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Abstract 
 
Let Q be an n  n square symmetric matrix Q of nonnegative elements between 0 and 
1, e.g. similarities. In the paper we interpret elements of Q as the probability that two 
individuals are identical in some sense, e.g. belong to the same class, and are thus 
confused by a measuring device. We want to model this matrix by a latent class model 
with K classes with K fixed, but unknown. Members of the same class are always 
confused. Let P be an n  K matrix with assignment probabilities of individuals to 
classes (0 ≤ pik ≤ 1 and row sums of 1). Our problem then amounts to approximating 
Q by PPT, while disregarding the diagonal elements of Q. In a least-squares 
formulation, it is not an eigen problem because of the constraints on P. It is also more 
difficult than standard quadratic programming or fitting a latent budget model as our 
problem is quartic rather than quadratic in the parameters. We present two algorithms 
to solve the problem; a brute force genetic algorithm (differential evolution) and an 
iterative row-wise quadratic programming approach. Both algorithms converged to 
the same minimum on simulated data, which made it more likely that they reached the 
global minimum. 
 
Key words: non-negative matrix decomposition, latent class model, network, fuzzy 
clustering, differential evolution 

1. Introduction 
 
The data in this paper forms an n  n square symmetric matrix Q of nonnegative 
elements between 0 and 1. The elements of Q could measure the similarities of 
individuals in a social network, of genes in a gene network or of products in market 
science. We will think about the elements of Q as the probability that two individuals 
are judged the same by some measuring device, or equivalently the probability that 
the device confuses the two individuals.  

We wish to summarize the similarities among individuals by imposing a simple 
model. Three kinds of models are often used in data mining: distance models (Borg 
and Groenen 1997), vector models such as the bilinear model  (Jolliffe 1986) and 
cluster analysis models including latent class models (Heinen 1996, McLachlan and 
Peel 2000). Each of these models has been applied to network data (Nowicki and 



Snijders 2001, Hoff et al. 2002, Hoff 2005). Latent classes tend to be easier to 
communicate to the general public than vector models. Distance models take perhaps 
an intermediate position. The vector model would be much easier to understand if it 
had a class interpretation. In this paper we present a constrained vector model. The 
constraints are formulated so as to allow a latent class interpretation.  

In this paper we propose approximating the off-diagonal elements of Q by PPT with P 
an n  K matrix with non-negative elements and K a fixed value. In addition, the rows 
of P must sum to unity. Without the sum constraint, the model amounts to 
nonnegative matrix factorization (Lee and Seung 1999) for symmetric nonnegative 
matrices (Catral et al. 2004, Ding et al. 2005). With the sum constraint, the model can 
be viewed as a latent class model, as we show in this paper.  
Table 1 shows an example matrix (Q) for six individuals named A to F.  Individual A 
is never confused with any other individual. Individuals B-D are always confused. 
The individuals E and F are confused with probability 0.7. This matrix can arise when 
the individuals belong to four classes, labeled C1- C4 in Table 1 and members of the 
same class are always confused. Individual A belongs to a unique class C1 and 
individuals B-D all belong to a single class C2 in Table 1. The confusion probability 
of 0.7 between individuals E and F may arise when E is always a class C3  type and F 
belongs to C3 with probability 0.7 and thus with probability 0.3 to another class, 
named C4 in Table 1. The solution is not unique. For instance, a confusion probability 
of 0.7 also arises with E of types C3 and C4 with probabilities 0.25 and 0.75 and F of 
types C3 and C4 with probabilities 0.1 and 0.9, respectively, as 0.25  0.1 + 0.75  0.9 
= 0.7. Also, solutions with more than four classes would also give a perfect fit. In the 
matrix P in Table 1, F may for instance belong to two classes C4 and C5 with 
probabilities summing to 0.3. For our purpose, all these solutions are equivalent as 
they yield the same Q. In general, the number of classes is unknown. We will seek the 
smallest number that gives a good fit of Q. 

In section 2 we derive and characterize the model and the approximation problem that 
it gives. In the model each individual belongs with a certain probability to a particular 
class. We call it a latent class model for similarity matrices. We present two 
algorithms to solve it. Section 3 presents a brute force genetic algorithm (differential 
evolution) and section 4 an iterative row-wise quadratic programming approach. In 
section 5 we describe the performance of both algorithms on artificial data and we 
conclude with a summary of our findings. 

