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Chapter 1

INTRODUCTION

In developing countries, where rural population is often more than 80 %, assessment of erosion focuses
mainly towards on-site effects of erosion. This on-site erosion strongly affects crop yields, undermines
the long term sustainability of farming systems, and represents a major threat to the livelihood of
farmers and rural communities. In the industrialized countries, more attention is being paid to assess
off-site effects of erosion, which are of interest for the society at large, e.g. in flood prevention, water
reservoir preservation and water pollution control (Garen et al., 1999). Whether the main concern of
Soil and Water Conservation (SWC) planning is toward prevention of on-site or off-site effects of
erosion, there is a growing need for tools that enable to define the spatial distribution of erosion within
a catchment or a water basin, i.e. to locate sources of soil sediment where to invest most SWC efforts
(Ritchie et al., 2003). Indeed, the location of sediment sources and sinks can be more important than
the quantification of soil losses, as it is more cost effective to over-dimension erosion control measures
than to locate them in the wrong place (Jetten and de Roo, 2001; Jetten ez al., 2003). In this context, the
appropriate scale for erosion assessment is the catchment, i. e. the natural geomorphologic unit where
sources of soil losses and surface runoff are topographically linked to areas of sedimentation, and
where therefore both on-site and off-site effects of erosion can be appreciated (Morgan, 1995).

Models are vital tools for soil erosion assessment and watershed conservation planning (Garen ef al.,
1999; Ritchie et al., 2003). They may be used for erosion risk assessment, but also for evaluating the
possible effects of changes in land use or adoption of SWC measures. Extension services and
environmental agencies increasingly make use of models for assessing the intensity of erosion before
SWC activities are implemented and to estimate the possible outcomes of the SWC plan.

Depending on the approach adopted to represent erosion processes, erosion models can be broadly
classified as empirical, physics-based or conceptual (Wheater et al., 1993; Merritt et al., 2003). This
classification refers to the main structure of the model and is largely subjective, as in all models a
certain degree of empiricism can not be avoided (Merritt et al., 2003). Empirical models consists of
regression equations that relate the rate of erosion to its determining factors, like climate, topography,
vegetation and soil characteristics. Empirical models, of which the Universal Soil Loss Equation
(USLE; Wischmeier and Smith, 1978) is the most famous example, have long been used for SWC
planning purposes. They are simple to use and require limited data. However, the empirical
relationships they embed are built from site-specific observations. As the mechanisms of erosion
processes are not dealt with explicitly, and the relationships between soil losses and erosion factors are
derived from the aggregated response of the natural system, empirical models may not perform well
when applied under different conditions.

Physics-based models, instead, represent flow and sediment processes and their interactions on the
basis of physics laws of mass and momentum conservation. Physics-based models include the state-of-
the-art knowledge of the system and provide good tools to understand the interactions occurring
between erosion processes. However, they also suffer from some main drawbacks. Physics-based
models are composed of a large number of sub-processes, the solution of whose describing equations
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requires huge amounts of input data and computational power. These describing equations often refer
to physics laws that were originally formulated at a scale different from the model scale. Moreover,
erosion models are highly nonlinear, thus errors in any part of the model may propagate to the final
results in ways that are difficult to foresee. Because of these shortcomings, model parameters need to
be locally calibrated and validated (Jetten et al., 1999). However, the parameters to be calibrated often
outnumber the data available, so that unequivocal identification of the parameters can not be achieved
(over-parameterisation). In practice, error propagation and uncertainties in the estimation of input data
often more than compensate for the theoretically more accurate description of the system (Jetten et al.,
2003).

Placed somewhere in between these two opposite approaches, conceptual (or semi-empirical)
models incorporate transfer mechanisms of sediment and overland flow generation, but do not include
specific details of process interactions (Merritt ef al., 2003). Conceptual models aim at reflecting the
physical processes governing the system, but describe them with empirical relationships. They thus
combine a physical interpretability of modelling results with a simple structure. Conceptual models
tend to suffer less of parameters identifiably and over-parameterisation problems, but may suffer of
aggregation problems (Merritt ef al., 2003). They generally require calibration and validation, and a
good number of observations. However, their limited number of parameters and processes reduces
computational requirements, simplifies the assessment of model prediction uncertainties, and facilitates
the implementation by user agencies and in data poor environments (Garen ef al., 1999; Merritt et al.,
2003; Jetten et al., 2003).

In hydrology, a fourth type of models can be distinguished: the hybrid-metric models, which rely on
robust statistical techniques to characterise the dominant processes at work in the system (Wheater et
al., 1993; Young, 1998). Hybrid-metric models adopt an inferring approach: they identify the modal
response of a system and interpret it according to physics paradigms. However, they require long time-
series data to extract the dominant response information, and no equivalent in erosion modelling was
found in the literature.

With the advent and spread of Geographic Information Systems (GIS), erosion modelling
increasingly aimed at providing spatially distributed predictions. GIS tools enhanced exponentially the
possibilities of handling spatial information such as topography, soil and land use, thus simplifying the
implementation of spatially distributed models, sometimes so much that scaling considerations would
be overlooked. However, the capabilities of gathering information on the spatial distribution (spatial
pattern) of environmental data evolved less quickly than the capabilities to manipulate the spatial
information (Grayson and Bloschl, 2000). Probably because of this, the reliability of erosion model
predictions in depicting the spatial patterns of erosion and deposition within a catchment has not been
questioned until recently. Unfortunately, recent assessments showed that erosion models performances
in this respect are generally poor (Jetten ef al., 1999; Jetten et al., 2003; Merritt et al., 2003). As in
other environmental modelling areas, difficulties in distributed erosion modelling arises from the
natural complexity of the landscape system, spatial heterogeneity and lack of available data (Merritt et
al., 2003).
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Figure 1. Characteristics space-time scales for some hydrological and erosion processes and relevant soil
properties. Adapted from Bloschl and Sivapalan (1995) and Renschler and Harbor (2002).

Erosion processes consist of complex ecological interactions that are strongly scale-dependent. Fig.
1 shows the characteristic lengths of some important hydrologic and erosion processes in the space and
time dimensions. The scale for erosion modelling aiming at SWC planning can be roughly positioned at
the event-annual time range (from less than one hour to 10 year) and the hillslope-catchment space
range (from 100 m to 10 km). This scale frame encompasses different mechanisms of water flow, from
infiltration excess overland flow to channel flow, and erosion mechanisms, from splash detachment by
raindrops to soil transport and deposition in shallow water and channels, to bank erosion. Even though
all ecologic processes interact at any moment and at any place, their relative importance changes with
the time-scale frame adopted to describe them. As a consequence, the relative importance of forces and
resistances applied to the system change, and the factors required to describe the processes change with
them.

The time-space scale dimension is also crucial to observe erosion processes and their factors.
Unfortunately, measurement techniques seldom match the optimal modelling time-space scale frame
(i.e. the event and the catchment). Often, the temporal and spatial support of measurements, i.e. the size
on which measurements are conducted, is small in comparison to model requirements (Bléschl and
Sivapalan, 1995; Grayson and Bloschl, 2000). Moreover, erosion processes proved to be extremely
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variable even under controlled conditions. Studies conducted on ‘homogeneous’ plots reported a
natural (or unexplained) variability of overland flow depth and soil loss that resulted in coefficient of
variations per rainfall event larger than 65 %. This variability was spatially inconsistent among plots
during different events and was larger for the smaller events (Hjelmfelt and Burwell, 1984; Wendt et
al., 1986; Nearing ef al., 1999).

In the face of the spatial and temporal heterogeneity of the erosion processes, measurement
strategies may point at increasing the extent of the monitoring scheme (i.e. the overall coverage of the
data; Grayson and Bloschl, 2000), by repeating measurements either in time or in space. Time and
capital constrains seldom allow for both large and long (if any) monitoring campaigns. It follows that
in virtually all situations, the data available for erosion modelling is usually much below the
requirements for adequate calibration and validation of complex models (e.g. Quinton, 1997). This is
especially true for applications of erosion models aiming at SWC planning, for which data consist
mainly of general databases created at national or regional level instead of well-equipped experimental
catchments (Renschler and Harbor, 2002). The problem is particularly crucial in developing countries,
where erosion data are seldom available (e.g. Dregne, 1989).

In practice, the environmental data that are usually available contain information to characterize
only the dominant processes active in a given system, which may then be described effectively by
conceptual approaches (Young, 1998). Indeed, conceptual (semi-empirical) models offer a compromise
between the need to explicitly deal with the main processes and the limited data availability, and may
therefore be appropriate in characterizing the distribution of erosion within a catchment (Viney and
Sivapalan, 1999; Jetten et al., 2003). For example, Desmet and Govers (1995) obtained some
encouraging results with a simple transport-limited erosion model whose main driving factor was
topography.

Because of the largely unknown interactions between parts of the natural system, the simplifications
necessarily assumed by any model, and the limited availability of data, model predictive errors may be
large. In SWC planning, model outputs guide important decisions. Therefore, the uncertainties of
model predictions should be made explicit to policy and decision makers (Garen et al., 1999; Merritt et
al., 2003), in the form, for example, of output bands (Quinton, 1997) or maps showing where model
predictions are most uncertain.

The inherent structure of GIS favoured the mathematical processing of spatial information and the
handling of quantitative (hard) data, thus the development of spatially distributed models have so far
mainly concentrated on quantitative approaches. However, opportunities for the improvement of
spatially distributed predictions may lay in less explored sources of information. One of these sources
is represented by the analysis of landscape spatial patterns (Grayson and Bloschl, 2000). Spatial
patterns reveal, very much like a picture of landscape processes, the spatial organization of
environmental processes and can be considered the integrated response of the system to its main
drivers. Spatial patterns therefore represent a source of information for landscape research that is
largely unexploited, also because tools to analyse them are still very much under development
(Grayson and Bldschl, 2000; Jetten ef al., 2003).
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Another potential source of information is the qualitative (soft) information offered by farmers’ and
experts’ knowledge. Farmers’ knowledge of their environment is linked to land management
experience and land use history (Payton ef al., 2003; Murage et al., 2000; Habarurema and Steiner,
1997; Warren et al., 2003). Though acknowledged as scientifically valid, soft information has often
been overlooked, probably because it is difficult to integrate it into the existing landscape analysis
systems and methodology studies that focus on integrating local and scientific knowledge are still few
(Niemeijer and Mazzuccato, 2003; Payton et al., 2003).

Aim

The study reported in this thesis aimed at developing a semi-empirical, spatially distributed erosion
model to locate sources of sediment within a catchment in data scarce environments. Three specific
objectives were defined: (i) identifying the main physical processes affecting the distribution of
erosion, (ii) by describing them with simple equations, enabling the estimation of the spatial
uncertainties of model predictions, and (iii) exploring the potential use of alternative sources of
information, such as observed spatial patterns of erosion and overland flow and farmers’ indicators of
erosion, for the improvement of spatially distributed erosion modelling.

Research area

Most of the data reported in the thesis were collected during four fieldwork periods conducted from
2001 till 2003 in Kwalei catchment, located in the humid-warm agro-ecological zone of the West
Usambara Mountains, in North-east Tanzania.

The West Usambara Mountains lay between latitude 4°24°-5°00" S and longitude 38°10°-38°36" E
and are an important zone of agricultural production, comprising staple food, cash crops and timber.
The farming system is mixed: farmers are involved in rain-fed agriculture, traditional irrigation in
valley bottoms, livestock keeping and off-farm activities (Tenge et al., 2004). Tea, coffee and
vegetables are the main cash crops; whereas banana, maize, bean, and round potato are the main food
crops. Intercropping is a common farming practice. Major cropping systems are coffee-banana
intercrop with other tree species, e.g. temperate fruits and yam below the coffee, maize and bean, and
patches of sweet potatoes, cassava and sugarcane (Tenge ef al., 2004). Tea, instead, is cultivated as
monocrop by both smallholder farmers and large-scale estates.

Population density ranges from 200 to 400 inhabitants per km? (Kaoneka et al., 2000). People live in
villages consisting of clusters of homesteads (hamlets) with about 60-80 households. Hamlets are often
placed on the ridge shoulders, and the fields run downhill (Mbaga-Semgalawe, 1998). The main ethic
group is the Sambaa tribe, which accounts for 79% of the population, followed by Pare (14%), Mbugu
(8%) and Taita. Traditionally, Sambaa are mainly smallholder farmers, while Pare are agropastoralists
and Mbugu are pastoralists (Kaoneka et al., 2000). Smallholder farm size varies between 0.7 and 4.1 ha
per household, fragmented in several small plots at average walking distance of around 40 minutes
from the homestead (Mbaga-Semgalawe and Folmer, 2000).
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The West Usambara Mountains have been inhabited since at least 2000 years. Until the end of the
19t century most of them were covered by mountain rain forest (Kaoneka et al., 2000). Agriculture
practice consisted of shifting cultivation, whereby after two years of cultivation the land was left for
long fallow periods, and agroforestry techniques, whereby the multi-storey cultivation of selected
species reproduced the structure of the forest. Land management changed drastically under the rule of
the German colonial government. The new government established large plantations of coffee and tea,
demarcated forest reserves, and reallocated land to the new European settlers. At the same time, the
local population started to grow at a very fast rate. Land availability decreased quickly. The trend did
not change under the British administration, and by 1936 all arable land was under cultivation.

Population adapted to land scarcity by reducing and abandoning shifting cultivation and fallow
practices, by cultivating food crops in the low-lands or on steep slopes, and by encroaching forests,
valley bottoms and wetlands. The intensification of agriculture led to accelerated soil erosion, reduced
water availability and decreased soil chemical fertility, ultimately reducing land productivity and
triggering a vicious circle of land degradation (Mbaga-Semgalawe and Folmer, 2000).

At the end of the 1940s, the British colonial government, concerned with the consequences of
accelerated soil erosion, enforced soil conservation plans aiming to intensify the agricultural production
systems while rehabilitating the degraded natural resources. Farmers, however, experienced the
coercive conservation activities as heavy duties that were devoid of any tangible benefit. Population
reacted with passive resistance and anger, which at times exploded into open riot and alimented the
opposition to the colonial government. Quite naturally, with the independence the soil conservation
plans were abandoned and for around ten years land degradation disappeared from the political agenda.
In the 1970s, however, the severe degradation of natural resources became evident in the reduction of
forest cover, the appearance of denuded patches of land, and the drying up of springs and rivers.
Almost 10000 ha, roughly equal to six per cent of arable land, were estimated to be affected by severe
erosion (TIRDEP, 1977). In answer to the crisis, the government engaged in several conservation
programs planned in collaboration with international donor agencies. Project approaches changed over
time, moving from top-down schemes to more participatory planning (Johansson, 2001). While these
programmes have certainly had an impact in improving the awareness and perception of the erosion
problem among farmers (Johansson, 2001), the adoption rate of SWC measures has remained below
expectations and the resources available for intervention are still critically below the needs for proper
SWC implementation.

Study outline

Environmental data of the study area at the beginning of the research were limited and scattered. The
first fieldwork period (March-May 2001) was mainly devoted to the collection of basic bio-physical
information and secondary data, and to the identification of the main erosion processes at work. The
most substantial climatic information consisted of 75 years of monthly rainfall records from Sakarani
Mission, located at about five km from the catchment. A set of false colour aero photos (approx. scales
1:27000 dating September 1996) was used to derive a Digital Terrain Model (DTM) of the catchment
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by aerophotogrammetric techniques. From the DTM, a 20 m pixel size Digital Elevation Model (DEM)
and a one m pixel size ortophoto image, which constituted the base of the land use map, were derived.
At the same time, a rectangular flume was built at the catchment outlet, and equipped with an
automatic recording station for continuous measurement of water level and for sampling sediment
concentrations during rainfall events. The team of scientists of the Agricultural Research Institute of
Tanzania (ARI-Mlingano) provided the soil map of the catchment (Meliyo et al., 2001) and conducted
a Participatory Rural Appraisal focused on erosion problems. In the following short rainy season (Oct-
Nov 2001) an erosion assessment survey that covered one fifth of the catchment was carried out to
complete the appraisal of basic information of the Kwalei catchment. These data were used to test the
capability of an empirical erosion model, the Morgan, Morgan and Finney model (MMF, Morgan,
2001), to locate erosion in Kwalei. The analysis was expanded by including another experimental area,
Gikuuri catchment in Kenya, where a parallel research had provided a similar dataset (chapter 2).

One of the main problems of erosion modelling is to model correctly the distribution of overland
flow in space and time. The fieldwork period of March-May 2002 focused on overland flow processes,
monitoring the spatial pattern of overland flow occurrence and exploring whether field measurements
of infiltration could help to model it (chapter 3).

These observations allowed to formulate hypotheses on the catchment hydrology that needed
confirmation; at the same time the focus had to shift once again from the hydrologic to the erosion
processes. The last fieldwork period (Dec 2002-May 2003) was devoted to (i) verify and enlarge the
observations of overland flow occurrence in other areas of the catchment, (ii) quantify erosion within
the catchment, and (iii) re-assess and enlarge the spatial distribution of erosion in the catchment.
Intensive observations concentrated along two longitudinal transects in the lower and middle slopes of
the catchment, where overland flow occurrence and depth, soil losses, presence and intensity of erosion
features were monitored. At the catchment scale, the erosion assessment survey was repeated and
expanded, recording also the presence of farmers’ indicators of erosion and presence and coverage of
soil surface crusts.

The observations of overland flow occurrence at the hillslope scale were linked to the rainfall-
discharge relationship observed at the catchment outlet to build a hybrid-metric, semi-distributed
hydrologic model to predict overland flow distribution within the catchment (chapter 4). This model
was then coupled with the sediment phase of the MMF model to simulate the distribution of soil
erosion within a catchment. The uncertainty of model predictions due to the choice of sediment
transport parameters was estimated with a Monte Carlo simulation experiment (chapter 5).

The limited improvements in the erosion distribution achieved by the better hydrologic
characterisation called for a critical reflection on erosion modelling, especially in the light of similar
problems experienced by other models in the same area (Hessel et al., 2005). Farmers’ knowledge
showed to be a promising alternative source of information, as the presence of farmers’ indicators of
erosion matched well the observed pattern of erosion (chapter 6). The analysis of spatial patterns of
observations and model simulations, together with farmers’ indicators of erosion and other data
collected during the fieldwork shed a new light on scale issues that erosion modelling research should
address in the future (chapter 7).
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MODELLING CATCHMENT-SCALE EROSION PATTERNS IN THE
EAST AFRICAN HIGHLANDS

Abstract

Prompt location of areas exposed to high erosion is of the utmost importance for soil and water
conservation planning. Erosion models can be useful tools to locate sources of sediment and areas of
deposition within a catchment, but the reliability of model predictions of spatial patterns of erosion at
catchment scale has seldom been validated against observations. This study aimed to evaluate the
performance of a simple empirical model (Morgan, Morgan and Finney model, MMF) in predicting
spatial patterns of erosion at two small catchments in the East African Highlands: Kwalei (Tanzania)
and Gikuuri (Kenya). Erosion maps predicted by the MMF model were compared with erosion maps
obtained by direct survey. In Kwalei, erosion features were especially frequent in fields of annual
crops. In Gikuuri, slope was the critical erosion factor, with estimated erosion rates > 10 kg m™”y™' on
slopes > 18%. Predicted erosion rates were mainly transport-limited and ranged from < 0.01 to 13.50
kg m?y" in Kwalei and 9.29 kg m?y™" in Gikuuri. The performance of the MMF model in predicting
the spatial patterns of erosion was acceptable in Kwalei, but poor in Gikuuri. However, by excluding
the elements at the valley bottoms in Gikuuri Catchment, the performance of the model improved
dramatically. The spatial pattern of erosion predicted by the MMF model was driven by the
accumulation of surface runoff, which did not consider the possibility of re-infiltration along the slope.
As a result, the MMF erosion patterns predicted by the model increased invariably from the ridges to
the valley bottoms, hampering the model suitability for locating areas subjected to high and very high
erosion. It is concluded that the model predictions could be substantially improved by introducing a
more realistic hydrological component for the prediction of surface runoff along the hillslope.

Keywords: spatial pattern of erosion; empirical modelling;, Morgan, Morgan and Finney model;
erosion assessment; East African Highlands.

Introduction

The East African Highlands constitute more than 76 % of the Highland ecosystems of Tropical Africa
(Pfeiffer, 1990). Thanks to a favourable climate and fertile soils, these areas have a high potential for
crop production, and are very important sources of staple food, forest products and export crops
(Lundgren, 1980). However, population densities are generally > 100 persons per km?. Because of this
heavy pressure on land resources, soil erosion is widespread and a major cause of land degradation
(Tiffen et al., 1994). Reported soil losses from runoff plots ranged from 4.3 kg m? y"' in coffee



16
Modelling catchment-scale erosion patterns in the East African Highlands

plantations in Tanzanian Highlands (Mitchell, 1965) to 25.5 kg m”y ™' under tea plantations in Kenya
(Othieno, 1975).

Soil and Water Conservation (SWC) projects are active in these areas since the colonial period,
experiencing various degrees of success. Past experiences showed that SWC planning should be
approached at catchment level, instead of at individual farm or administrative districts (Pretty et al.,
1995). The catchment has the advantage of being a natural geomorphologic unit, in which sources of
soil losses and surface runoff are topographically linked to areas of sedimentation, and therefore both
on-site and off-site effects of erosion can be appreciated (Morgan, 1995). The catchment is at the core
of the SWC planning method introduced by the Government of Kenya and now adopted by six East
African Countries: the so-called Catchment Approach (Pretty et al., 1995; Kamar, 1998). The method
consists of a participatory community planning process, with actual planning of SWC measures at farm
level. At the beginning, the catchment scale was selected in order to efficiently use the limited available
sources of capital and labour, but it eventually evolved into a focal area where a community is willing
to work towards a more conservative utilisation of natural resources. Since its introduction in the
1980s, the Catchment Approach gave positive results in the improvement of soil productivity, together
with reduced resource degradation (Pretty et al., 1995; Kizunguto and Shelukindo, 2002). However,
capital, technical skills and labour availability are still limited in comparison with the needs (Pretty et
al., 1995).

Therefore, a method that would allow quick assessment of major sediment sources and sinks within
catchments would help to prioritise the most affected areas. Tools for locating soil erosion sources and
areas of deposition are, however, still lacking. An ideal SWC planning tool should be reliable and
reproducible, able to predict the post-intervention situation, but simple in use and with limited data
requirements. Field surveys may give the actual erosion status of an area, but surveys are time
consuming and resource demanding. Moreover, they refer to a situation at a given time and area: their
results are not reproducible elsewhere, neither can they predict changes after SWC planning. On the
other hand, erosion models can potentially be used to predict areas within the catchment exposed to
high erosion. Most catchment-scale erosion models are deterministic models, created since the 1960s to
evaluate off-sites risks of soil erosion and surface runoff (Morgan, 1995). Even though they are based
on physical laws, they retain a high level of empiricism in their equations and require much data for
input, calibration and validation (Morgan, 1995). Their usefulness in quick SWC planning is therefore
questionable. This explains the popularity and wide use of empirical models, such as the Universal Soil
Loss Equation (USLE, Wishmeier and Smith, 1978). These empirical models have long been used for
SWC planning purposes. They are simple to use and require limited data. On the other hand, empirical
models have been derived using site-specific data and may not perform well if applied under different
conditions. Moreover, they were usually created for erosion prediction at the field scale, and even if
they are increasingly used at catchment level, their reliability in depicting soil erosion patterns at this
scale has seldom been tested. In general, only recently the ability of erosion models in predicting
spatial patterns of erosion has been explored. Deterministic models proved generally ineffective in
reproducing spatial patterns of erosion unless a high level of detail in the input data was provided (e.g.
Takken ef al., 1999). On the other hand, Desmet and Govers (1995) obtained some encouraging results
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with a simple transport-limited erosion model whose main driving factor was topography. A simulation
of 60 years of erosion with their model matched quite closely the erosion data derived from a soil map,
showing that patterns of soil redistribution could be represented even with a crude process description.
More recently, van Rompaey ef al. (2001) developed an empirical but spatially distributed model for
the calculation of sediment delivery to river channels (SEDEM). The model predicted erosion at the
catchment outlet well, but the reliability of the model predictions of the spatial pattern of erosion was
not assessed.

Among the empirical models, the Morgan, Morgan and Finney (MMF) model (Morgan ef al., 1984)
was created for tropical conditions, where it performed well (Morgan et al., 1982a). The model was
recently revised and adapted for applications at the catchment scale (Morgan, 2001). The aim of this
paper is to evaluate the performance of the revised MMF model for SWC planning at the catchment-
scale in the East African Highlands. The spatial patterns of erosion predicted by the MMF model were
compared with erosion maps obtained from field surveys for two small catchments representative of the
East African Highlands: Kwalei Catchment in the West Usambara Mountains (Tanzania) and Gikuuri
Catchment in Embu District (Kenya).

Materials and methods

The Morgan, Morgan and Finney Model

The Morgan, Morgan and Finney model is an empirical model developed to estimate mean annual soil
loss from field-sized areas on hillslopes (Morgan et al., 1984). The model was selected in our study for
several reasons. First, the model retains a strong physical base, but is easy to understand and requires
few parameters. Moreover, the model had been applied successfully over many tropical locations and
had already been tested in the East African Highlands (West Usambara Mountains, Tanzania; Morgan
et al., 1984).

The model is structured into two phases: a water phase (where energy of rainfall and volume of
surface runoff are calculated), and a sediment phase (where soil detachment and soil transport rates are
calculated). The lowest of the last two values is taken as the soil loss at a particular location, indicating
the erosion-limiting factor. The model was recently revised and described in detail (Morgan, 2001).
The new version presented an improved physical basis by incorporating a more accurate description of
erosion processes and by enlarging the guidelines for model inputs. Examples with the model applied at
catchment scale were also included. In our study, this new version of the model was used; in what
follows only the equations relevant for the application in the East African Highlands are given.

The rainfall kinetic energy (KE, J m™?) is a function of the effective rainfall (ER, mm), i.e. the
fraction of mean annual rainfall (R, mm) that is not intercepted by the vegetation canopy (INT, fraction
between 0 and 1). The effective rainfall (ER) is split into direct throughfall (DT), which directly reaches
the soil, and leaf drainage (LD), which is intercepted by the canopy and reaches the surface by
stemflow or dripping from leaves. The division is a function of the canopy cover (CC, fraction between
0 and 1). The kinetic energy of the direct throughfall DT (KEpz, J m™) is a function of rainfall intensity.
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The kinetic energy of the leaf drainage (KE.p, J m™) is a function of canopy height (PH, m). The total
kinetic energy KE (J m™) is given by the sum of the two fractions:

KE=KEpr + KE;p (D

Rainfall kinetic energy KE determines the soil detachment by raindrop impact F (kg m?y™"), which
is defined as:

F=10°KKE )

where K = soil detachability index (g J), defined after Quansah (1981).

In each field, the volume of surface runoff Q; (expressed in mm of runoff depth) is calculated in
terms of saturation excess runoff: surface runoff is generated when daily rainfall exceeds the soil
moisture storage capacity. The annual surface runoff is obtained from:

O; = R exp(-R/Ry) 3)

where R = mean annual rainfall (mm), R. = soil moisture storage capacity, and Ry = mean rainfall per
rainy day (i.e. mean annual rainfall R divided by the number of rainy days per year, n). The soil
moisture storage capacity (R,) is estimated as:

R.=1000 MS BD EHD (ET,/ET,)"’ 4)

where MS = soil moisture at field capacity (weight %), BD = soil bulk density (Mg m™), EHD = soil
effective hydrological depth (m), and ET,/ET, = ratio of actual and potential evapotranspiration. The
soil effective hydrological depth (EHD) indicates the depth of soil within which the moisture storage
capacity controls runoff generation and depends on root density and depth, or on the presence of an
impermeable soil layer (i.e. shallow soils or presence of a crust) that limits water storage capacity
(Morgan, 2001).

The application of the model to areas larger than a field requires the introduction of some
mechanism for accumulation of surface runoff along the slope. Morgan (2001) suggested subdividing
the catchment into elements of homogeneous land characteristics, i.e. homogeneous slope, soil and land
use, and arranging them in a cascading sequence of surface runoff accumulation. However, the author
did not mention how to take into consideration the relative importance of the area of the different
elements, and how this would affect the accumulation of surface runoff along the slope.

In our case, the total surface runoff of the element i (Q;) is considered as the sum of the surface
runoff generated within the element i, O; (eq. 3), plus the surface runoff received from the immediate
upslope area (Q,,) weighted by the ratio between the upslope element area (4,,) and the area of the
element i (4;):
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Qti = Qi + Qup (Aup /Al) (5)

Eq. 5 takes account of slope divergence and convergence, and for the element surface.

The total surface runoff Q;; is then used to calculate the detachment rate by surface runoff H; and the
transport capacity 7C; of the element i. Soil detachment by surface runoff H; (kg m?y') is estimated
as:

H; =107 (0.5COH)" 0, ' sinB (1-GC) (6)

where COH = soil cohesion (kPa), O = volume of surface runoff, sinf = sine of the slope and GC =
fraction of vegetation ground cover (0-1).
The transport capacity 7C; (kg m?y™) is equal to:

TC; =107 CP O, sinB (7)

where CP = crop cover factor, given by the product of the Universal Soil Loss eq. C and P factors
(Wishmeier and Smith, 1978).

Finally, the mean annual soil loss rate of the element i (E;, kg m?y™') is estimated as the minimum
of sediment available and transport capacity:

E,-=min[(F+H,~ +Eup), TC,] (8)

where E,, = influx of material from the immediate upslope area.
Sedimentation occurrs where the influx of material from upslope E,, is larger than the transport
capacity out of the element 7C;, with a net sedimentation SED; equal to:

SED; = E,, - TC; )

The study areas

Two experimental catchments were selected as representative of the East African Highlands for
morphology, land use and socio-economic conditions: Kwalei Catchment in the West Usambara
Mountains (Tanzania) and Gikuuri Catchment at Embu District (Kenya) (Fig. 1).

Kwalei (4°48’ S, 38° 26’E) is situated in Lushoto District, in the West Usambara Mountains, North-
East Tanzania. This catchment has an area of ¢. 2 km?, and is roughly triangular in shape. Elevation
ranges from 1337 to 1820 m, and the terrain is rough and highly dissected, with one half of hillslopes >
20 %. Drainage comprises four permanent streams running from Northwest to Southeast (Fig. 1). Mean
annual rainfall is ¢. 1000 mm, almost half of which falls during the long rainy season that stretches
from late February until late May. A shorter and less predictable rainy season occurs from October to
January. Average daily temperature is 18 °C, with diurnal temperature ranges (12-25 °C) greater than
annual ranges (16-20 °C). Five soil types occur in the catchment (FAO-Unesco legend, FAO, 1990):
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Humic Acrisols at the summits, Haplic Lixisols at the summit footslopes, Haplic Acrisols on the ridges,
Eutric Fluvisols and Umbric Gleysols in the river valley (Meliyo et al., 2001). In general, topsoils are
porous and sandy, with medium to high organic carbon contents. Subsoils are clayey and less well-
drained. Poor drainage occurs only in the valley bottom Gleysols (Meliyo et al., 2001). The highest part
of the catchment is covered by mountain rain forest, whereas the middle and lower slopes are used for
agriculture. Due to the intense land use and small field sizes, the vegetation cover is complex: annual
crops are intercropped with perennials, and interspersed with fodder and fruit trees, or fuel and timber
woodlots. However, cultivation of annual crops concentrates close to the compounds, along the ridge
shoulders: maize is the most cultivated crop, often intercropped with bean, banana, cassava and
sugarcane. The two-layer cultivation of banana and coffee is frequent on the steeper slopes along the
stream incisions. Valley bottoms are intensively cultivated with vegetables, which represent the major
local cash crops.

Gikuuri Catchment (00°25’ N, 37° 00’ E) is situated in Embu District, Central Kenya. It covers an
area of ¢. 5 km” and presents an elongated stream system that comprises three main permanent streams
running North-South. Convex-concave slopes, with flat summits, steep midslopes and V-shaped
valleys, form the landscape (Fig. 1). Slope gradient is from 2 to 55 %, with a mean of 18 %. Mean
annual rainfall is ¢. 1100 mm, distributed over the long rainy season (650 mm), from mid-March until
June, and the short rainy season, from mid-October until December (450 mm). Diurnal temperature
fluctuates between 10 and 25 °C. Three major soil types (FAO-Unesco legend, FAO, 1990) occur in
the catchment: Rhodic Nitisols on the ridge summits and on moderate and steep slopes, Chromic
Cambisols and Chromic Luvisols on the very steep slopes along the drainage system. Soils are clayey,
deep, and well-drained, but of poor chemical fertility. Minor soil types comprise Haplic Acrisols in the
Northern and Western slopes, and Dystric Fluvisols and Gleysols along valley bottoms (Wanjogu,
2001). The farm system is composed of coffee-dairy enterprises (Jaetzold and Schmidt, 1983). The
land use is patchy, but coffee, maize and bean fields cover > 70% of the catchment. Major cash crops
are coffee, banana, mango and miraa (Cathy edulis L.; a stimulant that forms an excellent cash crop for
farmers), whereas main food crops are maize, bean, cassava and vegetables. Fodder trees, bushes and
timber woodlots are also frequent in the area.

In both catchments, cultivation and clearance of steep slopes expose bare and loose soil to the first
rainstorms, and intense erosion may occur especially at the onset of the rainy seasons, before
vegetation cover can protect the soil. Erosion mainly occurs in the form of interrill and rill erosion from
annual fields.

Data collection

During the long rainy season (March-June) of 2002 intensive fieldwork took place in the two
catchments with the double purpose of collecting input data for the MMF model and assessing the
actual erosion in both catchments. Data collection strategy was different for the two catchments, as
they differed both in the pre-existing information and geographical characteristics.
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Figure 1. Location and topography of the study areas: on the left Kwalei Catchment (Tanzania), on the right
Gikuuri Catchment (Kenya). Shading represents the sine of local slope (sinf).

Cartographic environment

In order to represent the spatial distribution of MMF inputs, outputs and field observation, data were
organised in a Geographical Information System (ILWIS 3.1, ITC, 2002). For each catchment, four
basic maps were created for MMF inputs (soil, land use, slope and element map).

Soil maps were available for both catchments (Meliyo et al., 2001; Wanjogu, 2001). The land use
map of Kwalei was produced by surveying and on the basis of an orthophotomap. The land use map of
Gikuuri was created on the basis of a cadastral map. The slope map of Kwalei was derived from a
Digital Terrain Model (DTM), with a pixel size of 20 m, produced by the aerophototriangulation
method with Socet Set software (BAE SYSTEMS, 2003). No DTM was available for Gikuuri,
therefore slope was estimated in the fields using an inclinometer (Fig. 1).

The element maps represented elements of homogenous landscape and formed the basis for
application of the model at catchment scale. In Kwalei, elements represented fields (i.e. areas with
homogeneous land use and soil type). Mean element size was 0.30 ha. In Gikuuri, elements represented
portions of hillslope homogeneous per slope direction and gradient: from the water divide to the
stream, hillslopes were divided in upper, middle, lower slope and valley bottoms. Elements were in this
case large (mean size = 1.52 ha) and comprised more than one soil and land use type.

Mean surface runoff Q; and mean detachment rate by raindrops £ were calculated per element. The
elements were then arranged in a cascading sequence of surface runoff accumulation (eq. 5). The
accumulation of surface runoff proceeded from elements along the slope ridges to the streams.
However, the actual accumulation of surface runoff along the slopes was checked in the field. Where
ditches or other obstacles that removed the run-on were present, like roads or well-maintained SWC
measures, the cascading sequence was adjusted for. If the obstacle were in good working conditions,
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the surface runoff had reached the drainage system and was removed from the accumulation sequence;
the elements downstream the obstacle received neither surface runoff nor sediment from the elements
upstream the obstacle. If the obstacle were badly maintained, surface runoff and sediment were re-
directed toward the element where the obstacle drained.

Soil erosion assessment

The element maps defined the maximum level of accuracy of the MMF model predictions at the
catchment scale, therefore these maps were used as the basis for erosion assessment by direct survey.
Assessment of actual erosion was conducted with the Assessment of Current Erosion Damage method
(ACED, Herweg, 1996). The method consisted of surveying erosion features, together with major
causes of erosion, such as land management, surface characteristics, and runon-runoff patterns
(Herweg, 1996).

In Kwalei, rills were often removed by frequent weeding operations, which hampered the semi-
quantitative erosion assessment. The ACED method was then applied to assess qualitative classes of
erosion. Five classes of erosion were defined, from very low to very high, on the basis of erosion
features presence and intensity, without attaching a quantitative value to the erosion classes. The survey
took place during the short rainy season (Oct-Nov) 2001, when signs of erosion could be considered
representative of the past year of rains. The survey did not cover the whole catchment, but only a
subcatchment of 47.5 ha (Fig. 2).

In Gikuuri, the ACED method was applied along four longitudinal transects of 2.5 m width. For
each transect, four segments were identified: upper, middle, lower slope and valley bottom. For each
segment, rill number, mean depth, mean width and length were monitored during the long rainy season
(March-June) 2002. Volumes of soil losses from each segment were estimated from these features, and
multiplied by topsoil bulk density to estimate soil losses in weight. Sets of erosion pins were placed in
each segment to monitor sheet erosion and re-deposition of soil particles. The ACED erosion map of
Gikuuri was obtained by extrapolating the transect observations to the element map by using soil type,
slope and land use. Five classes of erosion, from very low to very high, were defined according to the
assessed amounts of soil losses from the transect observations. The map was checked in the field,
where it was verified that it reproduced the actual situation.

MMF input data: rainfall, soil and land use
Daily rainfall records of at least 10 years were available from pluviometer stations close to both
catchments.

Soil detachability index K was estimated from literature data of comparable soils of Kenya and
Tanzania (Morgan et al., 1982b), using topsoil texture. In the case of clayey soils, however,
observation of soil detachment in splash cups (Vigiak, unpublished data) indicated that the suggested
value of 0.02 was too low and raised to 0.05. Soil moisture at field capacity MS and topsoil bulk
density BD were measured in the laboratory with standard methods (Meliyo et al., 2001; Wanjogu,
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2001). Cohesion COH was measured on saturated topsoil with a torvane in the fields and averaged per
soil type.

Vegetation-related inputs were monitored during the long rainy season 2002 on the major land uses
in Gikuuri. Vegetation interception /NT of maize and bean, coffee, and woodlot was measured by
splash cups (Morgan, 1981). Canopy cover CC, Plant height PH and ground cover GC were monitored
every two weeks in 16 fields cultivated with maize and bean, coffee and banana, woodlot and mixtures
of these crops. In Kwalei, INT, CC, PH, and GC were estimated in the fields, monitoring them twice in
the long rainy season. Literature values were employed in both catchments for minor land uses
(Morgan, 1995; Morgan et al., 1982b). No limiting horizons were detected in any soil profile, therefore
the effective hydrological depth (EHD) was considered a land use dependent input, and set according to
the model guidelines (Morgan, 2001). The ratio of actual to potential evapotranspiration E7,/ET, was
estimated as the crop coefficient Kc of the FAO procedure for calculation of crop water requirements
(Allen et al., 1998). The crop cover factor C was derived from literature (Morgan, 1995).

In Kwalei, SWC measures were negligible. In Gikuuri, SWC measures consisted of fanja juu
terraces (i.e. narrow embankments built by digging a ditch on the contour and throwing the soil
upslope; Thomas and Biamah, 1991) and grass strips in maize and bean fields, and bench terraces in
coffee stands. The protection factor P was estimated from measurements of soil losses in Gerlach
troughs (Gerlach, 1967) and splash cups (Morgan, 1981) placed in 12 fields under maize and bean,
coffee, and fallow.

Comparison of spatial erosion patterns

For the comparison of erosion patterns at catchment scale, MMF predictions were reclassified into five
classes of erosion, from very low to very high. As the purpose of the evaluation was to prove whether
the model could locate areas subject to high erosion without regards to quantitative erosion assessment,
model predictions were classified on a qualitative criterion. Instead of establishing limits among classes
a priori, these limits were chosen so to obtain a number of elements per class comparable to the
corresponding number of elements per class of the ACED erosion map. For example, if in the ACED
erosion map x elements were classified in very low erosion class, then the x element with the lowest
erosion rates predicted by the model were classified as very low erosion class, and so forth.

The degree of agreement between the (classified) MMF erosion map with the ACED map was
assessed by the weighted Kappa coefficient of the error matrix (Cohen, 1968). To limit the influence of
the classification system and to account for uncertainties in the ACED map, one class difference (e.g.
very low class in the ACED erosion map predicted as low erosion in the MMF erosion map) was
considered acceptable. In these cases, the weight factors were set = 1. For larger disagreements
between the two maps (e.g. very low class in the ACED erosion map predicted as moderate erosion in
the MMF erosion map or worst), the weights were linearly dependent on the distance between classes
(Table 3a). Kappa coefficients were calculated with kappa.exe software (Bonnardel, 1995).
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Results and Discussion

Soil erosion assessment

In Kwalei, pedestals, tree mounds, rock and tree roots exposure, together with deposition of soil at the
footslopes and along the roads and paths were frequently observed. Erosion features were especially
frequent in annual crop fields (cassava, maize and bean). Rills, however, were often removed by
weeding operations, and gullies were present only close to major roads, where surface runoff
accumulated and entered as concentrated flow into the fields. The ACED erosion map (Fig. 2a) showed
that 38 elements out of the 92 surveyed (c. 34 % of the area) could be classified as affected by high or
very high erosion. Most parts of the forest, the coffee and banana fields and the flat area of the valley
bottom were classified as low or very low erosion.

Along the four transects of Gikuuri, soil losses by rill erosion were estimated at between 0.12 —
27.12 kg m? y™'. Surface lowering measured with erosion pins ranged from 0.4 to 4.0 mm. At the
footslopes, deposition was always observed. Five classes of erosion were defined according to the slope
of the transect segments: very low erosion (< 2 kg m™ y') on flat areas (< 5% gradient, e.g. valley
bottoms); low erosion (2 - 7.5 kg m>y™") on very gentle slopes (5-9 %); moderate erosion (7.5 -10 kg
m?y™!) on gentle slopes (9-18 %); high erosion (10 - 20 kg m™y™") on steep slopes (18-30 %); and very
high erosion (> 20 kg m™y™) on very steep slopes (> 30 %). According to the ACED erosion map (Fig.
3a), all the valley bottoms and some flat hill summits were classified as subject to very low erosion,
whereas c. 33 % of the area was affected by high or very high erosion.

Years 2001 and 2002 were dry in Kwalei Catchment. Rainfall totalled 603 mm in 2001 and 202 mm
in the long rainy season (March-May) 2002. The probability of non-exceedence of such low rainfall
amounts is < 10 % according to rainfall records. On the contrary, the long rainy season of Gikuuri
Catchment was wet: in the period April- June 2002 it rained 624 mm, roughly equal to half of mean
annual rain. Such a wet season was not exceeded in three out of four years in the last 25 years of
records. Soil erosion assessment was therefore likely to underestimate the mean situation in Kwalei and
slightly overestimate it in Gikuuri. However, as rainfall is homogeneously distributed within each
catchment, the erosion patterns depicted by the ACED maps were considered representative of the
average situation.

MMF model results

In Kwalei, mean annual rainfall R was 967.4 mm y ', with a mean number of rainy days per year n of
89.5. In Gikuuri, mean annual rainfall was 1270 mm y™' and the mean number of rainy days per year n
was 107.

Soil input data are summarized in Table 1. Soil bulk densities BD were low in both catchments, but in
the range of tropical soils (1-1.5 Mg m™, Zoon, 1986). Topsoil bulk densities < 1 Mg m™ may be due to
high organic carbon content (Meliyo ef al., 2001). Soil cohesion COH generally resulted in high values.
In the case of Kwalei, the values were however in the range of reported literature (2-12 kPa, Morgan,
2001). In the case of Gikuuri, cohesion was unusually high and indicated very high soil resistance to
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Table 1. Distribution of soil types and soil input data for MMF model.

Soil type Area Topsoil texture K MS BD COH
(%) @ (%wlw) (Mgm?) (kPa)
Humic Acrisol 47.9 Sandy clay loam 0.35 0.27 0.95 8.06
5 Haplic Lixisol 154 Sandy clay loam 0.35 0.28 1.05 6.61
£ Haplic Acrisol 29.4 Sandy clay 0.30 0.31 1.04 7.06
~ Eutric Fluvisol 6.4 Sandy clay loam 0.35 0.26 1.32 8.99
Umbric Gleysol 0.9 Clay 0.05 0.45 1.06 9.51
Rhodic Nitisol 36.4 Clay 0.05 0.45 0.94 20.1
Haplic Acrisol 13.9 Clay 0.05 0.45 0.89 15.3
E Chromic Luvisols 8.2 Sandy clay loam 0.35 0.27 0.99 20.2
‘% Chromic Luvis./Camb. 29.1 Sandy clay loam 0.35 0.27 0.93 20.3
Dystric Fluvis./Gleys. 6.4 Clay 0.05 0.45 1.03 17.9
Dystric Fluvisols 6.1 Clay 0.05 0.45 1.02 23.1

K is the soil detachability index, MS is soil moisture at field capacity, BD is bulk density of topsoil and COH is

cohesion of topsoil.

shear stress. The high organic matter content and cohesion values of topsoils indicated high resistance
to soil particle detachment. However, due to a lack of more detailed information, the detachability
indices K derived from literature were not changed.

Land use inputs are reported in Table 2. In general, the land use assured a good cover of soil, with
interception of rainfall /NT ranging from 0.12 to 0.34, canopy cover CC from 0.25 to 0.86 and ground
cover GC from 0.14 to 0.94. Model inputs of annual crops (maize and bean, vegetables, cassava)
reflected conditions of low soil protection: rainfall interception INT < 0.20, canopy cover CC and
ground cover GC < 0.50, crop protection factor C > 0.30. Most protective land uses were forest,
woodlot and grassland, which ensured good rainfall interception and soil cover. In the case of forest
and woodlot, however, plant height PH was high, enough for leaf drainage to significantly contribute to
total rainfall kinetic energy. Among SWC measures, fanja juu terraces were the most effective (P
factor = 0.19), followed by bench terraces and grass strips.

In Kwalei, the detachment rate by raindrops (F in eq. 2) ranged from 2.32 kg m™y™' for grassland to
7.79 kg m™ v under forest, with a mean of 4.44 kg m~y"' for the whole catchment. Detachment rate
by raindrops F in Gikuuri ranged from 1.00 kg m? y™' on clay soils to 7.00 kg m™? y™ on Chromic
Luvisols and Cambisols, with little variation due to land use. The detachment rate by raindrops F
depends upon two parameters: soil detachability K and rainfall kinetic energy KE. In the case of clay
soils, the very low detachability index K (0.05, Table 1) was the most sensitive parameter. On other soil
types, differences in the kinetic energy of rainfall KE among land uses became important. By
consequence, in Kwalei, where clay soils occupy only a small part of the catchment (< 1%, Table 1),
the spatial pattern of the detachment rate by raindrop F reflected more the land use, via the kinetic
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Table 2. Land use input data for MMF model

Land use type EHD  INT cC PH GC  ET/ETp C P#
(m) (m)
Maize and beans 012 017 026 067 044 078 030 F1=0.19;
GS=0.50
Banana and maize 0.12 0.16 0.38 1.24 0.30 0.98 0.25
Bush/fallow 015 020 063 060 067 073  0.05
Vegetables 012 015 025 028 050 090 035
Woodlot 020 028 045 933 045 095 0.5
Cassava 012 012 040 080 049 070 040
Coffee and 015 030 078 175  0.79 110 020
= banana
S Forest 020 030 086 643 094 095 001
% Grassland 012 030 062 024 075 080 001
Sugarcane 012 025 030 132 049 090  0.15
Tea 012 030 045 047 067 092 020
Banana 018 023 031 138 016 110 040
§ Coffee 012 034 029 1.04 023 108 042 BT=0.25
=% f]‘;gf and 012 023 037 095 014  1.04 042 BT=0.25
Miraa 012 034 025 081 023 08 032

#Soil and water conservation measures: FJ = fanja juu terraces, GS = Grass strips, BT= bench terraces. EHD is
effective root depth, INT is interception factor, CC is canopy cover fraction, PH is plant height, GC is ground
cover fraction, ETa/ETP is actual to potential evapotranspiration ratio, C and P are the USLE crop and protection

parameters.

energy KE. The area mean rainfall kinetic energy KE amounted to ¢.14700 J m™>, being least on
grassland (7140 J m™) and largest under woodlot (22750 J m™). In Gikuuri, instead, clay soils cover >
60 % of the area (Table 1), therefore detachment rates were lower than in Kwalei, notwithstanding the
rainfall kinetic energy was higher (area mean = 20000 J m™) and ranged from 13400 J m™ (under long
term fallow) to 29900 J m™* (under woodlot).

Soil detachment by surface runoff (H; in eq. 6) ranged from 0.00 to 1.07 kg m?y™' (mean = 0.06 kg
m?y") in Kwalei and was even lower in Gikuuri, where it ranged from 0.00 to 0.44 kg m™ y™' per
element (mean = 0.02 kg m™ y™"). The contribution of soil detachment by surface runoff H; increased
along the slope due to runoff accumulation, but it was far less important than soil detachment by
raindrops. Total detachment rates (F + H;) therefore changed little along the slope, and averaged c. 4.50
kg m?y" in Kwalei and 2.66 kg m?y™" in Gikuuri.

Transport capacity rates (7C; in eq. 7) ranged from < 0.01 to 43.77 kg m? y "' in Kwalei (mean =
1.90 kg m?y™") and from < 0.01 to 78.06 kg m?y™" in Gikuuri (mean = 2.28 kg m?y™").

Erosion rates (E; in eq. 8) ranged from < 0.01 to 13.50 kg m?y "' in Kwalei, with a mean of 1.07 kg
m?y". The erosion rates were reclassified into five erosion classes: very low erosion (E; < 0.025 kg m™
vy, low erosion (0.025-0.065), moderate erosion (0.065-0.350), high erosion (0.350-1.750), and very
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Figure 2. Spatial patterns of erosion at Kwalei Catchment: asterisk indicates surveyed subcatchment; (a) ACED
erosion map (white = very low; hatched = low, light grey = moderate, grey = high, dark grey = very high); (b)
MMF erosion map (legend as above); (¢) MMF distribution of surface runoff (legend as above); (d) location and
type of errors of MMF model predictions (hatched = overestimates; grey = underestimates)

high erosion (> 1.750 kg m™?y™"). The resulting MMF erosion map (Fig. 2b) showed that, according to
the MMF model, areas subjected to high erosion were especially located in the downslope elements of
hills covered by annual crops, and along the streams, i.e. where surface runoff accumulated.

In Gikuuri, erosion rates E; ranged from 0.02 to 9.29 kg m?y™', with a mean of 0.75 kg m?y™". Model
erosion rates were similar to figures reported in literature (Mitchell, 1965; Othieno, 1975), but lower
than observations along Gikuuri transects. However, observations in Gikuuri were limited to one rainy
season, which was wetter than the average year. Moreover, ACED method allows only semi-
quantitative assessment of erosion and, while it can give the order of magnitude of the problem, is not
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meant to give accurate quantification of soil losses. Therefore, no conclusion could be drawn on the
reliability of model quantitative assessment of erosion soil losses. The model erosion rates were
reclassified into five erosion classes: very low erosion (E; < 0.050 kg m™ y™'), low erosion (0.050-
0.125), moderate (0.125-0.600), high (0.600-1.000), and very high (> 1.000 kg m?y™"). The MMF
erosion map of Gikuuri (Fig. 3b) showed again that, according to the model, erosion increased along
the slope, from ridges to valley bottoms, with especially high erosion rates on the Chromic Luvisols
and Cambisols of the steep slopes of the Southern hillslopes.

In > 90 % of elements of both catchments, transport capacity was the erosion-limiting factor and
erosion was detachment-limited only on a few elements at the valley bottoms. Transport capacity
depends on the second power of surface runoff (eq. 7). Therefore, MMF model predictions of erosion
were driven by the accumulation of surface runoff along the slopes. Low erosion rates were predicted
on the ridges, while high erosion rates occurred along the streamlines (Figs. 2b and 3b).

Surface runoff generated within the elements (QO; in eq. 3) was low and similar in the two
catchments, ¢. 35 mm. In Kwalei, where soils are rather homogeneous, the model simulation of surface
runoff reflected differences in land use. The highest rates of runoff were recorded in the annual crop
fields on the Haplic Acrisols and Lixisols of the ridges, whereas the lowest surface runoff was
generated under forest and coffee and banana fields. On the contrary, in Gikuuri because of the
difference in soil moisture at field capacity MS among soil types (Table 1), surface runoff was much
higher in Chromic Luvisols and Cambisols than elsewhere. However, due to the accumulation
sequence (eq. 5), the total surface runoff O, per element increased systematically along the slopes. In
Kwalei, where the element map depicted relatively small elements and where slopes were rather short,
the surface runoff generated within the element O; was generally more important than incoming runoff
Qup (Aup /Ai ). The total surface runoff O, ranged from 6 to 550 mm, with a mean of 92 mm. Fig. 2¢
shows the distribution of total surface runoff Q; in the catchment. Surface runoff generally increased
along the slope, but the elements in the cascading sequence retained their own characteristics and
therefore some elements at the footslopes maintained very low or low surface runoff. In Gikuuri, where
element size were larger and comprised different land uses, the incoming surface runoff Q,, (4., / Ai )
had a greater impact on the total surface runoff O, than the surface runoff generated within the element
0O:. As a result, the total surface runoff was larger than for Kwalei, ranging from 16 to > 3000 mm
(mean = 177 mm) and increased invariably from the ridges to the valley bottoms (Fig. 3c). The
influence of soil type, very important on the surface runoff generated within the element Q,, i.e. at the
element scale, was completely lost at the catchment scale. As surface runoff simulation is of saturation-
excess type and no mechanism for reinfiltration along the slope could be taken into account, all the
footslopes and valley bottoms resulted in having high and very high surface runoff.

Finally, in Kwalei sedimentation rates (SED; in eq. 9) occurred on 17 % of the elements, and ranged
from 0.005-10.83 kg m?y', with a mean of 0.65 kg m™?y™'". In Gikuuri, sedimentation occurred on 47
% of the elements, and ranged from 0.005-3.16 kg m” y', with a mean of 0.46 kg m™” y™.
Sedimentation occurred where the influx of material from upslope E,, was consistent and where sudden
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Figure 3. Spatial patterns of erosion at Gikuuri Catchment. (a) ACED erosion map (white = very low; hatched
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changes in vegetation cover or slope reduced drastically the transport capacity TC; of surface runoff
(eq. 7). The vegetation cover control on the sedimentation pattern was dominant in Kwalei, where
sedimentation occurred mainly on the steep coffee and banana stands along the streamlines. The
topography control was instead dominant in Gikuuri, where sedimentation occurred mainly at the
footslope elements.

Comparison of erosion maps

The comparison of the MMF erosion map with the ACED erosion map in Kwalei showed that out of 92
elements of the ACED erosion map, 30 were correctly classified, 30 were acceptably classified (i.e. one
class difference) and few major misclassification errors occurred (Table 3b). The weighted Kappa
coefficient of the error matrix was 0.241, which, according to Landis and Koch (1977), indicates fair
agreement between the two maps. Fig. 2d showed the location and type of error in the model
predictions. The model performed better in the upper part of the sub-catchment; errors of model
predictions consisted of overestimates of erosion along streamlines, and underestimates on ridges.

In Gikuuri, the spatial pattern of model predictions differed significantly from the ACED
classification. Out of 65 elements, only 11 were correctly classified and 22 were acceptably classified;
14 elements were completely misclassified (more than 2 classes of difference, Table 3¢). The weighted
Kappa coefficient in this case was 0.047, indicating very poor agreement between the two maps.
Besides some ridges that were correctly classified as subject to low erosion, the erosion pattern
depicted by the model was wrong (Figs. 3a and 3b). In the valley bottoms erosion was highly
overestimated; along the steep and very steep slopes, erosion was instead generally underestimated.
Therefore, the pattern of model prediction errors was similar in both catchments and consisted of
underestimates of erosion on the ridges and overestimates along the streamlines and at the valley
bottoms. This associated combination of overestimates in the lower parts and underestimates in the
upper parts was considered to be independent from the classification system adopted for MMF
predictions. By setting qualitative limits to classify the model erosion rates, possible overestimates of
erosion rates at the end of the accumulation sequence should exert only little influence on
underestimates at the beginning of the sequence.

More probably, the errors of model predictions depended on the model structure. MMF model
simulates surface runoff in terms of saturation excess. The occurrence of infiltration excess surface
runoff on the annual crop fields at the onset of the rainy season cannot be accounted for. This might
explain the underestimates in the upper parts of the ridges, where the cultivation of annual crops is
more intense. Moreover, in both catchments, reinfiltration along the slopes and sedimentation at the
footslopes was observed. However, the mechanism of surface runoff accumulation (eq. 5) did not
account for reinfiltration. As a result, the model structure resulted in exaggerated flow accumulation
along the slope, which almost completely drove the simulation of spatial patterns of erosion: the
erosion patterns predicted by the model increased invariably from the ridges to the valley bottoms. This
was more dramatic at Gikuuri, where elements of cascading sequences were large and comprised
different land uses.
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Table 3. Error matrixes for the comparison of ACED and MMF erosion maps: a) Kappa coefficient weights; b)
Kwalei error matrix; ¢) Gikuuri error matrix; and d) Gikuuri error matrix after excluding the elements of valley
bottoms. n indicates the number of clements per erosion class.

ACED erosion map

Very low Low Moderate High Very high

Very low 1 1 0.5 0.25 0
% Low 1 1 1 0.5 0.25
= Moderate 0.5 | 1 | 0.5
= High 0.25 0.5 1 1 |

Very high 0 0.25 0.5 1 |

Very low Low Moderate High Very high n

§  Verylow 5 2 6 13
= Low 4 8 2 5 2 21
E) Moderate 3 7 4 7 21
S High 3 3 6 8 3 23
% Very high 3 2 1 6 2 14

n 15 18 22 23 14 92
o Very low 4 6 7 2 1 20
B Low 2 I 3 2 8
§ Moderate 6 1 3 3 5 17
§ High 3 3 1 2 9
= Very high 6 2 2 11
X 21 8 16 8 12 65
= Very low 3 1 4
EE Low 1 3 3
% -q’; Moderate 3 12 1 1 16
5= High 2 3 5
5 Z; Very high 1 1 5 8 14
© n 4 8 16 8 12 48

To verify that the mechanism of accumulation was at the origin of the errors in the model
predictions, the comparison of the two maps was repeated in Gikuuri catchment after excluding the
valley bottom elements from the analysis. The resulting MMF erosion map (Fig. 3d) was much closer
to the ACED erosion map (Table 3c), and the weighted Kappa coefficient increased dramatically
(0.868), indicating almost perfect agreement between the two maps.

At the scale of the single element, the MMF retained a good balance between rainfall kinetic energy
KFE and surface runoff O, the two driving forces behind erosion. However, at the catchment scale,
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surface runoff became the only important erosive force of the model simulation. The application of
field models at catchment scale requires careful consideration of scale issues. Topography, which may
play a relative role at field scale, becomes a major factor controlling erosion at catchment scale
(Desmet and Govers, 1995). The introduction of a topographic factor that considers the three-
dimensionality of a catchment is crucial for capturing the spatial pattern of erosion at catchment scale
(Desmet and Govers, 1997; van Rompaey et al., 2001). Successful algorithms incorporate usually the
upslope draining area and the local slope (Moore ef al., 1993). These two parameters are represented in
the MMF model by the upslope area 4,, and the sine of the slope sinf, but their role in the model
appears to be unbalanced (eqs. 5 and 7). Similar scaling problems had been already observed in other
empirical erosion models. For example, the original LS factor of the USLE model has long been
substituted with more appropriate algorithms for application at hillslope or catchment scale (Desmet
and Govers, 1997). Notwithstanding the improvements, the USLE model cannot account yet for
reinfiltration and sedimentation along the slope and failed in reproducing erosion patterns in a
catchment in Southern Spain (Vigiak and Sterk, 2001). Only recently, Warren and Mitasova (2003)
were able to improve the prediction of erosion patterns of a USLE-derived model by introducing a
sedimentation mechanism.

In this respect, the structure of MMF model offers an advantage. In eq. 9 both the influx material £,,
and the transport capacity 7C; were affected in a similar way by the accumulation of surface runoff, so
that their difference was more realistic. Indeed, the patterns of soil sedimentation in the two catchments
were close to the observations: the model simulated the occurrence of sedimentation in the coffee and
banana stands along the steep streamlines in Kwalei and at the footslopes in Gikuuri, exactly as it was
observed in the fields.

Conclusions

The assessment of erosion showed that areas affected by high and very high erosion covered around
one third of both catchments. In Kwalei, erosion features were especially frequent in fields of annual
crops, like cassava, maize and bean. In Gikuuri, soil losses by rill erosion were estimated between 0.12
—27.12 kg m™y"" and surface lowering as measured with erosion pins ranged from 0.4 to 4.0 mm in the
2002 long rainy season only.

MMF predictions of erosion indicated that erosion was mainly transport-limited, and erosion rates
ranged from < 0.01 to 13.50 kg m?y™' in Kwalei catchment and from 0.02 to 9.29 kg m™y™" in Gikuuri.
The model erosion rates were close to figures reported in literature, but lower that the observations at
Gikuuri. However, the transect observations were of limited accuracy and duration, so no conclusion of
the quantitative erosion rates of MMF model could be drawn.

The performance of the MMF model in reproducing spatial pattern of erosion was fair in Kwalei
(weighted Kappa coefficient 0.241), but poor in Gikuuri (weighted Kappa coefficient 0.047). However,
by excluding the elements at the valley bottoms in Gikuuri, the performance of the model increased
dramatically (weighted Kappa coefficient 0.868). Most of model errors consisted of overestimates of
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erosion rates along the streamlines and underestimates on the ridges. The pattern of sedimentation was
instead closer to reality: the model simulated sedimentation occurrence in the coffee and banana stands
along the steep streamlines in Kwalei and at the footslopes in Gikuuri, exactly as it was observed in the
fields.

The major cause of model errors was identified in the mechanism of surface runoff accumulation,
which could not account for the reinfiltration along slopes or footslopes that was instead observed in
the field. At the scale of the single element, the MMF retained a good balance between rainfall kinetic
energy and surface runoff, the two driving forces behind erosion. Because of the accumulation along
the slope, at the catchment scale the importance of surface runoff volume increased in the model
structure, until it drove almost completely the simulation of spatial patterns of erosion rates.

At field scale, considering the limited number of model inputs and its simplicity of application, the
MMF model is well suited for SWC planning purposes. At the catchment scale, the accumulation
procedure of surface runoff should be applied critically, or even excluded in catchments where
reinfiltration is frequent. More generally, by introducing a more realistic hydrological component for
the prediction of surface runoff along the hillslope, the model performance at catchment scale could
improve substantially and the model could become a very useful tool for SWC planning in the East
African Highlands catchments.
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MATCHING HYDROLOGIC RESPONSE TO MEASURED EFFECTIVE
HYDRAULIC CONDUCTIVITY

Abstract

The objective of this study was to test the practicability of defining hydrologic response units as
combinations of soil, land use and topography for modelling infiltration at the hillslope and catchment
scales. In an experimental catchment in the East African Highlands (Kwalei, Tanzania), three methods
of measuring infiltration were compared for their ability to capture the spatial variability of effective
hydraulic conductivity: the constant head method (CH); the tension infiltration method (T1); and the
mini-rainfall simulation method (RS). The three methods yielded different probability distributions of
effective hydraulic conductivity and suggested different types of hydrologic response units.
Independently from these measurements, the occurrence of infiltration-excess overland flow was
monitored over an area of six hectares by means of overland flow detectors. The observed pattern of
overland flow occurrence did not match any of the patterns suggested by the infiltration measurements.
Instead, clusters of spots with overland flow were practically independent from field borders.
Geostatistical analysis of the overland flow confirmed the absence of spatial correlation for distances
over 40 m. The RS method yielded the pattern closest to the observations, probably because the method
simulated better the processes that trigger infiltration-excess overland flow, i.e. soil sealing and
infiltration through macroporosity. The RS hydrologic response unit correlated significantly with
observed overland flow frequency. However, the location of clusters and “hot spots” of overland flow
remained largely unexplained by land use, soil and topographic variables. It is concluded that using
such landscape variables to define hydrologic units may create artificial boundaries that do no
correspond to physical realities, especially if the stochastic component within hydrologic units is
neglected.

Keywords: overland flow pattern; overland flow detectors, effective hydraulic conductivity
measurement, hydrologic response units.

Introduction

Characterization of infiltration is of the utmost importance to understand the occurrence and movement
of overland flow at the field, hillslope and catchment scales. Infiltration rates are generally high at the
beginning of the process, and decline gradually until a constant rate is reached, i.e. the so-called
effective hydraulic conductivity of the soil surface. During a rainfall event, the infiltration rate may fall
below the rainfall intensity; at this moment ponding starts and overland flow may begin. This
mechanism of generation of overland flow from excess infiltration is termed Hortonian (Horton, 1933).
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There are many methods for measuring infiltration experimentally (e.g. Klute and Dirksen, 1986).
They differ in equipment and technical skill required, and in the accuracy and reproducibility of the
results. Some require soil cores to be taken for laboratory analysis. Others measure infiltration of water
in situ. The area of the soil surface on which measurements are taken, i.e. the spatial support of the
measurement, may be a few square centimetres to several square meters. More importantly,
measurement methods reproduce the process of infiltration differently: e.g. some methods measure
infiltration at ponding conditions; others measure infiltration through non-saturated surfaces or under
simulated rainfall. Not surprisingly, the final steady rates of infiltration measured with different
methods may differ substantially. This final infiltration capacity can be termed effective hydraulic
conductivity, but its physical meaning changes with the measurement method, so that methods are
incommensurable with each other (Beven, 2001). Indeed, comparative studies have generally reported
a lack of consistency among measurement methods (Clothier and Smettem, 1990; Reynolds et al.,
2000; Bagarello et al., 2004; Paige and Stone, 2003).

Infiltration and Hortonian overland flow vary greatly in space and time. Most measurement methods
estimate point-scale steady rate of infiltration. For most practical applications, however, the
quantification of infiltration is needed at field, hillslope and watershed scales instead of at points. In
integrated watershed planning in particular, the issue is frequently to locate where (or how often)
infiltration will be exceeded and where (or how often) the overland flow could be triggered.
Hydrological modelling at catchment scale requires strategies to simulate infiltration in space
notwithstanding the limited knowledge of the phenomena and the limited availability of data in both
space and time (Beven, 1992; Bloschl and Sivapalan, 1995; Karssenberg, 2002). A frequent strategy
adopted in hydrologic modelling has been to define hydrologic response units, with the idea that
infiltration (as well as other hydrological processes) will be more similar within the unit than between
units (Bloschl and Sivapalan, 1995). Effective parameters for each unit can be defined deterministically
(i.e. single parameter values) or stochastically (i.e. by assuming probability distribution functions of the
parameters; e.g. Vertessy and Elsenbeer, 1999; Seguis et al., 2002). Either way, effective parameters
are usually obtained by calibration against measurements; this accounts for the scale of the model
simulations and compensates for the model’s conceptual and structural limitations.

An operative definition of the hydrologic response units must rely on data whose spatial patterns,
and possibly their temporal changes, are available. The spatial information consists usually of
topographic, soil, and land use maps. As soil porosity and soil surface characteristics are major factors
affecting infiltration, soil maps are often taken as the basis for the definition of hydrologic response
units. However, the use of pedo-transfer functions to derive infiltration parameters from soil map data
has generally yielded very poor results (Jarvis et al., 2002; Tietje and Hennings, 1996; Wosten ef al.,
1999). On the other hand, due to the high variability of infiltration within short distances, the
application of geostatistical approaches requires systematic measurements at very short distances and
may even result in no spatial correlation (Loague and Gander, 1990; Al-Jabri et al., 2002). Common
sense suggests then that the available spatial information may guide the identification of the hydrologic
response units and the design of experimental infiltration measurements aimed to characterize their
hydrologic behaviour.
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For subsequent up-scaling, the spatial and temporal supports of the experimental measurements
should be as close as possible to the modelling scale and to the processes to be simulated (Karssenberg,
2002). However, large spatial and temporal supports often conflict with the possible number of
replications. Quick experimental methods yielding many observations in a given time may result more
informative than methods whose experimental conditions may be closest to the modelling purposes but
use cumbersome equipment, take more time, and are more expensive (e.g. Bagarello ef al., 2004).
Moreover, once the idea of incommensurability between measurement data and model parameters and
the consequent need for re-calibration of model parameters has been accepted, a measurement method
should better focus on correctly identifying the hydrologic response units rather than on quantifying the
infiltration parameters. Following this reasoning, the “best” measurement method will (1) identify
correctly the hydrologic units and (2) provide statistical information on infiltration variability within
and between the hydrologic units, with limited resource investment in terms of money, people, and
equipment,

Few studies have tested the reliability of the identification of hydrologic units for modelling spatial
patterns of infiltration over a hillslope or a catchment. This is probably because observations of
infiltration or, more practically, of Hortonian overland flow, are difficult to obtain (van Loon, 2002).
The spatial pattern of overland flow can be observed after rainfall events through the patterns of
erosion features, like rills and gullies, provided the rainfall event has been erosive (Takken et al.,
1999). However, this type of observation remains quite subjective. Alternatively, the occurrence of
overland flow can be observed by means of unbounded devices, such as Gerlach troughs (Morgan,
1995) or overland flow detectors of various design (Kirkby et al., 1976; Gascuel-Odoux et al., 1996;
Elsenbeer and Vertessy, 2000; van Loon, 2002). The figures for volumes of overland flow and for
runoff coefficients obtained using such devices are uncertain as the contributing area is unknown
(Gascuel-Odoux et al., 1996). However, as they are cheap and can be made locally, overland flow
detectors are useful in locating overland flow occurrence in quite large areas.

The objective of our study is to test the common practice of defining hydrologic response units as
combinations of soil, land use and topography for modelling infiltration and Hortonian overland flow
distribution at hillslope and catchment scale.

Materials and methods

Study area — Kwalei catchment

Kwalei catchment (4°48" S, 38° 26’ E) is situated in the West Usambara Mountains, North-East
Tanzania (Fig. 1). The catchment size is around 2 km? and the altitude ranges from 1337 to 1820 m.
The terrain is very dissected, with more than half of the hillslopes steeper than 20 %. Average annual
rainfall is approximately 1000 mm, with a bimodal distribution: a long rainy season from March
through May and a short rainy season from October to January. Average daily temperature is 18 °C,
with diurnal temperature ranges (12-25 °C) greater than annual ranges (16-20 °C). Five soil types occur
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in the catchment (FAO, 1990): Humic Acrisols on the summits (48 % of the catchment), Haplic
Lixisols on the summit footslopes (15 %), Haplic Acrisols on the ridges (29 %), Eutric Fluvisols (6 %)
and Umbric Gleysols in the river valleys (1 %) (Meliyo et al., 2001). The soils on the slopes are clayey
and deep; the topsoils are porous and sandy and overlie clayey, deep, and well-drained horizons.
Saturation conditions may occur only in the Umbric Gleysols in the valley bottoms. The highest part of
the catchment is covered by mountain rain forest, whereas the middle and lower slopes are farmed. The
vegetation cover is complex: annual crops are intercropped with perennials, fodder and fruit trees or
timber woodlots. Annual crops are concentrated on the ridge shoulders: maize is the most cultivated
crop, intercropped with bean, banana, cassava, and sugarcane. Soil preparation and weed control is
done by hand-hoeing. The two-layer cultivation of banana and coffee is frequent on the steeper slopes
along the incised streams. Irrigation is limited to the vegetable fields of the valley bottoms. The
cartographic information comprised a soil map (Meliyo et al., 2001); a land use map, and a Digital
Elevation Model (DEM) of 20 m pixel size (Vigiak et al., 2005). Rainfall was measured with a tipping
bucket rain gauge recording at two minutes interval and placed at the catchment outlet.

Point measurement of effective hydraulic conductivity

Surface effective hydraulic conductivity was measured with three point infiltration methods: constant
head method (cH, infiltrating surface ¢. 20 cm?), tension infiltrometer (TI, infiltrating surface c. 254
cm’) and mini-rainfall simulation (RS, infiltrating surface ¢. 525 cm?). The methods were selected
because they require easily transportable equipment, use limited amounts of water, consist of relatively
quick tests, but simulate infiltration in completely different ways. The measurements were done on ten
fields (Fig. 1), selected to cover all the soil types, different landscape positions, and the main land use
types occurring in the catchment (Table 1). All the measurements were done during the long rainy
season of March-May 2002, using stream water for the field tests.

CONSTANT HEAD METHOD (CH). Effective hydraulic conductivity of soil cores was measured in the
laboratory with the constant head method (Klute and Dirksen, 1986). Ten samples of five cm depth of
soil were taken for each field, five at 0-5 cm depth and five at 5-10 cm of depth. The cores were pre-
saturated for 24 hours. The constant head was set to five cm. The dataset was extended with core
samples taken in five more locations (two replicates each) at 0-10 cm depth during the period March-
May 2003, after verifying the homogeneity of the samples.

TENSION INFILTROMETER METHOD (TI). Apparent field-saturated hydraulic conductivity was estimated
from observations of near-saturated hydraulic conductivity measured with a disk infiltrometer (Perroux
and White, 1988). To maximize the number of observations per site, the experiment was conducted
with the single test method, using one disk radius (» =9 cm) and one tension (/p = - 30 mm). Sites were
pre-wetted to limit the influence of initial soil moisture conditions, and a sand layer was interposed to
ensure good contact between the soil surface and the disk. Soil moisture before and after the disk
application was measured by the gravimetric method. At least three measurements were repeated in
each site. Near-saturated hydraulic conductivity Kj, at the imposed pressure head %, was estimated
according to the Improved White and Sully method proposed by Vandervaere et al. (2000a; 2000b).
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Apparent field-saturated hydraulic conductivity was estimated from Kj, by assuming an exponential
function between hydraulic conductivity and water tension (Gardner, 1958), with the alpha parameter

o, taken constant between soil types and equal to the average exponent of eight water-retention curves
(ag = 0.467 cm™).
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Figure 1. Kwalei catchment: location of the ten fields for infiltration measurement and of the subcatchment

monitored for occurrence of overland flow (boxed area with dots indicating detectors). Shading represents the

topography index of the catchment.
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Table 1. Characteristics of the effective hydraulic conductivity measurement sites, Kwalei, Tanzania.

