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Abstract  

 
The aim of this study is to determine the economic feasibility of second generation ethanol from 
sugar cane, whereby traditional ethanol production is combined with the use of lignocellulosic 
biomass for ethanol production. By applying cost-benefit analysis, this study evaluated the 
viability of the second generation ethanol technology as an alternative to conventional sugarcane-
to-ethanol, both in terms of processing technology, and of land use impacts. Furthermore, an 
attempt is made to analyze impacts on CO2 mitigation and land use in economic. The research 
results indicate that: i) from an economic point of view, the first generation plant is clearly 
preferable. With IRR of 18.7%, Minimum selling price of US$ 0.31 per liter, and NPV of US$ 
213.0 million, first generation ethanol production from sugar cane has a large economic 
advantage compared to the second generation plant (IRR of 13.5%, Minimum selling price of 
US$ 0.40 per liter and NPV of US$ 78.5 million).  ii) from an environmental point of view, a 
second generation biofuel that makes use of lignocellulosic biomass plant is clearly preferable. 
The second generation plant uses 49.6% less land and avoids a CO2 debt average of 942,282 ton 
per year throughout the life  of the project. iii) Productivity gains improve profitability (IRR) and 
reduce biofuel prices (Minimum selling prices). Increasing the yearlt Ethanol and sugar cane 
productivity’s growth rate from 0.5% to 4.0% leads to a range of IRR from 17.5% to 21.5%, and 
of price from 0.29 US$/l to 0.32 US$/l for first generation plant, and from 13.2% to 14.2% and 
of price from 0.39 US$/l to 0.40 US$/l for second generation plant. iv) Process improvement 
shows little economic impact but matters on environmental side because less land is needed. Up 
to 10% more land can be saved compared to least advanced technology. v) Energy conversion 
development can improve income of the plant, especially for the first generation plant. Each 5% 
improvement can lead to 0.6% change in IRR project, and a reduction of 1.1% in the Minimum 
selling price. vi) Equipment investment is the most sensitive parameter to alter biofuel prices and 
profitability. The conventional plant is more sensitive to equipment investment, land prices and 
trash costs in this order while second generation plant is sensitive to equipment investment and 
almost insensitive to land prices and trash costs changes. vii) Assuming an average payment of 
US$ 29.43 or higher per ton CO2 debt, the second generation plant may become a competing 
alternative to conventional, first generation plant. On average, the technology could be paid at 
reasonable cost (Revenue average of US$ 27.7 million). viii) Productivity gains reduce the 
repayment time of CO2 debt, with ethanol productivity having a stronger contribution. Besides, 
from a growth rate of ethanol and sugar cane productivity from 0.5% to 4.0% per year, the 
repayment time changes from 11.8 years to a range between 6.5 years and 5.5 years and 13 and 
9.5, respectively. In conclusion, the appraisal model represents a useful tool for analyzing many 
issues related with the dilemmas involved in biofuel production. And even having in mind that 
the model developed during the course of this study is a simplification of reality, the obtained 
results are consistent with studied literature and economic theory. 
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1 Introduction  
 

The foreseeable scarcity of fossil fuel for the coming years is represented by limited stocks, the 

energy demand increase due to world growth and the concern about pollution and global 

warming effects have led countries to develop new sources of energy. One of the most successful 

initiatives, recognized at worldwide level, is the production of ethanol in Brazil. 

 

However, riots in many countries from Latin America to Asia, passing through Africa, after the 

recent skyrocketing costs of staple food highlighted an ongoing global food crisis1. Droughts, 

more frequent flooding, patterns of rainfall change and other natural disasters compound this 

crisis. Regardless of these many specialists blame the transfer of land use from food to biofuel 

production as main reason (CNN, 2008-B). The increase of the oil price is also a major reason. In 

May 2008, the oil price reached US$140 per barrel. 

 

This clear dichotomy between energy and food has demanded prompt answers from ethanol 

producers and international institutions around the world. As a consequence, developing fuels 

that can meet the environmental requirement and at same time being socially fair for poor 

countries can be indicated as a way to dealt with this issue. 

 

In this context, renewable energy sources can play an important role, especially biomass from 

agricultural residues, namely lignocellulosic biomass. It can be used to produce energy without 

land use increase and to reduce greenhouse gases (GHG) emission, while CO2 from biomass 

combustion can be re-absorbed by photosynthesis (Maas, 2008). 

