Genomic Breeding Value Prediction Lessons for and from simulations

Mario Calus

Workshop Genomic Selection, 7-8 September, Salzburg

Animal Breeding & Genomics Centre

Objectives of this presentation Assumptions of GS Reflection on simulations for GS Distribution of gene (QTL) effects Accuracy of GS / Breakdown of LD Implications for the analysis

GS versus QTL mapping

GS uses effectively a 'multiple QTL-model'

How can GS work where QTL mapping failed?

Differences between GS and QTL mapping I

QTL mapping:

- Significant effect for an evaluated locus is required
- Estimate QTL effect may be biased, because only 1 QTL is fitted at the time

Genomic selection:

- All effects are estimated simultaneously
- If some SNP effects are overestimated, others must be underestimated (since y_i=sum(SNP))
- On average (across SNPs), bias may be limited

Differences between GS and QTL mapping II
GS heavily depends on:
LD between marker-QTL, persistent across population

Dense marker maps

Many QTL mapping studies sofar used:

- Linkage analysis
- Sparse marker maps

=> Implication for simulations for GS: generation of LD is important (i.e. r² between adjacent markers)

Simulations for GS - Introduction

Daniel Gianola's opinion about simulations:

'In short, they are like reading Playboy magazine: "what if" (the problem is the if...)'

Despite this, simulations are:

Cheap to test:

- Accuracy of GS
- Accuracy of QTL mapping methods to detect and position QTL
- Useful to check models:
 - Technically
 - (Derivation from) model assumptions / sensitivity analysis

Still, it is important that simulated data reflect real life

Genomic Selection – the process

Reference dataset:

1000+ animals with known genotypes (SNPs) and reliable phenotypes (e.g. EBVs) **Obtain EBVs for SNPs** Accurate EBVs young selection candidates Young selection candidates with known genotypes (SNPs) but WITHOUT performance records

Simulation of marker (and QTL) data

LD between loci:

- Simulate coalescence (gene drop) process across many generations
 - pedigree evolves simultaneously

Sample generation of animals with segregating loci directly from (known) distribution

- no pedigree directly available
- Pedigree can be generated by (random) mating for some generations

Simulation of pedigree

Important issues:

Mating

- Random or selection?
- Effective population size (Ne)
 - Constant across generations?
 - Strongly affects genetic drift / LD

Simulation of LD

Coalescence:

- Simulate 100+ generations:
 - Monomorphic or segregation loci in generation 0
 - Mutations throughout generations
- \Rightarrow LD due to drift, selection, migration,...

Directly from distribution:

- Draw alleles at first locus, using some distr. of allele frequencies
- Draw r (r2) between alleles on two loci
- Draw alleles at second locus, conditional on r2 and alleles at first locus

How to avoid these issues?

Use real data with known genotypes & pedigree:

- Draw some marker loci to be QTL
- Simulate QTL effect for those loci
- Remove 'QTL' loci from marker data

Still, the following assumptions are made:

- QTL have the same characteristics as SNP
 - Mutation rate / number of alleles / LD with surrounding SNP
- Distribution of QTL effect is known

<u>Characteristics of QTL – LD with SNP</u>

Effect of mutation rate on LD (Calus, De Koning & Haley, unp. data):

Distribution of QTL effect

- Important for analysis:
 - Which model to use?
 - Prior information in Bayesian

Only a few QTN are detected until now (perhaps only a few really exist?)

Simulating QTL effects from Gamma (or normal) distribution may be too optimistic?

=> Make sure number of large QTL is not too big

Implications from analysis of real data

- Results on real data indicate that sampling variance SNP effects from one distribution may be sufficient (e.g. Janss et al., 2008;):
 - Roughly equal contributed variance for all SNPs
 - Close to 'BLUP' implementation Meuwissen et al., (2001)
- What does this tell us about the distribution of SNP (QTL) effects?
 - SNP effects are roughly equal
 - What about the (true) QTL effects?
 - What is the relation between estimated SNP effects and real QTL effects?

