to the concentration of individual VOCs, also the fractional composition of the 

VOC mixture was studied. The analysis of air samples collected before damage of the plants 

revealed that this composition remained nearly constant throughout the growing period. This 

was indicated by the almost perfect linear relationship between the concentrations of most 

individual VOCs before damage (Fig. 4.4A and Fig. 4.4C). After stroking, the fractional 

composition of the plant VOC mixture slightly changed. For some compounds the relation 

was not affected by the damage (compare Fig. 4.4A with Fig. 4.4B) while for β-phellandrene 

and β-caryophyllene the ratio after trichome damage increased more then six-fold (compare 

slopes given in Fig. 4.4C and Fig. 4.4D). 
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Fig. 4.4 Examples of the linear relation between the concentrations of individual compounds 

in the mixture of VOCs in greenhouse atmosphere before and after stroking the plants. The 

data shown represents the relationship for A) β-phellandrene and 2-carene before stroking; B) 

β-phellandrene and 2-carene after stroking; C) β-phellandrene and β-caryophyllene before 

stroking and D) β-phellandrene and β-caryophyllene after stroking. Data are derived from 

three independent replicate studies. 

 

 

The effect of removing side shoots on VOCs in the greenhouse atmosphere 

The quantity and concentration of plant-emitted VOCs detected before removing side shoots 

resembled that of plant VOCs in the greenhouse atmosphere before stroking the plants. After 

removal of side shoots, an increase in the concentration of all mono- and most sesquiterpenes 

was observed. The increases of a monoterpene (β-phellandrene) and a sesquiterpene 

(β-caryophyllene) are provided in Table 4.3. Besides the increase in concentration of all 

mono- and most sesquiterpenes, the compound (Z)-3-hexenol appeared in the greenhouse 

atmosphere after shoot removal at a concentration of 8 to 20 pptv (Table 4.3). In contrast to 

all other sesquiterpenes, no substantial increase in concentration was observed for the 
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sesquiterpene α-copaene (Table 4.3). In addition, no substantial increase was observed for the 

stress-related compounds methyl salicylate, and TMTT (Table 4.3). 

 

 

Table 4.3 The effect of shoot removal on the concentrations of β-phellandrene, 

β-caryophyllene, (Z)-3-hexenol, α-copaene, methyl salicylate, and (E,E)-4,8,12-trimethyl-

1,3,7,11-tridecatetraene (TMTT) in greenhouse atmosphere.* 

 Concentrations:  

Before shoot removal [pptv] → After shoot removal [pptv] 

Compounds Replicate No. 1 Replicate No. 2 Replicate No. 3 

β-phellandrene 46 → 1212 198 → 2883 552 → 8445 

β-caryophyllene 76 → 2640 174 → 2534 602 → 9629 

(Z)-3-hexenol 0 → 10 0 → 8 0 → 20 

α-copaene 4 → 10 13→ 9 28 → 32 

methyl salicylate 2 → 6 6 → 5 15 → 11 

TMTT 23 → 50 179→ 149 63 → 107 

* Data are derived from three independent replicate studies. 

 

The effect of fruit picking on VOCs in the greenhouse atmosphere 

The quantity and concentration of plant VOCs detected before fruit picking resembled those 

of plant VOCs in the greenhouse atmosphere before stroking the plants. Directly after fruit 

picking, all mono- and most sesquiterpenes showed a relative increase in concentration up to 

25-fold. The increases of a monoterpene (β-phellandrene) and a sesquiterpene 

(β-caryophyllene) are provided in Table 4.4. The LOX product (Z)-3-hexenol was not 

detected after fruit picking and no substantial increase in concentration was observed for the 

stress-related compounds α-copaene, methyl salicylate, and TMTT (Table 4.4). 
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Table 4.4 The effect of fruit picking on the concentrations of β-phellandrene, 

β-caryophyllene, (Z)-3-hexenol, α-copaene, methyl salicylate, and (E,E)-4,8,12-trimethyl-

1,3,7,11-tridecatetraene (TMTT) in greenhouse atmosphere.* 

 Concentrations:  

Before fruit picking [pptv] → After fruit picking [pptv]  

Compounds Replicate No. 1 Replicate No. 2 Replicate No. 3 

β-phellandrene 267 → 4221 627 → 16474 668 → 11583 

β-caryophyllene 256 → 1022 349 → 3371 559 → 1668 

(Z)-3-hexenol 0 → 0 0 → 0 0 → 0 

α-copaene 84 → 110 98→ 133 182 → 310 

methyl salicylate 2 → 6 6 → 5 15 → 11 

TMTT 22 → 10 5→ 2 12 → 7 

* Data are derived from three independent replicate studies. 

 

DISCUSSION 

Pathogen attack and herbivore infestation have a major impact on plant health. In a model 

study, these two plant health issues were simulated to study whether plant health can be 

monitored at greenhouse scale through the analysis of VOCs in greenhouse atmosphere. To 

simulate pathogen attack and herbivore infestation, we repeatedly stroked the plants and 

removed the side shoots. 

 

As a result of stroking, the trichomes located on the stems were damaged. These trichomes 

store, in their interior, considerable amounts of mono- and sesquiterpenes (Buttery et al., 

1987). It is therefore likely that damage to these trichomes is responsible for the increase in 

concentration of most terpenes in the greenhouse atmosphere after stroking (Table 4.2). With 

each consecutive week, the absolute increase in concentration of all mono- and most 

sesquiterpenes became larger after stroking of the crop as shown by the example in Fig. 4.2. 

This result might best be explained by the growth of the plants because plant-growth results in 

an increase in the total number of trichomes located per stem and thus the amount of stored 

compounds that readily volatilise after damaging these pools. However, also the history of 

exposure to the repeated damage might have affected the subsequent plants’ response (Bruce 

et al., 2007). 
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Detection of a sudden increase in terpene concentration as a result of damage of trichomes 

provides an interesting approach to monitor plant health because several laboratory studies 

demonstrated increased emissions as a consequence of trichomes damage because of pathogen 

infection and herbivore infestation (Jansen et al., 2009c, Loughrin et al., 1994, Maes and 

Debergh, 2003).  

 

Also, the change in the ratio between the concentrations of individual compounds after 

stroking could provide an approach to detect stress-induced trichome damage in greenhouses. 

This second approach is probably more straightforward since relative measurements are, in 

general, easier to perform. But, also temperature has a significant effect on the emission of 

compounds from storage pools such as trichomes (Noe et al., 2006). As greenhouse 

temperatures will fluctuate in horticultural practice, this will have to be taken into account 

when correlating increased terpene concentrations in greenhouse atmosphere to trichome 

damage. 

 

The increase in concentration of all mono- and most sesquiterpenes after removing the side 

shoots can likely be attributed to the damage of trichomes as a result of this treatment. In 

contrast to the large number of detected mono- and sesquiterpenes, LOX products were 

undetected in the greenhouse atmosphere before stroking of the plants. This implies that 

undamaged tomato plants do not emit substantial amounts of LOX products which coincide 

with the findings and results in Deng et al. (2005), Vercammen et al. (2001), and Wei et al. 

(2007). After stroking of the plants, LOX products were also undetected, suggesting that 

stroking does not result in significant breakdown of cell membrane lipids. 

 

The lack of increase in concentrations of methyl salicylate and TMTT after stroking the plants 

strongly suggests that these two compounds are not stored in high amounts in trichomes of 

tomato. For methyl salicylate, this was already shown by the work of van Schie et al. (2007). 

In contrast to our findings, other researchers observed increased emissions of methyl 

salicylate and TMTT as a result of damage to tomato plants. For example, damage of tomato 

plants as a result of the tobacco mosaic virus resulted in an increase in the emission of methyl 

salicylate (Deng et al., 2004b). An increase in the emission of methyl salicylate was also 

observed after caterpillar (Spodoptera littoralis) feeding on tomato (Vercammen et al., 2001). 
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Furthermore, an increase in concentration of both methyl salicylate and TMTT, was reported 

for spider mite (T. urticae)-damaged tomato plants (Dicke et al., 1998, Kant et al., 2004). In 

the literature, increased methyl salicylate and/or TMTT emissions were also reported upon 

damage of several other plant species. For instance, Kunert et al. (2002) reported a significant 

increase in the emission of TMTT after the onset of aphid-damage of paprika plants 

(Capsicum annuum). Also Herde et al. (2008) reported an increase of TMTT and also methyl 

salicylate, after herbivore damage of Arabidopsis, whereas Röse et al. (1996) reported a 

systemically increased emission of TMTT and methyl salicylate after damage of cotton 

(Gossypium hirsutum L.), in which case the increase was not only observed at the site of 

damage but also at undamaged leaves. 

 

Why did the concentration of methyl salicylate and TMTT not increase after stroking the 

tomato plants? We provide three possible directions that explain, at least partially, the absence 

of methyl salicylate and TMTT after plant damage as a result of stroking the plants. A first 

explanation for the absence in increase of methyl salicylate and TMTT emission after this 

type of plant damage is related to time scale. Several studies reported a time period in the 

order of some hours up to several days between the onset of plant damage and the increased 

emission of certain VOCs. For example, Vercammen et al. (2001) reported a time period of 

12 h between the onset of caterpillar damage of tomato plants and the increased emission of 

methyl salicylate. Such delay might also occur after damage of tomato plants as a result of 

stroking. Nevertheless, we could not determine if such time delay exists because we only 

collected air samples directly after the damage took place. The second explanation is also 

related to time scale. Whereas stroking is an instantaneous action, pathogen infection and 

herbivore infestation are sustained for several hours or days. This effect was studied by 

Mithöfer et al. (2005) who demonstrated that lima bean plants (Phaseolus lunatus) emitted 

different number and amounts of VOCs in case of continuously sustained damage compared 

to wounding that was set only once. Continuous sustained damage is not limited to biotic 

stresses such as pathogen infection and herbivore infestation. Continuous enclosure of plants 

(a prerequisite for analysing plant emitted VOCs in laboratory), is probably also stressful for 

plants since emissions of methyl salicylate from untreated tomato plants also increased (Kant 

et al., 2004). A third explanation for the absence in increase of methyl salicylate and TMTT 

emission after stroking is related to chemical signalling. It is believed that herbivore-specific 

signals such as secretions play an important role in activating the systemic release of plant 
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VOCs (Arimura et al., 2005, Paré and Tumlinson, 1997). Also pathogen-induced signals 

might play a role in activating the systemic emission of plant VOCs. Neither herbivore- nor 

pathogen-induced signals are involved in plant damage due to stroking only. The lack of such 

signals may thus provide clarification for the absence in increase of methyl salicylate and 

TMTT. In summary, reported conditions under which methyl salicylate and TMTT emissions 

increased from plants were: (a) an increase in the time scale of measurements, (b) the 

application of a continuous type of stress (e.g. herbivore- or pathogen- induced stress), and (c) 

the involvement of herbivore- or pathogen-derived signals. However, we cannot exclude the 

possibility that these conditions have to act simultaneously in order to induce increased 

methyl salicylate and TMTT emissions from plants. 

 

With regard to the absence of increase in the concentration of α-copaene after stroking 

(Fig. 4.3), we believe that this compound is also not stored in high amounts in trichomes of 

tomato. It is important to know whether an increase in α-copaene emission depend on time 

scale, and/or requires herbivore- or pathogen-derived signals because this compound was 

emitted by detached tomato leaves upon B. cinerea infection (Thelen et al., 2006) and may 

thus provide a cue to detect this harmful pathogen in tomato producing greenhouses. 

 

Directly after shoot removal, the compound (Z)-3-hexenol appeared in the greenhouse 

atmosphere (Table 4.3). This compound is one of the LOX products formed after disruption 

of plant tissue (Matsui, 2006). LOX products mainly consist of a group of C6-alcohols, 

aldehydes and acetates also observed after mechanical damage of numerous plant species 

(Fall et al., 1999, Loreto et al., 2006, Schütz et al., 1997). In addition to mechanical damage, 

also pathogen inoculation and herbivore infestation result often in the release of LOX 

products from many plants species including tobacco (Nicotiana tabacum), peanut (Arachis 

hypogaea), and lima bean (P. lunatus) (Cardoza et al., 2002, De Moraes et al., 2001, Mithöfer 

et al., 2005). Emission of the LOX product (Z)-3-hexenol also occurred after herbivore 

damage of tomato plants (Deng et al., 2005, Wei et al., 2007) and inoculation of tomato plants 

with the fungal pathogen B. cinerea (Jansen et al., 2009c). A sudden increase in the 

concentration of (Z)-3-hexenol would thus provide a cue for the increased risk for outbreak of 

these types of plant stress in tomato-producing greenhouses. 
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In contrast to most terpenes, shoot removal did not result in an increase in concentration of the 

stress-related compounds methyl salicylate and TMTT (Table 4.3). This contradicts with other 

studies that established a direct relation between damage of tomato plants as a result of biotic 

stresses and the increased emissions of methyl salicylate and/or TMTT (Deng et al., 2004b, 

Dicke et al., 1998, Kant et al., 2004, Vercammen et al., 2001, Wei et al., 2007). 

 

Why did the concentration of methyl salicylate and TMTT not increase after shoot removal? 

Earlier in this paper, we discussed three possible directions that explain, at least partially, the 

absence of methyl salicylate and TMTT after plant damage as a result of stroking the plants. 

These explanations are also applicable for plant damage as a result of shoot removal. 

 

The large increase in concentration of terpenes after fruit picking was attributed to the damage 

of trichomes during harvest. It is beyond the scope of this study, but such large bursts of 

emissions after harvest are likely to be common in agricultural practice and might therefore 

contribute to a higher VOC load of the troposphere (Davison et al., 2008). The absence of 

LOX products in this case implies that fruit picking does not result in significant breakdown 

of cell membrane lipids. The lack of increase in the concentration of the stress-related VOCs 

α-copaene, methyl salicylate and TMTT supports that rejection of ripe fruits is a standard 

feature of tomato plants and consequently does not results in excessive plant stress. 

 

Based on this study, we cannot ascertain whether a continuously sustained type of damage 

such as pathogen infection or herbivore infestation will result in an increase in concentration 

of methyl salicylate, TMTT and/or α-copaene in our experimental greenhouse. The most 

practical way to address this is the analysis of plant-emitted VOCs after the introduction of a 

pathogen or herbivore infestation in this greenhouse, which is our next step. 

  

Detecting methyl salicylate, TMTT and/or α-copaene emissions might offer a novel approach 

to reveal plant stress in a greenhouse if these VOCs are indeed closely linked to herbivore 

and/or pathogen infestation. However, it should be noted that α-copaene, methyl salicylate, 

and TMTT emission from tomato are also light dependent (Farag and Paré, 2002, Maes and 

Debergh, 2003). As light will fluctuate in a greenhouse, this will have to be taken into account 

when correlating increased α-copaene, methyl salicylate or TMTT concentrations in the 

greenhouse atmosphere to any type of plant stress. 
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Our strategy was to simulate pathogen attack and herbivore infestation because these types of 

stressors are difficult to control and might fully destroy the crop within a short period that 

does not allow any replicate measurements. We addressed that by repeatedly stroking of the 

plants and removing the side shoots. Plants were stroked to simulate trichome damage and 

side shoots were removed to simulate cell membrane damage. It is uncertain whether these 

two treatments accurately reflect pathogen attack and herbivore infestation since the time 

scales and also pathogen- and herbivore-specific signals might play an important role in the 

induction of plant VOCs. An alternative approach would have been to spray the plants with 

wound signal chemicals such as jasmonic acid, or salicylic acid. These chemicals are known 

to simulate herbivore- and pathogen-induced emissions of plants (e.g. van Kleunen et al., 

2004). But, also these chemicals can only partly simulate the effect of herbivores and/or 

pathogens. 

 

An important question related to monitoring plant health through analysis of VOCs is the 

specificity of the signals. A specific signal would allow a particular treatment such as the use 

of appropriate amounts of insecticides in case of herbivore specific signals. Furthermore, a 

specific signal would allow us to discriminate between crop damage because of regular crop 

activities such as harvest and crop damage because of harmful plant health issues. Methyl 

salicylate and TMTT emissions might offer some specificity because concentrations of these 

two VOCs did not increase after instantaneous damage of trichomes and cell membranes 

because of stroking, removing side shoots, and fruit picking, while increased concentrations 

of these VOCs have been reported frequently after pathogen- and herbivore-induced stresses. 

Also trichome damage- and cell membrane damage-related VOCs might be used as cues, but 

only during time periods without greenhouse activities that cause trichome and/or cell 

membrane damage as well (e.g. harvest and shoot removal). An appropriate period, without 

any greenhouse activities seems more suitable in that respect, for example during night-time. 

A sudden increase in concentrations of trichome damage- and/or cell membrane damage-

related VOCs can then only give a hint because neither trichome nor cell membrane damage 

is specific to a particular herbivore infestation or pathogen infection. However, most 

herbivore and pathogens inflict quite different types of plant damage. For example, infection 

of tomato plants with the fungus B. cinerea is usually restricted to the stem where it can cause 

stem rot (Shtienberg et al., 1998). In contrast, spider mites (T. urticae) feed on cell content of 
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mesophyll cells, hereby causing wound sites spread out over the whole leaf area of tomato 

(Kant et al., 2004). It can be expected that the type of damage inflicted by the type of stress 

has a large effect on the extent of trichome and cell membrane damage. Then, trichome 

damage- and cell membrane damage-related VOCs have the potential to provide information 

about the type of damage but perhaps not on the particular causal agent of the plant health 

issue. 

 

Results employed in this study were based on offline analyses using GC-MS. This delicate 

instrument is often restricted to laboratory use. For application in greenhouses, on-site 

analyses are probably required. More robust GC-MS systems might then be considered 

because such a system proved to be capable of detecting plant emitted VOCs at the low pptv 

level (Karl et al., 2008). Recent advances in biosensor technology might provide an 

alternative approach. For example, insect antennae are highly sensitive to certain compounds, 

such as plant volatiles (Weißbecker et al., 2004). Another trend in plant volatile analysis is the 

development of fast and sensitive systems based on electronic noses (Laothawornkitkul et al., 

2008). The appropriate system for application in a large-scale greenhouse is under debate, and 

selection depends on costs and benefits. 
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CHAPTER 5 

The effect of Botrytis cinerea on the concentration of volatiles 
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INTRODUCTION 

Despite all efforts to keep plants healthy, phytopathogens still cause serious economic damage 

in greenhouse cultivation (Elad, 1999). Early detection of pathogen infections would enable 

better management and control. Crops are therefore subjected to regular inspections to look 

for symptoms to avoid too much damage. However, symptoms are then often overlooked 

since many pathogenic problems emerge at the abaxial side of leaves or on stem parts that are 

hidden by the foliage. For example, infections by some plant pathogens result in visual 

symptoms which are restricted to the stem. When these symptoms remain unnoticed, the 

infection may lead to stem-rot which results in low yields and even plant death (Shtienberg et 

al., 1998). Researchers have therefore sought new ways to detect such hidden symptoms of 

pathogen infections. This could enable a grower to take early action, preventing pathogen 

spread, and further damage by controlling the problem right at the source. A proposed concept 

to direct a grower to the presence of a pathogen infection is based on the detection of 

pathogen-induced emissions of volatile organic compounds (VOCs) from plants (Schütz, 

2001). 

 

This concept was evaluated in a collaboration project between Wageningen University, Plant 

Research International, and Research Centre Jülich. The aim of that project was to assess 

whether plant-emitted VOCs can be used to direct a grower to the presence of a pathogen 

infection at greenhouse scale. In this project, we used tomato (Lycopersicon esculentum Mill) 

and the grey mould pathogen Botrytis cinerea as model organisms to investigate this concept. 

 

Based on the results of a laboratory-scale study, Jansen et al. (2009c) reported the detection of 

plant-emitted C6-compounds after the inoculation of tomato plants with B. cinerea spores. 

The detection of these C6-compounds was attributed to the damage of cell membranes. These 

cell membranes contain C18-fatty acids which are converted enzymatically into volatile 

C6-compounds upon damage of cell membranes. Pathogens have the ability to damage cell 

membranes (Levin, 1976) and the detection of C6-compounds could thus be explained. 

