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Voorwoord 

 
Eigenlijk wilde ik helemaal geen promotie onderzoek doen… Maar zoals dat gaat lopen 

dingen af en toe anders dan je ooit gepland of bedacht hebt. Werken in het onderwijs beviel 

goed, maar ik wilde niet de rest van mijn leven voor klassen met pubers doorbrengen. 

Onderzoek trok me toch ook wel, maar vier jaar lang in je eentje aan een proefschrift 

werken? Nee, dank je… Maar met een beetje geluk hoef je niet te kiezen. De perfecte baan bij 

het CGI kwam precies op tijd. Promotiewensen kwamen nou niet direct op het lijstje van 

gevraagde kwalificaties voor. “Ach, dat regel ik wel als ik er eenmaal zit”, dacht ik bij mezelf. 

Zoals je aan dit boek kunt zien is het met dat promotieonderzoek toch wel goed gekomen. 

Promoveren blijkt toch niet zo’n eenzame onderneming te zijn als ik vreesde. Daarom wil ik 

een hoop mensen bedanken voor hun rol in dit onderzoek.  

 

Allereerst moet ik de mensen bedanken die aan de basis hebben gestaan van dit werk, al is 

hun uiteindelijke rol daarin beperkt gebleven. Gerrit was degene die er, zodra ik bij het CGI 

begon, op hamerde dat ik ook onderzoek moest doen. Mijn interesses sloten goed aan bij 

zijn onderzoeksveld en door samen met hem afstudeerders te begeleiden heb ik een hoop 

geleerd en heb ik bovenal de hoofdrichting van mijn onderzoek bepaald. Jan en Arnold, toen 

ik tijdens de eerstvolgende “contractbesprekingen” aangaf dat ik het onderzoek wat ik al 

deed in een promotie wilden laten eindigen waren jullie direct enthousiast. Bedankt voor het 

vertrouwen dat jullie me daarmee gaven, al zal Jan zich vast wel eens achter zijn oren 

gekrabd hebben als hij me weer vroeg naar mijn einddatum… 2007, 2008…uhm, 2009 dan 

maar? Zeker in de eerste jaren van het onderzoek was het vooral iets wat ik voor mijn gevoel 

erbij deed, naast het onderwijs. Gelukkig was daar die eerste jaren altijd nog mijn 

kamergenoot Joep, die me maar wat graag wees op mijn traag vorderende onderzoek. Dat 

genoegen was overigens geheel wederzijds, het was prettig om de dagen in C310 door te 

brengen met iemand met dezelfde belangstelling voor onderwijs, reizen, muziek en sport 

(actief dan wel passief).  

 

Na de eerste tijd wat te hebben “aangerommeld” kwam de vaart er pas in op het moment dat 

Michael mijn promotor werd. De manier van begeleiden kan waarschijnlijk het best 

omschreven worden met “veelvuldige korte overleg momenten bij de koffiemachine”. Dat 

werkte prima en als ik een keer een wat groter probleem had stond je deur altijd open. In de 

afrondingsfase werd de communicatie door je vertrek naar Zurich wat lastiger, maar 

uiteindelijk is het toch allemaal goed gekomen. Lammert, ik had me geen betere copromotor 

kunnen wensen. Iets minder koffiemachine, wat meer “regular meetings”, waarbij je mijn 

teksten altijd weer had weten te voorzien van een hoop rode inkt, zelfs in de derde versie . 

Is het dan nooit goed? Nee, het kan altijd beter, er blijven altijd vragen, niet te snel tevreden 



zijn! Goede, soms wat frustrerende, lessen voor een wat gemakzuchtig uitgevallen persoon 

als ik.  

 

Daarnaast wil ik bij deze alle collega’s bij het CGI  bedanken met wie ik in de afgelopen jaren 

heb samengewerkt. Jullie zijn met teveel om persoonlijk te noemen, maar dankzij jullie is 

het CGI zo’n leuke plek om te werken.  

 

Aan de werkkant wil ik afsluiten met het bedanken van de vele studenten met wie ik in de 

loop der jaren heb gewerkt. Dit zijn ten eerste alle studenten die ik in verschillende 

cursussen remote sensing kennis en enthousiasme heb proberen bij te brengen. Deze 

cursussen vormen voor mij een welkome afwisseling met het onderzoek. Daarnaast heb ik in 

de loop der jaren ook een groot aantal afstudeerders begeleidt. Hun onderzoek en de 

discussies die we samen gehad hebben, hebben in een grote mate bijgedragen aan dit werk. 

Jullie vragen, waarop ik niet altijd meteen een antwoord wist, dwongen me om verder te 

kijken en dieper te graven. Bedankt voor jullie vragen, blijf ze stellen…  

 

Naast het werk heb ik nog een ander leven, wat voor mij minstens zo belangrijk is. Een goede 

balans tussen inspanning en ontspanning zorgt ervoor dat ik overal lol in blijf houden. 

Michiel, Arnaud, Lisette, Elwin en Timo, we gaan de komende jaren nog veel empirisch 

onderzoek doen naar de grenzen van ons kunnen… 24 uur? Ja, lukt… 5 dagen? Oké, 

proberen we gewoon… Jullie zijn gek, maar wel gezellig… Daarnaast mag ik gelukkig ook 

normale mensen tot mijn vrienden rekenen. De frequentie waarmee we elkaar zien en de 

gespreksonderwerpen zijn de laatste jaren flink veranderd. Uitgewaaierd over het hele land 

en zelfs héél ver daarbuiten hebben we het tegenwoordig over huizen kopen, gezinsauto’s, 

carrièremogelijkheden en de aankomende of opgroeiende kinderen. Ik kijk nu al uit naar 

onze gesprekken over pensioenregelingen en de nieuwste modellen rollators.  

 

Koen en Ruud, alvast bedankt voor het beantwoorden van alle bedrijfseconomische en 

echohydrologische vragen tijdens de verdediging. Pap en mam, jullie hebben me altijd 

aangemoedigd en de mogelijkheden gegeven om dat te studeren wat ik wilde. Ik realiseer me 

nu dat ik daarmee jarenlang in een luxepositie heb verkeerd.  

 

Het laatste bedankje is natuurlijk voor Baukje, Gijs en Art. Hoewel het aantal avonden dat ik 

thuis heb zitten werken beperkt is gebleven, was ik er de laatste maanden met mijn hoofd 

toch niet altijd 100 % bij. Gelukkig riepen jullie me steeds weer snel bij de les. Eigenlijk is het 

ook veel leuker om eindeloos met de trein en blokken te spelen, boekjes te lezen en liedjes 

te zingen…  

 

Harm    
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1. Introduction 
 

1.1 Background 
 

Soils and its resources are of great importance for the production of fiber and food. 

Recently, the soil functioning as carbon pool has been added to the list of soil functions 

(Bouma and Droogers 2007). Therefore, conservation of soil resources is high on the political 

agenda. Within the EU soil thematic strategy, the loss of organic matter and erosion are 

mentioned as some of the major threats to the soil resource (Van-Camp et al. 2004). One of 

the recommendations in Van-Camp et al. (2004) focuses on the spatial and temporal changes 

of soil processes and parameters. To determine soil quality as a resource, there is a need for 

regular monitoring of its chemical and physical properties. To map and monitor relevant 

chemical and physical soil components adequately, comprehensive and extensive datasets of 

high quality are needed, which is necessary to cover variation in time and place.  

 

Quantitative estimation of the exact amount, spatial distribution and temporal change of soil 

properties is still challenging. Conventionally, soil samples are analyzed by means of soil 

extraction procedures which are accurate due to new technologies that increase sensitivity 

but which are also time consuming, cost-inefficient and destructive (Janik et al. 1998; Liang 

2004). Spatially, soil samples are sampled according to a specific sampling scheme and 

spatial interpolation techniques are used to prepare continuous maps, but for accurate 

interpolation intensive sampling is required (Garten Jr. and Wullschleger 1999; Smith 2004). 

Altogether, this does not provide sufficient accuracy and an adequate spatial resolution 

(Barnes et al. 2003), because the sampling density required to map the high spatial 

variability and slow temporal changes in soil properties can be very high. 

 

Therefore, it is widely acknowledged that there is a need for analytical techniques that allow 

rapid sampling and instant determination of soil properties at field and regional level. To get 

accurate, relevant and correct data, this routine should be able to deal with variability in 

time and place (Malley et al. 1999; McKenzie et al. 2000; Viscarra Rossel and McBratney 

1998). 

 

1.2 VNIR spectroscopy of soil properties 
 

Visible and Near InfraRed (VNIR) spectroscopy, which implies the measurements and 

analysis of reflected radiance in the range of 350-2500 nm (Brown et al. 2006), has proven to 

be a useful tool to quantify various soil characteristics simultaneously in extended 
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geographical and application areas (Escadafal 1993; Farrand 1997; Palacios-Orueta et al. 

1999; Warell 2003). Mathematical models, ranging from simple linear regression models to 

more complex multivariate statistical models, are used to link the measured reflected 

radiance to actual soil properties. In general, these models are empirical. In the calibration 

stage, prediction equations are developed using training sets which represent the sample 

population. The models are validated by predicting the properties for independent samples.  

 

There are three types of VNIR spectroscopy techniques, used for different spatial scales and 

in different environments: laboratory spectroscopy, portable or field spectroscopy and 

imaging spectroscopy. Ground based sensors (usually point spectrometers) have 

demonstrated their capability to accurately determine soil properties in the laboratory (Ben-

Dor et al. 1997; Reeves III et al. 2000; Sørensen and Dalsgaard 2005; Sudduth and Hummel 

1993; Viscarra Rossel et al. 2006), or directly in the field with a portable spectrometer 

(Barnes et al. 2003). In the case of laboratory spectroscopy, illumination conditions and pre-

treatments (e.g. drying, grounding) can be controlled, which yields most stable model 

calibrations. Field spectroscopy has been used for rapid in-situ monitoring of soils (Kooistra 

et al. 2003b; Udelhoven et al. 2003). In the usual setup, the sensor measures only the 

reflectance of the top-soil (≈50 µm), although devices are developed to measure the 

reflectance at different depths within an auger hole (Veristech 2009). When dedicated to the 

site-specific management of inputs in precision agriculture the sensor is often mounted on a 

tractor (Mouazen et al. 2007). In the field situation the sun is usually used as a light source, 

and illumination conditions can vary. Furthermore, no pre-treatment is applied to the samples. 

Regional studies most often rely on imaging spectroscopy, mainly based on airborne imaging 

spectrometers (Ben-Dor et al. 2002; Demattê et al. 2004).  

 

Soil properties can spectrally be measured with a reasonable accuracy level, depending on 

the type of instrument used and the environmental conditions. The accuracy is generally 

lower than for most routine laboratory analysis methods, but the large number of samples 

that can be produced outweighs the slight loss of precision compared to traditional chemical 

analyses. However, certain complications of VNIR spectroscopy can be recognized. Since 

physical and chemical soil components interact in a complex way (Barnes et al. 2003; Gomez 

et al. 2008), optically active background variables can contribute to the reflection and 

absorption characteristic. Hence, significant correlations between reflection characteristics 

at specific wavelengths are not per definition causal due to other, unidentified, interacting 

chemical and physical soil components. As a result, transferability of reflectance based 

models between data sources is low and calibrations are only site-specific (Udelhoven et al. 

2003).  

 

As outlined in the previous sections, it can be concluded that (multivariate) statistical 

models combined with spectral measurements give promising results for the estimation of 
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soil properties (Stevens et al. 2008; Udelhoven et al. 2003; Viscarra Rossel et al. 2006). 

However, the found relations are often site-specific and, due to the complex interaction 

between soil components and the use of statistical analysis, it often remains unclear if the 

model relations between absorption features and soil properties are causal or not. Next to 

that, the often used statistical models (like Partial Least Squares Regression (PLSR)) are not 

directly transferable to sensors with other spectral characteristics, but require a 

recalibration. Indices, that are based on physically known absorption features, can be more 

appropriate for the use with different sensors, as long as the requirements for specific 

spectral bands are met. 

 

1.3 Quantitative remote sensing and scaling 
 

The role and importance of remote sensing for the monitoring of soil properties (carbon in 

specific) has been discussed by Post et al. (2001), who indicated that it can be especially 

useful in regions lacking detailed (in situ) geographical information. Imaging spectroscopy 

offers the possibility to resolve the limitation on the availability of appropriate information 

on soil and land resources, due to its potential advantages like speed and efficiency 

(McBratney et al. 2006), contiguous spectral coverage and continuous spatial coverage. The 

need for relatively high spectral resolution data to determine soil properties using 

reflectance spectra has been extensively discussed in Ben-Dor et al. (1999). Presently, 

technical improvements allow mapping of soil properties using higher spectral and spatial 

resolution imaging spectrometers with better signal-to-noise ratios (Demattê et al. 2004). The 

application of imaging spectroscopy for soil property estimation was limited to airborne 

configurations, but recently Gomez et al. (2008) used a space-borne imaging spectrometer 

(Hyperion) to quantify soil organic carbon (SOC). However, imaging spectroscopy suffers 

some specific drawbacks, due to the larger spatial scale at which it is operated. Going from 

point spectroscopy to imaging spectroscopy is not only a transfer between spatial scales, but 

also needs to deal with problems like data having a low signal-to-noise level, contamination 

of the atmosphere, large datasets and spectral mixing problems (Ben-Dor et al. 2008). Due to 

vegetation cover, which causes spectral mixing, the applicability of imaging spectroscopy to 

derive soil properties in partially vegetated areas is limited. Fractional vegetation cover has a 

large influence on spectral reflectance and limits accurate quantification of soil properties. 

Siegal and Goetz (1977) reported that mineral absorption features can be obscured by as 

little as 10 percent green vegetation and that its presence may severely hinder or limit soil 

and lithological discrimination. Murphy and Wadge (1994) concluded that fractional 

vegetation cover complicates the identification of different soil/rock types and even makes 

identification of specific soil/rock types impossible, due to masking of absorption features. 

A traditional solution is to mask out the areas with high vegetation cover, using vegetation 

indices with often case-specific threshold values (e.g. Wester et al. (1990)). Despite these 
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attempts, soil information for vegetated areas is lacking, and quantitative estimates of the 

errors due to the presence of vegetation are usually not given. In temperate regions, 

agricultural fields are covered with crops for the largest part of the year and vegetation 

shows large variation in time and space. This limits image acquisition for bare soil studies in 

the agro-ecosystem to only a few weeks. By removing the influence of vegetation on spectral 

soil reflectance, the flight-window in which airborne spectrometers can be used for soil 

investigations, can be extended. This will increase the possibilities for more frequent and 

accurate quantitative mapping of soil properties over large areas. 

 

Earlier studies have developed methods for quantitative estimation of soil properties in 

partially vegetated areas. However, for these cases, vegetation was mostly used as proxy to 

estimate soil properties. Asner et al. (2003) related SOC and nitrogen field observations to 

fractional cover data for photosynthetic and non-photosynthetic vegetation and were able to 

show the trends in these soil properties at an ecosystem level. Kooistra et al. (2003a) used 

vegetation development as a proxy to estimate SOC and Zn in floodplains. For discrimination 

of different soil units, Schmidtlein (2004) used the spectral characterization of plant 

functional types.  

 

Gomez et al. (2008), who performed a SOC study based on space-borne imaging 

spectrometer data (Hyperion), assumed that the drop of accuracy with this dataset compared 

to field spectroscopy data, was partly due to the Hyperion spatial resolution of 30 m. They 

suggested spectral unmixing as a possible technique, needed to extract the soil spectra from 

the mixed spectroscopic data.  

 

Spectral unmixing techniques have played a central role in the analysis of remote sensing 

images with fractional vegetation cover over the past decades (Asner and Heidebrecht 2002; 

Garciá-Haro et al. 1996; Garcia and Ustin 2001; Sohn and McCoy 1997). Spectral unmixing 

algorithms are used to estimate the abundance of endmembers within a pixel and are well 

able to estimate the amount of vegetation in mixed pixels. Some advanced spectral unmixing 

techniques have been proposed to tackle the problem of vegetation influence in the case of 

soil classification. Luo et al. (2005) eliminated the vegetation effect with fully constrained 

spectral unmixing techniques, which increased the overall accuracy of their soil classification 

with 18 percent. Bierwirth (1990) removed the vegetation effect from reflectance data of 

geological materials by extrapolating the determined amounts of non-vegetated materials. 

He found that with careful modeling and depending on the instrument sensitivity, only a 

small signal from geological materials may be required to obtain spatially meaningful 

geological information in strongly vegetated areas.  
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1.4 Objectives 
 

The main objective of this thesis is to quantify the robustness of VNIR spectroscopy based 

soil property models and the influence of vegetation on these models. Furthermore, it is 

intended to develop a methodology for quantitative mapping of soil properties in 

fractionally vegetation covered agricultural fields. 

 

To achieve the objectives the following questions are addressed:  

 

A. Which scaling issues have to be considered when using VNIR spectroscopy for estimation 

of soil properties? 

B. What is the potential of VNIR spectroscopy for the prediction of soil properties and what 

is the stability of the calibrations? 

C. How sensitive are models to variation in soil type and can models be used to predict soil 

properties for soil types that are not included in the model calibration? 

D. What is the influence of fractional vegetation cover on the estimation of soil properties? 

E. Can we determine soil properties from a mixed soil and vegetation signal? 

 

1.5 Outline  
 

The core of this thesis (Chapters 2-6) is based on a series of five peer-reviewed papers. Each 

chapter in this thesis is a step in answering the research questions mentioned above and is 

introduced separately by stating its research goals and by outlining its relationship with 

other relevant work.  

 

Chapter 2 describes the issues of scaling and one of the technical solutions to overcome the 

spectral mixing problems that arise when the step from point spectroscopy to imaging 

spectroscopy is made: spectral (un)mixing. This technique will be used in the other chapters 

to deal with spatial scaling issues (Question A). 

 

Chapter 3 aims to investigate the potential of different VNIR spectroscopy approaches for 

the monitoring of SOC in croplands at the regional scale by evaluating i) the loss of accuracy 

by using such techniques outside the controlled conditions of the laboratory, ii) the stability 

of the calibrations and iii) the capacity of such techniques to process a larger number of 

samples than conventional techniques allow (Question B).  

 

Chapter 4 discusses the development of index based SOC prediction models and their 

robustness towards variation in soil type. Given the difficulties to transfer PLSR models from 

one sensor configuration to another, SOC prediction models based on spectral indices 
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related to the biochemical composition of SOC are developed. The robustness of these 

models towards inclusion of independent soil types (not included in the calibration phase) is 

an important measure for their usability (Question C). 

 

Chapter 5 shows the effect of fractional vegetation cover on the reflectance of mixed pixels 

and the influence this has on the retrieval of iron content. Vegetation influence is simulated 

to investigate the magnitude of the error introduced by fractional vegetation cover. Finally, a 

location-specific solution is proposed to improve the mapping of iron oxides for the 

fractionally covered areas (Question D and E).  

 

Chapter 6 describes a more generic method to improve the estimation of soil properties in 

agricultural fields with fractional vegetation cover. A spectral unmixing based approach is 

presented, to eliminate vegetation influence from the spectral reflectance of mixed pixels. 

This procedure is named Residual Spectral Unmixing (RSU), which returns so-called residual 

soil spectra. These are used in combination with PLSR to create a SOC-prediction model. In 

this way, imaging spectrometer data can be used to map soil properties of fractionally 

vegetation covered fields (Question D and E). 

 

Finally, chapter 7 concludes this thesis with a summary, discussion of the main findings and 

suggestions for further work.  
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2.1 Introduction 
 

2.1.1 Definitions and classifications of scale  
Quantitative research methods in environmental sciences are based on measurements of 

environmental variables. Each measurement of any quantitative parameter is expressed in 

the units of the measured variable. These units determine the level of the object observation, 

which is called scale. However, not only quantitative measurements, but also a qualitative 

description is related to a specific level of detail. For example, interactions of an elementary 

radiation element, photon, with the cellular structures inside a leaf (spatial dimension in 

micrometer) will be different from its behaviour inside a plant canopy between clumps of 

leaves, small twigs, branches, and trunks (spatial dimension in meter). This phenomenon of 

coexistence and interactions of differently sized objects makes scale an inseparable and 

basic component of any scientific domain. The essential effort to connect different scales in 

environmental sciences and the importance to define their common preferable spatial scales 

has been identified by Marceau (1999). The term scale, however, has a worldwide meaning 

with several disconnected definitions. Key concepts related to scale are used in different 

ways across disciplines and scholars, which makes the comparison and communication 

among researchers and research results across subfields and disciplines more difficult (Lam 

et al. 2004; Schneider 1994). After struggling with the confusion created by different uses of 

the same word, Gibson et al. (2000) presented definitions for the basic terms related to the 

concept of scales (Table 1.1). For a standardized lexicon, Quattrochi (1993) defined scale as 

‘‘the integral of space and time over which a measurement is made’’. In the geo-statistical 

sciences the word support is defined as ‘‘an n-dimensional volume within which linear 

average values of a regionalized variable may be computed’’ (Olea 1991). The term scale is 

most commonly used in relation to the absolute or relative scale of space (Meentemeyer 

1989) (Table 1.1). Cao and Lam (1997) introduced four scale concepts of the spatial-temporal 

domain: (1) cartographic scale, (2) scale of spatial extent, (3) scale of action, and (4) spatial 

resolution. First, the cartographic or map scale refers to the ratio of a distance on a map 

against the corresponding distance on the ground. A large-scale map covers a small area 

with a high detail, where a small-scale map covers a larger area with less detailed 

information. The geographical or observational scale, which refers to the size or spatial 

extent of the study, takes the opposite perspective. A geographic large-scale study covers a 

large area of interest as opposite to a geographic small-scale study covering a small area 

(Cohen et al. 2003). Third, the operational scale refers to the level at which observed 

processes operate in the environment (Turner et al. 2003). This scale, called also scale of 

action, represents a level at which a certain process phenomenon is best observed. Finally, 

the fourth meaning is the resolution of the measurement scale. Spatial resolution refers to 

the smallest distinguishable parts of an object, for instance a pixel size of the raster map or 
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remote sensing image (Dungan 2001). Scale is a frequent and general feature such that a 

‘‘science of scale’’ was proposed (Goodchild and Quattrochi 1997). It has been concluded 

that such a science should address and answer the following interrelated issues: invariance 

of scale, the ability of scale change, measures of the impact of scale change, scale as a 

parameter of process models, and an implementation of multi-scale approaches. 

 

Table 2.1 Definitions of the basic terms related to the concept of scale according to Gibson et al. (2000) 

Term  Definition 

Scale   The spatial, temporal, quantitative, or analytical dimensions used to measure and  

study any phenomenon 

Extent The size of the spatial, temporal, quantitative, or analytical dimensions of a scale 

Resolution (grain) The precision used in the measurement 

Absolute scale The distance, time, or quantity measured on an objectively calibrated measurement device 

Relative scale A transformation of an absolute scale to one that describes the functional relationship of 

one object or process to another (e.g. the relative distance between two locations based on 

the time required by an organism to move between them) 

 

2.1.2 Imaging spectroscopy—science of increasing resolution 
Spectroscopy is the scientific branch of physics concerned with the production, transmission, 

measurements, and interpretation of electromagnetic spectra (Swain and Davis 1978). 

Spectral properties can be measured using numerical spectroradiometers or imaging 

spectrometers in the laboratory or field, as well as from an airborne or satellite platform. 

Imaging spectroscopy is an imaging technique to record for every pixel in the image a 

separate electromagnetic spectrum (Van Der Meer and De Jong 2000). Imaging spectroscopy 

is an inseparable part of the passive optical remote sensing. It has many names including 

imaging spectrometry, hyperspectral remote sensing, or ultraspectral imaging (Kumar et al. 

2001). Actually, imaging spectroscopy brought a new and expanded perception of the term 

scale in remote sensing mainly in the spectral domain. Imaging spectroscopy data, in 

contrast to multispectral data, contain a high number of narrow spectral bands. Moreover, 

they can be acquired from several oblique viewing angles and with a higher revisit frequency 

by means of modern satellite systems (e.g. spectrometer CHRIS on satellite PROBA). 

 

2.1.3 Scale definitions and parameters in imaging spectroscopy 
An imaging spectroscopy measurement of the Earth surface reflectance R is predominantly a 

function Rf  defined by spatial, spectral, directional, and temporal scale (Baret, personal 

communication): 

 
);;;;,( tyxfR svR             (2.1) 
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where yx,  are spatial coordinates,   the wavelength of the electromagnetic spectra, 

sv  , describes the angular viewing geometry of the sun–object–sensor system, and t is the 

time frequency of the observation. A definition of remote sensing spectral image scale must 

consider all of these four dimensions. Adjusting the scale definition of Quattrochi (1993) we 

can state that the spectroscopy scale of optical imaging data is ‘‘the combination of space, 

electromagnetic wavelengths, their directions, and time intervals over which a spectrometric 

measurement is made’’. A more precise definition may be reached by extension of the term 

support (Olea 1991). The original specification of support includes the geometrical shape, 

size, and orientation of the volume. The volume of spectroscopy support should enclose in 

addition to the spatial and geometrical content, a spectro-directional component and the 

time intervals between successive observations.  

 

Traditional parameters describing the scale of remote sensing image data are resolution 

(grain) and extent. Consequently, considering the four-dimensional spectroscopy scale 

scheme, spatial resolution is equal to the elementary pixel size of a remotely sensed image 

and spatial extent corresponds to the total area covered within an image swath. These 

spatial parameters are functions of the digital matrix of the spectral sensor and the 

‘instantaneous field of view’ (IFOV) given by the optical system, flight altitude, and its flight 

velocity, respectively (Forshaw et al. 1983). Spectral resolution is described by Lillesand and 

Kiefer (1994) as ‘‘the ability to discriminate fine spectral differences’’. The spectral 

resolution of a sensor is often described by the ‘full-width-half-maximum’ (FWHM) of the 

instrument response to a monochromatic source (Liang 2004). The spectral extent, also 

named spectral range, is the difference between the minimum and maximum wavelengths in 
which measurements are made ( minmax   ). A new parameter, spectral sampling, has to be 

introduced to describe the number and position of the spectral channels. Spectral sampling 

interval is the spacing between sample points in the spectrum (Liang 2004). As shown in Fig. 

2.1, the sampling interval is independent of the spectral resolution, which implies that there 

can be overlap between consecutive bands. This is usually the case in imaging spectroscopy 

instruments, since their aim is to derive a contiguous spectrum where oversampling reduces 

the amount of incoming noise but at the cost of information redundancy. Spectral and 

spatial resolutions of the multi- and/or hyperspectral images are in an inverse relationship 

due to the technical constrains on the sensor side. There is usually a trade off between high 

spectral and low spatial resolution or vice versa, because of the limited extent and minimal 

element size of a ‘charged-coupled device’ (CCD) array recording the spectral image. Lower 

spatial resolution caused by the binning of the spatial array columns allows a narrowing of 

the FWHM and, subsequently, increasing spectral resolution. Conversely, spectral binning of 

the wavelengths widens the FWHM and gives opportunity to increase the spatial resolution. 
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Fig. 2.1. Spectral resolution (‘full-width-half-maximum’—FWHM), extent (λmax _ λmin) and sampling interval of 

imaging spectroscopy data. 