Accuracy (r) of GEBVs

Accuracy of GEBVs depends on (Goddard, 2007):

- Number and size of QTL
- Accuracy of estimated (QTL) effects; size reference data:
 - Number of animals (i.e. phenotypes)
 - Number of markers (LD (r²) between QTL and marker)
- Reference data may increase in time:
 - Number of animals increases (accuracy GEBVs ↑)
 - LD between QTL and markers may change (accuracy GEBVs ↓)

=> In time GEBVs need to be re-estimated, but how often??

Frequency of re-estimating SNP breeding values

Select young animals based on GEBV \downarrow Use in the population \downarrow Record own phenotypes and / or from relatives

=> Time to obtain phenotypes determines time frame for re-estimation

What frequency is required to ensure accurate selection?
 Depends on break-down LD between SNP and QTL

Animal Breeding & Genomics Centre

Replace

GEB∖

by EBV

Breakdown of LD between SNP and QTL

LD between loci can be changed by selection

- Due to change in allele frequencies
- Accuracy of GS ↓

Reported results (from simulation):

- Slow decrease when mating is random (Meuwissen et al., 2001; Solberg et al., 2008)
- Rapid decrease under selection (Habier et al., 2008; Muir, 2008)

Lessons from analyzing simulated data:

Parametrization of the model

Calus M.P.L., Meuwissen T.H.E., De Roos A.P.W., Veerkamp R.F., Accuracy of genomic selection using different methods to define haplotypes, Genetics 178 (2008) 553–561.

Aim of this study:

Compare effect of definition of haplotypes (based on 1 or more markers) and the relationships between haplotypes at the same locus, on accuracy of GEBVs

General model

 $y_i = \mu + animal_i + sum(haplotype_{ijk}) + e_i$

animal is polygenic effect
 sum(haplotype_{ijk}) is sum of paternal and maternal haplotype effects, summed across all loci

 Solved using Gibbs sampling, avoiding the Metropolis-Hastings step

<u>Models</u>

 SNP1: marker locus is putative QTL locus with two haplotypes (1 and 2)

HAP_IBD10: midpoint of window of 10 marker loci is putative QTL locus with many haplotypes depending on P(IBD)

Accuracy using SNP alleles / haplotypes
 Haplotypes / IBD have higher accuracy at low marker density

QTL-MASXII workshop – May 2008; Uppsala Sweden

Simulated data:

14 medium-size QTL; 36 small QTL (Gamma distributed)

Results:

Medium-sized QTL were (nearly) all found doing QTL-mapping or GS
 NONE of the small QTL was detected

QTL-MASXII workshop – May 2008; Uppsala Sweden II

High accuracies for animals with no phenotypic performance:

- 0.92 (Villumsen et al., using IBS-haplotypes)
- 0.87 (Calus et al., using single SNP approach)

What causes difference IBS-haplotypes vs. single SNP?

 Non-overlapping IBS haplotypes (treating it as a locus with multiple alleles)

 IBS haplotypes may be better able to track QTL than single SNP approach, when a number of SNP are in moderate LD with the QTL

Results based on different haplotype lengths

Haplotype length	Number of 'loci'	Total number of haplo's	Accuracy young animals
HAP_IBD (20)	5994	366,959	0.84
1	6000	11925	0.87
2	3000	11630	0.89
5	1200	21607	0.90
10	600	41419	0.87
20	300	50572	0.82

 \Rightarrow Optimal haplotype length probably resembles number of SNP that are on average in 'reasonable' LD with QTL

 \Rightarrow Additional SNPs (i.e. increasing haplotype length) adds 'noise' and therefore reduces accuracy

Conclusions

Simulations in GS: Useful for hypothesis testing Be careful with assumptions about number and distribution of QTL!! Parametrization of the model may help to: Fine-tune the model Make inferences about the data: QTL-SNP LD Distribution of QTL effects

QTL-MAS XIII Workshop 20-21 April, 2009 Wageningen The Netherlands

Acknowledgements

Involved companies: Hendrix Genetics, CRV (HG)

 Netherlands Organisation for Scientific Research (NWO – Casimir)

EU-projects:

