

Approximating a similarity matrix by a latent class model: A reappraisal of
additive fuzzy clustering

ter Braak, C. J. F., Kourmpetis, Y. I. A., Kiers, H. A. L., & Bink, M. C. A. M.

This is a "Post-Print" accepted manuscript, which has been published in
"Computational Statistics & Data Analysis"

This version is distributed under a non-commercial no derivatives Creative Commons

 (CC-BY-NC-ND) user license, which permits use, distribution, and
reproduction in any medium, provided the original work is properly cited and not
used for commercial purposes. Further, the restriction applies that if you remix,
transform, or build upon the material, you may not distribute the modified material.

Please cite this publication as follows:

ter Braak, C. J. F., Kourmpetis, Y. I. A., Kiers, H. A. L., & Bink, M. C. A. M. (2009).
Approximating a similarity matrix by a latent class model: A reappraisal of additive
fuzzy clustering. Computational Statistics & Data Analysis, 53(8), 3183-3193.
https://doi.org/10.1016/j.csda.2008.10.004

https://creativecommons.org/licenses/by-nc-nd/4.0/

Approximating a similarity matrix by a latent class model

Cajo J.F. ter Braaka1, Yiannis Kourmpetisa, Henk A. L. Kiersb, Marco C. A. M. Binka

aBiometris, Wageningen University and Research Centre, Box 100, 6700 AC

Wageningen, the Netherlands,

bHeymans Institute of Psychology, University of Groningen, Grote Kruisstraat 2/1,

9712 TS Groningen, The Netherlands

1 cajo.terbraak@wur.nl

Abstract

Let Q be an n n square symmetric matrix Q of nonnegative elements between 0 and
1, e.g. similarities. In the paper we interpret elements of Q as the probability that two
individuals are identical in some sense, e.g. belong to the same class, and are thus
confused by a measuring device. We want to model this matrix by a latent class model
with K classes with K fixed, but unknown. Members of the same class are always
confused. Let P be an n K matrix with assignment probabilities of individuals to
classes (0 ≤ pik ≤ 1 and row sums of 1). Our problem then amounts to approximating
Q by PPT, while disregarding the diagonal elements of Q. In a least-squares
formulation, it is not an eigen problem because of the constraints on P. It is also more
difficult than standard quadratic programming or fitting a latent budget model as our
problem is quartic rather than quadratic in the parameters. We present two algorithms
to solve the problem; a brute force genetic algorithm (differential evolution) and an
iterative row-wise quadratic programming approach. Both algorithms converged to
the same minimum on simulated data, which made it more likely that they reached the
global minimum.

Key words: non-negative matrix decomposition, latent class model, network, fuzzy
clustering, differential evolution

1. Introduction

The data in this paper forms an n n square symmetric matrix Q of nonnegative
elements between 0 and 1. The elements of Q could measure the similarities of
individuals in a social network, of genes in a gene network or of products in market
science. We will think about the elements of Q as the probability that two individuals
are judged the same by some measuring device, or equivalently the probability that
the device confuses the two individuals.

We wish to summarize the similarities among individuals by imposing a simple
model. Three kinds of models are often used in data mining: distance models (Borg
and Groenen 1997), vector models such as the bilinear model (Jolliffe 1986) and
cluster analysis models including latent class models (Heinen 1996, McLachlan and
Peel 2000). Each of these models has been applied to network data (Nowicki and

Snijders 2001, Hoff et al. 2002, Hoff 2005). Latent classes tend to be easier to
communicate to the general public than vector models. Distance models take perhaps
an intermediate position. The vector model would be much easier to understand if it
had a class interpretation. In this paper we present a constrained vector model. The
constraints are formulated so as to allow a latent class interpretation.