 

2. The latent class model for a similarity matrix 
 
Let Q be an n  n square symmetric matrix with elements qij between 0 and 1, e.g. 
denoting the confusion probability of individuals i and j. We seek a model that allows 
us to sample or draw class memberships for each of the n individuals in such a way 
that the probability that individual i and j are of the same class (i.e. are confused) is qij 
for all i ≠ j (i = 1,…, n; j = 1,…, n). The classes are unknown; also their number is 
unknown, but we hypothesize a size K from now on for some value of K.  
We assume here the transitivity property: if individuals i and j are of the same type 
and individuals i and k are also of the same type in a draw from the model, then 
individuals j and k should be of the same type in this draw so that i, j and k are all of 
the same type, i.e. they fall in the same class in this draw. A simple model that fits our 



purpose is a model with K disjoint latent classes in which each individual belongs to 
precisely one latent class. We extend this model with probabilities. Let P be an n  K 
matrix with elements pik being the probability that individual i belongs to class k. Note 
that  
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By drawing the class memberships for each individual i from the ith
 row of P 

independently, the probability that individuals i and j fall in the same class (the 
coincidence probability) is 
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The problem that we wish to solve is to find a matrix P such that *
ijq is close to the 

observed qij for all i≠j. The { *
ijq } are thus the coincidence probabilities induced by a 

latent class model with memberships probabilities P.  

For a mathematical convenience we use least-squares approximation. The problem 
then is to minimize the loss function  
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where T
ip denotes the ith row of P, subject to the nK non-negativity and n equality 

constraints in (1). We will report the loss in terms of the root mean squared error 

(RMSE), defined as ))1(/()(2 nnf P . 

We make the following observations.  

(1) In matrix notation the problem can almost be written as the squared Frobenius 

norm 
2TPPQ  except that that the diagonal elements do not count. Without 

constraints (1) and with the diagonal counting, the optimal P could be derived from an 
eigen analysis of Q, which is an algorithm often used for principal components 
analysis. It is unclear, however, how to take advantage of this for solving the 
constrained problem. 

(2) Our problem is reminiscent of latent budget analysis (Mooijaart et al. 1999) and 
archetypal analysis (Cutler and Breiman 1994), where a rectangular an n  m matrix 
C with non-negative elements that sum row-wise to 1 (each row being a composition) 
is approximated by ABT with A and B being of size n  K and m  K, respectively, 
having non-negative elements and each row A and each column of B summing to 
unity. So, if n = m, C is symmetric and A =B the two problems coincide. Mooijaart et 
al. (1999) estimate the latent budget analysis model by alternating least-squares. This 
is a very convenient method because solving for A, while keeping B fixed, is a 
constrained quadratic programming problem as is solving for B, while keeping A 
fixed. This alternating least-squares method is not available in our problem.  



(3) Without the sum constraint, our problem is also akin to non-negative matrix 
factorization (Lee and Seung 1999) for which several algorithms have been proposed 
(Chu et al. 2004). Non-negative matrix factorization is in fact equal to latent budget 
analysis without sum constraints.   

 (4) Loss function (3) involves terms of the form 22
jkik pp , jliljkik pppp  and jkik pp  (i ≠ 

j); it is thus rather quartic than quadratic in the parameters, although terms of the 
form 4

ikp do not enter the loss function because the diagonal of Q is excluded.  

(5) The matrix P has n(K-1) free non-negative parameters and the data matrix Q has 
n(n-1)/2 off-diagonal elements. If the problem were linear and unconstrained, a 
perfect fit would be feasible for n(K-1)> n(n-1)/2, i.e. for K > (n+1)/2. This lower 
bound for K is not always attainable of course. For example, if Q is diagonal, then K 
= n gives a perfect fit and smaller values of K do not. 