 

More traditional multispectral satellite instruments operate on high spatial resolution and 

lower spectral resolution with a small temporal sampling interval (e.g. LANDSAT 7 ETM+ or 

SPOT 5 HRG). New imaging spectroscopy satellite sensors acquire data with coarser spatial 

resolution and higher spectral sampling interval and resolution (e.g. medium resolution 

imaging spectrometer (MERIS) on the ENVISAT satellite), as well as at both high spatial and 

spectral resolutions (e.g. the Hyperion sensor on board of the satellite EO-1). Reflectance by 

the Earth’s surface and scattering by atmospheric particles and gases have a strong 

directional behaviour. This phenomenon is scientifically described by the concept of the bi-

directional reflectance distribution function (BRDF). The BRDF is a conceptual quantity that 

describes the reflectance of a target as a function of the independent variables describing 

viewing and illumination angles and variables determining the geometrical and optical 

properties of the observed target (Deering 1989; Liang 2004; Myneni and Ross 1991; 

Nicodemus et al. 1977). The BRDF describes the scattering of a parallel beam of incident 

light from one direction in the hemisphere into another direction in the hemisphere 

(Schaepman-Strub et al. 2004). The incident and viewing directions are each defined by the 
zenith and azimuth angles of illumination (in nature sun zenith s and azimuth s  angle) 

and view of sensor (viewing zenith v and azimuth v angle). Difference of the viewing and 

illumination azimuth angle is called the relative azimuth angle )( sv    (Schönermark 

et al. 2004). Then the BRDF [sr-1] can be expressed as a reflectance function BRDFf  of source 

illumination projected solid angle s , viewing projected solid angle v , and wavelength  : 
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where vL  is reflected radiance and sE  is incident solar irradiance. The unitless bi-directional 

reflectance factor (BRF) is proportional to the BRDF according to the relation: BRF =  BRDF. 

Finally, the reflectance acquired under illumination of the ambient hemispherical sky is 

called the hemispherical-directional reflectance factor (HDRF). The HDRF is physically 

defined in the same way as the BRF, except that the HDRF includes illumination coming from 

the entire hemisphere (Schaepman-Strub et al. 2004). Any outdoor HDRF measurement 

depends not only on the scattering optical properties of the observed object, but also on 

atmospheric conditions, the surrounding of the object, the topography, and wavelength. The 

spectral field measurements of the HDRF are often performed by a goniometer device. In 

order to obtain a high accuracy, goniometer reflectance measurements are usually 

performed at a local scale and on a specific vegetation or soil (snow) surface. Still, natural 

spatial patterns are not uniformly distributed within the space and their expanse covers the 

whole range from micro to macro scale (e.g. cell structure, leaves, branches, trees, forest). 

Details of ground directional reflectance measurements are given in Bruegge et al. (2004).  

 

Accordingly to the BRDF concept, the directional resolution of the angular spectral image 

data is represented by the IFOV given by the parameters of the optical set, size of the CCD 

array basic element, tilt, motion speed, and altitude of a sensor. Directional extent is 
specified by the interval between minimal viewing direction min)min,( vv  and maximal 

viewing direction max)max,( vv  aside (maximal–minimal oblique viewing angles). Finally, 

directional sampling is expressed by the total number of viewing directions and their 

angular position within the hemispherical space. Presently, only a few real multi-angular 

imaging spectroscopy satellite sensors are operational. 

 

Examples of successful missions are the Compact High Resolution Imaging Spectrometer 

(CHRIS) sensor on board the PROBA satellite, providing five angular images in 63 spectral 

bands (NADIR, ±36 º, ±55 º), or the Multiangle Imaging SpectroRadiometer (MISR) on the 

NASA EOS Terra platform consisting of nine cameras capturing four VIS/NIR spectral bands 

in nine backwards and forwards  along track viewing directions. Developments in remote 

sensing technology and radiative transfer modelling indicate that angular signatures can be 

exploited to provide not only improved accuracies relative to single-angle approaches but 

also unique diagnostic information about the Earth’s atmosphere and surface, e.g. 

identification of atmospheric aerosol, cloud, or surface vegetation type (Diner et al. 1999), 

capitalizing on both the geometric aspects of the technique as well as the radiometric 

variations in signal with angle.  

 

Temporal scale must be considered, since geochemical or geophysical constituents of the 

surface (e.g. concentration of various chemical compounds, or water content) exhibit specific 

spectral features that vary over time. Monitoring the variation over time becomes more 
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important when ecosystems and their reactions to climate effects are observed. Some 

authors traditionally refer to temporal resolution as the image frequency which depends on 

the revisit time of a sensor; in other words, how often is an image acquired over a specific 

location on Earth (Franklin 2001). However, strictly following the foregoing concept of the 

imaging  spectroscopy spatial and spectro-directional scale, we propose the sensor revisit 

time to be called the temporal sampling interval rather than temporal resolution. Since 

image spatial resolution is given by size of the smallest CCD array element then similarly the 

temporal resolution should be defined as the shortest time span needed to integrate the 

reflected radiative information by the CCD array into the image. Nevertheless, this parameter 

is commonly called an integration and/or dwell time of a sensor. Temporal extent is taken as 

the time interval between the last and first observation of the same location ( minmax tt  ), 

which can be several years for a given satellite platform. Perhaps the most important 

temporal characteristic, revisit frequency of the satellite driven by the orbit parameters and 

viewing extent varies from mission to mission. Among low revisiting frequency satellite 

platforms are LANDSAT 7, and EO-1 (both 16 days) or SPOT (26 days). Examples of the high 

frequency revisiting sensors are the moderate resolution imaging spectroradiometer (MODIS) 

aboard the Terra (EOS AM) and Aqua (EOS PM) satellites viewing the entire Earth’s surface 

every one to two days or the Medium Resolution Imaging Spectrometer (MERIS) with the 

revisit frequency of three days. Note that the theoretical temporal sampling interval is 

usually higher than the practical one, due to cloudiness that can cover the location of 

interest during the time of the sensor overpass. 

 

The increasing availability of remote sensing sensors provides the possibility of choosing the 

systems that are best adapted for specific research interests. Various factors such as cost, 

availability at a certain time and place, sensor characteristics (spatial, spectral, temporal, 

directional resolution) and, of course, specific research interests determine the final decision. 

Sensor characteristics and research interests are strongly related and this is where scale 

considerations play a major role. The choice of the appropriate scale for every dimension in 

a particular application depends on several factors and is a function of the type of 

environment and the kind of information desired (Woodcock and Strahler 1987). 

 

2.1.4 Scaling up and down-scaling techniques for soil and vegetation surfaces 
Transfer of data content from one scale to another one is called scaling. According to 

Dungan (2001), scaling when applied in remote sensing and GIS is a procedure that changes 

the size of a measurement unit. Basically, scaling can be performed by means of two 

approaches: bottom-up and top-down. The bottom-up approach up-scales information from 

smaller to larger observational scales, while the top-down approach down-scales, in other 

word decomposes, information at a certain geographical scale into its constituents at smaller 

scales (Marceau and Hay 1999). The capability to process and present geographic 

information ‘‘up’’ and ‘‘down’’ from local, regional, to global scales has been advocated as  a 
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solution to understanding the global systems of both natural (e.g. global climate change) and 

societal (e.g. global economy) processes and the relationships between the two (Lam et al. 

2004). But, as mentioned by Jarvis (1995), scaling represents a scientific challenge because of 

the non-linear nature between processes and variables, and heterogeneity of characteristics 

determining the rates of processes. Much literature has been published on scaling in 

environmental research, with the vast majority concerning spatial scaling. Since the 

principles of spatial scaling in imaging spectroscopy do not differ from scaling in other 

research fields, this topic was not discussed deeply in the original paper by Malenovsky et al., 

(2007). Several books have been written on this subject, so for further reading we direct the 

reader to the following references: Tate and Atkinson (2001), Cao and Lam (1997), and 

Goodchild and Quattrochi (1997). 

 

Several techniques to perform up- or down-scaling in spectroscopy are available. Radiative 

transfer modeling, spectral unmixing, and data-fusion are widely investigated and accepted 

in the research field of spectroscopy. Spectral (un)mixing as a technique to perform up- or 

down-scaling in spectroscopy is described in detail. The fact that technique is widely 

investigated and well accepted does not mean that this technique is easy to apply or results 

in standard products. Expert knowledge of the technique and the physical processes specific 

for the study-area are needed for valuable use. Therefore, the described limitations of the 

technique should be taken seriously; nonetheless spectral unmixing may be useful for those 

who deal with spatial scaling problems in spectroscopy. The technique is illustrated with a 

case study in the field of environmental research, specifically vegetation and soil studies. 

Other scaling techniques are described in the full original paper by Malenovsky et al. (2007) 

 

2.2 Spectral (un)mixing 
 

2.2.1  Spectral mixing 
Each pixel in a remote sensing image is treated as a homogenous area with a single 

reflectance value. However, homogeneity is a rare phenomenon at the Earth surface, so this 

one value is a combined reflectance of all objects present within the pixel. The spatial 

distribution of the objects within this pixel is lost, but much of the spectral information is 

preserved in the spectral signature. When more materials or objects are present within a 

pixel, the measured reflectance is a result of the fractions in which the materials occur and 

the spectral characteristics of each material. For each spectral band the reflectance value of a 

linear mixture is determined by the following equation: 

 

nn fRfRfRR  ...2211           (2.3) 
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where R is the reflectance value of the pixel, Rn the reflectance of object n in the specific 

wavelength, and fn is the fraction in which object n occurs. The measured spectrum of the 

pixel is a weighted average of the abundances in the pixel. Hapke (1981) developed the 

theory of mixture modeling, to estimate the spectral response pattern of a mixed object with 

known pure components (endmembers). 

 

The spectral signature of a mixed pixel contains spectral information of all endmembers 

present in the represented area. Spectral mixing can be considered as a linear process, when 

the mixing scale is  macroscopic such that photons interact with one material instead of with 

several materials (Singer and McCord 1979). This is in general the case when the surface 

consists of snow (Painter et al. 2003) or bare soil but not always true when spectral mixing 

of vegetation endmembers occurs. Only a part of the radiation is directly reflected 

(dependent on the wavelength), the rest is absorbed or transmitted to other layers, from 

which it can be reflected to the sensor again. As a result, the reflected radiation interacts 

with more than one object, resulting in a non-linear spectral mixing (Huete 1988; Ray and 

Murray 1996; Roberts et al. 1993). Mixing of spectral signals can be used for spatial 

upscaling of any kind of spectral information. The object optical and structural properties 

determine whether the mixing process is linear or non-linear.  

 

2.2.2 Spectral unmixing 
Smith et al. (1985) reversed the mixing process in order to estimate the mixing components 

from the mixed spectral signal and the spectral response of the endmembers: Spectral 

unmixing (also named Spectral Mixture Analysis or SMA). SMA is used to find the fractions 

(abundances) of a number of endmembers that best explain the recorded mixed pixel 

reflectance spectrum. SMA is a physically based model that provides quantitative estimates 

of the distribution of materials within the image scene (Tompkins et al. 1997). The mixing 

and unmixing process is illustrated in Fig. 2.2. Spectral unmixing offers information about 

image components with a spatial extent smaller than the ground instantaneous field of view, 

and therefore can be considered as a spatial down-scaling procedure.  

 

The linear unmixing model assumes that a surface within a pixel is made up of a limited 

number of endmembers. The mathematical notation of the linear unmixing procedure is as 

follows (Adams et al. 1986): 
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Where bR  is the reflectance of the pixel being examined in band b, if   the fraction of 

endmember i, biR , the reflectance value of endmember i in band b,  b the residual error 

associated with band b, n is the number of spectral endmembers. According to these formula 



-28 - 

the value of a pixel must equal the sum of the values of the endmembers times their 

abundance. The fit of the model can be assessed by the root mean square error (RMSE): 

 

RMSE
M

M

b b  1

2
          (2.5) 

 

where M is the number of bands used in the spectral unmixing. Higher values of RMSE 

indicate regions that could contain lacking endmembers. These equations show that the 

maximum amount of endmembers can never be more than the number of bands minus one. 

Having more endmembers than spectral bands results in more unknowns than equations, 

which makes it impossible to determine the fractions (Settle and Drake 1993). Therefore, 

when applying linear spectral unmixing the maximum amount of endmembers is always one 

less than the number of spectral bands available, making imaging spectroscopy of great use. 

Spectral unmixing is particularly useful with imaging spectroscopy data, where the number 

of useful bands is much higher than the number of model endmembers, and solutions to the 

basic SMA equations are overdetermined (Okin et al. 2001). The inversion of the spectral 

mixing process can be done in different ways. The most frequently used method is the least 

squares fitting approach (Shimabukuro and Smith 1991; Strang 1988). Through the 

deconvolution, spectral unmixing seeks the abundances of the endmembers that 

(statistically) best explain the observed spectral characteristics of a pixel. This analysis 

assumes that endmembers are orthogonal and thus uncorrelated (Van Der Meer and De Jong 

2000). The matrix inversion introduces a problem: when endmembers are not strictly 

orthogonal, the matrix cannot be inverted without error, thus giving rise to doubtful results. 

This problem occurs when endmembers are linearly scaled versions of each other 

(degenerate), since these can not be separated by the least-squares approach. This is 

especially the case when applying spectral unmixing techniques to low spectral resolution 

image data, where most spectra are largely similar. The problem can be avoided by working 

on orthogonally transformed data, such as minimum noise fractions (MNF) or maximum 

autocorrelation factors (MAF) (Nielsen 2001; Van Der Meer and De Jong 2000). Other 

techniques used to perform the unmixing include a regularization method (Settle and Drake 

1993), minimum variance methods (Manolakis et al. 2000), singular value decomposition 

(Tompkins et al. 1997), and variable endmember methods (Ramsey and Christensen 1998; 

Roberts et al. 1998). Non-linear mixing is likely to lead to an overestimation of green 

vegetation during the unmixing process and further complicates the analysis if the spectra 

used in a spectral library are collected under conditions where the substrate in the image 

differs from what was present when the library spectra were collected (Okin et al. 2001). The 

used constraints are only meaningful when a real world situation is described. From  

statistical viewpoint it is not necessary to use these constraints and values outside the 

bounds have some physical meaning (Adams et al. 1993; Sabol Jr et al. 1992). Fractions 

greater than one and deviations in the ‘negative’ direction from other endmembers can be  
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Fig. 2.2. The results of the spectral mixing and unmixing process. A heterogeneous surface element recorded in a 

single pixel results in a mixed pixel. This can be unmixed into abundance images, which show the fractional 

cover of the surface elements. 

 

expected if the library reflectance values are derived from an ‘average’ material response. 

Negative fractions can occur due to poor endmember selection, an improper number of 

endmembers or because of spectral ambiguity (Gross and Schott 1998). Negative abundance 

factors can be, among other factors, the result of correlation of the endmembers. Van Der 

Meer and De Jong (2000) showed that decorrelation of the endmembers improves the 

abundance estimates. Marden and Manolakis (2002) observed that enforcing the constraints 

led to performance degradation in most cases they investigated. 

 

2.2.3. Endmembers selection 
An essential step in the unmixing process is the definition of the appropriate set of 

endmembers, which should be chosen to represent surface components (Tompkins et al. 

1997). In practice, the number of endmembers and their composition is unknown and a 

selection is made of a number of endmembers supported by the dimensionality of the data. 

The estimation of these endmembers is not straightforward since they vary upon the scale 

and purpose of the study (Milton and Emery 1995). Endmember selection can be done in 

three ways: (1) derived from a spectral library (Boardman 1990), (2) derived from field 

measurements, or (3) extracted from the image. 



-30 - 

2.2.3.1. Spectral libraries 

Spectral libraries are collections of laboratory spectra of a wide variety of materials. Users 

should be aware that the spectra in these libraries can be collected for different purposes 

and are measured using various types of instruments (portable non-imaging spectrometers) 

of often unknown quality and precision. Spectral libraries can also contain directional 

spectra that have been modelled with radiative transfer approaches for surfaces such as 

snow or soil (Painter et al. 2003). Wavelength shifts, unreliable instrument calibration and 

significant degrees of noise are not uncommon to these data. Furthermore, spectral 

measurements in the laboratory can vary in terms of directionality. Directional-

hemispherical measurements (e.g. with an integrating sphere) should not be directly mixed 

up with bi-directional measurements. The quality of spectra taken from spectral libraries 

should always be checked using known absorption features of, e.g. minerals or oxygen (760 

nm). Since laboratory spectra are collected without atmospheric influence they cannot be 

directly combined with TOA airborne or spaceborne imagery. Hence, spectral libraries can be 

very useful for the interpretation of spectroscopic imagery but should be applied with care. 

2.2.3.2. Field measurements 

A second method is the use of field spectra. Using a field spectrometer the spectra of each 

endmember may be approximated. When applying this method good correction for the 

atmospheric influence is essential because this influence will be present within the images 

and not in the field spectra. 

2.2.3.3. Image derived endmembers 

The third possibility is to derive the endmembers directly from the purest pixels in the 

image. The advantage is that the selected endmembers were collected under similar 

atmospheric conditions and spectral/radiometric biases. An image-derived endmember can 

either be a single pixel or the average of several pixels in a homogeneous area. When there is 

no field knowledge and the spatial locations of pure materials are not known a variety of 

techniques can be applied to identify endmembers directly from the imagery. The first step 

of automated procedures often consists of a compression of the data with a minimum noise 

fraction (MNF) rotation (Green et al. 1988) or principal component analysis (PCA) (Smith et al. 

1985). A common approach for determining the number of endmembers (e.g. Smith et al. 

1985) is to view the spectral data as points in the space of the complete set of spectral 

bands and to find the PCA eigenvectors or directions accounting for most of the variance in 

the data. The remaining variance is equal to the instrumental error. Since sampling a 

continuous reflectance spectrum in many narrow, contiguous spectral bands results in a 

high covariance between the bands, the number of useful eigenvectors will be less than the 

number of bands in the imaging spectroscopy datasets (Bateson and Curtiss 1996). Another 

algorithm for finding these pure pixels is the Pixel Purity Index (PPI) (Boardman et al. 1995), 

which yields the best results when applied on compressed dataset (PCA-transformed or 
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MNF). Numerous other techniques for automated image endmember selection are published. 

Some examples are the vertex component analysis (VCA), described by Nascimento et al. 

(2004) and endmember average RMSE (EAR), published by Dennison and Roberts (2003).  

 

2.2.4. Advanced unmixing techniques 
In addition to the above-described linear spectral unmixing approach a wide variety of 

advanced unmixing techniques are published. Iterative spectral unmixing (ISU) (Van Der 

Meer 1999) uses the RMS error image to automatically select additional endmembers and 

reposition of existing ones. The Multiple Endmember Spectral Mixture Analysis (MESMA) 

accounts for spatial heterogeneity in a geographic approach that allows the number of 

endmembers and the endmembers themselves to vary on a pixel-by-pixel basis (Roberts et al. 

1998). Unmixing based on stepwise regression (Gross and Schott 1996) solves the same 

problem by adaptively selecting a spatially varying set of endmembers and solves the 

fractions of the selected endmembers within each pixel. Zhang et al (2002) introduced a 

Derivative Spectral Unmixing (DSU) model, which makes it possible to estimate the fraction 

of an endmember characterized by one or more diagnostic absorption features, despite 

having only general knowledge of the spectral shapes of the remaining endmembers. 

Changing the constraints to describe the situation in a specific study area can help to 

improve unmixing results (Vikhamar and Solberg 2003). Ultimately, these algorithms share 

unmixing at the core but also a significant increase in computational expense. 

 

2.2.5. Unmixing example 
Linear unmixing of a reflective optics system imaging spectrometer (ROSIS) image of an 

agricultural area just south of Álora (Spain) was studied in this case study. The research goal 

was the quantification of the soil iron content in olive fields. The objective of the spectral 

unmixing was to estimate the fractional vegetation cover, since the accuracy of the 

quantification of the soil iron content is highly influenced by vegetation. The iron bearing 

soils were mainly formed on Tortonian Molasse deposits. The area is covered with olive trees 

and bare soils, with shrub cover in some locations. Senescent grass is present in many places 

but generally in low abundance. The first step in the analysis was the MNF transformation 

(Fig. 2.3). The importance of using uncorrelated data for unmixing was emphasized before. 

The PPI algorithm was run on the MNF transformed images, resulting in the image shown in 

Fig. 2.4, where the pixels with a high PPI-score are highlighted. From this image the locations 

of endmembers were identified and selected using field investigations.  

 

As a last step, a non-constrained linear spectral unmixing was performed resulting in the 

fractional images displayed in Fig. 2.5. The result of the spectral mixture analysis is a series 

of abundance images and an image depicting the RMSE. The fractional images are scaled 

between 0 and 1, where a value of 1 implies 100% abundance of the specific endmember. 

ROSIS measures in 115 spectral bands, of which the first 15 bands were not used due to 
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striping effects. The last image of Fig. 2.5 shows the RMSE of the unmixing process. Some 

features can still be recognized, indicating that these features were not selected as 

endmembers. Man-made structures like the road and a house can be recognized in the RMSE 

image.  

   
Fig. 2.3. Eigenvalues of the ROSIS bands after MNF    Fig. 2.4. PPI image of the MNF 

transformation.     transformed ROSIS image. 

 

 
Fig. 2.5. Fractional cover maps, showing the abundances of the five endmembers (white colour indicates a high 

abundance; black colour indicates a low abundance). 
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2.2.6. Other applications 
Spectral unmixing of imaging spectroscopy data is done in all fields of environmental 

research. Painter et al. (2003) applied a multiple endmember SMA to AVIRIS data acquired 

over snow-covered areas in the Sierra Nevada to estimate the fractional snow covered area 

and the grain size of the fractional snow cover. Metternicht and Zinck (2003) described the 

use of spectral unmixing to determine soil salinity using the DAIS-7915 sensor. The grain 

size of sediments in an intertidal estuarine zone, using Daedalus 1268 Airborne Thematic 

Mapper data, was investigated by Rainey et al. (2003). Lelong et al. (1998) determined the 

fractions of two wheat endmembers which were interpreted in terms of crop vitality relative 

to stress presence. Vikhamar and Solberg (2003) based their SnowFrac-algorithm on spectral 

unmixing and endmember constraints to estimate the snow-cover fraction of a pixel. 

Unmixing techniques can also be applied on a multispectral dataset, but the limited amount 

of spectral bands limits the amount of endmembers that can be used in the analysis. 

Furthermore, the higher correlation between endmembers, due to broad wavelength ranges, 

should decrease the accuracy of multi-spectral unmixing techniques. To improve the amount 

of input data multi-temporal approaches are used. Multi-spectral recordings of several 

moments in time are combined and treated as a single image, where the bands represent the 

reflectance at a specific moment in, e.g. the phenological cycle (Lobell et al. 2002; Shoshany 

and Svoray 2002). Imaging spectroscopy offers valuable input data for spectral down-scaling 

using spectral unmixing. The large number of spectral bands used in spectroscopy offers the 

opportunity to increase the number of endmembers in the analysis. Furthermore, 

spectroscopy reveals reflectance differences in narrow wavelength ranges. 

 
2.3 General discussion and conclusions 
 

Traditional understanding of the term scale in remote sensing is defined by two parameters: 

grid resolution (grain), and spatial extent. This review paper shows that the scale of the 

imaging spectroscopy data is not a simple spatial function but it must be defined as a 

complex four dimensional function of the space, wavelengths of electromagnetic spectra, 

angular geometrical vectors, and time. Consequently, this new idea, proposed for imaging 

spectroscopy data by Baret (personal communication), is developed into the concept of the 

spatial, spectro-directional and temporal scaling dimensions of imaging spectroscopy. Each 

of the dimensions is described by means of the resolution and extent parameter as 

summarized in Table 2.2. As a third parameter the sampling interval was defined to express 

the entire complexity of the spectro-directional and temporal scale. Changes in magnitudes 

and subsequently units of these parameters are associated with a process of scaling. The 

statistic-empirical or physical method decreasing spatial, spectro-directional, and temporal 

spectroscopic resolution is termed upscaling, while the opposite procedure increasing this 

parameter is called down-scaling.  
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Table 2.2 Parameters of the four dimensional concept of scale for spectroscopic data 

Scale 

dimension 

Resolution Extent Sampling interval 

Spatial Image Pixel-size  minmax ,, yxyx   - 

Spectral FWHM minmax    Spacing between band centres 

Directional IFOVa minmax   Spacing between hemispherical directions 

Temporal Integrating time minmax tt   Spacing between sensor visits 

a IFOV is applicable for imaging spectrometers. FOV (field-of-view) of the optical set applies in case of numeric 

spectroradiometers. 

 

The literature review carried out in the context of this study supports the conclusion that 

spatial scaling is the most often investigated procedure within the scope of remote sensing 

to present, probably due to long term accessibility of coarse satellite and detailed airborne 

images. Availability of hyperspectral images and frequently revisiting satellites induced 

several studies considering the spectral and temporal scaling. Yet, only a few studies have 

been conducted on directional scaling thus far. Use of the directional spectral information is 

currently growing in remote sensing research, so one may expect rapid progress in 

directional methods supporting development of a new multi-angle optical sensor.  

 

One of the major concerns of the remote sensing community is how to scale and generalize 

information collected on the local level up through regional to the global level. Remote 

sensing data have a significant potential to generate inputs for global as well as regional and 

local eco-physiological models of natural ecosystem processes (e.g. models of carbon fluxes) 

(Chen et al. 2003; Wang et al. 2004). Yet, methodological questions remain that require 

attention and careful treatment. How should we properly combine several remote sensing 

sources at different scales insuring accuracy and further applicability of the results? 

Consequently, how should we appropriately validate accuracy and uncertainties of the 

coarse resolution satellite products against the ground-based measurements (Chen et al. 

2002; Tian et al. 2002)? The answers and potential solutions are available in the multi-source 

approach proposed in Malenovsky et al. (2007). This concept combines remote sensing and 

ground data of various sources and resolutions (spaceborne and airborne images, field 

measurements) by means of several scaling techniques (statistical and empirical methods, 

physical models, etc.) including specific data corrections and calibration mechanisms, as well 

as successive validation feedbacks. This way the multi-source approach improves the 

reliability of the remote sensing products, which subsequently becomes suitable input for 

ecosystem process models. 
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Abstract 
 

The temporal evolution in Soil Organic Carbon (SOC) content is often used in estimations of 

greenhouse gas fluxes and is an important indicator of soil quality. Regional estimates of 

SOC changes can only be obtained by analyzing very large number of samples over large 

areas due to the strong spatial variability in SOC contents. Visible and Near Infrared 

Spectroscopy (VNIRS) provides an alternative to chemical analyses. The benefits of this 

technique include a reduction of the sampling processing time, an increase of the number of 

samples that can be analyzed within time and budget constraints and hence an improvement 

of the detection of small changes in SOC stocks for a given area. Carbon contents are 

predicted from spectra through Partial Least Square Regressions (PLSR). The performance of 

three different instrumental settings (laboratory, field and airborne spectroscopy) has been 

assessed and their relative advantages for soil monitoring studies have been outlined using 

the concept of Minimal Detectable Difference. It appears that ground-based spectrometers 

give Root Mean Square Errors of Cross-Validation similar to the limit of repeatability of a 

routine SOC analytical technique such as the Walkley and Black method (±1 g C kg-1). The 

airborne spectrometer, despite its greater potential to cover large areas during a single flight 

campaign, has some difficulties to reach such values due to a lower Signal-to-Noise Ratio. 

Because of its statistical nature, the method and its potential rely on the stability of the 

calibrations obtained. It appears that calibrations are currently site-specific due to variation 

in soil type and surface condition. However, it is shown that PLSR can take into account both 

soil and spectral variation caused by different measuring campaigns and study areas. 