Topography

Site Soil type Land use type Top.

Slope Slop ea Toppgrap hy index

class index b

class
FAO o
classification (%)
1 Umbric Gleysols  Vegetables: tomato 2 1 11.28 3
2 Eutric Fluvisols Maize and beans 7 1 10.28 3
3 Haplic Acrisols Maize and beans 27 2 5.72 2
4 Haplic Acrisols Coffee and banana 8 1 6.73 2
5 Haplic Lixisols Coffee and banana 15 2 8.38 3
6  Humic Acrisols ~ C2ss3va (mixedwith 5, 3 466 I
sugarcane)

7 Humic Acrisols Forest 48 3 5.89 2
8 Humic Acrisols Grazing 28 2 5.40 1
9 Humic Acrisols Tea 38 3 4.89 1
10 Haplic Acrisols Wattle 17 2 5.30 1

*The slope classes were: class 1 (<10 %), 2 (10 < slope <30 %), and 3 (> 30 %).
® The topography index classes were: class 1 (< 5.5), 2 (5.5 < topography index < 8), and 3 (>8).

MINI-RAINFALL SIMULATION METHOD (RS). Effective hydraulic conductivity was measured in terms
of effective steady-state infiltration rates measured during rainfall simulations. A portable rainfall
simulator (Kamphorst, 1987) was used on rectangular plots of 0.0525 m?, bounded on three sides by
metal strips and by a gutter on the fourth side where runoff was collected. Constant rainfall intensity
was applied at 300 mm h'. The high rainfall intensity was not meant to reproduce steady-state
infiltration under natural rainfall, but to induce runoff in all cases to allow comparisons between fields
and to assure that the whole surface contributed to runoff (Paige and Stone, 2003). Runoff was
measured every two minutes until a constant rate was measured; two rainfall simulation tests were
repeated per site.

STATISTICAL ANALYSIS. The landscape variables for which consistent cartographic data was
available were soil type, land use type, and topography. Two topographic variables were taken into
consideration: maximum slope and topography index, defined as In(a/tanf), where a is the upslope
contributing area, and tanf} is the local slope (Beven and Kirkby, 1979). Maximum slope was estimated
with an inclinometer in the fields. The topography index was calculated from the DEM by applying a
multiple direction flow algorithm (Quinn et al., 1995), and averaged across fields. The two topographic
variables were employed as continuous variables and as ordinal classes (Table 1).
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Surface effective hydraulic conductivity is usually log-normally distributed (Angulo-Jaramillo et al.,
2000). Original and log-transformed data distributions were tested for normality with the non-
parametric Kolmogorov-Smirnov test. Variance of the log-transformed distributions of effective
hydraulic conductivity was tested against the landscape variables at probability level p = 0.05. Analysis
of variance were tested with classic ANOVA, if Levene test verified that variance among groups was
homogeneous, and with Kruskal-Wallis test otherwise.

The significant landscape variables were employed to identify the hydrologic response units.
However, landscape variables were correlated. By definition, the two topographic variables were
correlated, so analysis of variance was conducted on both, but only the most important variable was
employed to define the hydrologic units. The soil types were strongly correlated with topography
(correlation coefficients ETA > 0.90). This reflected the real soil and land use distribution in the
catchment: Umbric Gleysols and Eutric Fluvisols have developed on the central valley bottom, whereas
Acrisols and Lixisols are concentrated along the slopes. Only two combinations of soil and land use
types were present in the field sample (Table 1). Because of the high correlation between landscape
variables, it was not possible to estimate interactions between factors. The classification of effective
conductivity into hydrologic units was therefore based on the estimated marginal means for each
independent variable of the univariate general linear model. The noncentrality parameters of the
univariate tests were used to measure the observed power of the independent variables and to establish
the hierarchy of classifiers: the main classifier was the variable that resulted in the largest differences
among groups, and so on. Land use, soil types or topography classes that resulted in no significant
mean difference in pair wise comparison were merged. In this way, all the possible combination of
hydrologic response units, i.e. 9 land use types (8 tested + ‘Others’) x 6 soil types x 3 topography
classes = 162 theoretical combinations, could be related to the cases for which measurements were
available.

Overland flow observations

Overland flow occurrence was monitored per rainfall event by means of 50 overland flow detectors
made locally to a slightly modified design of Vertessy et al. (2000). The detectors consisted of 30 cm
long PVC tubes connected to a T-junction provided with a removable lid. About 50 holes of 2 mm
diameter were drilled along one third of the PVC tube surfaces. The detectors were placed on the soil
surface, with the drilled side facing upslope in order to catch any overland flow from the area
immediately above (detail in Fig. 1). The overland flow monitoring was concentrated in a small
subcatchment of around six hectares located in the upper, north-western corner of Kwalei catchment
(box in Fig. 1). The area is representative for erosive slopes and is subject to frequent overland flow
incidents. It has seven annual and perennial land use types: vegetables, fallow, tea, cassava, maize and
bean, sugarcane, and coffee and banana. The area straddles two different soil types (Humic Acrisols on
the shoulder slopes and Haplic Lixisols on the footslopes). Both soil types have thick, sandy clay loam
to sandy and well structured topsoils, but Humic Acrisols are generally more gravely than Haplic
Lixisols (Meliyo et al., 2001). However, no sensitive difference in gravel cover was evident in the area,
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whose soil properties were therefore considered homogeneous. The slopes were convexo-linear, and
steep (10-30 %). The 50 detectors were placed in four lines 250 m long along the 1580, 1560, 1545 and
1530 m contours, and crossing slopes 100 m long. During the period March-May 2002, after each
rainfall event, the presence of water in the PVC tubes was recorded and interpreted in terms of overland
flow occurrence (presence or absence).

The data were analyzed considering time-aggregated frequency, i.e. the number of times per spot
when overland flow occurred divided by the total number of rainfall events. Time-aggregated
frequency was analyzed in terms of landscape variables, i.e. land use type, slope and topography index.
Soil type was excluded because of the apparent homogeneity of soil properties and because the
available soil map was insufficiently detailed to place exactly the boundary between the Humic
Acrisols and Haplic Lixisols in relation to the positions of the detectors. Besides classic ANOVA, data
were analyzed with geostatistical tools. Hierarchical cluster analysis was carried on the original binary
(present or absent) data for all events, using square Euclidean distance to measure between-group
linkages. The statistical analysis was done using SPSS 11.5 software (SPSS, 2002), the geo-statistical
analysis with GSTAT software (Pebesma, 2004), and the geographic analysis with ILWIS 3.1 (ITC,
2002).

Results and discussion

Point measurement of effective hydraulic conductivity

Some measurements of CH effective hydraulic conductivity were discarded because the soil cores had
not been properly saturated. Also, some TI measurements were rejected because they yielded negative
steady-state hydraulic conductivity Kj. The effective hydraulic conductivity was log-normally
distributed for both CH and TI measurements; and normally distributed for RS. However, to keep the
analysis homogeneous, the RS distribution was also log-transformed.

The three methods yielded different values of effective hydraulic conductivities (Table 2). The
geometric means were all statistically different: CH yielded the highest geometric mean, followed by
RS. TI resulted in the lowest effective hydraulic conductivity values (one order of magnitude lower than
the other two methods) and in the largest variance and range of the log-transformed distributions. Site-
wise correlation among the methods could only be established between CH and T1 (Pearson correlation
coefficient = 0.37) and between CH and RS (Pearson c.c. = 0.66), but not between RS and TI. These
results are similar to those reported by Reynolds ef al. (2000), who found both lack of consistency
among effective conductivities estimated with different methods and lower values for TI in very
permeable soils.

All the effective conductivity distributions fell within the ranges that can be estimated with pedo-
transfer functions for similar soil conditions (Tietje and Hennings, 1996; Wosten et al., 1999), and
agreed well with the equation of Brakensiek ef al. (1984). The CH and RS effective conductivities fell in
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Table 2. Statistical results of effective hydraulic conductivity estimated by the three methods: constant head
method (CH), tension infiltration (TI) and rainfall simulations (RS).

CH TI RS
Sample number n 100 37 20
Geometric mean mh’ 0.3687 0.0397 0.1865
Harmonic mean mh! 0.2744 0.0276 0.1448
Kglmogorov-Smlrnov test of 7 | 488" 2 598" 0.609
original data
Kolmogorov-Smirnov test of log- 7 0.825 0.887 0.738
transformed data
Log- Mean In(m h™) -0.99767  -3.22562  -1.67955
transformed Min In(m b 332871 -5.09762  -3.25166
statistical 1
moments Max In(m h") +0.69099  0.10781  -0.95410
St deviation In(m h'") 0.71240 091117 0.65834
Variance [In(m h™)]? 0.508 0.830 0.433
. 1 20.989"! |
Soil type (d.f. 4) F, y2 (55.34) 1.354 3.725
Land use type ; 14.134" w1 16745
F, 32 14.971"
Analysisof  (d.f. 7) X (100.01) (244.65)
variance : * |
Slope class (d.f. 3) F, x2 8.292 0.850 2.366
Topographic index | 15.267"! 3717
class (d.f. 3) F.x2 (32.58) 0.366 (78.15)

Effective 10-minutes rainfall peak intensity ranged from 3.6 to 85.2 mm h™! in the observation period.

" the value is significant at p = 0.05

! for the cases of non-homogeneous variance the value refers to the y2 of Kruskal-Wallis test, otherwise it is the F
value of classic 1-way ANOVA. Values in brackets indicate the noncentrality parameter of the variable in the

univariate general linear model.

the higher part of this range, while the TI conductivities fell in the lower tail of the range. In R S
measurements, the high intensities applied, and possibly the use of stream water instead of distilled
water (Assouline, 2004), induced accelerated sealing of the soil surface. Though at a slower rate,
surface sealing was observed to develop also under natural rainfall conditions. Therefore, RS
measurements are likely to overestimates effective infiltration under natural conditions. However, the
variability among sites, i.e. differences among hydrologic units, should be well represented, as high
rainfall intensities assured that all the plot surface contributed to runoff (Paige and Stone, 2003).
Among the three cases, TI estimates of effective hydraulic conductivity were the most uncertain. The
assumption of a Gardner exponential model with the alpha parameter constant for all soil types and
equal to the water retention curve exponent, used to extrapolate the effective hydraulic conductivity
from near-saturated measurements, may have introduced estimation errors. Infiltration tests at two or
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more head pressures might have yielded higher confidence for the alpha parameter estimation, but
would have reduced the number of spatial replications. However, the TI distribution of effective
hydraulic conductivity was consistent with the other soil parameters estimated by the TI method, i.e.
sorptivity, steady-state infiltration flux, and near-saturated hydraulic conductivity (results not shown
here). The use of effective hydraulic conductivity, preferred for the sake of comparison with the other
methods, was therefore considered reliable for defining the TI hydrologic response units.

Identification of hydrologic response units

The analysis of variance in terms of landscape variables revealed even more differences between the
three distributions (Table 2).

All the landscape variables significantly affected the CH effective hydraulic conductivity. Land use
type was the most powerful classifier, followed by soil type and topography index classes. Pair wise
comparison allowed us to merge the land use types into 3 groups: forest + coffee and banana + cassava
+ tea (0.55 m h'on average); maize and bean + vegetables + grassland (0.25 m h™"); and wattle (0.04 m
h™"). The soil types could be aggregated into two groups: upper and lower catchment soils. The upper-
catchment soils (Humic Acrisols + Haplic Lixisols) were found to have a high mean effective hydraulic
conductivity (0.46 m h™"). The lower catchment soils (Umbric Gleysols + Eutric Fluvisols + Haplic
Acrisols) covered the lower hillslopes and the valley bottom of the catchment and had mean effective
conductivity of 0.29 m h’', i.e. half of that of the upper-catchment soils. Topography was the least
important classifier.

The TI tests yielded opposite results. The only landscape variable affecting the variance of effective
hydraulic conductivity was the land use. The original land use types could be merged into six final
classes: tea (0.25 m h™"), grassland + cassava (0.07 m h'"), maize and bean + vegetables (0.04 m h™"),
coffee and banana (0.03 m h™"), forest (0.02 m h™'), and wattle (0.01 m h™'). The very high values for the
tea field should be treated with caution, as of the three replicates on the tea field, one failed and one
seemed an outlier of the TI distribution, but was not rejected because it was in the median range of the
entire set of effective hydraulic conductivity data.

RS tests revealed a significant effect due to land use and topography index, but no effect due to soil
types. Again, the major classifier was land use. Land use types could be grouped into: forest + tea +
coffee and banana (0.31 m h™"), maize and bean + vegetables (0.21 m h™"); and cassava + wattle (0.12 m
h™"). After classes 2 and 3 had been merged, slight differences between land units were given by
topography index classes.

The three methods agreed about the high conductivity of tea fields, the constant association among
maize and bean + vegetables in the median range of effective hydraulic conductivity, and the very low
conductivity for wattle. All methods showed a strong effect of land use. Only CH revealed an effect of
soil types. This may be because this method had the largest sample size, which may have yielded more
information for differentiating between sites. However, even in this case, soil type had a lower
classifying power than land use. This is surprising, especially considering that soil type is usually
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considered the main landscape variable for defining hydraulic parameters (Tietje and Hennings, 1996;
Waosten et al., 1999).

Overland flow observations

From 10 March until 10 May 2002, 12 rainfall events caused overland flow and two resulted in no
overland flow. Rainfall depth of effective rain events ranged from 2.8 to 38.5 mm, with recorded 10-
minutes peak intensities ranging from 3.6 to 85. 2 mm h™'. The proportion of spots per effective rain
event where overland flow occurred varied from 11 % to 94 %.

The number of times per spot during the entire rainy season when overland flow was detected, i.e.
the time-aggregated overland flow frequency, was normally distributed and varied from 0 to 71 %, with
a mean value of 44 %. The ability of overland flow detectors to catch overland flow accurately may be
questioned. The T-tubes were quite short, so the microtopography and surface roughness of the spots
where the detectors were located may have affected the probability of detecting overland flow once it
occurred. To limit this problem, utmost care was taken to place the detectors in small depressions.
Moreover, splashes of rain might have entered the small holes in the pipes; if this happens, the presence
of water in the T-tube is not related to the occurrence of overland flow. Therefore, the presence of only
a few drops of water in the T-tubes was considered evidence of splash water, not of overland flow. In
future, sheltering the drilled part of the T-tube could avoid the interference of splashing drops.
Notwithstanding the care we took during the experiment, these, and possibly other sources of errors
might have occurred, blurring the information about overland flow occurrence. Very few studies have
made use of this type of detector. Van Loon (2002) estimated that the observation error of the
quantification of overland flow for such devices is around 18 % of RRMSE. However, in terms of
presence or absence of overland flow (binary response), the observation error is likely to be much
smaller.

Fig. 2 shows the time-aggregated overland flow frequency of the area. The grey background shows
the actual soil erosion as assessed during the same period with the Assessment of Current Erosion
Damage method (ACED; Herweg, 1996). ACED classes of erosion spanned from very low, i.e. fields
with sporadic pedestals and no signs of sheet wash, to very high, i.e. fields with widespread interrills
and presence of rills with cross sections larger than ten cm” (Vigiak et al., 2005). Overland flow was
more frequently detected in fields prone to severe erosion, while it was detected only at the upper edges
of the fields prone to slight erosion. This confirms indirectly that the detectors’ information is reliable.
Fig. 2 shows that frequency of overland flow was highly variable in space, with large differences
occurring within small distances. At one spot overland flow was never detected, whereas at its
neighbouring spots less than 40 m away, overland flow was detected with a frequency that varied from
14 % to 64 %. Contrary to our expectations, overland flow was more frequent in the upper part of the
subcatchment than in the lower part: mean frequency of runoff occurrence was 50 % at the highest
contour lines (1560-1580 m) and 39 % at the lowest ones (1530-1545 m). This confirms that the
observed overland flow was Hortonian. In fact, runoff resulting from saturation excess should be more
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Figure 2. Time-aggregated overland flow frequency during rainy season March-May 2002 at Kwalei, Tanzania.
Field grey shades indicate actual erosion of the ficlds observed in the same period (very low = sporadic
pedestals; no signs of sheet wash; very high = widespread interrills; frequent rills with cross sections larger than

10 cm?®). The 10 m-contour lines are shown.

frequent on the lower part of the slopes, where soil moisture accumulates and where there might be a
perched water table at or near ground level.

Rainfall variability in the area could not be measured, and spatially variable convective
thunderstorms may occur in Kwalei catchment at the onset of the rainy season. Goodrich ef al. (1995)
showed that spatial variability in rainfall depth may be important even in areas as small as the
monitored subcatchment. However, overland flow occurrence (not depth) depends more on the rainfall
peak intensity than rainfall depth. During the rainfall event, it is the relationship between rainfall
intensity and local infiltration characteristics that may trigger or not Hortonian overland flow in a given
spot (Woolhiser and Goodrich, 1988). Rainfall variability may be an important component of the
scatter of overland flow occurrence during a single rainfall event, especially at low rainfall intensities
(Woolhiser and Goodrich, 1988). However, Goodrich et al. (1995) reported that measured peak rainfall
intensities did not vary across their small experimental catchment and rainfall depths were shown to
compensate in time. Moreover, the time-aggregated frequency data indicate a seasonal pattern, for
which small variations of rainfall depth that may affect the spatial pattern of single rainfall events
should be compensated. Therefore, rainfall variability, which may contribute to the variability of
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Table 3. Land cover characteristics in the monitored area (average values per land use type).

Canopy cover Ground cover Plant height

(%) (%) (m)
Cassava 29 41 0.76
Coffee and banana 52 76 1.50
Fallow 48 70 0.80
Maize and bean 26 43 0.67
Sugarcane 38 55 0.91
Tea 27 37 0.55
Vegetables 13 22 0.40

overland flow occurrence at the single rainfall event, should exert negligible influence on the seasonal
pattern.

Apart from the altitude gradient, no other pattern could be detected by visual inspection. This was
confirmed by the analysis of variance. Overland flow frequency showed no significant
relationshipswith land use types, slope or topography index. Soil type may affect the spatial pattern of
overland flow, but this could not be verified in the monitored area. However, borders between soil
types are usually gradual and not as abrupt as the observed pattern of overland flow frequency
suggests. To search for landscape factors that could explain the observed pattern, we tested other
derived topographic variables: the cumulative upslope area (to the watershed divide and of the
immediate surroundings), and slope convergence across and along the main direction of slope. None of
these variables were statistically related to the overland flow frequency.

The only variable that could significantly explain the variance of overland flow frequency was a re-
classified land use variable that separated coffee and banana stands (i.e. the field classified as prone to
slight erosion in Fig. 2) from all the other land uses. The average frequency of overland flow was 35 %
in the coffee and banana stand and 48 % in the other fields (F = 4.771, significant at p = 0.034). This
reclassification basically reproduced the altitude gradient. The reclassification of land use types,
however, might explain why overland flow was more frequent on the slope shoulders than on the
footslopes. Coffee and banana stands differ from the other crops both for canopy structure and land
management. Table 3 shows the land use characteristics observed in Kwalei catchment during a field
survey (Vigiak et al., 2005). Canopy cover and ground cover were not significantly correlated to
overland flow frequency. For example, in the fallow fields frequency of overland flow was 48 %,
whereas in coffee and banana stands was only 35 %, notwithstanding the canopy cover and ground
cover were similar (Table 3). Average plant height was not tested, because it varied a lot among fields,
depending on the time of survey, the crop management and the degree of intercropping (coefficient of
variation > 100 %). However, these three parameters are insufficient to describe the differences of
canopy architecture among land use types. It is intuitive that rainfall interception is larger in the dense
canopy of coffee and banana stands and on the large leaves of banana trees than in other crop covers.
Rainfall interception plays a crucial role on the redistribution of rainfall that actually hits the ground.
Canopy interception is also an extremely variable phenomena both in space and time (Jackson, 1971;
Jackson, 2000), but while rainfall variability can be considered spatially random, the effect of canopy is
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Figure 3. Box plots of time-aggregated overland flow frequency associated to clusters (see Figure 4 for
locations). Cluster B comprised only one spot.

more constant in space. The support of overland flow detectors is small in comparison to such
heterogeneity: this may explain the presence of spots where overland flow was never detected close to
spots with mean overland flow occurrence. A second important difference between coffee and banana
stands versus other crops is land management, which affects soil surface conditions. In coffee and
banana stands a litter layer a few mm thick usually covers the soil surface. By contrast, the fields on the
upper slopes (annual crops, fallow, tea, and sugarcane) are frequently hoed to prepare the soil and
control weeds. This cultivation may temporarily increase soil roughness, but it degrades soil structure
and removes the litter layer. As a result, the soil surface is more exposed to raindrop impacts and
sealing. These conditions may favour the occurrence of overland flow notwithstanding that the
vegetation cover may be high.

The original binary data, i.e. presence or absence of overland flow per spot and per event, were
classified into hierarchical clusters. Five clusters could be distinguished, which were associated with
different frequency distributions (Fig. 3). Cluster A had the lowest frequency and cluster C the highest.
Clusters A and B (the latter consisting of only one spot) showed some similarities, and will converge at
the next level of aggregation level. Clusters D and E will also converge at the next level of aggregation.
Cluster C, however, stood out. It comprised the most “hot spots”, i.e. the points where overland flow
occurred most frequently. “Hot spots™ also appeared in clusters D and E, however. Eventually, at a
higher level hierarchical level, clusters C, D and E will also merge, leading once again to the main
pattern of Fig. 2.

Clusters were very scattered over the area (Fig. 4). This was especially true for cluster C (), i.e. the
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Figure 4. Clusters of overland flow occurrence during rainy season March-May 2002 at Kwalei, Tanzania. The
grey background indicates the coffee and banana stand, the other land use types are in white. The 10 m-contour

lines are shown.

critical spots, where overland flow occurred more frequently. Some spatial structure was also present.
For example, cluster D (o) had a clear spatial aggregation, with all but one spots belonging to one
converging slope. The highest spot of Cluster D had a time-aggregated frequency of 71 %, whereas the
lowest one had a frequency of 43 %. This suggests that once overland flow was triggered somewhere in
the upper part of the slope, it sometimes flowed far enough to cross into the coffee and banana stands
on the lower slopes. In a similar way, some spots of cluster A (m), associated with low frequency of
overland flow occurrence, were located in diverging slopes. The spots of cluster E () in the right part
of the monitored area also belonged to one single convex-linear slope, where overland flow was quite
frequent. However, the central part of Fig. 4 is dominated by a mixture of clusters: here spots belonging
to clusters A, C and E are scattered along and across slopes without apparent spatial order.

The spatial correlation of overland flow frequency was tested by geostatistical analysis. The best model
that fitted the observed semi-variance of overland flow frequency was a spherical semi-variogram (Fig.
5). The semi-variance of the runoff frequency increased with distance up to 40-50 m; thereafter the
scatter increased, showing that there was little spatial correlation. Visual inspection of clusters (Fig. 4)
suggested that spatial correlation was around 15-20 m across slopes and 50-60 m along the slopes.
Unfortunately, the slope direction changed at any spot so that anisotropic geostatistical analysis was not
possible.
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Figure 5. Semi-variogram of time-aggregated overland flow frequency.

Comparison of hydrologic response units and observed overland flow pattern

In Fig. 6a the overland flow clusters are presented in relation to the land use of the monitored area.
Figs. 6b-d show the three hydrologic response unit patterns, i.e. the patterns of effective hydraulic
conductivity obtained using the average effective conductivity per land use, soil type and topographic
index class as defined by the three measurement methods. The darker the shade of grey, the higher the
average effective conductivity of the field (note that the ranges vary among the methods). We expected
that the higher the effective conductivity, i.e. the more permeable the soil, the less frequent would be
the occurrence of Hortonian overland flow. This did not happen. For example, the tea and cassava
fields were among the areas with the highest overland flow frequency (50 % and 68 %), whilst tea and
cassava scored the highest CH and TI effective conductivities (Figs. 6b and 6¢). RS also yielded a very
high effective conductivity for the tea field, but at least the cassava field had the lowest effective
conductivity (Fig. 6d). On the other hand, the coffee and banana stands should be very permeable, as
their overland flow frequency was 35 %. This agreed with the CH and RS hydrologic units, even if in
both cases coffee and banana stands were not statistically different from the tea field. The contrast
between upper fields and the coffee and banana stands was well recognizable in the CH hydrologic
response units, but less marked in the RS pattern, and even reversed in the TI pattern. TI assigned the
coffee and banana stands to the least permeable soils. Probably, TI low infiltration rates were caused by
the impedance of water infiltration along macropores (e.g. Reynolds et al., 2000). In the coffee and
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Figure 6. Overland flow cluster pattern in comparison with hydrologic response units: a) overland flow cluster
and land use units of the monitored area; b) CH average effective hydraulic conductivity; ¢) TI average effective
hydraulic conductivity; d) RS average effective hydraulic conductivity. Effective conductivity is expressed in m
h'.

banana stands, macroporosity may be important, as biological activity is high and root systems are well
developed.

Fig. 7 shows the stochastic component of the hydrologic response units. Each hydrologic unit is
represented as a central point given by its average effective conductivity and the average overland flow
frequency observed in that unit. The error lines indicate one standard deviation around this central
point. The three distributions of effective conductivity are clearly separated, with TI and CH values at
the extreme of the range, and RS in the central part. Though the central points of each hydrologic unit
were separated, most units overlapped in both effective hydraulic conductivity and overland flow
frequency ranges. The subdivision into hydrologic response units did not correspond to real differences
in observed overland flow, but was instead mainly an artefact. This was particularly true for CH
measurements, where all the units merged together. The TI measurement separated at least 1 unit from
all the others (the cassava field, with high overland flow and high effective conductivity). The position
of the tea field (the spot at the right) is uncertain, because the standard deviation of its effective
conductivity could not be calculated. TI generally showed an increase in overland flow frequency
associated with an increase in the mean effective hydraulic conductivity.
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Figure 7. Scatter plot of hydrologic response units and overland flow frequency: CH (e), TI (A) and RS (m).
Central points indicate the average effective conductivity and the average overland flow frequency observed for
each hydrologic response unit. Error lines indicate 1 standard deviation range. Black units represent land use
types whose effective conductivity was directly measured; grey units represent a “generic” land use type (i.e. not

included in the 10 measurement fields).

The RS hydrologic units appeared to be better separated from each other, with an increase of
effective conductivity generally associated with a reduction of overland flow frequency. There was a
low correlation between average RS effective conductivity and overland flow frequency (Pearson c.c. =
-0.262; significant at p = 0.075), whereas for the CH and TI hydrologic units there was no correlation,
neither linear nor non-parametric (R. Romanowicz, pers.comm., 2003). The RS units also separated the
effect of topography: the difference between the two grey spots (a “generic” land use type) reflects a
difference in topography index classes, with the left-hand spot for areas with topography index < 5.5
and the right-hand one for areas above this threshold. This separation also corresponded to a slight
difference in overland flow frequency.

RS seemed to yield the best results. This was probably because the RS experiment simulated the
infiltration process in the most pertinent way, simulating the action of raindrops impact and fast wetting
and sealing of the soil surface. TI measurements at near-saturated condition failed to activate the
macroporosity that was probably most active in infiltration and reinfiltration processes. The TI method
also yielded the most uncertain results and required the longest experimental time; it was therefore the
least appropriate method for this research. It is important to note, however, that TI was the only method
to provide information on soil infiltration in unsaturated conditions, which is very valuable to
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understand the soil hydrology. The CH method yielded large variances within groups and failed to
differentiate among very different land use types, i.e. coffee and banana, tea and cassava. Again,
measurement support made it impossible to account for large soil pores.

These conclusions are tempting, but may be misleading. The statistical correlation between RS
hydrologic units and overland flow frequency was weak, with considerable overlap in overland flow
frequency ranges of RS units. Basically, the only spatial pattern of overland flow that could be
associated with land use, soil, and topography was the border between the upper fields and the coffee
and banana stands on the lower slopes. This border, and the sequence cassava — maize and bean —
coffee and banana stands were well captured by the RS units. However, no correlation was found
between RS hydrologic units and overland flow clusters, i.e. the location of clusters and especially of
“hot spots” remained largely unexplained by the hydrologic units explored in this study.

Conclusions

The spatial pattern of the overland flow occurrence observed in this study was practically
independent from the field borders. Overland flow spots more than 40 m apart were not spatially
correlated. It was particularly difficult to explain the location of “hot spots” of overland flow
(especially cluster C) in terms of soil, land use or topography. This high spatial variability of overland
flow is in accordance with reports for both saturation-excess (Elsenbeer and Vertessy, 2000; van Loon,
2002) and infiltration-excess overland flow (Gascuel-Odoux et al., 1996). Overland flow is very
variable in space and involves complex non-linear processes that guide the redistribution of overland
flow along the slopes in complex patterns. Vegetation interception and local ecological characteristics,
e.g. a local slope convergence, or an opening in the canopy cover, or a slightly compacted soil surface
due to the passage of an animal, might trigger or not the occurrence of Hortonian overland flow.

The strategy of defining hydrologic response units in terms of landscape variables (soil, land use,
and topography) and measuring effective conductivity to characterize their behaviour failed to capture
the observed pattern of overland flow.

The causes of the failure are at least twofold. On one side, point infiltration measurements failed to
account for infiltration through the soil macroporosity. This was particularly true for TI method, where
impedance of water did not activate the macropores, and CH method, where macroporosity was
interrupted by the extraction of soil cores. Of the three methods, RS yielded the pattern closest to the
observations, probably because it most closely simulates the rainfall event processes that may trigger
Hortonian overland flow in this environment, i.e. infiltration in macropores and fast sealing of the
surface. These results stress once again the problem of measurement upscaling. Because processes
differ at different scales, not only the values of effective hydraulic conductivity should not be directly
used without calibration, but also the identification of the hydrologic response units and the estimation
of parameter distributions could not be achieved with point-scale measurements.

A second, and probably more important, reason behind the strategy failure was that it neglected the
effect of vegetation interception in the distribution of rainfall below the canopy. Rainfall interception
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was the main process that could explain the only spatial pattern of overland flow that could be
associated with the landscape variables, i.e. the border between cultivated fields on the slope shoulders
and the coffee and banana stands at the foot of the slopes. Unfortunately, rainfall interception is also a
highly variable phenomenon that is difficult to measure (Jackson, 1971).

In the face of the spatial heterogeneities of rainfall variability, canopy interception, soil sealing and
infiltration, and the difficulties of measuring these processes, it is hard to formulate an alternative
strategy to identify hydrologic response units. If the final modelling aim is the characterization of
overland flow occurrence, then the use of overland flow detectors may be a valid alternative in defining
hydrologic response units. Overland flow detectors require little investment and can give the direct
picture of overland flow occurrence, without the need to extrapolate this information from indirect
sources such as measurements of effective conductivity. The main drawback is that the detectors
require occurrence of rainfall, so that observations are needed for a quite long periods (i.e. some
rainfall events). However, spatial patterns contain hydrologic information, the exploration of whose
potential has only recently been started (Grayson and Bloschl, 2000). Measurements may give new
insights to formulate more appropriate modelling approaches (Beven, 2000). It is therefore by
observing the spatial pattern of overland flow and gathering enough concurrent information that we
may hope to characterize better the hydrological processes involved in Hortonian flow occurrence.
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A DISAGGREGATING APPROACH TO DESCRIBE
OVERLAND FLOW OCCURRENCE WITHIN A CATCHMENT

Abstract

A parametrically parsimonious, data-based model simulating the distribution of overland flow within a
catchment was built on observations at hillslope and catchment scale collected in a small East African
Highlands catchment (Kwalei, Tanzania). A rainfall-flow Data Based Mechanistic model defined
catchment effective rainfall and separated two flow components: the quick flow, interpreted as a
combination of overland flow and reinfiltration at the hillslope scale, and the slow flow, interpreted as
ground water displacement. Two hydrologic response units (HRUs) were identified: perennial
(HRU 1) versus other, mainly annual, crops (HRU_2). Observations of overland flow occurrence at the
hillslope scale were used to derive HRU probability distribution functions (pdf) of overland flow
occurrence in relation to effective rainfall. The pdfs were employed to disaggregate the catchment
quick flow into HRU overland flow depth. Reinfiltration was incorporated in the toposequence by
assuming that only the overland flow generated in the lower part of the field would drain out of it.
Overland flow pdfs showed that at low effective rainfall, overland flow was more frequent in HRU 2,
but at high effective rainfall overland flow in the two HRUs was similar. Comparison of model
simulations versus observations in Gerlach troughs indicated that: 1) the effective reinfiltration length
was on average 4 m; 2) the reinfiltration length was probably shorter in perennial crops and longer in
annual crops; and 3) the model overestimated the effect of large rainfall events and underestimated that
of intense rainfall events. Notwithstanding these limitations and in the face of the high variability of
overland flow observed at the hillslope scale, model simulations of overland flow distribution within
the catchment were considered satisfactory. The disaggregating approach pursued in our study
represents a valid alternative to the more common use of infiltration equations to model overland flow
within a catchment.

Keywords: DBM modelling; probability distribution functions of overland flow, reinfiltration;
overland flow spatial pattern; Tanzania.

Introduction

In humid and wet tropical climates, the mechanisms of runoff generation active in small watersheds are
multiple and complex (Dubreuil, 1985). Discharge recordings at the gauged outlet are often interpreted
as combinations of base flow, quick flow and slow flow. Streams often carry water all the year around,
even when the rainfall season is concentrated in 4-6 months of the year, fed by deep groundwater (base
flow). Rapid and intense storms may generate a quick rise of the water level at the outlet within an
hour. Infiltration-excess overland flow (Hortonian type), direct rainfall in the streams and saturation
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excess overland flow (Dunne type) can all contribute to this rapid discharge (quick flow). Subsurface
storm flow and return flow may create a secondary discharge component that is delayed by some hours
after the rainfall event (slow flow; Dubreuil, 1985; Beven, 2001).

Rainfall-flow relationships have been the subject of much research work and many well established
modelling methodologies exist (for a review see e.g. Beven, 2001). Among the various approaches,
data-based mechanistic (DBM) modelling (Young, 1998; Young, 2003) has been developed in the last
20 years and has received much attention in recent literature (Young, 2003; Beven, 2001). DBM
modelling rejects deterministic models (upward approach in the terminology of Sivapalan, 2003) as
very difficult to identify, estimate and validate, and embraces instead an inductive methodology
(downward approach). Arguing that rainfall-flow records usually contain information relative to the
one-three main hydrologic mechanisms active in a given catchment, and therefore that complex models
are often over parameterised, DBM modelling aims to identify the modal response of catchment
rainfall-flow systems through robust statistical analysis tools. Statistical analysis of rainfall-flow time-
series is employed to characterize the main hydrologic systems of the catchment, without formulating a
priori hypotheses that may affect the analysis. In this sense, data analysis is used to suggest an
appropriate structure of the hydrologic model (data-based modelling). However, to be acceptable, any
model identified with the statistical tools must be interpretable in physical terms (mechanistic
modelling). Such an interpretation usually follows established hydrologic paradigms, but sometimes
may challenge them (Young, 2003).

DBM modelling has been applied in a wide range of environmental, ecological, economic and
engineering systems (Young, 1998). Its application to rainfall-flow processes has been proven in a
number of cases in both temperate catchments (Young, 1993; Young and Beven, 1994; Young, 2001a;
Young, 2001b; Young and Tomlin, 2000; Young, 2003), and in tropical environments (Mwakalila ef
al., 2001). The approach is particularly useful where measurements are of poor quality, because the
statistical analysis applied to the model identification and estimation allows at the same time an
efficient estimation of the uncertainties of model results (e.g. Mwakalila ef al., 2001).

The DBM approach therefore offers many advantages for catchment rainfall-flow modelling, thanks
to its straightforward, statistically robust methodology, which makes it appropriate for rainfall-flow
modelling and flood forecasts of gauged catchments (e.g. Young, 2002). However, it offers little
insight into the hydrology at the hillslope scale, which in turn determines the pathways of overland
flow and sediment movement within the catchment. The physical interpretation of a DBM model
allows us to infer the dominant modes of response in the catchment, but as for any catchment rainfall-
flow model, it is difficult to relate the apparent simplicity of the rainfall-flow relationships at the
catchment outlet to the hillslope mechanisms of runoff generation (Sivapalan, 2003). Indeed, the
complexity and heterogeneity of hillslope hydrology have been the main reasons behind the
development of (upward) physics-based distributed models. Sivapalan (2003) argued that a
reconciliation of the upward and downward approaches might be achieved through common and
scalable features linking the hillslope and catchment scales, such as storage-discharge relationships or
probability distribution functions for governing terrain attributes. The topography similarity index used,
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for example, in Topmodel (Beven and Kirkby, 1979) offers an example of a linking feature in the case
of saturation-excess overland flow.

In the case of infiltration-excess overland flow, however, a similar index has not yet been proposed.
This is probably a result of the high variability and complexity of processes driving the occurrence of
infiltration-excess overland flow, which are not yet fully understood (Beven, 2001). The occurrence of
overland flow is usually modelled through infiltration equations, in which the most sensitive parameter
is the effective hydraulic conductivity of the uppermost soil layer that governs the rate at which rainfall
infiltrates into the soil. A strategy often adopted to model the spatial distribution of overland flow
within a catchment is to assume hydrologic response units (HRU), i.e. areas where infiltration, and thus
infiltration-excess overland flow, is more similar within the units than between units (Bloschl and
Sivapalan, 1995), and to estimate for each HRU effective infiltration parameters. Unfortunately,
infiltration parameters, and particularly the effective hydraulic conductivity, are highly variable in both
space and time, and very difficult to measure at the appropriate scale (e.g. Karssenberg, 2002). To
account for this variability, infiltration parameters can be defined stochastically through probability
distribution functions instead of single deterministic values (e.g. Vertessy and Elsenbeer, 1999; Seguis
et al., 2002). In any case, as a consequence of the high variability of infiltration in space and time and
because of scale issues, neither the identification of hydrologic response units nor the estimation of
effective infiltration parameters can be easily achieved through infiltration measurements (Loague and
Gander, 1990; Vigiak et al., 2005a).

Due to the complexities of the hillslope mechanisms, however, an upward approach consisting of
adopting an explicit infiltration equation with poorly identified parameters is in our view not
appropriate, or required, for capturing the occurrence of overland flow within a catchment. It has been
argued that observations of overland flow occurrence at the hillslopes may instead offer more direct
information on hillslope scale hydrology (Vigiak et al., 2005a).

The aim of this study was to develop a disaggregating (downward) approach linking catchment and
hillslope scale observations to describe the spatial distribution of overland flow within a catchment,
without introducing infiltration equations. This paper is the continuation of a study showing the
complexity of the spatial patterns of overland flow occurrence observed in a tropical mountain
environment (Kwalei catchment, Tanzania; Vigiak et al., 2005a).

Materials and Methods

Study area — Kwalei catchment

The Kwalei catchment (4°48’ S, 38° 26'E) is situated in the West Usambara Mountains, North-East
Tanzania (Fig. 1). The catchment size is approx. 2 km?, and altitude ranges from 1337 to 1820 m. The
terrain is rough and highly dissected, with more than half of the hillslopes steeper than 20 %. Drainage
comprises four permanent streams running north-west to south-east. Average annual rainfall is
approximately 1000 mm, with a bimodal distribution. The long rainy season stretches from the end of
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Figure 1. Location of hillslope monitoring areas in Kwalei catchment: the north-western subcatchm
March-May 2002 (box, dots indicate location of runoff detectors), and the two transects set in

(bold lines). Shading represents the main land use types of the catchment. Grey lines are the 50 m contour lines,
black lines indicate the drain
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February to the end of May and the short, less reliable rainy season from October to January. The
average daily temperature is 20 °C, with diurnal temperature ranges (12-25 °C) greater than annual
ranges of mean daily temperatures (16-20 °C) (Vigiak et al., 2005b).

Soils on the slopes consist mainly of Humic and Haplic Acrisols (FAO-Unesco legend, FAO, 1990).
They comprise porous, sandy topsoils, and clayey, deep and well-drained subsoils. Saturation may
occur in the clayey and vertic Umbric Gleysols in the valley bottoms (Meliyo et al., 2001).

The highest part of the catchment is covered by mountain rain forest, whereas the middle and lower
slopes are used for agricultural purposes. Hamlets are located mainly along the ridge shoulders.
Cultivation of annual crops is concentrated close to the compounds. Maize is the most commonly
cultivated crop, often intercropped with bean, banana, cassava and sugarcane. The two-layer cultivation
of banana and coffee is frequent on the steep slopes along the stream incisions. Valley bottoms are
intensively planted with vegetables, the major cash crops of the area.

Observations at the catchment scale

Catchment rainfall and discharge were recorded at the catchment outlet in the period August 2001-
June 2003. Rainfall was recorded using three tipping bucket rain gauges, one placed at the outlet, one
in the middle valley and one in the upper slopes. The catchment outlet was equipped with a rectangular
flume where a sonic water level meter recorded the water level at two minute intervals. The flow
height-rating curve was derived from observations of flow velocity and water level during a major
rainfall event (21-22 May 2003). The data were analysed using a State Dependent Parameter (SDP)
method of the Captain Toolbox (Young ef al., 2001). The SDP method consisted of a non-parametric
signal processing technique that is useful when model parameters change with the state of the input
variables. The analysis involves two stages. First, the state dependency of the signal is identified non-
parametrically by using a recursive Fixed-Interval Smoothing algorithm (FIS; Young, 2000). Then, the
resulting non-parametric (look-up table) relationship is parameterised, so that the final estimation of the
parameters that characterise the nonlinearities is statistically efficient (Young, 2001b). In the case of
the flume rating curve, the flow and water level relationship was first identified non-parametrically,
then parameterised in a power law relationship similar to the theoretical curve for rectangular flumes.

Analysis of the rainfall-flow records indicated that some technical problems occurred during the
data collection campaign, critically affecting the quality of the data. The rain gauges positioned far
from the outlet malfunctioned: many records were missing, and little correlation was found between
their few records and the ones from the rain gauge at the flume. Therefore there was no choice but to
rely on rainfall records at the flume station. Rainfall heterogeneity was observed, but could not be
quantified.

Moreover, the sonic water level meter apparently failed to compensate for air temperature; as a
result, the discharge records showed daily fluctuations that were not related to discharge changes. To
limit the influence of poor data quality, rainfall and water level recordings were averaged to one hour
time intervals. The use of filtering functions to reduce the noise in the measurements was rejected as it
would affect the estimation of model parameters. Instead, the presence of noise, especially during intra-
event periods, was taken into consideration during the evaluation of model results.
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Figure 2. Profiles of the two longitudinal transects set for runoff monitoring during season 2003.

Observations at the hillslope scale

Observations at the hillslope scale in the long rainy season (March-May) 2002 aimed to gain insight
into the hydrologic behaviour of the catchment. Overland flow occurrence was monitored by 50 runoff
detectors (Vigiak et al., 2005a). The detectors consisted of simple devices (30 cm long PVC-perforated
tubes connected to a T-junction provided with a removable lid) able to catch overland flow occurring in
their immediate upslope area. The detectors were placed on four, 250-m long contour lines, defining a
small subcatchment of around six hectares located in the north-western corner of the catchment (Fig.
1). After each rainfall event, the presence of water in the tubes was recorded and interpreted in terms of
overland flow occurrence (presence or absence).

In the long rainy season (March-May) 2003, hillslope scale observations were made to try to
validate the perceptual hydrologic model defined on the basis of the year 2002 data. Observations
concentrated on 2 longitudinal transects located at the lower (1380 m) and middle (1450 m) slopes of
the catchment (Figs. 1 and 2). Transects spanned from the water divide to the drainage line and crossed
representative sequences of annual and perennial crops on the most frequent soil type of the catchment
(Haplic Acrisols). Transects consisted of six rows of four runoff detectors each, placed at 10 m
intervals along the contour line, with a total transect width of around 40 m. Three 0.50 m wide Gerlach
troughs (Gerlach, 1967) were installed at different positions along each transect. After each rainfall
event, observations consisted of overland flow occurrence in the runoff detectors (presence or absence)
and volumes of overland flow collected in the Gerlach troughs.
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Rainfall-flow DBM modelling

According to the methodology developed by Young (1993; 2002), the nonlinearity of the rainfall-flow
process may be filtered by the transformation of measured rainfall into effective rainfall. The
relationship often assumes a simple power-law form that uses gauged flow as a surrogate measure of
the soil-water storage in the catchment:

u, = f(yr, (1)

where u, denotes the effective rainfall and# denotes measured rainfall. The scalar function £(y,)
describes the nonlinearity between the effective rainfall and the flow y,, interpreted as a surrogate of
catchment soil moisture. In our study, the function f(y,) was characterised using again SDP estimation
techniques, at first non-parametrically using the recursive FIS algorithm, then parameterised in a power
law form (Young, 1993; Young and Beven, 1994). The optimisation procedure of this second stage
included the concurrent estimation of the linear Stochastic Transfer Function (STF) model between
effective rainfall and flow.

The effective rainfall is the input variable of the Single Input Single Output STF, whose general
form is:

_ B(Z_])
Az

U 5+, 2)

Y

The polynomials A(z") and B(z") are defined by:

n

Az =1+az" +..+a,z

B(z")=b,+bz" +.+bz"

3)

where z'denotes the time shift operator; b, i=0,1,2,..., m and a,j=1,2, ..., ncoefficients denote
the parameters of the n-m STF polynomial; & denotes the pure, advective time delay present in the
system; and & denotes the noise (not necessarily white).

The Steady State Gain (SSG) of the model is given by:

SSG = —1=0 )

and describes the portion of rainfall that reaches the catchment outlet, whereas the loss efficiency, i.e.
the water lost in the catchment, is equal to 1—SSG .

In rainfall-flow modelling the STF is often a second order polynomial that can be decomposed into
two parallel components, a quick and a slow component. The quick component is usually interpreted in
terms of surface flow, but may include some fast subsurface responses, whereas the slow component is
often ascribed to subsurface and groundwater processes (Young and Beven, 1994; Young, 2003). This
physical interpretation is similar to other linear transfer function models, such as the Bedford-Ouse
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model (Whitehead et al., 1979) and the IAHCRES model (Jakeman et al., 1990), or more generally to
their precursor, the unit hydrograph model (Sherman, 1932).
The decomposition of the discharge into the quick and slow components has the form:

Ye=Yi, TV TE Q)
where
B
yl,t = 1 I -1 utﬂ)"
+ o,z (6)
b
yz,r - —1 ut—o‘
l+a,z

y,, represents the quick flow; y,, represents the slow flow; a;.a,,5,,5, are parameters derived from

eq. (2); u, is the effective rainfall (eq. 1) and & represents the estimation error at the time t. From eq.

(6), the discrete equivalents of the Steady State Gain (SSG = Ps ) and the time constant
-a
-1 . ¢ .
(7, = l(—) ) of the quick (¢ = 1) and the slow (¢ = 2) flow components can be derived.
og(-a,

The identification and calibration of the DBM rainfall-flow model was performed on November-

December 2001 hourly data. Model validation was done for March-May 2003 hourly data.

Disaggregating of overland flow among hydrologic response units (HRUs)

We built a theoretical model to predict HRU overland flow in relation to the catchment outlet
discharge. According to the interpretation of the DBM model, we assumed that the quick flow
component of the discharge was the aggregated response of the catchment to predominantly surface
flow. We further assumed that the contribution of each HRU could be disaggregated by estimating the
probability density functions (pdf) of overland flow occurrence in each HRU as a function of the
effective rainfall.

The first step of the analysis consisted of a non-linear regression analysis that modelled the observed
HRU frequency of overland flow occurrence as a function of the effective rainfall ». The runoff
detectors were divided among HRUs. For each observation and HRU, the frequency was given by the
number of detectors where overland flow was detected divided by the total number of detectors. The
observed presence-absence of overland flow was assumed as resulting from the peak infiltration-excess
since the previous observation, and was measured as the maximum (peak) hour effective rainfall #, of
the intra-observation interval (u,.qx). The regression assumed the form:

Pk = lIIk (umax) (7)



73
Chapter 4

Py linked overland flow occurrence of the &th HRU to the effective rainfall u. At any u, P, gave the
HRU mean overland flow occurrence. The information on the variance of overland flow occurrence,
necessary to characterise the probability distribution function of overland flow in u, was contained in
the Jacobian matrix associated with the estimated Py .

In the second step of the analysis, we assumed that the HRU probability distribution functions of the
overland flow occurrence G, (u) were Gaussian at any u. This assumption was justified by the
observations of Hjelmfelt and Burwell (1984), who reported that the spatial variability of overland flow
was normally distributed. Mean and standard deviation of G, (u), 4, and o, , were estimated from
Py and the Jacobian matrix associated to P, respectively. The HRU fraction contributing to the
overland flow was then considered equal to G, (u) integrated between 0 (no occurrence, i.e. nowhere)
and 1 (complete occurrence, i.e. everywhere).

At any time step, the overland flow generated by the catchment, i.e., the quick flow component y,,
(eq. 6) of the discharge, could then be considered equal to the sum of the fractions contributed by all
HRUs:

yl,t = Z Wi J.Gk (ut) (8)

where wy is the area of the k&th HRU.
From eq. (8), the average overland flow depth F}, occurring at the kth HRU at any time step could
be defined as:

1
y Wk .[Gk (ut )
Fk 1,¢ 0

| 4 Z Wi ].[Gk (u,)

where 4 is the total catchment area.

)

Modelling of reinfiltration along the slopes

The disaggregation of quick flow allowed an estimation of average overland flow depth (F},) occurring
per HRU at each time step. However, the distribution of the overland flow within the catchment
depended also on the topographic connectivity of the fields. Therefore, an overland flow accumulation
procedure along the slopes was incorporated into the model. The reinfiltration of the overland flow
was accounted for by assuming that only the portion of overland flow generated in the lower part of the
field could drain out of it (run-off). The maximum field area generating run-off was equal to the length
of the lower field border times the characteristic reinfiltration length L, i.e. the average length along
which the overland flow travels along the soil surface before reinfiltrating in the soil. If one field
drained to more fields, the ratio of the overland flow draining to any receiving field was proportional to
the fraction of border length common to the draining and the receiving fields. A field land use map of
the catchment was available (Vigiak et al., 2005b). A connectivity matrix linking fields from the
upslope (the watershed divide) downwards to the channel streamlines was defined through observations
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Figure 3. Overview of the hydrologic model: on the left the DBM rainfall-flow model (catchment scale); on the
right the disaggregation of quick flow among the hydrologic response units (HRUs; hillslope scale); below, the
accumulation of overland flow along the slopes, taking account of reinfiltration (field scale).

of flow direction surveyed in the fields. The stream lines were the final collectors of the overland flow
slope accumulation and drained to the outlet.

The complete modelling sequence comprised (Fig. 3): 1) the rainfall-flow DBM model deriving
effective rainfall u,and quick flow y, , ; 2) the disaggregation of quick flow y,, among HRUs, defining
Fys;, and 3) the fields’ sequence of run-on and run-off, dependent on the topographic connectivity and
the characteristic length of reinfiltration L.

The characteristic reinfiltration length parameter L of the model was assumed equal to the average
length of the contributing area of the Gerlach troughs placed along the transects. The Gerlach trough
contributing area, given by the Gerlach trough width times the reinfiltration length L, was then
estimated by comparison of model simulations against the Gerlach trough observations of overland
flow depth.

Results and discussion

The hydrologic perceptual model

In the long rainy season of 2002, 12 events generated overland flow (Table 1), whereas 14 events were
recorded in the 2003 season (Table 2). Rainfall events were short, intense and localized at the on-set of
the rainy season and became progressively longer, less intense and spatially spread toward the end of
the season. Even small rainfall events triggered occurrence of overland flow, but rainfall events with
30-minute peak intensities of less than 3 mm h™' generated overland flow in less than 33% of detectors.
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Table 1. Overland flow occurrence in March-May 2002, Kwalei catchment, Tanzania: rainfall event amount; 30-
minute peak intensity and overland flow frequency in runoff detectors (i.e. fraction of runoff detectors where
presence of runoff was detected divided by total number of detectors).

Rainfall event . .
Date Overland flow frequency in

Amount Peak T runoff detectors
(mm) (mmh™)

10 March 20.0 35.6 0.94
21 March 4.6 9.2 0.11
27 March 25.0 42.8 0.52
2 April 7.4 11.2 0.37
3 April 7.8 10.8 0.46
5 April 2.0 3.6 0.59
9 April 52 10.4 0.74
15 April 1.0 2.0 0.22
18 April 10.6 10.8 0.87
22 April 1.6 2.8 0.24
25 April 3.0 4.8 0.50
1 May 3.0 3.2 0.72

Table 2. Transect observations in March-May 2003, Kwalei catchment, Tanzania: rainfall event amount and the
30-minute peak intensity; overland flow frequency in runoff detectors; and overland flow volumes recorded at
the Gerlach sites (number of Gerlach with overland flow, average volume and coefficient of variation).

Rainfall event Overland flow Gerlach troughs
Date Amount Peak I frequency in n mean c.v.
runoff detectors
(mm) (mmh™") (dm’) (%)
11 March 1.4 2.8 0.29 1 0.085
23 March 2.0 2.0 0.27
24 March 29.8 55.6 0.93 4 0.299 170
29 March 6.8 5.2 091 2 0.009 42
31 March 15.0 25.2 091 6 0.366 119
2 April 14.4 22.8 0.98 6 0.995 148
3 April 20.8 32.8 0.98 5 1.423 98
5 April 10.0 13.2 091 1 0.580
1 May 54 7.6 0.38 1 0.125
7 May 1.8 2.0 0.18
19 May 16.8 7.6 0.98 3 0.013 141
20 May 65.2 12.6 1.00 4 0.431 151
23 May 57.4 8.8 0.98 4 1.606 63
25 May 2.2 5.4 0.67 4 0.283 100
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The frequency of overland flow occurrence increased with rainfall amounts and intensities, but no
simple correlation was found between rainfall characteristics and overland flow occurrence. In the 2003
season, with the exception of the first storm, overland flow was recorded in the Gerlach troughs only
when rainfall was above 5 mm, and when overland flow occurrence recorded by the detectors was
above 50 % (Table 2). Volumes of overland flow were low; the maximum recorded volume was 3.95
dm®, recorded in the lowest field of transect 1 (Gerlach G3). Only in two events all Gerlach troughs
recorded overland flow. Hillslope observations indicated that overland flow occurrence was highly
variable, both in location and volumes, especially at small rainfall events. This confirms the high
variability of hillslope overland flow processes reported in literature (Hjelmfelt and Burwell, 1984;
Gascuel-Odoux et al., 1996; Elsenbeer and Vertessy, 2000; van Loon, 2002; Vigiak et al., 2005a).

A more detailed analysis of the hillslope observations was reported elsewhere (Vigiak et al., 2005a).
The most important conclusions were: 1) the main mechanism of generation of overland flow in the
fields was of infiltration-excess; 2) reinfiltration along the slope was frequently observed and
represented an important hillslope hydrological process; 3) no noticeable influence of soil type or
topography on overland flow occurrence was detected; 4) two hydrologic response units (HRUs) could
be identified: perennial crops (HRU 1: coffee and banana stands, forest and banana and maize fields)
versus other crops (HRU 2: mainly annual crops). In HRU 1 overland flow occurrence was observed
less frequently than in HRU 2, because of a number of concurrent conditions, i.e. higher canopy
interception, presence of litter, better topsoil conditions in HRU 1 than in HRU 2, which were not
only related to differences in infiltration as measured in the field (Vigiak et al., 2005a).

The discharge at Kwalei catchment outlet was interpreted as the combined result of different
mechanisms of runoff generation: the overland flow generated along the slopes, mainly of Hortonian
type, reinfiltrated usually within distances shorter than 20 m (Vigiak et al., 2005a). This reinfiltrated
flow and the subsurface flow contributed to the displacement of ‘old’ water stored in the soils,
generating the quick flood wave in response to the rainfall event. Rainfall falling directly on the
perennial streams or on the saturation-prone Gleysols in the valley bottom would probably contribute to
this first discharge wave, but because of the limited extension of these areas (approximately 1 % of the
catchment), their contributions were considered negligible. A large portion (> 90 %) of the rainfall did
replenish the catchment storage, to be partly lost either by evapotranspiration or deep leakage, and
partly be routed to the outlet (c. 11 %, base flow). This interpretation is in agreement with the
hydrologic behaviour of many catchments in the wet tropics (Dubreuil, 1985), and implies that the
catchment discharge is only indirectly related to the generation of overland flow along the slopes, i.e.
reinfiltration and subsurface storm runoff are important components of the quick flow.

The DBM rainfall-flow model
For Kwalei catchment, the nonlinearity between rainfall and flow showed a reasonable power-law
form. Eq. (1) was parameterised as:

U, =y,'r (10)
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Figure 4. Calibration of rainfall-flow (DBM) model, November-December 2001. Solid black line denotes the
estimated flow and thin dashed lines denote 95% confidence limits of the prediction; grey dots denote the
measured flow.

with the optimised power—law coefficient parameter x = 0.6889. As the flow discharge, expressed in m’
s, was low and because the power-law coefficient was below 1, the effective rainfall represented only
a small fraction (around 5 %) of the measured rainfall. During season 2003, for example, the ratio
between effective to measured rainfall, equivalent to the scalar function y; , ranged from 0.029 to 0.181
and was 0.057 on average. Thus, measured rainfall ranged from 0 to 29.2 mm, whereas mean effective
rainfall was 0.092 mm, the 75th-percentile was 0.11 mm, the 99th-percentile was 0.75 mm, with
maximum effective rainfall of 1 mm.

The best STF model was a second order polynomial that was decomposed into a quick and slow
component, with parameters of eq. (6) equal to:
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Figure 5. Validation of the DBM model in Feb-May 2003: the upper panel shows slow flow component, the
middle panel shows the quick flow component and lower panel shows the total simulated flow (solid line) in
comparison with the observed flow (dashed line).

The coefficient 0.187 represents the discrete equivalent of Steady State Gain of the STF model,
which when multiplied by the effective rainfall non-linearity y gives the total runoff component,
whereas its complement (1-SSG) gives the catchment water losses, mainly ascribed to
evapotranspiration. The quick component had time constant T; of around 90 minutes and contributed to
40 % of total flow. The slow component, comprehensive of the base flow, had a time constant T, of
approx. 43 hours, and contributed the remaining 60% of the flow. The Young information criterion
(YIC, Young et al., 2001) of the model was -7.6, indicating that the model was not over parameterised.

The model explained 86 % of the rainfall-flow data, but model efficiency increased to above 90 %
during the rainfall event periods, when noise in the data was smaller. Fig. 4 shows the model flow and
its 95 % confidence interval for the calibration dataset. The presence of noise in the measurements
(solid line) is clear in the intra-event periods. In the validation dataset, the model explained 73% of the
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whole dataset and 83% during the rainfall event periods. Fig. 5 shows the flow separation performed by
the model for the validation dataset: the upper panel shows the slow component, the middle panel the
quick component and the lower panel the total flow in comparison with measurements (dashed line).
The model performed badly during the low flow periods, which might indicate that the model did not
identify correctly the catchment response during the dry periods. During the intra-rainfall periods, it
was difficult to infer the catchment response because the recordings were of poor quality. However,
Fig. 5 shows that the model performed well during the rainfall events, which indicates that the
relationship between effective rainfall and overland flow generation during the rainfall events was well
simulated. Therefore the DBM model was considered appropriate for the further analysis.

Disaggregating of overland flow among HRUs

Eleven runoff detectors were placed in HRU 1 in season 2002 and 16 in season 2003, whereas 34 and
28 detectors were placed in HRU 2 in the two seasons, respectively. The best non-linear regressions Py
of HRU overland flow occurrence in relation to effective rainfall u (eq. 7) were hyperbolic tangents,
parameterised as:

P, = h,, tanh(h, ,u) (12)

where /;; = 0.925 and A4, ; = 10.390 for HRU 1, and 4;, = 0.856 and /,, = 16.534 for HRU 2. The
regression functions are presented in Fig. 6, together with the observations. It is interesting to note that
the two functions crossed at an effective rainfall # of 0.15 mm: when effective rainfall was small,
overland flow was mainly generated in the non-perennial crop fields, whereas when effective rainfall
was high, overland flow was active and quite homogeneous throughout the perennial crop fields. The
outliers at # = 0.56 mm in Fig. 6 belong to the rainfall event recorded on the 27™ March 2002, a storm
that recorded 25 mm of rainfall in 70 minutes, with a peak 30-minute intensity equal to 42.8 mm h™'
(Table 1). However, on that occasion overland flow was recorded by only 52 % of runoff detectors.
The storm event was similar in terms of rainfall intensity, amount, duration and 24h antecedent rainfall
to the event of 11" of March 2002, when the recorded overland flow occurrence was 93 %. The area
monitored in the season 2002 was quite far from the flume, and at the beginning of the rain season,
rainfall events consist mainly of localized and very intense storms. It is probable that the event that was
recorded as very intense at the flume was far less intense on the monitored area, which would explain
the low occurrence of overland flow observed. This example shows that the spatial distribution of
rainfall affected the analysis, enlarging the confidence intervals of P, but at the same time, this
uncertainty was accounted for in the disaggregating of quick flow among HRUs through the shape of
the Gaussian curves, defined by o, as estimated from the Jacobian matrix associated with P;.

Fig. 7 shows an enlargement of the regression curves of Fig. 6 for the interval of effective rainfall u
0 - 0.35 mm and the derived probability density function curves G, (u) at #=0.05 mm and 0.25 mm as
estimated from the Jacobian matrices, multiplied by the HRU areas wy. The dashed line above the HRU
Gaussian curves is the sum of the two curves and represents the totality of the quick component of
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Fig. 6. HRU non-linear regression of overland flow probability of occurrence (P;) as a function of effective
rainfall # (mm). In black the regression for HRU 1 (perennial crops); in grey the regression for HRU 2 (other
crops). Dots indicate observations for HRU 1; crosses indicate observations for HRU 2.

discharge y;, (eq. 8). The ratio between the surface under the HRU Gaussians curves and the total
curve gave the fraction of overland flow that was generated by the HRU, which was multiplied by y;,
to estimate the average HRU overland flow depth (F,, eq. 9).

The characteristic reinfiltration length

The average HRU overland flow depths were the input for the field run-on run-off accumulation
sequence (Fig. 3), to estimate the overland flow accounting for field topographic connectivity. The
result consists of the simulation of overland flow depth at any time step at any field.

Table 3 shows the effect of varying the reinfiltration length L on the overland flow depth as
observed in the Gerlach troughs (Gerlach trough volumes divided by contributing area), and as
simulated by the model in the six Gerlach trough sites. The range of variation was defined by the
hillslope observation analysis (Vigiak et al., 2005a), i.e. from 1 to 20 m. The increase in reinfiltration
length resulted in a larger contributing area of the Gerlach troughs, and therefore in a decrease of the
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Figure 7. The probability density functions G, (1) for HRU_1 and HRU_2 at effective rainfall # equal to 0.05
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at the outlet.

Table 3. Effect of variation of characteristic reinfiltration length L on model simulation in comparison to
observation of overland flow depth in the Gerlach troughs. The reinfiltration length determined the accumulation
arca of the Gerlach troughs and the amount of run-off in the model.

L Observations Model simulation
mean st. deviation mean st. deviation

(m) (mm) (mm) (mm) (mm)

1 0.806 1.631 0.211 0.296

5 0.161 0.326 0.259 0.383
10 0.081 0.163 0.334 0.555
15 0.054 0.109 0.428 0.807
20 0.040 0.082 0.505 1.044
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inferred overland flow depths. At the same time, the increase of reinfiltration length increased the
proportion of overland flow moving above the surface along the slope. As a result, overland flow
simulated in the lower fields received increasingly larger volumes of surface run-on, and both the mean
and the variance of overland flow depth simulated by the model increased. The best agreement between
mean values of overland flow as inferred from observations and simulated by the model was obtained
for reinfiltration lengths around 5 m. For the reinfiltration lengths above 20 m the model was not
anymore sensitive to this parameter, as the field lengths were seldom longer than 20 m; in the range 1-
10 m model simulations were mainly driven by the disaggregation of overland flow among HRUs.

At 4 m, the distribution of model prediction of overland flow depth overlapped well the distribution
of the observations, and therefore this reinfiltration length was considered suitable for Kwalei
catchment. A reinfiltration length of 4 m results in the accumulation areas for the Gerlach trough equal
to 2 m”. This is in good agreement with observations on Gerlach troughs placed in the same area for
another experiment, and whose accumulation areas were measured in the field and ranged from 2.5 to
3.5 m® (A. Tenge, pers. comm., 2003). A reinfiltration length L of 4-5 m also indicates that on average
only the lower quarter of the fields generated run-off, which was in good agreement with the field
observations.

Evaluation of model simulations

Fig. 8 shows the scatter plots of simulated versus observed overland flow depths at the six Gerlach
sites, expressed in cubic root of mm to enlarge the differences at smaller values. The reasons behind the
scatter between observations and simulations are manifold. In Fig 8a, symbols represent the Gerlach
sites. Overland flow appeared to be overestimated in HRU 1 (G4 and G6) and underestimated in
HRU 2 (G1-3 and GS5). Two Gerlach troughs show this fact more clearly: Gerlach G3, placed at the
end of the transect 1, and Gerlach G6, placed at the end of the transect 2. Model simulations of Gerlach
G3 greatly underestimated overland flow in three cases out of six: the two outliers in the lower right
side of Fig 8a belong to G3. The G3 site is a degraded tea plantation that is seldom cultivated and
whose crop cover is less than 50 %. It is also a steep field, with average slope of 30 %. Gerlach G3
always recorded the highest volumes of overland flow. On the other hand, Gerlach G6 at the end of
transect 2 hardly showed any overland flow. G6 site consisted of a coffee and banana stand, with crop
cover above 90%, a thick layer of litter and of gentle slope (< 15 %). The model simulated occurrence
of overland flow in this field, but only in few occasions any volume was collected in the Gerlach. The
apparent overestimations for HRU 1 and underestimations for HRU 2 suggests that the reinfiltration
length may depend on the HRU types. Indeed, this explanation seems to be logical: in HRU 1 the
overland flow occurrence is less frequent, indicating generally higher rainfall infiltration conditions.
Consequently overland flow would also quickly reinfiltrate into the soil. Local slope is another
important factor affecting reinfiltration: on steeper surfaces, overland flow is likely to travel longer
distances before reinfiltrating.

Fig. 8 may also indicate that the disaggregation of overland flow does not separate the two
hydrologic units adequately. In Fig. 8b symbols represent the rainfall event observations. Circles
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Figure 8. Scatter plot of simulated versus observed overland flow depth at the Gerlach trough sites (data are
shown in cubic root of mm of overland flow to enhance the differences in the smaller observations). a) symbols
represent the Gerlach trough sites. G4 and G6 were placed in HRU 1 (perennial crops); G1-3 and G5 were in
HRU 2 (other crops). b) symbols represent the rainfall event characteristics: circles indicate large rainfall events

(L: rainfall amount > 15 mm), crosses indicate intense events (I: 30-minute intensity > 20 mm h™"); dots indicate

the other observations.
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indicate the observations relative to large rainfall events (i.e. rainfall above 15 mm), whereas crosses
indicate intense rainfall events (i.e. 30-minutes peak intensity above 20 mm h™'). Other events are
represented by dots. The scatter plot looks in this case “organized”. All large events are simulated with
more than 0.4 mm of overland flow and are mostly overestimated, whereas intense rainfall events are
mostly underestimated.

Rainfall intensity was not directly used in the regression analysis, whereas it clearly affected the
measurements of the overland flow depth in the Gerlach troughs (Table 2). This might be a structural
problem of the disaggregation approach. However, its effect could be reduced by using a shorter time
step in the rainfall-flow model, e¢.g. half an hour or 10 minutes. Unfortunately, the available data did
not allow a finer resolution of the model. At the catchment level, the poor quality of discharge
measurements imposed the limitation of the analysis to 1 hour time step intervals. At the hillslope level,
only 26 useful observations per HRU were available for the regression analysis. Furthermore, in season
2002, the distance of the monitored area from the flume introduced more uncertainty in the analysis of
overland flow occurrence in relation to effective rainfall (see Fig. 6). As a result, the standard
deviations of G, (u) are quite large.

Points on the y axis of Fig. 8 indicate the overestimations of the model that can be ascribed to the
disaggregation of the overland flow, i.e. points where the model predicted overland flow but no volume
was collected in the Gerlach troughs. This was expected: the model simulates the occurrence of
overland flow as soon as there is a positive effective rainfall, whereas the Gerlach troughs recorded
volumes only when rainfall events were above 5 mm (Table 2). This does not unequivocally indicate,
however, the model error: at low effective rainfall, the variability of overland flow was much higher
than at high effective rainfall (see Fig. 6). It is therefore possible that overland flow was present but did
not occur in the upslope area of Gerlach troughs. More Gerlach troughs observations would have been
required to check this in the field.

The disaggregation approach models the high variability of overland flow stochastically: the model

predicts the average HRU conditions at each time step, taking into account the field position along the
slopes only in part because of the reinfiltration. Local conditions, such as those observed at sites G3
and G6 for example, cannot be included. A perfect match of the model simulation with observations
should therefore not be expected. Notwithstanding the high scatter of the points, the order of magnitude
of overland flow was well simulated. Furthermore, events that were not too intense or too large (dots in
Fig. 8b) were also well simulated.
Fig. 9 shows the simulation of Kwalei catchment at the peak hour of the rainfall event of 24.05.03:
overland flow depth varied from 0.075 mm to 0.47 mm. Most of the areas with overland flow depth
below 0.15 mm correspond to HRU 1. A sharp difference between HRU 1 and HRU 2 can be noticed
especially at the border of the forest area, but also on the western side of the catchment, along the
watershed divide, where coffee and banana stands with low overland flow are interspersed with annual
crop fields with high overland flow. Overland flow depths above 0.2 mm correspond mainly to areas
where incoming run-on is important: €.g. in the north-eastern part of the catchment, below the patch of
rock outcrop and burned forest, and in the long central slopes of the catchment. Many of the dark spots
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Figure 9. Model simulation of overland flow depth (mm) for Kwalei catchment at 2:00-3:00 of 24.05.03.
Overland flow depths above 0.3 mm are shown in white.

scattered around the catchment indicate instead fields that are isolated from the upper slopes by cut-off
drains or other features diverting the overland flow.

The effect of field shape on model simulation can be observed in the southern slopes: the western
and eastern sides of the river have similar land use, but on the eastern side fields are wider than longer
(the main field axis is along the contour line), whereas in the western side fields are longer than wider
(the main field axis is along the slope direction) and are generally also larger. The average amount of
run-off draining out of a field is proportional to the length of the lower field border length times the
reinfiltration length. The ratio of the field out-draining area to the field total area depends on the field
shape: reinfiltration is more important in long fields than in wide fields, and in big fields than in small
fields. As a result, the accumulation of run-off is larger in the eastern side of the catchment than in the
western side. In this sense, model simulations depend on the spatial discretization applied to represent
the catchment.

The representation of the Kwalei catchment using fields was chosen because the survey of overland
flow direction was produced at this level. A different representation, for example by a raster format of
homogeneous pixels, would probably result in different simulations. Such an approach would speed up
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the model implementation, but would rely heavily on the quality of the DEM available, and on the
absence of flow lines cutting through the slope and diverting the surface flow. Field borders often
create such discontinuities in the overland flow directions; the use of field border to calculate field run-
off adopted in our modelling approach helped taking this into account. Which representation would
lead to the best simulation is an issue that will need further investigation in the future. Qualitatively, the
distribution of overland flow in Kwalei catchment presented in Fig. 9 seems realistic and was
considered satisfactory.

Conclusions

The hydrology of Kwalei catchment comprised many interwoven processes, with a predominance of
infiltration-excess overland flow, reinfiltration, and subsurface storm-flow. Observations at the
hillslope scale showed that overland flow occurrence was very variable along the catchment slopes and
related not only to the differences in soil infiltration, but also to the differences in canopy interception,
soil cover conditions and land management (Vigiak et al., 2005a). Moreover, overland flow was only
indirectly related to the catchment discharge. Such complex hydrology is frequent in wet tropical
environments (Dubreuil, 1985) and poses serious difficulties for hydrologic modelling.

Our disaggregating approach consisted of an unconventional model that rejected the use of any
infiltration equation and attempted to reconcile rainfall-flow catchment-scale modelling to hillslope-
scale modelling. The variability of overland flow occurrence was incorporated through the use of
probability density functions derived from the observations.

The model was built on many assumptions, some of which are questionable: we assumed that
overland flow was related to the catchment quick flow through the effective rainfall, and that the
overland flow occurrence could be modelled through Gaussian probability density functions. The poor
quality of discharge data imposed the use of one hour time step intervals whereas observations of
overland flow in the Gerlach troughs showed that rainfall intensities at smaller time step intervals were
important. The number of the observations at the hillslope scale was probably too small for a good
estimation of model components and a thorough evaluation of the model performance. A larger dataset
of hillslope observations would have definitively been useful to improve the reliability of model
simulations. Notwithstanding the limits of the analysis and of the available data, the model simulations
were in reasonable agreement with overland flow depths observed in Gerlach troughs, and the overall
simulation of the spatial distribution of overland flow seemed realistic.