Similar to the detection of C6-compounds at laboratory scale, C6-compounds were also 

detected at greenhouse scale (Jansen et al., 2009b). In the latter study, these type of comounds 

were detected after removing the side shoots from tomato plants. The first objective of the 

present study was to determine whether these C6-compounds are also detectable at greenhouse 
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scale after inoculation of tomato plants, and if so, to determine the time course of the 

concentrations of these compounds. 

 

The laboratory scale study described in Jansen et al. (2009c) also reported an increase in the 

concentration of several mono- and a few sesquiterpenes after the inoculation of tomato plants 

with B. cinerea spores. Such an increase in concentration of monoterpenes and sesquiterpenes 

is most likely the result of damage to glandular trichomes. These glandular trichomes contain 

monoterpenes and sesquiterpenes in their interior which readily volatilize when the trichome 

is damaged. Pathogens have the ability to damage trichomes (Gibson, 1971) and the increase 

in concentration of these terpenes could thus be explained. Similar to the increased 

concentration of terpenes at laboratory scale, terpene concentrations also increased at 

greenhouse scale (Jansen et al., 2009b) after picking fruits and removing side shoots from, 

and after stroking the stems of tomato plants. The second objective of the present study was to 

determine whether the concentration of these terpenes also increases after inoculation of 

tomato plants at greenhouse scale. 

 

Finally, Jansen et al. (2009c) reported a gradual increase in concentration of methyl salicylate 

and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) after the inoculation of tomato 

plants with B. cinerea spores. These two substances are regarded as volatile plant hormones 

(Arimura et al., 2005). The emission of these two compounds is generally believed to increase 

several hours, or days, after the onset of various types of biotic and abiotic stress in various 

plant-species (e.g. Kant et al., 2004). In contrast to the increase in concentration of most 

terpenes, the concentration of methyl salicylate and TMTT did not increase at greenhouse 

scale, neither after picking fruits and removing the side shoots nor after stroking the stems 

(Jansen et al. 2009b). The third objective of the present study was to determine whether the 

concentration of methyl salicylate and/or TMTT increases after inoculation of tomato plants 

at greenhouse scale. 
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MATERIALS AND METHODS 

Plant material and inoculation 

Seeds of tomato plants (Lycopersicon esculentum Mill.) of the cultivar Moneymaker, were 

germinated in a standard greenhouse at 20°C and 50% relative humidity (RH). When plants 

were about seven weeks old, 60 plants were transferred to a small experimental greenhouse. 

Plants were 14 weeks old and 2 m in height, when they were spray-inoculated with a spore 

suspension on the adaxial leaf surfaces. The suspension consisted of 1 L filter sterilized water 

supplemented with 6 g potato dextrose medium and 5.4 × 108 Botrytis cinerea spores. Each 

plant was inoculated with 15 mL of this aqueous suspension on the 23th of June, 2008 at 

19:00 h. 

 

Monitoring visual symptoms of Botrytis cinerea infection 

Ten plants were randomly selected and one leaf per selected plant, randomly located at mid-

canopy height, was labelled before inoculation of the plants. Pictures of the adaxial side of 

these ten leaves were taken at 0, 24, 48, and 72 h after inoculation (HAI). The individual 

leaves were classified based on the visual symptoms depicted on these pictures. The leaf was 

classified as “no symptoms” in case no effect of the inoculation was visible. The leaf was 

classified as “mild symptoms” in case small and restricted necrotic spots were visible and the 

leaf was classified as “severe symptoms” in case large and non-restricted necrotic regions 

occurred. 

 

Greenhouse equipment and climate control 

The floor area of the greenhouse was 44 m2 and the total volume including the basement 

underneath was 270 m3. A fan located in the basement was used to maintain a constant 

internal air circulation of 20 × 103 m3 h-1. Electrical heating and direct mechanical cooling 

situated in the basement controlled temperature and humidity. The temperature was set at 

22°C/16°C ±1.0°C day/night and no supplementary light was used. The RH inside the 

greenhouse was set at 70%/90% ±5% day/night. The temperature, RH and light intensity 

inside of the greenhouse were recorded with a time interval of 5 min. 
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Air sampling in the greenhouse 

A sequential sampler was used to purge air from the greenhouse through stainless steel 

cartridges packed with 200 mg of Tenax-TA 20/35. Air was sucked through these cartridges 

at 300 mL min-1 for 60 min (total volume of 18 L for each cartridge). The greenhouse air was 

sampled with a 1 h time interval until 72 HAI. After sampling, the cartridges were capped and 

transferred to the laboratory for analysis. 

 

Identification and quantification of the plant-emitted VOCs 

The identification and quantification of plant-emitted VOCs in the sample was performed 

using gas chromatography and mass spectrometry. A detailed description of this instrument, 

the measurement method, and the data analysis has been described elsewhere (Jansen et al., 

2009b). 

 

 



CHAPTER 5 

 

82 

 

RESULTS 

Climate control 

The time courses of the RH and light intensity inside the greenhouse were similar in- between 

the three days following inoculation (Fig. 5.1A and Fig. 5.1B). The time course of the 

temperature inside of the greenhouse was similar in-between those three days (Fig. 5.1C). 

 

 

 
Fig. 5.1 The time course of the (A) relative humidity (-∆-), (B) light intensity (-□-), and (C) 

temperature (-○-) inside the greenhouse. 
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Monitoring of visual symptoms 

Two pictures, both taken at 72 HAI are provided in Fig. 5.2 to demonstrate the differences in 

visual symptoms at a certain time point. These pictures show a leaf which was classified as 

“mild symptoms” and a leaf which was classified as “severe symptoms”. Based on the 

pictures taken at 0 HAI, all ten leaves were classified as “no symptoms”. The pictures taken at 

24 HAI, showed one leaf with some small necrotic spots. At 48 HAI, the size of these spots 

increased and this leaf was then classified as “severe symptoms”. At 48 HAI, two additional 

leaves showed small necrotic spots, then classified as “mild symptoms”. Based on the pictures 

taken at 72 HAI, three leaves were classified as “mild symptoms” and two leaves were 

classified as “severe symptoms”. Fig. 5.3 summarizes these classification results. 

 

 
Fig. 5.2 Pictures of leaves classified as (A) “mild symptoms”, and (B) “severe symptoms”. 

Both pictures were recorded at 72 h after inoculation. 

 

 
Fig. 5.3 Classification of ten randomly selected leaves at 0, 24, 48, and 72 h after the 

inoculation (HAI) of tomato plants with Botrytis cinerea spores. 
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Concentration of plant-emitted VOCs 

In the greenhouse air samples, C6-compounds were undetected while at least twelve 

monoterpenes could be detected. The concentrations of all monoterpenes were relatively high 

at two HAI and then decreased to a nearly constant level. As a representative of the 

monoterpenes, Fig. 5.4A shows the time course of β-phellandrene. At least four 

sesquiterpenes were detected per sample. The concentrations of most sesquiterpenes were 

relatively high at two HAI and then decreased to a nearly constant level. As a representative 

of the sesquiterpenes, Fig. 5.4B shows the time course of β-caryophyllene. In contrast to the 

almost constant concentration of most sesquiterpenes, the concentration of the sesquiterpene 

α-copaene fluctuated with the day/night rhythmicity (Fig. 5.4B). In addition to the large 

number of terpenes, the ester-substituted phenol, methyl salicylate, was detected in all 

samples. At 0 HAI, the concentration of methyl salicylate was ~10 pptV. A 10-times and 

3-times increase in the concentration of methyl salicylate at respectively 32 and 34 HAI was 

observed (Fig. 5.4C). The homoterpene TMTT was also detected in all samples. The 

concentration of this compound remained almost constant at the low pptV level (data not 

shown). 
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Fig. 5.4 The time course of the concentration of (A) the monoterpene β-phellandrene (-○-), 

(B) the sesquiterpenes β-caryophyllene (-×-) and α-copaene (-□-), and (C) methyl salicylate 

(-∆-) after the inoculation of tomato plants with Botrytis cinerea spores. 

 

 

DISCUSSION 

In this section, we discuss the effect of B. cinerea infection on the measured concentrations of 

plant-emitted volatiles in the greenhouse. Besides a pathogen infection, temperature and light 

have an effect on the emissions of VOCs from tomato (e.g. Farag and Paré, 2002). Therefore, 

an additional effect of temperature and light was expected on the concentrations of plant-

emitted VOCs in the greenhouse. However, since the time courses of temperature and light 
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were similar in-between the three days (Fig. 5.1B and Fig. 5.1C), it is reasonable to ascribe 

unexpected fluctuations in concentrations to other factors. 

 

The first objective of this study was to determine whether C6-compounds are detectable after 

inoculation of tomato plants at greenhouse scale, and if so, to determine the time course of the 

concentrations of these compounds. In contrast to the large amount of C6-compounds detected 

in samples obtained after inoculation of tomato plants at laboratory scale (Jansen et al., 

2009c), C6-compounds were undetected in the samples obtained at greenhouse scale. A first 

explanation, maybe the low extent of damage to cell membranes which was probably not 

sufficient to induce detectable concentrations of C6-compounds in greenhouse air. This is in 

agreement with the low percentage of leaves classified as “severe symptoms” and “mild 

symptoms” throughout the experimental period (Fig. 5.3). The relatively mild symptoms may 

be due to the fact that the tomato plants used in the present study were 14 weeks old. Tomato 

plants of this age are in general quite resistant and less viable to infection compared to the 

young plants used in laboratory scale studies. Second, the RH inside the greenhouse was often 

below 90% within the first 24 HAI (Fig. 1A). This might have caused the low infection level 

since the RH should be maintained at high levels (> 95%) during at least 24 h to establish a 

serious B. cinerea infection. Another explanation for the undetected C6-compounds is not 

related to the emission of VOCs, but related to possible loss processes for plant-emitted 

VOCs. A loss process to consider is the solution of these polar compounds into water bodies 

that occurred on the glass cover and dehumidifier used for air conditioning. 

 

The second objective of this study was to determine whether the concentrations of mono- 

and/or sesquiterpenes increases after inoculation of tomato plants at greenhouse scale. The 

relatively high concentrations of all mono- and most sesquiterpenes at 2 HAI (Fig. 5.4) was 

likely the result of damage to glandular trichomes because of the large amounts of small 

droplets hitting the plants. After this initial increase had levelled off, no significant increases 

in the concentrations of any mono- and/or sesquiterpenes were observed. Probably, the extent 

of pathogen-induced damage to trichomes was insufficient within this period to induce a 

significant increase in concentration of mono- and/or sesquiterpenes. The extent of trichome 

damage and the severity of infection are most likely closely related. The lack of increase in 

concentration of monoterpenes and sesquiterpenes is therefore in agreement with the low 

percentage of leaves classified as “severe symptoms” and “mild symptoms”. Reasons for 
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these low percentages were discussed before in this paper. A second explanation for the 

almost constant concentration of all monoterpenes and most sesquiterpenes might be the 

relatively low air exchange rate compared to the laboratory set-up described in Jansen et al. 

(2009c); 0.56 exchanges of the greenhouse volume per hour versus 3 exchanges of the 

chamber volume per hour. As a consequence, fluctuations in the concentrations of mono- and 

sesquiterpenes are levelled out. The absence of fluctuations is unexpected since the 7°C 

increase in temperature during the day must have increased the emission of mono- and 

sesquiterpenes from the tomato plants. The only compound of which the concentration 

fluctuated according to the day/night rhythm was α-copaene. This compound is not stored in 

trichomes of tomato and its emission has been suggested to be light-dependent (Maes and 

Debergh, 2003). Likely, the effect of light on the emission of α-copaene is stronger than the 

effect of temperature on the emission of the other sesqui- and monoterpenes. The day/night 

fluctuations in the concentration of α-copaene indicate that plant-emitted volatiles reflect 

time-dynamic plant responses at greenhouse scale. 

 

The third objective of this study was to determine whether the concentration of methyl 

salicylate and/or TMTT increases after inoculation of tomato plants at greenhouse scale. The 

10-fold and 3-fold increase in concentration of methyl salicylate at respectively 32 HAI and 

34 HAI suggest a pulsed emission of this volatile plant hormone at that time period. 

Interestingly, the increase in concentration co-occurred with the onset of light (compare 

Fig. 5.1 with Fig. 5.4). Maybe, methyl salicylate had accumulated in the stomatal cavity 

overnight. Opening of the stomata at the onset of light may have induced an emission burst in 

methyl salicylate. Replicate studies are required to determine whether methyl salicylate is a 

reliable indicator of a B. cinerea infection at greenhouse scale. In contrast to the increase in 

concentration of TMTT after inoculation of tomato plants at laboratory scale (Jansen et al., 

2009c), the concentration of TMTT remained nearly constant at greenhouse scale. Probably, 

the extent of infection was not sufficient to induce such an increase. 

 

Besides an infection with B. cinerea, tomato plants might be challenged with other biotic 

and/or abiotic stress factors. This aspect highlights an important issue related to the specificity 

of methyl salicylate emissions from tomato plants. A system that has the opportunity to not 

only detect a stress, but also to identify the causal agent would be of great value as it would 

allow deciding on the proper control measure. What makes methyl salicylate less suitable for 



CHAPTER 5 

 

88 

 

this purpose is that increased emissions of methyl salicylate are induced upon different biotic 

and abiotic stresses of tomato (e.g. Deng et al., 2004b, Dicke et al., 1998). On the other hand, 

the concentration of methyl salicylate did not increase after picking fruits and removing the 

side shoots from tomato (Jansen et al., 2009b). Hence, the detection of an increase in methyl 

salicylate concentration might thus direct towards the presence of a B. cinerea infection since 

the diversity of stress factors that occurs in a greenhouse-grown tomato crop is often limited, 

primarily due to the monoculture and environmental control. It is still unknown whether the 

detection of an increase in methyl salicylate is sufficient to direct a grower towards the 

presence of a B. cinerea infection of tomato with high degree of certainty. 
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CHAPTER 6 

A model to predict the effect of Botrytis cinerea on the 

concentration of volatiles in a large-scale greenhouse 
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Nomenclature 

 

SRh  emission rate of a VOC by healthy plants [mol s-1] 

SRB emission rate of a VOC by Botrytis cinerea infected plants [mol s-1] 

SRair_in entrance rate of a VOC by air coming into the greenhouse [mol s-1] 

SRmat emission rate of a VOC by greenhouse material [mol s-1] 

SRair_out removal rate of a VOC by air coming out of the greenhouse [mol s-1] 

SNmat adsorption/absorption rate of a VOC by greenhouse materials [mol s-1] 

SNwater transfer rate of a VOC into water bodies [mol s-1] 

SNplant adsorption/ absorption rate of a VOC by plants  [mol s-1] 

SNO3 gas phase reaction rate of a VOC with O3 [mol s-1] 

V volume of greenhouse [m3] 

[VOC]gr molar concentration of a VOC in the greenhouse air [mol m-3] 

[O3] molar concentration of O3 in the greenhouse air [mol m-3] 

t time [s] 

nh number of healthy tomato plants [-] 

Φh emission flux density of a VOC by healthy plants [mol m-2 s-1] 

nB number of Botrytis cinerea infected plants [-] 

ΦB emission flux density of a VOC by Botrytis cinerea infected  

 plants [mol m-2 s-1] 

Aplant one-sided leaf area per tomato plant  [m2] 

fair_in volumetric flow rate of air coming into the greenhouse [m3 s-1] 

[VOC]air_in  molar concentration of a VOC in the incoming air  [mol m-3] 

fair_out volumetric flow rate of air coming out of the greenhouse [m3 s-1] 

[VOC]air_out molar concentration of a VOC in the air coming out of the  

 greenhouse [mol m-3] 

kmat_air  mean emissions rate of a VOC by greenhouse materials [mol m-2 s-1] 

kair_mat mean adsorption/absorption rate of a VOC by greenhouse  

 materials [mol m-2 s-1] 

Amat adsorption/absorption area of the greenhouse materials [m2] 

Awater transfer area of the water bodies [m2] 

kair_water transfer coefficient for uptake of a VOC into water bodies [m s-1] 

kplant mean adsorption/absorption rate of a VOC by plants [mol s-1 m-2] 
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kO3 rate constant for the reaction of ozone with a VOC [m3
 mol-1 s-1] 

[CO2]gr molar concentration of CO2 in the greenhouse [mol m-3] 

[CO2]amb molar concentration of CO2 in ambient air outside the  

 greenhouse [mol m-3] 
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INTRODUCTION 

Industries all over the world face ongoing expansion and intensification to serve the needs of 

a growing population. Greenhouse industry also moves towards large scale systems while 

small greenhouses are closed (Breukers et al., 2008). The cultivation of crops in these large 

scale greenhouses is characterized by the monoculture of high value crops at high plant 

density throughout the entire year. These conditions increase productions per surface area. 

However, the year round production of one single, high density crop, also provides excellent 

circumstances to establish and spread pathogens and pests throughout the greenhouse (Elad, 

1999, van Lenteren, 2000). 

 

Nowadays, regular human inspection is common practice to monitor crops for the presence of 

diseases and pests. These inspections must be accurate in large-scale greenhouses since 

inaccurate inspections allow local disease or pest problems to disperse rapidly over long 

distances which in turn result in large economic losses. These accurate, on-site inspections of 

crops are time consuming and require skilled personnel which in-turn leads to high costs. As a 

result, greenhouse managers want to automate these on-site inspections to limit the demand 

for manual labour. Thus, expansion and intensification of the greenhouse industry increase the 

demand for an automated system to monitor greenhouse crops for the presence of diseases 

and pests. Such a system would facilitate immediate actions and prevent further spread by 

controlling the problem right at the source. 

 

Researchers have sought efficient ways to monitor greenhouse crops for the presence of 

diseases and pests. One option is the analysis of air to identify and/or quantify trace level 

amounts of volatile organic compounds (VOCs) emitted from plants which suffer from pest or 

disease problems (Schütz and Weißbecker, 2003). 

 

Infections of crops with the pathogenic fungus Botrytis cinerea are among the most common 

cause of reduced yields in greenhouse horticulture (Elad and Stewart, 2004). During 2005-

2008, we carried out a broad range of experiments to test whether VOCs can be used as an 

indicator of the presence of a B. cinerea infection in a large scale tomato production 

greenhouse. In the first phase, we analysed the air surrounding tomato leaves individually 

enclosed in 300 mL Petri dishes. Results demonstrated that leaf-emitted VOCs can be used as 

an indicator of the presence of a B. cinerea infection at this ultra-small scale (Thelen et al., 
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2006). In the second phase, we analysed the air surrounding several tomato plants grown in a 

1 m3 chamber. Results of that follow-up study demonstrated that plant-emitted VOCs can be 

used as an indicator of the presence of a B. cinerea infection also at this intermediate scale 

(Jansen et al., 2009c). In the third phase, we analysed the air surrounding 60 tomato plants, 

grown in a small, 270 m3 greenhouse. Results obtained during that phase indicate that crop-

emitted VOCs can be used as an indicator of the presence of a B. cinerea infection in a small 

scale greenhouse (Jansen et al., 2009a). The 60 plants grown in the small scale greenhouse 

were situated on a 42 m2 floor area. In commercial large-scale greenhouses, many more plants 

are grown at far larger floor areas. For example, at present, the majority of such large-scale 

greenhouses in Western European countries, such as the Netherlands, may contain 2 × 104 to 

2 × 105 plants and have floor areas which range between 104 and 105 m2 (van Henten, 2006). 

The objective of this study was to determine whether plant emitted volatiles can be used as an 

indicator of the presence of a B. cinerea infection in such a commercial large-scale 

greenhouse. 

 

To achieve this objective, experiments can be conducted and in principle, such experimental 

studies provide the most realistic results. However, experimental studies require expensive, 

well controlled facilities. Moreover, the results obtained under the tested conditions may not 

be directly applicable for different conditions. Owing to these limitations, mathematical 

models are increasingly being used to bridge the gap between experimental studies and real 

world applications. Such model approach is also useful in translating the results obtained in a 

small-scale greenhouse into the potential application of crop health monitoring in commercial 

large-scale greenhouses. 

 

MATERIALS AND METHODS 

Plant material 

The experiments were performed using tomato plants (Lycopersicon esculentum Mill) of the 

cultivar Moneymaker. 

 

Volatile organic compounds 

Tomato plants emit different types and amounts of volatiles during infection by B. cinerea. 

The main effects are the burst of lipoxygenase products and the increase in emissions of 
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monoterpenes, sesquiterpenes, methyl salicylate and (E,E)-4,8,12-trimethyl-1,3,7,11-

tridecatetraene (TMTT). The burst of lipoxygenase products is probably the result of damage 

to cell membranes. The increase in emissions of monoterpenes and sesquiterpenes is probably 

the result of damage to glandular trichomes. The increase in emission of the volatile plant 

hormones methyl salicylate and TMTT is not directly related to cell membrane or trichome 

damage but probably the result of a systemic plant response as a result of stress (Jansen et al., 

2009c). Five volatile organic compounds (VOCs) were investigated in this study: a 

lipoxygenase product (the C6-alcohol (Z)-3-hexenol), three trichome damage induced VOCs 

(the monoterpenes α-pinene and α-terpinene, and the sesquiterpene β-caryophyllene), and a 

volatile plant hormone (the ester-substituted phenol methyl salicylate). 

 

Experimental greenhouse 

A schematic illustration of the small scale greenhouse used in this study is presented in Fig. 

6.1. This greenhouse has been described in detail by Körner et al. (2007). In short, the floor 

area of the greenhouse is 44 m2 and the total volume including the basement underneath is 

270 m3. A fan located in the basement was used to maintain a constant internal air circulation 

of 20 × 103 m3 h-1. The temperature in the greenhouse was set at 22/16 ±1.0 °C day/night. The 

relative humidity inside the greenhouse was set at about 70/90 ±5% day/night. An air 

conditioner, consisting of a heater, cooler, and dehumidifier situated in the basement 

maintained these temperatures and humidity. The greenhouse was semi closed; it did not 

contain any windows that could be opened. Air was supposed to come in through gaps in the 

basement, and go out through gaps in the glass cover. Pure CO2 was supplied to maintain a 

CO2 concentration of 0.015 mol m-3. 
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Fig. 6.1 Schematic illustration of the small-scale greenhouse used in this study: (1) air leaving 

the greenhouse, (2) emission of volatile organic compounds (VOCs) by the plants, 

(3) transpiration by the plants, (4) CO2-supply, (5) water leaving the slab, (6) slab, (7) water 

entering the slab (8) cooler, (9) de-humidifier, (10) heater, (11) air entering the greenhouse, 

(12) water leaving the gutters, and (13) water leaving the dehumidifier. Grey arrows represent 

the transport of airborne VOCs, and black arrows represent the transport of liquid water. 

 

Mass transfer model 

For this study it was assumed that the air in a greenhouse is perfectly mixed. This means that 

the concentration of plant emitted VOCs is assumed to be similar at each location within the 

greenhouse. It was furthermore assumed that the volumetric flow rate of air entering the 

greenhouse due to forced or natural ventilation was equal to the volumetric flow rate of air 

leaving the greenhouse. A certain number of healthy plants is assumed emitting VOCs 

constitutively. Another number of plants is assumed to emit B. cinerea induced emissions. 

The leaf area per plant is assumed to be same. 

 

Four sources and five sinks were considered as most relevant for the mass balance of VOCs in 

greenhouse air. 
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The first source was the emission of a VOC by healthy plants. The emission rate of a VOC by 

healthy plants (SRh) gives the total amount of the VOC introduced by the plants into the 

greenhouse air per unit of time. It depends on the number of healthy plants (nh), on the 

emission flux density of the VOC by the healthy plants (Φh), and on the one-sided leaf area 

per plant (Aplant). This rate is described by Eq. (6.1): 

 

planthhh AΦnSR ⋅⋅=           (6.1) 

 

The second source was the emission of a VOC by B. cinerea infected plants. The emission 

rate of a VOC by B. cinerea infected plants (SRB) depends on the number of infected plants 

(nB), on the emission flux density of the VOC by B. cinerea infected plants (ΦB), and on the 

one-sided leaf area per plant (Aplant). This rate is described by Eq. (6.2): 

  

plantBBB AΦnSR ⋅⋅=           (6.2) 

 

The third source was the introduction of a VOC together with the air entering the greenhouse. 

For instance, trees nearby a greenhouse may emit some of the VOCs considered in this study, 

which can then be transferred by wind to the ambient air outside the greenhouse, and can then 

enter the greenhouse. The introduction rate of a VOC by this process (SRair_in) depends on the 

volumetric flow rate of this air (fair_in), and the concentration of the VOC in this air 

([VOC]air_in). This rate is described by Eq. (6.3): 

 

air_inair_inair_in [VOC]fSR ⋅=          (6.3) 

 

The fourth source was the emission of a VOC by greenhouse materials. For example, glues or 

epoxies, drying agents in paints, and soft plastics emit significant amounts of VOCs into the 

surrounding air (e.g. Guo, 2002). The emission rate of a VOC by greenhouse materials 

(SRmat) depends on the emission coefficient of greenhouse materials (kmat_air), and the transfer 

area of the greenhouse materials (Amat). This rate is given by Eq. (6.4): 

 

matmat_airmat AkSR ⋅=           (6.4) 
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The first sink was the removal of a VOC by air leaving the greenhouse. For instance, open 

windows at the top of a greenhouse allow air to leave together with the VOCs therein. The 

removal rate of a VOC by this process (SNair_out) depends on the volumetric flow rate of air 

leaving the greenhouse (fair_out), and the concentration of the VOC in this air ([VOC]air_out). 

This rate is described by Eq. (6.5): 

 

air_outair_outair_out [VOC]fSN ⋅=          (6.5) 

 

The second sink was the adsorption/absorption of a VOC by greenhouse materials. This 

process might be important since many different building materials absorb VOCs (see Yang et 

al., 2001 and references therein). The adsorption/absorption rate of a VOC by greenhouse 

materials (SNmat) depends on the adsorption/absorption coefficient of greenhouse materials 

(kmat_air), and the transfer area of the greenhouse materials (Amat). This rate is described by 

Eq. (6.6): 

 

matair_matmat AkSN ⋅=           (6.6) 

 

 

The third sink was the adsorption and/or absorption of a VOC by plants. This sink can be the 

result of adsorption of VOCs on the plant cuticle as well as absorption through the stomata 

(Riederer et al., 2002). The adsorption/absorption rate of a VOC by plants (SNplant) depends 

on the number of healthy plants (nh), the number of B. cinerea infected plants (nB), the 

adsorption/absorption coefficient of plants (kplant), and the one-sided leaf area per plant 

(Aplant). This rate is described by Eq. (6.7): 

 

plantplantBhplant Ak)n(nSN ⋅⋅+=         (6.7) 

 

The fourth sink was the degradation of VOCs through gas-phase reactions. Such gas-phase 

reactions between plant-emitted VOCs and hydroxyl radicals (OH), nitrate radicals (NO3) and 

ozone (O3) are common in the lower atmosphere (Atkinson and Arey, 2003, Canosa-Mas et 

al., 2002). Degradation of VOCs through gas-phase reactions with O3 were regarded as most 

important. The removal rate of a VOC by gas-phase reaction with O3 (SRO3) depends on the 
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volume of the greenhouse (V), the concentration of the VOC in the greenhouse air ([VOC]gr), 

the concentration of O3 in the greenhouse air ([O3]) and the rate constant for the reaction of O3 

with the VOC (kO3). This dependence is described by Eq. (6.8). 

 

[ ] O33grO3 kO[VOC]VSN ⋅⋅⋅=          (6.8) 

 

The fifth sink was the transfer of a VOCs into water bodies. This may occur if a VOC is 

solved into liquid water which had been in contact with airborne VOCs such as condensation 

on the inner side of the greenhouse cover. This sink seems relevant for VOCs which are 

soluble in water such as methyl salicylate (Henry’s law coefficient = 0.33 mol/(m3 Pa); Karl 

et al., (2008)) and (Z)-3-hexenol (Henry’s law coefficient = 0.75 mol/(m3 Pa); Atlan et al. 

(2006)). The transfer rate of a VOC into water bodies (SNwater) depends on the transfer 

coefficient for the uptake of a VOC into a water body (kair_water), the transfer area of the water 

body (Awater), and the difference in concentration between the VOC in greenhouse air 

([VOC]gr) and the VOC in the water body ([VOC]water). This rate is described by Eq. (6.9). 

 

)[VOC]([VOC]AkSN watergrwater_waterairwater −⋅= ⋅       (6.9) 

 

Assuming the above given sources and sinks to be the most dominant ones, the time course of 

the concentration of a VOC is described by Eq. (6.10) in which the individual sources and 

sinks constitute the mass-balance of the system. 

 

[ ]
O3plantwatermatair_outmatair_inBh

gr SNSNSNSNSNSRSRSRSR
dt

VOCd
V −−−−−+++=⋅  (6.10) 

       

 

EXPERIMENTS 

Experiment 1: introduction of VOCs together with air entering the greenhouse 

Air samples were collected outside a small-scale greenhouse to estimate the entrance rate of 

VOCs by air entering this greenhouse. The method to derive the concentrations of VOCs in 

the ambient air outside of the greenhouse was based on active sampling and GC-MS analysis. 

This method has been described in detail by Jansen et al. (2009b) and provides detection 

limits in the order of 1 – 10 pptv. The concentrations of VOCs in the ambient air outside of 



A model to predict the effect of Botrytis cinerea on the concentration of volatiles in a large-scale greenhouse 
 

99 

 

the greenhouse were assumed to be equal to the concentrations of VOCs in the air entering a 

greenhouse ([VOC]air_in). These concentrations were substituted into Eq. (6.3) to calculate the 

entrance rates of VOCs with air entering this greenhouse. 

 

None of the VOCs considered in this study could be detected in the ambient air outside of the 

greenhouse given the detection limit of our system; that is approximately 1 pmol per mol of 

air for these VOCs (Jansen et al., 2009b). The entrance of VOCs by air entering a greenhouse 

was therefore negligible as a sink and the term SRair_in was neglected further on. 

 

Experiment 2: removal of VOCs by air leaving the greenhouse 

The removal of VOCs by air leaving a greenhouse depends on the volumetric flow rate of this 

air. The flow rate was determined for the small-scale greenhouse (Fig. 6.1 but without plants), 

using the tracer gas concentration decay technique (Bot, 1983). This technique is based on the 

decrease in concentration of a tracer gas inside and the nearly constant concentration of this 

tracer gas in the ambient air outside of the greenhouse. In this study, CO2 was used as a tracer 

gas. The volumetric flow rate of air leaving the greenhouse (fair_out) was calculated by 

Eq. (6.11). The tracer gas experiment was replicated three times. 

 

t)
V

f
exp((t))][CO]([CO][CO(t)][CO air_out

amb20tgr,2amb2gr2 −⋅−+= =  (6.11) 

 

 

The tracer gas experiment resulted in an exponential decrease of the tracer concentration 

inside the greenhouse. Based on Eq. (6.11) the flow rate of air leaving the greenhouse (fair_out) 

was 0.041 ± 0.001 m3 s-1. This flow rate was substituted into Eq. (6.5) to calculate the 

removal of VOCs by air leaving the greenhouse. 

 

Experiment 3: emissions of VOCs by greenhouse materials 

Air samples were collected inside the greenhouse (Fig. 6.1 but without plants) to estimate 

whether the materials of this greenhouse emit any of the investigated VOCs. The method to 

derive the concentrations of VOCs inside of the empty greenhouse followed the procedure as 

described by Jansen et al. (2009b). This experiment was replicated three times. 
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None of the VOCs considered in this study could be detected in any of the samples obtained 

from the air inside the small-scale greenhouse without plants. The emission of VOCs by 

greenhouse materials was therefore neglected. 

 

Experiment 4: adsorption/absorption of VOCs by greenhouse materials 

The VOCs under investigation were evaporated in the small-scale greenhouse (Fig. 6.1) 

without plants to estimate whether greenhouse materials adsorb and/or absorb any of these 

VOCs. In order to evaporate these VOCs, we transferred about 10 mL of each VOC from 

GC-grade standards (Fluka, Milwaukee, WI, USA) into individual 25 mL glass vials which 

were immediately capped. The capped vials were then put in the centre of the greenhouse for 

at least 50 min to stabilise their temperature. After this period, the vials were uncapped to start 

evaporation. After 60 min, the vials were capped to end evaporation. Air samples were 

collected before vials were uncapped and 1, 2, 4, 7, 11, 16 and 24 hours after the vials were 

capped to determine the time courses of the concentrations of the evaporated VOCs. The 

method to derive these concentrations has been described in detail by Jansen et al. (2009b). 

The time courses of the concentrations of the evaporated VOCs were compared with the time 

course of the concentration of the CO2 tracer gas to determine the adsorption/absorption rate 

of VOCs by greenhouse materials (SNmat). This experiment was replicated three times with an 

interval of 48 h. 

 

The time courses of the concentrations of all VOCs considered in this study were similar to 

the time course of the concentration of the CO2 tracer gas. As an example, the time course of 

the concentration of (Z)-3-hexenol and the time course of the concentration of the CO2 tracer 

gas are shown in Fig. 6.2. 
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Fig. 6.2 Time course of the concentration of (Z)-3-hexenol and the time course of the 

concentration of the CO2 tracer gas. 

 

The similarity of the decay curves implies that in the greenhouse without plants, the VOCs 

were mainly removed by air going out of the greenhouse. Adsorption/absorption of VOCs by 

greenhouse materials was therefore neglected further on. 

 

Experiment 5: adsorption/absorption of (Z)-3-hexenol by tomato plants 

Tomato plants were only tested for adsorption and/or absorption of (Z)-3-hexenol since the 

other VOCs considered in this study are emitted from healthy tomato plants (see Jansen et al. 

(2009c) and references therein), which makes it impossible to distinguish between adsorption, 

absorption and emission. A laboratory set-up as described in detail by Heiden et al. (2003) 

(Fig. 6.3) was used to determine the adsorption/absorption rate of (Z)-3-hexenol by tomato 

plants. 
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Fig. 6.3 Schematic illustration of the laboratory set-up used to determine the 

adsorptive/absorptive properties of tomato plants: (1) personal computer, (2) light control, 

(3) light intensity sensor, (4) dew point sensor and (5) temperature sensor, (6) air filters, 

(7) humidifier, (8) nitrogen supply, (9) set-up to add (Z)-3-hexenol into the chamber, (10) air 

entering the chamber, (11) lights, (12) Teflon fan, (13) air leaving the chamber, 

(14) temperature controlled housing, (15) CO2 supply, (16) valve, and (17) proton transfer 

reaction – mass spectrometer (PTR/MS). This figure was modified after Jansen et al. (2009c). 

 

The tomato plants used for this experiment were six or eight weeks old. Briefly, the shoot part 

of such a plant was enclosed in a 1.1 m3 glass chamber. The light intensity on top of the plant 

was set at a photosynthetic photon flux density (PPFD) of 480 µmol photons m-2 s-1. The 

temperature inside of the chamber was set at 20°C, the humidity inside of the chamber was set 

at 70% relative humidity and the CO2 concentration inside of the chamber was maintained at 

0.015 mol m-3 to mimic natural conditions. Clean and moistened air, supplemented with CO2 

was entering this chamber at a flow rate of 30 L min-1. Approximately 5 min after enclosure 

of the shoot part, about 1.1 × 10-10 mol s-1 of (Z)-3-hexenol was added into this incoming air. 

A Proton Transfer Reaction – Mass Spectrometer (PTR/MS) was used to alternatively 

measure the concentration of (Z)-3-hexenol in the air entering and the concentration of 

(Z)-3-hexenol in the air leaving the chamber (measurements at m/z = 83, (Fall et al., 1999)). 

This experiment was replicated twice with other individuals of tomato plants. 
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In none of these experiments, significant differences were found between the concentration of 

(Z)-3-hexenol in the air entering and the concentration of (Z)-3-hexenol in the air leaving the 

chamber (data not shown). The adsorption/absorption of (Z)-3-hexenol by tomato plants was 

therefore neglected. 

 

Experiment 6: gas-phase reactions of VOCs with O3 

Colorimetric detector tubes (Kitagawa, Japan) were used to measure the concentration of O3 

in the air inside the small-scale greenhouse (Fig. 6.1). At the time of measurement, the 

greenhouse contained 60 tomato plants of about 1.8 m in height. The concentration of O3 was 

measured in two independent replicates. For each replicate, 4.8 L of air was sucked through 

the tube. 

 

In both experiments, the concentration of O3 inside of the small-scale greenhouse including 

60 tomato plants was below the detection limit of the method (< 3 nmol mol-1 air). Therefore, 

gas-phase reactions of VOCs with O3 (SNO3) were neglected. 

 

Experiment 7: the transfer of VOCs into water bodies 

Both the transfer area of water bodies as well as the transfer coefficient are neither predictable 

by simple theories nor determinable by straightforward measurements since both depend on a 

complex array of hydrodynamic and aerodynamic factors. We therefore conducted an 

experiment with plants being in the greenhouse to simulate realistic conditions. These plants 

served as source of water as a result of condensation of transpired water onto cold surfaces. 

Hence, in this experiment, an overall loss was measured: 

 

O3plantwatermatair_out SNSNSNSNSNΣLoss ++++=  (6.12) 

 

The results described before indicated that greenhouse materials, tomato plants, and gas phase 

reactions are negligible sinks for VOCs and therefore, Eq. (6.12) reduces to Eq. (6.13): 

 

waterair_out SNSNΣLoss +=  (6.13) 
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To estimate the losses described in Eq. (6.13), we evaporated the VOCs considered in this 

study inside the greenhouse including 60 tomato plants of about 1.8 m in length. The 

evaporation of VOCs, the sampling of air, and the analyses of samples followed the procedure 

as described in Experiment 4. Assuming that the loss of the VOC by solution in the water 

bodies is proportional to the concentration of the VOC in the greenhouse air, this loss process 

is of first order. As the loss by removal with the air leaving the greenhouse is also a first order 

process, the decay processes can be described by Eq. (6.14). 

 

⎥
⎦

⎤
⎢
⎣

⎡ ⋅+
⋅= = t

V
)A(kf

exp)([VOC](t)[VOC] waterair_waterairout
0tgr,gr  (6.14) 

 

The decrease in concentration after evaporation was fitted to an exponential decay curve to 

calculate kair_water · Awater. 

 

Two different tomato crops were used to determine kair_water · Awater per VOC. Crop A was 

planted in February 2008 and crop B was planted in August 2008. For crop A, the VOCs were 

evaporated one time at 72, a second time at 74, and a third time at 76 days after planting. For 

crop B, the VOCs were evaporated one time at 76, and a second time at 78 days after planting. 

 

Fig. 6.4 provides an example of the time courses of the concentrations of (Z)-3-hexenol, 

β-caryophyllene and methyl salicylate after vials were capped to stop evaporation. 

 

 

 
Fig. 6.4 Time courses of the concentrations of β-caryophyllene, (Z)-3-hexenol, and methyl 

salicylate after vials were capped to stop evaporation. 
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The results obtained in the different experiments are listed in Table 6.1. 

 

Table 6.1 Calculated kair_water · Awater values for Crop A and Crop B. 

  kair_water · Awater [m3 s-1]  Average (sd) 

Compound  Crop A  Crop B   

(Z)-3-hexenol  0.41 0.41 0.15  0.13 0.14  0.25 (0.15) 

α-pinenea  0.00 0.01 0.02  0.00 0.03  0.01 (0.01) 

α-terpinene  0.07 0.06 0.05  0.04 0.06  0.06 (0.01) 

β-caryophyllene  0.02 0.02 0.02  0.00 0.02  0.01 (0.01) 

methyl salicylate  0.04 0.05 0.04  0.06 0.06  0.05 (0.01) 
a In two out of five replicates, the concentration of α-pinene at 1 h after evaporation was 

below the concentration of α-pinene at 2 h after evaporation. This phenomena was attributed 

to breakthrough which means that a compound is no longer retained on the sorbent. This 

seems plausible for α-pinene since it has a low breakthrough volume compared to other 

monoterpenes (Simon et al., 1995). These two measurement points were therefore excluded 

when calculating the kair_water · Awater of α-pinene. 