Further research is needed to develop regional spectral libraries in order to be able to use 

VNIRS as a robust analytical technique for precisely determining the SOC content and its 

spatial variation. 
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3.1 Introduction 
 

In the context of global environmental change, the estimation of carbon fluxes between soils 

and the atmosphere has been the object of a growing number of studies (Ryan and Law, 

2005). This has been motivated notably by the possibility to sequester CO
2
 into soils by 

increasing the Soil Organic Carbon (SOC) stocks (Lal, 2004) and by the role of SOC in 

maintaining soil quality. Within the EU soil thematic strategy, the decline of organic matter is 

mentioned as one of the major threats to the soil resource (Van-Camp et al., 2004). Even if a 

number of studies have already demonstrated the impact of specific management practices 

or land use changes on SOC stocks (e.g. Johnson and Curtis, 2001, Guo and Gifford, 2002; 

West and Post, 2002), several difficulties in estimating SOC stocks and their temporal 

evolution remain challenging (Post et al., 2001). One of them is linked to the spatial 

variability of SOC that masks its slow accumulation or depletion. Even at the field scale, the 

sampling density required to detect a change in SOC content can be very high. 

 

Hence, there is an urgent need to develop a cost effective monitoring system that would 

allow to calculate the emissions of CO
2
 from individual fields, follow the evolution of SOC 

concentration in the topsoil as an indicator of Good Agri-Environmental Conditions and 

estimate the nitrogen that can be mineralized from the soil organic matter in order to reduce 

mineral fertiliser use. Current methods of soil analysis are too expensive and time 

consuming to meet the amount of data required for statistical inference in soil monitoring. 

New analytical techniques would allow rapid sampling and instant determination of SOC 

values, at the field and regional level. 

 

Visible and Near InfraRed Spectroscopy (VNIRS) can be a suitable technique to rapidly 

quantify various soil characteristics simultaneously (Malley et al., 2004). There are three 

types of VNIRS techniques operating at different spatial scales and in different 

environments: (1) Laboratory Spectroscopy (LS); (2) Portable field Spectroscopy (PS) and (3) 

Remote Spectroscopy (RS). LS and PS rely on ground-based sensors (usually point 

spectrometry) and RS on air- or space- borne sensors (usually image spectrometry).  

 

Numerous studies used laboratory spectrometers to analyse SOC content (e.g. McCarty and 

Reeves III, 2001; McCarty et al., 2002; Martin et al., 2002) and show notably their relevance 

for SOC inventories. Furthermore, using the NIRS concept, Ben-Dor et al. (1997) were able to 

show that the decomposition process of soil organic matter can be assessed solely from 

spectroscopy in the laboratory. Portable Spectroscopy has been used for rapid in-situ 

monitoring of soils (Kooistra et al., 2003; Udelhoven et al., 2003), or, when the sensor is 

mounted on a tractor, it is dedicated to the site-specific management of inputs in precision 

agriculture (e.g. Mouazen et al., 2007). Remote Spectroscopy has mainly been used for the 
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mapping of surface soil properties of agricultural fields with high spectral and spatial 

resolutions (Ben-Dor et al., 2002; Selige et al., 2006; Stevens et al., 2006).  

 

SOC can be spectrally measured with a reasonable accuracy level, depending on the type of 

instrument and environmental conditions (LS, PS or RS), with Root Mean Square Errors 

(RMSE) ranging from 1 to 15 g C kg-1 (Stevens et al., 2006). This accuracy is lower than that of 

most routine laboratory SOC analysis. For instance, the Walkley and Black method (Walkley 

and Black, 1934) reaches maximum values of 1-2 g C kg-1 (Colinet, 2005). However, the large 

number of samples that can be produced outweighs the slight loss of precision compared to 

traditional chemical analyses. 

 

This paper aims to investigate the potential of different VNIRS approaches for the 

monitoring of SOC in croplands at the regional by evaluating i) the loss of accuracy by using 

such techniques outside the controlled conditions of the laboratory, ii) the stability of the 

calibrations and iii) the capacity of such techniques to process a larger number of samples 

than conventional techniques would not allow. Spectral measurements from LS, PS and RS 

were collected during a field campaign in 2005 and SOC contents were predicted using 

Partial Least Square Regressions (PLSR). The stability of the calibration of PS techniques was 

addressed by means of PS spectral datasets from two field campaigns (in 2003 and 2005) 

and three study areas. Finally, the loss of accuracy will be weighed against the potential of 

VNIRS techniques to high density datasets for regional SOC change monitoring using the 

concept of Minimal Detectable Difference. 

 

3.2 Materials and Methods 
 

3.2.1 Study Sites 
The area selected for the 2005 campaign, from which LS, PS and RS data were collected, is 

located in the Belgian Lorraine (Tintigny; 49°43’ N 5°27’ E and 49°39’ N 5°32’ E). This site has 

a mean altitude of 350 m.a.s.l with a rather flat topography and a mean temperature of 8.5 

°C and an annual precipitation of 1013 mm. The Tintigny area (52.5 km²) is characterized by 

diverse soil types, from sandy to clayey and overall the Fe
2
O

3
 concentration ranges from 8.8 

to 24.2 g kg-1 (based on 30 field samples, using a dithionite extraction). Most of the selected 

fields are on sandy-loam or loamy-sand soils (Haplic and Gleyic Luvisol, FAO-ISRIC-ISSS, 

1998). The two other study areas in the Belgian Ardennes (Ortho) and the Belgian Lorraine 

(Attert), from which additional PS spectra have been measured in September 2003, are fully 

described in Stevens et al. (2006). Soils in the Ortho area site are mainly loamy acid brown 

soils (Cambisols, FAO-ISRIC-ISSS, 1998) while the Attert test site has similar pedological 

characteristics as the Tintigny area. 
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3.2.2 Spectral Measurements 
The time window dedicated to spectral measurements (end of spring), constrained by other 

projects using the same remote sensor, introduced non-ideal circumstances since bare fields, 

needed for soil sensing, are extremely rare in the region during spring. In order to 

circumvent the problem, we cleared 81 areas of 7.5 by 7.5 m in 8 maize fields. The size of 

these bare plots corresponds to an area of 3 by 3 pixels of the sensor. Furthermore, two 

fields of approx. 0.25 ha each were ploughed and left bare by the farmers within which 36 

similar plots have been delimited, resulting in a total of 117 plots. 

3.2.2.1 Remote Spectroscopy 

The remote sensor AHS-160 was mounted onboard a CASA aircraft and flown on June 20, 

2005, at an altitude of 1000 m.a.s.l. This sensor provides a total of 80 bands covering the 

spectrum in the Visible (VIS: 400-750 nm), Near InfraRed (NIR: 750-2500 nm), Mid Infrared 

(MIR: 3300-5400 nm and 8200-12700 nm) region, with a Instantaneous Field Of View of 2.5 

mrad and a Field Of View of 90° enabling pixel size of 2.6 m and swath of 2000 m. The 

acquired data cube was first ortho-rectified, then corrected for atmospheric interferences by 

using the MODTRAN-4 radiative transfer code (Berk et al., 1999) embedded in a modified 

version of ATCOR-4 (The, 2000; Richter, 2005). For each plot, 9 pixels centred on the middle 

of the plot were extracted using the ENVI software (ITT Visual Information Solutions, 

Boulder, CO) and averaged to give the plot representative spectrum that was further used for 

the statistical analysis. Some pixels, especially those located at the edge of the plot, were 

influenced by the surrounding vegetation and were omitted from this averaging. This was 

done by removing those pixels with NDVI values greater than 0.3. In order to evaluate the 

quality of RS spectra, a Signal-to-Noise Ratio (SNR) was estimated similarly to that in Ben-Dor 

and Levin (2000; eq. 3.1). 

 
SNR = AV/SD                        (3.1) 

where AV is the mean signal of an homogeneous target and SD is the Standard Deviation of 

the same pixels values. 

 

3.2.2.2 Portable Spectroscopy 

PS measurements were taken with a FieldSpec Pro FR spectrometer (Analytical Spectral 

Devices Inc., Boulder Co) during two field campaigns in 2003 and 2005 using a similar 

measurement protocol. This instrument is characterized by a Full Width Half Maximum of 3 

nm for the 350-1000 nm region and 10 nm for the 1000-2500 nm region and by Field Of 

View of 25o that from a measurement height of 1 m gave a spot size of 0.45 m at nadir. Since 

measurements were taken the same day as the flight (under perfectly clear sky and between 

11 am and 5 pm), light conditions (stability and intensity) were optimal. Each spectrum 

consisted of 9 individual spectra taken across each experimental plot and measured against 
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Spectralon white reference under similar geometry and level of radiation. The 9 spectra were 

averaged to give a plot representative spectrum. The plot of the reflectance at 780 nm 

against the reflectance at 670 nm of the mean spectra revealed that 7 mean spectra were 

influenced by the presence of residual vegetation. These spectra are not a part of the “soil 

line” and were therefore removed from the analysis. A strong atmospheric noise due to 

water vapour affected wavelengths between 1340-1430 nm, 1810-1970 nm and beyond 2400 

nm. These were removed.  

3.2.2.3 Laboratory Spectroscopy 

Air-dried and sieved soil samples in small cups were measured with a FieldSpec Pro FR 

spectrometer that was hooked to a contact probe with a built in halogen bulb for 

illumination and Spectralon as a white reference. Nine spectra were produced per sample 

from which the mean spectrum of the plot in question was calculated. As the measurement 

conditions of the contact probe are ideal, the entire spectral range (350-2500 nm) was 

further used.  

 

3.2.3 Soil Analysis 
In each plot, 9 sub-samples were collected to a depth of 5 cm, mixed and a representative 

sample was taken for carbon and spectral analysis in the laboratory. All soil samples were 

air dried (30 °C) and sieved to pass a 2 mm mesh. The SOC content was determined using the 

Walkley and Black method (Walkley and Black, 1934). Moreover, 15 soil samples were taken 

randomly in all of the selected plots, up to a maximum depth of 1 cm and put into a 

hermetic plastic bag in order to determine the soil moisture content upon drying the sample 

at 105oC for 24 hours. SOC and soil moisture statistics of each field of the Tintigny area are 

given in Table 3.1. 

 

Table 3.1. Summary statistics of field samples (in g kg-1) 
N Main texturea

Field Mean SD Min Max Mean SD Min Max
G1 21 11.2 1.3 9.2 14.6 16.3 9.8 6.7 44.0 Loamy-sand
G2 15 15.6 1.2 13.3 17.7 5.3 2.5 3.0 12.2 silt/silt-loam
P1 15 13.6 1.1 11.5 15.9 6.1 2.6 3.4 12.7 sandy-loam
P2 15 16.6 2.3 13.0 22.1 17.4 6.5 8.7 28.3 sandy-loam
P3 9 13.3 1.8 10.7 15.9 21.8 7.5 12.1 35.8 silt-loam/silt
P4 6 9.8 2.1 5.9 11.9 22.4 9.8 6.2 35.5 Loamy-sand/sandy-loam
P5 8 13.3 3.7 10.5 22.1 30.4 39.1 10.1 126.8 Loamy-sand/sandy-loam
P6 9 15.6 2.1 13.3 19.8 19.7 10.8 5.5 38.9 silt-loam/loam/sandy-loam
P7 10 12.6 1.2 11.3 15.5 14.1 5.4 5.7 23.0 Loam/clay-laom/silt-loam
P8 9 10.8 1.5 8.6 12.7 12.8 5.8 4.7 21.8 Loamy-sand/sandy-loam
TOTAL 117 13.4 2.7 5.9 22.1 15.2 13.6 3.0 126.8 -

Carbon content Moisture content

aUSDA textural class, translated from the Belgian soil map  

 



-45 - 

3.3 Statistical Analysis 
 
3.3.1 Signal pre-processing 
Before the quantitative statistical analysis reflectance is converted into “absorbance” (log 

[1/reflectance]). Noise reduction was achieved through standard pre-treatments like 

differentiation and smoothing. Each pre-treatment or combination of pre-treatments was 

related separately to carbon content. These pre-treatments consisted of (Reeves and 

Delwiche, 2003): (i) 1st and 2nd derivatives, (ii) 1st and 2nd gap derivatives (differentiation is 

done between points x
i-n

 and x
i+n

 with n > 1), (iii) Savitzky-Golay smoothing and 

differentiation algorithms (Savitzky and Golay, 1964), (iv) mean centering and variance 

scaling, and (v) skipping every n data points (allow to reduce the number of spectral bands).  
 

3.3.2 Multivariate calibration and validation with Partial Least Square Regression  
Each spectral pre-treatment was related to the carbon content by PLSR as implemented in 

SAS (SAS Institute Inc., Cary, NC). The maximum number of Latent Variables (LV) was set to 

10. The optimal number of LV was determined by leave-one-out cross-validation.  

Two different approaches, depending on the number of samples available, were used to 

validate the model and evaluate its prediction error: (i) test set validation and (ii) cross-

validation. In the test set validation procedure a third of the data was randomly selected and 

used to validate the model by confronting measured and predicted values. The performance 

of the model was measured by the Root Mean Square Error of Prediction (RMSEP; eq. 3.2): 

 

 

n

ŷ
n

1i

2
i






iy
RMSEP                        (3.2) 

 
Where iŷ and yi are the predicted and the observed values of the sample i in the test set of n 

samples. In the cross-validation procedure the dataset is divided in several groups, each one 

being used alternatively as validation set. We used the leave-one-out cross-validation 

procedure, during which each sample was validated individually on the basis of the 

calibration set compiled from the remaining dataset. Then, the difference between predicted 

and observed value of each individual pass was determined to calculate the Root Mean 

Square Error of Cross-Validation (RMSECV). For a small dataset, this method has the 

advantage to estimate the 'true' prediction error more accurately (Ben-Dor and Banin, 1990; 

Martens and Dardenne, 1998). The RMSEP overestimates the true prediction uncertainty 

since it includes measurement errors in the reference values. Therefore, a simple correction 

for this error leads to the corrected RMSEP (RMSEP
corr,

; Faber et al., 2004; eq. 3.3). 

 
22 RMSELRMSEPRMSEPcorr               (3.3) 
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where RMSEL is the Standard Error of Laboratory analyses i.e. the Standard Deviation (SD) of 

differences between duplicate samples of the reference method. A corrected RMSECV 

(RMSECV
corr

) has been calculated according to the same rule. RMSEL of the Walkley and Black 

method has been fixed to 0.1 g C kg-1 (Colinet et al., 2005). This latter value is a rough 

estimate, because RMSEL can vary with the range of SOC content measured (usually lower for 

lower SOC content). The Ratio of Performance to Deviation (RPD) was computed in order to 

interpret the prediction ability of each pre-treatment (Chang and Laird, 2002). RPD is the 

ratio between the SD of the reference method against that of the RMSEP or RMSECV. Chang 

and Laird (2002) defined three classes of RPD: category A (RPD > 2) are models that can 

accurately predict the property in question, category B (RPD = 1.4~2) is an intermediate class 

which regroups models that can be possibly improved, and models falling in category C (RPD 

< 1.4) have no prediction ability. 

 

In order to construct a robust calibration model, an automatic outlier removal procedure 

was implemented in SAS, which is close to the procedure developed by Koshoubu et al. 

(2001). The quality of the calibration was also evaluated by checking the shape of the X-

weights of the LV’s. Noisy features may indicate overfitting and thus that the calibration may 

not be suitable for future prediction. If so, the PLS model was rejected. The best pre-

treatment able to predict un-sampled sites with the highest precision was selected on the 

basis of its RPD value and the percentage of X (wavelengths) and Y (carbon content) variation 

explained by the model. 

 

3.3.3 Assessing the stability of calibrations 
The problem of calibration stability can be described as the shifting, warping and scaling of 

the spectral predictors arising from using spectra measured under conditions/instruments 

different from the ones used during the model calibration (Marx and Eilers, 2002). The PS 

dataset of the 2005 field campaign was joined with PS spectra collected in 2003 in the 

Ardennes and Lorraine regions in order to test the stability over time and across different 

physiographic zones of the calibrations obtained by PLSR. The resulting dataset contained 

201 samples with a range of carbon contents, texture and field surface conditions. Three 

different tests were carried out: (i) predict samples of the Lorraine region taken during the 

2003 field campaign using the regression obtained from samples of the same area but from 

a different field campaign (2005), (ii) validate the entire PS dataset using a random validation 

set and (iii) cross-validate the entire PS dataset. 

 

3.3.4 SOC monitoring and Minimum Detectable Difference 
The number of samples needed for monitoring and the detection of significant change in 

SOC content depends on the variability within the study area. Power analysis can be used to 

calculate the Minimal Detectable Difference (MDD) between two measuring campaigns as a 

function of sample number and hence, designing a future sampling strategy. Here, we use 
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this methodology to assess the benefits of spectroscopic techniques. MDD has been 

calculated for each field on the basis of the variability in SOC and the number of samples 

collected during the field campaigns. MDD is given by (Garten and Wullschleger, 1999; eq. 

3.4): 

 

n

s
MDD




2
          (3.4) 

 

where n is the minimum sample size, s is the estimated standard deviation and   is a 

tabulated critical value. Minimum sample size required to achieve a specified precision 

(MDD) has been calculated as well from eq. 3.4. 

 

3.4. Results and Discussion 
 

3.4.1 Spectral Data Quality and Comparison 
Several pixels of homogeneous light (gravel quarry), grey (parking) and dark (water body) 

areas were used to calculate a mean Signal to Noise Ratio (SNR) of the RS sensor, according 

to eq. 3.1. Generally, the SNR of the RS sensor was low in the 1900-2500 nm region (mean: 

5.2) where its spectral resolution is high while the SNR was high in the 430-1030 nm region 

(mean: 39.8) where its spectral resolution is low. The low SNR in the 1900-2500 nm region is 

attributed to a degradation of the optics during the flight campaigns and atmospheric 

absorption. Mean SNR of LS and PS across the entire spectral range were respectively 64.8 

and 16.7. The difference between LS and PS is probably due to a lower stability of incoming 

light and variation in viewing/illumination geometry under field conditions. LS and PS 

spectra were resampled to fit the resolution of the RS sensor and plotted in order to visually 

compare the spectra retrieved by the three techniques (Fig. 3.1). Maximum reflectance varied 

from 15 % to 55 %. Fig. 3.1a shows spectra of the same experimental plot as measured by the 

three sensors. Small absorption features can be seen around 500 nm, 700 nm and 2300 nm 
with a more distinct one at 2200 nm associated with combination mode of OH  ( OHv  and 

OH ) in the clay lattice (Ben-Dor and Banin, 1990). Classical absorption at 1400 nm and 1900 

nm due to the soil water are masked by the poor spectral resolution of the RS sensor at 

these wavelengths.  

 

Above all, LS, PS and RS spectra showed large difference in absolute reflectance (Fig. 3.1a). 

The mean reflectance of the PS is much lower than LS. This is probably caused by shadowing 

due to soil roughness that adds a micro shade domain to the measured reflectance. This 

reduction seems not linear across the spectrum since the visible part is less affected by this 

reduction than the NIR region. Nevertheless, the shape of the spectrum obtained by PS 

seems similar to the shape of the spectrum of LS and, when looking at the first derivative of 
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the reflectance, the LS and PS yield more or less the same spectrum (Fig.3.1b). The RS differs 

strongly from LS and PS in the 1900-2500 nm, while having a closer match in the 430-1400 

nm region. The strong divergence as well as the low SNR in the 1900-2500 nm region 

indicate that the atmospheric correction of the RS sensor was not adequate or the 

radiometric calibration of this instrument is questionable. The MIR window of the RS sensor 

suffered the same problem. The 1900-2500 nm and the MIR region were thus considered 

useless and, as such, removed from the analysis.  

 

Fig. 3.1. Comparison between (a) the reflectance and (b) the 1st derivative of the reflectance, for three spectra of 

the same plot, as measured by RS (solid line), PS (dashed line) and LS (dash-dotted line). PS and LS spectra 

have been resampled to the AHS (RS) configuration. 

 
3.4.2 Model Calibration and Validation 

3.4.2.1 Comparing the predictive ability of LS, PS and RS 

Spectral data collected during the 2005 field campaign were used to compare the 

performance of the different spectroscopic techniques (LS, PS and RS). These three datasets 

contain more or less 100 samples each, so that cross-validation was considered more 

appropriate to estimate future predictive ability than test set validation. The results show 

that RPD decreased from ground-based (LS and PS) to remote measurements (RS; Table 3.2). 
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This decrease of predictive ability is undoubtedly due to difference in sensor characteristics, 

an increase in environment-induced variation and in uncontrolled measuring/experimental 

conditions (e.g. SNR, light source quality etc.). RPD values ranged from 1.47 (RS) to a 

maximum of 2.11 (PS). According to the classification of Chang and Laird (2002), we can 

state that ground-based spectroscopy (either LS and PS) can be a reliable technique to 

measure SOC content. While PS and LS have similar RMSECV (1.2 g C kg-1), PS has a better 

RPD than LS due to a slightly higher standard deviation in the calibration set. This result is 

counter-intuitive, since LS is measuring spectra under optimal conditions and thus is 

supposed to produce more accurate predictions. Two reasons can potentially explain the 

slightly higher accuracy for PS. First, one can assume that a large part of the noise has been 

successfully removed by pre-treatments. Secondly, we presume that spectral variation 

caused by disturbing factors not encountered in the laboratory was effectively handled. 

These disturbing factors can be: (i) soil moisture content, (ii) soil roughness and (iii) 

vegetation cover. Since soil moisture was very low across samples and showed little variation 

(Table 3.1), no signal processing was necessary to remove the moisture effect. Similarly, soil 

roughness was generally low because measurements were taken on fields in seedbed 

conditions. The problem of vegetation cover was resolved by removing samples different 

from the “soil line”. In summary, we can state that the performance of PS is equivalent to LS 

when measuring SOC under specific surface conditions and subject to appropriate signal 

pre-treatments. Compared to ground-based sensors, RS has a RPD value close to the one of a 

very bad model (RPD close to 1.4), according to the classification of Chang and Laird (2002) 

and thus produces less accurate measurements. However, the removal of the 1900-2500 nm 

region before the PLSR may cause some discrepancies when comparing the results of RS 

(430-1400 nm) with LS and PS (350-2500 nm).  

 

The RMSECV of RS is 1.7 g C kg-1, yielding a RMSECV
corr

 twice as high as the one of ground-

based spectroscopy (1.4 g C kg-1). The RMSECV
corr

 constitutes a limit beyond which it is 

impossible to reliably differentiate two samples having a smaller difference in concentration 

of the substance being analyzed. Those values are comparable to the limit of repeatability 

(RMSE of replicate samples) of 1 g C kg-1 of the Walkley-Black method (Colinet et al., 2005). 

This would mean that ground-based spectroscopy is at least as good as a standard analytical 

method. However, it should be noted that the samples have a relatively low mean (13.4 g C 

kg-1) and standard deviation (2.7 g C kg-1) so that this statement is only true for this 

particular type of soils and range of SOC content.  

3.4.2.2 Testing calibration stability with PS datasets  

Since the PS dataset of 2003 and 2005 field campaigns contained 201 samples, a true test set 

validation could be used rather than a cross-validation. Location of the field campaigns and 

SOC statistics of the combined dataset are given in Table 3.3. 
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Table 3.2. Predictive statistics of the best model for each sensing technique. 

IS 98.36 52.74 2 110 2.5 1.7 1.4 1.47 3 No treatment 0

PS 72.68 76.97 3 99 2.6 1.2 0.7 2.11 1
Savitzky-Golay 1st  derivative 

2th order polynomial
65

LS 99.96 75.30 8 117 2.5 1.2 0.7 2.03 5
Savitzky-Golay smoothing   

5th order polynomial
65

g C kg-1

Sensor type X vara Y vara LV numberb N
Standard 
Deviation

Corrected 

RMSECVc RPDdRMSECVc Outlier Treatment Window sizee

 
a Total predictor (X) or response (Y) variation (%) explained by the model; b Smallest number of PLS factors 

determined by the cross-validation procedure, c Root Mean Square Error of Cross-Validation, d Ratio of 

Performance to Deviation; e Window size of the best pre-treatment in number of spectral bands. 

 

As a preliminary approach, we tried to build a stable calibration curve for the same 

physiographic region. Samples taken during the 2005 field campaign in Lorraine were used 

to calibrate a model, which was validated with spectral data measured in 2003 in the same 

region. RPD in the calibration set is high (4.26) while RPD in the validation set is low 

reaching a value of 1.09 (Table 3.4). It indicates a very bad model and poor replication of a 

calibration trough time on the same area. The calibration made on 2005 samples was 

obviously not representative of spectra measured in 2003. Nevertheless, the range of SOC 

content measured in 2005 was within the range of SOC content measured in 2003 (Table 3.3) 

and soil types were similar. Moreover, even if light conditions were different between the 

two campaigns, spectral calibration through white reference measurements should ensure a 

constant spectral shape. This first test shows that the methodology is very sensitive to small 

changes in the predictors and that a calibration is still needed before each measurement 

campaign. 

 

Table 3.3. Summary statistics of SOC (g C kg-1) for the different field campaigns in the PS dataset 

Field campaign N Mean SD Min Max Region
Attert 2003 37 13.3 4.9 5.7 22.8 Lorraine
Ortho 2003 65 26.9 3.5 19.9 37.3 Ardenne
Tintigny 2005 99 13.2 2.7 5.9 22.1 Lorraine
All campaigns 201 17.7 7.3 5.7 37.3 -  
 

In a second experiment, a calibration was carried out using the dataset from the different 

campaigns randomly leaving out a portion (1/3) that was used for validation (Table 3.4, 

second line). RPD in the calibration set was considered satisfactory since it reached a value 

of 2.70. However, in the validation set, RPD is falling to 1.21 with a RMSEP
corr

 of 6.96 g C kg-1.  
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Table 3.4. Predictive statistics of the best model for PS under different validation settings. 

Validation type X vara Y vara LVb N SDc RMSECVd

Corrected 

RMSECVd RPDe Outlier Bias N SDc RMSEPd

Corrected 

RMSEPd RPDe Bias Treatment Window sizef

Validation of  2005 
samples against 2003 
samples in Lorraine

79.55 79.30 4 99 2.59 1.17 0.61 4.26 5 -0.26 37 4.85 4.56 4.45 1.09 -0.45

Savitzky-Golay      

1st derivative        

5th order polynomial

129

Random test set 
validation of all field 
spectral data

99.74 84.81 5 134 6.90 2.67 2.48 2.70 7 0.26 67 7.79 7.03 6.96 1.21 1.21
Savitzky-Golay 

smoothing          

5th order polynomial

5

Cross-validation of all 
field spectral data

99.75 87.50 5 201 7.12 2.50 2.29 2.84 17 0.00 - - - - - - No treatment 0

Calibration Validation

a Total predictor (X) or response (Y) variation (%) explained by the model; b Smallest number of PLS factors 
determined by the cross-validation procedure, c Standard Deviation in the calibration or validation set, d Root 
Mean Square Error of Cross-validation or Validation, eratio of Performance to Deviation in the calibration or 
validation set, f Window size of the best pre-treatment in spectral bands unit. 

 

This decrease is due to a few outliers, clearly visible in Fig.2 and increasing the latter 

statistic. For the same reason, the bias in the validation set was unexpectedly large (1.21 g C 

kg-1). Either these samples are spectral outliers and are influenced by other factors than the 

dependent variable (like roughness), or they are not comparable to the group of samples 

used in the calibration in terms of SOC concentration. In our case, the five outliers are 

samples from one particular field, for which all other samples in the calibration set have 

been removed during the outlier detection phase. The processing of all the pre-treatments by 

PLSR confirmed that spectra from this field were systematically removed from the 

calibration set during the outlier detection phase (results not shown). A preliminary 

Discriminant Analysis could help to identify these kinds of problematic spectra. As a matter 

of fact, PLSR was unable to predict samples falling outside of the calibration set. The 

development of a broader spectral library for soils of southern Belgium should be able to 

settle this difficulty.  