These results were achieved with a rather limited number of parameters, i.e. five parameters for
DBM model, three (times two HRUSs) for the disaggregation approach, and the reinfiltration length.
Even so, the risk of over parameterisation is already evident, for example in the difficult interpretation
of the scatter plot of Fig. 8. The advantage of such a parsimonious model is that it may allow the
estimation of the uncertainty of model predictions using methodologies that employ Monte Carlo
simulations, such as e.g. GLUE (Beven and Binley, 1992).

Model requirements consisted of rainfall-flow time series and observations of overland flow
occurrence at the hillslope scale. Such hillslope observations are seldom available, but require rather



87
Chapter 4

simple and inexpensive devices, therefore the methodology could be easily repeated in other
catchments. The analysis of overland flow occurrence in relation to catchment discharge through the
use of effective rainfall allowed the dependency of hillslope scale overland flow on rainfall amount,
catchment antecedent conditions, and rainfall intensity to be explored.

It is our opinion that in the future, the insights gained from analysis of overland flow occurrence and
from pursuing downward modelling approaches linking catchment and hillslope processes may
improve our understanding of hillslope scale hydrology, and lead eventually to real advances in
hydrologic modelling.
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A SEMI-EMPIRICAL MODEL TO ASSESS UNCERTAINTY OF
SPATTAL PATTERNS OF EROSION

Abstract

Distributed erosion models are potentially good tools for locating soil sediment sources and guiding
efficient Soil and Water Conservation (SWC) planning. Together with the potential location of severely
eroded areas, decision makers should be informed of the uncertainty of model predictions. In this study,
a semi-empirical erosion model was employed to predict the distribution of erosion within a catchment.
The model combined a semi-distributed hydrological model with the Morgan, Morgan and Finney
(MMF) empirical erosion model. The model was tested in a small catchment of the West Usambara
Mountains (Kwalei catchment, Tanzania). Comparison of soil detachability rates measured in splash
cups (0.28-0.67 g J'') matched well model simulations (0.30-0.35 g J'). Net erosion rates measured in
Gerlach troughs (0.01-1.05 kg m™ per event) were used to calibrate the sediment transport capacity of
overland flow. The quality of the predicted pattern of erosion was assessed by comparison with the
actual erosion pattern observed in the field. Uncertainties of model simulations due to parameterisation
of overland flow sediment transport capacity were assessed with the Generalized Likelihood
Uncertainty Estimation (GLUE) methodology. The agreement between simulated and observed erosion
patterns was measured by weighted Kappa coefficients. Behavioural parameter sets, i.e. scoring a
weighted Kappa above 0.50, were those with short reinfiltration length (< 1.5 m) and with the ratio of
overland flow power o and local topography power y close to 0.5. In the dynamic Hortonian hydrologic
regime and the dissected terrain of Kwalei catchment, topography influenced the distribution of erosion
more than overland flow. Simulated erosion rates varied from -4 to +2 kg m™ per season. Field
standard deviation of seasonal erosion rates ranged from 0 to 2.9 kg m?, and was < 0.9 kg m? in more
than 95 % of fields. The model simulated correctly around 75 % of erosion pattern; model
overestimations of erosion occurred mainly in vegetable plots, whereas underestimations occurred in
tea, sugarcane and grassland fields. The uncertainty of model predictions due to sediment transport
capacity was high: depending on the transport capacity parameters, around 10 % of the fields were
attributed to either slight or severe erosion class. SWC planning should focus on severely eroded fields,
but areas whose spatial uncertainty was large should also be carefully checked in the field. The difficult
characterisation of effective parameters for sediment transport capacity at the catchment scale
introduces large uncertainties in model predictions and poses a major limit to distributed erosion
modelling predicting capabilities.

Keywords: spatial pattern of erosion, Morgan, Morgan and Finney model; catchment erosion
assessment; uncertainty estimation; Generalized Likelihood Uncertainty Estimation (GLUE).
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Introduction

Recent assessments of the quality of erosion models showed that these models generally predict poorly
the spatial patterns of erosion and deposition within a catchment (Jetten et al., 1999; Jetten et al., 2003;
Merritt et al., 2003). As in other environmental modelling areas, difficulties in erosion modelling arise
from the natural complexity of the landscape system, spatial heterogeneity and lack of available data
(Merritt et al., 2003). The complexity of the natural system has been one driver for the development of
physics-based models, with the idea that an accurate description of processes would simulate the
system appropriately. However, it is practically impossible to represent adequately the huge spatial and
temporal variability of the phenomena for any rainfall event (Quinton, 1997). Moreover, error
propagation and uncertainties in the estimation of input data of complex models compromise the
theoretically more accurate description of the system (Jetten et al., 2003).

Because of these limits of erosion modelling, model predictions are highly uncertain. Uncertainties
in model predictions, usually quite clear in the modeller’s perception, should be effectively
communicated to policy and decision makers, and made explicit (Beven, 1993; Garen et al., 1999;
Merritt ef al., 2003). As important decisions may depend on model simulations, model outputs should
be provided with an estimation of the predictive errors, like output bands of possible outcomes (e.g.
Quinton, 1997; Brazier et al., 2000).

The environmental data that are usually available contain information to characterize only the
dominant processes active in a given system, which may then be described more effectively with
simpler empirical and conceptual approaches (Young, 1998). Conceptual (or semi-empirical) models
offer the advantage of combining the physical interpretability of modelling results with a simple
structure, which makes them less prone to over-parameterisation and error propagation problems, even
if it exposes them to the risk of aggregation or disaggregation errors (Merritt et al., 2003). A limited
number of parameters and processes simplifies model implementation by user agencies and in data
poor environments (Garen ef al., 1999; Merritt et al., 2003). It also reduces computational
requirements, allowing for assessment of model result uncertainties (Merritt ez al., 2003; Jetten ef al.,
2003). Conceptual models may therefore be appropriate in characterizing the distribution of erosion
within a catchment (Viney and Sivapalan, 1999). For example, Desmet and Govers (1995) obtained
some encouraging results with a simple transport-limited erosion model whose main driving factor was
topography. Improved sediment yield predictions were obtained by von Rompaey ef al. (2001) and
Viney and Sivapalan (1999) by coupling empirical erosion models to hydrologic models, however in
both studies the quality of the spatially distributed predictions was not assessed. Vigiak et al. (2005a)
showed that an empirical model, the revised Morgan, Morgan and Finney model (MMF; Morgan,
2001), had good potential to assess the distribution of erosion within a catchment, provided the
hydrologic part of the model was improved.

The aim of this study was to evaluate the ability of a simple semi-empirical erosion model to predict
the distribution of erosion within a catchment and to assess the uncertainty of model spatially
distributed predictions due to the choice of sediment transport capacity parameters.
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Materials and methods

The study area: Kwalei catchment

The Kwalei catchment (4°48’ S, 38°26’ E) is situated in the West Usambara Mountains, North-East
Tanzania. The catchment size is approx. 2 km?, and altitude ranges from 1337 to 1820 m. The terrain is
rough and highly dissected, with more than half of the hillslopes steeper than 20 %. Drainage
comprises four permanent streams running north-west to south-east. Average annual rainfall is
approximately 1000 mm, with a bimodal distribution. The long rainy season stretches from the end of
February to the end of May and the short, less reliable rainy season from October to January (Vigiak et
al., 2005a). Soils on the slopes consist mainly of Humic and Haplic Acrisols (FAO-Unesco legend,
FAO, 1990). They comprise porous, sandy topsoils, and clayey, deep and well-drained subsoils.
Saturation may occur in the clayey and vertic Umbric Gleysols in the valley bottoms (Meliyo et al.,
2001). The highest part of the catchment is covered by mountain rain forest, whereas the middle and
lower slopes are used for agricultural purposes. Hamlets are located mainly along the ridge shoulders.
Cultivation of annual crops is concentrated close to the settlement compounds. Maize is the most
commonly cultivated crop, often intercropped with bean, banana, cassava and sugarcane. The two-
storey cultivation of banana and coffee is frequent on the steep slopes along the stream incisions.
Valley bottoms are intensively planted with vegetables, the major cash crops of the area.

The Kwalei catchment may be considered representative of the East African Highlands
environment, and has been already the subject of erosion assessment studies (Vigiak et al., 2005a;
Tenge et al., 2004) and hydrologic characterization (Vigiak et al., 2005b; Vigiak et al., 2005¢). An
erosion assessment survey conducted on part of the catchment showed that areas affected by severe
erosion covered around one third of the catchment: erosion features were especially frequent in fields
of annual crops, like cassava, maize and bean, and the main erosion processes were sheet and interrill
erosion (Vigiak et al., 2005a). The main mechanism of overland flow generation was infiltration-
excess, but reinfiltration was important: overland flow reinfiltrated usually at distances shorter than 20
m (Vigiak et al., 2005b). Two main Hydrologic Response Units (HRUs, i.e. areas of homogeneous
hydrology; Bloschl and Sivapalan, 1995) could be defined: perennial crops (HRU 1: coffee and
banana, forest and banana and maize fields), versus other crops (HRU 2: mainly annual crops) (Fig.
1A).

Assessment of erosion

Assessment of erosion comprised measurements of rainfall detachment rates by splash cups at the plot
scale, of net erosion rates by Gerlach troughs placed along two longitudinal transects at the hillslope
scale, and surveying the actual status of erosion of fields at the catchment scale.

Splash detachment was monitored in five main land use types (maize and bean, cassava, banana and
coffee, tea and vegetables) by means of splash cups (Morgan, 1981). Two fields per land use type were
selected with two splash cups each. The splash cups had an inner diameter of ten cm from which the
soil was splashed into the surrounding catching tray. Collection of the splashed material was done at
monthly intervals, in dry days following at least three days without rain. The soil in the catching tray
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was collected and weighed. The dry soil weight was estimated assuming soil moisture content equal to
field capacity.

In the long rainy season (March-May) of 2003, six 0.50 m wide Gerlach troughs (Gerlach, 1967)
were installed at different positions in the upper, middle and lower part of two longitudinal transects
located at the lower (1380 m) and middle (1450 m) slopes of the catchment. The transects spanned
from the water divide to the drainage line and crossed representative sequences of annual and perennial
crops on the most frequent soil type of the catchment (Haplic Acrisols). After each rainfall event, the
total overland flow volume collected in each trough was measured, and a sediment sample was taken to
the laboratory to be dried at 105° C for 24 hours and weighed. The sediment load was obtained by
multiplying the overland flow volume by the sediment concentration of the sample. The results were
referred to the contributing area of the troughs, which was visually estimated in the field to be around 2
m?® (Vigiak ef al., 2005c¢).

At the catchment scale, actual erosion was assessed by direct survey using the Assessment of
Current Erosion Damage method (ACED; Herweg, 1996). ACED consists of surveying erosion
features and main causes of erosion, such as land management, surface characteristics, and run-on and
run-off patterns (Herweg, 1996). The method allows semi-quantification of erosion following rainfall
events. In order to cover the entire catchment, however, less emphasis was given to the measurements
of erosion features and the model was applied to assess erosion qualitatively. Five classes of erosion
were defined, from very slight to very severe, on the basis of presence of erosion features and their
intensity, without attaching a quantitative value to the erosion classes. The survey took place from
December 2002 till May 2003 and was considered representative of the rainy season.

The semi-empirical model

The semi-empirical model proposed in this study superposed the structure of an empirical erosion
model, the Morgan, Morgan and Finney model (MMF, Morgan et al., 1984; Morgan, 2001), to a semi-
empirical hydrologic model that simulates overland flow depth distribution within the catchment
(Vigiak et al., 2005¢). The model was formulated in order to be parametrically parsimonious while
retaining explicit descriptions of the main erosion processes.

The MMF retains a good physical base in the identification of the soil detachment and transport
processes, even if the equations comprise many empirical parameters. The recent version of the model
used here incorporates a more accurate description of erosion processes and provides broader
guidelines for model inputs (Morgan, 2001). The model is structured in two phases: a water phase
(where energy of rainfall and volume of overland flow are calculated), and a sediment phase (where
soil detachment and soil transport rates are calculated). Erosion is given by the minimum between soil
detachment and transport rate. The application of the model in two catchments of the East African
Highlands, one of which was the study area of the present work, showed that the model had good
potential for identifying erosion patterns, but that the hydrologic part, unable to account for
reinfiltration along the slopes, was unrealistic for Kwalei catchment (Vigiak et al., 2005a). The same
study concluded that better simulations of overland flow would improve the model performances in
depicting soil erosion patterns.
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Recently, Vigiak et al. (2005¢) proposed a parametrically parsimonious model simulating the
distribution of overland flow within a catchment. The model runs at hourly time step and per field. It
simulates average overland flow occurring in the main hydrologic response units as a function of the
effective rainfall and accounts for reinfiltration. The model was created to match Kwalei hydrologic
conditions and performed well in the catchment (Vigiak et al., 2005¢). In the present study, the main
structure of the MMF model was retained, but the model of Vigiak et al. (2005¢) was used to predict
overland flow. A detailed description of the original MMF model (Morgan, 2001) and parameters
suitable for Kwalei catchment is given in Vigiak et al. (2005a), whereas the hydrologic model is
described in Vigiak ef al. (2005c).

The revised MMF model runs at the scale of landscape elements, i.e. for areas with homogeneous
soil, land use and topography (Morgan, 2001), whereas the model of Vigiak et al. (2005¢) runs at the
field scale. Therefore, the spatial scale of the semi-empirical erosion model was the field, which can be
considered a single landscape clement. Fields were arranged in hillslope sequences; a connectivity
matrix linking fields from the upslope (the watershed divide) downwards to the channel streamlines
was defined through observations of flow direction surveyed in the fields. The stream lines were the
final collectors of the overland flow slope accumulation and drained to the outlet.

While the MMF is an average annual model, the hydrologic model is a dynamic model with hourly
time steps. Matching the two models raised temporal scale issues that required careful consideration of
equations and parameters. In what follows, the equations whose application raises temporal scale issues
are addressed.

The MMF method of calculating the rainfall kinetic energy was fully retained. The rainfall kinetic
energy (KE, J m?) is a function of the fraction of rainfall (R, mm) that is not intercepted by the
vegetation canopy (INT, fraction between 0 and 1). The kinetic-effective rainfall (ER) is split into direct
throughfall (DT), which directly reaches the soil, and leaf drainage (LD), which reaches the surface by
stemflow or dripping from leaves. The division is a function of the canopy cover (CC, fraction between
0 and 1). The kinetic energy of the direct throughfall DT (KEpr, in J m™®) depends on rainfall intensity,
which for tropical areas is calculated according to the equation of Hudson (1965), developed for
Zimbabwe. The kinetic energy of the leaf drainage (KE;p, in J m™) is a function of the canopy height
(PH, m; from Brandt, 1990). Both equations were derived from studies on kinetic energy of storms or
intra-storm intervals. The total kinetic energy KE (J m™) is given by the sum of the two fractions (KE =
KEpr + KEpp) , and determines the soil detachment by raindrop impact F (kg m™), which is defined
as:

F=10"K-KE (1)

where K is the soil detachability index (g J™'), defined after Quansah (1981). Eq. (1) has been shown to
be an acceptable definition of detachment rate (Salles ef al., 2000). Because the relationship between
kinetic energy and rainfall detachment rate (eq. 1) is linear, the application of the detachment rate
module at daily or hourly time step does not stretch the use of equations beyond their limits. However,
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Table 1. Land use input data for the semi-empirical model: INT is interception factor, CC is canopy cover
fraction, PH is plant height, GC is ground cover fraction, CP is the combination (multiplication) of USLE crop
and protection factors, HRU is the Hydrologic Response Unit of the hydrologic model.

Land use type INT cC GC PH CP HRU
(m)
Banana and maize 0.16 0.27 0.49 1.31 0.25 1
Bush/fallow 0.20 0.67 0.79 1.20 0.05 2
Cassava (and other annuals) 0.12 0.30 0.45 0.60 0.40 2
Coffee and banana 0.30 0.52 0.77 1.50 0.20 1
Forest 0.30 0.67 0.89 3.93 0.01 1
Grassland 0.30 0.20 0.60 0.08 0.01 2
Maize and beans 0.17 0.26 0.43 0.67 0.30 2
Sugarcane 0.25 0.37 0.55 0.91 0.15 2
Tea 0.30 0.27 0.37 0.50 0.20 2
Vegetables 0.15 0.13 0.22 0.43 0.35 2
Wattle 0.28 0.38 0.73 1.55 0.05 2
Woodlot 0.28 0.30 0.73 8.00 0.05 2

seasonal changes in the land use parameters may be important. In perennial crops, such as coffee and
banana stands, land use parameters may be assumed constant; but for annual crops this assumption is
questionable. In the Kwalei catchment, however, the high rate of intercropping and the lack of well
defined crop calendars make changes in land cover characteristics in the season extremely difficult to
characterize. Seasonality of land use parameters was therefore not considered further, and constant
values were employed for the whole simulation period (Table 1). Similarly, soil detachability changes
in time (Rudra et al., 1998), but very little information is available on temporal changes of soil rainfall
detachability indexes, which were then kept constant throughout the simulation.

The simulation of overland flow depth as per the original MMF, was substituted by the model of
Vigiak et al. (2005¢). The field overland flow QOrpr (in mm per time step) was modelled as a function
of the effective rainfall (u,, in mm), i.e. the amount of rainfall that generates discharge at the catchment
outlet, the Hydrologic Response Unit (HRU: perennial or other crops), and the field topographic
connectivity (run-on and run-off). The model accounted for reinfiltration by assuming that only a
portion of the total overland flow of the field (Oror) would drain out of it (run-off, Qoyr in mm per
time step). The maximum field area generating run-off was equal to the length of the lower field border
(Br, in m) times the characteristic reinfiltration length L, i.e. the average length (m) along which the
overland flow travels on the soil surface before reinfiltrating in the soil:

(. B,L
OQour = Oror {mm[l» A, j} (2

where Ar is the field area (m?), and min indicates the minimum between the elements in brackets.
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The field overland flow QOror was used in the original MMF equation to calculate the overland flow
detachment rate H (kg m™):

H=10" mg;gr sin f(1-GC) 3)
where COH is the soil cohesion (kPa), sinf is the sine of local slope and GC is the fraction of
vegetation ground cover (0-1). Eq. (3) is based on the laboratory experimental work of Quansah (1981),
valid at storm basis. Vigiak ef al. (2005a) showed that in the MMF model overland flow detachment
rates account for no more than 2 % of total detachment in this environment. Thus, eq. (3) was retained
without changes for use with the daily data available here, since in most events the daily Oror will
represent the storm overland flow.

The transport capacity rate 7C (kg m™) of the run-off overland flow (Qour) was equal to:

TC =107 CPQ?,, sin 8 (4)

where CP is the crop cover factor, given by the product of the Universal Soil Loss Equation (USLE) C
and P factors (Wischmeier and Smith, 1978).

The sediment output (E,., kg m?) was given by the minimum of sediment available and transport
capacity:

Eou=min [(F+ H +E;,), TC ] ()

where E;, is the influx of sediment transported in the field by the incoming run-on. The net erosion (soil
loss rate) £ was given by the difference between incoming and outgoing sediment and was negative
when sedimentation occurred:

E=E,, -E, ©)

Rainfall and discharge records were available for the period Feb-May 2003; the total erosion of this
period gave the erosion rates of the long rainy season 2003.

To choose the model simulation time step the following assumptions were made: (i) most model
equations could be considered valid at the event (daily) time scale; (ii) in the hydrologic model, the
accumulation of overland flow along the hillslope is linear (i.e. Qpur is a constant fraction of the Oror,
eq. 2); and (iii) field observations were conducted on event basis. The event scale is an interesting scale
for erosion modelling because most of soil losses occurring in a season are due to few severe erosive
events (e.g. Larson et al., 1997); it also represents the upper limit to which most erosion equations
established for instantaneous conditions may hold (Morgan, 1995). The event scale (i.e. daily time
steps) was therefore chosen as a good compromise between modelling issues, available observations
and computing time requirements.
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However, the sediment transport capacity 7C (eq. 4) is nonlinearly dependent on overland flow and
is therefore sensitive to the choice of the temporal scale. Because of this sensitivity and because
sediment transport capacity determines the distribution of erosion in the case of transport-limited
erosion (eq. 5), the choice of the effective parameters for these equations introduces considerable
uncertainty in the model predictions. Effective parameter values may as well compensate for
deficiencies of the model representation of the fluxes at the event scale. Thus, effective values might be
not commensurate to field measurements.

Uncertainty of sediment transport capacity

In the literature, overland flow sediment transport capacity has been related to different hydraulic
variables (shear stress, stream power, effective stream power, and unit stream power). The performance
of the equations depends mainly on the overland flow regime (laminar or turbulent; Julien and Simons,
1985). However, where rainfall is spatially uniform, all sediment transport equations can ultimately be
defined as (Julien and Simons, 1985):

9s1c = kieq” sin g7 (7

where g, rc is the sediment transport capacity per unit width of slope, ¢ is the discharge per unit width,
sinf is the local topographic gradient, and krc parameter is a scaling factor that represents soil
erodibility and comprises gravitational acceleration, water density, sediment cohesion, density and
particle size (Prosser and Rustomji, 2000). According to eq. (7), the distribution of overland flow
sediment transport capacity, and thus of erosion, depends ultimately on catchment topography (Desmet
and Govers, 1995), and on the spatial pattern of overland flow, which in turn is mainly a function of the
land use and soil management (e.g. Takken et al., 1999; Rustomji and Prosser, 2001). The parameters
o and y depend on the hydraulic variable used in the original formulation and on experimental
conditions, but express the control that the hydrologic regime and topography exert on the spatial
distribution of erosion (Rustomji and Prosser, 2001). Physical conditions affecting the choice of
parameters o and y in eq. (7) change in space and time within a catchment, but catchment-scale
effective parameters should capture the dominant sediment transport conditions.

Because of the importance of sediment transport capacity on the spatial distribution of erosion
within the catchment, the uncertainty of model predictions due to sediment transport capacity
parameters on the distribution of erosion was explored using the Generalized Likelihood Uncertainty
Estimation (GLUE) methodology (Beven and Binley, 1992; Beven, 2001). The GLUE methodology
assumes that many different parameter sets may result in equally acceptable model performances as
measured with given criteria (equifinality thesis). The method is based on Monte Carlo (MC)
simulations, with uniform parameter sampling. A likelihood measure, which is chosen according to the
purpose of modelling, is used to assess the ‘goodness of fit” of model output to observed data.
Behavioural parameter sets are those that fulfil the minimum threshold set for the appropriate
likelihood measure. The behavioural parameter sets can then be used to assess the predictive
uncertainty of the model.
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In this study, the GLUE methodology was applied to assess the predictive uncertainty associated
with the parameterisation of the sediment transport capacity of overland flow. The generic formulation
of eq. (7) was embedded in the semi-empirical model by transforming eq. (4) into:

TC = k;-.CPQ;,,; sin 7 8

where Qopur is defined by (eq. 2) and CP is the USLE crop and protection cover factor. The three key
parameters of eq. (8) were the reinfiltration length L, which determines the amount of overland flow
draining out of the fields (eq. 2), o and y. A characteristic reinfiltration length L of 4 m was considered
suitable for Kwalei catchment (Vigiak et al., 2005¢), however some uncertainty in the parameter
should be allowed, as the reinfiltration length is likely to vary with rainfall event characteristics, soil
conditions, land use, and slope. Rejman (2003) recently reported that effective distances for soil
transport in runoff plots varied between two and 13 m. A suitable range of reinfiltration length L was
estimated in the interval [2, 10] m for Kwalei catchment. In a recent review, Prosser and Rustomij
(2000) showed that the intervals of [1, 1.8] for « and [0.9, 1.8] for ¥ contain 85 % of the equations
proposed in literature. In our study, the range [0.9, 2] was set for o and [0.9, 1.8] for vy, thus slightly
enlarging Rustomij and Prosser’s (2001) set to include the original MMF equation. The parameters
were sampled independently and uniformly in these ranges. The parameter ;. acted as a pure scaling
factor and was calibrated against the Gerlach trough observations, after accounting for the effect of
crop management on the distribution of erosion, which was assumed to be realistically represented by
the CP factor. Each MC simulation consisted of three steps: first the model was run with the parameter
set {L a y k;. } equal to {L, o, ya 1}, where the subscript » indicates the nth MC random realization of
the parameter set; then k;., was estimated as the ratio of the median of the sediment load distribution
observed in the Gerlach troughs and the median of the sediment load distribution simulated by the
model for the same sites; finally the model was run with the {L, o Ya k., } for the whole catchment.
Eleven thousand MC simulations were performed.

The simulation performance criterion was based on the comparison of simulated erosion patterns
against the observed one (ACED map). Model simulations were reclassified into five qualitative
erosion classes; thresholds among classes were chosen in such a way that the number of fields per class
(regardless of their location) matched that of the ACED map. The measure of agreement between the
classified model map with the ACED map was assessed by the weighted Kappa coefficient of the
contingency table (Cohen, 1968). Given a contingency table of two classification systems of » classes,
in this case the five classes of erosion assessed during erosion survey (i) or predicted by the model (),
the weighted Kappa coefficient (wK) is defined by:

— pa,w - pe,w
1-p,.,

wK (9)

where

Pow = Z Zwifpif (10)

i=l =1
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Table 2. Weights (w;;) applied to the contingency table to calculate the weighted Kappa to measure of agreement
between maps (from Vigiak et al., 2005a).

ACED map
Very low Low Moderate High Very High
Very low 1 1 0.5 0.25 0
§ Low 1 1 1 0.5 0.25
TE, Moderate 0.5 1 1 1 0.5
'28 High 0.25 0.5 1 1 1
Very high 0 0.25 0.5 1 1

is the weighted observed distribution, and

Pew™ Z Zwiipi.p..f (11)
1

=l j=

is the weighted chance-expected distribution, with p; = —~, p; = —~, p, = —~, m;; is the number of
m m m
fields classified in classes i and j; m; is the total number of fields classified in the class i; m; is the total

number of objects classified in the class j and m is the total number of fields (Cohen, 1968).

The weights w; were set to limit the influence of the classification system and to account for
uncertainties in the ACED map. One class difference (e.g. very low class in the ACED erosion map
predicted as low erosion in the MMF erosion map) was considered acceptable (weight factors = 1),
whereas for larger disagreements between the two maps, the weights were linearly dependent on the
distance between classes (Table 2; Vigiak ef al., 2005a).

Parameter sets whose simulation scored a weighted Kappa (wK) value equal or larger than a
minimal threshold were considered behavioural, whereas parameter sets whose simulation was below
the threshold were rejected as non-behavioural.

Results and Discussion

Assessment of erosion

Rainfall detachment

Collection of splashed material was done once in the long rainy season 2002 and twice in the season
2003, after exposing the splash cups to the rainfall for periods of 34-42 days. Rainfall detachment rates
were generally high, especially at the beginning of the rainy season, and ranged on average from 14.8 g
m™ per mm of rain in April 2002 to 6.9 g m” mm™' in April 2003 and 2.7 ¢ m?> mm™' in May 2003. The
splashed dry soil per unit area was divided by the kinetic energy of the observation periods calculated
according to the MMF model (eq. 1); Table 3 shows average and standard deviation of the observed
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Table 3. Observed rainfall detachment rate measured in splash cups, in Kwalei catchment, Tanzania. The
acceptable range for the soil detachability index was given by the average of observed detachment rate minus
and plus one standard deviation. The column K shows the MMF detachability index for Kwalei soils (after
Vigiak et al., 2005a).

Land use type Rainfall detachment rate Acceptable range MMF K
n mean st dev min max

C2) C2) C2) G2 20
Maize and beans 6 0.674 0.344 0.330 1.018 0.3-0.35
Cassava 4 0.281 0.262 0.019 0.544 0.3-0.35
Coffee and Banana 6 0.624 0.581 0.043 1.206 0.3-0.35
Tea 4 0.308 0.515 0.000 0.823 0.3-0.35
Vegetables 5 0.408 0.307 0.100 0.715 0.05

detachment rates per land use type and per Joule of kinetic energy (g J'). Rainfall detachment was very
variable, even within the same field, reflecting the natural variability of erosion processes. Moreover,
notwithstanding the good collaboration from the farmers at the field sites, sometimes the splash cups
were disturbed by tillage operations (in these cases observations were discarded), and the available
number of observations (four to six per land use) was very limited. Figures in Table 3 should therefore
be considered only as indicative of the erosion detachment phenomenon in Kwalei catchment.

The high natural variability of erosion must be taken into consideration when comparing model
simulations to observations (Nearing, 2000). Similarly to Nearing’s approach, the acceptable range of
the soil detachability index was considered to be the interval defined by the average of observations + 1
standard deviation. In Table 3 the acceptable ranges per land use type are shown, together with the
MMF soil detachability index (K of eq. 1) suggested for Kwalei soils (Quansah, 1981; Vigiak et al.,
2005a). The ranges were wide, especially for the tea fields, but soil detachability indexes were in good
agreement with observations and close to 0.3 g J*!, confirming that the MMF calculation of rainfall
detachment rate was acceptable, at least in the light of the high variability of measurements. The only
exception was given by the vegetable fields, located on the Umbric Gleysols of the valley bottom. In
this case, the observed detachment rates were much higher than those estimated from the high clay
content of this soil type. As detachment rates did not differ from other soils, the soil detachability index
for the Gleysols was raised to 0.3 g I

Erosion rates at the Gerlach trough sites

In Table 4 the event and seasonal (March-June 2003) observations of overland flow depth and sediment
load per Gerlach trough are reported. Only in two of the 13 effective rainfall events recorded in Feb-
June 2003, did all the Gerlach troughs collect overland flow. The distributions of observed overland
flow depth and sediment load were skewed and log-distributed. The median overland flow per event
was equal to 0.148 mm, and ranged from 0 to 1.97 mm. The median sediment load was 0.02 kg m?,
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Table 4. Observations of erosion rates at Gerlach sites, Kwalei catchment.

Gerlach trough n’ Overland flow depth Sediment load

Event mean cv total mean cv Total

(mm) (%)  (mm) (kgm?) (%) (kgm?)

Gl 3 0.260 63 0.780 0.122 143 0.367
G2 8 0.288 104 2.302 0.017 92 0.136
G3 10 0.675 115 6.744 0.146 165 1.314
G4 10 0.083 118 0.832 0.080 270 0.801
G5 12 0.436 82 5.669 0.058 68 0.759
G6 3 0.026 17 0.079 0.010 133 0.020

" number of events during which the trough collected overland flow and sediment.

and ranged from 0.001 to 0.738 kg m™. Observed event overland flow and sediment load values
compared well with measurements conducted in the same areas with Gerlach troughs located in maize
and bean fields (0.16 mm and 0.81 kg m%; A. Tenge, pers. comm.). Variabilities of overland flow and
sediment load were high, confirming the extreme spatial and temporal variability of event scale plot
measurements (Hjelmfelt and Burwell, 1984; Wendt er al., 1986; Nearing, 2000), especially
considering that Gerlach troughs were unbounded and placed at different locations.

The rainfall season was drier than the average year, with 330 mm of rain in Feb-May 2003 against
the 510 mm of long term average for the same period (1981-2001 Sakarani mission data). The median
observed overland flow depth for the whole season March-June 2003 was 1.57 mm, being generally
larger in annual crops (sites G1, G2, and G5) than for perennial crops (sites G4 and G6). The largest
amounts of overland flow were recorded in a degraded tea field in the lower part of transect 1 (site G3).
Overland flow depths were generally low, but comparable to the 0.6 mm y' reported by Lundgren
(1980) for the West Usambara Mountains. Observed erosion rates were rather low (Table 4), but close
to the estimations of Pfeiffer (1990) of 1.6-2.1 kg m? y' for arable land of the West Usambara
Mountains.

Catchment scale assessment

The qualitative assessment of current erosion damage (ACED) survey covered 80 % of the catchment
area. Of the remaining fifth of the catchment, some fields had been hoed recently before the survey.
Their erosion status could not be directly assessed, but was estimated considering other information
available, such as land use, slope steepness, and the status of upslope and neighbouring areas. Other
fields had been surveyed in the 2002 rainy season, and this information completed the assessment map
of the catchment. According to the survey, 39 % of the fields (around 21 % of the catchment area, Fig.
1B) were affected by severe erosion. Except for an area that was burned some years ago, the forest
showed little signs of erosion. Most coffee and banana stands also showed little erosion. The survey
therefore confirmed the spatial distribution of erosion reported by Vigiak ef al. (2005a).
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Figure 1. Land characteristics of Kwalei catchment: A) the Hydrologic response units (HRUSs), i.c. perennial vs.
other crops, in black the hamlets; black lines indicate the perennial streams and 50 m contour lines; B) the
assessment of actual erosion map (ACED), from very slight to very severe erosion.

Uncertainty of model simulations
The choice of parameters of eq. (8) strongly affected the estimated distribution of overland flow. The
most sensitive parameter affecting the distribution of erosion was the reinfiltration length L. This was
expected as L determines the volume of runoff that leaves the fields Qour (eq. 2). Most behavioural
simulations were at reinfiltration lengths below five meters. The agreement between observed and
simulated pattern degraded quickly from a weighted Kappa (wK) above 0.30 at reinfiltration lengths L
=2mto wK <0.2 at L =10 m. A similar trend was depicted for the parameter o, for which, beside few
exceptions, best simulations were concentrated at oo < 1.5. The parameter y gave an opposite trend, with
best simulations concentrated at y > 1.4. The parameter ;. acted as a scaling factor that was
calibrated against the Gerlach observations. Because both overland flow (Qour) and local slope (sinf3)
values were below the unity, increases of the powers of o or y resulted in geometrical increases of k., .
The best simulation of the model scored a weighted Kappa of 0.34, which indicates a fair agreement
between the two maps at best.

The best simulations were concentrated near the edges of the selected ranges. Therefore, it was
decided to enlarge the sampling ranges for other 6.000 new MC simulations, sampling the reinfiltration
length L for a logarithmic distribution in the interval [0, 10] m, and sampling the other two parameters
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Figure 2. Dotty plots of 6.000 MC simulations (L = [0, 10] m; o =[0.5, 1.5] and y =[1, 3]) , Kwalei catchment,
Tanzania. Weighted Kappa of model simulations are presented in relation to the three parameters selected for
the simulation: (A) reinfiltration length L (in logarithmic scale); (B) overland flow power parameter oo and C)
local slope power parameter y

uniformly in the intervals [0.5, 1.5] for o and [1, 3] for y. With the new ranges, weighted Kappa raised
above 0.50, which indicates good agreement between the model predictions and the ACED map. The
best simulation scored wK = 0.55. Fig. 2 shows the dotty plots relating the weighted Kappa values to
the three investigated parameters. Dotty plots are scatter plots of the performance measure against the
parameter values and represent a projection of sampled goodness of fit response surface of a model
onto an individual parameter dimension (Beven, 2001). Fig. 2 shows that the best simulations were at
short reinfiltration length L, and relatively high y values, whereas o gave good simulations along the
whole range. The trends observed in the first MC runs were thus confirmed.

Fig. 3 shows the scatter plot of the ratio o/y versus the reinfiltration length L (in logarithmic scale) at
different wK intervals. Increasingly better agreement between the two maps was reached when
reinfiltration length L was short and the ratio a/y was close to 0.5. By defining as behavioural the
simulations that yielded a weighted Kappa above 0.50, 277 of the 6.000 (second set) MC simulations
were selected. Behavioural parameter sets comprised the following ranges: [0.002, 1.06] m for L, [0.5,
1.5] for a and [1, 3] for y. The behavioural parameter sets represent an aggregated response of the
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Figure 3. Scatter plot of power a/y ratio versus reinfiltration length L at different intervals of weighted Kappa.
Short reinfiltration length L (in logarithmic scale) in combination with the ratio a/y close to 0.5 resulted in the
best simulations (black dots; wK > 0.50).

catchment to the prevailing hydrologic and topographic conditions, but account as well for internal
adjustments of the model. Therefore a physical interpretation is always difficult. However, the three
parameter trends were consistent with each other and indicated a strong control of local topography
above the hydrologic conditions in controlling the pattern of erosion.

The reinfiltration length governs the accumulation of overland flow along the hillslope and accounts
for the influence of incoming run-on in the lower fields. Reinfiltration lengths below 5 m resulted also
in better simulations of overland flow measurements at the Gerlach sites (Vigiak et al., 2005¢) and
confirmed the importance of reinfiltration in the hydrology of Kwalei catchment (Vigiak ef al., 2005b).
The small range for behavioural reinfiltration lengths confirm that there is little movement of overland
flow among Hydrologic Response Units. It also indicates that the reinfiltration lengths required by the
model are shorter than those measured in the field. This can be a result of the hydrologic model
distribution mechanism. The redistribution of overland flow done by the model of Vigiak ez al. (2005c)
is derived from observations of overland flow occurrence, and implicitly accounts in part for the
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limited travel distance along the soil surface. The model results, however, are in agreement with
Bergkamp (1998), who observed very short reinfiltration lengths (about 0.30 m) in a Mediterranean
catchment.