 

3. Differential evolution (DE) approach 
 
Loss function (3) with constraints (1) is not convex and thus potentially contains 
many local minima, even beyond the minima that are generated by rearranging of the 
columns of P. This is the reason we attempted a global optimization method, in 
particular Differential Evolution (Storn and Price 1997, Price et al. 2005). Differential 
Evolution (DE) is a derivative-free global optimization method that belongs to the 
family of Evolutionary Algorithms. In DE a population of solution vectors x1 … xN is 
used to explore the solution space and is maintained for a number of generations till 
the population reaches the minimum.  In our problem, each member vector xi = 
vec(Pi) with Pi a trial solution of (3) subject to (1). The size of the population depends 
on the problem and the other parameters of the DE, but in general it should be higher 
than the number of parameters d. After some trials we chose N=2d = 2nK. 

We initialized each members vector ix (i = 1, … , N) independently with nK random 

values between 0 and 1 and then divided the K values of each of the n individuals by 
their sum so as to satisfy constraints (1). The exploration of the space is carried as 
follows in DE. 
A new “mutant” vector *

ix  is proposed for each member vector ix in turn, using three 

different randomly selected vectors of the population  
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with F a scalar. In addition to (4), another genetic operation is used in the DE, namely 
crossover. With a crossover rate CR (0<CR≤1), a fraction CR of the elements in ix  

are mutated according to (4), whereas the remaining parameters are left unchanged, 
i.e. are set equal to the corresponding values in xi. We chose to apply the crossover 
operator on the level of the individuals within the parameter vector, i.e. the parameters 
of an individual are either mutated according to (4) or left unchanged. In terms of Pi, 
each row of Pi is thus independently selected for mutation, the selection probability 
being CR. The resulting mutant vector *

ix  does not normally satisfy the constraints 

(1). We therefore replace any negative value in *
ix  by 0 and any value greater than 1 



by 1 and then divide the K values of each of the n individuals within *
ix  by their sum. 

After these operations the mutant  *
ix  satisfies the constraints. The member vector 

ix is replaced by *
ix  if )()( *

ii ff xx   with f(.) the loss function. Each possible update 

of ix requires one function evaluation, when loss function values of members are 

stored.  
The parameter F determines the step size. In a Markov Chain Monte Carlo (MCMC) 
version of DE, ter Braak (2006) argued that F should be proportional to d-0.5 so as to 

make the step length 
0

*
ri xx  approximately dimension independent. In a further 

investigation of this, Price and Rönkkönen (Price and Rönkkönen 2006)  
distinguished between Global Search (GS) schemes where r0 ≠ i and Local Search 
(LS) schemes where r0 = i and derived optimal dimension dependent functions for F 
for each scheme from experiments with simple loss functions. Figure 1 shows the two 
functions. In GS, the optimal F decreases very slowly with d ( 1206.0

1 748.0  dF ), 

whereas in LS the square-root rule holds ( dF /22  ). In the MCMC, LS is used 

albeit with dF /83.2 (ter Braak 2006). We let d depend on the real number of 
elements updated in a crossover, the mean dimension with crossover rate CR being 

KnCRd  (Figure 1).  We were interested in the performance of the four 
scenarios obtained by crossing GS versus LS with F1 versus F2. We also tried three 
values of CR, 0.1, 0.5 and 0.9 within each scenario, yielding 12 runs for each Q and 
K. 

 

4. Iterative row-wise quadratic programming (QPirw) 
 
 
In this section we propose to use a row-wise iterative algorithm to minimize loss 
function f(P) in equation (3) subject to the constraints in (1). The advantage of this 
approach is that it leads for each row to a standard quadratic program.  

To update pi, we minimize f(P) over pi, while keeping the other rows of P fixed. This 
boils down to minimizing  
 
|| qi – P–ipi ||

2 (5) 

 
where qi denotes the ith column of Q without qii, and P–i denotes matrix P after 
deleting row i, subject to the constraints 

 
0p i  and 11p T
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where 0 and 1 denote vectors of appropriate lengths with all zero and unit elements, 
respectively. 