 

In a third experimental test, we analyzed the entire PS dataset using cross-validation. This 

gave better results (RPD = 2.84, RMSECV
corr

 = 2.29 g C kg-1 , 17 outliers) indicating that the 

statistical procedure can effectively predict samples when they are within the same range as 

the calibration set. Scores are linear combinations of the predictors (X-score) or response (Y-

score). Plotting X-scores by Y-scores can be used to visualize samples that are similar in 

spectral shape (X-score axis) and SOC concentration range (Y-score axis). It appears that 

spectra of the three study areas (Tintigny (A), Attert (B), Ortho (C); Table 3) can be 

discriminated on the basis of their scores, defining groups of similar characteristics (Fig.3). 

Tintigny spectra generally have low X-scores while Attert and Ortho spectra generally have 

high X-scores, this pattern corresponds to the two field campaigns (A: 2005 and B+C: 2003).  
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Fig.3.2. Plot of predicted vs observed organic carbon as obtained after a random test set validation on field 

spectroscopic spectra from different study areas and field campaigns (calibration: dots; validation: cross) 

 

Along the Y-axis, there are two groups again (A+B with low Y-scores and C with high Y-cores) 

differing in their carbon content range (see Table 3.3). These observations are encouraging 

because the model constructed by PLSR, reaching relatively high RPD, appears to be able to 

take into account this double variation in spectral shape and carbon content. 

 

This fact is particularly important when assessing the stability of the calibration at the 

broader scale and between measurement campaigns. Indeed, the power of the technique 

would be greatly enhanced if the technique shows a high stability across time and space. 

Still, RMSECV
corr

 is higher than the one obtained by the model restricted to only one study 

area (Table 3.2). This difference can be due to a larger range of SOC contents but also 

possibly to the variability in field conditions across study areas. For instance, some fields in 

the 2003 campaign were not in seedbed conditions while others were covered by vegetation 

residues. Therefore, we need to define surface conditions characteristics required to 

measure SOC in the field with acceptable accuracy (like low variation in moisture content of 

the soil surface, low roughness and absence of vegetation). 
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Currently, calibrations are often applied to limited areas with homogeneous soils or geology 

(e.g. Kooistra et al., 2003; Udelhoven et al., 2003) and attempts to predict samples from 

different locations and studies have shown relatively low validation results (e.g. Brown et al., 

2005; Stevens et al., 2006) due to varying soil types or soil surface conditions. Brown et al. 

(2006) produced a generic model for several thousands of soils from all over the world but 

failed to predict C at an acceptable accuracy for most applications (RMSE: 9 g C kg-1). 

However, such a global spectral library can be used to classify measured spectra (e.g. based 

on scores). Then, only a portion of the library may be used for prediction.  

 
Fig.3.3. Plot of Y-Score vs X-Score of the first Latent Variable as obtained after a cross-validation on the joined 

PS dataset. Samples are labeled according to their origin: “A” for Tintigny 2005, “B” for Attert 2003, and “C” 

for Ortho 2003. 

 

3.4.3 Monitoring SOC Change in croplands 
Due to the large spatial variability in SOC content, it is difficult detect a significant change in 

SOC stocks of croplands sampled at two dates. The Minimum Detectable Difference (MDD, 

eq. 3.4) decreases non-linearly with sample size and for a given sample size increases with 

the variance. Considering that generally SOC stock changes as a result of management in 

European agricultural soils are lower than 2 t C ha-1 y-1 (Freibauer et al., 2004), the maximum 
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change in SOC stock to be expected over a reasonable time span (3–5 years) would not be 

higher than 5 t C ha-1. This threshold corresponds to a concentration of 1.2 g C kg-1 

(considering a mean bulk density of 1.3 g cm-3 and a depth of 30 cm). At the field scale, the 

number of samples required to detect such a change, assuming normality, ranges from 9 to 

156 samples (Table 3.5). With the number of samples collected in each field during the 

measuring campaigns, one can detect changes varying between 1.2 and 4.5 g C kg-1 (Table 5). 

These calculations show the need for high sampling densities, even at the field scale. To 

detect a similar change in mean SOC content in the three study areas, the number of 

samples required would be sensibly higher (n = 486; Table 3.5). Hence, at regional scale, the 

need for high sampling densities is even more important because the effect of local 

management practices on SOC content is likely to be obscured by spatial heterogeneity 

generated by drivers acting at broader scale (e.g. climate, geology; Holmes et al., 2004). 

Increasing the sampling density will result in a smaller detection limit of SOC stock change. 

 

Table 3.5. SOC statistics per field and Minimal Detectable Difference (MDD). 

Study area Field Mean SD Na MDD N requiredb

g C kg-1

A 19.0 2.7 10 3.5 83
C 6.8 0.8 9 1.2 9
F 12.0 1.0 10 1.3 12
H 15.2 1.7 8 2.6 38
L 29.7 3.7 11 4.5 156
P 23.3 3.3 11 4.0 121
R 25.6 3.0 11 3.7 103
S 27.1 1.7 11 2.0 32
T 28.1 3.3 11 4.0 122
U 27.6 2.6 10 3.4 81

G1 11.2 1.4 20 1.2 19
G2 15.6 1.2 15 1.2 14
P1 13.9 1.2 9 1.6 17
P2 16.4 2.3 14 2.4 58
P3 13.3 1.8 9 2.5 39
P4 9.8 2.1 6 3.8 61
P5 12.1 1.0 7 1.7 14
P7 12.6 1.2 10 1.6 18
P8 11.1 1.4 8 2.0 23
ALL 17.7 7.3 201 1.9 486

Attert

Ortho

Tintigny

g C kg-1

 
aNumber of samples collected in the field; bNumber of samples in each field required to detect a stock change of 

5 t C ha-1. 

 

Conventional sampling strategies are often too time consuming and expensive to provide 

such large amounts of samples. LS, PS and RS may be an attractive alternative to estimate 

SOC changes with higher confidence at various scale. In this respect, users willing to choose 

one of these techniques for a particular application have to weigh the accuracy against the 
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area to be covered. While LS has the advantage to allow stable calibration trough time, it still 

requires sample preparation (collecting sample, sieving, crushing, etc…). This study shows 

that PS can reach accuracy comparable to LS but it requires a calibration before each 

campaign. PS can be used to rapidly scan the soil surface of individual fields and estimate 

with confidence their mean SOC content. RS might be a practical way to spatially evaluate 

soil carbon and a useful vehicle to track the SOC content change on large scales. RS can 

provide a large amount of samples (up to 1600 pixels/ha) but still shows unacceptable level 

of accuracy. Similar to PS, a calibration before each campaign would be also necessary due to 

difficulties in spectral calibration. 

 

3.5. Conclusions 
 

Spatial variability and slow temporal change in SOC stocks at various scales reduce our 

capacity to detect changes within a short time span. This problem can be resolved by using a 

high sampling density that can only be achieved by means of more rapid analytical methods 

like VNIRS. Soil spectra can be measured with different instruments and settings (laboratory, 

field, airborne), each having its comparative advantages and limitations.  

 

The accuracy of field spectroscopy is equivalent to laboratory spectroscopy when measuring 

SOC under specific surface conditions (low variation in moisture content of the soil surface, 

low roughness, absence of vegetation) and appropriate pre-treatments able to extract 

information from noisy spectra. The potential of this technique is high, since it requires very 

little prior sample manipulation. Our calibrations showed that it is possible to reach 

accuracies comparable to standard analytical method (Walkley-Black). These two techniques 

can thus be potentially used for monitoring studies where their speed is a valuable 

advantage. Airborne techniques, such as RS, appear, for the time being, not able to predict 

SOC with an acceptable accuracy due to their low SNR and problem to achieve true spectral 

information. Nevertheless, the greater potential lies in this technique and more efforts have 

to be put in spectrum calibration.  

 

The use of different datasets from different study areas and field campaigns showed that 

calibrations are currently site-specific and partly fail to predict, under a proper test set 

validation procedure, samples belonging to another study area or falling outside of the range 

of the calibration set. The development of a regional calibration, valid for soils of the same 

physiographic region is thus one of the first research priorities. The potential benefit of such 

techniques for soil monitoring studies has been evaluated using the concept of the minimum 

detectable difference (MDD). The limit of accuracy of the method is sufficient to capture 

changes in SOC stocks at the field and regional scale. Even for RS, having still rather low 

precision level, the large number of samples that can be taken could improve estimates of 
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mean SOC stocks compared to more precise chemical analyses of an inherently smaller 

number of samples. 
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Abstract 
 

We investigated 40 samples from nine different soil types, originating from several climatic 

zones and a large variety in SOC content (0.06 – 45.1%). Spectral measurements for all soil 

samples were performed in a controlled laboratory environment. We tested the performance 

of several spectral indices which have been developed to detect biochemical constituents 

(e.g., cellulose, lignin) for their ability to retrieve SOC, and compared it to PLS. Good relations 

were found for indices based on the visible part of the spectrum (R2 = 0.80) and for the 

absorption features related to cellulose (around 2100 nm) (R2 = 0.81). The best index based 

relations were compared to the results for PLS (R2 = 0.87). Cross validation was used to 

evaluate the predictive capacity of the spectral indices. The results demonstrate that it is 

feasible to use spectral indices derived from laboratory measurements to predict SOC in 

various soil types. However, a large variance in SOC is required for the calibration of the 

prediction model, since extrapolation beyond the SOC range in the training dataset results in 

large errors. PLS proves to be much less sensitive towards extrapolation of the model beyond 

the mineralogy and SOC levels used during the calibration.  
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4.1. Introduction 
 

Soil Organic Carbon (SOC) represents a significant fraction of the total amount of carbon 

involved in the global carbon cycle. However, a quantitative estimation of the exact amount, 

the spatial distribution and the temporal change is still difficult and requires an intensive 

sampling strategy (Garten Jr. and Wullschleger, 1999; Smith, 2004). Estimates for the size of 

the carbon reservoir in mineral soils range from 1115 to 2200 Pg in a metre soil profile (Post 

et al., 1982; Esweran et al., 1993; Batjes, 1996) and the Intergovernmental Panel on Climate 

Change (IPCC) estimates the total size on 1750 ± 250Pg (IPCC, 2001). The role and 

importance of remote sensing for the monitoring of soil carbon has been discussed by Post 

et al. (2001), who indicated that it can be especially useful when used in regions lacking 

detailed (in situ) geographical information. Spectroscopy is one of the techniques that can be 

used for a better estimation of the amount and spatial distribution of SOC and has 

demonstrated its capability to accurately determine SOC contents in the laboratory (Sudduth 

and Hummel, 1993; Ben-Dor et al., 1997; Reeves III et al., 2000; Sørensen and Dalsgaard, 

2005), directly in the field with a portable spectrometer (Barnes et al., 2003) or from airborne 

hyperspectral sensors (Ben-Dor et al., 2002). Imaging spectrometers offer the possibility to 

resolve the soil data problem that regional studies face, due to its advantages like speed and 

efficiency (McBratney et al., 2006), and contiguous spectral coverage. Estimation of SOC 

based on remote sensing techniques is mostly based on the overall decrease in reflectance in 

the Visible and Near-Infrared part of the spectrum (Irons et al., 1989; Chen et al., 2000; 

Kooistra et al., 2003). In recent years, multivariate techniques like Partial Least Squares (PLS) 

regression have been commonly used to build SOC prediction models (Fidencio et al., 2002b; 

Udelhoven et al., 2003; Madari et al., 2006; Stevens et al., 2006; Viscarra Rossel et al., 2006). 

PLS is easy to use and often used in different fields of application (Martens and Naes, 1984). 

However, an important drawback is the complexity of the transfer of prediction models from 

one sensor to another. Sensor characteristics like wavelength position, bandwidth or number 

of bands, often differ from one remote sensing instrument to another, which requires new 

model calibrations for each sensor. Furthermore, it remains a question whether PLS based 

models are predicting SOC based upon the absorptions of organic matter and carbonates, or 

whether they are built indirectly on SOC correlations with other soil constituents like iron 

oxides and clay minerals (Brown et al., 2005).  

 

Considering the difficulties to transfer PLS models from one sensor to another, we discuss 

the development of SOC prediction models based on spectral indices related to the 

biochemical composition of SOC. Such models have the advantage that the transferability of 

spectral indices to various sensors is less complicated than for models based on multivariate 

techniques. Spectral indices related to organic carbon have – to our best knowledge – not 

been presented, although organic carbon contains biochemical constituents for which 
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absorption features are known. PLS will be used as reference technique to which the 

performance of the in this study developed indices is compared.  

 

The biochemical composition of SOC depends on the source material and its decomposition 

stage (Ben-Dor et al., 1997). Biochemical constituents present in the vegetation can also be 

present within the soil, because SOC includes (next to microbes and animals) living biomass 

from plants and vegetation remnants. Soil organic matter therefore contains biochemical 

constituents like chlorophyll, oil, cellulose, pectin, starch, lignin and humic acids (Beyer et 

al., 2001), which influence the reflectance in the Visible (VIS, 400- 700 nm), Near-Infrared 

(NIR, 700-1400 nm) and Short Wave Infrared (SWIR, 1400- 3000 nm) region (Ben-Dor et al., 

1997) of the electromagnetic spectrum. Many of these biochemical constituents decompose 

fast (e.g. chlorophyll), others have a longer turnover time (e.g. cellulose, lignin and starch) 

but low levels of these elements can be found in the soil, primarily in the upper horizons 

(Beyer et al., 2001). Elvidge (1990) described the spectral response of individual biochemical 

components in dry plant materials, and currently significant advances have been made in 

assessing the plant pigment (Ustin et al., 2006) and non-pigment system from space (Kokaly 

et al., 2006). Starch, cellulose and several other biochemical constituents show absorption 

features in the SWIR region (2000-2500 nm), which are often close to each other and show 

significant overlap (Curran, 1989). Some wavelengths have also been related to amount of 

SOC in the soil (Dalal and Henry, 1986; Morra et al., 1991; Sudduth and Hummel, 1991; 

Henderson et al., 1992; Shepherd and Walsh, 2002) and it was proven that it is possible to 

explain the variation in soil cellulose concentrations by means of Near Infrared Spectroscopy 

(Hartmann and Appel, 2006). Published prediction models are often derived for datasets 

with a limited variance in SOC concentration and a limited number of soil types (Kooistra et 

al., 2003). Positive results for an effective calibration with a large number of heterogeneous 

samples were achieved by Kemper et al. (2005), Fidencio et al. (2002a) and Brown et al. 

(2006). A widely applicable SOC prediction model should be based on a wide range of SOC-

values and soils with different mineralogical background, since soil mineralogy is one of the 

main factors causing differences in soil reflectance (Hartmann and Appel, 2006). Although a 

greater variability in the training phase of a statistical model may lead to an improved 

robustness of the model and an increased ability to characterize a diverse range of samples, 

it may also result in a decrease in prediction accuracy (McCarty et al., 2002). 

 

In this paper we investigate the relation between spectral indices based on absorption 

features of biochemical constituents and the SOC content. We show that the amount of SOC 

can be detected with reflectance spectroscopy based on cellulose, starch and lignin 

influenced wavelengths. The relation is investigated for a small dataset that contains 

samples from nine soil types from different geographic locations and represents a large 

variance in SOC content, mineralogical background and grain size. Finally, we discuss the 
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accuracy and robustness of the spectral reflectance based SOC prediction models in 

comparison with PLS, and the opportunities for application in remote sensing studies.  

 

4.2. Methodology 
 

A selection of 40 soil samples, originating from a) ISRIC’s World Soil Reference Collection 

(ISRIC, 2006) b) the CARBIS field campaign (Stevens et al., 2008) and c) the MIES field 

campaign (Van der Molen, 2005) were used for analysis. The samples represent nine soil 

types which originate from different source materials, climatic zones and show a large 

variance in SOC content (0.06 to 45.1 %). The samples originate from surface as well as sub-

surface horizons (Table 4.1). All soil samples were sieved over a 200 µm sieve, keeping the 

smaller fraction, and analysed for SOC content using the Walkley Black method (Walkley and 

Black, 1934). The samples were divided into two sets of 20 samples, which are both used for 

calibration as well as for validation. The sets were constructed in such a way that both sets 

contain an equal distribution of samples of all nine soil types and practically the entire range 

of used SOC-values is included. The SOC-values in both sets show a non-normal distribution 

which is strongly skewed towards the lower SOC-values, which corresponds to the worldwide 

SOC distribution function. To allow regression analysis and calculation of R2-values it was 

converted to a normal distribution by calculating the double square-root of the SOC-content 

(Osborne and Waters, 2002). This will be referred to as SOC¼. An overview of used samples, 

the different soil types, the SOC and SOC¼ content and the grain size distribution is given in 

Table 4.1. 

 

Spectral measurements were performed on soil samples that were air-dried at room 

temperature (20-25°C) to reduce the effect of soil-moisture on reflectance (Ben-Dor et al., 

1999), using an ASD Fieldspec Pro FR in laboratory setup (Analytical Spectral Devices, Inc.). 

The ISRIC samples were measured with a viewing angle of 30° of nadir, and a 1° aperture 

angle at a distance of 40 cm. For the measurement a collimated tungsten quartz halogen 

lamp (Lowel pro-lamp, Lowel-Light Manufacturer Inc., New Your, NY) was used for 

illumination at a distance of 55 cm in nadir position, resulting in the final measurements 

being measured under bi-conical conditions (Schaepman-Strub et al., 2006). This setup 

results in a ground projected field of view (FOV) of approximately 0.38 cm2. The chemical 

analysis of the ISRIC samples was carried out in 1993 and 1997. The spectral measurements 

were made in 2003. It was assumed that the concentration of organic carbon had not 

significantly changed during the storage period. The reflectance of the CARBIS and MIES 

samples was measured with an ASD Contact Probe, which results in a FOV of 3.14 cm2. Also 

the contact probe uses a collimated illumination source resulting in the same geometrical-

optical measurement properties as above. Even though the probe has a smaller illumination 

angle (12°), the sieving at the given grain size, minimized the potential directional effects  
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Table 4.1: Overview of selected soil samples: Soil unit = type of soil according to FAO or Local classification; 

SOC = Soil Organic Carbon Content in %; SOC¼ = the SOC to the power 0.25; Setup = measurement method 

with either the ASD and lamp or the ASD with the Contact Probe (ASD + CP).  

 

Set 1         

Soil type SOC SOC¼ Depth Sand Silt Clay Setup Country 

Andosol1 0.06 0.49 90-135 95.8 2.6  Lamp Costa Rica 

Andosol1 1.55 1.12 25-80 67.8 27.3 4.9 Lamp Costa Rica 

Andosol1 6.42 1.59 0-25 58.8 28.3 12.8 Lamp Costa Rica 

Cambisol1 0.21 0.68 50-75 12.8 34.7 52.5 Lamp Nicaragua 

Cambisol1 0.99 1.00 5-40 9.7 19.3 71.1 Lamp Nicaragua 

Chernozem1 0.22 0.68 100-120 82.2 14.5 3.3 Lamp Hungary 

Chernozem1 1.42 1.09 25-40 66 21.8 12.4 Lamp Hungary 

Fluvisol1 0.17 0.64 140-160 74 14.8 11.2 Lamp Nicaragua 

Histosol1 22.90 2.19 0-5    CP The Netherlands 

Histosol1 45.10 2.59 0-5    CP The Netherlands 

Luvisol1 0.75 0.93 15-40 15.4 33.6 51.2 Lamp Nicaragua 

Luvisol1 2.98 1.31 0-15 7.1 33.5 59.4 Lamp Nicaragua 

Sand on Peat2 4.00 1.41 0-5    CP The Netherlands 

Sand on Peat2 10.70 1.81 0-5    CP The Netherlands 

Sand on Peat2 16.00 2.00 0-5    CP The Netherlands 

Sandy Loam2 0.92 0.98 0-5    CP Belgium 

Sandy Loam2 1.54 1.11 0-5    CP Belgium 

Sandy Loam2 2.21 1.22 0-5    CP Belgium 

Ferralsol1 0.94 0.98 15-20 6.8 29.4 63.8 Lamp Costa Rica 

Ferralsol1 3.96 1.41 0-8 8.7 37 54.3 Lamp Costa Rica 

Average 6.15 1.26       

STDEV 10.93 0.55       

Skewness 2.82 0.91       
1Soil Unit according to FAO Classification, 2Soil Unit according to description of the analyzed surface sample, 

no entire profile description done. 

 Table 4.1 - continuous on next page. 

present under these conditions. The chemical analysis of these soil samples was carried out 

shortly after sampling and spectral measurements. 

 

The PLS regression method (Geladi and Kowalski, 1986) was used to establish relations 

between the spectra and SOC¼ content. For the PLS regression, reflectance spectra were 

converted to absorbance (log 1/Reflectance) before the models were developed. Since PLS is 

a widely adopted method in laboratory studies it was taken as the reference analysis, to 

which the performance of the spectral indices developed within this study is compared. 
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Table 4.1 - Continued 

Set 2         

Soil type SOC SOC¼ Depth Sand Silt Clay Setup Country 

Andosol1 0.20 0.67 100-115 89.2 8.1 2.7 Lamp Costa Rica 

Andosol1 1.76 1.15 20-70 71.3 28.8  Lamp Costa Rica 

Andosol1 3.99 1.41 7-20 63.1 35.8  Lamp Costa Rica 

Cambisol1 0.57 0.87 40-50 13.5 23.8 62.7 Lamp Nicaragua 

Cambisol1 2.88 1.30 0-5 12.1 22.9 65.0 Lamp Nicaragua 

Chernozem1 0.30 0.74 70-90 77.7 17.6 4.7 Lamp Hungary 

Chernozem1 2.06 1.20 0-25 61.3 24.5 14.1 Lamp Hungary 

Fluvisol1 0.32 0.75 60-70 61.3 23 15.5 Lamp Nicaragua 

Histosol1 23.80 2.21 0-5    CP The Netherlands 

Histosol1 40.20 2.52 0-5    CP The Netherlands 

Luvisol1 1.08 1.02 25-43 4.8 28.1 67.1 Lamp Nicaragua 

Luvisol1 2.21 1.22 15-33 5.7 33.7 60.5 Lamp Nicaragua 

Sand on Peat2 4.00 1.41 0-5    CP The Netherlands 

Sand on Peat2 10.70 1.81 0-5    CP The Netherlands 

Sand on Peat2 16.10 2.00 0-5    CP The Netherlands 

Sandy Loam2 0.95 0.99 0-5    CP Belgium 

Sandy Loam2 1.54 1.11 0-5    CP Belgium 

Sandy Loam2 2.21 1.22 0-5    CP Belgium 

Ferralsol1 0.73 0.92 23-110 7.5 27.1 65.5 Lamp Costa Rica 

Ferralsol1 3.84 1.40 0-15 6.4 24.3 69.3 Lamp Costa Rica 

Average 5.97 1.30       

STDEV 10.05 0.50       

Skewness 2.61 1.10       
1Soil Unit according to FAO Classification, 2Soil Unit according to description of the analyzed surface sample, 

no entire profile description done. 

 

 

 

As a first step, the direct relation between reflectance values and SOC¼ content was 

investigated for each wavelength individually. Next, spectral indices based on the summed 

reflectance in the VIS and the slope for several ranges in the VIS were calculated. In addition, 

we investigated the usability of spectral indices based on wavelengths influenced by SOC 

related biochemical constituents. For this the reflectance from 1600-1800 nm (related to 

lignin) and 2000-2300 nm (related to cellulose, starch and lignin) was studied. First, the 
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general reflectance pattern was investigated visually for presence of absorption features that 

vary in location, shape or size. Next, based on the reflectance pattern, spectral indices were 

developed. The first type of index uses the area of the absorption feature, which was defined 

as the sum of the total reflectance minus the continuum removed function (Grove et al., 

1992). The continuum removed function is usually defined as a convex hull, but can also be 

defined as a straight line (often named baseline) if a single absorption feature is investigated 

(Kokaly and Clark, 1999). The border values for the baseline were systematically varied in 

order to find an optimal relation (highest R2-value) with SOC¼. For each individual wavelength 

the difference between the baseline and the measured value was calculated and those 

differences are summed. This sum is a measure for the size of the absorption feature and 

expresses the amount of absorption. The second type of index uses the slope of the spectral 

signature corresponding to the higher wavelength part of the absorption feature. In this 

case, a straight line was plotted between the reflectance value at the start of the absorption 

feature and the reflectance value at the centre of the absorption feature, where the relation 

of the slope (change in reflectance per nanometer) of this line and the SOC¼ was studied. 

Although the start and the position of the centre of an absorption feature can vary with the 

amount of absorption, and may therefore vary per sample, we chose to use the same start 

and centre of the absorption feature for all samples. Absorption features of pure 

biochemical constituents may overlap in the SWIR, making the assignment of the different 

components to a specific absorption feature difficult (Elvidge, 1990). No actual 

quantification of biochemical constituents in the soil samples by means of chemical analysis 

was available. Only wavelength regions influenced by cellulose, starch and lignin, as 

described in literature, were studied.  

 

Both linear and curvilinear regression functions were tested to relate the indices with SOC¼. 

The quality of the fit was assessed using the R2-value with a confidence level of 0.95 and 

results were cross-validated by applying the found relations for Set 1 on Set 2 and vice versa. 

This means that both sets are used as calibration and validation set. Quality of the SOC 

content prediction is expressed in Standard Error of Calibration (SEC) and Standard Error of 

Performance (SEP), which are both given in percent SOC. The SEC is related to the Standard 

Deviation (STDEV) of the training set and the SEP is related to the STDEV of the validation 

set. The ratio of STDEV in the validation set to the SEC or SEP is referred to as the Ratio of 

Performance to Deviation (RPD) and can be used as an index of model accuracy. Chang et al. 

(2001) defined three classes of RPD: category A (RPD>2) are models that can predict 

accurately the property in question, category B (RPD = 1.4 – 2) is an intermediate class which 

regroups models that can be possibly improved, and models falling in category C (RPD < 1.4) 

have no prediction capability.  
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To test the robustness of the prediction model to variation in soil type, both sets were 

combined and the calibration was repeated, each time leaving all samples of one soil type 

out. The soil type which was left out of the calibration phase was used for validation, to test 

whether the prediction model is applicable on soil types which are not used for calibration 

of the model. Robustness was in this study defined as how sensitive the model reacts to 

inclusion of soil types with a mineralogy that was not used during calibration. 

 

4.3. Results and Discussion 
 

For individual wavelengths, the highest correlation between SOC¼ and reflectance is found in 

the VIS, with a maximum around 600 nm (Figure 4.1). It is well know that higher levels of 

organic material in the soil lead to darker soils, and therefore a lower reflectance. Scatter 

plots, with the SOC¼ plotted against the reflectance for individual wavelengths (figures not 

shown), expose that the relation between SOC¼ and reflectance is not linear. Both linear and 

curvilinear relations are reported in literature but whether a relation is linear depends on the 

range of SOC-values considered (Schreier, 1977; Baumgardner et al., 1985). In our case the 

relation can be made linear by calculating the inverse of the reflectance (1/reflectance), 

which reveals highest correlation between 640 and 690 nm (R2

set 1
 = 0.74; R2

set 2
 = 0.76). This 

spectral region corresponds with the results reported by Vinogradov (1982). 