The dynamic Hortonian regime was reinforced by the better agreement of the erosion patterns at low
parameter a. Kirkby (1988) showed that when the overland flow longest travel distance is shorter than
the hillslope length, not all the upslope area contributes to the field segment overland flow and the
parameter o is small. The stronger the reinfiltration, the lower the effective value of the parameter a,
approaching zero in the extreme cases when overland flow travel distances are very short (Rustomji
and Prosser, 2001). Such scenarios have been reported in some forest and semi-arid environments, and
seem extreme for Kwalei conditions. Relatively higher values of parameter y indicated at the same time
that local slope exerted a strong control on sediment transport and on the distribution of erosion. With
reference to the values reported by Prosser and Rustomji (2000), low o and high y parameters
correspond generally better to equations that calculate sediment transport in terms of mean stream
power of overland flow. However, Figs. 2 and 3 show that more than absolute figures for o and vy, the
important factor in depicting the pattern of erosion correctly is the ratio a/y, which defines the relative
importance of overland flow and topography in affecting the distribution of erosion. In the dynamic
Hortonian hydrologic regime and in the strongly dissected terrain conditions of Kwalei catchment, it is
not surprising that the topography controlled the distribution of erosion.

Field predictions of erosion of the behavioural parameter sets give information on the predictive
uncertainty of model simulations. The field average rates of net erosion predicted by the model ranged
from -4.2 to +2.2 kg m™ for the whole long rainy season (February-May) of 2003. Field estimations
varied among fields (Fig. 4). Standard deviation of estimations ranged from 0 to 2.86 kg m? in
behavioural simulations, but was < 0.93 kg m™ in more than 95 % of fields. The scatter of model
predictions was large especially at the middle and low values of erosion rates and gradually decreased
toward the highest erosion rates. Therefore, the highest uncertainty was in the slightly and moderately
eroded fields, where changes in sediment transport capacity parameters may switch the model
predictions from conditions of erosion to sedimentation and vice-versa. This is on one side reassuring:
model simulations were more consistent in indicating fields where erosion was high than where erosion
was low. On the other side, it cannot be excluded that some fields that were on average classified as
subject to slight erosion, or even where the model simulated deposition of incoming sediment, might be
wrongly classified: a higher uncertainty was linked to these fields.

Fig. 5A shows the average erosion class per field of the behavioural simulations, i.e. the average
pattern of erosion predicted by the model. Table 5 shows the contingency table of the average model
predictions against the ACED map. By considering acceptable a one class difference, 75 % of fields
were correctly classified. Different type of errors could be distinguished: large model overestimations,
where the error was larger than two classes (ACED map class — model map class < -1), small
overestimations, where there was only one class of difference (-1), correct classification (0), small
underestimations (+1), and large underestimations (> +1). Table 5 shows that both large
overestimations, i.e. the model classified a field as subject to very severe erosion when the survey
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Figure 4. Predictive uncertainty of behavioural model simulations: dots indicate the outcome of field erosion of
the behavioural simulations, ficlds are sorted by the seasonal average erosion rate.

Table 5. Contingency table of ACED map and the average output of model behavioural simulations.

ACED map
Very low Low Moderate High Very High
Very low 33 21 8 5 4
g Low 24 19 18 10 11
TE) Moderate 16 21 30 16 8
;:’ High 4 9 16 14 26

Very high 2 9 9 2 35
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Figure 5. The model outputs. (A) The average classification of behavioural simulations (very slight = class 1;
very severe = class 5). (B) The uncertainty of model simulations expressed by the field classification range (=
highest class — lowest class attributed to the ficld by behavioural simulations): a classification range of four
means that a given field was classified by some simulations as subject to very low erosion (class 1) and in other
behavioural simulations as subject to very severe erosion (class 5).

indicated low or very low erosion, and large underestimations, where the model predicted very low
erosion on fields that were actually subject to severe erosion, were present. Still, 64 % of severely and
very severely eroded fields were correctly predicted by the model.

The uncertainty of erosion predicted by behavioural parameter sets caused changes in the
distribution of erosion within the catchment: depending on the parameter sets, some fields were
classified into different classes at each simulation, whereas others were consistently classified into the
same class. The consistency of erosion class attribution for the behavioural model simulations can be
measured with the classification range, i.e. the difference between the highest class attributed to a given
field minus the lowest class attributed to the same field. A classification range of zero indicates that the
field was consistently classified into the same class throughout the behavioural simulations, whereas a
classification range of four indicates that, depending on the parameter sets, the field was either
classified as subject to very slight erosion (class 1), to very severe erosion (class 5), or to any class in
between. The classification ranges are shown in Fig. 5B; the classification range was zero in 31 % of
fields, whereas 46 % of fields showed one class of difference. Around 10 % of fields resulted in a
classification range larger than two. In particular, 3 % of fields had a classification range of four, i.e
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Table 6. Error of model map classification in comparison with model uncertainty (classification range). The type
of error is given by the difference between ACED map class and model map class: large overestimation of model
(ACED map — model map < -1), small overestimation (-1), correct classification (0), small underestimation (+1),
and large underestimations (> +1).

Difference (ACED map class — Model map class)

<-1 -1 0 +1 > +1

.0 16 27 54 16 7

% 1 19 38 53 43 26
(0]

2 g) 2 12 10 13 11

g2+° 3 5 3 10 6 2

&) 4 3 4 3 0

model predictions were most uncertain. These areas generally corresponded to the valley bottoms, i.e.
the receivers of the run-off coming from the slopes.

It is interesting to verify whether the model prediction errors were consistent, i.e. if the classification
ranges of the erroneously classified fields was small (< 2). Table 6 shows the model prediction errors in
comparison with the classification range. Around 10 % of all fields were consistently overestimated
and 8.5 % of the fields were consistently underestimated. These model errors did not depend on the
formulation of sediment transport capacity equation, but were either due to erroneous choice of other
model parameters or were structural, i.e. some processes that are important in determining the
distribution of erosion were not properly taken into account. The analysis of variance of model
prediction error versus the cartographic variables available (i.e. soil type, land use and topography, both
in terms of local slope and physiographic position) showed that the only variable significantly related
to the model error was the land use. In particular, in vegetable parcels erosion was generally
overestimated, whereas in patches of grassland, sugarcane and tea fields erosion was underestimated.
Overestimations of erosion in the vegetable parcels are probably due to an incorrect model assumption:
vegetable fields are located in the valley bottom, and according to the model they should receive run-on
and sediment from the upper slopes. In reality, these fields are irrigated and separated in small parcels
of around ten m® by irrigation channels. Incoming run-on and sediment probably drain into these
channels and do not damage the vegetables plots. However, this information was not implemented in
the model, causing the overestimation of erosion. Underestimations of erosion in tea, sugarcane and
grassland were probably due to incorrect estimations of land use parameters. Only two land use
parameters were correlated to model errors: INT (Pearson correlation coefficient = -0.38) and CP
(Pearson c. ¢. = 0.16), which were also correlated (Pearson c.c. = -0.69). Both parameters were
retrieved from literature (Morgan, 2001; Morgan, 1995) and apparently overestimated the protective
effects of grassland, tea and sugarcane. Unfortunately, for these tropical crops there are not many
values reported in the literature.
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Conclusions

The semi-empirical erosion model proposed in this study was formulated to predict spatial patterns of
erosion within a catchment in data scarce environments. The model included detachment by raindrops
and overland flow, and sediment transport by overland flow. The formulation of processes was kept as
simple as possible, but the structure of the model was verified to be acceptable for the study area. Soil
detachment mechanisms were acceptably predicted and indicated soil detachability rates of 0.3 g J™".

The uncertainty of model predictions focused on the choice of sediment transport capacity
parameters and was assessed with the GLUE methodology. The effects of other sources of uncertainty
in model predictions, linked to soil and land use parameters, were considered of more local nature,
which may depend on the distribution of soil and land use types, and, though they might be important
and add further uncertainty in model predictions, were not addressed here. The parameterisation of the
sediment transport capacity was crucial for defining the distribution of erosion within the catchment.
The dotty plots revealed that distribution of erosion was well predicted when reinfiltration length was
short (L < 3 m) and the ratio of the overland flow depth power o and the local topography power vy, was
close to 0.5. Our results contrast with the conclusion of Prosser and Rustom;ji (2000) who suggested to
use o =y = 1.4 for modelling sediment transport at the catchment scale. However, the optimal o/y ratio
depends on environmental conditions and should not be generalized. In Kwalei conditions, because of
the dynamic Hortonian hydrologic regime and the dissected terrain, topography controlled the
distribution of erosion more than overland flow distribution.

Erosion rates predicted by behavioural simulations varied from -5.2 to +2.1 kg m™ per season. The
model simulated well 75 % of the classified pattern of erosion, and 64 % of severely eroded fields were
well predicted. Uncertainties due to sediment transport capacity parameters were high; the standard
deviation of net erosion rates ranged from 0 to 2.86 kg m™ per season and was below 0.93 kg m™ in
more than 95 % of fields. Most uncertain estimations concentrated in the low and middle range of
erosion rates, where small changes in sediment transport capacity induced a switch from erosion to
sedimentation conditions. As a consequence, the classification of model predictions in classes of
erosion varied with the parameter sets and 10 % of the fields showed a classification range larger than
two.

SWC planning should focus on fields classified as affected by severe erosion. However, areas whose
classification ranges are large should be checked carefully in the field. Still, the model consistently
overpredicted erosion rates in around 10 % of fields and underpredicted erosion rates in 8.5 % of the
fields. Overestimations of erosion occurred mainly in the vegetable plots, whereas underestimations of
erosion were high in sugarcane, tea and grassland fields. The difficult estimation of land use
parameters, especially CP and INT, contributed to the model prediction errors. Model structural errors
must also contribute to the prediction errors. Such a simple model was expected to show various
shortcomings. However, notwithstanding its simple structure, 65 % of severely eroded fields were well
localized.

The application of the MC-based uncertainty estimation methodology showed the importance of
sediment transport capacity parameters in defining the distribution of erosion within a catchment.
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Notwithstanding the large literature available, the choice of sediment transport capacity parameters is
still highly uncertain, and little research has been addressed on defining effective parameters for
catchment scale distributed modelling. This is a major issue to be addressed to achieve real
improvements of distributed erosion modelling at the catchment scale.
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WATER EROSION ASSESSMENT USING FARMERS’ INDICATORS IN
THE WEST USAMBARA MOUNTAINS, TANZANIA

Abstract

The contribution of local knowledge to ecological sciences has not been fully exploited: there is still a
gap between the recognition of farmers’ knowledge as valid and an effective use of such knowledge in
activities aimed at sustainable development. This study explores the use of farmers’ indicators of
erosion for developing a rapid tool for water erosion assessment at field level in the West Usambara
Mountains (Tanzania). Two extensive field surveys were conducted in the research area concurrently.
One survey consisted of applying an established erosion assessment method, the Assessment of Current
Erosion Damage (ACED). According to the erosion features observed, fields were classified into five
erosion classes, from very slightly eroded to very severely eroded. The second survey consisted of
recording the type and number of indicators of erosion listed by farmers and present in the fields. The
number of farmers’ indicators per field increased with erosion intensity, from less than four in slightly
eroded fields to more than eight in severely eroded fields. All farmers’ indicators were positively
correlated to the ACED erosion assessment classes. However, two groups of farmers’ indicators could
be distinguished in terms of erosion assessment: strong indicators, which were observed in more than
70 % of cases in severely eroded fields, and weak indicators, which were observed more frequently in
slightly and moderately eroded fields. Weak indicators appeared to be indicative of other land
degradation phenomena, such as chemical fertility decline. Strong indicators and number of indicators
were used to create a field erosion assessment tool in the form of a classification tree. The tree was
built using one half of the field survey data and validated using the other half. The tree consisted of a
hierarchical sequence of questions. Presence of rills and number of farmers’ indicators were the most
important factors of the tree. The validation yielded a highly significant Spearman rho correlation
coefficient (0.81). The contingency table showed that more than 80 % of very severely eroded fields
were correctly classified, whereas most misclassification occurred among slightly and moderately
eroded fields. Farmers include land degradation phenomena and soil fertility decline in their definition
of soil erosion. SWC planning should address this broader farmers’ perception by including e.g. soil
fertility improvements beside soil conservation. The distinction between strong and weak indicators of
erosion is important in recommending the right intervention in the right spot, e.g. by counteracting soil
erosion where strong indicators are present and by improving chemical fertility where weak indicators
are present. The classification tree is of empirical nature and may need adaptation before being applied
to other areas. The proposed methodology can be easily replicated and showed a high potential to
provide extensionists with a field tool for erosion assessment. The classification tree was a successful
example of integrating different types of knowledge for enhancing the co-operation between
stakeholders involved in the erosion-control activities.
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Introduction

In planning erosion control activities prompt and positive interventions are critical to establish a good
co-operation between extension workers and farmers. Therefore, soil and water conservation (SWC)
planning must take into account farmers needs and priorities and requires information on the
effectiveness of SWC practices. The assessment of erosion prior to intervention and the effective
location of sites where erosion is most severe should form the basis of any SWC planning.

Soil erosion by water can be assessed through a survey campaign, which is generally time- and
resource-demanding. Survey methods usually consist of assessing the presence and intensity of erosion
features, as well as recording factors that may cause erosion (Herweg, 1996; Morgan, 1995). Air photo
interpretation may guide the sampling of fields or transects, but field work is still the most consistent,
yet demanding activity in erosion assessment (Morgan, 1995). Moreover, the timing of the survey is
critical: erosion features can be assessed only shortly after erosive events, whereas planning of SWC
should be conducted as much in advance as possible before the onset of the critical rainy season.

Data scarcity is, however, a common problem in tropical rural areas. In addition, capital and human
resources are usually much below the demand, and extensionists must often cover large areas, that may
comprise very different ecological and socio-economic conditions and where their experience may be
limited. Integration of the broader experience of the extensionists with the site-specific knowledge of
the farmers may then become a key factor for successful interventions.

Local knowledge has been described as experiential, rooted in place, empirical and dynamic (Ellen
and Harris, 2000). In particular, farmers’ perception and description of their environment are often
linked to land management experience and land use history (e.g. Payton et al., 2003). Research has
already shown the usefulness of employing farmers’ knowledge to assess soil fertility (e.g. Murage et
al., 2000). Among others, Habarurema and Steiner (1997), and Murage et al. (2000) documented
extensive knowledge of farmers on landscape processes, and relations between soil productivity and
relief position. Positive experiences have also been reported in the use of indigenous knowledge for
erosion assessment (e.g. Warren et al., 2003). As farmers’ and scientists’ perceptions sometimes
mismatch (Kiome and Stocking, 1995; Ostberg, 1995), van Dissel and de Graaff (1998) suggested that
the adoption and adaptation of farmers’ knowledge into a scientific framework could only be achieved
by thorough assessment of farmers’ perceptions of ecological degradation.

The importance of the contribution of local knowledge to ecological sciences has been
acknowledged (WinklerPrins and Sandor, 2003), but difficulties remains in how to integrate effectively
local and scientific knowledge systems. Methodological studies that focus on integrating local and
scientific knowledge are few (Payton et al., 2003). Niemeijer and Mazzuccato (2003) argued that the
potential of farmers’ knowledge has only been partially exploited and they pleaded for a move from the
recognition of farmers’ knowledge as a source of information to a more effective use of such
knowledge for sustainable development. WinklerPrins (1999) stressed that the integration of local and
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scientific knowledge would be most beneficial in activities aimed at more sustainable land
management.

The incorporation of local knowledge in erosion assessment may offer many advantages for SWC
planning. By incorporating local knowledge in a systematic tool for erosion assessment, extensionists
would be provided with means to assess erosion, while taking full advantage of the farmers’
experiential and dynamic knowledge of their environment. Moreover, the use of farmers’ concepts in
the description and recognition of erosion phenomena may create a common ‘language’ among
extension workers and farmers that could strengthen farmers’ participation in the SWC planning
intervention.

The objective of this study was to test the use of farmers’ indicators of erosion for developing a
rapid tool for water erosion assessment at field level in the East African Highlands.

Material and methods

This research was conducted in the West Usambara Mountains (Tanzania). Thanks to a favourable
climate and fertile soils, these areas have a high potential for crop production, and are very important
sources of staple foods, forest products and export crops (Lundgren, 1980). Population densities are
generally above 100 persons per km?. Land scarcity has triggered accelerated soil erosion, which is
now a widespread phenomenon and a major cause of land degradation (Mbaga-Semgalawe and Fomer,
2000).

Soil and Water Conservation (SWC) projects have been implemented in these areas since the
colonial period, experiencing various degrees of success. In the 1980s, a new SWC planning method
was introduced by the Government of Kenya, i.e. the Catchment Approach (Admassie, 1992; Pretty et
al., 1995). The method consists of a participatory community planning process, with actual planning of
SWC measures at farm level. Since its introduction, the Catchment Approach has given positive results
in the improvement of soil productivity together with reduced resource degradation and is now adopted
by six East African countries (Kamar, 1998; Kizunguto and Shelukindo, 2002). However, a critical
review of the method lamented the low rate of SWC adoption and highlighted the lack of proper tools
for soil erosion assessment (Pretty et al., 1995).

Participatory research conducted in two catchments representative of the East African Highlands,
Gikuuri in Kenya and Kwalei in Tanzania, resulted in a list of indicators that farmers use to recognize
and assess erosion in their fields (Okoba et al., 2003; Tenge et al., 2004). The lists of both areas
concurred with each other and with current literature (Barrios et al., 2001; Swete Kelly and Gomez,
1998), indicating good potential for the use of these indicators for East African Highland conditions
(Okoba et al., 2003). A preliminary list (indicators with the symbol * in Table 1) was employed to test
the usefulness of farmers’ indicators for water erosion assessment in the Kwalei catchment.

The Kwalei catchment (4°48' S, 38°26' E) is located in the West Usambara Mountains, at an average
altitude of 1500 m a. s. 1. Mean annual rainfall is 1100 mm and mainly falls during two rainy seasons, a
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Table 1. List of farmer’s indicators of soil erosion in Kwalei (Tanzania) and Gikuuri (Kenya) catchments.
Symbol \ means that the indicator was mentioned but the local name was not recorded. Symbol * indicates
indicators employed in the present assessment survey.

Indicator LOCAL NAMES"
Kwalei Gikuuri
(Kiswabhili) (Kiembu)

Soil colour change Udongo mwekundu” Ithetu itune *
Absence of topsoil \ *
Soil stoniness Kokoto Tumathiga *
Rills Michirizi Tumivuko *
Gullies Makorongo Mivuko minene *
Sheetwash Mmonyoko tandazo Muguo

Brackern fern

Poor crop development

Shiuu

Mazao ya rangi njano

Root exposure \ Kuicirurio tumiri *
Washing crop / seeds \ \ *
Deposition of soil downslope Udongo mchanganyiko Gukunikuo *
Change in water colour Rangi ya maji \

Patches of bare land Tambarare \ *
Splash pedestals Matone Matata

Rock exposure Mawe Mathiga *

Slope steepness

Mteremko mkali

Breakage of SWC Kuvunjika kwa hifadhi Kuomomoka kwa mitaro
Wind-blown soils Muthetu muvuthu
White-soft stones Mashuhee *
Poor seed germination v *

# Farmers’ terms are reported as mentioned, but translated taking into account their practical meanings.
For instance, udongo mwekundu literally means ‘red soil’: in Kwalei soil changes to reddish when topsoil
is removed by erosion; with this term farmers therefore refer to soil colour change.

long one from March to May and a short one from September to November. The average monthly
temperature ranges between 18° and 23 °C with the maximum occurring in March and the minimum in
July.

The catchment is intensely populated, with a population density of about 400 persons per km
(Lyamchai et al., 1998). Over 90 % of the catchment population depends on agriculture. The average
household land size ranges from 1.2 to 1.6 ha (Tenge ef al., 2004). Food crops, mainly maize inter-
cropped with banana and bean, are cultivated on the upper slopes. A two-layer cultivation of banana
and coffee is frequent on the steeper slopes along the stream incisions. Irrigated vegetables are the main
cash crops and are cultivated in the valley bottoms and on the lower slopes. Soil erosion is one of the

2
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major constraints to agricultural production in the area (Meliyo et al., 2001), and occurs especially at
the onset of the rainy season, when storms are intense and soil cover poor (Vigiak ef al., 2005).

A team of scientists and farmers crossed the study area along two transects to get acquainted with
what farmers considered (i) erosion indicators and (ii) an eroded fields. Then, in the period from
December to May 2003 an extensive erosion assessment survey was conducted with the Assessment of
Current Erosion Damage method (ACED; Herweg, 1996). ACED requires the observations of type and
intensity of erosion features, such as pedestals, sheet wash, interrills, rills, gullies, or others features
(e.g. tree or rock exposure, build-up areas, re-depositions and so forth), together with presence of
factors causing erosion. The method allows the semi-quantification of soil erosion. However, in order
to cover the whole catchment, less emphasis was given in the present study to measuring erosion
features quantitatively and the method was employed to assess erosion qualitatively. Fields were
classified into five qualitative erosion classes, from very low (class 1) to very high (class 5).
Concurrently, the surveyor annotated the type and number of the farmers’ indicators as observed in the
field.

The distribution and frequency of the farmers’ indicators were first explored with simple descriptive
statistical analysis. Correlation among indicators was assessed by correlation coefficients of the
correlation matrix, using SPSS software (2002). Type and number of farmers’ indicators present in a
field were then cross-tabulated with field erosion class as assessed by the ACED method to explore the
relation between farmers’ indicators and erosion assessment.

A measure of the strength of the farmers’ indicator i in terms of erosion assessment was defined as
the empirical probability p; that the indicator i occurred in an erosion class equal or larger than j:

J-l

Z”f,j
bi; =1--2 (D
n

1

where n; was the number of presence of the indicator i in erosion class j, and »; was the total number of
presences observed for the indicator i. The higher the probability of occurrence in a high erosion class,
the stronger was the farmers’ indicator in terms of erosion assessment (Okoba et al., 2003).

Farmers’ indicators that were shown to be useful for erosion assessment were finally used for
developing a simple, in-field erosion assessment tool in the form of a classification tree. The
classification tree is a nonparametric type of regression method. It has the advantage that it does not
require assumptions of the form of the relationship (linear or otherwise) between the dependent
variable (i.e. the field erosion class) and the input data set (i.e. the farmers’ indicators). The survey
dataset was randomly split in two; one half was used for creating the classification tree; the other half
for validating it. The classification tree was built using the guidelines of Breiman (1993) in MATLAB
Statistical Toolbox software (The MathWorks, 2002). The validation set was compared with the ACED
erosion classification via a contingency table. The degree of agreement between the two classification
methods was estimated with the Kappa coefficient (Cohen, 1968), which depends on both the observed
and the chance-expected agreement between the two classifications. The Kappa coefficient was
calculated with the freeware Kappa.exe (Bonnardel, 1995).
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Results and discussion

In total the concurrent surveys covered 336 fields that spanned the whole catchment. The five ACED
erosion classes were defined as follows:

1) very slightly eroded fields (class 1, very low): sporadic and shallow (average depth < 1.5
mm) pedestals, none or sporadic signs of sheet wash;

2) slightly eroded fields (class 2, low): frequent pedestals (average depth = 2 mm), signs of
sheet wash, such as interrills, shallow exposure of roots and stones covering part of the ficld;

3) moderately eroded fields (class 3, moderate): intense rain splash signs indicated by frequent
pedestals (average depth = 2.5 mm); widespread interrill signs covering the whole field,
sporadic rills;

4) severely eroded fields (class 4, high): frequent pedestals (average depth = 3 mm);
widespread interrill erosion; rills with cross sections of 1-5 cm? and/or covering 10-20 % of
the field;

5) very severely eroded fields (class 5, very high): frequent pedestals (average depth > 3 mm);
widespread interrill erosion; rills with cross sections of 10 cm? or more, and/or covering 30
% or more of the field; presence of gullies.

Fields were equally distributed among the five erosion classes: there were 60 - 80 fields in each
class. Two thirds of the fields were surveyed during the short rainy season (December 2002 — February
2003), when most fields were fallow. The remaining third of fields were observed during the long rainy
season (March-May 2003), when fields were cultivated and the frequent hoeing hampered the
observation of erosion features and farmers indicators. However, the distribution of fields per erosion
class was homogeneous in the two periods (one-way analysis of variance test at probability level o =
0.05), therefore the sample population was analyzed without distinction between the two seasons.

Farmers’ indicators were classified into four groups according to the frequency of observations, i.e.
the number of fields where the indicator was present divided by the total number of fields:

1) most frequent, observed in more than 25 % of the fields: Bracken fern (Pteridium Aquilinum
L.), slope steepness and white-soft stones (‘mashuhee’; Plate 1);

2) frequent, observed on the 15-25 % of the fields: soil colour change, absence of topsoil, rills,
and poor crop development;

3) occasional, observed on the 5-15% of the fields: rock exposure, soil stoniness, root
exposure, patches of bare land, and deposition of soil downslope,

4) sparsely occurring, observed on less than 5% of the fields: gullies, washing of crops and
seeds, and poor seed germination.

Some farmers’ indicators could only be observed during a short time, as after an erosive rainfall
(e.g. deposition of soil downslope) or during early crop cultivation (e.g. poor seed germination), while
others could be observed at any time (e.g. slope steepness or rock exposure).

The number of farmers’ indicators per field increased with erosion intensity (Fig. 1): no field
belonging to very low or low erosion classes in the ACED scheme showed more than four farmers’
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Plate 1. Mashuhee: farmers of Kwalei consider this white-soft stone a sign of soil erosion.
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Figure 1. Number of indicators per ficld and per erosion class (erosion classes: 1 = very low, 5 = very high), in
Kwalei, Tanzania. Bubble dimensions are proportional to the frequency of observation for each number of
indicators / erosion class combination. The grey bubble indicates the modal combination for each class.
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Table 2. Probabilities p; that an indicator i occurred in a field with erosion class equal or higher than ;j and total
number of presences #; observed per farmers’ indicator.

Indicator i pyper erosion class j n;
2 3 4 5
g Slope steepness 0.94 0.79 0.60 0.39 126
é %; Bracken fern 0.94 0.77 0.56 0.35 124
= White-soft stones 099 091 072 040 92
Poor crop development 1.00 0.97 0.87 0.58 67
5 Rils 100 100 097 086 66
E Soil colour change 0.98 0.95 0.79 0.52 66
Absence of topsoil 1.00 1.00 0.95 0.62 60
Patches of bare land 1.00 0.95 0.88 0.59 59
S Root exposure 0.96 0.76 0.60 0.38 45
% Rock exposure 0.95 0.92 0.76 0.58 38
g Deposition soil downslope 1.00 0.97 0.79 0.45 33
Soil stoniness 0.94 0.84 0.68 0.52 31
> % Washing crop / seeds 1.00 1.00 1.00 0.78
% % Poor seed germination 1.00 1.00 1.00 1.00 4
A & Gullies 1.00 1.00 1.00 1.00 2

indicators at once, whereas more than eight indicators per field occurred only on very eroded fields
(class 5, with a maxim of 13 indicators per field). However, cases of highly and severely eroded fields
in the ACED scheme where no or few farmers’ indicators could be observed also occurred, albeit
sporadically.

The presence of any farmers’ indicator was positively correlated with the ACED erosion assessment
classes. The correlation matrix of the farmers’ indicators showed that a significant correlation (at o0 =
0.05) among indicators existed, which was expected since they were all positively correlated to the
erosion assessment, i.e. all indicators are related to erosion processes. This confirmed that all indicators
could be considered indicators of erosion (e.g. Swete Kelly and Gomez, 1998). The highest correlation
coefficients were found for poor crop development with (i) absence of topsoil (correlation coefficient =
0.33), and (ii) patches of bare land (correlation coefficient = 0.29). As the correlation coefficients were
significant but low, no indicator was considered being a duplicate of another (redundant).

Farmers’ indicators probabilities per ACED erosion class as defined in eq. (1) are reported in Table
2. The most frequent indicators were not very strong: this was expected since they were frequently
observed and therefore the probability that they were observed in slightly or very slightly eroded fields
was high. Among these farmers’ indicators, however, the white-soft stones occurred mostly on highly
and very eroded fields: the probability of its occurrence on fields of ACED class 4 or 5 was larger than
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Figure 2. Comparison of a strong erosion indicators (soil colour change) versus a weak erosion indicators (root
exposure). The frequency of strong indicators increased monotonically with assessed erosion. Weak indicators
were more equally distributed among low or moderately eroded fields.

70 %. On the other side of the probability distribution, the sparsely occurring indicators were all
associated with high and very high erosion classes. This was not surprising in the case of gullies, which
is also a criterion of the ACED method of indicating very high erosion. Similarly, the washing of crop
and seeds 1s an effect of sheet wash, which is considered as serious erosion in the ACED scheme.
However, the case of poor seed germination is more difficult to interpret. The time during which this
indicator could be observed was very limited, and it may have happened that fields where poor seed
germination would not be associated with erosion had accidentally not been visited during the survey.
According to our approach, two types of indicators could be defined:

1) strong indicators (pis > 0.70, i.e. the probability of presence of this indicator in severely and
very severely eroded fields was at least 70 %). Examples are: rills, absence of topsoil,
gullies, washing of crop and seeds, and poor seed germination (which could be considered
very strong indicators, for their probability p;,; were higher than 0.95); and poor crop
development, patches of bare land, soil colour change, deposition of soil downslope, rock
exposure, and white-soft stones.

2) weak indicators (pis < 0.70). Examples are: Bracken fern, root exposure, slope steepness,
root exposure, soil stoniness. With the exception of soil stoniness, these indicators were
found in more than 50 % of cases in fields that were not very severely eroded (p;s < 0.50).

The presence of strong indicators of erosion increased from slightly to severely eroded fields in the
ACED scheme, whereas weak indicators were more equally distributed among the slightly or
moderately eroded fields (ACED classes 2 and 3; Fig. 2). Weak indicators probably indicate conditions
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of soil degradation or soil erosion hazard more than of soil erosion sensu strictu (Okoba et al., 2003).
For instance, the presence of Bracken fern is an indicator of poor soil chemical fertility (Barrios et al.,
2001). However, in this study farmers’ indicators were only tested in terms of soil erosion assessment
and the relationships between weak indicators of erosion and other land degradation problems was not
addressed.

Farmers’ concept of soil erosion is broader than extension workers’ and experts’. Our study
confirms that farmers include ideas of land degradation and land fertility decline when speaking of soil
erosion (Murage et al., 2000). In SWC planning this difference in perception is important, because
addressing only soil erosion while disregarding other land degradation problems may reduce the rate of
adoption, as farmers might not perceive the benefits of the proposed actions. At the same time, it is
important to distinguish between strong and weak indicators when using farmers’ knowledge for
assessing erosion in order to give the right advice in the right spot. Extensionists should recommend
counteracting soil erosion where strong indicators are present and other measures, e.g. improving
chemical fertility, where weak indicators are present.

The number of farmers’ indicators and presence of strong farmers’ indicators of erosion were used
to build a classification tree. The data set comprised ten inputs. The first eight inputs referred to the
presence (= 1) or absence (= 0) of strong indicators (white-soft stones, poor crop development, rills,
soil colour change, absence of topsoil, patches of bare land, rock exposure, and deposition of soils
downslope). The ninth input indicated the presence (= 1) or absence (= 0) of any of the sparsely
occurring indicators (any of gullies, washing of crops and seeds, and poor seed germination). The tenth
input was the number of indicators observed in the field (= sum of the previous entries). The
classification tree is shown in Fig. 3. The tree consists of a hierarchic sequence of questions: the
uppermost question must be answered first, and then the next question follows the branch stemming
from the previous answer. The presence of rills dominates the classification tree: whenever rills are
spotted, the field is classified as subject to very high erosion. This is valid for the Kwalei catchment,
where most erosion occurs in the form of interrill erosion, and where rills are not frequent and gullies
are rare (Vigiak et al., 2005). However, it is doubtful whether such rule could be applied in other areas,
where other erosion processes can be active. The presence of rills is anyway an important feature of
erosion assessment survey methods (Herweg, 1996; Stocking and Murnaghan, 2001). The dominant
role of rills represents therefore a point of good agreement between farmers and scientific knowledge.

The application of the classification tree to the validation set yielded 49 % of correctly classified
fields. Spearman rho correlation coefficient was high (0.81) and significant (at oo = 0.01). These results
were particularly satisfactory when examining the contingency table (Table 3). Most of the
disagreements are in fields that were classified as slightly eroded by the ACED survey (class 2: low)
and were mainly identified as very slightly eroded by the classification tree (class 1: very low). Fig. 3
shows that the classification tree never reaches the erosion class “low”, i.e. the farmers’ indicator
classification tree mainly merged the two lower classes and could not discriminate among the two. This
agrees with the way farmers perceive erosion in the area: when asked to classify fields into qualitative
erosion classes, farmers defined only three classes of erosion (low, moderate or high;
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Figure 3. Classification tree for water erosion assessment using farmers’ indicators of soil erosion (Sparsely
occurring indicator = any of washing away of crops and seeds, poor seed germination or gullies).
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Table 3. Contingency table of the validation set; columns indicate ACED erosion assessment classes; rows
indicate the farmers’ indicators classification tree erosion classes.
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Very Low Low Moderate High Very high
- Very low 27 29 13 3
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Okoba et al., 2003). Differences between classes may sometimes be subjective for the surveyor as well,
and originate from comparative considerations rather than from strict rules. For instance, the boundary
between very low and low erosion is gradual and less sensitive than between low and moderate classes.
This drawback is not so alarming when the general aim of the survey is to identify highly eroded fields.
Misjudgements also occurred among the moderately eroded fields, where 12 of the 41 moderately
eroded fields of the ACED survey were classified as severely eroded by the classification tree. The
very severely eroded fields were mainly classified correctly, with only six out of 36 cases of ACED
class 5 fields underestimated by the classification tree. The Kappa coefficient was 0.37 (Cohen, 1968;
Bonnardel, 1995), which, considering the lack of one class in the classification tree, indicates good
agreement between the two sets.

The classification tree classified very severely eroded fields also when rills were absent, but the
rules in the tree were weaker. The sensitivity of the presence of rills was checked by repeating the
creation of the classification tree with the exclusion of ri/ls from the set of indicators. In this case, the
major factor in the classification tree was the total number of indicators, but the goodness of fit of the
validation set dropped to 39 % (and the Kappa coefficient to 0.23): no other indicator was as strong as
rills. Indeed, farmers’ indicators of erosion work mainly as a ‘pool’: the second main feature of the
classification tree is the number of indicators, and only when no farmers’ indicator is present the tree
yield a ‘very low’ erosion class.

We envisage two ways of employing the classification tree of Fig. 3 in practice. Extensionists could
use it during their field visits directly to assess erosion; or, within the participatory framework of their
interventions, they may ask farmers to map the key indicators, and rely on farmers’ memory to assess
erosion over the area. The latter use may offer the advantage that farmers recall the presence of
indicators in their fields even if cultivation has already obliterated them, making the timing of the
survey less critical. This may eventually lead to a considerable saving of time, better communication
between experts and farmers, and, hopefully, a larger consensus on sustainable SWC activities.

Conclusions

This research demonstrated that farmers’ knowledge of indicators of erosion closely matched scientific
erosion assessment criteria. All indicators mentioned by farmers were positively correlated to erosion,
and the number of farmers’ indicators per field increased with erosion intensity (Fig. 1).

Farmers include land degradation and land fertility decline issues in their concept of soil erosion. In
terms of assessment, a distinction could be made between strong indicators, interpreted as indicators of
soil erosion sensu strictu, versus weak indicators, interpreted as more general indicators of land
degradation. The link between weak indicators and land degradation issues other than soil erosion was
not assessed in the present study and should be addressed in further research. The presence of weak
indicators of erosion indicates that proper SWC planning should address the broader farmers’
perception and include measures to improve, e.g., soil chemical fertility beside soil conservation. At the
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same time, it is important to distinguish between strong and weak indicators when using farmers’
knowledge for assessing erosion in order to give the right advice in the right place.

The use of farmers’ indicators of erosion allowed building a simple tool for erosion assessment that
worked well in the Kwalei catchment (Fig. 3). The classification tree will need further testing before
expanding its use. The list of farmers’ indicators was similar to other areas of the East African
Highlands (Okoba et al., 2003), but the importance of each indicator may differ according to the main
erosion processes at work.

The classification tree is a successful example of integrating different types of knowledge for
enhancing the co-operation between all the stakeholders involved in SWC activities. More research
must be conducted in testing and developing further this approach. The methodology proposed in this
study can be easily replicated elsewhere. Hopefully, working with farmers will again provide further
insights for erosion assessment in other areas and other situations.
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MODELLING SPATIAL SCALE OF WATER EROSION IN THE WEST
USAMBARA MOUNTAINS

Abstract

This study aimed to assess the ability of several models to locate arcas affected by severe erosion and
identify the factors driving the distribution of erosion in a catchment characterised by a dynamic
Hortonian hydrologic regime. The spatial patterns of severely eroded areas predicted by five erosion
models were compared to the pattern of erosion observed during an extensive field survey conducted in
Kwalei catchment (North-Eastern Tanzania). The actual pattern of erosion was also compared with the
spatial distribution of some erosion factors: overland flow, whose distribution was simulated with a
hydrologic model that accounted for overland flow reinfiltration, slope, crust, canopy cover and ground
cover. The patterns of severely eroded areas varied wildly among models. The best predictions were
those of (i) a classification tree built on farmers’ indicators of erosion (correlation coefficient 0.75); (ii)
a semi-empirical model that accounted for overland flow reinfiltration (c.c. 0.48); and (iii) a qualitative
model based on slope and ground cover (c.c. 0.45). The erosion factor mostly correlated with eroded
areas was crust cover (c.c. 0.57), which was also correlated to vegetation cover. Lacunarity analysis of
the spatial patterns showed that erosion models could not characterise the spatial scale of eroded areas
correctly. Instead, the spatial scale of erosion distribution in the catchment coincided with that of the
overland flow distribution at short reinfiltration length (0.5 - 5 m), even though severely eroded areas
were not spatially correlated to areas of high overland flow depth (c.c. 0.10). In conclusion, the
distribution of erosion was strongly correlated to crust cover, and a simple model based on slope and
ground cover performed well in locating severely eroded areas. However, in the dynamic Hortonian
regime of Kwalei catchment, the travel distance of overland flow determined the spatial scale of
severely eroded areas.

Keywords: erosion modelling, spatial pattern; lacunarity analysis; dynamic Hortonian overland flow.

Introduction

Hortonian overland flow occurs when rainfall intensity exceeds the rate of water infiltration in the soil
(Horton, 1933; Kirkby, 1988). After soil ponding conditions are reached, water may at first accumulate
in the micro-depressions of the soil surface. Once the storage capacity of the soil surface is filled,
overland flow starts moving in the form of anastomous shallow streamlines, whose hydraulic
conditions may vary from laminar to turbulent (Kirkby, 1988). Along its movement downslope,
overland flow can either concentrate along preferential stream paths, such as rills, or be slowed down
and disappear within areas where its movement is hampered and infiltration rates are high. In such
zones, water reinfiltrates and the transported sediment is deposited. Therefore, the overland flow
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generated along the slopes does not necessarily reach the streams, but the extension of the area
contributing overland flow to water bodies changes dynamically according to the conditions that
precede the rainfall event and the rainfall event characteristics. This hydrologic regime can be termed
dynamic Hortonian (Kirkby, 1988), and is well recognized as typical of, but not restricted to, many
semi-arid environments of the world (Puigdefabregas and Sanchez, 1996; Bergkamp, 1998; Ludwig et
al., 1999; Imeson and Prinsen, 2004). Dubruil (1985) describes many areas of humid tropical Africa
where such conditions can occur.

The travel distance of overland flow at the hillslope scale depends on the magnitude of the rainfall
event, the topography, and the spatial distribution of sources of overland flow, i.e. areas where overland
flow generation is enhanced, and sinks of overland flow, i.e. areas where water reinfiltrates in the soil
(e.g. Cammeraat, 2004). When the rainfall event has a high rainfall intensity peak but is of short
duration, or when soil conditions are very dry, most of the overland flow generated along the slope
reinfiltrates within the sinks present along the slope. The presence of rills and the distance to the
channel may influence the amount of overland flow that reaches the streams, but such amount is
especially determined by the density and the spatial organization of sources and sinks of overland flow
along the slope (Bergkamp, 1998; Cammeraat, 2004). In sparsely vegetated areas, sinks may be
tussocks or bands of vegetation (e.g. Bergkamp, 1998; Ludwig ef al., 1999), whereas in cultivated areas
sinks can be field edges, small ditches, hedgerows, or vegetated strips (van Noordwijk et al., 1998;
Okoth, 2003). When the sinks are mostly located along the main slope direction, overland flow does
not encounter obstacles and may concentrate into streamlines. When the sinks are located across the
main direction, overland flow is blocked, and water can reinfiltrate in the soil. The effectiveness of
sinks in filtering overland flow is dynamic and depends on hydrologic conditions (Bergkamp, 1998;
Cammeraat, 2004).

The main mechanism of soil movement across slopes is sediment transport by overland flow. Under
a dynamic Hortonian overland flow regime, the slope connectivity is interrupted. In these conditions,
erosion phenomena consist of a redistribution of soil particles, and soil fertility, across the landscape,
rather than soil removal from the slopes (van Noordwijk et al., 1998). Hence, the sediment delivery
ratio, i.e. the ratio of net erosion to gross erosion for a certain area, tends to decrease as the spatial area
that is accounted for increases. The soil redistribution still yields important consequences for farmers,
because the losses of fertility from the upper fields can be larger than eventual opportunities created in
the downslope areas (van Noordwijk et al., 1998). Soil and Water Conservation (SWC) aims at
reducing sediment entrainment and removal, therefore the location of sediment sources and sinks in a
landscape is an important step for an efficient SWC planning.

Distributed erosion models are potentially useful tools to predict spatial patterns of erosion (Garen et
al., 1999). However, the dynamics of a Hortonian hydrologic regime are not easily included in erosion
models. The configuration of sinks in the landscape is often not accounted for in distributed erosion
models, even if they have important consequences in the distribution of erosion in the landscape (van
Noordwijk et al., 1998; Takken et al., 2001; Okoth, 2003). This may have important repercussions on
the ability of distributed erosion models to locate the spatial patterns of erosion within a catchment.
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This study aimed to assess the ability of several erosion assessment models to locate areas affected
by severe erosion and to identify the key factors driving the distribution of erosion in a catchment
characterised by a dynamic Hortonian hydrologic regime.

Material and methods

The study area and assessment of the actual erosion

The study was conducted in the Kwalei catchment (4°48" S, 38°26" E), situated in the West Usambara
Mountains, North-East Tanzania. The catchment size is approx. 2 km?, and altitude ranges from 1337
to 1820 m. The terrain is rough and highly dissected, with more than half of the hillslopes steeper than
20 %. Average annual rainfall is approximately 1000 mm, distributed in two periods, a long rainy
season that stretches from the end of February to the end of May and the short, less reliable rainy
season that goes from October to January (Vigiak et al., 2005a). Soils on the slopes consist mainly of
Humic and Haplic Acrisols (FAO-Unesco legend, FAO, 1990). They comprise porous, sandy topsoils,
and clayey, deep and well-drained subsoils. Saturation may occur in the clayey and vertic Umbric
Gleysols in the valley bottoms (Meliyo et al., 2001). The highest part of the catchment is covered by
mountain rain forest, whereas the middle and lower slopes are mainly cultivated. The main food crops
are maize, bean, banana, cassava and sugarcane, whereas the main cash crops are vegetables, coffee
and tea. Cultivation of annual crops is concentrated close to the settlement compounds, along the ridge
shoulders. The steep slopes along the streams are generally covered by two-storey cultivation of banana
and coffee.

At the catchment outlet, rainfall was measured with a tipping bucket rain gauge, discharge with a
sonic water level meter, and sediment concentration with an automatic water sampler. All
measurements were set to two minutes intervals (Hessel ef al., 2005; Vigiak et al., 2005d). Six Gerlach
troughs (Gerlach, 1967) were placed along two longitudinal transects in the middle and lower slopes of
the catchment to measure overland flow volumes and sediment losses after each rainfall event (Vigiak
et al., 2005b; Vigiak et al., 2005d).

The erosion status of the Kwalei catchment was assessed qualitatively with a field survey based on
the Assessment of Current Erosion Damage method (ACED; Herweg, 1996). ACED consists of
surveying erosion features and main causes of erosion, such as land management, surface
characteristics, and run-on and run-off patterns. Five qualitative classes of erosion were defined on the
basis of presence of erosion features and their intensity, from very slight (class 1), to very severe (class
5). The survey lasted from December 2002 till May 2003 and covered the whole catchment. The
erosion assessment was considered to be representative for the seasonal erosion status of the fields
(Vigiak et al., 2005b).

Distribution of erosion factors
Kwalei catchment is characterised by dynamic Hortonian hydrologic regime: overland flow is
generated by infiltration excess, but has short travel distances (Vigiak et al., 2005¢). The distribution of
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overland flow was assessed with a hydrologic model that was built to reproduce the observed pattern of
overland flow occurrence along the hillslopes (Vigiak et al., 2005d). The model runs per field and uses
time steps of one hour. The total field overland flow QOror (in mm per time step) was modelled as a
function of the effective rainfall (., in mm), i.e. the amount of rainfall that generates discharge at the
catchment outlet, the Hydrologic Response Unit, i.e. areas of homogeneous hydrology, and the field
topographic connectivity (cascading sequence of run-on and run-off). Two Hydrologic Response Units
were identified in the catcment: perennial crops (HRU 1: coffee and banana, forest and banana and
maize fields) versus other crops (HRU 2, mainly annual crops) (Vigiak et al., 2005c¢). The model
accounted for reinfiltration along the slopes by assuming that only a fraction of the field overland flow
(Oror) would drain to the lower fields (run-off, Qpyr in mm per time step). This fraction depended on
the reinfiltration length L (in m), i.e. the average distance at which overland flow travels before
reinfiltrating. The maximum field area generating run-off was equal to the length of the lower field
border (Br, in m) times the characteristic reinfiltration length L, i.e. the average length (m) along which
the overland flow travels on the soil surface before reinfiltrating in the soil:

. [, BpL
OQour = Oror {mm(la A4, J:| )

where Ar is the field area (m?), and min indicates the minimum between the elements in brackets.
The overland flow accumulation sequence was based on the flow directions observed during the ACED
survey. From observations at the Gerlach troughs placed along the slopes, the average reinfiltration
length in Kwalei catchment was estimated to be around 4 m (Vigiak et al., 2005d). However, it is likely
that reinfiltration length changes within a reasonable range of 0.1 to 10 m, depending on rainfall
characteristics, soil moisture and surface conditions (e.g. Rejman, 2003; Vigiak et al., 2005b). In this
experiment, reinfiltration length L was set to 1 m. One-hour QOror and Qoyr of the period March-May
2003 were summed to get the total overland flow and run-off of the season.

Slope was derived from a Digital Elevation Model at 20 m pixel size and averaged per field. Crust
cover (in %) was estimated during the ACED survey, and distributed using the field map created after
the survey. Canopy cover (CC, in fraction, 0-1) and ground cover (GC, fraction 0-1) were estimated in
the field during the ACED survey, and subsequently averaged per land use type. Also the average
fraction of soil not covered by vegetation (1-CC and 1-GC) were calculated per land use type. The
spatial distribution of the vegetation factors was established on the basis of the land use map (Vigiak et
al., 2005b).

Erosion assessment models
Several erosion assessment models were applied to the study area. The models are described in detail
elsewhere: here only the main differences on the model characteristics, and methods of calibration to
the study area are given.

The Morgan, Morgan and Finney model
The Morgan, Morgan and Finney model (MMF; Morgan, 2001) is an empirical, annual model that
estimates erosion rates as the minimum between detachment and sediment transport rates. The model
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runs per field; in the application at the Kwalei catchment, incoming run-on was added to the overland
flow generated in each field to calculate overland flow detachment and transport rates. Model inputs for
the application of MMF to the Kwalei conditions were partly estimated in the field and partly derived
from literature (Vigiak et al., 2005a). The model output consisted of field average annual net erosion
rates (in kg m™y™"), from which the seasonal estimate (kg m~s™) for the period March-May 2003 was
derived using the ratio of actual rainfall observed in the period (330 mm) divided by the annual average
rainfall (967 mm).

The Limburg Soil Erosion model
The Limburg Soil Erosion Model (LISEM; De Roo et al., 1996; De Roo and Jetten, 1999) is a physics-
based erosion model that runs at the event and the catchment scale. Modelled erosion processes
comprise detachment by rainfall, throughfall, and overland flow, and transport by overland flow. Flow
routing is modelled using a four-point finite-difference solution of the kinematic wave and Manning’s
equation (De Roo ef al., 1996). In the application for Kwalei catchment, LISEM version 2.154 was
used, with a time step of 15 seconds on the basis of the DEM of 20 meter pixel size. Infiltration was
modelled using the Green & Ampt equation. The model was calibrated against discharge and sediment
concentration measurements at the outlet. Though it generally performed well, the model showed some
problems in modelling double peaked hydrographs (Hessel et al., 2005). The model output per event
consisted of the pixel total erosion (in kg m?). LISEM seasonal erosion output (in kg m™s™) was the
sum of the five largest rainfall events in the period March-May 2003.

The Vigiak model

The Vigiak model (Vigiak et al., 2005b) is a semi-empirical model that runs at the catchment and
event scale. Overland flow is predicted per field and per event on the basis of the hydrologic model
explained above. The overland flow was used to predict field net erosion rates according to a slightly
modified erosion phase of the MMF model. Soil detachability of Umbric Gleysol was calibrated versus
detachment rates observed in splash cups. The reinfiltration length L of eq. (1) was optimized with a
Monte Carlo (MC) experiment against spatial patterns of erosion and ranged from 0.01 to 2.5 m
(average L = 0.10 m; Vigiak et al., 2005b). The model output was the average sum of net erosion rate
for the period March-May 2003 (kg m™ s™") calculated by the behavioural MC simulations (Vigiak et
al., 2005b).

The Farmers’ Indicators Tree
The Farmers’ Indicators Tree (FIT; Vigiak et al., 2005¢) is a field erosion assessment method that
estimates the qualitative erosion class per field and per year. It consists of a classification tree
(Breiman, 1993), created on the basis of type and presence of farmers’ indicators of erosion: absence of
topsoil, rills, gullies, washing of crop and seeds, poor seed germination, poor crop development,
patches of bare land, soil colour change, deposition of soil downslope, rock exposure, and white-soft
stones (Vigiak et al., 2005¢). The presence and type of farmers’ indicators of erosion were recorded at
the time of the ACED survey. Calibration of the classification tree was done on half of the ACED
survey dataset and validated against the other half. FIT output consists of field erosion classes, from
very slight (class 1) to very severe (class 5).
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Moreover, with the exception of the sparsely occurring indicators (gullies, washing of crop and
seeds, and poor seed germination), which were considered too rare to yield meaningful spatial
information, the spatial distributions of farmers’ indicators of erosion, i.e. the “building blocks” of the
FIT model, were studied here in more detail.

The Okoth model
Okoth (2003) proposed a simple model to locate areas exposed to high erosion risk. The model consist
of a logit regression equation that was built on the basis of a field survey conducted in Kiambu District
(Central Kenya). The equation uses only two input parameters:

Logit = 4.18+0.22 * slope — 0.08GC (2)

where slope is the field slope (in %) and GC is the ground cover (in %). In Kiambu District, areas with
the logit predictor above five are considered as subject to high erosion risk (Okoth, 2003). Okoth’ study
area extended over around 600 km? of Kiambu District, and encompassed different agroecological
zones, from the drier livestock-sorghum zone in the South-Eastern part to the wetter Coffee-Tea zone
in the North-Western part (Jaetzold and Schmidt, 1983; Okoth, 2003), which is similar to the West
Usamabara Mountains for climate, geology and land use.

Analysis of spatial patterns

The first purpose of the comparison of spatial patterns was to assess the ability of erosion models to
locate severely eroded areas. The model outputs were reclassified into five classes of erosion, setting
the class thresholds differently for each model in order to have the same number of fields per class as in
the ACED survey. The degree of agreement of model prediction maps and ACED was assessed with
weighted Kappa of the contingency table (Cohen, 1968; Vigiak et al., 2005a). Given a contingency
table of two classification systems of # classes, in this case the five classes of erosion assessed during
the ACED survey (i) or predicted by the model (j), the weighted Kappa coefficient (wK) is defined by:

_ po,w - pE‘,W
1-p,.,

wK 3)

where

Pow = Z Zwifpif “4)
i=l =1
is the weighted observed distribution, and

Pew= Z Zwiipi.p..f )

=l j=1
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Table 1. Weights (w;) applied to the contingency table to calculate the weighted Kappa (from Vigiak et al.,
2005a).

ACED map
Very low Low Moderate High Very High
- Very low 1 1 0.5 0.25 0
% Low 1 1 1 0.5 0.25
2 & Moderate 0.5 1 1 1 0.5
€ ° High 0.25 0.5 I I I
= Very high 0 0.25 0.5 1 1

. . o : m; m, m .

is the weighted chance-expected distribution, with p; = ——, p; = —~, p; = —=, m;; is the number of
m m m

fields classified in classes i and j; m; is the total number of fields classified in the class i; m; is the total

number of objects classified in the class j and m is the total number of fields (Cohen, 1968).

ACED assessments depend on the field conditions at the time of the survey. Moreover, the presence
of erosion features depends on the redistribution of soil in the field, which is related, but is not equal, to
the net erosion losses as assessed by models. Errors of evaluation may as well be present. To account
for the uncertainties in the ACED map, the weights for the class combinations were set as in Table 1:
one class difference was considered acceptable (weight factors = 1), whereas for larger disagreements
between the two maps, the weights were linearly dependent on the distance between classes (Vigiak et
al., 2005a).

Weighted Kappa values measure the general agreement between observed and modelled patterns.
However, for SWC purposes, the main objective is the ability of models to identify severely eroded
areas (classes 4 and 5). Therefore, the erosion maps were reclassified into binary maps: former classes
4 and 5 were classified as severe erosion (class 1), whereas former classes from 1 (very slight) to 3
(moderate erosion) were classified into low erosion (class 0). Similarly, the distribution of erosion
factors was reclassified to obtain binary maps. The thresholds between high (class 1) or low (class 0)
erosion factors were set to match the proportion of the ACED severely eroded areas. The forest part of
the catchment, less interesting for SWC planning, was excluded. Further, to focus on areas instead of
single fields, the original field vector maps were transformed into raster format. The pixel size was set
to 5 m, which was small enough to maintain the general field geometry. The agreement between binary
maps consisted of the correlation coefficients between ACED, model predictions, and erosion factor
distributions. The elaboration of maps was done with ILWIS 3.2 Academic (Koolhoven et al., 2004).

Finally, we analysed the lacunarity of the spatial patterns depicted by the binary maps. Lacunarity
analysis characterises the spatial texture, i.e. the degree of aggregation, of spatial objects. Lacunarity
measures the distribution of gap sizes of the object geometry, with the object being more lacunar if
gaps are distributed over a larger range of sizes (Mandelbrot, 1983). The concept of lacunarity was
introduced in reference to fractals, but can be applied to real objects, and has been used, for example, to
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measure the spatial texture of habitats in landscape ecology studies (Plotnick et al., 1993; Plotnick et
al., 1996). Lacunarity was calculated with the gliding box algorithm proposed by Allain and Cloitre
(1991). For a binary image, the gliding box consists of a moving window of size » that moves across
the image and count the mass S of the object, i.e. the number of sites (pixels) occupied by the class of
interest. At the given r, lacunarity A, is defined as:

vars,

A =—
(S,)’

I

+1 (6)

where var S, is the variance of the distribution of the mass S, and S, is its mean.

Lacunarity depends on the fraction of the image occupied by the class of interest (the density of the
class, p), the size of the window r, and the geometry of the object (Plotnick et al., 1993, Plotnick et al.,
1996). Maximum lacunarity is at the window size r equal to the pixel size: at this point lacunarity is
equal to the inverse of the density p of the binary map. As the size of the window r increases, the
relative variance of the mass S decreases, so does the lacunarity. When the window size r is equal to
the whole image, var S, is zero, and lacunarity is at its minimum, one. The log-log plot of the
lacunarity A, against the window size » gives information on the change of lacunarity across the spatial
scale range. For example, in a regularly distributed class, once the window size » exceeds the size of
the regular pattern, var S, drops to zero and lacunarity quickly approaches one. Lacunarity of random
maps also drops quickly to one as window size r increases, because random maps are statistically
invariant at larger scales. In the case of a self-similar image, instead, var S, does not change with the
window size r, so the log-log plot approaches a straight line with negative slope (Plotnick et al., 1996).
More in general, lacunarity changes little until the point where the window size » equals to the size of
the clumps, then it decreases rapidly. In this way, the lacunarity analysis can be used to detect scales:
changes in slope in the log-log slope curve indicates changes in the spatial scale of the object of interest
(Plotnick et al., 1996). Moreover, lacunarity curves allows comparing the degree of aggregation of
spatial objects: at the same window size, the higher the lacunarity, the more aggregate is the spatial
object at that scale. In contrast with other landscape metrics, lacunarity analysis is not influenced by the
image boundaries and is effective in detecting scale changes even when the density p is very small. In
land degradation studies, lacunarity analysis proved effective in studying spatial heterogeneity of
vegetation patterns in relation to geomorphologic processes (Puigdefabregas and Sanchez, 1996),
hydrology (Ludwig ef al., 1999; Wu et al., 2000) and erosion (Imeson and Prinsen, 2004). Lacunarity
analysis was performed with the freeware RULE (Gardner, 1999) to detect the degree of aggregation,
i.e. the spatial scale, of the binary map patterns.

Results and discussion

Table 2 shows the Kappa values resulting from the comparison of the ACED spatial pattern of erosion
and the erosion assessment models predictions. The agreement between models and observations went
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Table 2. Kappa values for the comparison of erosion classes as assessed in the field (ACED) and predicted by
models.

Weighted Kappa
MMF 0.27
LISEM 0.26
Vigiak 0.53
FIT 0.74
Okoth 0.45

from fair (0.20-0.40) to good (0.40-0.75; Landis and Koch, 1977). Fig. 1 shows the spatial pattern of
severely eroded areas (former classes 4 and 5) of ACED and the assessment models. The North-
Western corner area is predicted as subject to severe erosion by all models, but predictions differed
especially in the middle and lower parts of the catchment.

Both the MMF and LISEM model scored low Kappa values. MMF mainly predicted severely eroded
arcas at the footslopes, whereas the ACED survey indicated serious erosion also along the slope
shoulders. Model errors were attributed to the overland flow generation mechanism, which did not
account for reinfiltration along the slopes (Vigiak et al., 2005a). LISEM predictions were affected by
difficulties in defining the spatial distribution of inputs, the low resolution of the available DEM, and
structural limitations of the model, whose hydrologic component can not deal with reinfiltration along
the slopes yet (Hessel e al., 2005; De Roo and Jetten, 1999). LISEM predicted the high erosion in the
upper part of the catchment well, but failed to locate severely eroded areas in the lower parts.

The general good performance of the semi-empirical Vigiak model was expected, because the
transport capacity parameters of the model had been previously optimized in relation to the spatial
distribution of the erosion in Kwalei (Vigiak et al., 2005b). It is interesting to note, however, that the
model could generally locate the spots of erosion in terms of number and position, but failed to capture
their extent.

In contrast to the quantitative models, the qualitative erosion assessment models did not require
huge amount of input data. Nonetheless, these models performed better than the quantitative models in
several respects. The FIT model showed a very good agreement between observed and predicted
erosion. However, it should be borne in mind that the FIT model was created using half of the spatial
dataset available (Vigiak ef al., 2005¢), so that the good performance, though promising, should be
taken with caution. In particular, the model will need recalibration before being used in other areas
(Vigiak et al., 2005¢). In contrast, Okoth two-parameter model resulted in good agreement with the
ACED observations even without calibration. Okoth model was created for Kiambu District, in
environmental conditions that are comparable to those of Kwalei catchment. The limits among classes
set for Kwalei catchment, with severe erosion for areas with logit predictor > 7, were different than
those set for Kiambu District, with severe erosion set for areas with logit predictor > 5 (Okoth, 2003).
However, the capacity of this simple model to locate erosion in qualitative terms is surprisingly
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Figure 1. Comparison of severely eroded arcas as assessed in the field (ACED) and predicted by five erosion
assessment models, Kwalei catchment, Tanzania.
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Table 3. Correlation matrix of severely eroded areas as assessed in the field (ACED) and predicted by models

ACED MMF LISEM Vigiak FIT Okoth
ACED 1 0.11 0.31 0.48 0.75 0.44
MMF 1 0.21 0.28 0.02 0.27
LISEM 1 0.25 0.23 0.35
Vigiak 1 0.38 0.36
FIT 1 0.35
Okoth 1

promising. The application to Kwalei condition is a first independent test of Okoth model; as the model
uses easily available information, i.e. slope and ground cover, this tool may be very interesting for
quick assessments of erosion in SWC planning studies in the East African Highland areas.

The location of severely eroded areas differed a lot among prediction models, as the correlation
coefficients between model prediction maps show (Table 3). The correlation matrix reveals that the
MMF predictions were in the least agreement with ACED and with the other models. Even if the MMF
Kappa value was close to that of LISEM, the correlation coefficient for severely eroded areas was
much lower, indicating that MMF had more problems in locating eroded spots. Also LISEM
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Figure 2. Standardized lacunarity curves of severely eroded areas as assessed in the field (ACED) and as
predicted by erosion assessment models.
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predictions differed substantially from the other models. Some correlation was found between FIT,
Vigiak and Okoth models. In particular, Okoth model was the one scoring the highest correlation
coefficients with all the other models, probably because the logit predictor, though empirical, has a
physical basis that is common to all assessment methods.

Fig. 2 shows the log-log plot of lacunarity curves against the window size r for the binary maps of
Fig. 1. To facilitate the comparison, lacunarity A was standardized by its highest value (A;, at window
r; =5 m) and the window size r was standardized by its lowest value (#;). The window size » went
from 5 m (In(r/r;) = 0), the pixel size, to around 750 m (In(r/r;) = 5), half of the catchment size. The
ACED map shows a change in lacunarity (inflection point) at around In(»/r;) = 2, indicating that
severely eroded areas were aggregated up to a spatial scale of 40 m, slightly larger than the fields. The
lacunarity of FIT model follows that of ACED closely at the beginning, but decreases at a slower rate
as window size r increases, indicating that severely eroded areas predicted by FIT are spatially more
aggregated than the surveyed ones. Okoth model and MMF shows exactly the same lacunarity: this
suggests that MMF model prediction aggregation levels and Okoth logit predictor (eq. 2) depends
ultimately on the same spatial variables, namely slope and ground cover. LISEM shows by far the
highest lacunarity at all scales; indeed, LISEM basically predicts one large clump of severely eroded
area. The lacunarity of the Vigiak model is the only curve being always below the ACED curve: the
model is more disaggregated than ACED at all scales. Lacunarity curves revealed that no model could
capture the spatial scale of severely eroded areas. Beside the Vigiak model, all models predicted a
larger extent of the severely eroded clumps.

To explain the spatial scale of eroded areas, we analysed the spatial distribution of erosion factors.
The ACED map showed that severely eroded areas occupied a fraction of around 30 % of the
agricultural part of the Kwalei catchment. The highest 30 % of the erosion factor distributions
corresponded to total overland flow depth of the hydrologic model Oror > 2.75 mm; field run-off Qour
> 0.075 mm; slopes > 38 %; crust cover > 60 %; canopy cover < 50 % (i.e., 1-CC > 50 %); and ground
cover <50 % (i.e., 1-GC > 50 %). Areas above these thresholds were considered as high erosion factor
(class 1), otherwise the areas were classified as low erosion factor (class 0).

Fig. 3 shows the binary maps of the erosion factors and Table 4 shows their correlation matrix.
Areas of higher total overland flow depth (Oror) did not correspond to severely eroded sites: mostly,
overland flow was high along the stream line incisions, which are covered by the two-storey coffee and
banana vegetation, and in the valley bottoms, where slopes are very small. These conditions assure a
good protection of soil against eroding agents. Field run-off distribution (Qoyr) was less correlated to
the ACED map than total overland flow. In the fields, soil erosion features are created by the soil
detachment, transport and deposition processes that may occur within the field area. The presence and
intensity of erosion features, on which the ACED method is based, are therefore related to the total
overland flow that occurs in the field (Qror). Instead, the amount of soil that is permanently removed
from the field, i.e. the field net erosion, depends on the overland flow that leaves the field (run-off,
QOour ), but this may not need to coincide with the ACED map. The distribution of field run-off was not
correlated to erosion factors other than the total overland flow. The amount of field run-off depends
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Figure 3. Spatial distribution of erosion factors in the Kwalei catchment, Tanzania.



152
Modelling spatial scale of water erosion in the West Usambara Mountains

Table 4. Correlation matrix of severely eroded arcas as assessed in the field (ACED) and erosion factors.

ACED  Qpor Qour  Slope  Crust 1-CC 1-GC

ACED 1 0.10 -0.02 0.20 0.57 0.51 0.44
Field overland flow (Qror) > 2.75 mm 1 0.40 0.03 0.20 0.30 0.21
Field run-off (Qpyr) > 0.075 mm 1 0.01 0.05 0.19 0.07
Slope > 38 % 1 0.11 -0.07  -0.09
Crust > 60 % 1 0.46 0.36
1-CC>50% 1 0.82
1-GC>50% 1

basically on total overland flow and the geometry of the field: for fields whose lower boundary is long,
the relative contribution of total overland flow to run-off is relatively large (eq. 1).

Slope was better related to erosion in the upper part of the catchment than along the middle and
lower parts. The good protection of vegetation along the steeper slopes, confirmed by the slightly
negative correlation coefficient between slope and vegetation cover, explains the rather low correlation
coefficient (0.20) between slope and severe erosion. Crust cover and poor vegetation cover were
instead widespread in the middle and lower part of the catchment, where annual crops prevail. The
three factors were well correlated, but crust cover had the highest correlation with severely eroded
areas (c.c. 0.57). Vegetation cover protects the topsoil from the direct impact of raindrops; its removal,
for example by tillage operations, exposes the soil surface to the impact of the raindrop and favour the
formation of structural crusts. The presence of crust may reduce soil infiltration and enhance the
occurrence of overland flow (Vigiak et al., 2005¢). All these conditions may result in higher erosion.

The good correlation between crust and vegetation cover on one side, and crust and erosion on the
other, explains in part the good performance of Okoth model, which takes account of the ground cover,
and hence of the crust distribution.

Fig. 4 shows the lacunarity curves of the erosion factors in comparison to that of severely eroded
areas. Crust cover and ground cover lacunarity are quite close to that of the severely eroded areas
(ACED), confirming the linkage between the two erosion factors and the location of erosion. Erosion
factors are spatially more aggregated than ACED, with one, important exception: the distribution of
total overland flow Qror has exactly the same lacunarity of the severely eroded areas, even when the
two patterns do not overlap.

The overland flow is the vector of soil sediment, transporting soil detached particles from sediment
sources to deposition areas. In a way, it represents the ‘memory’ of the landscape, linking the field to
what happens in its upper areas. This ‘memory’ can be quantified by the reinfiltration length parameter
L, which determines the amount of overland flow moving across field borders (eq. 1). Fig. 5 shows the
change of lacunarity in the overland flow pattern when reinfiltration length parameter L is varied in the
range from 0.1 m, i.e. virtually no field run-off, till 1000 m, i.e. virtually no reinfiltration along the
slopes (L = inf). Fig 5a shows the lacunarity of total field overland flow QOror. At reinfiltration lengths
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Figure 4. Standardized lacunarity curves of severely eroded areas in comparison with the erosion factors.

L > 1 m, the lacunarity decreases: as the field run-on increases in the lower part of the fields, the spots
of high overland flow concentrate progressively in the lower segments of the slope. At first, the change
is small: lacunarity curves at reinfiltration length of 2.5 and 5 m are close to that of 1 m and to that of
ACED severely eroded areas. At even longer reinfiltration lengths, the lacunarity strongly decreases,
especially at the hillslope scale of 100-300 m (3 < In (7/r;) < 4), definitively diverging from that of
ACED. Moreover, also at reinfiltration lengths < 1 m the degree of aggregation of overland flow
increases: the lacunarity curve at L = 0.5 m is close to that of L = 5 m, and that of 0.1 m is close to the
lacunarity curve of total overland flow at L = 10 m. The distribution of overland flow according to the
hydrologic model depends not only on the field topology (eq. 1) but also on the field hydrologic
conditions, namely on the Hydrologic Response Unit of the field (Vigiak ez al., 2005d). The HRU
distribution reflects the perennial (HRU 1) — annual (HRU 2) crop pattern and largely corresponds to
the canopy cover pattern of Fig. 3. This explains as well the correlation between overland flow factors
and canopy cover pattern (1-CC; see Table 4). Indeed, at reinfiltration length L of 0.1 m, the lacunarity
of overland flow coincides to that of canopy cover (1-CC > 50 %, not shown here). When reinfiltration
is practically nil, total overland flow depends exclusively on the hydrologic conditions of the field (the
HRU), and ultimately on the land use. Lacunarity analysis revealed that neither an infinite reinfiltration
length (classic Hortonian overland flow), nor a nil reinfiltration length (no overland flow connectivity)
corresponded to the scale of the distribution of severely eroded areas. Rather, effective reinfiltration
lengths in Kwalei catchment are in the range of 0.5 and 5 m.
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Figure 5. Standardized lacunarity curves of severely eroded areas in comparison with the highest 30 % of (a) the
total overland flow (Qror) and (b) field run-off (Quyr), at different reinfiltration lengths L.
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Fig. 5b shows the lacunarity curves of the field run-off patterns. In this case, the increase in
reinfiltration length always resulted in an increase in the aggregation of the areas with higher field run-
off, which concentrate more and more downslope. Erosion features depend on total overland flow more
than field run-off, but field run-off represents more properly the effect of field topology, i.e. the run-
on/run-off cascade and field geometry, on the spatial distribution of overland flow. The spatial scale of
field run-off that is closest to the ACED severely eroded areas occurred at reinfiltration lengths L of 5 -
10 m. This is probably the spatial scale of overland flow movement across fields, the slope ‘memory’
that is active in Kwalei catchment.

Fig. 5 demonstrates the importance of the travel distance of overland flow and of field geometry in
the distribution of overland flow and erosion under a dynamic Hortonian hydrologic regime. The
hydrologic model of Vigiak ef al. (Vigiak et al., 2005d) refers explicitly to the lower boundary of the
field (eq. 1), linking the field geometry to the spatial distribution of overland flow and thus of erosion.
Field boundaries, either marked by a simple vegetated strip, a line of trees or a small ridge, create
obstacles that reduce the movement of water across fields, and represent landscape discontinuities
where overland flow can reinfiltrate (van Noordwijk ef al., 1998; Okoth, 2003). When the field
geometry is not accounted for, spatial distribution of physics-based models can be very wrong (Takken
et al., 2001): the lacunarity of a completely Hortonian overland flow (L = inf in Fig. 5) is very close to
that of the LISEM model. On the other hand, the curve of the Vigiak model is close to that of field run-
off at reinfiltration length of 2.5 m. The Vigiak model assesses the field soil losses, i.e. the field net
erosion rates, and therefore tends to underestimates erosion processes in fields where intra-field soil
redistribution is important. The practical result is that the model could indicate the locations of erosion,
but not their extent.

The same phenomenon is probably true also for the distribution of erosion within the field. Intra-
field erosion patterns were not studied here, but it is likely that within the fields vegetation patterns
create a mosaic of sources and sinks of overland flow that affects the spatial distribution of overland
flow (Puigdefabregas and Sanchez, 1996; Bergkamp, 1998; Ludwig et al., 1999; Wu et al., 2000;
Imeson and Prinsen, 2004).

Our results are in agreement with other studies showing the importance of barriers and sinks in
scaling the distribution of erosion in a landscape (e.g. Takken et al., 2001; van Noordwijk ef al., 1998).
As van Noordwijk et al. (1998) pointed out, lateral interactions have important consequences on
erosion soil rates at the landscape scale. On wide slopes, overland flow may spread laterally; the
redistribution of water and sediments can lead to a consistent reduction of the sediment delivery, as
water can reinfiltrate more along the slope. Within a field, acceleration of overland flow along the slope
may prevail, but at the landscape scale, the lateral interactions and the redistribution of soil usually
predominate (van Noordwijk ef al., 1998). Eq. (1) offers a somewhat rudimental, but simple, solution
to account for the effect that field geometry exerts on the spatial distribution of erosion in a landscape.
As an alternative, Imeson and Prinsen (2004) suggest the use of an index of vegetation-bare soil
connectivity to adjust the potential upstream area of a given site. Theirs is yet another approach to
include more explicitly the vegetation pattern, in terms of spatial configuration of sources and sinks of
overland flow, into the hydrologic and erosion dynamics of the landscape.
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Figure 6. Distribution of severely eroded areas (ACED) and farmers’ indicators of erosion.