 

 

MODEL PREDICTIONS FOR LARGE-SCALE GREENHOUSES 

Based on the results of experiments 1-7, Eq. (6.10) was reduced to: 

 

[ ]
waterair_outBh

gr SNSNSRSR
dt

VOCd
V −−+=⋅  (6.15) 

 

This Eq. (6.15) was implemented in Matlabtm (Release 14; The MathWorks Inc., MA, USA) 

to predict the effects of parameter changes on the concentrations of VOCs in a large scale 

greenhouse under four different scenarios. The main quantities determining these 

concentrations are the volume of the greenhouse, the emission flux densities of the individual 

VOCs, the total number of plants, the fraction of B. cinerea infected plants, the leaf area per 

plant, and the exchange of air with the environment. 
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Emission flux densities of VOCs by healthy and infected plants are required to calculate their 

emission rates. Table 6.2 provides the emission flux densities used in this study. These data 

were taken from our previous work in which tomato plants were severely infected with 

B. cinerea (Jansen et al., 2009c). 

 

Table 6.2 Emission flux densities of the volatile organic compounds used in this study. Data 

were taken from our previous work in which tomato plants were severely infected with 

Botrytis cinerea (Jansen et al., 2009c, Jansen et al., 2009d). 

 Emission flux density [nmol m-2 s-1] 

Compound Healthy Botrytis cinerea infected 

(Z)-3-hexenol 0 3.1 × 101 

α-pinene 2.1 × 10-2 3.0 × 10-2 

α-terpinene 2.5 × 10-2 3.9 × 10-2 

β-caryophyllene 1.1 × 10-3 1.9 × 10-3 

methyl salicylate 1.1 × 10-1 3.2 × 10-1 

 

 

Four different scenarios were considered in this study. Table 6.3 presents the volume of the 

greenhouse, the total number of tomato plants, the proportion of B. cinerea infected tomato 

plants, the leaf area per plant, and the flow rate of air leaving the greenhouse for these four 

scenarios. Table 6.3 also presents the excitation period. This period of time represents the 

time in which the B. cinerea-induced increase in emission of VOCs from a certain proportion 

of plants is above the baseline level emission of healthy plants. 
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Table 6.3 Volume of the greenhouse (V), total number of tomato plants, proportion of 

Botrytis cinerea infected tomato plants, the excitation period, the leaf area per plant (Aplant), 

and the flow rate of air leaving the greenhouse (fair_out) for scenario 1, 2, 3, and 4. 

 Scenarios  

 1 2 3 4 

Volume [m3] a 5 × 104 5 × 104 5 × 104 5 × 104 

Total number of plants [-] b 2.2 × 104 2.2 × 104 2.2 × 104 2.2 × 104 

Botrytis cinerea infected plants [%] 0.5 5 0.5 5 

Excitation period [min] 60 60 60 60 

Leaf area per plant [m2] 1 1 1 1 

Flow rate of air leaving the  

greenhouse [m3 s-1] 

4.6 c 4.6 c 278 d 278 d 

a Volume is a based on a floor area of 104 m2 and a height of the greenhouse of 5 m; these 

dimensions are common for Dutch greenhouses. 
b Total number of tomato plants reasonable for the corresponding greenhouse volume and 

floor area. 
c This flow rate is one-third of the corresponding greenhouse volume per hour; a reasonable 

value for modern Dutch greenhouses when windows are closed. 
d This flow rate is 20-times the corresponding greenhouse volume per hour; a reasonable value 

for modern Dutch greenhouses when windows are fully opened. 

 

 

Eq. (6.15) was used to predict the baseline and B. cinerea-induced concentrations of VOCs in 

the greenhouse atmosphere under the four different scenarios as listed in Table 6.3. For these 

scenarios, the emissions from the healthy plants (SRh) led to an increase of VOC 

concentrations until a steady state concentration was reached. These steady state 

concentrations were determined by the sinks and sources given in Eq. (6.15) with SRB = 0. 

After steady state was reached, it was assumed that a given proportion of plants (Table 6.3) 

became infected by B. cinerea: in this case all at the same time, t = 1500 min. As a 

consequence, the infected plants emit pulses of VOCs. This led to a temporary increase in 

VOC concentrations in the greenhouse air which in height depend on the given scenario. As 

an example, in Fig. 6.5 we show the predicted concentrations of methyl salicylate under 

scenario 1, 2, 3, and 4. 
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Fig. 6.5 The predicted baseline and Botrytis cinerea-induced concentrations of methyl 

salicylate under scenario 1, 2, 3, and 4. The scenarios are presented in Table 6.3. At t = 0 min, 

healthy plants are introduced into the greenhouse. At t = 1500 min, a pulse type increase with 

an excitation period of 60 min was simulated to imitate a B. cinerea infection. 

 

Table 6.4 provides an overview of the predicted baseline and B. cinerea-induced increase in 

concentrations of the VOCs used in this study (Table 6.2). 
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Table 6.4 Predicted baseline and Botrytis cinerea-induced increase in concentration of the 

volatile organic compounds (Z)-3-hexenol, α-pinene, α-terpinene, β-caryophyllene, and 

methyl salicylate under four different scenarios. The scenarios are presented in Table 6.3. 

 Compound 

 (Z)-3-hexenol α-pinene α-terpinene β-caryophyllene methyl salicylate 

Scenario 1      

Baseline1  0 9.995E-08 1.177E-7 5.235E-9 4.719E-7 

Induced1 2.030E-7 1.003E-07 1.181E-7 5.254E-9 4.745E-7 

Increase2 ∞ 0.35 0.34 0.36 0.55 

Scenario 2      

Baseline1 0 9.995E-08 1.177E-7 5.235E-9 4.719E-7 

Induced1 2.030E-6 1.008E-07 1.189E-7 5.301E-9 4.875E-7 

Increase2 ∞ 0.85 1.02 1.26 3.31 

Scenario 3      

Baseline1 0 1.662E-09 1.978E-9 8.705E-11 7.912E-9 

Induced1 1.226E-8 1.665E-09 1.984E-9 8.736E-11 7.999E-9 

Increase2 ∞ 0.18 0.30 0.36 1.10 

Scenario 4      

Baseline1 0 1.662E-09 1.978E-9 8.705E-11 7.912E-9 

Induced1 1.226E-7 1.697E-09 2.033E-9 9.021E-11 8.783E-9 

Increase2 ∞ 2.11 2.78 3.63 11.01 
1 Concentration in mol m-3 
2 Increase in % 

 

DISCUSSION 

Detection of B. cinerea infections through plant-emitted VOCs requires analytical instruments 

with appropriate precision, detection limits and time resolution. The VOCs considered in this 

study have been measured routinely with precision values expressed as relative standard 

deviation (RSD) of 10%, detection limits of 1 nmol m-3, and a time resolution of 1 h. For 

instance, Greenberg et al. (1994) used an instrument that consisted of cryo-trapping and gas 

chromatography - flame ionization detection (GC-FID) to detect VOCs with a precision of ca. 

10% RSD at detection limits of less than 1 nmol m-3. Similar precision and detection limits 
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have been achieved using sorbent-trapping and GC-MS (Karl et al., 2008, Vercammen, 2002). 

The precision and detection limits of these two analytical instruments were compared with the 

B. cinerea-induced increase in concentration of (Z)-3-hexenol, α-pinene, α-terpinene, 

β-caryophyllene, and methyl salicylate as given in Table 6.4, to determine whether the 

increase is detectable with these instruments. 

 

The precision and detection limits of GC-MS or GC-FID are low enough to detect the 

B. cinerea-induced increase in concentration of (Z)-3-hexenol under all scenarios. For these 

scenarios, the relative increases in concentration of α-pinene, α-terpinene and β-caryophyllene 

are below the precision of GC-MS or GC-FID to be detectable. The detection limit of these 

instruments are insufficient to detect β-caryophyllene under scenario 3 and 4, i.e. windows 

fully opened. The B. cinerea-induced increase in concentration of methyl salicylate is only 

detectable under scenario 4, i.e. 5% of the plants infected and windows fully opened to 

prevent that fluctuations in the concentrations of methyl salicylate are levelled out. It should 

be mentioned that the relative increase in concentration of methyl salicylate under scenario 4 

is not simple to detect since this increase is near to the RSD of GC-MS and GC-FID. The 

estimates of the detectability of B. cinerea-induced increase in concentration of (Z)-3-hexenol, 

α-pinene, α-terpinene, β-caryophyllene, and methyl salicylate are summarised in Table 6.5. 

 

Table 6.5 Detectability of the Botrytis cinerea-induced increase in concentration of 

(Z)-3-hexenol, α-pinene, α-terpinene, β-caryophyllene, and methyl salicylate under scenario 1, 

2, 3 and 4. An instrument with a precision of 10% relative standard deviation and a detection 

limit of 1 nmol m-3 is used as a reference. The increase in concentration of the compounds are 

presented in Table 6.4. Scenarios are presented in Table 6.3. 

 Detectability (precision / detection limit)  

Compound Scenario 1 Scenario 2 Scenario 3 Scenario 4 

(Z)-3-hexenol + / + + / + + / + + / + 

α-pinene - / + - / + - / + - / + 

α-terpinene - / + - / + - / + - / + 

β-caryophyllene - / + - / + - / - - / - 

methyl salicylate - / + - / + - / + + / + 
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The results in Table 6.5 are bases on the momentaneous concentrations of VOCs. In practice, 

VOCs are often pre-concentrated to achieve the detection limits of commonly applied 

analytical instruments. The period of time required for pre-concentration depends on the 

concentration of the VOCs of interest in the air. A generally accepted value is 60 minutes at 

concentrations in the order of nmol m-3. Also the separation of VOCs in the mixture requires a 

certain amount of time in the order of 15-45 min. A sensitivity analysis should include the 

separation and pre-concentration periods to determine the detectability of B. cinerea-induced 

increase in concentrations of VOCs in large-scale greenhouses. Such analysis should also 

include the period of time in which the B. cinerea-induced increase in emission of VOCs from 

a certain proportion of plants is above the baseline level emission of healthy plants. For 

instance, the B. cinerea-induced increase in concentration of methyl salicylate is also 

detectable under scenario 2, i.e. 5% of the plants infected and windows closed if this period of 

time increases from 60 to at least 360 minutes (data not shown). Furthermore, a sensitivity 

analysis should include the emission flux densities of methyl salicylate by healthy tomato 

plants. These values were obtained under laboratory conditions. It is doubtful whether 

laboratory conditions are suitable to determine methyl salicylate emissions from healthy 

plants since stress due to enclosure of tomato plants -a prerequisite for analysing plant 

emissions at the laboratory scale- also led to increased emissions of methyl salicylate (Ament, 

2006). 

 

The ambient air nearby a greenhouse was analysed to explore the importance of incoming air 

as source of plant VOCs inside a greenhouse. The absence, or at least very low concentrations 

of these VOCs in ambient air, was counter-intuitive since nearby vegetation such as trees, 

hedges, and field crops are potential sources of VOCs (Army et al., 1991), especially upon 

harvest (e.g. Davison et al., 2008). We assume that the amount of vegetation present near the 

greenhouse was insufficient to induce considerable emissions of VOCs. Also crops inside 

nearby located greenhouses are possible sources of VOCs. But, the number and size of nearby 

greenhouses was probably too small to play an important role. However, these sources remain 

relevant for large-scale greenhouse because they are, in general, surrounded by many other 

large-scale greenhouses. The absence of relevant VOCs may also be explained by gas-phase 

reactions in the troposphere in which VOCs are degraded. Such degradation seems plausible 

since the VOCs used in this study have tropospheric lifetimes in the order of minutes to hours 

(Atkinson and Arey, 2003, Canosa-Mas et al., 2002). The tropospheric lifetime, together with 
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wind direction and wind speed are important characteristics to consider since they determine 

the distance VOCs can move before degradation. In future studies, the air surrounding such 

large-scale greenhouses should be analysed to give an impression about VOC concentrations 

in this air. This should preferably be done at different times of the year and different times of 

the day due to the seasonal and diurnal rhythm of VOC emissions by vegetation (e.g. 

Tarvainen et al., 2005). 

 

The air in a greenhouse without plants was analysed to determine whether greenhouse 

materials emit any of the investigated VOCs. The materials of the small-scale greenhouse did 

not emit substantial amounts of these VOCs. To analyse the emission of VOCs from most 

common greenhouse materials seems the preferred method to find out whether these materials 

emit significant amounts of relevant VOCs. However, glass is one of the main materials of a 

modern greenhouse and since glass emit almost no VOCs, this source process is more or less 

irrelevant. 

 

A tracer gas was used to determine the removal rate of VOCs by air leaving a greenhouse. 

This turned out to be the most dominant sink for α-pinene, α-terpinene and β-caryophyllene. 

Whether or not windows are opened will have a large effect on this removal rate. The 

windows of a large scale greenhouse are often closed, but also regularly opened to dehumidify 

the greenhouse, to cool the greenhouse, and to supply extra CO2. Fluctuations in VOC 

concentrations caused by closing and opening of windows may then be misinterpreted. The 

effect of this procedure should be studied in more detail to find out whether this may obstructs 

the interpretation of plant VOC concentrations. Trials are currently ongoing to test the effect 

of different window configurations on VOC concentrations in greenhouse air. 

 

VOCs were evaporated inside a greenhouse without plants to investigate whether greenhouse 

materials adsorb and/or absorb large amounts of VOCs. The materials of the small-scale 

greenhouse did not adsorbed/absorbed substantial amounts of relevant VOCs. But, these 

processes should not be neglected completely since many researchers have demonstrated that 

materials have the capacity to absorb and/or adsorb VOCs (Jorgenson, 1999, Singer et al., 

2004). However, glass is one of the main materials of a modern greenhouse. Most chemicals 

hardly absorb and/or adsorb onto glass materials which makes this sink process not so 

relevant. 
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VOCs were evaporated inside a greenhouse including plants to determine the extent to which 

VOCs might be removed due to transfer into water bodies. The results obtained in this 

experiment suggested that this process is an important sink strength for the water soluble 

VOCs (Z)-3-hexenol and methyl salicylate. These two VOCs are possible indicators for 

B. cinerea infection of tomato (see Table 6.2). It is therefore of utmost importance to study 

this sink in more detail to determine whether or not these VOCs are detectable under 

conditions that occur in large scale greenhouse. 

 

Well defined amounts of (Z)-3-hexenol were supplied to the air surrounding the shoots of 

tomato plants to study whether they adsorb and/or absorb this VOC. Shoots of tomato plants 

did not adsorbed/absorbed substantial amounts of (Z)-3-hexenol. However, other plant species 

may absorb and/or absorb VOCs since this process might depend on the plant species 

considered as suggested by Böhme et al. (1999). Unfortunately, based on the experiments we 

made, we cannot exclude that tomato plants adsorb and/or absorb any of the other VOCs 

considered in this study. 

 

Colorimetric tubes were used to determine O3 concentrations in the greenhouse, and, as 

expected no ozone was detectable. It is long known that plants take up ozone very efficient 

(e.g. Neubert et al., 1993) and thus, concentrations of ozone in a greenhouse with high plant 

density should be very low. Therefore, gas phase reactions of plant emitted VOCs with O3 

inside greenhouse will be negligible as sink. Other tropospheric oxidants as OH and NO3 are 

produced from O3. Thus, without ozone in the greenhouse air there is also no production of 

such oxidants. Furthermore the lifetime of these compounds is in the range of seconds and an 

introduction with air entering the greenhouse will not lead to accumulation of such 

compounds making also these oxidants unimportant. In summary, we believe that gas phase 

reactions can be ruled out as a sink for the emitted VOCs in greenhouses with high plant 

density. 

 

In the present study, four sources were regarded as relevant for the presence of VOCs in 

greenhouse air. An additional source that should be considered is plant debris such as excised 

shoots after pruning. Such debris is often present in a greenhouse and may then result in 

increases in VOC concentrations due to their emissions. 
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A major issue with respect to the implementation of VOC based crop monitoring is the spatial 

distribution of VOCs inside a large-scale greenhouse. Our model predictions for large-scale 

greenhouses relied on the assumption that the air in the greenhouse is perfectly mixed; an 

assumption often made in classical greenhouse studies (Roy et al., 2002). However, VOC 

concentrations will probably show spatial variation since the air in a greenhouse is never 

perfectly mixed. These variations are influenced by the characteristics of a greenhouse, such 

as the ventilation system and the temperature distribution. The local concentrations can show 

a high variability thus leading to lower or higher concentrations than the ones predicted in this 

study. Furthermore, B. cinerea infections are likely to occur in patches. This will also affect 

the spatial distribution of VOCs and result in an increase in local concentrations. Currently, 

computational fluid dynamics (CFD) has been acknowledged as an appropriate tool to 

calculate airflow distributions in greenhouses (e.g. Campen and Bot, 2003). CFD may also be 

useful to predict airflow distributions and concentrations of VOCs in greenhouse air which 

then might help to predict the best locations for air sampling. 

 

In the present work, we ignored the effect of light intensity and leaf temperature on VOC 

emissions by plants. However, light intensity and leaf temperature affect methyl salicylate and 

terpenoid emissions from tomato (Farag and Paré, 2002, Vercammen et al., 2001) which may 

then superimpose possible B. cinerea induced concentration differences. This effect may have 

caused the absence of any significant increase in terpenoid concentration after B. cinerea 

infection (Jansen et al., 2009a). However, the increase in emissions of methyl salicylate as a 

result of B. cinerea seems much stronger then the effect of common temperature and light 

fluctuation in a greenhouse (Jansen et al., 2009a). For (Z)-3-hexenol, the effect of light and 

temperature is unimportant since unstressed tomato plants do not emit this VOC. 

 

The present study was based on tomato and the infection of this plant species with Botrytis 

cinerea. The motivation to select tomato and B. cinerea as our model organisms was twofold. 

First, tomato is the major greenhouse crop in most parts of the world, which includes 

Northern Europe, (Heuvelink, 1995). Second, B. cinerea remains the major constraint for 

greenhouse tomato production worldwide (e.g. Eden et al., 1996, Elad and Stewart, 2004). 

However, plant emitted VOCs may also be used to monitor other vegetable- or ornamental 

crop species for pathogen infections and to monitor crops for the presence of other crop health 
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problems. This is in accordance with the enormous amount of laboratory studies in which 

increased emissions of VOCs have been reported upon decline of plants’ health (Kesselmeier 

and Staudt, 1999, Peñuelas and Llusià, 2001). 

 

CONCLUSION 

Based on model predictions, the B. cinerea-induced increase in concentration of the volatile 

plant hormone methyl salicylate is detectable in a large-scale tomato production greenhouse 

when at least three conditions are met: (a) windows are fully opened, and (b) the B. cinerea-

induced increase in emission of methyl salicylate continues for at least 1 h, and (c) 5% of the 

plants are infected. The B. cinerea-induced increase in concentration of methyl salicylate is 

also detectable when (a) windows are closed, and (b) the B. cinerea-induced increase in 

emission of methyl salicylate continues for at least 6 h, and (c) 5% of the plants are infected. 

 

The increase in concentration of the lipoxygenase product (Z)-3-hexenol is detectable under 

all scenarios. However, it is expected that besides infected plants, many additional sources of 

lipoxygenase products exist including plant debris and nearby field crops especially upon 

harvest or stress. Plant debris is nearly always present in greenhouses, and harvest and/or 

stress of nearby crops is extremely difficult to predict. The B. cinerea-induced increases in 

concentration of the three trichome damage related VOCs α-pinene, α-terpinene and 

β-caryophyllene are probably undetectable in a large-scale tomato production greenhouse. 

Therefore, it is recommended to focus on the detection of methyl salicylate to indicate 

B. cinerea infections in large-scale tomato production greenhouses. 
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An automated method for signal processing of GC-MS data 
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INTRODUCTION 

Regular human inspections are still the primary method by which greenhouse managers assess 

the health status of their crops. These human inspections are indispensable. However, 

technological developments might help to detect emerging health problems at an early stage 

which will make it easier to manage and control them. A novel approach to support the 

inspection of greenhouse crops is based on the measurement of volatile organic compounds 

(VOCs) emitted by unhealthy plants. This approach has attracted some serious interest over 

the last decade.  

 

In pursuit of this interest, studies were undertaken at the laboratory-scale to pinpoint marker 

VOCs that can be used to indicate health problems of tomato and cucumber 

(Laothawornkitkul et al., 2008, Thelen et al., 2006). In addition to these laboratory studies, 

pilot studies were performed in order to verify the validity of these marker VOCs under real-

world conditions (Karl et al., 2008, Markom et al., 2009). 