 

 
Figure 4.1: Coefficient of correlation (R) between SOC¼ and 1/Reflectance. 

 

4.3.1 Partial Least Squares Regression 
For the PLS analysis the wavelengths contributing most to the prediction model are found in 

the VIS (maximum at 650 nm), around the water absorption features (1400 nm and 1900 

nm), and in the SWIR region (2212 nm). The optimal balance between model complexity and 
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predictive power was found for 2 latent variables. Calibrations developed using PLS resulted 

in high R2 values (R2

set 1
 = 0.87; R2

set 2
 = 0.76) and a low SEC and SEP (Table 4.2).  For set 1 the 

SEP was calculated two times, and both values are given in table 4.2. The first value 

represents the SEP for the entire set of 20 samples. Because this implies an extrapolation 

outside the minimum and maximum SOC¼ range of Set 2, the SEP was calculated also for the 

interpolated range of SOC¼ content only. This decreases the SEP from 4.21 to 2.41, but even 

without exclusion of this sample the PLS reaches a RPD > 2 for both datasets, resulting in a 

category A model. Research by Kooistra et al. (2001) showed that pre-processing on the 

spectral data can have a large influence on the prediction accuracy of PLS, but the effect it 

has depends on the property that is examined and the composition of the dataset.  

 

4.3.2 Indices in the VIS wavelengths 
The reflectance in the VIS and NIR of three samples with a large range in SOC content is 

shown in Figure 4.2. Besides the overall decrease in reflectance with an increase in SOC, also 

the shape of the spectral signature varies, resulting in a change from convex to concave 

when the SOC content decreases, and a flatter spectral profile at higher SOC contents.  

 
Figure 4.2: Reflectance in the Visible and Near-Infrared part of the spectrum for three samples with a large range 

in SOC content.  
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Figure 4.3: SOC¼ content plotted against ’sum 400-700’ (graph A) and the SOC¼ content plotted against ‘1/ sum 

400-700’ (graph B). 

 

Based on the VIS wavelength region, two indices were calculated. The first index is based on 

the overall decrease in reflectance between 400 and 700 nm. Figure 4.3A shows that the 

relation between the ‘Sum 400-700 nm’ and SOC¼ can be considered linear by dividing the 

SOC¼ range into two parts: from 0 - 1.5 and >1.5. These values correspond to the SOC range 

from 0 - 5 % and >5 % respectively. A combination of samples with high and low SOC content 

results in a non-linear relation but the relation can be made linear by calculating ‘1/Sum 

400-700 nm’. Figure 4.3B shows that this results in a moderately high correlation coefficient 

(R2

set 1
 = 0.69; R2

set 2
 = 0.68).  

 

The slope in the VIS varies with the SOC¼ content (Figure 4.4) and the correlation of this 

slope with SOC¼ was tested for several spectral ranges (400-700 nm, 400-600 nm, 500-700 

nm, 500-600 nm), of which ‘1/Slope 400 - 600 nm’ appeared to correlate best (R2

set 1
 = 0.71; 

R2

set 2
 = 0.80). Validation shows that this results in a category A model if the sample with the 

highest SOC content of set 1 is excluded, to prevent extrapolation of the model beyond the 

range for which it was calibrated. Ben-Dor et al. (1997) showed that this slope is influenced 

by the decomposition stage of the organic material, which especially effects the surface 

samples that may contain a reasonable amount of fresh organic material. The datasets 

contain fresh samples as well as soil samples that were stored for a longer period before 

spectral measurements were done, but these samples do not show any structural deviation 

from the fresh samples. Another complicating factor for the use of these indices is the 

strong influence of iron oxides in this spectral range (Ben-Dor et al., 1999), which can be 

used for quantification of dithionite extractable iron (Bartholomeus et al., 2007). A deviation 

in prediction accuracy can therefore be expected in case of large variations in iron oxide 

concentrations. 
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Figure 4.4: SOC¼ content plotted against ‘1/Slope 400-600 nm’. 

 

4.3.3 NIR and SWIR wavelengths 
In the spectral range from 1600 to 1800 nm the overall level of reflectance varies, but there 

is hardly any variance in the pattern of the reflectance curve (Figure 4.5). Therefore, it is not 

possible to derive an index based on this spectral region, which in vegetation studies is used 

as an indication for lignin content (Serrano et al., 2002). A slight variance in slope between 

1600 and 1800 nm is visible, but this does not show a relationship with SOC content (R2 = 

0.09). Dalal and Henry (1986) reported the reflectance at 1744 nm from Australian soils to 

be sensitive to organic matter, but this could not be supported by our dataset (R2 = 0.1). 

 
Figure 4.5: Spectral signature (1600 – 1800 nm) of three soils with a large range in SOC content. 
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Figure 4.6 depicts the spectral response from 2000 to 2300 nm. Besides the decrease in 

overall reflectance, the reflectance pattern also varies; the spectral profile flattens when the 

SOC¼ content increases.  In contrast to vegetation, where the presence of starch and cellulose 

results in a clear absorption feature at 2100 nm (Curran, 1989; Elvidge, 1990), the presence 

of SOC¼ does not lead to a clear absorption feature in soil reflectance spectra. Although the 

reflectance does not show a dip as such the flattening of the spectra can be interpreted and 

analysed as an absorption feature.  

 
Figure 4.6: Spectral signature (2000 - 2300 nm) of three soils with a large range in SOC content. This spectral 

region is influenced by the presence of several biochemical constituents, e.g. cellulose, lignin and starch. The 

straight thin black line between 2050 and 2200 indicates the baseline to which the spectra were normalized. The 

area in this spectral range is a sum of the differences between the reflectance value and the baseline, for all 

wavelengths.  

 

The changes of the spectral profile in the SWIR are quantified in two ways. First, the total 

decrease in reflectance, compared to the continuum removed values was calculated, which 

yielded the best results between 2050 and 2200 nm. This results in a value that describes 

the area of the absorption feature, and shows a negative relation with SOC¼ (Figure 4.7A). 

More SOC leads to a higher amount of cellulose, lignin and starch, which results in more 

absorption and a flatter spectral signature, shown by a lower value for the area of the 

absorption feature. To create a linear relation, again the inverse of the area is taken (Figure 

4.7B) and correlated with SOC¼ (R2

set 1
 = 0.55; R2

set 2
 = 0.81). According to the RPD this index 

will be classified as a category B model.  

 

As a second index, the slope of the spectral signature is calculated, which yielded the best 

results for ‘1/Slope 2138-2209 nm’ (R2

set 1 
= 0.49; R2

set 2
 = 0.79) (Figure 4.8). These two 

wavelengths correspond to the left border and centre wavelength of the absorption dip 

around 2200 nm, which is caused by the clay lattice absorption feature (Ben-Dor et al., 1999). 
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Figure 4.7: SOC¼ content plotted against the ’area 2050-2200 nm’ (A) and the SOC¼ content plotted against 

‘1/Area 2050-2200 nm’ (B). 

 

The good correlation is therefore probably not caused by absorption due to biochemical 

constituents as such, but by the known fact that higher amounts of SOC mask other spectral 

absorption features (Stoner and Baumgardner, 1980), in this case clay. Although soil samples 

with high clay content (up to 71%) were included in the dataset, the deviation of the 

predicted SOC-content shows no relation with the clay content. There is no correlation 

between the error in predicted SOC and clay content (R2

set 1 
= 0.07 and R2

set 2
 = 0.002) 

 

For all indices the low R2-values for Set 1 are caused by an Andosol sub surface sample with 

a low SOC content, which represents the volcanic source material on which hardly any soil 

forming processes took place. In general these volcanic deposits show a low reflectance and 

 
Figure 4.8: SOC¼ content plotted against ‘1/ slope 2138-2200 nm’  
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a feature-poor spectral signature. This confirms that mineralogical background has a large 

influence, which for some soils results in a less robust SOC prediction model.  

 

The performance indicators for the evaluated relations between SOC¼ and spectral 

reflectance are summarized in Table 4.2. Because relations based on direct correlations are 

curvilinear, only the results of inverse relations are shown. PLS shows the overall best 

results, and also meets the requirements of a category A model. For the spectral indices the 

biochemical constituent absorption dip based index ‘1/Area 2050-2200 nm’ (R2

set 2
= 0.81) and 

the visible wavelengths based index ‘1/Slope 400-600 nm’ (R2

set 2 
= 0.80), show the overall 

highest R2-values. The SEC values for ‘1 /Area 2050-2200’ are better, but SEP and RPD values 

are best for ‘1/Slope 400-600’ and the RPD of this index model (RPD
set 1

 = 3.18 ; RPD
set 2

 = 2.72) 

is comparable to the prediction accuracy achieved with PLS. The only index that is not 

sensitive to extrapolation of SOC¼ values beyond the SOC¼ range used for training is  ‘1/Sum 

400-700’, while ‘1/Slope 2138-2209 nm’ appears to be very sensitive to extrapolation. These 

results show that the SWIR spectral region can be used for the quantification of SOC¼, as was 

also reported by e.g. Morra et al. (1991) and Henderson et al. (1992), but the predictive power 

is less than for PLS and VIS based indices.  

 

Table 4.2: Performance of spectral indices towards the prediction of SOC. R2-values are based on linear relations 

with SOC¼. 

R2-value SEC (%) RPD (SEC) SEP (%) RPD (SEP) 

 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set2 Set 1 Set 2 

PLS 0.87 0.76 3.18 5.23 3.43 1.92 4.07/2.41 a 4.84 2.68 / 4.53 a 2.08 

1 / Sum 400-700  0.69 0.68 4.27 5.78 2.56 1.74 4.40 / 4.34a 5.64 2.48 / 2.52a 1.78 

1 / Slope 400-600 0.71 0.80 6.05 2.92 1.81 3.44 10.61 / 3.43 a 3.70 1.03 / 3.18 a 2.72 

1 / Area 2050-2200 0.55 0.81 4.00 1.63 2.73 6.17 11.73 / 5.29 a 5.74 0.93 / 2.06 a 1.75 

1 / Slope 2138-2209 0.49 0.79 6.67 5.23 1.64 1.92 265.62 / 4.42 a 8.92 0.04 / 2.47 a 1.13 

STDEV of SOC (%)   10.92 10.05   10.92 10.05  

a For Set 1 the SEP was calculated two times. The first value represents the SEP for the entire set of 20 samples. 

Because this implies an extrapolation outside the minimum and maximum SOC¼ range of Set 2, the SEP was 

calculated also for the interpolated range of SOC¼ content only. The second number represents this non-

extrapolated SEP value.  

 

4.3.4 Robustness of the models 
The robustness of the models was tested in a separate procedure. The two data sets were 

combined and all samples belonging to single soil type were excluded from the training 

phase. Next, the SOC-content of the excluded soil type was predicted, and the difference 

between the measured and predicted SOC-content was calculated, which was repeated until 

all soil types were predicted. The SEP and RPD for each soil type was calculated (RPD
per soiltype

 = 

SEP
per soiltype

 / SD
per soiltype

) to demonstrate how well the SOC content can be estimated, when there 



-74 - 

is just a single soil type of interest. The low RPD per soil type, which reaches the 

requirements for a category A model only accidentally (Table 4.3) show that none of the 

models can be used for prediction of the SOC within a single soil type or a region with little 

variation in SOC. To express the potential of each model to estimate the SOC for a dataset 

that contains several soil types with a wide variety in SOC the RPD for all soils was 

calculated (RPD
all soils

 = SEP
all soils

 / SD
all soils

). In general, PLS is more robust than the prediction 

models based on spectral indices (Table 4.3). Of the spectral indices, ‘1/Area 2050-2200’ is 

most robust towards the removal of soil types. Using the model for prediction beyond the 

maximum SOC-content range used for calibration leads to extremely poor prediction results, 

which is shown by the large SEP for the Histosol samples (Table 4.3). This shows that a 

widely applicable prediction model based on laboratory measured reflectance spectra should 

contain a wide range of SOC values. It should be noted that the number of samples used in 

this exploratory study is too small to develop an operational SOC prediction model that can 

be applied globally. Such an operational model requires a larger number of samples and soil 

types in the training phase. The results obtained for the robustness of the presented models 

show that the presence of the specific soil type or mineralogy in the training set, determines 

the predictive capacity for the soil type in question. 

 

Table 4.3: Results of the predictions of SOC values for excluded soils. 

 

The results show that the prediction of SOC with spectroscopy using a highly variable 

dataset, with not only a wide range in SOC, but also a large variance in mineralogical 

background is possible with a reasonable accuracy. This gives a good perspective towards 

the application of these indices for remote sensing, development of on-the-go soil sensors or 

non-destructive laboratory analysis. PLS yields the overall best results and is most robust 

when it comes to predicting SOC of soil types that were not included in the calibration. 

However, in the search for spectral indices it was shown that  ‘1 /Slope 400-600’ is the best 

  1 / sum 400-700 1 / slope 400-600 1 / area 2050-2200 1 / slope 2138-2200 PLS 

  STDEV SEP RPD SEP RPD SEP RPD SEP RPD SEP RPD 

Ferralsol 1.77 3.40 0.52 1.86 0.95 1.52 1.17 1.60 1.11 2.11 0.84 

Luvisol 1.03 6.16 0.17 0.60 1.70 0.18 5.81 0.72 1.42 0.52 1.98 

Sandy Loam 0.57 0.67 0.45 0.36 0.51 0.49 0.54 0.54 0.88 0.52 1.11 

Sand on Peat 5.4 9.28 0.58 8.34 0.65 8.99 0.60 11.26 0.48 5.58 0.97 

Histosol 11.33 19.95 0.57 24.38 0.46 10.78 1.05 1873.42 0.01 5.74 1.98 

Fluvisol 0.11 0.62 0.17 0.66 0.16 0.55 0.19 1.14 0.09 0.07 1.45 

Chernozem 0.89 0.34 2.62 1.13 0.79 0.66 1.35 1.18 0.76 0.49 1.84 

Cambisol 1.19 5.38 0.22 4.78 0.25 1.00 1.19 1.17 1.01 0.38 3.16 

Andosol 2.45 1.14 2.15 2.65 0.93 5.41 0.45 2.64 0.93 0.84 2.91 

All soils 10.36 7.52 1.38 8.37 1.24 4.81 2.15 592.44 0.02 2.72 3.82 
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spectral index to use when predictions are made for a soil that is also used in the calibration 

phase. It should be noted that in terms of absolute determination of SOC content the results 

are less accurate than reflectance based prediction models for a limited number of soil types 

with less variance in mineralogical background (Henderson et al., 1992; Daniel et al., 2004). 

The feasibility to apply the derived relations to remotely sensed images to assess SOC on a 

landscape or regional scale will mainly depend on the availability and quality of images. The 

indices that use baseline and area calculations require hyperspectral images, which are only 

sparsely available. The slope based indices could already be applied on remote sensing data 

from sensors with lower spectral resolution (e.g. ASTER). It has to be noticed that the scaling 

from laboratory measurements to image data is a large step, since atmospheric influences, 

lower signal to noise ratios and disturbing factors of the surface itself complicate the 

analysis.   

 

4.4. Conclusion 
 

The results of this study show that biochemistry based spectral indices can be used to 

estimate SOC for a dataset composed of nine soil types with a large variance in mineralogical 

composition. Prediction accuracies based on spectral indices are comparable to accuracies of 

PLS based predictions. However, the models based on indices become inaccurate when the 

SOC content is estimated for samples which have a SOC content larger than the SOC range of 

the calibration set, or when the models are applied to soil types that were not used for 

model calibration. We conclude that for the development of a spectral reflectance based SOC 

prediction model a larger variety of soil types, covering all SOC ranges that can occur, may 

be included in the training phase as well. Arriving at a worldwide operational SOC prediction 

model, a larger number of samples is required. However, including a-priori knowledge on 

expected soil associations, mineral composition pre-classification may increase the 

robustness of the prediction model and its applicability for extended geographical areas.  
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Abstract 
 

The possibility of quantifying iron content in the topsoil of the slopes of the El Hacho 

Mountain complex in Southern Spain using imaging spectroscopy is investigated. Laboratory, 

field and airborne spectrometer (ROSIS) data are acquired, in combination with soil samples, 

which are analysed for dithionite extractable iron (Fe
d
) content. Analysis of the properties of 

two iron related absorption features present in laboratory spectra demonstrates good 

relations, especially between the Standard Deviation (S.D.) of the values in an absorption 

feature and the Fe
d
 content (R2 = 0.67) as well as the ratio based Redness Index (R2 = 0.51). 

Such derived relations are less strong for the ROSIS data (R2 for S.D. = 0.26 and R2 for 

Redness Index = 0.22). The spatial distribution of iron in vegetated areas shows a strong 

sensitivity of these relations with the presence of vegetation. A combination of both 

methods shows that the overestimation of the Fe
d 
content with the one method is (partly) 

compensated by the underestimation with the other method.  
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5.1. Introduction 
 

The slopes of El Hacho Mountain near Álora in Southern Spain show a large variety in iron 

content. El Hacho is composed of materials derived from Tertiary marls and sands, 

deposited on a continental slope, which are indicated with the generic term Flysch deposits 

(Fig. 5.1). On top of El Hacho thick cemented deposits of sand and gravel (conglomerate) 

occur (Buurman, 1999). Blocks of this conglomerate are now scattered over the flysch slope, 

where Cambisols are formed. Below these blocks unweathered flysch is exposed. Iron 

content is varying with the distance down slope from these blocks, due to erosion, iron 

deposition processes and leaching. The spatial heterogeneity of the iron distribution is 

further increased due to presence of gullies. Hematite is the major iron bearing mineral in 

the area, while some goethite may occasionally be present behind the conglomerate blocks 

(Buurman, 2005). 

 

Iron (Fe) is one of the most common minerals contained in soils (Hunt, 1980). It is an 

indicator for the fertility of the soil, the usability of an area to cultivate specific crops and an 

indicator of the age of the deposits (Torrent et al., 1980; Gardner and Pye, 1981; Blount et al., 

1990). Determining the spatial distribution of different types of iron with traditional 

fieldwork and laboratory analysis is time-consuming and expensive (Liang, 2004). Remote 

sensing has proven to be a useful tool to determine the presence of iron in extended areas 

and various research fields (Escadafal, 1993; Farrand, 1997; Palacios-Orueta et al., 1999; 

Warell, 2003). Quantification of the amount of iron contained in soils using spectral 

measurements has proven to be feasible (Torrent et al., 1983; Coyne et al., 1989; Ben-Dor 

and Banin, 1990), and is focusing on laboratory or field spectra and specific soil types 

(Dematte, 2002). Presently, technical improvements allow mapping using higher spectral and 

spatial resolution imaging spectrometers with better signal to noise ratios (Dematte et al., 

2004). The need for relatively high spectral resolution data to determine iron content using 

reflectance spectra has been extensively discussed in Ben-Dor et al. (1999). We propose to 

use for the El Hacho area imaging spectrometer data for mapping iron quantity. In addition 

to the analysis of the Reflective Optics System Imaging Spectrometer (ROSIS) imagery, field 

spectra and laboratory spectra are acquired and analysed. The influence of iron on the 

spectral signature in the wavelength range covered by ROSIS (416.9 – 872.9 nm) has been 

discussed in literature extensively (e.g. Hunt and Salisbury, 1970; Stoner and Baumgardner, 

1981; Ben-Dor et al., 1999; Bullard and White, 2002). This study focuses on the 

determination of the soil iron content in fractionally covered olive fields, where the 

ploughing, weeding and a distance of 6 meters between the trees results in a substantial 

amount of bare soil surface in the 2 x 2 meter ground projected instantaneous field of view 

(GIFOV) of the ROSIS images. Zarco-Tejada et al. (2004) performed research on olive fields 

too, focusing on eliminating the influence of soil by deriving plant parameters of olive trees. 
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However, in this study the analysis of absorption features was used to estimate iron content, 

using regression analysis, considering the influence of vegetated areas. Fig. 5.2 gives an 

impression of the study-area.  

 
Figure 5.1: Geologic map of Álora and surroundings. The study area (corresponding with Fig.5.9) is located west 

of Álora and delineated with the square. Coordinates are in UTM, zone 30N, NAD27. 

 

 

Figure 5.2: Impression of the study area 
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5.2. Methodology 
 

5.2.1 Soil Sampling and analysis 
In June 2003, 35 bare soil plots, of 2 by 2 meter size, were sampled and measured for iron 

content. The sample locations were positioned in two down slope transects and cover the 

full iron variation within these slopes (Fig. 5.3). Fractional cover of soil, rocks and litter was 

determined in each plot and a soil sample of the topsoil (first two centimeters) within the 

plot was collected for determination of iron content and laboratory spectroscopy.  

 

Figure 5.3: Distribution of the 35 iron sample points within the El Hacho study area. NDVI values are calculated 

from the ROSIS image. The isolines represent the altitude in meters. Coordinates are in UTM, zone 30N, 

NAD27.  

 

The dithionite extractable iron (Fe
d
) concentration of all 35 soil samples was determined 

using a dithionite extraction as described in Raiswell et al. (1994). An oxalate extraction was 

used to determine the concentration of oxalate extractable iron (Fe
o
). The concentration of 

iron in the extraction fluids was determined with an Inductively Coupled Plasma Atomic 

Emission Spectrometer (ICP-AES). In literature, Fe
d
 is often referred to with the term free 
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iron; however, terminology is not uniform in this sense. Therefore, we refer to the Fe content 

by the name of the extraction technique instead of using uninformative phase designations, 

as suggested by Borggaard (1988). 

 

5.2.2 Field and laboratory spectra 
Field and laboratory spectra were acquired using an ASD Fieldspec Pro FR 

spectroradiometer, covering the 350 – 2500 nm wavelength region. Four reflectance 

measurements per plot usually were taken in the corners to estimate the full spectral 

variability within a plot. The aperture angle of the fore optics of the spectrometer was 25° 

and measurements were taken from nadir, at a distance of about 30 cm from the surface, 

resulting in a circular Ground projected Field of View of 13 cm diameter. The soil samples 

used for the laboratory spectral analysis were air-dried and sieved (<2 mm). The incidence 

angle of the irradiance source is set to 30° off nadir and a 3° fore optic is used at a 30 cm 

distance from the target, resulting in a circular Ground projected Field of View of 3 cm 

diameter. The sample was rotated in steps of 90°, resulting in four measurements per 

sample. Uncalibrated white spectralon panels were used for the field and laboratory 

measurements, resulting in relative reflectance values. The four measurements per plot were 

compared, deviating measurements were removed when necessary, and the remaining 

spectra were averaged. This was done for both field and laboratory spectra separately. For 

further analysis the relative reflectance field and laboratory spectra were limited to, and 

rescaled to the bandwidth of ROSIS.  

 

5.2.3 Image data 
Airborne imaging spectrometer data were collected in June 2001, during the DAISEX 

campaign (Berger et al., 2001). ROSIS was built for the detection of absorption features 

especially in coastal and inland waters (Gege et al., 1998), but it is also used for land 

applications (Holzwarth et al., 2003). During this overflight of El Hacho, ROSIS recorded data 

in 115 spectral bands, ranging from 416.9 to 872.9 nm, with a bandwidth of approximately 4 

nm and a 4 nm sampling interval. The operating altitude of the aircraft was at flight level 

120 (corresponding to 3510 m above ground), resulting in a pixel size of 2x2 meters. ROSIS 

images were calibrated and converted to reflectance values by the operator (DLR), using the 

PARGE/ATCOR model (Schläpfer and Richter, 2002). Quality analysis of ROSIS resulted in the 

exclusion of band 1 (416.9 nm) and 2 (420.9 nm), because of the low signal to noise ratio. A 

DEM with a resolution of 25 m in x and y direction and 1 m in z direction was used for 

orthorectification. The use of a handheld GPS for determination of the location of the 

sample plots appeared to be inaccurate. Therefore, the positioning of the plots on the ROSIS 

image was done visually, which can be done up to 1 to 2 pixels accurately, using clearly 

recognisable objects in the image like olive trees. In this way correct spectral information 

was achieved for the sampling points.  
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5.2.4 Processing of Spectral data 
The plots were divided in a training set (19 plots) and a reference set (16 plots), to allow 

cross-validation of the results. The plots were divided in such way that both sets show a 

similar range in iron content variation along locations down the slope.  The distribution of 

training and reference points is indicated in Fig. 5.3.  

 

First, direct correlation of the reflectance values in all individual bands with the iron content 

was performed, for field, laboratory and ROSIS spectra. This reveals the spectral regions that 

are directly influenced by the presence of iron. The next step was the calculation of the 

Redness Index. This method uses the reflectance properties in the visible part of the 

spectrum and is used as indicator for iron and was among others used by Bullard and White 

(2002): Redness = R
600-700nm 

 / (R
600-700nm + 

R
500-600nm + 

R
400-500nm

) in which R = Reflectance. Bands in 

these spectral ranges were averaged; corresponding band numbers are given in table 5.1. 

 

Table 5.1: Band numbers corresponding with the wavelength ranges used in the calculation of the Redness 

Index.   

 

Continuum removal (Green and Craig, 1985) between 424.9 and 872.9 nm was applied on the 

field, laboratory and ROSIS spectra. The minimum, average and median values were 

calculated of the continuum-removed spectra. Absorption feature properties used during 

analysis were depth, width, area and standard deviation of dips. The width of the dip is 

defined as the wavelength distance between the maximum values on both sides of the dip, 

after continuum removal. The depth of the absorption feature is the maximum distance of 

the spectrum to the continuum. Summing these distances over the width of the dip results 

in the area of the dip (Grove et al., 1992). Furthermore, the Standard Deviation (S.D.) of the 

continuum-removed values for each dip was calculated.  

 

As a next step, the linear correlation between the spectral features and both types of iron 

was calculated on both the training and reference points. All presented R2 values have a 

significance level of 0.95. Prediction of the iron content was done using the regression 

functions and is expressed in Standard Error of Calibration (SEC) values. Next, cross 

validation between the training and reference set was carried out, expressed with Standard 

Error of Performance (SEP) values. Predictions were done with the relations based on the 

corresponding spectral dataset, since the use of different reference panels does not allow 

Wavelength Bandnumbers ROSIS and resampled ASD spectra 

Blue: 400-500 nm Band 3 – 21    (424.9 – 496.9 nm) 

Green: 500-600 nm Band 22-46    (500.9 – 596.9 nm) 

Red: 600-700 nm Band 47-71    (600.9 – 696.9 nm) 
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interchanging the relationships between different spectral datasets. The difference between 

the predicted and the actual measured iron content is expressed in mass percent iron.  
 

Since the relations are only valid for bare soil the variance of the predictive value related to 

fractional vegetation cover was tested. Linear mixing of a bare soil laboratory spectrum and 

an olive tree field spectrum with different fractions was done to set a threshold of 

vegetation on the iron content prediction. Both spectra were linearly mixed representing a 

fractional vegetation cover up to 30 %. The iron content of the fractionally covered pixels 

was predicted using the regression function based on the training set of the laboratory 

spectra. 

 

Prediction of the iron content with the Redness Index should underestimate the amount of 

Fe
d
 when the fractional vegetation cover increases, because of the decrease of the red 

reflectance and thus a lowering of the Redness index.  An overestimation of the iron content 

is expected when the area or standard deviation of the absorption features of continuum-

removed spectra is used. This is a result of the decrease of reflectance in the visible 

wavelengths and an increase in Near Infrared reflectance, which leads to a larger absorption 

feature and higher S.D. and Area. A combination of both methods may result in a better 

prediction of the Fe
d
 content; therefore this was also tested.   

