

Design of Farming Systems

Transition to Sustainable Agriculture W. Sukkel, 21-06-2008

Personal introduction

Wijnand Sukkel

 Agronomist, Specialist farming systems, Organic plant production, Agriculture and Climate Change

Applied Plant Research (PPO) Wageningen University and Research Centre (WUR),

Questions?

Current Agriculture What's Wrong? Whats Right?

Adverse effects modern agriculture

- Agricultural tredmill
- Pollution
- Depletion, accumulation
- Decrease biodiversity and landscape
- Ending resources
- Climate change
 (partly caused by agriculture)

The Agricultural Treadmill (Cochrane)

- Many farms all produce the same product
- None can influence price so everybody produces as much as possible for the going price
- New technology gives innovators windfall profits
- After some time others follow
- Increase of production and efficiency and decrease of price
- Who hasn't yet adopted the new technology has to follow otherwise he loses income
- Who cannot follow will stop. Their resources are absorbed by the innovators, scale enlargement

(Dutch) agricultural problems

Agronomical

- soilfertility and soilhealth
- control of pests diseases and weeds
- high quality demands

Economical
lower prices, basic income under pressure
availability and costs of labour

(Dutch) agricultural problems

Environmental/ecological
 pollution of air water and soil with nutriënts and pesticides

decline of nature and landscape

Society
concern for food safety
claim for multifunctional land use

Something has got to change!

But how can we escape from the treadmill??

We cannot solve nowadays problems with the same thinking that created those problems in the past ! (Einstein)

What do we want from agriculture?

Objectives of agriculture

Write down at least 4 general objectives In order of importance

Multi-objective and Multi-functional Agriculture

Objectives and functions

- Food production, Income
- Clean environment,
- Biodiversity
- Maintain/recycle scarce resources
- CO₂ sequencing
- Water storage
- Energy production
- Recreation, Tourism
- Silence, darkness
- Health Care
-

Main search directions

Integrated agriculture

• Food production, income, environment, ending resources

Organic agriculture

• Food production, income, environment, ending resources, biodiversity, social justice, integrity

Conventional	Organic
	intentional
Uniformity	Diversity
Recipy	Concept
Reductionism	Holism
General	Situational
Control	Cooperation
Specialist	Universalist
Reaction	Precaution
Economy	Ecology
Global	Regional

New coordination mechanisms (1)

- We deal with production, consumption, and everything in between
- Not only productivity, but also ecology, employment, social justice,
- Stakeholders not only farmers but also consumers, transporters, retail, environmental organisations, policy makers, etc.

Need for:

- Farming systems and methods designed to overcome these conflicts
- Social and political solutions

Market demands

Product uniformity

Shape, size, taste, color, quality, price

High cosmetic quality
Large volumes
Supply certainty
Certified

Low price

Consequences pressure on costprice

- Mechanisation (crop uniformity)
- Specialisation
- Large Scale
- Capital intensive
- Intensive land use
- Recipy farming

Consequences product demands

Genetic uniformityPhenotype uniformityField and farm uniformity

Which leads to a
high vulnerability to pests and diseases
Low tolerance for spots and deformations causing high dependency of pesticide input

Non marketable qualities

Agricultural tredmill

Market demands and low costprice
Uniformity and high production
Scale enlargement
More vulnerability
Higher protection (sterile conditions)

(free interpretation Cochrane)

Coping with the conflict

- Social
- Organisational
- Political
- Technical

Escape the `Agricultural Treadmill'

How to make use of diversity instead of excluding it?

Complex and multi-objective methods

Control pest x (+ landscape + biodiversity + ...)

Agronomic consequences uniformity

Examples

(inter)National: T plasm maize

Regional: pest and diseases leek

Farm or Field level: soil born pests and diseases
Within plant: vertical resistance

Agronomic demands (organic)

- (Bio)Diversity \rightarrow stability, resilience, prevention
 - Time
 - Space (plant, field, farm, region)
- Crop rotation
- Farm lay out
 - Dimensions
 - Ecological infrastructure
- Mixed cropping, mixed varieties

Different approaches

 Socio-political oriented solutions
 Technological solutions

 system innovation
 process integrated solutions integrated technology
 end of pipe solutions

 Participatory innovation or progress

Ingredients for system innovation

Hardware

Software

Orgware

Farming systems research

 System innovation: coherent overall concept, multiobjective

- Agronomical
- Ecological
- Economical
- Integrated technology
 - agro-ecological principles, agronomy and technology Whole farm

Main search directions

- Conventional agriculture
 - Food production, income
- Integrated agriculture
 - Food production, income, environment, ending resources
- Conservation agriculture
 - Food production, income, environment, ending resources
- Organic agriculture
 - Food production, income, environment, ending resources, biodiversity, social justice, integrity, multifuntional

Methodology: prototyping

- Methodical way to innovation from a technological perspective
- System level system innovation

Systeem innovation

Prototyping (Vereijken)

Analysis en Diagnosis
Design
Testing and Improving
Dissemination and implementation

Analysis and diagnosis

Regional farmstructure
Constraints
Policy and regulations
Future developments

Establish objectives

- Measure them with Yardsticks (parameters) and
- Quantify them with target values
- Design farming methods
- Design operational plan

Design: Objectives/values

Abiotic environment
Food Supply
Nature and Landscape
Basic income/profit
Health well-being
Integrity of life
Employment
Others??