Without doubt, hydrologic dynamics are difficult to characterise. Direct observations of overland
flow occurrence and distribution require time and technical resources that are seldom available outside
dedicated research activities. Given its importance, however, retrieving such information, even in
general terms, may be crucial for effective assessment of erosion in a landscape. In practice,
information on the spatial distribution of factors of erosion and environmental dynamics might be
retrieved from the land users. The effectiveness of farmers’ knowledge in locating erosion is
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Table 5. Correlation coefficients matrix of farmers indicator of erosion and severely eroded arecas (ACED), total
overland flow (QOror) and field run-off (Qpyr) at reinfiltration length L of 1 m. The density p is the fraction (in %)
of the map occupied by the class of interest.
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ACED 0.56 0.41 0.33 0.25 0.51 0.64 0.25 0.44 30
Oror 0.13 0.08 -0.06 0.10 0.17 0.12 0.07 0.11 32
Oour -0.02  -0.16 -0.05 0.02 0 -0.06  0.07 0.01 31
Absence of topsoil 1 0.39 0.15 0.29 0.55 0.46 0.12 0.28 18
Deposition soil down. 1 0.1 0.25 0.27 0.37 -0.03 0.35 11
White-soft stones 1 0.19 0.15 0.30 0.21 0.37 24
Patches of bare land 1 0.24 0.23 0.07 0.16 6
Poor crop develop. 1 0.39 0.2 0.18 15
Rills 1 0.18 047 18
Rock exposure 1 0.12 8
Soil colour change 1 17

exemplified by the good performance of the FIT model. Even if the current FIT model should probably
not be applied elsewhere without reparameterisation, the methodology used to develop it (Vigiak et al.,
2005¢) can be repeated and included within the participatory appraisal activities that extension officers
usually undertake when planning SWC activities (e.g. Kamar, 1998). Moreover, many indicators of
erosion that were mentioned by Kwalei farmers are quite common (Swete Kelly and Gomez, 1998).
Fig. 6 shows the spatial distribution of the farmers’ indicators that were strongly related to erosion.
Their correlation matrix is shown in Table 5, where also the density p of the area occupied by the
indicators is given. Contrary to the maps shown in Figs. 1 and 3, where the density p was equivalent to
that of ACED severely eroded areas (30 %), the binary maps of Fig. 6 show the actual distribution of
indicators observed in the field, whose fraction thus varied. The density p affects the correlation
coefficients: indicators that are less frequently observed, such as deposition of soil downslope, patches
of bare land and rock exposure have generally lower correlation coefficients. All indicators are
correlated to erosion, especially absence of topsoil, rills and poor crop development. The former two
indicators are erosion features. Poor crop development can be either a consequence of erosion, i.e.
erosion deplete the soil fertility and the water availability, thus crops perform poorly, or a factor of
erosion, i.e. where crops are poorly developed, soil is less protected against erosion agents. All the
indicators are poorly correlated with the distribution of field overland flow and field run-off.



158
Modelling spatial scale of water erosion in the West Usambara Mountains

QToT

= Absence of topsoil

------- Deposition soil downslope

W[

0.80

Patches of bare land
Poor crop development
Rills

Rock exposure

¢ ®m 0 + [

Soil colour change

— White soft-stones

In (A1)

0.40

0.00 ; ; ; ; ;
i} 0s 1 15 2 25
In(riry)

Figure 7. Standardized lacunarity curves of farmers’ erosion indicators in comparison with the highest 30 % of
total overland flow (Qror) at reinfiltration length L = 1 m.

The density p of the binary maps of Fig. 6 has consequences on their lacunarity: sparse datasets have
higher lacunarity than dense datasets (Plotnick ez al., 1996). However, the shape of the lacunarity curve
is independent of the density p (Plotnick ef al., 1993, Imeson and Prinsen, 2004), thus standardized
lacunarity curves of objects with different density are comparable (Fig. 7). Lacunarity of farmers’
indicators is compared to the total overland flow at reinfiltration length L of 1 m, which is close to that
of the severely eroded areas. White-soft stones are generally more aggregated: the appearance of white
soft stones is indeed an effect of the removal of topsoil and the exposure of the B horizon of Humic
Acrisols, so the distribution of this indicators is also related to the soil type. Patches of bare land and
rock exposure appear to have a shorter spatial scale than hydrologic and erosion conditions. The
lacunarity of the other indicators, instead, follow closely the curve of total overland flow: these
indicators are good candidates to estimate the spatial scale of distribution of erosion and overland flow.
Among these, there is little point in discussing which indicator would be the best: probably the
combination of different indicators can give better ideas on the extension of erosion (Okoba and Sterk,
2005; Vigiak et al., 2005¢). More importantly, Fig. 7 shows that farmers have good perception of the
occurrence and distribution of erosion, and this information can be used to infer the spatial scales of
hydrologic and erosion conditions. Farmers’ knowledge of their environment could be used as well to
gather information on the intra-field variability of erosion and other relevant agronomic conditions
(Dregne, 1989; van Noordwijk ef al., 1998; Okoba et al., 2005).
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In alternative to the regression-type approaches such as the one offered by the FIT model (Vigiak et
al., 2005¢), we can see mainly two other ways of embedding farmers’ knowledge into a scientific
framework for modelling hydrology and erosion in a landscape. On one side, farmers’ knowledge can
be directly translated into expert-system models (Davis, 1993). Expert systems for land degradation
and erosion have been applied with success in tropical countries (e.g. Balachandran, 1995; Suryana,
1997), as well as in temperate areas (e.g. Boardman et al., 1990). These models can offer valid tools to
locate erosion, and therefore can counteract the problem of data scarcity that is common to many rural
areas of the tropics, but can offer little insight in the physical processes involved, and remain difficult
to export to other areas.

A more innovative approach is the methodology proposed by Ferreyra (2003) for parameter
optimization of crop simulation models. In precision agriculture, the retrieval of detailed information
on the environment is crucial to quantify the spatio-temporal variability of inputs in crop simulation
models. Ferreyra elicited farmers’ and experts’ knowledge of intra-field ecology in the form of nominal
relationships of probabilities, i.c. “greater than”, “lower than”, for adjacent soil units. The resulting
neighbourhood criteria sets were employed to constrain the optimization of soil-water parameters, such
as saturated hydraulic conductivity, SCS curve number, soil depth and plant density. Ferreyra’s
methodology helps reducing the over parameterisation problems in physics-based models and
improving the spatial distribution of inputs and outputs. For example, in the Kwalei case, the lacunarity
of farmers’ indicators of erosion could have been used to parameterise the effective reinfiltration length
L of the hydrologic model. Given the promising results of farmers’ knowledge of erosion phenomena in
Kwalei catchment (Tenge ef al., 2005), this framework might successfully couple local knowledge to
physics-based models, substantially improving the quality of spatially distributed erosion models.

Conclusions

SWC planners need reliable tools to locate the areas within a catchment that are most affected by water
erosion. The development of catchment-scale distributed models concentrated on the prediction of
water discharge and sediment delivery at the outlet more than on quality of spatial patterns (Jetten et
al., 2003). The poor quality of spatial model predictions can be attributed to the heterogeneous,
nonlinear behaviour of hydrologic and erosion processes coupled with insufficient quality of spatial
and temporal datasets (Merritt et al., 2003; Jetten et al., 2003). These shortcomings were without doubt
present in the Kwalei catchment, where the accuracy of the cartographic information was lower than
the usual requirements for a complex, physics-based erosion model such as LISEM (e.g. Hessel et al.,
2005). However, the quality of cartographic information was already better than the one usually
available to SWC planners (Renschler and Harbor, 2002). Where environmental data are of poor
quality and where the main objective of model predictions is the location of eroded areas, qualitative
assessment tools such as the FIT model (Vigiak ef al., 2005¢) and Okoth model (Okoth, 2003) can
perform better than quantitative models. These empirical approaches would require calibration in areas
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other than the ones where they were developed, but the research effort to do so would probably be
more affordable than for proper calibration of more physics-based models.

The comparison of the distribution of severely eroded areas with erosion factors indicated that
erosion was spatially correlated with crust cover. We could not distinguish whether crust cover was an
effect rather than a cause of soil erosion: most probably it is both. The correlation of crust cover with
vegetation cover also explained the good performance of the Okoth two-parameter model in locating
the eroded areas of the Kwalei catchment.

Lacunarity analysis of model predictions, however, revealed a spatial scale deficiency involved in
the poor performance of the erosion models. While the location of eroded area was correlated to crust
cover, the spatial scale of their distribution was the same as that of the total overland flow of the fields
at short reinfiltration lengths L (0.5 - 5 m). In the dynamic Hortonian hydrologic conditions of Kwalei
catchment, where overland flow occurrence is generally easily triggered but shortly lived, erosion
phenomena often consists of a redistribution of soil particles within the catchment rather than sediment
delivery to water bodies.

The dynamics of overland flow along the slopes, caused by the configuration of the mosaic of
sources and sinks of overland flow in a landscape, though recognized (Puigdefabregas and Sanchez,
1996; van Noordwijk et al., 1998; Imeson and Prinsen, 2004), are not sufficiently accounted for in
erosion models. The semi-empirical Vigiak model embedded a mechanism to account for field
geometry and reinfiltration along the slopes: the model could locate most spots of eroded areas, even if
it failed in accounting for their extent. An alternative approach could be the use of vegetation
connectivity indices to account for potential sinks of overland flow along the slopes (Puigdefabregas
and Sanchez, 1996; Imeson and Prinsen, 2004). In any case, accounting for the dynamics of the
overland flow seems fundamental for predicting the spatial scale of erosion under a dynamic Hortonian
regime.

Unfortunately, gathering information on the hydrology of new environments requires huge
investments. In data scarce areas, farmers’ knowledge represent an interesting alternative source of
information. In the case of the Kwalei catchment, some indicators used by farmers to assess erosion in
their fields conveyed useful information on the location of eroded areas and on the spatial scale of the
erosion phenomena. It is possible to further exploit farmers’ spatial knowledge of their environment,
for example in the optimization of model parameters of semi-empirical and physics-based models with
the methodology recently proposed by Ferreyra (2003). The combination of qualitative local
knowledge in quantitative models may thus alleviate the constrains of the chronic data scarcity that
affects spatially distributed environmental modelling.
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SUMMARY AND CONCLUSIONS

Watershed management requires prompt location of sources and sinks of sediment within a catchment.
Pinpointing ‘hot-spots’ of erosion allows concentrating limited resources in the most effective way, and
positive early results of Soil and Water Conservation (SWC) plans may gain the trust and participation
of the land users. In this sense, the location of severely eroded areas within the catchment of
intervention can be more important than the quantification of soil losses from the catchment.

Distributed erosion models can be valuable tools for watershed planning. However, the quality of
spatially distributed model predictions is seriously hampered by the natural complexity and spatial
heterogeneity of the landscape system, coupled with limited availability of spatio-temporal datasets of
sufficient accuracy. In practice, the environmental data that are usually available contain information to
characterize only the dominant processes active in a given system, which may then be described
effectively by conceptual models. In this study, conceptual (semi-empirical) approaches were
considered as a good compromise between explicit inclusion of dominant physical processes and
limited availability of spatio-temporal data. The general objective was to improve the quality of
spatially distributed predictions of erosion modelling in data scarse environments.

Most of the research fieldwork took place in Kwalei catchment (4°48’ S, 38° 26'E), located in the
West Usambara Mountains of Tanzania at an average altituted of 1500 m a.s.l. The catchment has an
area of around 2 km?, and is roughly triangular in shape. Terrain is rough and highly dissected, with
one half of hillslopes > 20 %. Drainage comprises four permanent streams running from Northwest to
Southeast. Mean annual rainfall is around 1000 mm, almost half of which falls during the long rainy
season, from late February until late May. A shorter and less predictable rainy season occurs from
October to January. Average daily temperature is 18 °C, with diurnal temperature ranges greater than
annual ranges. Soils along the slopes are well-drained, with porous and sandy topsoil and clayey
subsoils. In the valley bottom, soils are vertic and may be subject to saturation. The highest part of the
catchment is covered by mountain rain forest, whereas the middle and lower slopes are used for
agriculture. The catchment is intensely populated and over 90 % of the catchment population depends
on agriculture. The average household land size ranges from 1.2 to 1.6 ha. Food crops, mainly maize
inter-cropped with banana and bean, are cultivated on the upper slopes. A two-layer cultivation of
banana and coffee is frequent on the steeper slopes along the stream incisions. Irrigated vegetables are
the main cash crops and are cultivated in the valley bottoms and on the lower slopes. Soil erosion is one
of the major constraints to agricultural production in the area and occurs especially at the onset of the
rainy season, when storms are intense and soil cover is poor.

The empirical model proposed by Morgan, Morgan and Finney (MMF) was selected as a suitable
base. The model retained a physical basis in the definition of the rate of sediment detachment by
rainfall and by overland flow, and the rate of sediment transport capacity by overland flow. At the same
time, the model had a simple structure and required a limited amount of input parameters, which made
it practical for SWC purposes. The application at catchment-scale required the introduction of a
mechanism to account for incoming run-on and outgoing run-off. When tested against field
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observations, however, MMF spatial predictions were fair in Kwalei catchment. Model prediction
errors consisted of overestimates of erosion rates along the streamlines and underestimates of erosion
along the ridges. The main cause of prediction errors was the mechanism of overland flow
accumulation, which ignored the possibility of reinfiltration of overland flow along the slopes that was
instead observed in the field.

Correct modelling of the hydrology of a catchment is essential for correct prediction of erosion
along the slopes. Spatially distributed modelling of overland flow requires the definition of Hydrologic
Response Units, i.e. areas whose hydrologic behaviour can be considered homogeneous for the
purposes of the model. Infiltration measurements may guide the definition of HRUs in terms of
cartographic variables, such as topography, soil and land use. Three methods of point infiltration
measurements were used to infer the spatial distribution of overland flow: the constant head method,
the tension infiltration method and mini-rainfall simulation method. The statistical relationship between
field measurements and cartographic variables (land use, soil and topography) yielded three different
HRU scenarios. The actual spatial distribution of overland flow occurrence at the hillslope scale was
observed with overland flow detectors. These are simple devices that indicate whether in a certain spot
overland flow has occurred (yes or no) during a rainfall event. In March-May 2002, 50 detectors were
placed on a small subcatchment in the North-Western part of Kwalei catchment, and were regularly
monitored after each rainfall event. The frequency of overland flow occurrence was highly variable in
space. The only spatial pattern of overland flow frequency that could be recognized in terms of
cartographic variables was the limit between annual crops on the upper part of the slopes, where
overland flow frequency was 48 %, and the coffee and banana stands on the footslopes, where overland
flow frequency was 35 %. Geostatistic analysis of the data showed no spatial autocorrelation at
distances longer than 40 m. From the observation of overland flow occurrence, two main Hydrologic
Response Units (HRUs) could be defined: perennial versus annual crops. Differences in rainfall
interception, soil properties, especially surface sealing and porosity, and soil management explained the
relatively lower occurrence of overland flow observed under perennials than in annual crops. None of
the HRU patterns inferred from infiltration measurements matched the observations. Point
measurements failed to account for the soil macroporosity, and for hydrology processes other than
infiltration, such as canopy interception.

In March-May 2003 the detectors were placed along two longitudinal transects placed in the middle
and lower slopes of Kwalei catchment. These observations largely confirmed the conclusions of the
previous season. In the catchment, overland flow may be triggered by short and intense showers, but as
it moves downward, it quickly reinfiltrates. The average travel distance of overland flow before
reinfiltration occurs is shorter when rainfall magnitude (intensity, amount and duration) is small,
canopy interception is large, and the soil is rough, porous or dry.

A consequence of such a dynamic Hortonian hydrologic regime is that large part of the overland
flow that is generated along the slopes, reinfiltrates and reaches the catchment outlet as subsurface
storm flow. Hourly rainfall-discharge data at the catchment outlet were modelled through a Data Based
Mechanistic model that (i) defined the effective rainfall, i.e. the amount of rainfall that generated a
response at the outlet; and (ii) partitioned the water discharge at the outlet into slow flow, interpreted as
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ground water displacement, and quick flow, interpreted as a combination of overland flow and
subsurface storm flow. The observations of overland flow occurrence at the hillslope scale were used to
derive HRU probability distribution functions of overland flow in relation to the maximum one-hour
effective rainfall of the event. At small effective rainfall (< 0.15 mm) annual crops contributed more to
discharge, whereas at large effective rainfall (> 0.15 mm), perennial crops contributed as much as
annual crops to the water discharge. These rules allowed estimating the overland flow depth per HRU
and per mm of effective rainfall. Reinfiltration was accounted for in the toposequence by assuming that
only the overland flow generated in the lower part of the field could drain out of it. Thus, the amount of
field run-off depended on rainfall characteristics (via effective rainfall), land use (via HRU), field
topology (incoming run-on), field geometry (field lower border in relation to the field area), and on the
reinfiltration length, i.e. the average travel distance of overland flow. Reinfiltration length was assessed
from observation of contributing area of Gerlach troughs to be around 4 m. However, overland flow
travel distance is likely to change with rainfall event characteristics, HRUs, local slope and soil surface
conditions.

The hydrologic model was coupled with the sediment phase of the MMF model to build a semi-
empirical catchment-scale model to predict the distribution of erosion for single events. Overland flow
is the main vector of sediment across slopes. This function is modelled through the sediment transport
capacity rate equation, which depends on overland flow volume and local slope. In the literature, the
parameterisation of the transport capacity rate equation differs according to hydraulic regime of flow,
soil characteristics, and scale of observation. Thus, the choice of these parameters is uncertain, but
yield important consequences in the spatial distribution of erosion. The semi-empirical model was
employed to assess the uncertainties of spatially distributed predictions due to sediment transport rate
parameterisation by the Generalized Likelihood Uncertainty Estimation (GLUE) method. Model
simulations were evaluated against the actual pattern observed with an extensive, qualitative erosion
survey conducted from December 2002 till May 2003. The survey consisted of assessing erosion status
in five qualitative classes, from very slightly eroded to very severely eroded, according to the presence
and intensity of erosion features. The best model simulations were at short reinfiltration length (< 1.5
m) and with the ratio of overland flow power o and local topography power y close to 0.5. Acceptable
simulations predicted correctly around 75 % of erosion pattern; model overestimations of erosion
occurred mainly in vegetable plots, whereas underestimations occurred in tea, sugarcane and grassland
fields. Difficulties of the parameterisation of land use inputs were considered at the basis of the model
errors. The uncertainty of model predictions due to sediment transport capacity was high: depending on
the transport capacity parameters, around 10 % of the fields were attributed to either slight or severe
erosion class.

Beside the semi-empirical model proposed in this thesis, several quantitative and qualitative erosion
models were compared for their capability of locating erosion in the Kwalei catchment. Two qualitative
models performed better than the more data-demanding quantitative models. In comparison with the
distribution of erosion factors, the observed pattern of severely eroded areas was highly correlated to
fields with crust cover > 60 % (c.c. 0.57), which in turn was correlated to vegetation cover. Thus, a
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simple regression equation based on slope and ground cover was well correlated (c.c. 0.44) to the
observed pattern of severely eroded areas.

Spatial patterns convey useful geographic information about landscape processes. In Kwalei
catchment, lacunarity analysis showed that severely eroded areas were aggregated up to 40 m. This
spatial scale was not matched by any of the other erosion models tested in the area. All models but one
resulted in clumps of eroded areas larger than the observed one. The semi-empirical model developed
in this thesis could locate almost all the areas, but failed to capture their extent. The spatial scale of
severely eroded areas coincided with that of the overland flow pattern predicted by the hydrologic
model at reinfiltration length of 0.5-5 m, despite the fact that the two patterns did not overlap (c.c.
0.10). Thus, in the Kwalei catchment, the location of severely eroded areas was correlated to crust and
vegetation cover more than to slope, but the spatial extent of erosion depended upon the overland flow
travel distance.

Gathering environmental information requires much time and financial resources, which often are
not available. However, spatially relevant, even though qualitative, information can be obtained locally
from the land users. In a Participatory Rural Appraisal exercise, the farmers of Kwalei catchment were
asked to list indicators they use to assess erosion in the fields. The presence of these farmers’ indicators
of erosion was recorded at the same time of the qualitative erosion survey. Statistical relationship
between the indicators and the class of erosion assessed by the expert showed that farmers’ indicators
could be distinguished in strong or weak indicators. Strong indicators, i.e. those that were recorded in
more than 70 % of cases in severely eroded fields, were clearly associated with erosion intensity,
whereas weak indicators were more indicative of soil degradation or soil erosion hazard than of erosion
sensu strictu. Strong indicators and number of indicators were used to create a field erosion assessment
tool in the form of a classification tree (Farmers’ Indicators Tree, FIT), which was calibrated against
half of the fields visited. The validation of the FIT model against the other half of the dataset yielded a
Spearman rho coefficient of 0.81. The FIT model was the best in locating erosion within the catchment.
Moreover, the spatial scale of the distribution of some strong indicators of erosion was very close to
that of eroded areas and overland flow distribution. These findings open up possibilities to integrate
more effectively farmers' knowledge into hydrologic and erosion distributed modelling.
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SAMENVATTING EN CONCLUSIES

Beheer van stroomgebieden vereist precieze locatie van de plekken waar bodemdeeltjes verdwijnenen
waar deze als sediment afgezet wordenbinnen het stroomgebied. Het localiseren van zogenaamde hot-
spots van erosie leidt tot een effectiefen geconcentreerd gebruik van beperkte middelen voor
erosiebestrijding. Hierdoor leiden Bodem- en Water Conservering (BWC) plannen snel tot positieve
resultaten waardoor het vertrouwen en de deelname van de landgebruikers bevorderd wordt.. De
localisering van ernstig geérodeerde plekken binnen het stroomgebied kan belangrijker zijn dan de
kwantificering van bodemverliezen uit het stroomgebied als geheel.

Ruimtelijke erosie modellen kunnen waardevolle instrumenten zijn voor de planvorming m.b.t. de
inrichting van een stroomgebied. Maar de natuurlijke complexiteit en ruimtelijke heterogeniteit van het
landschap, gekoppeld aan de beperkte beschikbaarheid van nauwkeurige ruimtelijke en temporele
datasets, belemmeren de kwaliteit van de voorspellingen van ruimtelijke modellen. In de praktijk
blijken de reeds beschikbare gegevens over het milieu de dominante actieve processen in het systeem al
te kunnen karakteriseren. Deze processen kunnen vervolgens effectief beschreven worden door
conceptuele modellen. In deze studie zijn zulke conceptuele (semi-empirische) benaderingen toegepast,
omdat ze een goede tussenweg vormen om zowel met de dominante fysische processen als ook met de
beperkte beschikbaarheid van ruimtelijke en temporele gegevens rekening te kunnen houden. De
algemene doelstelling van deze studie was om, voor omstandigheden met beperkt beschikbare
gegevens, de kwaliteit van ruimtelijke voorspellingen van erosiete verbeteren.

Het veldwerk vond voornamelijk plaats in het Kwalei stroomgebied, gelegen in de westelijke
Usambara bergen van Tanzania, op een hoogte van 1500 meter boven zeeniveau. Het stroomgebied
omvat ongeveer 2 km?, en vormt ruwweg een drichoek. Het terrein is bergachtig, met de helft van de
hellingen steiler dan 20%. De drainage van het stroomgebied wordt bepaald door vier permanente
beken, die van noordwest naar zuidoost lopen. Jaarlijkse neerslag is ongeveer 1000 mm, waarvan de
helft gedurende het lange regenseizoen (eind februari tot eind mei) valt. Een korter en moeilijk
voorspelbaar regenseizoen vindt plaats van oktober tot januari. De gemiddelde dagtemperatuur is 18
°C; de temperatuurfluctuaties gedurende een etmaal zijn groter dan die gedurende het jaar. De bodems
op de hellingen zijn goed gedraineerd, en bestaan uit een poreuze en zandige bovenlaag en een kleiige
onderlaag. De bodems in de vallei zijn kleiig, en kunnen verzadigd raken. Het hoogst gelegen deel van
het stroomgebied is bedekt met bos, en in de lagere delen vindt landbouw plaats. Het stroomgebied is
dicht bevolkt, en 90% van de inwoners is afhankelijk van de landbouw. Gemiddeld heeft een
huishouden 1.2 tot 1.6 ha land tot zijn beschikking. Voedselgewassen, voornamelijk mais
gecombineerd met banaan en bonen, worden op het hoger gelegen deel van de hellingen verbouwd. De
combinatieteelt banaan en koffie is te vinden op de steilere hellingen naast diep ingesneden beken.
Geirrigeerde groente is het belangrijkste commerciéle gewas en wordt verbouwd in de vallei en op de
laaggelegen hellingen. Bodemerosie is één van grootste beperkingen van de landbouwproductie in het
gebied, en gebeurt vooral aan het begin van het regenseizoen wanneer de regenintensiteit hoog is en de
grondbedekking gering.
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Het empirische model ontwikkeld door Morgan, Morgan en Finney (MMF) werd als geschikt
uitgangspunt geselecteerd. De berekeningen in het model voor wat betreft de sedimentatie, veroorzaakt
door neerslag en afstromend oppervlaktewater, en het sedimenttransportcapaciteit door afstromend
oppervlaktewater, zijn gebaseerd op fysische formules. Het model heft een eenvoudige structuur en er
hoeft slechts een beperkte hoeveelheid aan parameters ingevoerd te worden, wat het geschikt maakt
voor BWC doeleinden. De toepassing van het model op de schaal van een stroomgebied vereist de
invoering van een mechanisme dat rekening houdt met (binnenkomend) instromend en (uitgaand)
afstromend oppervlaktewater. Na toetsing met veldobservaties, blijken de ruimtelijke voorspellingen
van het MMF model matig te zijn voor het Kwalei stroomgebied. Fouten in de modeluitkomsten waren
voornamelijk te hoog geschatte erosie langs de beken en te laag geschatte erosie op de bergkammen.
De belangrijkste oorzaak van deze fouten was het gemodelleerde mechanisme van accumulatie van
afstromend oppervlaktewater wat geen rekening hield met de mogelijkheid dat afstromend
oppervlaktewater lager op de helling kan infiltreren, een fenomeen wat wel waargenomen werd in het
veld.

Om erosie langs de helling te kunnen voorspellen, is correcte modellering van de hydrologie
essentieel. Hydrologische Respons Eenheden (HRE), gebieden waar hydrologisch gedrag homogeen is
voor wat betreft de toepassing van het model, moeten bepaald worden om de ruimtelijke spreiding van
afstromend oppervlaktewater te kunnen modelleren. Infiltratie metingen, gerelateerd met cartografische
variabelen zoals topografie, bodem en landgebruik, kunnen nuttig zijn om HRE’s te bepalen. Drie
soorten infiltratiemetingen zijn gebruikt voor het bepalen van de ruimtelijke spreiding van afstromend
oppervlaktewater: de ‘konstante drukhoogte’ methode, de ‘infiltratic onder zuigspanning’ methode, en
de ‘mini-regenvalsimulator’ methode. De statistische relaties tussen de metingen en de cartografische
variabelen (landgebruik, bodem en topografie) resulteerden in drie verschillende HRE scenario’s.

De feitelijke ruimtelijke spreiding van afstromend oppervlaktewater werd gemeten met
afstromingsdetectoren, die van boven naar beneden op een helling geplaatst werden. Deze detectoren
zijn simpele instrumenten waarmee gecontroleerd kan worden of er gedurende een regenbui wel of niet
afstroming heeft plaatsgevonden op de plek waar de detector is geplaatst. In de periode van maart tot
mei 2002 zijn 50 detectoren geplaatst in een deelstroomgebied in het noordwesten van het Kwalei
stroomgebied, en deze werden na elke regenbui gecontroleerd. De frequentie van afstromend
oppervlaktewater was erg variabel in de ruimte. Het enige ruimtelijke patroon voor afstromend
oppervlaktewater dat kon worden gerelateerd aan de cartografische variabelen, was de grens tussen het
hoger gelegen deel van de hellingen met éénjarige gewassen (met een frequentie van afstromend
oppervlaktewater van 48%), en het lager gelegen deel van de hellingen met de koffie en bananen
plantages (met een frequentie van afstromend oppervlaktewater van 35%). Geo-statistische analyse gaf
aan dat er geen ruimtelijke autocorrelatie bestond voor afstanden groter dan 40 meter. Verschillen in
regenval interceptie, bodemeigenschappen (zoals het dichtslaan of verslempen van de bodem en de
porositeit), en bodembeheer verklaren de relatieve lagere frequentie van geobserveerde afstromend
oppervlaktewater onder meerjarige gewassen dan onder éénjarige gewassen. Geen van de, met
infiltratiemetingen bepaalde, HRE patronen kwam overeen met de observaties. Puntmetingen slagen er
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niet in om rekening te houden met de macro-porositeit van de bodem, en met hydrologische processen
anders dan infiltratie, zoals de interceptie van neerslag door het bladerdek.

In de periode van maart tot mei in 2003 werden de detectoren langs twee transecten in het Kwalei
stroomgebied geplaatst. De observaties bevestigden grotendeels de resultaten van het voorgaande
regenseizoen. In het stroomgebied wordt afstroming veroorzaakt door korte en intensieve buien, maar
afstromend water kan alsnog in lager gelegen gebieden infiltreren. De gemiddelde afstand welke door
het afstromend oppervlaktewater afgelegd wordt voordat het her-infiltreert, is korter wanneer de
neerslag (intensiteit, hoeveelheid en duur) lager is, de interceptie door het bladerdek groter, en de
bodem ruwer, poreuzer en droger is.

Als gevolg van dit dynamische Hortonisch hydrologisch regiem, her-infiltreert het grootste deel van
het afstromende oppervlaktewater dat langs de helling wordt gegenereerd. Na infiltratie vindt snelle
laterale ondergrondse stroming plaats welke uiteindelijk de uitlaat van het stroomgebied bereikt. Het
afvoerdebiet aan de uitlaat wordt gemodelleerd aan de hand van een mechanistisch model dat (i) de
effectieve neerslag definieert, dat is, de hoeveelheid neerslag wat werkelijk afvoer in de uitlaat
veroorzaakt; en (ii) de afvoer aan de uitlaat onderverdeelt in een langzame afvoer, geinterpreteerd als
grondwaterverplaatsing, en een snelle afvoer, geinterpreteerd als een combinatie van afstromend
oppervlaktewater en snelle ondergrondse stroming.

De observaties van regenbuien met afstromend oppervlaktewater, die op de schaal van een helling
waren gemeten, werden gebruikt voor het afleiden van HRE kansverdelingfuncties van afstromend
oppervlaktewater in relatie tot de maximale effectieve regenval per uur van een regenbui. Eénjarige
gewassen dragen meer bij aan de afvoer bij lage effectieve regenval (< 0.15 mm), terwijl bij hogere
effectieve regenval (>0.15 mm) meerjarige gewassen evenveel bijdroegen als de éénjarige gewassen.
Deze regel gaf de mogelijkheid om de dikte van de laag van afstromend oppervlaktewater per HRE en
per mm effectieve neerslag te meten. In de topo-sequentie werd rekening gehouden met her-infiltratie
door te veronderstellen dat alleen afstromend oppervlaktewater, gegenereerd in het laagste deel van het
veld, weg kon stromen. De hoeveelheid afstromend water van een veld was afhankelijk van
neerslagkarakteristicken (effectieve neerslag), landgebruik (HRE), veld topologie (binnenstromend
regenwater), veldgeometrie (locatievan de laagst gelegen grens van het veld in relatie tot de
oppervlakte van het veld) en de infiltraticlengte, dat is, de gemiddelde ‘reisafstand’ van afstromend
oppervlaktewater. De infiltraticlengte werd bepaald aan de hand van observaties met Gerlach
opvangbakken, die aangaven dat de lengte ongeveer 4 meter is. Maar ook de reisafstand van
afstromend oppervlaktewater is athankelijk van regenkarakteristicken, HRE, helling en de condities
van de bovenste bodemlaag.

Het ontwikkelde hydrologisch model werd gekoppeld aan de erosiecomponent van het MMF model
om een semi-empirisch model te bouwen voor de spreiding van erosie per regenbui op de schaal van
een stroomgebied. Afstromend oppervlaktewater is de belangrijkste factor voor sedimenttransport langs
de helling. Dit is gemodelleerd met een vergelijking voor transportcapaciteit van het sediment, welke
afhangt van het volume van het afstromende oppervlaktewater en de lokale helling. In de literatuur
verschillen de parameters voor de vergelijking voor de transportcapaciteit per stroomingstype, per
bodem, en hangen af van de schaal van observatie. Met andere woorden, de keus van deze parameters
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is onzeker, maar heeft belangrijke consequenties voor de resultaten wat betreft de ruimtelijke spreiding
van erosie. Het ontwikkelde semi-empirische model is gebruikt om de onzekerheden in de ruimtelijke
voorspellingen veroorzaakt door de keuze van de parameters voor de sedimenttransportcapaciteit, met
behulp van de Generalized Likelihood Uncertainty Estimation (GLUE) methode te bepalen. Aan de
hand van een uitgebreide kwalitatieve erosiekartering, uitgevoerd tussen december 2002 en mei 2003,
is het werkelijke erosiepatroon waargenomen, waarmee de modelsimulaties zijn geévalueerd. Deze
kartering bestond uit het vaststellen van de erosietoestand, onderverdeeld in vijf kwalitatieve klassen
variérende van erg licht geérodeerd tot zeer zwaar geérodeerd. Hierbij werd gekeken naar de
aanwezigheid en intensiteit van erosie kenmerken. Model simulaties presteerden het beste voor een
korte her-infiltratielengte (<1.5 m) en met de verhouding tussen de macht a voor afstromend
oppervlaktewater en de macht y voor de lokale topografie in de buurt van 0.5. Simulaties voorspelden
ongeveer 75% van de erosie patroon juist. Voor de groentevelden waren de schattingen van erosie door
het model te hoog, terwijl te lage hoeveelheden geschat werden voor velden met thee, suikerriet en
gras. De fouten in het model worden veroorzaakt doordat de parameters voor het landgebruik moeilijk
te bepalen zijn. De onzekerheid van de modeluitkomsten op basis van de sedimenttransportcapaciteit
was groot: athankelijk van welke parameters voor transportcapaciteit werden geselecteerd, werden
ongeveer 10% van de velden toebedeeld aan of de lichte of de zwaar geérodeerde klasse.

Naast het semi-empirische model, zoals voorgesteld in deze dissertatie, werden verscheidene
kwantitatieve en kwalitatieve erosiemodellen vergeleken op hun capaciteit om erosie in het Kwalei
stroomgebied te lokaliseren. Twee kwalitatieve modellen presteerden beter dan de kwantitatieve
modellen die veel inputgegevens vereisen. Van de spreiding van alle erosie factoren, was het
geobserveerde patroon van zwaar geérodeerde plekken het sterkst gecorreleerd met velden met een
korstbedekking hoger dan 60 % (c.c. 0.57), wat weer correleert met de vegetatiebedekking. Een
simpele regressievergelijking gebaseerd op helling en bodembedekking was goed gecorreleerd (c.c.
0.44) met het geobserveerde patroon van de zwaar geérodeerde gebieden.

Ruimtelijke patronen bevatten nuttige geografische informatie over landschapsprocessen. Lacunaire
analyse (lacunarity analysis) toonde aan dat zwaar geérodeerde gebieden tot eenheden van 40 meter
bijeengevoegd kunnen worden in het Kwalei stroomgebied. Deze ruimtelijke schaal kwam niet overeen
met de erosiemodellen die voor dit gebied getest werden. Op één na, resulteerden alle modellen in
clusters van geérodeerde gebieden die groter waren dan de geobserveerde gebieden. Het ontwikkelde
semi-empirische model kon bijna alle gebieden lokaliseren, maar faalde in het vaststellen van de
afmetingen ervan. De ruimtelijke schaal van de zwaar geérodeerde gebieden kwam overeen met het
door het hydrologische model voorspelde patroon van het afstromende oppervlaktewater voor een her-
infiltratielengte tussen de 0.5 en 5 meter, ondanks dat de twee patronen niet met elkaar overlappen (c.c.
0.10). Dus, de locatie van zwaar geérodeerde gebieden was sterker gecorreleerd met de korst en
vegetatiebedekking dan met de helling, maar de ruimtelijke dimensie van erosie was athankelijk van de
reisafstand van het afstromend oppervlaktewater.

Het verzamelen van informatie van de natuurlijke omgeving vraagt veel tijd en geld, welke vaak niet
beschikbaar zijn. Maar ruimtelijk relevante informatie, hoewel kwalitatief, kan bij de landgebruikers
verkregen werden. Gebruik makend van participatieve methodes, werden de boeren in het Kwalei



175
Samenvatting en conclusies

stroomgebied gevraagd om indicatoren te benoemen, die zij gebruiken voor het vaststellen van erosie
in hun velden. Deze boerenindicatoren voor erosie werden tegelijkertijd met de kwalitatieve
erosiekartering vastgelegd. Statistische relaties tussen deze indicatoren en de erosieklassen gedefinieerd
door experts toonden aan dat de boerenindicatoren konden worden opgedeeld in sterke en zwakke
indicatoren. Sterke indicatoren, welke aan meer dan 70% van de zwaar geérodeerde gebieden werden
toebedeeld, waren duidelijk geassocieerd met erosie-intensiteit, terwijl de zwakke indicatoren aangaven
welke gebieden vatbaar waren voor bodemdegradatic of bodemerosie maar waar erosie niet
noodzakelijk ook daadwerkelijk plaatsvond. Er is een instrument, in de vorm van een classificatie
boom (Farmers’ Indicators Tree, FIT), voor erosie-evaluatic op veldschaal ontworpen dat gebruik
maakt van de aanwezigheid en de hoeveelheid van de sterke indicatoren. Dit instrument isgeijkt met
gegevens van de helft van de bezochte velden. De validatie van het FIT model gebeurde met gegevens
van de andere helft van de velden, en gaf een Spearman rho coefficient van 0.81. Het FIT model
presteerde het beste in de lokalisering van erosie binnen het stroomgebied. Bovendien kwam de schaal
van de ruimtelijke spreiding van sommige sterke indicatoren redelijk overeen met de schaal van de
geérodeerde gebieden en van het afstromende oppervlaktewater. Deze resultaten creéren
mogelijkheden om op effectievere wijze boerenkennis te integreren met ruimtelijke hydrologische en
erosiemodellen.
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