 

Finally, the technique which yields the best prediction results and is least influenced by 

vegetation was used to create a spatial iron distribution map. For this purpose fractional 

vegetation cover was determined using Spectral Mixture Analysis (SMA) (Smith et al., 1985), 

after which pixels with a fractional vegetation cover of more than 30 % were masked out. As 

a preparatory step for SMA, Minimum Noise Fraction (MNF) rotation (Green et al., 1988) was 

used to de-stripe the ROSIS image and smooth the spectral response. The iron content of the 

masked out areas was interpolated from the surrounding pixels using Inversed Distance 

Weighted (IDW) interpolation (Watson and Philip, 1985).   

 

5.3. Results and Discussion 
 

5.3.1 Soil chemical analysis 
The Fe

d
 concentration of the samples varies between 7 and 20 %. Although these high 

concentrations are not common, more soils in Andalucia show this range of iron 

concentrations (De la Rosa et al., 1984). The amount of Fe
o
 is low in most samples (1.4 % at 

highest) and correlations with reflectance are low (R2

lab 
= 0.36 at highest). Therefore only 

correlations with Fe
d
 concentration are used in the further analysis and presented in this 
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paper. The moisture content of the soil samples was below 1 % in all samples, so its effect on 

the reflectance can be neglected.  

 

5.3.2 Spectra 
The spectral curves show a number of features related to iron (Fig. 5.4).  Absorption features 

are found from about 350 to 600 nm (further referred to as: D
550

), and from about 850 to 970 

nm (further referred to as: D
870

).  D
550

 represents the increase from blue to red and indicates 

that hematite is the main iron bearing mineral in the study area (Ben-Dor et al., 1999). This 

absorption feature is related to iron in its ferrous form (Fe2+) and is the result of large 

absorption in the ultraviolet (UV), which is related to charge transfer transitions between 

iron and oxygen (Goetz, 1989). It also influences the visible part of the spectrum, since it has 

a strong wing to the visible wavelengths (Hunt, 1980). Besides these two dips more 

absorption features exist in this part of the spectrum as is extensively described by Ben-Dor 

et al. (1999). The effect is an overall decrease in reflectance when the iron content increases, 

as can be seen in Fig. 5.4.  

 

Continuum removal shows D
550

 at the lower wavelengths. The strong absorption of iron 

ranges from the UV to approximately 700 nm, which corresponds with the high correlation 

values from the original spectra. A smaller dip, which was not visible in the reflectance 

spectra, is revealed around 640 nm after Continuum Removal (Fig. 5.5), which is also related 

to the presence of iron (Obukhov and Orlov, 1964). Because of the wide range of the 

absorption in the UV, this feature became part of D
550

. The area of D
870, 

which is related to 

iron in its ferric form (Fe3+) can not be calculated, because this absorption feature ranges 

beyond the spectral range used in this study. Continuum removal applied on the incomplete 

dip may lead to undesired results.   

 

The selection of sample plots with the same size as an individual pixel may result in 

indistinctness when identifying the reflectance properties of the image. Ideally, one should 

take a plot size of at least 3*3 times the pixel size, but the spatial distribution of olive trees 

in the area does not leave enough bare soil in between the trees to match this criterion. As a 

result, the selected ROSIS spectra may be influenced by vegetation. For this reason, the 

influence of vegetation on the reliability of iron prediction is tested and discussed later on.  
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Figure 5.4: Spectral signatures from laboratory, field and ROSIS measurements with three different Fed contents. 
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Figure 5.5: Continuum removed field spectra with three different Fed contents.  

 

5.3.3 Correlation of reflectance with iron 
Direct correlation of the Fe

d
 content with the reflectance values gives high correlations (R2

lab
= 

0.71) for the laboratory spectra. Highest R2-values occur at lower wavelengths, up to 600 nm. 

The field spectra show a medium correlation (R2

field
= 0.48) at lower wavelengths too. Goetz 

(1989) reports that this absorption is indeed due to the presence of iron. As expected, the 

correlations for the laboratory spectra are much higher than the correlations for field 

spectra (Fig. 5.6). Stable measuring conditions and samples which are dried and sieved, 

improve the results. Correlation with the ROSIS spectra shows comparable results (R2

ROSIS
 = 

0.5), but the highest values occur near 650 nm.  

 

5.3.4 Correlation of reflectance properties with iron 
The Redness Index gave medium correlating results with Fe

d
. Field and laboratory spectra 

showed some correlation (R2

lab
= 0.51 and R2

field
= 0.48), but ratios calculated with the ROSIS 

spectra showed only little correlation with the iron content (R2

ROSIS
= 0.22). Correlations 

between Fe
d
 and the continuum-removed values resulted in high negative correlations for 

field- and laboratory spectra from the UV to 600 nm (R2

lab
 = 0.78 and R2

field 
= 0.56) (Fig. 5.7). 

This range corresponds with D
550

 again. The relation between continuum-removed ROSIS 

spectra and iron is again less strong (R2

ROSIS
= 0.35). Higher absorption in the beginning of the 

spectrum is also reflected in a positive correlation between the area of D
550

 and the Fe
d
 

content (R2

lab
 = 0.65). The width of the dip shows a positive correlation too, but the 

correlation is weaker (R2

lab
 = 0.41). 
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Figure 5.6: Correlation coefficients between reflectance values and Fed content.  

 

 
Figure 5.7: Correlation coefficients between continuum removed values and total iron content.  

 

Calculating statistics from the full range of continuum removed values shows the most 

stable results over all datasets (Table 5.2). The average value after continuum removal 

correlated negatively with the Fe
d
 content (R2

lab
 = 0.66). The S.D. resulted in slightly higher, 

but positive correlations (R2

lab
 = 0.67). The S.D. of the continuum-removed values combines 

the effect of the width, depth and area of the dip, which are all highly correlated. When D
550

 

is deeper or wider the S.D. after continuum removal increases. The area of the dip is highly 
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related to an increase of the width and depth, thus it has the same effect on the S.D.. An 

overview of the correlations is given in Table 5.2. ROSIS spectra show lower correlations than 

laboratory and field spectra, independent of the analysis.  

 

Table 5.2: Correlation coefficients between absorption feature properties and Fed content. Values are given in R2. 

Field Spectra Laboratory Spectra ROSIS Spectra  

training set reference set training set reference set training set reference set 

Redness Index 0.27 0.51 0.48 0.44 0.22 0.10 

Area of D550 0.29 0.55 0.36 0.65 0.16 0.26 

S.D. after cont rem. 0.29 0.55 0.40 0.67 0.19 0.26 

Average after cont rem. 0.29 0.56 0.35 0.66 0.17 0.27 

 

5.3.5 Prediction of iron content 
Predictions of the iron content are made with the established regression functions. The 

regression functions of the training set are applied on the reference set and vice versa. SEC 

and SEP values for three methods, Redness Index, S.D. and Area of D
550

, are given in Table 

5.3. When laboratory or field spectra are used for Fe
d
 prediction, SEC and SEP values are 

between 2.66 and 4.95 where Fe
d
 varies between 7 and 20 %. Using the S.D. after continuum 

removal gave better results than the Redness Index, but differences are small. Fe
d
 prediction 

with ROSIS spectra gave less good results and SEC and SEP values vary between 4.38 and 

11.39. The best results with this dataset are gained with S.D., giving SEP-values of 5.79 and 

7.71 (Table 5.3).  

 

The training set shows structurally lower correlation values and prediction results than the 

reference set. A closer inspection shows this is caused by point A03, which is located on top 

of one of the sliding blocks. Removing it increases R2-values (R2

field
 using S.D. increases from 

0.29 to 0.53) and decreases the SEC and SEP of the training set (SEC
field

 using S.D. decreased 

from 4.9 to 3.5 and SEP
field

 using S.D. decreased from 3.5 to 2.6). Although the point is 

identified as an outlier there is no physical reason to remove it from the dataset. Therefore, 

we decided to leave it in. 



-92 - 

Table 5.3 : SEC and SEP values of Fed determination for three spectral datasets. Fed values of the training and 

reference plots ranges between 7 % and 20 %.  

Field Spectra Laboratory Spectra ROSIS Spectra  

training set reference set training set reference set training set reference set 

 SEC SEP SEC SEP SEC SEP SEC SEP SEC SEP SEC SEP 

Redness Index 5.22 5.12 3.67 3.86 3.29 5.01 4.20 3.19 4.38 10.59 11.39 4.97 

Area of D550 4.96 4.81 3.42 3.57 4.18 3.92 2.78 3.21 7.26 5.73 6.41 9.08 

S.D. after  cont rem. 4.95 4.88 3.40 3.50 3.81 3.98 2.66 2.59 6.43 5.79 6.39 7.71 

 

5.3.6 Effect of vegetation on iron prediction 
All presented relations are based on bare soil spectra. To simulate varying fractional 

vegetation cover a bare soil laboratory spectrum and an olive tree spectrum measured under 

field conditions are linearly mixed. When using the Redness Index or the S.D. a 15% 

vegetation fraction (NDVI = 0.43) results in a 2.8% difference in predicted iron content. When 

the fractional vegetation cover is 20%, this difference is already more than 6%. This effect is 

much stronger when the Area of D
550

 is used to predict Fe
d
. When using the Redness Index at 

higher vegetation cover, the iron prediction shows a structural underestimation. Vegetation 

effects lead to a lower reflectance in the red part of the spectrum, while the reflectance in 

the green wavelengths shows a relative increase. Therefore, the Redness Index will always 

underestimate the iron content when the regression is established on bare soil and applied 

to partially vegetated spectra. The S.D. after continuum removal shows a comparable 

deviation, but results in an overestimation of the iron content. The reflectance in the NIR 

increases, while the reflectance in the VIS decreases, if influence of vegetation is present. 

This increases the size of the absorption dip in the visible part of the spectrum. Using the 

area of D
550 

to predict the iron content in the partially vegetated areas is much more sensitive 

to fractional vegetation cover and therefore less useful in this study area.   

 

In this simulation a combination of the Redness Index and the S.D. after continuum removal 

creates a valuable approach to use in partially vegetated areas. Both indices predict the iron 

content accurately up to 5% vegetation cover. At a higher vegetation cover the average of 

both iron prediction results is taken, which leads to a much lower decrease in prediction 

accuracy, as is shown in Fig. 5.8. The combination of both methods could allow an 

acceptable iron determination even in partially vegetated areas and reduces the decrease in 

prediction accuracy due to mixed pixels or adjacency effects.  
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Figure 5.8: Error in Fed prediction in mass percent iron, related to fractional vegetation cover. The error is 

calculated as Fepredicted – Femeasured. 

 

Finally a Fe
d
 spatial distribution map is created. First, a linear unmixing of the MNF de-

striped image was done to determine fractional vegetation cover. Next all areas with a 

vegetation cover of >30 % were masked out. For all remaining areas the Fe
d
 content was 

calculated with the average of the S.D. after continuum removal and the Redness Index, 

using the regression functions based on the ROSIS spectra of the training plots. The Fe
d
 

content of the masked out pixels is determined using IDW interpolation with power 2 and 

using the 12 nearest points in the calculation. The resulting Fe
d
 spatial distribution map is 

shown in Fig. 5.9.  

 

5.4. Conclusions 
 

The spectral range from UV to NIR, covered by ROSIS, is suitable for quantification of Fe
d
 

content, as shown in this study. The S.D. of a continuum-removed spectrum in the VIS and 

NIR part of the spectrum, the area of the absorption dip around 550 nm and the Redness 

Index give comparable results. The area of the absorption dip around 550 nm is much more 

sensitive to the influence of vegetation on the spectral response than the Redness Index or 

the S.D. of the continuum removed spectrum. Combining the iron predictions of two 

methods, Redness Index and the S.D. after continuum removal, allows more accurate iron 

prediction in partially vegetated areas. 
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Figure 5.9: Fed spatial distribution map, based on ROSIS imagery. First a linear unmixing of the MNF de-striped 

image was done to determine the fractional vegetation cover. Next all areas with a vegetation cover of >30% 

were masked out. For all remaining areas the Fed content was calculated with the average of the S.D. after 

continuum removal and the Redness Index and using the regression functions based on the ROSIS spectra of the 

training plots. The Fed content of the masked out pixels is determined using inversed distance weighted 

interpolation. 
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Abstract 
 

Soil Organic Carbon (SOC) is one of the key soil properties, but the large spatial variation 

makes continuous mapping a complex task. Imaging spectroscopy has proven to be a useful 

technique for mapping of soil properties, but the applicability decreases rapidly when fields 

are partially covered with vegetation. With only a few percent fractional vegetation cover the 

accuracy of a partial least square regression (PLSR) based SOC prediction model drops 

dramatically. In this paper we show that this problem can be solved with the use of spectral 

unmixing techniques. First, the fractional vegetation cover is determined with linear spectral 

unmixing, taking the illumination and observation angles into account. In a next step the 

influence of vegetation is filtered out from the spectral signals by a procedure termed 

Residual Spectral Unmixing (RSU). The residual soil spectra resulting from this procedure are 

used for mapping of SOC using PLSR, which could be done with accuracies comparable to 

studies performed on bare soil surfaces (Root Mean Standard Error of Calibration = 1.6 g/kg 

and Root Mean Standard Error of Prediction = 1.7 g/kg). With the presented RSU approach it 

is possible to filter out the influence of vegetation from the mixed spectra, and the residual 

soil spectra contain enough information for mapping of the SOC distribution within 

agricultural fields. This improves the applicability of airborne imaging spectroscopy for soil 

studies in temperate climates, since the use of this method can extend the flight-window.  
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6.1. Introduction 
 

Soil Organic Carbon (SOC) is one of the key soil properties, because of its influence on plant 

growth, water holding capacity, soil structure, soil fertility while it governs many soil 

processes. Furthermore, the possibility to sequester CO
2
 by increasing SOC stocks (Lal 2004) 

has resulted in a growing number of studies on the estimation of carbon fluxes between soil 

and atmosphere (Ryan and Law 2005). The determination of the SOC content, and in 

particular SOC stock in the topsoil of large units of land, using traditional methods is a time 

and money consuming procedure. Since the percentage of SOC may hold a large variability 

within a small area, it is practically impossible to sample large areas with sufficient 

measurements level to achieve continuous data coverage.  

 

Imaging spectroscopy (IS) has proven to be a powerful tool to estimate the spatial 

distribution of soil properties (Barnes et al. 2003; Ben-Dor et al. 1999; Palacios-Orueta et al. 

1999; Sørensen and Dalsgaard 2005). However, fractional vegetation cover has a large 

influence on spectral reflectance and it limits accurate quantification of soil properties. 

Siegal and Goetz (1977) reported that mineral absorption features can be obscured by as 

little as 10 percent green vegetation and that its presence may severely hinder or limit 

computer automated and photo-interpretative studies of multispectral data for soil and 

lithological discrimination. Murphy and Wadge (1994) studied the effect of living and non-

photosynthetic vegetation on mapping of soil and rock types in arid areas, concluding that 

fractional vegetation cover complicates the identification of different soil/rock types and 

even makes identification of specific soil/rock types impossible due to masking of 

absorption features. A traditional solution is to mask out the areas with high vegetation 

cover, using vegetation indices with often case-specific threshold values (e.g. Wester et al. 

1990). As a result soil, information for highly vegetated areas is lacking. 

 

Some spectral unmixing techniques have been proposed to tackle the problem of vegetation 

influence in the case of soil classification. Luo et al. (2005) eliminated the vegetation effect 

with fully constrained spectral unmixing techniques, which increased the overall accuracy of 

the soil classification with 18 percent. Bierwirth (1990) removed the vegetation effect from 

reflectance data of geological materials by extrapolating the determined amounts of non-

vegetated materials. He found that with careful modeling and depending on the instrument 

sensitivity, only a small spectral signal from geological materials may be required to obtain 

spatially meaningful geological information in strongly vegetated areas.  

 

In this research we intend to determine the spatial distribution of Soil Organic Carbon (SOC) 

within a number of maize fields with varying fractional coverage. Quantitative determination 

of the SOC content using soil reflectance is well possible under controlled laboratory 
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conditions (e.g. Bartholomeus et al. 2008; Reeves III et al. 2000; Sørensen and Dalsgaard 

2005; Stevens et al. 2008) or from airborne imaging spectrometers (Ben-Dor et al. 2002; 

Selige et al. 2006; Uno et al. 2005). However, these studies were carried out on bare soil 

surfaces, but the pixel size of airborne and spaceborne imaging spectrometers introduces 

spectral mixing problems in heterogeneous terrain, for example in areas which are partially 

vegetated.  

 

Earlier studies have developed methods for quantitative estimation of soil properties in 

partially vegetated areas. However, for these cases vegetation was mostly used as proxy to 

estimate soil properties. Asner et al. (2003) related SOC and nitrogen field observations to 

fractional cover data for photosynthetic and non-photosynthetic vegetation and were able to 

show the trends in these soil properties at an ecosystem level. Kooistra et al. (2003) used 

vegetation development as a proxy to estimate SOC and Zn in floodplains. For discrimination 

of different soil units Schmidtlein (2004) used the spectral characterisation of plant 

functional types.   

 

The spectral mixture problem has also been recognized by Gomez et al. (2008), who 

suggested that investments in spectral unmixing techniques are necessary to overcome this. 

Spectral unmixing techniques have played a central role in the analysis of remote sensing 

images with fractional vegetation cover over the past decades (Asner and Heidebrecht 2002; 

Garciá-Haro et al. 1996; Garcia and Ustin 2001; Sohn and McCoy 1997). In general, spectral 

unmixing algorithms are used to estimate the abundance of endmembers within a pixel and 

are well able to estimate the amount of vegetation in mixed pixels. In recent years, 

multivariate techniques like Partial Least Square Regression (PLSR) have been used with 

success to build SOC prediction models (Fidencio et al. 2002; Madari et al. 2006; Stevens et 

al. 2006; Udelhoven et al. 2003; Viscarra Rossel et al. 2006). This chemometric technique is 

now well-established for soil studies in a laboratory setup (Ben-Dor et al. 2008) and is also 

used for remote sensing of vegetation from imaging spectometers (LaCapra et al. 1996). 

 

In this paper, we present a spectral unmixing based approach to eliminate vegetation 

influence from the spectral reflectance of mixed pixels, which results in a so-called residual 

soil spectrum. This procedure is named Residual Spectral Unmixing (RSU). The  residual soil 

spectra are used in combination with PLSR to create a SOC-prediction model. The aim of this 

paper is 1) to discuss the influence of fractional vegetation cover on the accuracy of a PLSR 

model, 2) to develop a new spectral unmixing technique (RSU) to remove the vegetation 

spectral effects from the SOC signals and 3) to demonstrate the ability of RSU, in 

combination with PLSR to map the within-field variation of SOC in three partly covered 

maize fields using hyperspectral airborne images.  
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6.2. Materials and Methods 
 

6.2.1 Study area description and data collection 
The study area is located in the Belgian Lorraine region (49°38'; 49°43' N and 5°27'; 5°31' E) 

and is characterised by sandy-loam and loamy-sand soils (Haplic and Gleyic Luvisol,  (FAO-

ISRIC-ISSS 1998) with strong ferric components (Stevens et al. 2008). This site has a mean 

altitude of 350 m.a.s.l. with a rather flat topography, a mean annual temperature of 8.5ºC 

and an annual precipitation of 1013 mm.  

 

A flight campaign with the AHS-160 sensor took place on the June 20, 2005  under clear sky 

and dry soil surface conditions. This sensor provides a total of 63 spectral bands covering 

the Visible (VIS: 430-700 nm), Near InfraRed (NIR: 700-1100 nm ) and Short Wave InfraRed 

(SWIR: 1100-2540 nm) parts of the electromagnetic spectrum. The data were corrected for 

geographical, radiometric and atmospheric attenuations by the Central Data Processing 

Center of the Vlaamse Instelling voor Technologisch Onderzoek (CDPC-VITO) at Mol 

(Belgium). After geometric correction (direct georeferencing), atmospheric perturbations 

were removed using the MODTRAN4 radiative transfer code (Berk et al. 1999). The pixel size 

was 2.6 m.  

 

A spatial subset (400*300 m) of a North-South AHS flight line was used for the estimation of 

vegetation cover, RSU and spatially continuous SOC prediction. This subset is located just 

south-east of the village of Bellefontaine and covers three fields, on which maize is grown.  

Vegetation was cleared for 69 plots of 7.5*7.5m and in each plot 9 soil samples were 

collected to a depth of 5 cm. These sub-samples were mixed and a representative sample 

was taken for SOC determination and spectral analysis in the laboratory. The SOC content 

was determined using the Walkley and Black method (Walkley and Black 1934). Observed 

SOC concentrations vary between 5.9 g/kg and 22.1 g/kg.  

 

A Fieldspec Pro FR spectrometer (Analytical Spectral Devices Inc., Boulder CO) was used to 

collect in situ spectral reflectance of the soil surface in all plots. The soils were brought to 

the laboratory and air dried in the room atmosphere. Spectra of the dried soil samples were 

measured with the ASD Fieldspec Pro FR in the laboratory using a contact probe with a built 

in halogen lamp for illumination and the entire spectral range (350-2500 nm) of this 

population was used for further analysis. Further, the leaf reflectance of maize was 

measured in situ around the cleared plots, using an ASD contact probe with leafclip, that 

permits individual leaf measurements in constant conditions. For all Fieldspec 

measurements a white spectralon reference panel was used as a reference for the reflected 

radiation from the samples.  
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6.2.2 Simulation of  vegetation cover influence on SOC prediction 
During the time window of the flight, fields were partially covered with maize in an early 

phenological stage. Spectral signatures of the fractionally covered pixels show a combined 

spectral response, containing features from both soil and vegetation. This effect, called 

spectral mixing (Hapke 1981), can be found in all heterogenic pixels and can be linear or non 

linear (Roberts et al. 1993; Singer and McCord 1979). The maize plants were still small, 

reaching up to max 25 cm. Leaves were mainly erectophile, and due to the low number of 

leaves per plant (3-5) overlap of leaves as well within the plant as with neighboring plants 

was hardly present. Given the maize status and plant architecture we assumed that only 

linear mixing effects take place.  

 

To quantify the influence of fractional vegetation cover on the accuracy of SOC prediction, 

an exploratory experiment was carried out. We simulated fractional vegetation cover by 

mixing a maize spectrum with bare soil spectra. Three soil samples (with SOC contents of 

5.9 g/kg, 12.5 g/kg, and 22.1 g/kg) were used for mixing, and the fraction of maize was 

varied between 0 and 1. This was done according to the following formula: 

 

R
mix

 = f
maize

 * R
maize

 + f
soil

 * R
soil           

(6.1) 

 

in which Rmix is the reflectance of the mixed spectrum, Rmaize is the reflectance of maize, Rsoil 

is the reflectance of the soil sample, fmaize is the fraction of maize and fsoil is the fraction of 

soil. In these simulations fmaize and fsoil always sum up to 1. Next, the SOC content of the 

mixed spectra was predicted with a PLSR-model calibrated on all soil spectra measured 

under laboratory conditions (N=69). The calibration of this PLSR model is described in 

Stevens et al. (2008). The difference between observed and predicted amount of SOC is used 

as a measure of the error of SOC prediction in relation to the percentage of fractional maize 

cover. This experiment gives us an idea of the magnitude of the error caused by fractional 

vegetation cover.  

 

6.2.3 Spectral unmixing  
In this study, fractional maize cover is determined spatially using linear unmixing that takes 

into account the angular variability of endmember spectra, and the sun-sensor-target 

geometry of the image acquisition. The AHS sensor has a large field of view (90º), which 

results in a large variation in viewing geometry within a single scene. Especially for the 

maize fields contained in this imagery, profound bidirectional reflectance effects were 

encountered and needed to be resolved for.  

 

We resolved these bidirectional reflectance effects in the maize vegetation using several sets 

of endmembers, based on the viewing angle. Due to the phenological stage of the maize is 

was not possible to derive pure maize spectra from the image, and canopy measurements in 
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the field were not feasible because of the small plant size.  Therefore, maize endmembers 

were modelled using PROSAIL: which is a coupling of the PROSPECT model (Jacquemod and 

Baret 1990) that simulates leaf reflectance, and the SAIL model (Verhoef and Bach 1984) to 

simulate canopy reflectance. Throughout 100 simulation runs, the biophysical parameter 

values used by PROSAIL were set to encompass the natural variability of the maize fields 

contained in our study area. The vegetation endmembers were simulated using PROSAIL 

parameterized using biophysical parameters found in literature (Bach et al. 2005; 

Jacquemoud et al. 2000; Jacquemoud et al. 1995; Urso et al. 2004; Weiss et al. 2002). The 

parameters that were varied included the chlorophyll content, canopy water content, 

structural parameter, ratio of diffuse/ direct radiation, hotspot parameter and the leaf area 

index. Bare soil endmembers showed a much less apparent bidirectional reflectance effect 

than maize, and were for that reason taken from the image, without taken into account 

directionality of viewing. Bare soil pixels were selected using the Pixel Purity Index (PPI) 

(Boardman et al. 1995) on Minimum Noise Fraction (MNF) (Green et al. 1988) transformed 

image data. Before unmixing, simulated endmembers from the PROSAIL model were 

resampled to the spectral properties of the AHS-sensor, using both the AHS spectral band 

positioning and full width half maximum (FWHM). 

 

Spectral unmixing was applied using the vegetation endmember sets to those parts of the 

image that were acquired under a similar viewing geometry as the endmember sets were 

simulated for. Every endmember set contained the 100 PROSAIL simulations varying in 

biophysical parametering. We then selected one unmixing result out of the 100 unmixing 

results for further processing, specifically the run which gave the lowest residual error (as 

given in the RMSE image). This is the spectral unmixing solution that is mathematically most 

sound as it leaves the smallest part of the spectrum unexplained. Therefore, it uses the 

combination of endmembers that matches the conditions in the field best. Ground truth 

maize cover was acquired at 14 points within the study area. The maize cover was 

determined by classifying digital photographs into vegetation and soil. The photographs 

were taken from a rod supported and nadir pointed camera at about five meters above the 

ground. 

 

6.2.4 Residual spectral unmixing 
Because the research is limited to maize fields, mixed pixels are composed of only two 

endmembers: bare soil and maize. Shadow can be a significant component as well, but due 

to the generally low fractional cover and good timing of the image acquisition during the day 

(around noon), resulting in small solar-zenith angles, this was considered to be of minor 

importance.  

 

With two endmembers contributing to the spectral signature, the spectral mixture model can 

easily be inverted to a model that returns the residual spectrum of one of the components, 
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assuming homogeneity for the other. In this case, the spectral signature of bare soil in the 

pixel can be estimated when fractional maize cover and the spectral signature of maize are 

known rewriting eq. 6.1 as: 

 

R
soil

 = (R
mix

 – (f
maize

 * R
maize

)) / f
soil

           (6.2) 

 

Applying RSU to all spectral bands returns a bare soil spectrum for the mixed pixel, which 

we will further name a residual soil spectrum. This results in a reflectance image of the bare 

soil, when applied to the entire image. Because of the computational effort we decided to use 

a single vegetation spectrum for residual unmixing instead of a different vegetation 

spectrum for each pixel. Therefore, a “general vegetation spectrum” has to be composed. In 

our case, this vegetation spectrum is an average of all modeled vegetation spectra used 

within the study area, weighted by the number of times a certain spectrum results in the 

lowest residual error in the unmixing model.  