The constraint 11p T
i  can be enforced by reparametrization, as follows. We can 

always write  

 



pi = Uv + 1 
 
with U a columwise orthonormal basis for the orthocomplement of 1, and v and  a 
vector and scalar respectively. Because U and 1 jointly span the whole space, such 
vector and scalar always exist. Now the constraint that 11p T

i implies that 

1 111vU TT  , and because UT1=0 and 1T1=K, it follows that = K–1. Hence, we 
can always write  

 
pi = Uv + K–11 
 
and, as is readily verified, pi thus specified, satisfies the constraint 11p T

i for every v. 

Hence, by reparameterizing pi as above, it remains to minimize the function  

 

g(v) = || qi – P–iK
–11 – P–iUv ||2  

 
over v subject to the constraint that Uv + K–11  0. This problem can be recognized as 
a standard quadratic program or, equivalently, the so-called LSI problem solved by 
Lawson and Hanson (1995) of minimizing 

h(v) = || f – Ev ||2  
 
subject to Gv  h, 
 
where  
 f = qi – K–1P–i1  (where P–i1 = 1, due to the constraint P–i1 = 1) 
 E = P–iU 
 G = U 
 h = –K–11. 
 
Lawson and Hanson (1995) provide a quick and effective algorithm for minimizing 
this function. After having thus found the optimal v, the vector pi that minimizes f 
over pi is given by Uv + K–11.  

By iteratively updating each row of P as described above, repeating this cycle of 
sequential updates as long as the overall function value has not converged, eventually, 
the algorithm will converge to a stable function value, which hopefully is at least a 
local minimum.  

We ran this algorithm from 10 independent random initial matrices P (as in DE) and 
observed the number of iterations (where one iteration consists of updating each row 
of P once). 



 

5. Examples 
 
 

In the case of the example Q of Table 1, Differential evolution (DE) and iterative 
row-wise quadratic programming (QPirw) were both able to find a perfect fitting P 
with four classes. QPirw required between 5 and 10 iterations and was much quicker 
than DE. For sake of completeness, the root mean squared error (RMSE) values for 
the best solution with two and three classes were 0.284 and 0.043.  
 
Table 2 shows another 66 example of Q. The minimum RMSE values that we found 
were 0.254, 0.046, 0.022, 0.021and 0.021 for 2-6 classes, respectively. Neither DE 
nor QPirw was able to find a perfect fitting P, not even with 6 classes. This strongly 
suggests that no such perfect solution exists. Table 2 shows the solution with 4 
classes. The classes C1 and C3 express the similarity between individual A and B and 
D, E and F.   Class C2 expresses the uniqueness of individual C and class C4 is needed 
to fit Q in more detail. The solution for K = 5, essentially splits class C4 in two, 
yielding a slightly better fit to element qDF. 
 
In order to show that our algorithms work for larger Q, we simulated four matrices of 
order 2020 in 22 layout of number of classes (5 or 10) and two methods of 
generating the values of P (one yielding a highly structured P and another yielding an 
ill-structured P). In the first method, the rows were first divided in classes of equal 
size and the rows falling in the class k were sampled from Dirichlet distribution with 
parameter αk. The kth element of αk was assigned the value 8 and the remaining 
elements were set to 2/(K-1). In the second method all rows are generated from a 
single Dirichlet distribution with parameter α = T

K ),...,,( 21  with αj ~ 
Uniform(0,1). Figures 2 and 3 display example Q and P, respectively. 
 
For each matrix a perfect fit is found when K is greater than or equal to the true 
number of classes (Figure 4). QPirw required ca. 5 second on a 3MHz desktop 
computer for carrying out the fit for n = 10, K=10 and 10 restarts. The random restarts 
often resulted in the same RMSE. Each fit required between 50 and 200 iterations 
when the number of classes was not greater than the true number. For larger number 
of classes the number of iterations went up to a maximum of ca. 1000 while using a 
convergence criterion for f(P) of 10-6. DE required ca. five times longer to converge. 
It often found a similar but never lower RMSE and did not always find the prefect fit. 
Figure 5 displays a trace plot of the highly structured case for K = 10. GS with F1 
appears to converge best, even with the slow start with CR = 0.1. The square-root rule 
performed worse than F1, both in GS and LS. . In the LS the square-root rule tends to 
converge prematurely to local minimum, in particular with high CR or high d. GS 
with F1 and CR = 0.9 did best. It reached a perfect fit for the true K for all four Q 
matrices. 
 