In this paper we propose approximating the off-diagonal elements of Q by PPT with P
an n K matrix with non-negative elements and K a fixed value. In addition, the rows
of P must sum to unity. Without the sum constraint, the model amounts to
nonnegative matrix factorization (Lee and Seung 1999) for symmetric nonnegative
matrices (Catral et al. 2004, Ding et al. 2005). With the sum constraint, the model can
be viewed as a latent class model, as we show in this paper.
Table 1 shows an example matrix (Q) for six individuals named A to F. Individual A
is never confused with any other individual. Individuals B-D are always confused.
The individuals E and F are confused with probability 0.7. This matrix can arise when
the individuals belong to four classes, labeled C1- C4 in Table 1 and members of the
same class are always confused. Individual A belongs to a unique class C1 and
individuals B-D all belong to a single class C2 in Table 1. The confusion probability
of 0.7 between individuals E and F may arise when E is always a class C3 type and F
belongs to C3 with probability 0.7 and thus with probability 0.3 to another class,
named C4 in Table 1. The solution is not unique. For instance, a confusion probability
of 0.7 also arises with E of types C3 and C4 with probabilities 0.25 and 0.75 and F of
types C3 and C4 with probabilities 0.1 and 0.9, respectively, as 0.25 0.1 + 0.75 0.9
= 0.7. Also, solutions with more than four classes would also give a perfect fit. In the
matrix P in Table 1, F may for instance belong to two classes C4 and C5 with
probabilities summing to 0.3. For our purpose, all these solutions are equivalent as
they yield the same Q. In general, the number of classes is unknown. We will seek the
smallest number that gives a good fit of Q.

In section 2 we derive and characterize the model and the approximation problem that
it gives. In the model each individual belongs with a certain probability to a particular
class. We call it a latent class model for similarity matrices. We present two
algorithms to solve it. Section 3 presents a brute force genetic algorithm (differential
evolution) and section 4 an iterative row-wise quadratic programming approach. In
section 5 we describe the performance of both algorithms on artificial data and we
conclude with a summary of our findings.

2. The latent class model for a similarity matrix

Let Q be an n n square symmetric matrix with elements qij between 0 and 1, e.g.
denoting the confusion probability of individuals i and j. We seek a model that allows
us to sample or draw class memberships for each of the n individuals in such a way
that the probability that individual i and j are of the same class (i.e. are confused) is qij
for all i ≠ j (i = 1,…, n; j = 1,…, n). The classes are unknown; also their number is
unknown, but we hypothesize a size K from now on for some value of K.
We assume here the transitivity property: if individuals i and j are of the same type
and individuals i and k are also of the same type in a draw from the model, then
individuals j and k should be of the same type in this draw so that i, j and k are all of
the same type, i.e. they fall in the same class in this draw. A simple model that fits our

purpose is a model with K disjoint latent classes in which each individual belongs to
precisely one latent class. We extend this model with probabilities. Let P be an n K
matrix with elements pik being the probability that individual i belongs to class k. Note
that

10 ikp and 1
1

K

k
ikp (i = 1,…, n; k = 1,…, K). (1)

By drawing the class memberships for each individual i from the ith
 row of P

independently, the probability that individuals i and j fall in the same class (the
coincidence probability) is

K

k
jkik

K

k
ij jippkclassjkclassiPq

11

*))()((. (2)

The problem that we wish to solve is to find a matrix P such that *
ijq is close to the

observed qij for all i≠j. The { *
ijq } are thus the coincidence probabilities induced by a

latent class model with memberships probabilities P.

For a mathematical convenience we use least-squares approximation. The problem
then is to minimize the loss function

n

i

n

ij
j

T
ij i

qf
1 1

2)()(ppP , (3)

where T
ip denotes the ith row of P, subject to the nK non-negativity and n equality

constraints in (1). We will report the loss in terms of the root mean squared error

(RMSE), defined as))1(/()(2 nnf P .

We make the following observations.

(1) In matrix notation the problem can almost be written as the squared Frobenius

norm
2TPPQ except that that the diagonal elements do not count. Without

constraints (1) and with the diagonal counting, the optimal P could be derived from an
eigen analysis of Q, which is an algorithm often used for principal components
analysis. It is unclear, however, how to take advantage of this for solving the
constrained problem.

(2) Our problem is reminiscent of latent budget analysis (Mooijaart et al. 1999) and
archetypal analysis (Cutler and Breiman 1994), where a rectangular an n m matrix
C with non-negative elements that sum row-wise to 1 (each row being a composition)
is approximated by ABT with A and B being of size n K and m K, respectively,
having non-negative elements and each row A and each column of B summing to
unity. So, if n = m, C is symmetric and A =B the two problems coincide. Mooijaart et
al. (1999) estimate the latent budget analysis model by alternating least-squares. This
is a very convenient method because solving for A, while keeping B fixed, is a
constrained quadratic programming problem as is solving for B, while keeping A
fixed. This alternating least-squares method is not available in our problem.

(3) Without the sum constraint, our problem is also akin to non-negative matrix
factorization (Lee and Seung 1999) for which several algorithms have been proposed
(Chu et al. 2004). Non-negative matrix factorization is in fact equal to latent budget
analysis without sum constraints.