 

6.2.5 PLSR  
The soil spectra of 57 plots derived from RSU were used to calibrate a carbon prediction 

model using PLSR. This was done using the ParLeS software of Viscarra Rossel (2008). The 

number of latent variables was chosen through minimization of the RMSE by leave-one-out 

cross-validation (RMSECV). The quality of the model was assessed through the Root Mean 

Square Error (RMSE) and Ratio of Peformance to Deviation (RPD). Subsequently, this PLSR 

model was used to create a spatially continuous SOC map based on all residual soil spectra 

within the three fields. Twelve plots that were left out of the calibration phase of the 

residual soil spectra based PLSR model were used for independent validation of the SOC 

map.  

 

6.3. Results and Discussion 
 

6.3.1 Influence of vegetation cover on SOC Prediction 
The results of the spectral mixing experiment of soil and vegetation spectra shows that the 

PLSR based prediction of SOC is very sensitive to vegetation fraction (Figure 6.1). A small 

fractional maize cover already leads to an SOC overestimation of a few g/kg. Since SOC 

content in the study area is relatively low, this has a strong effect on the prediction accuracy. 

SOC is overestimated with 5 g/kg at a fractional maize
 
cover of 0.04-0.06. This represents for 

the sample with the lowest SOC content (5.9 g/kg) an error of 85% of the measured value, 

which show that the prediction of SOC in vegetation influenced pixels is very unreliable. The 

differences between measured and predicted SOC content for several fractional covers is 

shown in Figure 6.1.  
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Figure 6.1. Error in soil organic carbon (SOC) estimation (g/kg) as a function of  fractional maize cover (%). The 

different symbols indicate the three soil samples, with different SOC concentration, that were used for the 

analysis.   

 

6.3.2 Spectral unmixing 
The majority of fractional cover values lies between 0.12 and 0.60. Spatial patterns of 

fractional cover correspond well with the distribution observed in the fields (Figure 6.2). In 

the south-eastern part large amounts of weeds cause a higher fractional vegetation cover. A 

fractional cover of 0 shows up as expected at the plots where vegetation was cleared. 

Incidentally values above 1 are found. Although these are no valid unmixing results they can 

occur if the used set of endmembers is not able to reconstruct the reflectance of the pixel. 

This is the case for some pixels in the area with high weed coverage. Since weed has a 

slightly different reflectance than maize, errors in the unmixing results can be expected in 

this area. This is also shown when the unmixing results are compared with the fractional 

cover observed in the field. Most plots are accurately estimated (deviation <0.1), but larger 

deviations (deviations up to 0.25) show up in the more densely vegetated areas. Because 

there are only few pixels that show values above 1, the results are considered to be valid and 

used as they are. We chose not to constrain the unmixing results to sum to 1, since this 

forces the unmixing algorithm to come up with “correct” values without giving any measures 

about the quality of the unmixing procedure.  
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Figure 6.2. Fractional vegetation cover of the three studied fields 

 

6.3.3. Residual spectral unmixing 
Figure 6.3a shows the spectrum of the maize endmember used for RSU and a bare soil 

spectrum derived from the image. RSU results are shown in Figure 6.3 b-d, where the original 

and residual soil spectra of three locations with varying vegetation cover are shown. It can 

clearly be seen that the shape of the original mixed signatures is influenced by vegetation 

reflectance, with a more pronounced red edge as fractional cover increases. After RSU, the 

residual spectra all show a spectrum similar to the bare soil spectrum as shown in Figure 

6.3a. Absorption features in the visible part of the spectrum, such as the absorption feature 

due to iron (around 0.7 µm), can be observed in the residual soil spectra.  
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Figure 6.3: Reflectance before (grey lines) and after residual unmixing (dashed lines) of plots showing varying 

fractional vegetation cover. Endmembers are given in graph (a).  

 

Inversion of the linear spectral mixing model is quite straightforward, but some difficulties 

may appear. While the use of the fractional cover from the unmixing model showing the 

lowest unresolved part intends to minimize the error, spectral unmixing always returns an 

error factor. This implies that the residual soil spectrum always contains deviations, 

introduced by the unresolved part of the unmixing model. Errors are introduced due to the 

nature of the unmixing algorithm, the variability within a single vegetation type (because of 

e.g. biochemical differences, varying leaf angle distribution), shadow effects and the 

variability in the soil spectrum. The difference between the image derived and field 

estimated fractional vegetation cover is often more than 0.05 in fractional cover, especially 

in the parts of the image where the fractional vegetation cover is high. Because of these 

inaccuracies it is not possible to use 1-fmaize instead of fsoil in equation 6.2. In our specific 

case this may result in negative residual soil reflectance values.  
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6.3.4 PLSR prediction of SOC  
To predict the spatial distribution of SOC on the fields we used PLSR. For calibration of the 

PLSR model a set of 57 residual soil spectra was used. We selected not only residual spectra 

originating from the three fields of interest, but also a number of samples from neighboring 

bare soil fields. This choice was made for practical reasons; in total only 22 plots were 

sampled on the fields of interest and 12 of these plots had to be used for independent 

validation of the final carbon distribution map as well. This would have left too few points 

for proper calibration of the PLSR model. Some of the additional plots from the neighboring 

fields had no fractional vegetation cover, but these bare soil samples show no deviations in 

the PLSR calibration, when compared to the soil spectra obtained by RSU. Due to the poor 

signal to noise ratio in the shortwave infrared, we used only the first 30 spectral bands of 

AHS, ranging from 0.45- 2.12 µm. Reflectance spectra were transformed to Log(1/R) data and 

smoothed with a Savitzky-Golay filter (filter size 2, 3rd order polynomial function). The PLSR 

model is validated according to the “leave one out cross validation” procedure, and yields an 

optimal model fitting using 8 latent variables with a R2 of 0.619 and a RMSECV of 1.70 g/kg. 

With a ratio of prediction to deviation (RPD) of 1.60, the accuracy of the model falls in an 

intermediate category according to the definition of Chang et al. (2001). The scatter plot of 

observed against predicted SOC content is shown in Figure 6.4.  

 
Figure 6.4: Observed versus predicted SOC content of the calibration dataset, based on PLSR of the RSU 

corrected AHS data (n=57).  
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Figure 6.5: Map of soil organic carbon (SOC) concentrations for the three sampled fields. The spatial 

distribution of SOC is determined with PLSR, based on residual soil spectra. The circles indicate the locations 

where soil samples were taken for calibration and validation. 

 

Finally, the PLSR model was used to predict the SOC content of the maize fields using the 

residual soil spectra obtained from the AHS image. Because of the high variation on short 

distances in the raw results, which are caused by the large variation on short distance in the 

unmixing results and neglecting the unmixing RMSE in the residual unmixing steps, we used 

a 5x5 low pass filter to smooth the outcomes. This resulted in the final SOC distribution 

map shown in Figure 6.5, which clearly shows the within field variation of SOC. The South-

Eastern part of the fields shows a low carbon content, while it increases towards the North 

and West. The predicted SOC values show no correlation (R2 = 0.06) with the fractional 

vegetation cover.  
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The geographical locations of soil samples taken within the 3 fields are also displayed in 

Figure 6.5. and the relative size of the circle indicates the SOC content. As mentioned before, 

twelve plots located within the fields were left out of the PLSR model calibration, in order to 

be used for validation of the final carbon distribution map. The predicted SOC content of 

these validation plots is plotted against the observed SOC (Figure 6.6). The 1:1 line is nicely 

followed and no large deviations are shown. This can also be seen from the R2-values (R2cal = 

0.60; R2val = 0.57) , the root mean standard error of calibration (RMSEC) of 1.6 g/kg and root 

mean standard error of prediction (RMSEP) of 1.7 g/kg. These values are comparable to the 

accuracies obtained by Uno et al. (2005) and Chen et al. (2008), who determined SOC 

contents using VIS-NIR spectroscopic techniques over bare soils. RMSE values reported by 

Uno et al. (2005) were higher than the ones calculated in our study, but the range of SOC 

values was larger as well. Chen et al. (2008) grouped fields according to their image 

properties, and found for the different groups RMSE values ranging between 0.89 g/kg and 

2.16 g/kg. In our study, the two samples showing the largest deviation are located in the 

area with high vegetation cover, which corresponds with the large inaccuracy of the 

unmixing for this area. 

 

 
Figure 6.6: Observed vs predicted soil organic carbon (SOC) of selected soil samples, located within the three 

studied fields. 

 

The results of this study show that RSU works in our study area, and allows the 

quantification of SOC when fields are partially covered with vegetation. The quality of the 
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analysis can be increased  by improving the spectral unmixing results, which is the most 

critical step in the RSU. This can be achieved by the development of sensors with better 

signal-to-noise ratios and advanced unmixing techniques. In this agro-ecosystem the 

situation was relatively easy to model, since only two main endmembers are present, which 

is often the case in agricultural areas. The potential of the methodology in more complex 

areas (e.g. more natural ecosystems), where multiple endmembers can occur, has to be 

investigated. We believe that RSU can be helpful for the mapping of other soil properties as 

well, especially for those that have distinct absorption features compared to vegetation.  

 

6.4. Conclusions 
 

The results of this study show that it is possible to map SOC concentration in the plough 

layer of croplands with fractional vegetation cover using RSU. With the RSU approach it is 

possible to filter out the influence of vegetation from the mixed spectra, and the residual 

soil spectra contain enough information to map the SOC distribution within agricultural 

fields. This improves the applicability of airborne imaging spectroscopy for soil studies in 

temperate climates, since the use of this method can extend the flight-window.  
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7. Synthesis 
 

7.1 Discussion and conclusions  
 

The topic of this thesis was how to determine soil properties in partially vegetated areas, 

based on the measured spectral reflectance. This was achieved by the development of 

empirical models, which can be divided in two classes: multivariate models (PLSR) and 

univariate spectral indices based models. The objectives were to investigate the robustness 

of VNIR spectroscopy based soil property prediction models and the influence of vegetation 

on these models. Furthermore, methods were developed for quantitative mapping of soil 

properties in fractionally vegetation covered agricultural fields. To achieve these objectives 

the questions proposed in section 1.4 were addressed, which are answered and discussed 

below.  

 

A. Which scaling issues have to be considered when using VNIR spectroscopy for estimation 
of soil properties? 
In chapter 2, several scaling issues that occur in VNIR spectroscopy are described, and most 

of them play a role in this research. Spatial upscaling needs to be dealt with, when the step 

from point spectroscopy to imaging spectroscopy is made. Mixed pixels, in the agro-

ecosystem mainly because of fractional vegetation cover, limit the direct transition of 

techniques and models from point spectroscopy to imaging spectroscopy. Several 

techniques to solve the spatial scaling issue are discussed in Malenovsky et al. (2007). In this 

thesis, spectral unmixing was chosen to obtain sub-pixel soil information (chapter 2).  

The use of different sensors to acquire spectral information (chapter 3, 5 and 6), introduces 

spectral scaling problems. This complicates model transfer from one sensor to another. In 

this thesis, this point was not investigated, but PLSR based models developed for one sensor 

can not directly be transferred to another sensor with deviating spectral dimensions, due to 

requirements to the matrix dimensions. A lower spectral resolution (less spectral bands) 

does not necessarily lead to less accurate models (Udelhoven et al. 2003), but PLSR models 

have to be calibrated for each spectral set-up. For this reason, the possibility to use spectral 

indices for the estimation of soil properties is investigated (chapter 4 and 5). Although 

transfer of indices from one sensor to another is not always directly possible, the relation 

between absorption features and physical properties remains. Therefore, model behavior can 

better be predicted and adapted to the new spectral configurations, as long as minimum 

requirements for specific spectral bands are met. 

 

Finally, directional scaling issues should be considered. First, directionality should be taken 

into account when measurements of different setups are combined. The poor transferability 
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of PLSR models from the one campaign to another (chapter 3, discussed below) shows that a 

fixed measurement protocol is essential. This should also include the directional setup, both 

from the sensor and the illumination source, which becomes particularly important when 

models calibrated under laboratory conditions are applied in the field or on image data. 

Because of the differences in illumination and observation angles, this implies a conversion 

from biconical reflectance factor (BRF) to hemispherical conical reflectance (HCRF) 

(Schaepman-Strub et al. 2006). Furthermore, combining measurements of point spectro-

meters with varying field of views or viewing angles, can be a cause of lower model stability. 

It was shown, that the accuracy of iron indices depends on the illumination and viewing 

geometry (Bartholomeus and Mulder 2008). This may be the case for PLSR based models and 

other soil properties as well. Second, directionality has to be considered in the spatial 

domain. The use of imaging spectrometers with a wide viewing angle introduces variation in 

angular effects. This will have influence on the measured soil reflectance (Cierniewski et al. 

2004) and affect the estimated bare soil properties, but will be of major importance when 

fractional vegetation cover is present.  

 

B. What is the potential of VNIR spectroscopy for the prediction of soil properties and what is  
the stability of the calibrations?  
Chapter 1 and 3 describe the different forms (laboratory, field or imaging spectroscopy) in 

which VNIR spectroscopy can be used to determine soil properties. Both approaches using 

point spectrometers yield good results for SOC and iron oxides. In table 7.1 the RPD and 

RMSE values of chapter 3-6 are summarized and compared. To provide a full overview some 

additional results are shown. 

 

For estimation of SOC, PLSR in combination with both field spectroscopy and laboratory 

spectroscopy reaches RPD values above 2, indicating that these PLSR models accurately 

predict SOC. The RMSEP is comparable to the values found in previous studies, as 

summarized in Viscarra Rossel et al. (2006). PLSR in combination with imaging spectroscopy 

has a RPD of 1.47 and corrected RMSECV of 1.4 g/kg. These values are comparable to the 

accuracies obtained by Uno et al. (2005) and Chen et al. (2008), who determined SOC 

contents using VIS-NIR spectroscopic techniques over bare soils. RMSE values reported by 

Uno et al. (2005) were higher than the ones calculated in our study, but the range of SOC 

values was larger as well. Chen et al. (2008) grouped fields according to their image 

properties, and found for the different groups RMSE values ranging between 0.89 g/kg and 

2.16 g/kg. 

 

The accuracy of field spectroscopy is equivalent to laboratory spectroscopy, when measuring 

SOC under specific surface conditions (low variation in moisture content of the soil surface, 

low roughness, absence of vegetation) and when appropriate pre-treatments to extract 

information from noisy spectra are applied. The results in chapter 3 show that PLSR is able 
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to reach accuracies comparable to the standard analytical method (1-2 g/kg SOC, Walkley-

Black), when the set is limited to a single soil type. In general, the potential of VNIR 

spectroscopy is high, since it requires little sample preparation, especially in the field setup. 

The technique can thus be potentially used for monitoring studies, where speed is a valuable 

advantage.  

 

The results in chapter 4 show that biochemistry based spectral indices can be used to 

estimate SOC for a dataset composed of nine soil types. Prediction accuracies based on 

spectral indices are comparable to accuracies of PLSR based predictions for this dataset, 

which has a large variation in SOC content. The performance indicators for the evaluated 

relations between SOC and spectral reflectance are summarized in table 4.2. PLSR shows the 

overall best results and meets the requirements of a good model, based on the RPD value. 

For the spectral indices, the biochemical constituent absorption dip based index ‘1/Area 

2050-2200 nm’ and the visible wavelengths based index ‘1/Slope 400-600 nm’ show the 

overall highest R2-values. The RPD of the index ‘1/Slope 400-600’ (RPD
set 1

=3.18 ; RPD
set 2

=2.72) 

is comparable to the prediction accuracy achieved with PLSR. These results show that indices 

based on the VIS or SWIR spectral region can be used for the quantification of SOC. The 

predictive power of VIS based indices is comparable to the results obtained with PLSR. SWIR 

based indices have a somewhat lower predictive power.  

 

When more soil types are included, as is the case in chapter 4, the RPD values of the PLSR 

model are higher than when only a single soil type is used (chapter 3). However, the RMSEC 

and RMSEP values are much higher as well, because the variation in SOC within the dataset is 

much larger (table 4.2). Therefore, with a higher range in input values and more variability in 

soil types accurate calibrations can be achieved in relation to the variation within the 

dataset, but it is not possible to reach prediction accuracies comparable to standard 

analytical methods. This corresponds with the findings of McCarty et al. (2002). They stated 

that a greater variability in the training phase of a statistical model may lead to an improved 

robustness of the model and an increased ability to characterize a diverse range of samples, 

but it may also result in a decrease in prediction accuracy.  

 

For the PLSR analysis in chapter 4, the wavelengths contributing most to the prediction 

model are found in the VIS (maximum at 650 nm), around the water absorption feature 

(1400 and 1900 nm), and in the SWIR region (around 2212 nm). The high loadings for the VIS 

are consistent with other research findings (e.g. Kooistra et al. 2001, Viscarra Rossel et al. 

2006). High PLSR loadings for the water absorption features are also reported by Udelhoven 

et al. (2003) and Viscarra Rossel et al. (2006). Although air-dried samples were used for 

analysis, there is still remaining water absorbed on the surface of organic matter and OH can 

be present in organic compounds (Zornoza et al. 2008). The high loading for 2212 nm is less 

straightforward to clarify. On the one hand, a minor absorption feature due to OH is known 
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around 2.2 µm (Ben-Dor 2002), but cellulose, starch and lignin have known absorption 

features in this spectral region as well (Curran 1989). Having multiple absorbers active at the 

same wavelengths, makes it difficult to determine which absorber causes the high loading 

when predicting SOC. Wavelengths in the range of 1700-1800 nm, which correlated well with 

SOC in the studies of Dalal and Henry (1986), Sudduth and Hummel (1991), and Shepherd 

and Walsh (2002), did not show high loadings with PLSR, nor could indices active in this 

wavelength region be constructed. Concluding, the loadings show that PLSR selects the 

spectral ranges that correspond with the spectral regions used by the indices that give good 

results. However, the importance of the water absorption features in the PLSR model will 

cause difficulties when the model has to be used under field conditions or with imaging 

spectroscopy. Water vapor in the atmosphere limits the radiance to reach the soil surface 

and soil moisture content often shows variation in time and place. 

 

Table 7.1: Performance of PLSR models to estimate soil properties  
 Laboratory spectroscopy Field spectroscopy Imaging spectroscopy 
 Method Chapter RPD RMSE RPD RMSE RPD RMSE 
SOClocal PLSR 3 2.03 0.7 g/kga 2.11 0.7 g/kga 1.47 1.7 g/kga 
SOCglobal PLSR 4 3.43 31.8 g/kga - - - - 
SOCglobal Indices 4 3.18 34.3 g/kga - - - - 
SOCvegetated RSU+PLSR 6 - - - - 1.49 1.7g/kga 
Fed Indices 5 1.38 25.9 g/kga 1.07 35.0 g/kga 0.65 57.9 g/kga 
Fed 

c PLSR - 2.32 19.6 g/kgb - - - - 
RPD = Ratio of Performance to Deviation, RMSE = Root Mean Square Error, PLSR = Partial Least Squares Regression, 
RSU = Residual Spectral Unmixing, aroot mean square error of prediction, broot mean square error of cross validation, cdata 
not presented in previous chapters. 

 

As shown in chapter 5, the spectral range from UV to NIR gives an indication about the 

dithionite extractable iron content. Four different indices were constructed The standard 

deviation or average of a continuum-removed spectrum in the VIS and NIR part of the 

spectrum, the area of the absorption dip around 550 nm and the Redness Index give 

comparable results. In table 5.3, it is shown that the use of laboratory measurements yields 

the best result, although the models are not good enough to give accurate quantitative 

estimates of the iron content. Field spectroscopy and imaging spectroscopy give less 

accurate estimates. These overall results, with relatively low RPD scores for all methods, are 

a result of the limited spectral range used in this study. PLSR yields a RPD of 1.48 when 

laboratory spectra are resampled to the ROSIS spectral range and resolution, which is 

comparable to the results achieved with indices. If the full spectrum (350-2500 nm) is used 

for PLSR on laboratory spectra, a more accurate model can be fitted (RPD = 2.32), as shown 

in table 7.1.  

 

Imaging spectroscopy lacks behind in prediction accuracy when the derived soil properties 

are studied at the pixel level (table 7.1). The lower prediction capacities are the result of 1) 

instrumentation specifications (spectral resolution, low instrument signal-to-noise ratios), 2) 

disturbing external factors (atmospheric attenuation, geometric and optical distortions, 
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mixed pixels) and 3) internal factors (soil moisture, structure). Sensor development with 

better signal-to-noise ratios is an ongoing process. The internal factors can not be controlled 

when measuring with imaging spectroscopy (nor with field spectroscopy), but the correction 

for external factors is continuously improved (Gao et al. 2009).  

 

The quality of products derived from imaging spectroscopy, is often determined at the pixel 

level (e.g. Lagacherie et al. 2008). This is understandable, since bridging the gap between the 

spatial scale on which ground truth is gathered and the spatial scale at which imaging 

spectrometers operate, is most straightforward in this way. However, for several 

applications, a per pixel knowledge of soil properties is not required. In precision 

agriculture, variable rate application of fertilizer or herbicides is usually done by dividing 

individual fields in management zones (Khosla et al. 2002). Imaging spectroscopy is well 

capable to map the within field variation in soil properties, and can be used to support this 

zoning. To monitor changes in soil organic matter (SOM) at the regional scale, Hanegraaf et 

al. (2009) state that monitoring systems require an approach in which time-series of soil 

organic matter content are made on a field basis. In chapter 5 and 6, it was shown that the 

derived soil property maps reflect the observed variation in the fields. In chapter 3, it was 

shown that, because of the high sampling density, imaging spectroscopy is able to detect 

small temporal changes in carbon stock on the parcel level. By just looking at the per pixel 

accuracy, the usability of imaging spectroscopy derived soil property maps is 

underestimated. 

 

In chapter 3, the transferability of PLSR based SOC models from one year to another was 

investigated. Within the same area, with similar soil types and ranges in SOC, it was shown 

that when field measurements of different years are combined, accurate estimates could not 

be made (table 3.4). This can have several causes like stability of instrumentation or slight 

deviations in experimental setup. Therefore, the main message is that practical 

implementation of spectroscopy requires stable measurement conditions, good calibrations 

and standard sampling protocols.  

 

VNIR spectroscopy under controlled conditions has become well accepted by the soil science 

community, because the technique is fast, easy to use, and yields good results. Multivariate 

statistical models, like PLSR, have become the standard in soil spectroscopy (Fidencio et al., 

2002; Udelhoven et al., 2003; Madari et al., 2006; Stevens et al., 2006; Viscarra Rossel et al., 

2006). Nevertheless, the results in this thesis show that it will be difficult to develop this 

technique beyond the level of case-specific calibrations. This limits a larger operational 

implementation of VNIR spectroscopy. If we want to get rid of local calibrations, we will have 

to accept lower accuracies, but we gain in the ease of use. Users, willing to choose one of the 

techniques for a particular application, have to weigh the accuracy against the area to be 

covered and the costs. While laboratory spectroscopy has the advantage to allow stable 
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calibration through time, it still requires sample preparation (drying, sieving, grinding). Field 

spectroscopy can reach an accuracy comparable to laboratory spectroscopy (table 3.2), but it 

requires a calibration before each campaign. Imaging spectroscopy is a practical way to 

spatially evaluate soil properties and can be an useful technique to determine soil properties 

and track changes at large scales. For some applications, the large number of samples (1600 

pixels/ha at a 2.5 m spatial resolution) compensates for the lower accuracy. Imaging 

spectroscopy also requires a calibration before each campaign, due to difficulties in spectral 

calibration. An important question that remains is how many calibration samples are needed 

on what extent of the study area, to achieve a model calibration with acceptable accuracy. 

 

C. How sensitive are models to variation in soil type and can models be used to predict soil 
properties for soil types that are not included in the model calibration? 

To test the model sensitivity of SOC prediction models to variation in soil types, a dataset 

with nine soil types and a large variation in SOC content was constructed (chapter 4). When 

the model is calibrated for several soil types, spectral indices fail to predict the SOC variance 

within a single soil type in most of the cases (table 4.3). Only accidentally RPD values above 

two are found, with corresponding low standard error of prediction. This indicates that 

other soil properties (e.g. texture, parent material, mineral composition) cause variance in 

reflectance. Not including this in the calibration phase leads to large inaccuracies. Therefore, 

if these models are calibrated for several soil types they predict the variation in SOC within a 

single soil type poorly. Compared to indices, PLSR based models perform much better. For 

most soil types the RPD is above 1.4, with maximum values up to 3.16 (table 4.3). This shows 

that the PLSR model is reasonably accurate when applied to unknown soil types. So, in terms 

of model robustness towards variation in soil type, PLSR outperforms the indices presented 

in chapter 4. PLSR includes the spectral information in all available spectral bands, and 

combines the information from several wavelength ranges related to SOC. This results in a 

higher acceptance to the inclusion of soil types that were not used for model calibration. 

 

PLSR also gives the best prediction for both extrapolated and non-extrapolated data-ranges 

When the SOC content is estimated for samples with a SOC content larger than the range of 

the calibration set, most models become inaccurate (table 4.2). Only for the index “1/slope 

400-700”, SEP values hardly change when the model is extrapolated, but in general this 

model performs less good than PLSR. PLSR predictions are influenced by extrapolation 

outside the calibration range, which was also found in section 3.4.2.2. For the dataset used in 

chapter 4, the SEP increases from 24.1 g/kg SOC to 40.7 g/kg SOC when samples outside the 

calibration range are predicted.  

 

D. What is the influence of fractional vegetation cover on the estimation of soil properties? 

Chapter 5 and 6 show that the influence of vegetation on the spectral signature of bare soil 

is to such extent that it limits accurate estimation of soil properties. This happens already at 
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low levels (<10 %) of fractional cover (figure 5.8 and 6.1). How much the predicted soil 

property deviates from the measured value depends on the amount of fractional vegetation 

cover, the index used (figure 5.8) and the amount of the soil property (figure 6.1).  

 

When determining the iron content, it is shown that the index which calculates the area of 

the absorption dip around 550 nm is much more sensitive to the influence of vegetation on 

the spectral response than the redness index or the S.D. of the continuum removed 

spectrum (figure 5.8). Also the type of error depends on the index used. The redness index 

underestimates the amount of iron when the vegetation influence increases. This can be 

explained by the fact that an increase in (green) vegetation will increase the chlorophyll 

absorption, which is most active in the red wavelengths. As a result, the redness index will 

give a lower value. For the indices based on the continuum removed spectrum an opposite 

effect is shown, because these indices are based on the analysis of depth and width of the 

absorption feature. Iron and vegetation are both active absorbers in the VIS, so both the iron 

absorption feature and the chlorophyll absorption feature are normalized with continuum 

removal. Presence of vegetation causes additional absorption, which leads to overestimation 

of the iron content when continuum removed indices are used. The choice for a specific iron 

index determines the robustness of the analysis towards vegetation influence. The general 

behavior of the presented iron indices to fractional vegetation cover will be as described 

above, but the size of the error introduced will vary, depending on vegetation and soil type.  

 

In chapter 6, the influence of vegetation on the estimation of SOC with PLSR is investigated. 

In this case, an increase in vegetation leads to an increase in the estimated amount of SOC 

(figure 6.1). Due to the statistical nature of the PLSR analysis, it is difficult to determine why 

the presence of vegetation leads to an overestimation of SOC. To predict the behavior of 

PLSR models to vegetation influence, an analysis of the factor loadings is needed. It is 

possible that other spectral pretreatments (e.g. smoothing, wavelets, derivatives), result in a 

different sensitivity to vegetation influence.  