 



6. Discussion 
 
This paper proposes a latent class model for approximating a similarity matrix and 
presents two algorithms for fitting the model. We first discuss our model and then the 
algorithms. 
The key identity is equation (2), which gives the coincidence probability of two 
individuals, i.e. the probability that they fall in the same class. In our approach the 
similarity matrix is approximated by the coincidence probabilities induced by a latent 
class model. There are several related approaches.  
Fuzzy clustering uses memberships that satisfy the constraints in equation (1) and is 
thus in spirit similar to our aims. Fuzzy c-means (Bezdek 1981) works with 
rectangular data. Hathaway et al. (1989) developed a fuzzy c-means algorithm that 
works on relational data. In their approach the similarity matrix is implicitly 
transformed to an underlying coordinate space where fuzzy c-means could be applied. 
Fuzzy c-means is least-squares on squared distances between individuals and cluster 
means and this property is extended to the kernel version by the ‘kernel 
trick’(Hathaway 2005). By contrast, our approach is directly least-squares in terms of 
the similarity matrix. Ding et al.(2005) explore the relationship between kernel c-
means and symmetric non-negative matrix factorization.  
In proximity-based fuzzy clustering (Pedrycz et al. 2004), equation (2) is replaced by 
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where   denotes the minimum operation. This equation is based on fuzzy calculus 
whereas ours is firmly based on probability. Pedrycz et al. (2004) use a weighted 
least-squares approach. Their model does not require transitivity. While developing 
our model we had examples in mind in which transitivity holds true. Overlapping 
clustering (Arabie et al. 1981) differs in that memberships are 0 or 1 and do not need 
to sum to 1 per individual. 
In the introduction we showed by example that the model has no unique solution for 
n=K=2. Nevertheless the two algorithms often found the same P. Uniqueness 
conditions are clearly an area of further research. The network properties of the model 
also deserve further study. 
We developed two algorithms for fitting our model. Our DE approach was developed 
before we realized that the problem could be formulated as a sequential quadratic 
programme. DE helped to convince us that QPirw really worked, also when no perfect 
fit was achievable. Our experiments with DE confirm the conclusion of Price and 
Rönkkönen (2006) that global search needs large F value (F ≥ 0.4) and high CR 
speeds up convergence (if the minimum can be reached with high CR). With more 
insight in the problem, we developed QPirw which beats DE in speed. Further research 
should be point out whether QPirw is efficiently enough to speedily analyze problems 
with large K and n. QPirw is similar to the projected Newton method in Chu et al. 
(2004) to factorize non-negative matrices. We may also wish to replace the least-
squares loss function by an entropy-based function (Lee and Seung 2001). 
The model shares many features of already popular models. Yet it is different. 
Although we did not present a real application we expect the model to find many 
interesting applications in the near future.  
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Table 1. Artificial 6  6 Q matrix for six individuals labeled A-F and a 6   4 matrix P 
with classes labeled C1 - C4, giving a perfect fit to the off-diagonal elements of Q by 
the formula PPT.  
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Table 2. Artificial 6  6 Q matrix for six individuals labeled A-F and the best fitting 6  
 4 matrix P with classes labeled C1 - C4, giving RMSE = 0.022. 
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Figure 1.  F in relation to dimension d = nK for two functions. Vertical lines at d = 10 
and 180, corresponding to the mean number of parameters updated per function 
evaluation for n = 20 with CR = 0.1, K = 5, n = 20, and CR = 0.9, K = 10, n = 20, 
respectively. 
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Figure 2. Example 2020 Q matrix with K = 5 (left: highly structured; right: ill-
structured). 
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Figure 3.  Estimated, perfectly fitting P matrices corresponding to the Q matrices of 
Figure 2. 
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Figure 4. Scree plot for the four simulated 2020 Q matrices (top row: highly 
structured Q, bottom row: ill-structured Q; left column: true K = 5; right column: true 
K = 10). 
 



 
 
Figure 5. Trace plot for the highly structured Q with 10 true classes for K = 10 for the 
four scenarios of DE with CR = 0.1 (top), 0.5 (middle) and 0.9 (bottom). 
 
 
 