 (4) Loss function (3) involves terms of the form 22
jkik pp , jliljkik pppp and jkik pp (i ≠

j); it is thus rather quartic than quadratic in the parameters, although terms of the
form 4

ikp do not enter the loss function because the diagonal of Q is excluded.

(5) The matrix P has n(K-1) free non-negative parameters and the data matrix Q has
n(n-1)/2 off-diagonal elements. If the problem were linear and unconstrained, a
perfect fit would be feasible for n(K-1)> n(n-1)/2, i.e. for K > (n+1)/2. This lower
bound for K is not always attainable of course. For example, if Q is diagonal, then K
= n gives a perfect fit and smaller values of K do not.

3. Differential evolution (DE) approach

Loss function (3) with constraints (1) is not convex and thus potentially contains
many local minima, even beyond the minima that are generated by rearranging of the
columns of P. This is the reason we attempted a global optimization method, in
particular Differential Evolution (Storn and Price 1997, Price et al. 2005). Differential
Evolution (DE) is a derivative-free global optimization method that belongs to the
family of Evolutionary Algorithms. In DE a population of solution vectors x1 … xN is
used to explore the solution space and is maintained for a number of generations till
the population reaches the minimum. In our problem, each member vector xi =
vec(Pi) with Pi a trial solution of (3) subject to (1). The size of the population depends
on the problem and the other parameters of the DE, but in general it should be higher
than the number of parameters d. After some trials we chose N=2d = 2nK.

We initialized each members vector ix (i = 1, … , N) independently with nK random

values between 0 and 1 and then divided the K values of each of the n individuals by
their sum so as to satisfy constraints (1). The exploration of the space is carried as
follows in DE.
A new “mutant” vector *

ix is proposed for each member vector ix in turn, using three

different randomly selected vectors of the population

)(
210

*
rrri F xxxx (4)

with F a scalar. In addition to (4), another genetic operation is used in the DE, namely
crossover. With a crossover rate CR (0<CR≤1), a fraction CR of the elements in ix

are mutated according to (4), whereas the remaining parameters are left unchanged,
i.e. are set equal to the corresponding values in xi. We chose to apply the crossover
operator on the level of the individuals within the parameter vector, i.e. the parameters
of an individual are either mutated according to (4) or left unchanged. In terms of Pi,
each row of Pi is thus independently selected for mutation, the selection probability
being CR. The resulting mutant vector *

ix does not normally satisfy the constraints

(1). We therefore replace any negative value in *
ix by 0 and any value greater than 1

by 1 and then divide the K values of each of the n individuals within *
ix by their sum.

After these operations the mutant *
ix satisfies the constraints. The member vector

ix is replaced by *
ix if)()(*

ii ff xx with f(.) the loss function. Each possible update

of ix requires one function evaluation, when loss function values of members are

stored.
The parameter F determines the step size. In a Markov Chain Monte Carlo (MCMC)
version of DE, ter Braak (2006) argued that F should be proportional to d-0.5 so as to

make the step length
0

*
ri xx approximately dimension independent. In a further

investigation of this, Price and Rönkkönen (Price and Rönkkönen 2006)
distinguished between Global Search (GS) schemes where r0 ≠ i and Local Search
(LS) schemes where r0 = i and derived optimal dimension dependent functions for F
for each scheme from experiments with simple loss functions. Figure 1 shows the two
functions. In GS, the optimal F decreases very slowly with d (1206.0

1 748.0 dF),

whereas in LS the square-root rule holds (dF /22). In the MCMC, LS is used

albeit with dF /83.2 (ter Braak 2006). We let d depend on the real number of
elements updated in a crossover, the mean dimension with crossover rate CR being

KnCRd (Figure 1). We were interested in the performance of the four
scenarios obtained by crossing GS versus LS with F1 versus F2. We also tried three
values of CR, 0.1, 0.5 and 0.9 within each scenario, yielding 12 runs for each Q and
K.

4. Iterative row-wise quadratic programming (QPirw)

In this section we propose to use a row-wise iterative algorithm to minimize loss
function f(P) in equation (3) subject to the constraints in (1). The advantage of this
approach is that it leads for each row to a standard quadratic program.

To update pi, we minimize f(P) over pi, while keeping the other rows of P fixed. This
boils down to minimizing

|| qi – P–ipi ||

2 (5)

where qi denotes the ith column of Q without qii, and P–i denotes matrix P after
deleting row i, subject to the constraints

0p i and 11p T

i (6)

where 0 and 1 denote vectors of appropriate lengths with all zero and unit elements,
respectively.