 

The inaccuracy due to vegetation limits the practical implementation of imaging 

spectroscopy for soil applications. On agricultural fields, the time that fields are completely 

bare is limited to a few weeks, which are timed in the period that other preconditions for a 

successful imaging spectroscopy campaign (stable and good weather conditions, high 

amounts of solar illumination) are usually poor. For regional studies this timing becomes 

more complex when different crops are grown with variation in phenology. In field 

spectroscopy, the instantaneous field of view (spatial footprint) can mostly be controlled, 

allowing measurements without vegetation interference, as long as there are no 

requirements to the minimum spot size covered with a single measurement. This gives some 

flexibility to avoid vegetation influence in the spectral measurements. The larger pixel size 
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with imaging spectroscopy makes it impossible to separate the reflectance of soil and 

vegetation during the measurement stage.  

 

E. Can we determine soil properties from a mixed soil and vegetation signal?  

Despite the strong influence of fractional vegetation cover on soil reflectance, it is possible 

to determine soil properties in partially vegetated areas. This can be done by processing the 

output of multiple indices (chapter 5), or by removing the vegetation influence from the 

spectral measurements in an early stage of the processing chain (chapter 6).  

 

The fact that iron indices behave differently under the influence of vegetation is used to 

minimize the vegetation influence in the study described in chapter 5. As described, the 

standard deviation after continuum removal overestimates the iron content, while the 

redness index underestimates it. Averaging the results of both methods gives a more 

accurate iron prediction than using one of these indices individually. How large the 

improvements are depends on the vegetation type, (local) calibration of the model and soil 

type. If the method is applied in areas with other soil and vegetation types, or for other soil 

properties, the strength of the vegetation influence has to be investigated and a site-specific 

correction model has to be developed. Since this method is considered to be accurate up to a 

certain level of fractional cover, a hybrid approach is used to map the entire area. The areas 

with a relatively low cover are mapped with the suggested approach, while the values for the 

areas with higher fractional vegetation cover are interpolated. 

 

A method that can be applied as a more general approach is presented in chapter 6. With 

Residual Spectral Unmixing (RSU) it is possible to filter the influence of vegetation from the 

mixed spectra. The residual soil spectra contain enough information to map the SOC 

distribution within agricultural fields with a good accuracy (RMSEC = 1.6 g/kg and RMSEP = 

1.7 g/kg). The map in figure 6.5 shows that it is possible to map SOC despite fractional 

vegetation cover. RSU was also applied for the estimation of iron in the Álora study area. The 

technique was able to remove the vegetation influence from the spectral signature 

(Bartholomeus et al. 2005). This shows that RSU works for other soil properties as well, and 

that the method is more general applicable. Because RSU deals with the vegetation influence 

in an early stage of the processing chain, it can easily be implemented for other areas. The 

vegetation influence is removed before the soil property prediction model is calibrated, 

which gives more flexibility  in the choice for the prediction model to be used. 

 

An important step in the RSU algorithm is the estimation of the fractional vegetation cover 

with spectral unmixing. When evaluated at the pixel level there are occasionally large 

differences in fractional cover estimates from spectral unmixing compared to field 

estimates. If there are no pure pixels present in the fields, which is the case when the plants 

are still in an early phenological stage, endmembers should be obtained from other sources 
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like field measurements, spectral databases or modeling. Use of such endmembers should be 

done with care, since differences in illumination conditions or biophysical properties leads 

to inaccurate fractional cover estimates. When soil properties in more complex areas have to 

be estimated (e.g. several fields with different crop types, natural ecosystems) more 

advanced spectral unmixing methods have to be used (e.g. MESMA, non-linear unmixing).  

 

7.2 General conclusions 
 

The main contribution of this work is (i) the improved knowledge of empirical VNIR 

spectroscopy based soil model robustness, (ii) the quantification of uncertainties in 

estimation of soil properties with VNIR spectroscopy due to vegetation influence and (iii) the 

development of two methods to reduce this influence of vegetation which increases the 

applicability of imaging spectroscopy for mapping soil properties at local and regional 

scales.  

 

Based on the studies of the chapters in this thesis, it can be concluded that: 

 

   VNIR spectroscopy can be used to estimate soil properties on laboratory, field and 

image scale. The achieved accuracy for the laboratory and field techniques are good 

enough for monitoring of small temporal changes in carbon stock. The high sampling 

density of imaging spectroscopy offers great potential in comparison to traditional 

soil sampling techniques.  

 

   High prediction accuracies can only be achieved when models are locally calibrated. 

In the case of field spectroscopy and imaging spectroscopy calibration for every 

campaign will be necessary.  

 

   Robustness of presented SOC indices towards variation in soil types is low. PLSR is 

more robust to variation in soil types.  

 

   Imaging spectroscopy based soil property models yield low prediction accuracies 

when the derived products are evaluated at the pixel level. However, it can be used to 

support the division of fields in management zones for precision agriculture 

applications.  

 

   The influence of vegetation on soil reflectance is high and cannot be ignored when 

soil properties are estimated from mixed reflectance spectra.  
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   With a combination of indices or by using advanced spectral unmixing algorithms, it 

is possible to derive spatially continuous information about soil properties from 

imaging spectroscopy data in partially vegetated areas.  

 

7.3 Outlook 
 

It has been suggested, that the development of a global calibration of VNIR spectroscopy 

based soil property models is one of the first research priorities (e.g. Bartholomeus et al. 

2008, Brown et al. 2006). This is based on the idea that including as many soil types as 

possible in the calibration phase is necessary to develop soil property prediction models that 

can be used worldwide. Initiatives like the construction of a global spectral library by the Soil 

Spectroscopy Group (Viscarra Rossel 2009) are the first combined attempts to realize this 

idea. As shown in chapter 4, models calibrated on highly variable datasets can be stable, but 

do not meet the accuracy of traditional soil analysis. It is the question if a global model can 

ever be achieved, but the construction of such a large spectral database is an important step 

for future studies. The development of an universal prediction model should not be the 

main purpose, but the study of such a model may lead to a better understanding of the 

complexity and relations within the soil-property matrix and the capability of VNIR 

spectroscopy to deal with this. This can help us to improve predictions by including a-priori 

knowledge (e.g. soil type, mineral composition, texture), or stratification according to 

statistical measures, as suggested in chapter 3. This may solve the problem of low mapping 

accuracy in areas with multiple soil types and can increase the robustness of prediction 

models and its applicability for extended geographical areas. Part of this a-priori knowledge 

can be derived from existing soil maps or from limited laboratory analysis. VNIR 

spectroscopy may not be directly able to meet the traditional requirements in soil scientific 

or precision agriculture applications and it is not obvious how the measurements at the 

surface should be related to sub-surface properties and processes. In combination with 

pedotransfer functions (Sharma et al. 2006), remote sensing can be a valuable tool to bridge 

the gap from point observations to regional information, on various soil properties. 

 

Residual Spectral Unmixing performs well in the case study presented in this thesis (chapter 

6), because only a limited number of endmembers are involved in the agro-ecosystem. This 

allows a rather simple and straightforward inversion of to the spectral unmixing algorithm. 

Natural ecosystems are usually more complex, which require other approaches. With the 

increase of the number of endmembers, and especially endmembers that are spectrally 

resembling, the complexity of the unmixing model increases. This automatically leads to 

lower accuracies of the unmixing result, because unmixing algorithms perform bad when 

endmembers are linearly scaled version of each other (Van der Meer and De Jong 2000). 
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Therefore, complex natural environments might require inverse radiative transfer modeling 

to extract soil reflectance information from the mixed spectral signal. A subject not dealt 

with in this thesis is the influence of different types of vegetation. In general, green 

vegetation will have a larger effect on the mixed spectrum than senescent vegetation or 

plant litter. The higher similarity of soil and litter implies that the negative effect of litter on 

the estimation of soil properties is probably less, but it will be more difficult to apply RSU to 

remove this influence.  

 

One of the major concerns of the remote sensing community is how to scale and generalize 

information collected on the local level up through regional to the global level (Wu and Li, 

2009). Remote sensing data have a significant potential to generate inputs for global as well 

as regional and local models of ecosystem processes (e.g. estimation of carbon fluxes 

DeFries et al. 2002). To optimally exploit the possibilities, remote sensing sources at 

different scales have to be combined, with preservation of the accuracy and further 

applicability of the results. Coupled radiative transfer models allow scaling from small to 

large scales, but the soil is usually treated as background, with little biochemical process 

value (Verhoef and Bach, 2003). This makes these models of limited values for soil studies. 

The accuracy and uncertainties of coarse resolution satellite products should properly be 

validated against ground-based measurements. In this study, airborne imaging spectrometer 

data were used, but the first results to determine soil properties with the use of satellite 

imaging spectrometers have been published (Gomez et al. 2008). Successful use of future 

space borne imaging spectrometers (e.g. ENMAP) will require a combination of several 

scaling techniques (statistical and empirical methods, physical models, etc.) including 

specific data corrections and calibration mechanisms, as well as successive validation 

feedbacks.  

 

A final question that remains, is whether VNIR spectroscopy alone is able to solve the need 

for spatially continuous mapping of soil properties. Other techniques, like gamma ray 

spectroscopy (Kemmers et al. 2008), ground penetrating radar (Lambot et al. 2006) or electro 

conductivity (Mertens et al. 2008), are available. Gamma ray spectroscopy or electro 

conductivity measurements can provide the textural information that can be used as a-priori 

knowledge to chose the proper VNIR spectroscopy model for prediction (Egmond and 

Loonstra, 2008; Sudduth et al. 2005). Furthermore, these techniques provide subsurface 

information, where imaging spectroscopy only provides information about the surface. 

Because soil properties are usually sampled to a certain depth for shallow sub-surface 

measurements ready made systems, with the fibre optic and light source built in a shank, are 

available (Veristech 2009). Ground penetrating radar can provide information about soil 

moisture (Lambot et al. 2006), which is one of the disturbing factors for soil spectroscopy. 

Integration of different measurement techniques that give complementary information, may 

improve the estimates of soil properties and bring accurate monitoring of soil properties or 
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the development of on-the-go sensors closer within reach (Brown et al. 2006). EU FP7 

projects like iSOIL and Digisoil are focusing at these sensor-integration approaches. 

However, locations where no soil data can be obtained with remote or proximal sensing will 

remain, for example with large amounts of vegetation cover. Therefore, also spatial 

interpolation techniques (Schloeder et al. 2001) will be necessary to fill in the gaps. 

Combined approaches, as presented in chapter 5, may offer an optimal solution. At locations 

without vegetation, the soil properties of the bare soil pixels are determined directly, RSU is 

applied on partially vegetated pixels to allow prediction of soil properties, and spatial 

interpolation techniques are used to fill in the gaps at the locations with full vegetation 

cover. The resulting soil property map can be accompanied by a quality map, indicating the 

accuracies of the various methods (Bartholomeus et al. 2005). 
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Summary 
 

Soils and its resources are of major importance for the production of fiber and food. 

Recently, the soil functioning as carbon pool has been added to the list of soil functions. To 

determine soil quality as a resource there is a need for regular monitoring of its chemical 

and physical properties, both in time and space.  

 

Quantitative estimation of the exact amount, spatial distribution and temporal change of soil 

properties is still challenging. Conventionally, soil samples are analyzed by means of soil 

extraction procedures. Spatially, soil samples are collected according to a specific sampling 

scheme. Spatial interpolation techniques are used to prepare continuous maps, but for 

accurate interpolation intensive sampling is required. To achieve the high sampling density 

required to map the high spatial variability and slow temporal changes in soil properties new 

techniques are required.  

 

Visible and Near Infrared (VNIR) spectroscopy is a promising technique for the quantitative 

estimation of soil properties and is used frequently for laboratory and field studies. 

However, the developed models are usually location specific and bridging the gap to imaging 

spectroscopy introduces spectral mixing problems. 

 

The topic of this thesis is how to link spectral reflectance information to soil properties. 

This is done by the development of statistical models, which can be divided in two classes: 

multivariate models (PLSR) and univariate models (spectral indices). The objectives were to 

investigate the robustness of VNIR spectroscopy based soil property prediction models and 

the influence of vegetation on these models. Furthermore, methods were developed for 

quantitative mapping of soil properties in fractionally vegetation covered agricultural fields. 

 

First, the scaling issues that play a role in VNIR spectroscopy are described. Spatial up-

scaling needs to be dealt with when the step from point spectroscopy to imaging 

spectroscopy is made. Mixed pixels, in our case because of fractional vegetation cover, limit 

the direct transition of techniques and models from point spectroscopy to imaging 

spectroscopy. The use of different sensors to acquire spectral information introduces 

spectral scaling problems, which complicates model transfer from one sensor to another. 

Finally, directional scaling issues should be considered, including fixed protocols for the 

measurement setup. 

 

Next, the accuracy and robustness of Partial Least Squares Regression (PLSR) and indices 

based models to estimate soil properties are investigated. Both with PLSR and indices it is 

possible to get good model calibrations and predictions for SOC. For the soil iron content, 
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indices in the VIS and beginning of the NIR can be used to get qualitative information, but 

the full spectrum should be used to get quantitative information about iron content. Spectral 

indices become inaccurate when they are used to estimate SOC beyond the range of values 

that were used in the calibration phase, but PLSR is less sensitive to extrapolation.  

 

In general, model calibrations are location-specific. Including soil-types that are not used for 

model calibration leads to large errors in prediction. Transfer of the calibration of one year 

to another causes a decrease in accuracy, which indicates that practical implementation of 

spectroscopy requires stable measurement conditions, good calibrations and standard 

sampling protocols. If we want to get rid of the local calibrations, we will have to accept 

lower accuracies, but we gain in the ease of use. Users willing to choose one of the 

techniques for a particular application have to weigh the accuracy against the area to be 

covered. While laboratory spectroscopy has the advantage to allow stable calibration trough 

time, it still requires sample preparation (drying, sieving, grinding). Field spectroscopy can 

reach an accuracy comparable to laboratory spectroscopy, but requires calibration before 

each campaign. Imaging spectroscopy might be a practical way to spatially evaluate soil 

properties on large scales. The large number of samples compensates for the lower accuracy. 

Also for imaging spectroscopy, a calibration before each campaign will be necessary.  

 

Imaging spectroscopy based models lack behind in prediction accuracy when the results are 

studied at the pixel level. The lower prediction accuracies are the result of 1) 

instrumentation specifications (spectral resolution, low instrument signal-to-noise ratios), 2) 

disturbing external factors (atmospheric attenuation, geometric and optical distortions, 

mixed pixels) and 3) internal factors (soil moisture, structure). Remote sensing studies often 

use the per pixel accuracies as a measure of the quality of imaging spectroscopy derived 

products. However, for most applications (e.g. precision agriculture, regional carbon stock 

estimates) a per pixel knowledge of the soil properties is not required. The power of imaging 

spectroscopy lies in the ease with which a high sampling density can be reached and the 

spatial distribution of soil properties can be determined, which offers great potential in 

comparison to traditional soil sampling techniques. 

 

The influence of vegetation on the predicted soil properties is large. Already, with low 

amounts of fractional vegetation cover the predictions becomes inaccurate. How much the 

predicted soil property deviates from the measured value depends on the amount of 

fractional vegetation cover, the index used and the amount of the soil property.  

 

Despite the strong influence of fractional vegetation cover on soil reflectance, it is possible 

to determine soil properties in partially vegetated areas. This can be done by processing of 

the output of multiple indices, or by removing the vegetation influence from the spectral 

measurements in an early stage of the processing chain.  
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The fact that two iron indices react differently on the influence of vegetation can be used to 

minimize the vegetation influence. Averaging the results of two indices gives a more 

accurate iron prediction than using one of these indices individually. How large the 

improvements are depends on the vegetation type, (local) calibration of the model and soil 

type.  

 

A method that can be applied more general is Residual Spectral Unmixing (RSU). With this 

approach it is possible to filter the influence of vegetation from the mixed spectra, and the 

residual soil spectra contain enough information to map the SOC distribution within 

agricultural fields with a good accuracy. Because RSU deals with the vegetation influence in 

an early stage of the processing chain, it can easily be implemented for other areas. The 

vegetation influence is removed before the soil property prediction model is calibrated, 

which gives more flexibility in choice for the prediction models to be used. 

 

Finally, it was concluded that VNIR spectroscopy can be used to estimate soil properties on 

laboratory, field and image scale. The achieved accuracy for the laboratory and field 

techniques are good enough for monitoring of the small temporal changes in carbon stock. 

The high sampling density of imaging spectroscopy offers great potential in comparison to 

traditional soil sampling techniques. However, high prediction accuracies can only be 

achieved when models are locally calibrated. In the case of field spectroscopy and imaging 

spectroscopy calibration for every campaign will be necessary. To get models that are robust 

to variation in soil types, PLSR should be used. Imaging spectroscopy derived products have 

low prediction accuracies when evaluated at the pixel level, but can be used to evaluate 

changes in soil properties over time, or to support the division of fields in management 

zones for precision agriculture applications. Vegetation has a large influence on soil 

reflectance and cannot be ignored when soil properties are estimated from mixed reflectance 

spectra. With a combination of indices or by using advanced pre-processing of the spectral 

information it is possible to derive spatially continuous information about soil properties 

from imaging spectroscopy data in partially vegetated areas. 
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Samenvatting 
 

De bodem en zijn rijkdommen zijn van groot belang voor de productie van grondstoffen en 

voedsel. Onlangs is de rol van de bodem als koolstofreservoir toegevoegd aan de lijst van 

belangrijke bodemfuncties. Voor het bepalen van de kwaliteit van de bodem als hulpbron is 

er behoefte aan een regelmatige bepaling van de chemische en fysische eigenschappen, 

zowel in tijd als ruimte.  

 

Kwantitatieve schatting van de exacte hoeveelheid, ruimtelijke verdeling en temporele 

verandering van bodemeigenschappen is nog steeds een uitdaging. Traditioneel worden 

bodemmonsters geanalyseerd door middel van bodemextractie procedures. Ruimtelijke 

analyse wordt gedaan door bodemmonsters te nemen volgens een specifiek bemonsterings-

protocol. Vervolgens worden ruimtelijke interpolatietechnieken gebruikt voor het maken van 

continue kaarten, maar voor nauwkeurige interpolatie is intensieve bemonstering nodig. Om 

de hoge bemonsteringdichtheid te behalen die nodig is om de hoge ruimtelijke variabiliteit 

en langzame temporele veranderingen in de bodem te beschrijven, zijn nieuwe technieken 

nodig.  

 

Zichtbaar en nabij-infrarood (Visible and Near Infrared - VNIR) spectroscopie is een veel-

belovende techniek voor de kwantitatieve schatting van bodemeigenschappen en wordt vaak 

gebruikt voor laboratorium- en veldstudies. De ontwikkelde modellen zijn echter 

locatiespecifiek en het overbrengen van de modellen naar beeldvormende spectroscopie is 

lastig door problemen met spectraal gemengde pixels.   

 

Het onderwerp van dit proefschrift is hoe spectrale reflectie informatie gelinkt kan worden 

aan bodemeigenschappen. Dit gebeurt door middel van statistische modellen, die kunnen 

worden onderverdeeld in twee klassen: multivariate modellen (Partial Least Squares 

Regression, PLSR) en univariate modellen (spectrale indices). De doelstellingen waren om de 

robuustheid van op VNIR spectroscopie gebaseerde bodemmodellen te bepalen en te 

onderzoeken wat de invloed van vegetatie op deze modellen is. Bovendien zijn er methoden 

ontwikkeld voor de kwantitatieve kartering van bodemeigenschappen in gedeeltelijk 

begroeide agrarische gebieden.  

 

Om te beginnen zijn de schalen die een rol spelen bij de toepassing van VNIR spectroscopie 

voor de bepaling van bodemeigenschappen beschreven. Ruimtelijke opschaling speelt een rol 

als de stap van puntspectroscopie naar beeldvormende spectroscopie wordt gemaakt. 

Gemengde pixels, in dit geval vanwege gedeeltelijke vegetatiebedekking, beperken een 

directe toepassing van de technieken en modellen uit puntspectroscopie op beeldvormende 

spectroscopie data. Het gebruik van verschillende sensoren om spectrale informatie in te 
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winnen introduceert spectrale schalingsproblemen, waardoor modeloverdracht van de ene 

sensor naar de andere bemoeilijkt wordt. Ten slotte speelt directionele schaling een rol, 

waardoor vaste protocollen voor de meetopstelling noodzakelijk zijn.  

 

Vervolgens worden de nauwkeurigheid en robuustheid van PLSR en indices gebaseerde 

modellen voor het bepalen van bodemeigenschappen onderzocht. Zowel met PLSR als  

indices is het mogelijk om goede modelkalibraties en voorspellingen voor organisch koolstof 

(SOC) te krijgen. Voor kwalitatieve schattingen van het ijzergehalte van de bodem, kunnen 

indices in het VIS en het begin van het NIR worden gebruikt, maar het volledige spectrum 

moet worden gebruikt voor kwantitatieve bepalingen van het ijzergehalte. Spectrale indices 

worden onnauwkeurig wanneer zij worden gebruikt voor de schatting van SOC buiten het 

bereik van de waarden die werden gebruikt voor de modelkalibratie, maar PLSR is minder 

gevoelig voor extrapolatie.  

 

In het algemeen zijn modelkalibraties locatiespecifiek. Het gebruiken van een model voor 

bodemsoorten die niet zijn gebruikt tijdens de modelkalibratie leidt tot grote fouten in de 

voorspelling. Toepassing van de kalibratie van het ene jaar op metingen van een ander jaar 

veroorzaakt een afname van de nauwkeurigheid, waaruit blijkt dat de praktische uitvoering 

van spectroscopie stabiele metingen, goede kalibraties en standaard bemonsterings-

protocollen vereist. Als we af willen van de lokale kalibraties, zullen we lagere 

nauwkeurigheden moeten accepteren, maar we krijgen er een groter gebruiksgemak voor 

terug. Gebruikers die één van de technieken willen gebruiken voor een bepaalde toepassing, 

moeten de nauwkeurigheid afwegen tegen de grootte van het gebied dat gemeten moet 

worden. Laboratoriumspectroscopie heeft het voordeel van de stabiele kalibraties in de  tijd, 

maar het vereist monstervoorbereiding (drogen, zeven, malen). Veldspectroscopie kan een 

nauwkeurigheid bereiken die vergelijkbaar is met laboratoriumspectroscopie, maar er is een 

nieuwe kalibratie vereist voor elke campagne. Beeldvormende spectroscopie kan een 

praktische manier zijn om bodemeigenschappen ruimtelijk en op grote schaal te bepalen. 

Het grote aantal metingen dat gedaan kan worden compenseert voor de lagere 

nauwkeurigheid. Ook voor beeldvormende spectroscopie zal een kalibratie voor elke 

campagne nodig zijn. 

 

Modellen gebaseerd op beeldvormende spectroscopie blijven achter in 

voorspellingsnauwkeurigheid wanneer de resultaten worden onderzocht op pixel niveau. De 

lagere voorspellingsnauwkeurigheden zijn het resultaat van 1) instrument eigenschappen 

(spectrale resolutie, lage instrument signaal/ruisverhoudingen), 2) storende externe factoren 

(atmosferische verstoringen, geometrische en optische verstoringen, gemengde pixels) en 3) 

interne factoren (bodemvocht, structuur). Remote sensing studies maken vaak gebruik van 

de nauwkeurigheid per pixel om de kwaliteit van afgeleide producten te evalueren. Echter, 

voor de meeste toepassingen (bijvoorbeeld precisie landbouw, schattingen van koolstof-



-137 - 

opslag) is een per pixel kennis van de bodemeigenschappen niet vereist. De kracht van 

beeldvormende spectroscopie schuilt in het gemak waarmee een hoge bemonsterings-

dichtheid kan worden bereikt en het feit dat de ruimtelijke verdeling van de bodemeigen-

schappen kan worden bepaald.  Dit biedt grote mogelijkheden ten opzichte van traditionele 

bodembemonsteringstechnieken. 

 

De invloed van vegetatie op de nauwkeurigheid van de gebruikte modellen is groot. Al bij 

een lage gedeeltelijke vegetatiebedekking worden de voorspellingen onnauwkeurig. Hoeveel 

de voorspelde waarde afwijkt van de gemeten waarde hangt af van het hoeveelheid 

vegetatiebedekking, de gebruikte index en de concentratie van de betreffende 

bodemeigenschap.  

 

Ondanks de sterke invloed van gedeeltelijke vegetatiebedekking op de bodemreflectie, is het 

mogelijk om bodemeigenschappen in gedeeltelijk begroeide gebieden te bepalen. Dit kan 

gedaan worden door de uitkomst van meerdere indices te combineren, of door de 

vegetatieinvloed in een vroeg stadium van de procesketen uit de spectrale metingen te 

filteren.  

 

Het feit dat twee ijzerindices verschillend reageren op de invloed van vegetatie kan worden 

gebruikt om de vegetatieinvloed te minimaliseren. Het middelen van de resultaten van twee 

indices geeft een nauwkeurigere voorspelling van ijzer dan het gebruik van elk van deze 

indices afzonderlijk. Hoe groot de verbeteringen zijn, hangt af van het vegetatietype, (lokale) 

kalibratie van het model en het bodemtype.  

 

Een methode die algemeen kan worden toegepast is Residual Spectral Unmixing (RSU). Met 

deze methode is het mogelijk om de invloed van de vegetatie uit het gemengde spectrale 

signaal te filteren. De resterende bodemspectra bevatten voldoende informatie om de SOC 

distributie in agrarische gebieden te bepalen, met een goede nauwkeurigheid. Omdat RSU de 

invloed van de vegetatie in een vroeg stadium van de procesketen filtert, kan deze methode 

gemakkelijk worden toegepast in andere gebieden. De invloed van de vegetatie wordt 

verwijderd voordat het bodemmodel is gekalibreerd, wat meer flexibiliteit geeft bij de keuze 

voor het te gebruiken model.  

 

Tot slot kan er worden geconcludeerd dat VNIR spectroscopie gebruikt kan worden voor de 

schatting van bodemeigenschappen op laboratorium-, veld- en regionale schaal. De bereikte 

nauwkeurigheid met laboratorium- en veldtechnieken zijn goed genoeg voor het monitoren 

van de kleine temporele veranderingen in de koolstofvoorraad. De hoge bemonsterings-

dichtheid van beeldvormende spectroscopie biedt goede mogelijkheden vergeleken met 

traditionele bodembemonsteringstechnieken. Echter, een nauwkeurige voorspelling kan 

alleen bereikt worden als de modellen lokaal gekalibreerd zijn. In het geval van 
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veldspectroscopie en beeldvormende spectroscopie is kalibratie voor iedere campagne 

noodzakelijk. Om modellen te verkrijgen die robuust zijn voor variatie in bodemtype, is 

PLSR de beste keuze. Producten die afgeleid zijn van beeldvormende spectroscopie hebben 

een lage voorspellingsnauwkeurigheid op pixel niveau, maar kunnen worden gebruikt om de 

veranderingen in de bodemeigenschappen in de tijd te bepalen, of ter ondersteuning van de 

verdeling van de velden in beheerzones voor precisielandbouw toepassingen. Vegetatie heeft 

een grote invloed op de bodemreflectie en kan niet worden genegeerd wanneer de 

bodemeigenschappen zijn geschat op basis van gemengde spectra. Door een combinatie van 

indices of gebruik te maken van geavanceerde pre-processing technieken is het mogelijk om, 

met  beeldvormende spectroscopie, ruimtelijk continue informatie over bodemeigen-

schappen in gedeeltelijk begroeide gebieden te verkrijgen. 
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