 

Different measurement techniques have been employed to study health aspects of agricultural 

plant species based on VOCs. A great deal of these studies employed electronic noses 

(Baratto et al., 2005) but also biosensors were employed (Schütz et al., 1995). However, in 

most of these studies, the analysis of VOCs was accomplished by a combination of gas 

chromatography (GC) for separation and mass spectrometry (MS) for detection and 

identification of the specific VOCs (Jansen et al., 2009c). The popularity of GC-MS is based 

on a favourable combination of high selectivity and resolution, good accuracy and precision, 

wide dynamic concentration range, and high sensitivity (Santos and Galceran, 2002). GC-MS 

is therefore considered as a serious candidate for health monitoring through analysis of air 

inside high-input greenhouse facilities. Conventional GC-MS systems are not suitable for that 

since these are delicate instruments usually restricted to laboratory use. As a consequence, air 

samples collected in the greenhouse should be transferred to the laboratory for further 

analysis. However, this transfer of samples introduces a time delay which is undesirable in 

case the detection of health problems require an immediate act, e.g. in case of the detection of 

a highly transmittable disease. Air samples should therefore preferably be analysed on-site. 

More robust GC-MS systems have therefore appeared on the market and have been applied, 

for example, to detect air contaminants in field settings (Eckenrode, 2001, Smith et al., 2005) 
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and to monitor a biogas tower reactor for the presence of potentially toxic VOCs (Matz et al., 

1998).  

 

A widely recognized difficulty associated with GC-MS application is the large and complex 

data generated by this instrument. As a consequence, experienced analysts are often required 

to process this data in order to depict the concentrations of the chemical compounds of 

interest (Malmquist et al., 2007). Such manual processing would typically incur high costs 

associated with labour. This aspect was identified as a limiting factor for the effective 

application of GC-MS based crop health monitoring in the 21st century. However, 

developments in computer science technology and software have increased the opportunity to 

automatically process GC-MS data at an affordable price. 

 

Numerous software packages are developed for the automatic extraction of relevant 

information from complex GC-MS data (reviewed by Katajamaa and Orešič, 2007). The 

algorithms implemented in these software packages rely on digital filters and univariate 

statistics for data smoothing, noise reduction, and baseline correction (Li et al., 2002). 

Additional alignment algorithms are often implemented to correct for chromatographic peak 

shifts (Skov et al., 2007). The majority of these software packages have their roots in 

metabolomics: ”the study of the unique chemical fingerprints that specific cellular processes 

leave behind" (Daviss, 2005). Often, these software packages are then successfully applied to 

find novel compounds that explain differences between large series of mass spectrometric 

data (Jonsson et al., 2004). However, it is still unknown whether these algorithms are also 

useful to automatically extract signals that represent health associated VOCs in order to 

determine the concentrations of them. In this study, the processing algorithms implemented in 

the MetAlignTM software package were validated for that. Thus, the objective of this study 

was to assess whether or not GC-MS data can also be automatically processed in order to 

determine the concentrations of crop health associated VOCs. 

 

 

MATERIALS AND METHODS 

Experimental datasets 

The experimental dataset employed in this study was acquired from the chemical analysis of 

air samples collected in a small-scale greenhouse. Throughout a six weeks growing period, 
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the air inside this greenhouse was sampled directly before and just after artificial damage of a 

tomato crop. This artificial damage was imposed to the plants on a weekly interval and was 

supposed to simulate plant damage similar to that caused by plant health issues such as 

herbivore infestation or pathogen infection. The analysis of the air samples were performed 

offline using a gas chromatograph coupled to a mass spectrometer (GC-MS). The simplest 

data output from the mass spectrometer analyzer is a measurement of the total ion current 

strength (TIC) versus time. This is basically a chromatographic output representing a 

summation of the signal strength of all the ions produced by the mass spectrometer at a given 

time. Two typical examples of such chromatographic output obtained before and after damage 

of the tomato plants are presented in Fig. 7.1.  

 

 

 
Fig. 7.1 Typical chromatographic profiles obtained from analysing the air in a greenhouse. 

Data were obtained in week nr. 6; before (A), and directly after damage of tomato plants (B). 

(TIC = total ion current) 

 

The actual data output content is much more complex since the data block produced is three 

dimensional; TIC versus time versus mass-to-charge ratios (m/z); more details can be found in 

McMaster (2008). A graphical way to present the three dimensional structure of GC-MS data 

is provided in Fig. 7.2.  
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Fig. 7.2 Three dimensional gas chromatography – mass spectrometry data display. Data were 

obtained in week nr. 6 before damage of tomato plants. Light grey colours represent low 

intensities of the corresponding m/z values while dark grey colours represent high intensities 

of the corresponding m/z values. (m/z = mass-to-charge ratio) 

 

The experimental equipment and the instrumental settings 

The air samples were collected by purging 18 L of air from the greenhouse through stainless 

steel cartridges (Markes International Ltd, Lantrisant, UK) packed with 200 mg of Tenax-TA 

20/35 (Grace-Alltech, Breda, The Netherlands). Air was purged through these cartridges at 

300 mL min-1 for 60 min. The air samples were transferred to the laboratory for analysis. 

Before analysis, the cartridges were dry-purged with helium at ambient temperature with a 

flow of 100 mL min-1 for 10 min to remove water. Analytes were desorbed from the 

cartridges using thermal desorption at 250°C for 5 min under a flow of 30 mL min-1 of 

helium, and subsequently concentrated in an electronically-cooled focusing trap at -5°C 

(UltrA-TDTM and UnityTM; Markes International Ltd). Analytes were then transferred to the 

column by heating the cold trap to 250°C at approximately 40°C s-1. To prevent overloading 

of the analytical system, most samples were split prior to injection. Air samples obtained 

when plants were relatively small were analysed in splitless mode while samples obtained in 

case of large plants were analysed at split inlet modes between 1:6 and 1:24. 
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A gas chromatograph was used to separate the mixture of analytes (Trace GC UltrATM; 

Thermo Electron Corporation, Auston, TX, USA). The capillary column (Rtx-5 MS, 30 m × 

0.25 mm internal diameter × 1 μm film thickness; Restek, Bellefonte, PA, USA) was held at 

the initial temperature of 40°C for 3.5 min followed by a linear gradient of 10°C min-1 to 

280°C and a hold of 2.5 min resulting in an overall runtime of almost 33 min. The carrier gas 

was nitrogen of 99.999% purity and the column flow was approximately 1 mL min-1. 

 

The mass spectrometry was performed on a quadrupole mass spectrometer (Trace DSQTM; 

Thermo Electron Corporation). The mass scan range was set from 45 to 450 amu (atomic 

mass unit) at a scan rate of 5077 amu sec-1 and the electron ionization energy was set at 

70 eV. The response of the mass spectrometer was assumed to be linear up to 2 × 108 ion 

counts per mass.  

 

Manual processing of data 

Manual processing of data was carried out by extracting the signals representing four VOCs: 

2-carene, α-phellandrene, limonene, and β-phellandrene. These VOCs were purchased (Fluka, 

Buchs, Switzerland) and subsequently injected into the GC-MS to determine their scan 

numbers (retention time). The corresponding peaks in the total ion chromatogram were 

manually located at these scan numbers. The TIC areas underneath these peaks were manually 

integrated using an appropriate software package (XCalibur 2.0; Thermo-Finnigan, San Jose, 

CA, USA). This software package was also used to extract the corresponding peak areas in 

the selective ion chromatograms (SIC) using m/z 93 as characteristic fragment. The ratio 

between the TIC areas and SIC areas, and results from a calibration were used to quantify 

VOC concentrations. The calibration procedure itself has been described before by us (Jansen 

et al., 2009b). 

 

Automatic processing of data 

The GC-MS data was automatically processed by the MetAlignTM software package in which 

the following steps were carried out: (1) data smoothing by digital filters related to the 

average peak width, (2) estimation and storage of local noise as a function of retention time 

and mass peaks, (3) baseline correction of mass peaks and introduction of a threshold to 

realise noise reduction, (4) scaling, calculation and storage of peak maximum amplitudes, (5) 

between chromatogram alignment, (6) iterative fine alignment by including an increasing 
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number of mass peaks with lower signal-to-noise (S/N), significant difference filtering at 

user-defined significance thresholds and minimum x-fold ratios and (7) output of data back to 

the MS-platform. 

 

To correct for the split levels used, data were scaled to the chemical compound naphthalene 

(m/z =128 at scan nr. 9520). Naphthalene was selected for scaling because this compound is 

not released from plants and was always present in almost constant concentration inside the 

greenhouse (Jansen et al., 2008). Scaling to naphthalene was also used to correct for 

variability in GC-MS sensitivity, e.g. due to contamination of the ion source after cleaning the 

ion source. The quantification of VOC concentrations followed the procedure in Jansen et al. 

(2009b) corrected for MetAlign’s peak area to intensity transformation. Parameters of 

MetAlign were set according to the specific scaling requirements and the chromatographic 

and mass spectrometric conditions used in the experiments (Table 7.1).  

 

Table 7.1 MetAlign settings used to automatically process the GC-MS data. 

Setting Value 

Retention begin (scan nr.) 0 

Retention end (scan nr.) 15000 

Maximum amplitude 200000000 

Peak slope factor 0.5 

Peak threshold factor 1 

Average peak width at half height 20 

Scaling Marker peak 

Nominal mass 128 at scan nr. 9520 

Initial peak search criteria : maximum shift begin of 1st region  15 

Initial peak search criteria : maximum shift end of 1st region 50 

Maximum shift per 100 scans 35 

Pre-align processing Iterative 

Minimum S/N ratio 10 
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RESULTS 

The overall time needed to process the data manually was approximately 1 h. The results of 

the manual processing of data showed a weekly increase in concentrations of 2-carene, 

α-phellandrene, limonene, and β-phellandrene upon artificial damage.  

 

The overall time needed to process the data automatically was approximately 10 min on a 

Pentium IV 1.5 GHz PC. Besides signals that represented the marker compounds, more than 

3000 signals showed peak drift (Fig. 7.3). The differences in scans was especially large for 

highly volatile compounds which elute early (scan nr. < 2000) and for non-volatiles which 

elute late (scan nr. > 8000).  

 

 

 
Fig. 7.3 Typical example of the differences in scans between two data-files.  

 

Two data files were randomly selected to evaluate the implemented processing algorithms of 

MetAlign. These two data files showed significant difference in the scan numbers of the target 

compounds (Fig. 7.4). The phenomenon of drifted peaks and the effect of processing the data 

are illustrated in Fig. 7.4. This figure represents the effect of processing the two data files in a 

small part of the chromatogram (scan nr. 7500 – 8000). The figure is therefore not more than 

an impression of baseline correction, noise reduction, scaling and alignment. 
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Fig. 7.4 Impression of data processing for signals that represent the concentration of (1) 2-

carene, (2) α-phellandrene, (3) limonene, and (4) β-phellandrene. Provided are: (A) 

unprocessed data of sample nr.1 and nr. 2; (B) baseline corrected, scaled, noise reduced and 

aligned data of sample nr. 1; (C) baseline corrected, scaled, noise reduced and aligned data of 

sample nr. 2. TIC = total ion current 

 

The results of automatic processing of the data resulted in concentrations similar to that after 

manual processing. The time course of the concentrations of α-pinene is provided in Fig. 7.5 

to demonstrate this similarity. 
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Fig. 7.5 Time course of the concentration of 2-carene after manual and automatic processing 

of gas chromatography – mass spectrometry data. The data points representing the 

automatically processed data have been offset to allow comparison. 

 

DISCUSSION 

The results of this study demonstrate that GC-MS data can be automatically processed in 

order to accurately determine the concentrations of health associated VOCs in a greenhouse. 

The processing of data was performed using MetAlign; a freeware software tool that has been 

effectively applied to process mass spectrometric data obtained from the quality control of 

fruits, plant-oil, drink-water, and grass (Lommen et al., 2007, Tikunov et al., 2005). This tool 

was also applied in the field of metabolomics which aims to develop and apply strategies for 

the global analysis of metabolites in cells, tissues and fluids (de Vos et al., 2007). This study 

demonstrates how knowledge obtained from that rapidly expanding field can be used in an 

agricultural engineering setting.  

 

An important disadvantage of MetAlign is that the algorithms are not open access which 

hampers the implementation and prevents incorporation of new algorithms developed by 

researchers. This disadvantage can be overcome by the use of distributed processing 

algorithms, such as the Matlab code (The MathWorks, Natick, MA, USA) provided in (Eilers, 

2004).  

 



An automated method for signal processing of GC-MS data 
 

127 

 

The experimental data indicate a variation in sample size that was injected onto the GC 

column. This variation was derived from the differences in intensity of the peak 

corresponding to the naphthalene standard (not shown). This emphasizes the necessity for 

normalisation of data. MetAlign allowed the normalisation to one specific mass fragment. 

But, this procedure does not allow the selection of more fragments which was desirable in our 

case since similar fragments were located at similar retention times (not shown). In addition, 

it can be seen from the chromatographic profiles that there is need for baseline correction 

(Fig. 7.1 and Fig. 7.4A). The baseline correction algorithm performed by MetAlign turned out 

to produce an acceptable result (Fig. 7.4B). This seems important as baseline correction is 

imperative for the automatic pre-processing of chromatographic data (Christensen et al., 

2005).  

 

The observed variation in scan numbers of signals points to the presence of unwanted peak 

drifts betweens samples (Fig. 7.3 and Fig. 7.4). From literature it is known that small peak 

drifts are common in chromatographic data. These drifts are known to all chromatographers 

and are due to changes in the columns during use, minor changes in mobile phase 

composition, drift in the instrument or interaction between analytes (Nielsen et al., 1998). 

Small retention time drifts in the order of 1 – 250 scans were observed in our data. The data 

should therefore be corrected for this drift to improve the measurement of marker compounds. 

Several algorithms are described in literature for the alignment of chromatographic data. The 

alignment procedure, also referred as peak matching, can be done with COWtool software 

(Nielsen et al., 1998). This method relies on piecewise linear correlation optimised warping 

(COW). A second commonly used alignment algorithm is based on dynamic time warping 

(DTW). Tomasi et al. (2004) studied these two different algorithms –COW and DTW- as pre-

processing steps for chromatographic data. They concluded that time alignment corrections 

should be handled with great care and pointed to difficulties with respect to the judgement of 

performance. We also experienced difficulties to assess the result of an alignment as produced 

by MetAlign. It seems a generally accepted benchmark method is lacking. Lin et al. (2005) 

determined whether the inconsistence was due to amplitude differences or phase variations 

using a “lobster plot”. This graphical evaluation of the result of aligning could also be applied 

to our data. However, it should be kept in mind that this procedure becomes time consuming 

and more subjective when sample sizes increase. 
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Proper data processing software extents the use of GC-MS instruments to other agricultural 

application such as quality control. Potato-tubers are among the agricultural products that 

could be checked for quality-loss based on the analysis of emitted VOCs (Varns and Glynn, 

1979, Waterer and Pritchard, 1984). Recently, this method was successfully applied at 

laboratory scale to monitor quality aspects of several other agricultural products including 

milk, meat, vegetables, grains, and fruits (Hettinga et al., 2008, Moalemiyan et al., 2006, 

Vikram et al., 2006, Vikram et al., 2004). Appropriate processing software is required but 

GC-MS instruments also need to become less expensive before they can be applied in an 

agricultural setting. 

 

CONCLUSION 

This research is a response to the need of automatic data processing for GC-MS based health 

monitoring. The frequent presence of low intensity signals, the peak shift and the occurrence 

of baseline drift in our data emphasize this need of processing the data. The processing of data 

improved the automated interpretation of the chromatographic data and allowed us to 

determine the concentrations of health associated VOCs in a greenhouse. 
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SYNTHESIS 

This thesis reports on the outcome of a study on the detection of pathogen infection through 

volatile organic compounds (VOCs) emitted from plants. The main research objective of this 

study was to investigate whether plant-emitted VOCs can be used to detect a pathogen 

infection in a large-scale greenhouse. The pathogenic fungus Botrytis cinerea and the plant 

species tomato (Lycopersicon esculentum) were selected as model organisms. Based on this 

choice, three main research questions were formulated: (1) What is the effect of a B. cinerea 

infection on the emission of VOCs from tomato? (2) Are B. cinerea induced emissions of 

tomato specific for the infection with this pathogen? (3) Are B. cinerea induced 

concentrations of VOCs detectable in large-scale greenhouses? 

 

Effect of a Botrytis cinerea infection on the emission of VOCs from tomato 

Severe B. cinerea infections resulted in a large increase in the emission of alcohols and 

aldehydes a few hours after inoculation and mild infections resulted in a small increase in the 

emissions of alcohols and aldehydes several hours after inoculation (CHAPTER 3). Once the 

emission of these type of VOCs reached their maxima, they reduced to values below detection 

limits within a few hours.  

 

The alcohols and aldehydes were undetected in experiments on B. cinerea infected leaves 

(CHAPTER 2). Why were these compounds undetected in experiments on detached leaves? A 

first explanation could be that the 22 h delay between inoculation and collection of samples 

prevented the detection of a burst of alcohols and aldehydes before that period of time. A 

second explanation arises from the physicochemical properties of VOCs. Alcohols and 

aldehydes are water soluble; maybe they were dissolved in the water which was added into 

the Petri dishes to prevent dehydration of the leaves. A third option to consider is the sorbent 

used during sampling since the choice of sorbent is crucial for ensuring efficient concentration 

of volatiles (Agelopoulos and Pickett, 1998). In experiments on detached leaves, part of the 

samples were obtained using Tenax, a sorbent commonly used to concentrate the alcohols and 

aldehydes of interest (Agelopoulos et al., 1999). However, most of the samples were obtained 

by the use of poly-dimethylsiloxane (PDMS) as solid sorbent. This type of sorbent is suitable 

for concentrating non-polar semi-volatile compounds, but not for the polar alcohols and 

aldehydes (Deng et al., 2005).  

 



Synthesis, conclusions, and outlook 
 

131 

 

Besides emissions of alcohols and aldehydes, severe B. cinerea infections resulted in the 

increased emission of mono- and sesquiterpenes from whole tomato plants (CHAPTER 3). This 

was not the case when whole plants showed mild symptoms of an infections by B. cinerea. 

This was also not the case for detached leaves upon infection (CHAPTER 2). Why remained the 

emission of mono- and most sesquiterpenes stable upon infection of detached leaves? 

Probably, the severity of infection was insufficient to alter the emission of these terpenes 

considerably; an opinion supported by the work of Mithöfer et al. (2005) who showed that the 

extent of damage has an effect on the emission of the monoterpenes ocimene and linalool 

from detached lima bean (Phaseolus lunatus) leaves. 

 

The sesquiterpene α-copaene was the one exception which proved to be predominantly 

emitted from infected tomato leaves (CHAPTER 2). In contrast to the increased emission of the 

sesquiterpene α-copaene from infected leaves, the results showed mixed findings in the case 

of infected whole plants. Whole plants, non infected as well as infected did not show a 

consistent change in emission of α-copaene. In some cases it increased, sometimes it 

decreased or remained constant at same temperature and light regime. This difference might 

have been caused by the use of whole plants. Such differences between detached leaves and 

whole plants were already described by Schmelz et al. (2001) who demonstrated that the 

results of assays using excised tissues should be cautiously interpreted when considering 

whole-plant models. 

 

Besides alcohols, aldehydes, monoterpenes, and sesquiterpenes, B. cinerea infections affected 

the emission of the ester-substituted phenol methyl salicylate (CHAPTER 3). Non infected 

plants showed a small but increasing emission of methyl salicylate during the three days 

period, probably as a result of stress due to enclosure of plants. Infected plants showed a 

larger increase in the emission of methyl salicylate compared to non infected plants (Jansen et 

al., 2009d). No obvious correlation between the severity of infection and the increase in 

methyl salicylate could be established. Methyl salicylate was undetected or present in trace 

level amounts in the experiments on detached leaves (CHAPTER 2). This compound can be 

efficiently trapped on PDMS (Deng et al., 2004a) and the sampling procedure itself could 

therefore not be the reason for the absence or low presence. Maybe, the compound was 

dissolved into water or differences between detached leaves and whole plants caused this 

difference. 
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Finally, emissions of the homoterpene (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene 

(TMTT) were affected by a B. cinerea infection (CHAPTER 3). Non infected plants showed a 

small but increasing emission of TMTT during the three days period, probably as a result of 

stress due to enclosure of plants. Infected plants showed a larger increase in the emission of 

TMTT compared to non infected plants. Similar to methyl salicylate, no obvious correlation 

between the severity of infection and the increase in TMTT emissions could be established. 