 

The product of the process that uses lignocellulosic biomass to produce ethanol (EtOH) is often 

referenced to a second generation biofuel. Explaining fermentation process is out of this 

research’s scope. For a mini-review of the state of art’s fermentation process, an overview is 

presented by Claassen et al. (1999)2. 

 

                                                
1 For a deep vision about the impact on world food crisis, see CNN (2008-A). 
2 For an example of a process’ analysis of bioethanol production using wheat, see Maas (2008). 
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 Analyzing next generation biofuels, David L. Anton of DuPont Biofuels pointed out the 

following items as basic requirements for a successful biofuel commercialization: i) feedstocks 

must be in adequate supply; ii) the product must be compatible with existing infrastructure; and 

iii) biofuel must not compromise fuel performance (Licht, 2008). 

 

 Christoph Berg of F.O. Licht, in turn, presented his doubt about the long-term biofuel 

sustainability as follows: i) the cost of producing biofuels; ii) the perceived threat for food 

security; and iii) the greenhouse gas and energy balances (Licht, 2008). 

 

 Last but not least, Erich Nagele of European Union Comission presented the three pillars for 

next generation biofuel according to European demand: i) security of supply; ii) sustainability; 

and iii) competitiveness (Licht, 2008). 

 

Many companies have already shown interest in starting next generation biofuel production soon 

(Licht, 2008). For instance, Brazilian Crystalsev and American Amyris announced a joint venture 

for starting in 2010 a new kind of fuel production in Brazil (e.g. biodiesel made of sugar cane). 

Their goal is to produce 4 billion-liter-fuel until 2015 (Gazeta Mercantil, 2008). 

 

Brazil is notably a special case in biofuel production. Today, Brazil obtains three times much 

energy from biomass as the world average and five times more than the most European countries 

(Knight, 2007). Sugar cane is the feedstock for biofuel production in the country. This feedstock 

has a huge potential to produce much biomass, in other words, for each ton about 56% stand for 

bagasse, tips and leaves (Finguerut, 2006). 

 

 Brazil started its experiences in this field in the 1920’s and created its biofuel program in 1975. It 

has a long tradition in developing solutions in biofuel area, such as flex fuel cars.  

 

Moreover, Brazil complies with Anton’s three basic requirements. Firstly, sugar cane production 

is cropped in sufficient quantity nowadays. For season 2007/2008, the Brazil’s production can 

reach 580 million tones (Conab, 2008-A). The 1,038 million tones forecast for season 2020/2021 

is also very noteworthy (Zuurbier, 2008). 
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 Secondly, Brazilian biofuel is compatible with existing infrastructure in the country and abroad. 

Annually, Brazil exports biofuel to more than 50 countries, amongst them US, EU, Japan and 

India (Carvalho, 2005). 

 

 Thirdly, Brazilian biofuel does not compromise fuel performance. Ethanol stands for 40% of 

fuel used to power Brazil’s fleet (Knight, 2007). According to Maas (2008), flex fuel cars whose 

engines can use ethanol or gasoline at any percentage stands for 60% of all cars in the country. 

 

It is equally important to mention that Brazil’s biofuel can dismiss Berg’s doubt and fulfill EU’s 

three pillars properly. First of all, the cost of producing biofuels in Brazil is the lowest in the 

world (Zuurbier, 2008) and the ethanol productivity (reaching up to 8,000 liter/hectare) is the 

highest amongst the producers (Knight, 2007). As a consequence, the supply can continue to be 

met without further difficulty, at least for some time to come. 

 

 Secondly, for Brazil’s case the perceived threat for food security seems not to be a correct 

insight. Brazilian President and Foreign Minister defended that sugar cane for ethanol amounts to 

less than 1% of Brazilian territory and 3 percent of its farmland (CNN, 2008-C). Besides, there is 

still available land for agriculture expansion in the country (Carvalho, 2005; Zuurbier, 2008).  

 

 Thirdly, the greenhouse effect’s gas emission balance for ethanol use is favorable in Brazil when 

considered the feedstock growing, the refinery process and fuel burning. The anhydrous (fuel 

that is added to gasoline) and hydrous (fuel to run cars) ethanols avoid on average emissions of 

2.6 ton CO2/m3 eq. and 1.7 ton CO2/m3 eq., respectively (Macedo et al., 2004).  