Design: Thematic approach

Design: Themes and parameters

- Farm continuity
 - Net profit
 - labour input (specified topics)
- Quality productionquantity and quality of produce

Multifunctionality (in relation to on farm nature)
 no of target species, no of target biotopes
 infrastructure, area, connectivity, circuitry

Design: Themes and parameters

Sustainable use of resources
 use of (fossil) energy and mineral P and K
 soil fertility, soil cover, soil health

Clean environment

- use, emission and damage risk pesticides
- use, surplus and emission nutrients
- gas emissions

Our technical toolbox: Farming methods

Agronomic Toolbox to realise values
Crop rotation
Soil cultivation

- Fertilisation/Nutrient management
- Crop protection
- On farm nature (biodiversity) management

Prototyping, testing and improving

- Test:
- lay out of prototype in practice
- measure results
- establish shortfall between target and result
- analyse cause in relation with methods
 Improve
- focussed adjustment of farming methods

untill target results have been achieved

Testing and improving

Prototyping, dissemination and implementation

Coöperation

- research, extension and practice
- Testing and improving systems in practice
 - manage ability
 - acceptability
- Demonstration
- Participatory learning
 - farmer field schools, study groups

Results prototyping

Potential performance in terms of yardsticks

 Legislation, certification

 Set of farming methods

 Certification, advice, best practices

 Insight in bottlenecks and processes
 Remaining need for socio-opolitical solutions

Farming methods

General strategy (concept)
Toolbox of methods and techniques
Flexible integration into approach
Region and farm specific interpretation of these strategies

Objective: excellent agronomy

APPLIED PLANT RESEARCH

Emphasis in farming methods

soil structure

- crop rotation
- organic manure
- green manure
- soil cultivation

nutrient supply

- crop rotation
- organic manure
- green manure
- mineral fertiliser

weeds

- crop rotation
- cropping system
- mech. control
- pesticides

pests and diseases

- crop rotation
- cropping system/ resistant varieties
- pesticides

Complex and multi-objective methods

Control pest x (+ landscape + biodiversity + ...)

Influence crop rotation

Multifunctional crop rotation

basis for quality production
 supported by:

 cropping systems
 crop protection
 on farm nature management and farm design
 fertilisation
 soil cultivation

crop rotation is a team of players

Crop rotation

Crop choice (team of players)
Crop frequency
Crop sequence
Spatial layout

Balanced Crop choice

High and low nutrient demand
Nitrogen fixating crops
Intensive and superficial rooting
High and low weed suppression
High and low labour demand
Different species and families

Crop Rotation Example

- 1. Potatoes
- 2. Grass/clover
- 3. Onions
- 4. Springwheat
- 5. Carrots
- 6. Peas

Crop frequency, general recommendations

effective for crop specific soil born pests and diseases

1 in 6 for species1 in 3 for families

Take also green manures into account

Crop sequence

Soil structure

Pests and Diseases

Weed control

APPLIED PLANT RESEARCH

Crop Rotation, prevention of pests and diseases

Crop Rotation Example

- 1. Potatoes
- 2. Grass/clover
- 3. Onions
- 4. Springwheat
- 5. Carrots
- 6. Peas

Strategy crop protection

Prevention

- crop rotation, farm hygiene,...
- Need of control
 - asses if control is necessary
- Control
 - non-chemical control (mechanical, biological)
 - chemical,
 - pesticide selection
 - application technique

Prevention

Prevention of initial inoculum:

- • legal measures,
- • farm hygiene and healthy seeds and plant material.

Enhancing (bio) diversity:

- • crop rotation and variety choice,
- • design of the agro-ecological layout,
- • other means of bio-diversification.

Creating unfavourable conditions for noxious organisms:

- • cultural methods,
- • nutrient management.

Establishing need of control

• determine if organisms are harmful,

- monitor,
- prognosis of infestation or infection,
- prognosis of economic loss.

Control

PhysicalBiological

- Chemical
 - pesticide choice
 - dose, timing and technique

Chemical control

- Choice of pesticides
 - selectivity
 - resistance development
 - emission and damage risks
- Application
 - timing, weather conditions
 - application technique
 - dose

Environmental effects pesticides

Nutrient management

Principles:

- maintenance of soil fertility in agronomic desired and ecologically acceptable range
- input = oftake + unavoidable losses for P and K
- nutrient losses < target values (EU norm)