TMTT was undetected or present in low amounts in the experiments on detached leaves 

(CHAPTER 2). It is unclear whether this compound can be efficiently concentrated on PDMS 

but likely the compound TMTT was concentrated and then incorrectly identified as squalene 

(Deng et al., 2004a) and the sampling procedure itself could therefore not be the reason for 

the absence or low amounts. 

 

In short, the emission of several VOCs increased upon infection of whole plants which did not 

increase upon infection of detached leaves and vice versa. But, given the thorough study on 

whole plants, the presence of alcohols and aldehydes was regarded as reliable indicators of a 

B. cinerea infection. On these grounds, increasing mono- and sesquiterpene emissions, apart 

from α-copaene, and increasing methyl salicylate and TMTT emissions were also regarded as 

reliable indicators of a B. cinerea infection. Furthermore, compared to research on detached 

leaves, the study on whole plants resembled conditions more comparable to greenhouse 

horticulture. 

 

As mentioned before, the results obtained during the laboratory tests on whole plants were 

regarded as reliable and therefore served as basis for follow up studies. No additional time 

was spent on the inspection of data obtained from greenhouse air after infection of plants with 

B. cinerea in order to search for novel compounds. But, it can be questioned whether this was 

a good strategy since plants in a greenhouse may emit additional compounds due to e.g. 

differences in light intensity and/or differences in plant age. 

 

In the laboratory tests on whole plants, plants were infected by spraying them with a solution 

containing B. cinerea spores. However, in practice, infections in tomato are usually restricted 

to stem wounds (Shtienberg et al., 1998) which generally originate from pruning and removal 

of side shoots. To mimic these conditions, it might have been better to use the method as 
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described by Finkers, et al. (2007). They infected tomato plants by making incisions into the 

stem. Then, they inoculated the wounds with agar plugs containing a culture of B. cinerea 

after which the wounds were covered with tape to ensure high humidity. Besides a more 

realistic way of inoculation, this procedure has the advantage that it eliminates the need of a 

high air humidity and therefore prevents the trapping of moist air which often results in 

technical problems in VOC analysis. 

 

Specificity of Botrytis cinerea-induced emissions of VOCs from tomato 

In the previous section, the effect of a B. cinerea infection on the emission of VOCs from 

tomato was discussed. However, throughout the study, it became obvious that other factors 

occur in tomato production greenhouses that also affect the emission of VOCs from tomato. 

These factors should be considered since a B. cinerea specific detection is only feasible if 

such an infection consistently results in the emission of unique VOCs. Table 8.1 provides an 

overview of VOCs and literature in which emissions of these VOCs have been reported to 

increase upon biotic and/or abiotic stresses of intact tomato plants or detached tomato leaves. 

None of the VOCs listed in Table 8.1 can be exclusively linked to one particular stress of 

tomato. Therefore, it is improbable that the causal agent of plant stress can be identified as a 

B. cinerea infection based on these VOCs only.  

 

Table 8.1 Volatile organic compounds (VOCs) emitted from whole, intact tomato plants or 

detached leaves and the biotic and/or abiotic stresses responsible for the increase in VOC 

emissions. Numbers in superscript specify the references used. 

VOCs Biotic and abiotic stresses that increase VOC emissions from 

tomato 

ALCOHOLS  

(Z)-3-hexenol Botrytis cinerea1, Spodoptera littoralis2, Liriomyza 

huidobrensis5, Spodoptera exigua8, Manduca sexta12, 

Macrosiphum euphorbiae9, ozone13, Helicoverpa armigera14 

ALDEHYDES  

(E)-2-hexanal Botrytis cinerea1, Spodoptera littoralis2, Liriomyza 

huidobrensis5, Spodoptera exigua8, Manduca sexta12, ozone13, 

Helicoverpa armigera14 
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MONOTERPENES  

linalool Spodoptera littoralis2,7, Tetranychus urticae3 

α-pinene Botrytis cinerea1, Spodoptera littoralis2,7, Spodoptera exigua8, 

Macrosiphum euphorbiae 9, Oidium neolycopersici11, Manduca 

sexta11,12, ozone13 

α-terpinene Botrytis cinerea1, Spodoptera littoralis2,7, Spodoptera exigua8 

 Oidium neolycopersici11, Manduca sexta11,12, ozone13 

SESQUITERPENES  

β-caryophyllene Spodoptera littoralis2,7, Spodoptera exigua8, Macrosiphum 

euphorbiae 9, Manduca sexta12, ozone13 

α-copaene Botrytis cinerea10, Spodoptera littoralis2 

HOMOTERPENES  

(E,E)-4,8,12-trimethyl-   

1,3,7,11-tridecatetraene 

Botrytis cinerea1, Tetranychus urticae3,6, Liriomyza 

huidobrensis5, Manduca sexta12, ozone13 

PHENOLICS  

methyl salicylate Botrytis cinerea1, Spodoptera littoralis2, tobacco mosaic virus4, 

Tetranychus urticae3,6, Manduca sexta8,12, Macrosiphum 

euphorbiae 9, ozone13 
1 Jansen et al. (2009c); 2 Vercammen et al. (2001); 3 Ament et al. (2004); 4 Deng et al. 

(2004b); 5 Wei et al. (2007); 6 Dicke et al. (1998); 7 Maes et al. (2003), 8 Thaler et al. (2002); 
9 Sasso et al. (2007); 10 Thelen et al. (2006); 11 Laothawornkitkul et al. (2008); 12 Farag and 

Paré,(2002); 13 Miebach (personal communication); 14 Deng et al. (2005). 

 

The overview in Table 8.1 shows that the most common stress-induced VOCs are unspecific. 

On the other hand, literature offers some evidence for specific signals in the volatile blend of 

stressed plant species. For instance, the ability of host-seeking insects to recognize and 

respond to certain VOCs and to differentiate them from background VOCs indicates 

that insect-damaged plants emit VOCs that are distinguishable from those emitted in response 

to other types of damage or those emitted from undamaged plants (Paré and Tumlinson, 

1999). Probably, such specific signals are based on the temporal and spatial variations of 

VOCs at concentration levels far below the detection limits of commonly used analytical 

instruments including the instruments used in our experiments.  
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The overview in Table 8.1 is perhaps not complete, but the fact that emissions of many of the 

same substances increase upon different stressors suggests a general plant response by similar 

underlying mechanisms. Some of these mechanisms are briefly discussed below. 

 

B. cinerea infected plants emitted several alcohols and aldehydes. These VOCs are denoted as 

lipoxygenase products. They originate from the oxidative cleavage of C18-fatty acids in the 

presence of oxygen and enzymes such as lipoxygenases. They are emitted upon damage of 

cell membranes (that contain fatty acids) and are known to us as the characteristic smell that 

appears after cutting grass. Many biotic stresses such as herbivore feeding may result in 

damage of cell membranes which clarifies the numerous herbivore induced increases in 

emissions of the lipoxygenase products (Table 8.1). 

  

An additional source for lipoxygenase products that should be considered is plant debris such 

as excised shoots after pruning. Such debris is nearly always present in a greenhouse and may 

then increase the concentrations of lipoxygenase products due to drying. Also nearby field 

crops are expected to be sources of lipoxygenase products, especially upon harvest or stress. 

These events are extremely difficult to predict. Consequently, the emission of lipoxygenase 

products is unsuitable for a specific detection of B. cinerea infections in tomato production 

greenhouses and probably also not suitable for the detection of a general stress response of the 

crop. 

 

Severely B. cinerea infected tomato plants emitted larger quantities of mono- and 

sesquiterpenes compared to non infected plants. Also spraying with an aqueous solution 

containing B. cinerea spores resulted in an increase of mono- and sesquiterpene emissions 

(Jansen, 2006). The emissions peaked within 1 h after spraying and returned to initial levels 

within 2 to 3 h. This burst was attributed to the damage of glandular trichomes as a result of 

spraying by which water droplets smack onto the stems and leaves. These trichomes are 

outgrowths of the plant epidermis and collectively constitute the pubescence of the plant 

surface. To study the importance of trichomes in more detail, we stroked the full length of the 

stem of one of the plants enclosed in the chamber. Also this treatment resulted in a large burst 

of mono- and most sesquiterpene emissions. These results were not provided in CHAPTER 3. 

However, this result confirmed the importance of trichomes as source of plant volatiles and 
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supports the work of van Schie et al. (2007) who demonstrated that trichomes of tomato store 

in their interior considerable amounts of mono- and sesquiterpenes.  

 

A burst in mono- and sesquiterpene emissions was also observed at greenhouse-scale when 

fruits were harvested (CHAPTER 4), and side shoots were removed (CHAPTER 4). Almost 

certainly, every other crop operation will affect the emission of mono- and sesquiterpenes. 

Also temperature determines the emission of mono- and sesquiterpenes. Harvesting fruits, 

removal of side shoots, other crop operations, and fluctuations in temperature occur often in 

greenhouse practice. Moreover, many biotic stresses such as herbivore feeding may result in 

damage of trichomes which clarifies the numerous herbivore induced increases in emissions 

of mono- and sesquiterpenes (Table 8.1). Consequently, an increase in the emission of mono- 

and sesquiterpenes is unsuitable for a specific detection of B. cinerea infections in tomato 

production greenhouses and probably also not suitable for the detection of a general stress 

response of the crop. 

 

B. cinerea infected tomato plants emitted larger quantities of methyl salicylate. Such an 

increase was also reported upon stress of tomato as a result of at least seven different biotic 

and abiotic stressors (Table 8.1). Therefore, increased emissions of methyl salicylate are not 

specific for a B. cinerea infection. The slight increase in the emission of methyl salicylate 

from enclosed control tomato plants as reported in CHAPTER 3 was probably a result of stress 

due to enclosure. This effect was also mentioned by Ament (2006), providing an additional 

hint that increased emissions of methyl salicylate are not specific to any type of stress but 

rather a general stress response. 

 

The concentrations of methyl salicylate remained stable after stroking of stems, after removal 

of side shoots, and after picking fruits (CHAPTER 4). Three reasons may account for this. First, 

B. cinerea-derived elicitors were absent in the above mentioned treatments. These elicitors 

may play an important role in the induction of methyl salicylate emissions from tomato plants. 

Second, the damages incurred to the plants were a momentary type of damage while 

B. cinerea probably results in a continuous type of damage. There is an increasing body of 

evidence suggesting that the time course of damage has an effect on the emissions of VOCs 

from plants. Third, VOCs were measured directly after the damage stopped. There are several 
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examples in literature in which the emissions of volatiles, such as methyl salicylate, increase, 

but with a time delay of several hours after the stress application.  

 

The fact that stroking, removal of side shoots, and picking fruits did not affect the 

concentration of methyl salicylate is beneficial since then, methyl salicylate allows the 

discrimination between plant stress and crop operations. Ultimately, an increase in the 

concentration of methyl salicylate might serve as an effective warning sign for the presence of 

B. cinerea since the diversity of stress factors that occur in a tomato production greenhouse is 

often limited. However, it should be noted that methyl salicylate emission from tomato is also 

light dependent (Farag and Paré, 2002, Maes and Debergh, 2003). As light will fluctuate in a 

greenhouse, this will have to be taken into account when correlating increased methyl 

salicylate concentrations in the greenhouse atmosphere to any type of plant stress. 

 

The increased emission of the homoterpene TMTT after inoculation remains poorly 

understood due to the limited amount of information available, and uncertainties about this 

information. For instance, few researchers indicate increased TMTT emissions from tomato 

upon stress, whereas others did not (Table 8.1). The interpretation of TMTT emissions is also 

complicated by the fact that several researchers observed large amounts of TMTT in the 

headspace of control tomato plants while other researchers did not observe this compound at 

all, or failed to identify it correctly. 

 

 

Detectability of Botrytis cinerea-induced concentrations of VOCs in large-scale 

greenhouses 

To find out whether B. cinerea is detectable in large-scale greenhouses, it is important to 

know the induced increase in concentrations as well as the precision and detection limits of 

analytical instruments. Therefore, we developed a model to predict whether volatiles can be 

used to detect a B. cinerea infection in a large-scale tomato production greenhouse with a 

volume of 5 × 104 m3 containing 2.2 × 104 plants (CHAPTER 6). The precision and detection 

limits of a gas chromatograph (GC) coupled to a mass spectrometer (MS) or flame ionization 

detector (FID) were compared with the B. cinerea-induced increase in concentration of the 

lipoxygenase product (Z)-3-hexenol, the trichome damage related VOCs α-pinene, 

α-terpinene and β-caryophyllene, and the volatile plant hormone methyl salicylate to 
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determine the appropriateness of these instruments for measuring the increase. The model was 

used to predict the effect of the fraction of infected plants and the effect of the air exchange 

rate on the B. cinerea-induced increase in concentration.  

 

Independent of the air exchange rate, the B. cinerea-induced increases in concentration of 

(Z)-3-hexenol is detectable in a large-scale tomato production greenhouse when 0.5% or more 

of the plants are infected. Independent of the air exchange rate and independent of the fraction 

of infected plants, the B. cinerea-induced increases in concentration of α-pinene, α-terpinene 

and β-caryophyllene are undetectable in a large-scale tomato production greenhouse. The 

B. cinerea-induced increase in concentration of methyl salicylate is detectable in a large-scale 

tomato production greenhouse when at least three conditions are met: (a) windows are fully 

opened, and (b) the B. cinerea-induced increase in emission of methyl salicylate continues for 

at least 1 h, and (c) 5% of the plants are infected. The B. cinerea-induced increase in 

concentration of methyl salicylate is also detectable when (a) windows are closed, and (b) the 

B. cinerea-induced increase in emission of methyl salicylate continues for at least 6 h, and (c) 

5% of the plants are infected. 

 

These findings are bases on the momentaneous concentrations of VOCs. In practice, VOCs 

are often pre-concentrated to achieve the detection limits of commonly applied analytical 

instruments. The period of time required for pre-concentration depends on the concentration 

of the VOCs of interest in the air. Also the separation of VOCs in the mixture requires a 

certain amount of time. A sensitivity analysis should include the separation and pre-

concentration periods to determine the detectability of B. cinerea-induced increase in 

concentrations of VOCs in large-scale greenhouses. Such analysis should also include the 

period of time in which the B. cinerea-induced increase in emission of VOCs from a certain 

proportion of plants is above the baseline level emission of healthy plants. Furthermore, a 

sensitivity analysis should include the emission flux densities of methyl salicylate by healthy 

tomato plants. These values were obtained under laboratory conditions. It is doubtful whether 

laboratory conditions are suitable to determine methyl salicylate emissions from healthy 

plants since stress due to enclosure of tomato plants -a prerequisite for analysing plant 

emissions at the laboratory scale- also led to increased emissions of methyl salicylate (Ament, 

2006). 
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Analytical instruments based on GC-MS and GC-FID with a precision of 10% relative 

standard deviation and a detection limit of 1 nmol m-3 were used as a reference. These type of 

instruments are routinely used to detect air contaminants in field settings (Greenberg et al., 

1994, Smith et al., 2005) and to monitor biogas tower reactors for the presence of potentially 

toxic VOCs (Matz et al., 1998). Besides GC-MS and GC-FID, electronic noses (e-noses) are 

also widely used to detect plant-emitted VOCs in air (Kunert et al., 2002). In general, they are 

not useful for the identification and quantification of individual components (Gardner and 

Bartlett, 1999). However, the identification of the volatiles being emitted may not be needed 

if the comparison and recognition of patterns in the volatile profile are sufficient for crop 

health monitoring through the analysis of plant-emitted volatiles. Such a profile can be 

obtained through the use of sensor arrays. This converges with research on volatile based 

inspection of trees based on e-nose systems which rely on the recognition of fingerprints of 

volatiles released from them. For instance, a prototype device incorporating three metal oxide 

sensors was able to detect basal stem rot disease of oil palm (Elaeis guineensis Jacq.) infected 

by the fungus Ganoderma boninense (Markom et al., 2009).  

 

A combination of the marker-compound-approach with the e-nose technique can result in 

e-nose systems that have the ability to quantify VOC concentration in air as demonstrated for 

the differentiation of fresh and rancid butter based on volatiles (Hofmann et al., 1997). This 

development seems to be quite promising. The remaining drawback of e-noses based on 

sensor arrays is that the threshold of determination of most of these systems is in the low 

ppmv-range. However, this drawback can be overcome by utilization of pre-concentration 

techniques. Such a combination of a gas-chromatographic system equipped with a pre-

concentration unit and e-nose was successfully applied to detect plant emitted volatiles in a 

small cuvette (Kunert et al., 2002). However, the reported limits of detection for this 

instrument (see Watkins and Wijesundera, 2006), are several orders of magnitude less than 

required for the in CHAPTER 6 predicted concentrations of B. cinerea-induced volatiles in a 

large-scale greenhouse. 

 

More recently, biosensors have been developed to identify and quantify low levels of VOCs 

in ambient air. A biosensor is a particular type of chemical sensor that uses the recognition 

properties of biological components in the sensitive layer. Today even whole animals or 

certain organs of animals are used in biosensors. Especially insects are seen as suitable model 
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to develop biosensors for gas analysis. Several studies attempted to quantify the sensitivity of 

insects to certain volatiles. For instance, trained wasps responded to 3-octanone, myrcene, 

cadaverine and putrescine at concentrations in the order of 10 ppbv (Rains et al., 2004), and a 

biosensor based on insect antennae responded to (Z)-3-hexenol at a concentration of 10 ppbv 

(Schütz et al., 1996). These sensitivities are several orders of magnitude less than required. 

Besides the demand for an increase in sensitivity, there are numerous other methodological 

and biological hurdles that needs exploration before sensors based on insects can be used in 

horticultural practice.  

 

CONCLUSIONS 

The research presented in this thesis has led to the following conclusions. 

 

(1) Tomato plants emit different types and amounts of volatiles during infection by 

B. cinerea. The main effects are the burst of lipoxygenase products and the increase in 

emissions of monoterpenes, sesquiterpenes, methyl salicylate and TMTT. The burst of 

lipoxygenase products is probably the result of damage to cell membranes. The increase in 

emissions of monoterpenes and sesquiterpenes is probably the result of damage to 

glandular trichomes. The increase in emission of methyl salicylate and TMTT is not 

directly related to cell membrane or trichome damage but probably the result of a systemic 

plant response as a result of stress. 

 

(2) Based on model predictions, the B. cinerea-induced increase in concentration of 

lipoxygenase products is detectable in a large-scale greenhouse when 0.5% of the plants 

are infected. However, many additional sources of lipoxygenase products exist including 

plant debris and nearby field crops especially upon harvest and stress. Plant debris is 

nearly always present and harvest and/or stress of nearby crops is extremely difficult to 

predict. Consequently, lipoxygenase products can probably not be used to detect a 

B. cinerea infection in a large-scale greenhouses. 

 

(3) Based on model predictions, the B. cinerea-induced increase in concentration of mono- 

and sesquiterpenes cannot be detected in a large-scale tomato production greenhouse. 

Furthermore, crop operations will almost certainly affect the concentration of mono- and 

sesquiterpenes. These crop operation occur often. Consequently, mono- and 
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sesquiterpenes can probably not be used to detect a B. cinerea infection in a large-scale 

greenhouses. 

 

(4) Based on model predictions, the B. cinerea-induced increase in concentration of methyl 

salicylate is detectable in a large-scale tomato production greenhouse when at least three 

conditions are met: (a) windows are opened, and (b) the B. cinerea-induced increase in 

emission of methyl salicylate continues for at least 1 h, and (c) 5% of the plants are 

infected. The B. cinerea-induced increase in concentration of methyl salicylate is also 

detectable when (a) windows are closed, and (b) the B. cinerea-induced increase in 

emission of methyl salicylate continues for at least 6 h, and (c) 5% of the plants are 

infected. Consequently, methyl salicylate can probably be used to detect a B. cinerea 

infection in a large-scale greenhouses. However, the B. cinerea-induced increase in 

concentration of methyl salicylate is not specific for a B. cinerea infection of tomato. 

Therefore, it will be impossible to identify the stressor as B. cinerea based on methyl 

salicylate emissions only. 

 

OUTLOOK 

In this research, much insight has been gained into volatile based crop monitoring. However, 

it is clear that this topic is in its infancy and far from being completely understood. Therefore 

research effort in the following areas is suggested. 

 

When we received the referee rapports of (Jansen et al., 2009b) an anonymous referee wrote: 

‘If the goal is to detect an early fungal infestation wouldn’t specific VOCs emitted by the 

fungus itself be a better way to diagnose the infection? It is known that fungi can emit a wide 

range of unique VOC signatures that could aid in detecting an early infestation’. This question 

is an interesting one and addresses an important point for future research. 

 

Future research may involve low-molecular VOCs to monitor crop health at greenhouse scale. 

In this study, we focussed on the mid-molecular weights VOCs in the range of C5-C24. 

However, an infection of tomato plants with B. cinerea probably also affects the emission of 

low-molecular weight VOCs (< C5). For instance, emissions of nitric oxide (NO), hydrogen 

peroxide (H2O2), ethylene (C2H4), ethane (C2H6), acetaldehyde (C2H4O), and ethanol 

(C2H5OH) from diverse plant species were found to increase upon stress exposure. Depending 
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on the source- and sink strengths of these VOCs, they may be used as indicator of plants 

stress at greenhouse scale, but probably not to identify the stressor itself. 

 

Due to the high costs, we are years away from having sensitive and precise analytical 

instruments in horticultural practice. But, the ongoing expansion and intensification of 

greenhouse production, and the concern among consumers about the potential intake of 

pesticide residues on fruits and vegetables will support the prospected application of plant 

health monitoring in a commercial setting. Another point for future research is therefore the 

development of sensitive, precise, but also affordable instruments, specifically designed for 

application in horticulture practice. Four steps should then be considered. First, the collection 

and pre-concentration of the plant emitted VOCs. Second, the separation of the plant emitted 

VOCs in the mixture. Third, the identification, and/or quantification of the separate VOCs. 

Fourth, the automatic processing of data. Colorimetric tubes based on a chemical reaction 

generating a colour change may offer an alternative cost-effective approach to measure the 

concentration of important stress associated VOCs such as methyl salicylate. 

 

To determine the potential of volatile based crop monitoring, it is necessary to perform semi- 

and large-scale experiments. Care should then be taken because such experiments will be 

influenced by the inherent variability present in crops grown in practice. Especially the 

importance of VOC transfer into water should be studied, more specifically the role of 

condensation on dehumidifiers versus the role of condensation on the glass cover. 

 

Finally, the effect of other stressors on the emission of VOCs from tomato and other plant 

species that are common in greenhouse horticulture should be studied. Especially infections 

by root pathogens seems an important plant health problem to study because the effect of 

these types of infection are difficult to see by the naked eye. 
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SUMMARY 

Crops in greenhouses are typically cultivated as a monoculture which means that one crop 

species is grown. This crop is usually grown at a high plant density, and because the climate 

can be controlled, it is possible to cultivate crops on a year-round basis. Year-round 

monoculture crops at high plant densities are susceptible to diseases due to the ease with 

which most diseases can spread. Crop protection chemicals are routinely used to reduce the 

incidence and spreading of diseases. But, the consumers are demanding a reduction in the use 

of crop protection chemicals in their foods. In addition, the exposure of crop protection 

chemicals has a negative effect on the health of greenhouse workers and also pollutes the 

environment. 

 

Local treatments of plants with reduced amounts of crop protection chemicals are sufficient if 

disease symptoms are discovered at an early stage. Crops are therefore regularly inspected for 

these symptoms. These inspections are important, especially in large-scale greenhouses 

because diseases can then spread quickly over large areas. But, inspections are also expensive 

because they require considerable amounts of time and skilled personal. As a result, there is a 

demand for a system to inspect crops which discovers diseased plants, preferably at an early 

stage. One proposed concept is the measurement of volatile organic compounds (VOCs) 

emitted from plants. This concept is based upon the numerous laboratory studies which 

revealed that pathogen infections have an effect on the volatile blend released by plants. This 

provides the opportunity to use plant-emitted VOCs for detection of plant disease. 

 

The main research objective of this study was to investigate whether plant emitted VOCs can 

be used to detect a pathogen infection in a large-scale greenhouse. The study was focused on 

the detection of Botrytis cinerea infections in tomato (Lycopersicon esculentum). B. cinerea 

was selected as a model pathogen because it is a well-known cause for considerable damage 

in a broad range of plant species including tomato and strawberry. Tomato was selected 

because greenhouse production of tomato is an economically important industry worldwide. 

 

Knowledge about the emissions of VOCs from B. cinerea infected and healthy tomato plants 

is required to assess whether a B. cinerea infection is detectable through plant-emitted VOCs. 

A B. cinerea specific detection is feasible if an infection consistently results in the emissions 

of unique VOCs. To determine their uniqueness, also other factors which might have an effect
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on VOC emission from tomato were studied including crop operations, other stressors, but 

also environmental factors such as an increase in temperature or light intensity. The effect of 

these factors on VOC emission determine the reliability of VOCs as source of information to 

detect a B. cinerea infection. An important aspect are the concentrations of VOCs in a large-

scale greenhouse during a B. cinerea infection. They are essential parameters to decide on 

when evaluating analytical instruments for sensing VOCs in large-scale greenhouses. The 

specific research questions addressed in this thesis were: 

 

1. What is the effect of a B. cinerea infection on the emission of VOCs from tomato? 

2. Are B. cinerea induced emissions of VOCs from tomato specific for the infection with 

this pathogen? 

3. Are B. cinerea induced concentrations of VOCs detectable in a large-scale 

greenhouse? 

 

The initial phase of the research was used to investigate the emissions of VOCs from detached 

tomato leaves which were individually enclosed in Petri dishes (CHAPTER 2). The volatiles 

were both statically and dynamically concentrated during the sampling of the air surrounding 

the non-infected and B. cinerea infected leaves. The analysis of samples was conducted by 

gas chromatography (GC), mass spectrometry (MS) and flame ionisation detection (FID). 

Results from this phase gave a first impression of VOCs emitted from healthy and B. cinerea 

infected tomato plants. During this phase, hands-on experience was gathered with instruments 

for sampling and analysis. Results from this phase showed that detached leaves emit higher 

amounts of the sesquiterpene α-copaene upon infection with B. cinerea. 

 

In follow up experiments, whole plants were used to investigate their emissions (CHAPTER 3). 

Per experiment, several non infected or B. cinerea infected plants were enclosed for three 

days in a chamber with temperature, humidity, light intensity, and CO2 control. Clean air was 

drawn into this chamber and every hour, the outgoing air was dynamically sampled after 

which the sample was directly analysed using GC-MS. During this period, at least 40 VOCs 

were identified that were emitted from tomato plants. Measurements of leaf area and 

calibrations by means of reference compounds were used to normalize the emissions of the 

fifteen most dominant compounds into emissions per unit leaf surface and time. These flux
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densities showed large variations between replicate studies in case of non infected as well as 

B. cinerea infected plants. 

 

In contrast to the experiments on detached B. cinerea infected leaves, alcohols and aldehydes 

were detected in experiments on B. cinerea infected plants. These compounds are denoted as 

lipoxygenase products; they originate from the oxidative cleavage of C18-fatty acids in the 

presence of oxygen and enzymes such as lipoxygenases. These products are emitted from 

damaged plants in which damage of cell membranes play an important role. Most dominant 

was the lipoxygenase product (Z)-3-hexenol which showed flux densities up to 

0.5 nmol m-2 s-1. The emission of lipoxygenase products was explained by the B. cinerea 

induced damage to cell membranes. Emissions of these compounds were larger and started 

earlier in case of severe infections compared to mild infections. The increase in emissions of 

lipoxygenase products was observed several hours after inoculation which demonstrates that 

these compounds provide an early indication of cell membrane damage, even before 

symptoms of a B. cinerea infection became visible. 

 

Non infected as well as B. cinerea infected tomato plants emitted a number of monoterpenes 

and sesquiterpenes including α-copaene. But, in contrast to infected detached leaves, the 

emission of α-copaene did not dominate in case of infected intact plants. This difference was 

explained by the use of intact plants instead of detached leaves. The diurnal rhythm in the flux 

densities of monoterpenes and sesquiterpenes were mainly ascribed to differences in leaf 

temperature. Increased flux densities of monoterpenes were observed from severely infected 

plants with flux densities up to 1 nmol m-2 s-1. The ratio in flux densities between the 

monoterpenes remained constant which suggests a similar generic mechanism, probably 

damage to glandular trichomes. 

 

Non infected and B. cinerea infected plants emitted methyl salicylate and (E,E)-4,8,12-

trimethyl-1,3,7,11-tridecatetraen (TMTT). The diurnal rhythm in the flux densities of methyl 

salicylate and TMTT were mainly attributed to differences in light intensity. Non infected 

plants showed small but increasing flux densities of methyl salicylate and TMTT during the 

three days period, probably as a result of stress due to enclosure of plants. Infected plants 

showed a larger increase in the flux densities of methyl salicylate and TMTT compared to non 

infected plants in the order of nmol m-2 s-1. No obvious correlation between the severity of 



SUMMARY 

 

156 

 

infection and the increase in methyl salicylate and TMTT emissions could be established. In 

the literature, these compounds are defined as phytohormones and emission increases upon 

biotic and abiotic stresses are well known for several plant species. 

 

In CHAPTER 4, experiments are described which were conducted in a small experimental 

greenhouse containing 60 plants situated on a floor area covering 42 m2. These plants were 

artificially damaged throughout a period of two months to simulate a B. cinerea infection. The 

damage consisted of stroking the stems to damage glandular trichomes and removal of side 

shoots to damage cell membranes. In addition, we studied the effect of fruit picking on the 

concentrations of plant-emitted VOCs in greenhouse atmosphere. Air samples were collected 

at three locations within the greenhouse and subsequently transferred to the laboratory for 

GC-MS analysis. In all cases, the concentrations of volatiles were nearly similar in between 

the three locations which was explained by the high internal air circulation of 2 × 104 m3 of air 

per hour. 

 

At least nine monoterpenes, four sesquiterpenes, three phenolics, and one homoterpene were 

detected in air samples obtained before damage of the plants. These compounds were known 

to be emitted from tomato and detected in our previous laboratory experiments. The 

monoterpene β-phellandrene was always present at the highest concentration. When plants 

were seven weeks old, the concentration of this VOC was approximately 0.06 nmol per mol 

of air before treatment. This concentration was raised to approximately 0.14 nmol per mol of 

air when plants were twelve weeks old. Stroking of the stems, removing the side shoots and 

fruit picking resulted in an increase in the concentrations of all mono- and most 

sesquiterpenes up to 60-fold which was expected since these volatiles are well known 

constituents of glandular trichomes. The ratio between the concentrations of the monoterpenes 

β-phellandrene and 2-carene remained constant after stroking of the stems while the ratio 

between de concentrations of the monoterpene β-phellandrene and the sesquiterpenen 

β-caryophyllene changed. This offers the opportunity to detect trichome damage on the basis 

of ratio’s between individual volatiles. 

 

The concentrations of the B. cinerea-related volatiles α-copaene, methyl salicylate, and 

TMTT remained stable after stroking of stems, after removal of side shoots, and after picking 

fruits. Three reasons may account for this. First, B. cinerea-derived elicitors were absent in 
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the above mentioned treatment. These elicitors may play an important role in the induction of 

α-copaene, methyl salicylate and/or TMTT emissions from tomato plants. Second, the 

damages incurred to the plants were a momentary type of damage while B. cinerea probably 

results in a continuous type of damage. There is an increasing body of evidence suggesting 

that the time course of damage has an effect on the emissions of VOCs from plants. Third, 

VOCs were measured directly after the damage stopped. There are several examples in 

literature in which the emissions of volatiles, such as methyl salicylate, increase, but with a 

time delay after the stress application. 

 

In contrast to stroking and fruit picking, shoot removal resulted in the detection of the 

lipoxygenase product (Z)-3-hexenol in greenhouse atmosphere at concentrations between 

8 and 20 pmol per mol of air. This VOC is expressing cell membrane damage and this type of 

damage is therefore detectable in a small-scale greenhouse. 

 

The experiment described in CHAPTER 5 was conducted in the same greenhouse as the 

greenhouse described in CHAPTER 4. In this experiment, all 60 plants were inoculated with 

B. cinerea. The objective of this experiment was to determine the effect of inoculation on the 

concentrations of the typical cell membrane damage-induced lipoxygenase products, on the 

concentration of the typical trichome damage-induced monoterpenes and sesquiterpenes, and 

on the concentration of the volatile phytohormones methyl salicylate and TMTT. Upon 

inoculation, the greenhouse air was sampled semi-continuously with a one hour time interval 

until 72 hours after inoculation. The samples were transferred to the laboratory and analysed 

using GC-MS. Ten leaves were randomly selected to monitor the visible symptoms of 

infection. The severity of these visual symptoms was assessed at 0, 24, 48, and 72 hours after 

inoculation.  

 

Lipoxygenase products were undetected after inoculation of the plants. The absence of 

lipoxygenase products was explained by the mild B. cinerea symptoms and/or the transfer of 

these products into free water. The concentration of all monoterpenes, most sesquiterpenes, 

and TMTT remained stable after inoculation while the concentration of α-copaene fluctuated 

according to the day/night rhythm. This fluctuation probably resulted from the light dependant 

synthesis of α-copaene which demonstrates that plant volatiles can be used to measure the 

biosynthesis of compounds inside a greenhouse grown crop in a non-invasive way. The 
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concentration of methyl salicylate directly after inoculation was approximately twenty 

picomol per mol air. This concentration reached 10-fold and 3-fold values at 32 and 34 HAI 

respectively. At 24 hours after inoculation, 10% of the selected leaves showed mild symptoms 

while 20% of the selected leaves showed mild symptoms at 48 hours after inoculation. These 

results indicate that methyl salicylate might alert a grower of the presence of a B. cinerea 

infection of tomato plants at greenhouse scale. 

 

In CHAPTER 6, a model is described to calculate the concentrations of plant volatiles in a 

greenhouse on the basis of source and sink behaviour of these volatiles. This model was used 

to determine whether volatiles can be used as an indicator of the presence of a B. cinerea 

infection in a large-scale tomato production greenhouse with a volume of 5 × 104 m3 

containing 2.2 × 104 plants. Seven experiments were done to parameterise the model for the 

three trichome damage-induced VOCs α-pinene, α-terpinene, and β-caryophyllene, for the 

lipoxygenase product (Z)-3-hexenol) and for the volatile phytohormone methyl salicylate. 

Four scenarios were considered to predict the effect of the fraction of infected plants and the 

effect of the air exchange rate on the B. cinerea-induced increase in concentration of these 

VOCs. The precision and detection limits of GC coupled to MS or FID were compared with 

the B. cinerea-induced increase in concentration of the previous mentioned VOCs to 

determine the appropriateness of these instruments for measuring the increase. Based on 

model predictions, the B. cinerea-induced increase in concentration of methyl salicylate is 

detectable in a large-scale tomato production greenhouse when at least three conditions are 

met: (a) windows are opened, (b) the B. cinerea-induced increase in emission of methyl 

salicylate continues for at least 1 h, and (c) 5% of the plants are infected. The B. cinerea-

induced increase in concentration of methyl salicylate is also detectable when (a) windows are 

closed, (b) the B. cinerea-induced increase in emission of methyl salicylate continues for at 

least 6 h, and (c) 5% of the plants are infected. The increase in concentration of α-pinene, 

α-terpinene and β-caryophyllene cannot be measured with the above mentioned analytical 

instruments. The B. cinerea-induced increase in concentration of (Z)-3-hexenol is detectable 

under all scenarios. However, it is expected that besides infected plants, many additional 

sources of lipoxygenase products exist including plant debris and nearby field crops 

especially upon harvest or stress. Plant debris is nearly always present in greenhouses, and 

harvest and/or stress of nearby crops is extremely difficult to predict. Therefore, it is 
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recommended to focus on the detection of methyl salicylate to indicate B. cinerea infections 

in large-scale tomato production greenhouses. 

 

In CHAPTER 7, attention is paid to the automatic processing of data. Almost all of the analyses 

described in this thesis were conducted using GC-MS. The data from this instrument is 

relatively complex and experienced analysts are required to process the data. This makes the 

use of this instrument costly and therefore reduces its widespread application. Developments 

in computer hardware and software have increased the opportunity to automatically process 

GC-MS data. The results in CHAPTER 7 show that the concentrations of VOCs inside a 

greenhouse can be determined automatically. 

 

In CHAPTER 8, the answers to the main research questions are provided and the strengths and 

limitations of VOC based crop monitoring are discussed. A limitation of this method is the 

lack of specificity; as mentioned before, a B. cinerea specific detection would be feasible if an 

infection consistently results in the emissions of unique VOCs. 

The emission of large amounts of unique substances from tomato upon B. cinerea induced 

stress seems unlikely since this research, and literature show that emissions of many of the 

same substances, including all VOCs detected in our experiments, increase upon many other 

biotic and abiotic stresses of tomato. A unique time course of B. cinerea-induced emissions of 

VOCs may also be sufficient to allow a B. cinerea specific detection. However, this research, 

and literature, do not provide any example of such a unique time course. Therefore, it is 

improbable that an infection with B. cinerea can be specifically detected based on the time 

course of stress-induced volatile emissions only. 

But, this research provides some evidence that VOCs can be used as an early warning sign for 

growers to indicate crop stress of which the presence of a B. cinerea infection is an option. 

The phytohormone methyl salicylate is then an important candidate since the concentration of 

this VOC did not increase after general crop operations while it did increase after infection 

with B. cinerea. The detection of lipoxygenase products seems not suitable for that since these 

VOCs are also emitted from nearby field crops, especially upon harvest, and probably also 

from plant debris and during pruning. Also monoterpenes and most sesquiterpenes are not 

suitable since their increase upon infection is probably too low to be detectable. Furthermore, 

these type of compounds are stored in glandular trichomes of tomato and their emissions 
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increase upon shoot removal, fruit picking and almost certainly all other crop operations, and 

upon increases in temperature. An exception is α-copaene; this VOC is not stored in large 

amounts in trichomes and emissions of this compound increased from detached leaves upon 

infection. However, the emission of α-copaene did not increase from intact plants upon 

infection and seems therefore not suitable.  

Ultimately, an increase in the concentration of methyl salicylate might serve as an effective 

warning sign for the presence of B. cinerea since the diversity of stress factors that occur in a 

tomato production greenhouse is often limited. At this moment, GC-MS and GC-FID 

instruments are expensive which seems the most important reason to cite against the use of 

GC-MS or GC-FID for cop monitoring through plant-emitted VOCs. An important point for 

future research is the development of an affordable instrument for gas analysis, specifically 

designed for application in horticulture practice. 
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SAMENVATTING 

De teelt in kassen kenmerkt zich door monocultuur wat betekent dat vaak één soort gewas 

wordt geteeld. Planten staan doorgaans dicht op elkaar en omdat het klimaat regelbaar is, kan 

desgewenst jaarrond worden geteeld. Het jaarrond aanwezig zijn van één gewassoort bij een 

hoge plantdichtheid is risicovol omdat dit uitbraak en verdere verspreiding van ziekte 

stimuleert. Om uitbraak en verspreiding tegen te gaan wordt gebruik gemaakt van 

bestrijdingsmiddelen. Echter, met het oog op voedselveiligheid is juist een reductie in het 

gebruik van deze middelen noodzakelijk. Verder zijn bestrijdingsmiddelen kostbaar, 

ongezond voor de medewerkers in de kas en slecht voor het milieu. 

 

Om bestrijdingsmiddel te besparen wordt het gewas regelmatig geïnspecteerd op symptomen 

van ziekte. Als deze symptomen tijdig worden opgespoord kan er lokaal en met minder 

middel worden gewerkt. Deze inspecties zijn belangrijk, met name in grootschalige kassen 

omdat ziektes hier eenvoudig over een groot oppervlak kunnen verspreiden. Ze zijn ook 

kostbaar omdat veel tijd en geschoold personeel noodzakelijk zijn. Daardoor is de wens 

ontstaan om automatisch zieke planten op te kunnen sporen, liefst in een zeer vroeg stadium. 

Een mogelijk principe is het meten van vluchtige stoffen afgescheiden door planten. Dit 

principe is gebaseerd op het gegeven dat de afscheiding van deze stoffen wijzigt bij ziekte. 