The constraint 11p T
i can be enforced by reparametrization, as follows. We can

always write

pi = Uv + 1

with U a columwise orthonormal basis for the orthocomplement of 1, and v and a
vector and scalar respectively. Because U and 1 jointly span the whole space, such
vector and scalar always exist. Now the constraint that 11p T

i implies that

1 111vU TT , and because UT1=0 and 1T1=K, it follows that = K–1. Hence, we
can always write

pi = Uv + K–11

and, as is readily verified, pi thus specified, satisfies the constraint 11p T

i for every v.

Hence, by reparameterizing pi as above, it remains to minimize the function

g(v) = || qi – P–iK
–11 – P–iUv ||2

over v subject to the constraint that Uv + K–11 0. This problem can be recognized as
a standard quadratic program or, equivalently, the so-called LSI problem solved by
Lawson and Hanson (1995) of minimizing

h(v) = || f – Ev ||2

subject to Gv h,

where
 f = qi – K–1P–i1 (where P–i1 = 1, due to the constraint P–i1 = 1)
 E = P–iU
 G = U
 h = –K–11.

Lawson and Hanson (1995) provide a quick and effective algorithm for minimizing
this function. After having thus found the optimal v, the vector pi that minimizes f
over pi is given by Uv + K–11.

By iteratively updating each row of P as described above, repeating this cycle of
sequential updates as long as the overall function value has not converged, eventually,
the algorithm will converge to a stable function value, which hopefully is at least a
local minimum.

We ran this algorithm from 10 independent random initial matrices P (as in DE) and
observed the number of iterations (where one iteration consists of updating each row
of P once).

5. Examples

In the case of the example Q of Table 1, Differential evolution (DE) and iterative
row-wise quadratic programming (QPirw) were both able to find a perfect fitting P
with four classes. QPirw required between 5 and 10 iterations and was much quicker
than DE. For sake of completeness, the root mean squared error (RMSE) values for
the best solution with two and three classes were 0.284 and 0.043.

Table 2 shows another 66 example of Q. The minimum RMSE values that we found
were 0.254, 0.046, 0.022, 0.021and 0.021 for 2-6 classes, respectively. Neither DE
nor QPirw was able to find a perfect fitting P, not even with 6 classes. This strongly
suggests that no such perfect solution exists. Table 2 shows the solution with 4
classes. The classes C1 and C3 express the similarity between individual A and B and
D, E and F. Class C2 expresses the uniqueness of individual C and class C4 is needed
to fit Q in more detail. The solution for K = 5, essentially splits class C4 in two,
yielding a slightly better fit to element qDF.

In order to show that our algorithms work for larger Q, we simulated four matrices of
order 2020 in 22 layout of number of classes (5 or 10) and two methods of
generating the values of P (one yielding a highly structured P and another yielding an
ill-structured P). In the first method, the rows were first divided in classes of equal
size and the rows falling in the class k were sampled from Dirichlet distribution with
parameter αk. The kth element of αk was assigned the value 8 and the remaining
elements were set to 2/(K-1). In the second method all rows are generated from a
single Dirichlet distribution with parameter α = T

K),...,,(21 with αj ~
Uniform(0,1). Figures 2 and 3 display example Q and P, respectively.

For each matrix a perfect fit is found when K is greater than or equal to the true
number of classes (Figure 4). QPirw required ca. 5 second on a 3MHz desktop
computer for carrying out the fit for n = 10, K=10 and 10 restarts. The random restarts
often resulted in the same RMSE. Each fit required between 50 and 200 iterations
when the number of classes was not greater than the true number. For larger number
of classes the number of iterations went up to a maximum of ca. 1000 while using a
convergence criterion for f(P) of 10-6. DE required ca. five times longer to converge.
It often found a similar but never lower RMSE and did not always find the prefect fit.
Figure 5 displays a trace plot of the highly structured case for K = 10. GS with F1
appears to converge best, even with the slow start with CR = 0.1. The square-root rule
performed worse than F1, both in GS and LS. . In the LS the square-root rule tends to
converge prematurely to local minimum, in particular with high CR or high d. GS
with F1 and CR = 0.9 did best. It reached a perfect fit for the true K for all four Q
matrices.