Dit biedt de mogelijkheid om vluchtige stoffen te gebruiken om ziekte te kunnen detecteren. 

 

Het doel van het in dit proefschrift beschreven onderzoek was om te verkennen of vluchtige 

stoffen afgescheiden door planten bruikbaar zijn om plantenziekte te detecteren in een 

grootschalige kas. Specifiek hebben we ons gericht op de detectie van Botrytis cinerea 

infecties in tomaat (Lycopersicon esculentum). Er werd gekozen voor B. cinerea omdat deze 

ziekteverwekker aanzienlijke schade aanricht in kassen, niet alleen in tomaat maar ook in 

andere gewassoorten. Tomaat werd geselecteerd omdat de kasteelt van dit gewas wereldwijd 

een belangrijke economische activiteit is. 

 

Om te kunnen bepalen of op basis van vluchtige stoffen B. cinerea infectie kan worden 

gedetecteerd, is kennis vereist over afscheiding van vluchtige stoffen door gezonde en 

B. cinerea geïnfecteerde planten. Een B. cinerea specifieke detectie is mogelijk als een 

infectie consequent leidt tot de emissie van unieke stoffen. Om de uniekheid te kunnen 
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bepalen werd gekeken naar factoren welke mogelijk een effect hebben op de emissies van 

tomatenplanten zoals droogte, maar ook een toename van temperatuur of lichtintensiteit en 

gewashandelingen zoals oogst. Deze factoren zijn in overweging genomen om de 

betrouwbaarheid van de detectie op basis van vluchtige stoffen te kunnen inschatten. Een 

belangrijk aspect is het kennen van de door B. cinerea geïnduceerde concentraties van 

vluchtige stoffen in een grootschalige kas. Deze concentraties zijn immers leidend bij de 

evaluatie van sensoren welke deze concentraties kunnen meten in een kas. 

 

In het in dit proefschrift beschreven onderzoek worden onderstaande onderzoeksvragen 

behandeld. 

 

1. Wat is het effect van een B. cinerea infectie op de emissies van vluchtige stoffen door 

tomatenplanten? 

2. Zijn de door B. cinerea geïnduceerde emissies van vluchtige stoffen door 

tomatenplanten specifiek voor een infectie met deze ziekteverwekker? 

3. Zijn de door B. cinerea geïnduceerde concentraties van vluchtige stoffen detecteerbaar 

in een grootschalige tomaat producerende kas? 

 

In de beginfase van het onderzoek is gekeken naar de emissies van vluchtige stoffen door 

afgesneden tomatenbladeren welke individueel werden opgesloten in Petri schalen 

(HOOFDSTUK 2). De vluchtige stoffen werden statisch en dynamisch geconcentreerd tijdens het 

bemonsteren van de lucht in deze schalen. Lucht rondom niet geïnfecteerde en B. cinerea 

geïnfecteerde bladeren werd op deze wijze bemonsterd. De monsters werden geanalyseerd 

doormiddel van gaschromatografie (GC) gevolgd door massaspectrometrie (MS) of 

vlamionisatie detectie (FID) om zo inzicht te verkrijgen in emissies van niet geïnfecteerde en 

B. cinerea geïnfecteerde tomatenplanten. Afgesneden bladeren vertoonden na infectie 

verhoogde emissies van het sesquiterpeen α-copaeen. 

 

In vervolgexperimenten werden emissies van intacte tomatenplanten onderzocht (HOOFDSTUK 

3). Per experiment werden een aantal niet geïnfecteerde of B. cinerea geïnfecteerde planten 

gedurende drie dagen opgesloten in een kamer met conditionering van temperatuur, 

luchtvochtigheid, lichtintensiteit, en CO2. In deze kamer werd gefilterde lucht ingeblazen en 
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de uitgaande lucht werd ieder uur dynamisch bemonsterd, waarna dit monster direct werd 

geanalyseerd met behulp van GC-MS. Hierbij werden tenminste 40 door tomatenplanten 

afgescheiden vluchtige stoffen geïdentificeerd. De vijftien meest dominante stoffen werden 

met behulp van standaarden en gemeten bladoppervlakten genormaliseerd naar emissies per 

eenheid oppervlak en tijd. Deze fluxdichtheden vertoonden grote variaties tussen herhaling, 

zowel bij niet geïnfecteerde als bij B. cinerea geïnfecteerde planten. 

 

In tegenstelling tot experimenten met afgesneden B. cinerea geïnfecteerde bladeren werden 

alcoholen en aldehyden aangetroffen in de experimenten met B. cinerea geïnfecteerde 

planten. Deze stoffen worden aangeduid als lipoxygenase producten; ze ontstaan door een 

enzymatische peroxidatie onder invloed van lipoxygenasen. Deze stoffen worden 

afgescheiden door beschadigde planten waarbij schade aan celmembranen een belangrijke rol 

speelt. Meest dominant was het lipoxygenase product (Z)-3-hexenol met gemeten flux 

dichtheden tot 0.5 nmol m-2 s-1. De emissie van lipoxygenase producten werd vermoedelijk 

veroorzaakt door B. cinerea geïnduceerde schade aan celmembranen. Emissie van deze 

stoffen waren hoger en begonnen eerder bij zware aantasting in vergelijking met milde 

aantasting. De toename in de emissies van lipoxygenase producten vonden plaats enkele uren 

na inoculatie. Dit geeft aan dat deze stoffen een vroege indicatie van celmembraanschade 

kunnen vormen, nog voordat symptomen van een B. cinerea infectie zichtbaar zijn. 

 

Zowel niet geïnfecteerde als B. cinerea geïnfecteerde planten vertoonden emissies van 

monoterpenen en sesquiterpenen waaronder α-copaeen. Echter, in tegenstelling tot afgesneden 

bladeren, was de emissie van α-copaeen bij geïnfecteerde planten niet significant hoger. Dit 

verschil kan worden verklaard door het gebruik van intacte planten in plaats van afgesneden 

bladeren. Het dag/nacht ritme in de flux dichtheden van deze stoffen werd vooral toegewezen 

aan verschillen in bladtemperatuur. Verhoogde fluxdichtheden van monoterpenen en 

sesquiterpenen werden aangetroffen bij zwaar geïnfecteerde planten tot maximaal 1 nmol m-2 

s-1. De verhouding in fluxdichtheden tussen de monoterpenen onderling bleef echter gelijk na 

infectie wat waarschijnlijk duidt op een generiek mechanisme: schade aan glandulaire 

trichomen. 

 

Niet geïnfecteerde en B. cinerea geïnfecteerde planten vertoonden emissies van 

methylsalicylaat en (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). Het dag/nacht 
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ritme in de flux dichtheden van deze stoffen kan worden toegewezen aan verschillen in 

lichtintensiteit. Bij niet geïnfecteerde planten namen de flux dichtheden van methylsalicylaat 

en TMTT langzaam toe gedurende het experiment, waarschijnlijk als gevolg van stress door 

insluiten van planten. Bij B. cinerea geïnfecteerde planten namen de flux dichtheden van 

methylsalicylaat en TMTT sneller toe gedurende het experiment in nmol m-2 s-1 orde van 

grootte. Er kon geen duidelijk verband worden vastgesteld tussen de infectiegraad en de 

toename in flux dichtheden van methylsalicylaat en TMTT. Deze stoffen worden aangeduid 

als hormoonstoffen waarvan emissies bij vele plantsoorten toeneemt als gevolg van biotische 

en abiotische stress. 

 

In HOOFDSTUK 4 staan experimenten beschreven welke zijn uitgevoerd in een kleine proefkas 

met 60 tomatenplanten op een vloeroppervlak van 40 m2. Deze planten werden gedurende 

twee maanden wekelijks op een kunstmatige manier beschadigd om zo een B. cinerea infectie 

te simuleren. Deze beschadiging bestond uit het strijken van de stengels met het doel 

glandulaire trichomen te beschadigen en het verwijderen van zijscheuten om zo 

celmembranen te beschadigen. Daarnaast werd gekeken naar het effect van vruchten plukken 

op de concentraties van vluchtige stoffen afgescheiden door de planten in de kas. 

Luchtmonsters werden op drie plaatsen in de kas verzameld en vervolgens naar het 

laboratorium getransporteerd voor analyse met behulp van GC-MS. De concentraties van 

vluchtige stoffen was altijd vrijwel gelijk tussen de drie plaatsen wat werd verklaard door de 

hoge interne luchtcirculatie van 2 × 104 m3 lucht per uur. 

 

In monsters verkregen voor beschadiging van de planten werden ten minste negen 

monoterpenen, vier sesquiterpenen, drie fenolen en één homoterpeen aangetroffen. Deze 

stoffen werden ook in de voorgaande laboratoriumexperimenten aangetroffen. Het 

monoterpeen β-phellandreen was altijd in de hoogste concentratie aanwezig. Bij een 

gewasleeftijd van zeven weken was de concentratie van deze stof circa 0.06 nmol per mol 

lucht. Bij een gewasleeftijd van twaalf weken was de concentratie van deze stof opgelopen tot 

circa 0.14 nmol per mol lucht. Het strijken van de stengels, het verwijderen van zijscheuten en 

het plukken van vruchten resulteerden in een toename in de concentraties van alle 

monoterpenen en de meeste sesquiterpenen met maximaal een factor 60. Een dergelijke 

toename was verwacht omdat trichomen van tomatenplanten monoterpenen en sesquiterpenen 

bevatten. De verhouding in concentraties tussen de monoterpenen β-phellandreen en 2-careen 
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bleef gelijk na het strijken van de stengels terwijl de verhouding in concentraties tussen het 

monoterpeen β-phellandreen en het sesquiterpeen β-caryofylleen wijzigde. Dit biedt de 

mogelijkheid om op basis van verhoudingen tussen individuele vluchtige stoffen schade aan 

glandulaire trichomen te detecteren. 

 

In tegenstelling tot een infectie met B. cinerea bleven zowel na het strijken van de stengels, na 

het verwijderen van zijscheuten en na het plukken van vruchten de concentraties van 

α-copaeen, methylsalicylaat en TMTT stabiel. Hiervoor werden drie redenen aangedragen. 

Ten eerste, eventueel van B. cinerea afkomstige signaalstoffen zijn dan afwezig. Dergelijke 

signaalstoffen spelen mogelijk een belangrijk rol bij emissies van vluchtige stoffen door 

planten. Ten tweede, er was telkens sprake van een momentaan type schade terwijl een 

B. cinerea infectie wellicht schade met een meer continue karakter veroorzaakt. Er zijn 

aanwijzingen dat het tijdsverloop van de schade invloed heeft op de emissie van vluchtige 

stoffen door planten. Ten derde werd er direct na de schade gemeten. Er zijn verschillende 

voorbeelden bekend uit de literatuur waarbij de emissies van bepaalde vluchtige stoffen, 

waaronder methylsalicylaat, pas enkele uren na aanvang van stress toenamen. 

 

In tegenstelling tot het strijken van stengels en het plukken van vruchten zorgden het 

verwijderen van zijscheuten voor een detectie van het lipoxygenase product (Z)-3-hexenol in 

concentraties van acht tot twintig pmol per mol lucht. Deze stof duidt op cel membraan 

schade en het is dus mogelijk om dit type schade te detecteren in een kleinschalige kas. 

 

Het experiment beschreven in HOOFDSTUK 5 is uitgevoerd in dezelfde proefkas als de kas 

beschreven in HOOFDSTUK 4. Nu werden alle 60 planten tegelijkertijd kunstmatig geïnoculeerd 

met een sporen-suspensie van B. cinerea. Het doel was het effect van inoculatie te bepalen op 

concentraties van de typische cel membraan schade stoffen (lipoxygenase producten), op 

concentraties van de typische trichoom schade stoffen (twaalf monoterpenen en een viertal 

sesquiterpenen), en op de concentraties van de hormoonstoffen methylsalicylaat en TMTT. 

Direct na inoculatie werd de kaslucht met een tijdsinterval van 1 uur bemonsterd tot 72 uur na 

inoculatie. Deze monsters werden naar het laboratorium getransporteerd voor GC-MS 

analyse. Tien bladeren werden willekeurig geselecteerd om zichtbare symptomen van 

B. cinerea-infectie te volgen. 
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Lipoxygenase producten werden niet gedetecteerd na inoculatie. Dit werd verklaard door het 

minimaal optreden van B. cinerea symptomen en/of een mogelijk acute verwijdering van 

lipoxygenase producten als gevolg van opname door in de kas aanwezig condenswater. De 

concentraties van monoterpenen, de meeste sesquiterpenen, en TMTT bleef stabiel na 

inoculatie terwijl de concentratie van α-copaeen fluctueerden volgens het dag/nacht ritme. 

Deze fluctuatie werd wellicht veroorzaakt door de lichtafhankelijke synthese van α-copaeen 

wat aangeeft dat, in een kleinschalige kas, vluchtige stoffen gebruikt kunnen worden om de 

biosynthese van stoffen in het gewas te meten op niet invasieve wijze. De concentratie van 

methylsalicylaat na inoculatie was twintig picomol per mol lucht. Deze concentratie nam toe 

met een factor 10 en een factor 3 op respectievelijk 32 en 34 uur na inoculatie. Op 

respectievelijk 24 en 40 uur na inoculatie vertoonden 10% en 20% van de geselecteerde 

bladeren milde symptomen. Deze resultaten geven een indicatie dat methylsalicylaat mogelijk 

gebruikt kan worden om telers te waarschuwen voor de aanwezigheid van een B. cinerea 

infectie in de kas. 
 

HOOFDSTUK 6 beschrijft een model waarmee op basis van aanvoer en afvoer, de concentraties 

van door planten afgescheiden vluchtige stoffen in een grootschalige kas is berekend. Met dit 

model werd bepaald of deze vluchtige stoffen gebruikt kunnen worden als indicator voor de 

aanwezigheid van een B. cinerea infectie in dergelijke kas. Een zevental experimenten werd 

uitgevoerd om het model te parameteriseren voor de drie trichoom schade stoffen α-pineen, 

α-terpineen en β-caryofylleen, voor het lipoxygenase product (Z)-3-hexenol, en voor de 

hormoonstof methylsalicylaat. Vier scenario’s werden doorgerekend om het effect van 

ventilatie en het percentage geïnfecteerde planten op de door B. cinerea-geïnduceerde 

toename in concentratie van voorgenoemde stoffen te voorspellen. Doormiddel van 

omschreven precisie en detectie limieten van GC gekoppeld aan MS of FID werd bepaald of 

deze toename daadwerkelijk detecteerbaar is.  
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Op basis van model gebaseerde voorspellingen blijkt dat de B. cinerea-geïnduceerde toename 

in concentratie van methylsalicylaat detecteerbaar is in een grootschalige kas onder ten minste 

drie voorwaarden: (a) de ventilatieramen open, en (b) de B. cinerea-geïnduceerde toename in 

de emissie van methylsalicylaat gedurende tenminste 1 uur plaatsvindt, en (c) 5% van de 

planten geïnfecteerd is. De B. cinerea-geïnduceerde toename in concentratie van 

methylsalicylaat is bovendien detecteerbaar indien (a) de ventilatieramen gesloten zijn, en (b) 

de B. cinerea-geïnduceerde toename in de emissie van methylsalicylaat gedurende tenminste 

6 uur plaatsvindt, en (c) 5% van de planten geïnfecteerd is. 

 

De toename in concentraties van α-pineen, α-terpineen en β-caryofylleen zijn niet 

detecteerbaar met bovengenoemde instrumenten. De B. cinerea-geïnduceerde toename in 

concentratie van het lipoxygenase product (Z)-3-hexenol is detecteerbaar voor alle vier de 

scenario’s. Echter, naast geïnfecteerde planten zijn er vermoedelijk talloze andere bronnen 

van lipoxygenase producten zoals bladafval en nabijgelegen veldgewassen, met name tijdens 

oogst of stress van dit veldgewas. Bladafval is vrijwel altijd aanwezig in kassen en oogst of 

stress van nabijgelegen veldgewassen in zeer moeilijk te voorspellen. Het is daarom aan te 

bevelen om te richten op de detectie van methylsalicylaat als indicator voor aanwezigheid van 

B. cinerea infecties in grootschalige tomaten producerende kassen. 

 

HOOFDSTUK 7 behandelt het automatisch verwerken van data. Vrijwel alle in dit proefschrift 

beschreven analyse zijn uitgevoerd met GC-MS. De data afkomstig van dit instrument is 

relatief complex en voor verwerking van deze data zijn ervaren analisten noodzakelijk. Dit 

maakt de inzet van dit instrument kostbaar en werkt dus beperkend. Ontwikkelingen op het 

gebied van computerhardware en -software bieden mogelijkheden om GC-MS data 

automatisch te verwerken. De resultaten in HOOFDSTUK 7 laten zien dat automatisch de 

concentraties van vluchtige stoffen kan worden gevolgd in een kas. 

 

In HOOFDSTUK 8 wordt getracht antwoord te geven op de hoofd onderzoeksvragen. Tevens 

worden de sterke en zwakke punten van het op vluchtige stoffen gebaseerd monitoren van 

gewas bediscussieerd. Een zwak punt van deze methode is het gebrek aan specificiteit; zoals 

eerder gezegd is een B. cinerea specifieke detectie mogelijk als een infectie consequent leidt 

tot de emissie van unieke stoffen. 
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Emissie van grote hoeveelheden specifieke stoffen door tomaat na infectie met B. cinerea is 

onwaarschijnlijk omdat uit dit onderzoek en uit literatuur blijkt dat emissies van veelal 

dezelfde stoffen, inclusief de door ons gevonden stoffen, toenemen na toediening van andere 

biotische en abiotische stressoren. Een uniek tijdsverloop van B. cinerea geïnduceerde 

emissies van vluchtige stoffen biedt een alternatief voor B. cinerea specifieke detectie. Echter, 

dit onderzoek, maar ook literatuur geeft geen voorbeelden van dergelijk uniek tijdsverloop en 

het lijkt dus onwaarschijnlijk dat het tijdsverloop gebruikt kan worden om een B. cinerea 

specifieke infectie te detecteren. 

 

Dit onderzoek geeft aan dat vluchtige stoffen wel gebruikt kunnen worden om gewasstress te 

detecteren in een kas, waarbij een B. cinerea infectie de aanleiding kan zijn. De hormoonstof 

methylsalicylaat lijkt hiervoor het meest geschikt omdat de concentratie van deze stof gelijk 

bleef na gewashandelingen terwijl de concentratie toenam na infectie met B. cinerea. De 

detectie van lipoxygenase producten lijkt hiervoor ongeschikt omdat naast geïnfecteerde 

planten er vermoedelijk talloze andere bronnen van lipoxygenase producten zoals bladafval en 

nabij gelegen veldgewassen, met name tijdens oogst of stress van dit veldgewas. Bladafval is 

vrijwel altijd aanwezig in kassen en oogst of stress van veldgewassen in zeer moeilijk te 

voorspellen.  

Ook monoterpenen en sesquiterpenen zijn ongeschikt omdat de toename in concentratie na 

infectie waarschijnlijk onvoldoende is. Daarnaast is dit type stoffen opgeslagen in glandulaire 

trichomen van tomaat waardoor concentraties toenemen tijdens schade aan deze trichomen 

door bijvoorbeeld het verwijderen van zijscheuten, het plukken van vruchten en 

waarschijnlijk iedere andere gewashandeling. Een uitzondering hierop is α-copaeen; deze stof 

is niet in grote hoeveelheid opgeslagen in trichomen en de concentratie van deze stof lijkt toe 

te nemen na B. cinerea infectie van losse bladeren. Echter, de emissie van deze stof nam niet 

toe na infectie van intacte planten en lijkt dus ongeschikt. 

Uiteindelijk geeft een toename in de concentratie van methylsalicylaat mogelijk voldoende 

aanwijzing voor aanwezigheid van een B. cinerea infectie in een kas omdat de diversiteit van 

stressfactoren in een tomaten producerende kas gering is. De aanschafprijs van gas analyse 

instrumenten is echter te hoog om deze in te zetten voor gewasmonitoring op basis van 

vluchtige stoffen welke door planten worden afgescheiden. Een belangrijk punt voor verder 
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onderzoek is dan ook de ontwikkeling van goedkopere gasanalyse instrumenten, speciaal 

ontworpen voor toepassing in de glastuinbouwpraktijk. 
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