6. Discussion

This paper proposes a latent class model for approximating a similarity matrix and
presents two algorithms for fitting the model. We first discuss our model and then the
algorithms.
The key identity is equation (2), which gives the coincidence probability of two
individuals, i.e. the probability that they fall in the same class. In our approach the
similarity matrix is approximated by the coincidence probabilities induced by a latent
class model. There are several related approaches.
Fuzzy clustering uses memberships that satisfy the constraints in equation (1) and is
thus in spirit similar to our aims. Fuzzy c-means (Bezdek 1981) works with
rectangular data. Hathaway et al. (1989) developed a fuzzy c-means algorithm that
works on relational data. In their approach the similarity matrix is implicitly
transformed to an underlying coordinate space where fuzzy c-means could be applied.
Fuzzy c-means is least-squares on squared distances between individuals and cluster
means and this property is extended to the kernel version by the ‘kernel
trick’(Hathaway 2005). By contrast, our approach is directly least-squares in terms of
the similarity matrix. Ding et al.(2005) explore the relationship between kernel c-
means and symmetric non-negative matrix factorization.
In proximity-based fuzzy clustering (Pedrycz et al. 2004), equation (2) is replaced by

K

k
jkikij jippq

1

*)(,

where denotes the minimum operation. This equation is based on fuzzy calculus
whereas ours is firmly based on probability. Pedrycz et al. (2004) use a weighted
least-squares approach. Their model does not require transitivity. While developing
our model we had examples in mind in which transitivity holds true. Overlapping
clustering (Arabie et al. 1981) differs in that memberships are 0 or 1 and do not need
to sum to 1 per individual.
In the introduction we showed by example that the model has no unique solution for
n=K=2. Nevertheless the two algorithms often found the same P. Uniqueness
conditions are clearly an area of further research. The network properties of the model
also deserve further study.
We developed two algorithms for fitting our model. Our DE approach was developed
before we realized that the problem could be formulated as a sequential quadratic
programme. DE helped to convince us that QPirw really worked, also when no perfect
fit was achievable. Our experiments with DE confirm the conclusion of Price and
Rönkkönen (2006) that global search needs large F value (F ≥ 0.4) and high CR
speeds up convergence (if the minimum can be reached with high CR). With more
insight in the problem, we developed QPirw which beats DE in speed. Further research
should be point out whether QPirw is efficiently enough to speedily analyze problems
with large K and n. QPirw is similar to the projected Newton method in Chu et al.
(2004) to factorize non-negative matrices. We may also wish to replace the least-
squares loss function by an entropy-based function (Lee and Seung 2001).
The model shares many features of already popular models. Yet it is different.
Although we did not present a real application we expect the model to find many
interesting applications in the near future.

Acknowledgements

We thank Patrick Groenen and Martin Boer for helpful discussion.

References

Arabie, P., Carrol, J. D., DeSarbo, W. and Wind, J., 1981. Overlapping clustering: A

new method for product positioning. J. of Marketing Research, 18, 310-317.
Bezdek, J. C., 1981. Pattern recognition with fuzzy objective function algorithms.

Plenum, New York.
Borg, I. and Groenen, P., 1997. Modern multidimensional scaling theory and

applications. Springer, New York.
Catral, M., Han, L., Neumann, M. and Plemmons, R. J., 2004. On reduced rank

nonnegative matrix factorization for symmetric nonnegative matrices. Linear
Algebra and its Applications, 393, 107-126.

Chu, M., Diele, F., Plemmons, R. J. and Ragni, S., 2004. Optimality, computation,
and interpretation of nonnegative matrix factorization.

Cutler, A. and Breiman, L., 1994. Archetypal analysis. Technometrics, 36.
Ding, C., He, X. and Simon, H. D., 2005. On the equivalence of nonnegative matrix

factorization and spectral clustering. Proc. SIAM Int'l Conf. Data Mining,
606-610.

Hathaway, R. J., Davenport, J. W. and Bezdek, J. C., 1989. Relational duals of the c-
means clustering algorithms. Pattern Recognition, 22, 205-212.

Hathaway, R. J. R. J., 2005. Kernelized non-euclidean relational c-means algorithms.
Neural, parallel & scientific computations, 13, 305-326.

Heinen, T., 1996. Latent class and discrete latent trait models. Similarities and
differences. Sage, London.

Hoff, P. D., 2005. Bilinear mixed-effects models for dyadic data. Journal of the
American Statistical Association, 100, 286-295.

Hoff, P. D., Raftery, A. and Handcock, M. S., 2002. Latent space approaches to social
network analysis. Journal of the American Statistical Association, 97, 1090-
1098.

Jolliffe, I. T., 1986. Principal component analysis. Springer Verlag, New York.
Lawson, C. L. and Hanson, R. J., 1974. Solving least squares problems. Prentice-Hall,

Englewood Cliffs, N.J.
Lee, D. D. and Seung, H. S., 1999. Learning the parts of objects by non-negative

matrix factorization. Nature, 401, 788-791.
Lee, D. D. and Seung, H. S., 2001. Algorithms for non-negative matrix factorization.

In: T. G. Dietterich and V. Tresp (Ed.^Eds), Advances in neural information
processing, Vol. 13, MIT Press, 556-562.

McLachlan, G. and Peel, D., 2000. Finite mixture models. Wiley, New York.
Mooijaart, A., van der Heijden, P. G. M. and van der Ark, L. A., 1999. A least squares

algorithm for a mixture model for compositional data. Computational
Statistics & Data Analysis, 30, 359-379.

Nowicki, K. and Snijders, T. A. B., 2001. Estimation and prediction for stochastic
blockstructures. . Journal of the American Statistical Association, 96, 1077-
1087.

Pedrycz, W., Loia, V. and Senatore, S., 2004. P-fcm: A proximity-based fuzzy
clustering. Fuzzy Sets and Systems, 148, 21-41.

Price, K. V. and Rönkkönen, J. 2006. Comparing the uni-modal scaling performance
of global and local selection in a mutation-only differential algorithm. IEEE

Congress on Evolutionary Computation, CEC 2006, Vancouver, Canada,
IEEE pp. 2034-2041.

Price, K. V., Storn, R. M. and Lampinen, J. A., 2005. Differential evolution, a
practical approach to global optimization. Springer, Berlin.

Storn, R. and Price, K., 1997. Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global
Optimization, 11, 341 - 359.

ter Braak, C. J. F., 2006. A markov chain monte carlo version of the genetic algorithm
differential evolution: Easy bayesian computing for real parameter spaces.
Statistics and Computing, 16, 239-249.

Table 1. Artificial 6 6 Q matrix for six individuals labeled A-F and a 6 4 matrix P
with classes labeled C1 - C4, giving a perfect fit to the off-diagonal elements of Q by
the formula PPT.

17.00000

7.010000

001110

001110

001110

000001

F

E

D

C

B

A

FEDCBA

Q

3.07.000

0100

0010

0010

0010

0001
4321

F

E

D

C

B

A

CCCC

P

Table 2. Artificial 6 6 Q matrix for six individuals labeled A-F and the best fitting 6
 4 matrix P with classes labeled C1 - C4, giving RMSE = 0.022.

19.07.0000

9.018.0001.0

7.08.01000

00111.02.0

0001.019.0

01.002.09.01

F

E

D

C

B

A

FEDCBA

Q

10.090.000

098.0002.0

21.079.000

0088.012.0

0001

003.009.088.0
4321

F

E

D

C

B

A

CCCC

P

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1 0.748d0.1206

F2 2 d

Figure 1. F in relation to dimension d = nK for two functions. Vertical lines at d = 10
and 180, corresponding to the mean number of parameters updated per function
evaluation for n = 20 with CR = 0.1, K = 5, n = 20, and CR = 0.9, K = 10, n = 20,
respectively.

In
d

iv
id

u
al

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

In
d

iv
id

u
al

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 2. Example 2020 Q matrix with K = 5 (left: highly structured; right: ill-
structured).

In
d

iv
id

u
al

s

1 2 3 4 5

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

In
d

iv
id

u
al

s

1 2 3 4 5

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 3. Estimated, perfectly fitting P matrices corresponding to the Q matrices of
Figure 2.

number of classes

R
M

S
E 0.0

0.1

0.2

0.3

0.4

Q1 struc high, K = 5

2 4 6 8 10 12

Q2 struc high K = 10

2 4 6 8 10 12

Q3 struc low K = 5

0.0

0.1

0.2

0.3

0.4

Q4 struc low K = 10

Figure 4. Scree plot for the four simulated 2020 Q matrices (top row: highly
structured Q, bottom row: ill-structured Q; left column: true K = 5; right column: true
K = 10).

Figure 5. Trace plot for the highly structured Q with 10 true classes for K = 10 for the
four scenarios of DE with CR = 0.1 (top), 0.5 (middle) and 0.9 (bottom).