 

However, some specialists claim that the expansion of feedstock area to biofuel production even 

when made on degraded pasture may induce deforestation of new areas to grain production. In 

this condition, the traditional emission balance misses the carbon emissions that happen when 

new cropland is developed in forest area. For instance, Searchinger et al. (2008) affirm that 

ethanol from Brazilian sugar cane could pay back the upfront carbon emissions due to land 

change in 4 years if the displaced area is only grazing land. Nevertheless if the displaced ranchers 

convert rainforest to pasture, the payback period could rise to 45 years. 
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 Fargione et al. (2008) affirm that sugarcane ethanol produced on cerrado3 would take about 17 

years to repay the biofuel carbon debt. According to these authors, biofuel produced on 

converted land could be greater net emitters than fossil fuels during a long period of time. 

 

 In this context, Searchinger et al. (2008) highlight the importance of using bagasse and trash to 

produce biofuel because they can avoid land use and its associated emissions. In the chapter 2, 

this discussion is expanded to build a methodology that considers the environmental costs of 

CO2 emissions. 

 

Considering that i) Brazil is very efficient in biofuel production; ii) lignocellulosic biomass is 

present in ethanol production and its use contribute to decrease CO2 emission; iii) the biofuel 

world demand tends to increase sharply in coming years; iv) a global food crisis demands actions 

for increasing land to food production; v) the carbon emission balance tends to become more 

and more important, an important question arises: could second generation biofuel to be 

produced nowadays in Brazil efficiently under economic point of view?  

 

This discussion is very timely and brings up serious technological implications for biofuel and 

food production in Brazil for the near future. On the one hand, it is notably known that the 

country has land abundance and that capital has been scarcer. On the other, it is also known that 

land change may lead to an undesired deficit in Brazilian biofuel carbon balance. Furthermore, 

Latin America must contribute more significantly to feed people in Africa and Asia in the coming 

years. Thus, this debate is not only about economic matter now, but also about land restriction in 

the future and sustainable environmental production system. 

 

The primary goal of this study is to assess the viability of the second generation biofuel 

production as an alternative to produce additional first generation biofuel via land expansion. 

 

To tackle these issues, the following objectives are formulated in this project: 

 

                                                
3 a hot climate, semi-humid vast tropical savanna in Brazil with a pronounced seasonality marked by a dry 
winter season from May through October. 



© Agrotechnology and Food Innovations B.V., member of Wageningen UR 13

i) To collect data on biofuel production and price, land and energy’s price for Brazil 

as well as on costs for building a conventional and second generation biofuel 

plant and their operation costs; 

ii) To build a methodology for appraising whether a second generation biofuel plant 

is feasible when compared with the option of producing additional first 

generation biofuel via land expansion. 

iii) To evaluate the environmental costs by taking into consideration revenues for 

CO2 avoidance when second generation biofuel plant is used. 

iv) To assess the effectiveness of this methodology to make decision on second 

generation biofuel plant construction versus biofuel land expansion at current 

technology level, considering economic efficiency. 

 

In Chapter 2, a data set is constructed. It serves as an input for investment projects simulations 

and the appraisal methodology used in this research. In chapter 3, simulations are performed with 

the developed methodology and the results are presented. In chapter 4, main findings are 

discussed and limitation on own analysis is presented. Finally, in the last chapter the conclusions 

are presented and possible ways forward are discussed. 
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2 Data and Methodology 
 

This Chapter presents the dataset (see section 2.1) that serves as an input for the applied 

methodology. Section 2.2 presents theoretical framework. Finally, Section 2.3 presents the 

appraisal methodology based on cost benefit analysis. 

2.1 Data 
 

The best available data are collected and an explanation of choices is given. Section 2.1.1 

describes the calculation of the ethanol and energy prices. Next, Section 2.1.2 presents the 

Brazilian sugar cane productivity. Then, Section 2.1.3 describes the calculation of Brazilian 

ethanol production average. Finally, section 2.1.4 presents the main investments and running 

costs to build a first and second generation biofuel plant. 

  

2.1.1 Ethanol and energy prices 
 

Ethanol prices are extracted from the Price Statistics of the World Ethanol & Biofuels Report 

(Licht, 2008). These prices were collected in February 2008 and weighted according to kind of 

Brazilian biofuel share (Conab, 2008-B) to determine the average price that is reference for 

biofuel price in simulations performed with applied methodology built in chapter 2. The average 

price is given in Table 2.1. 

Table 2. 1: Ethanol Average Price  

Ethanol Share Prices, US$/m3 

Anhydrous 40.30% 477.15 

Hydrous 59.60% 426.08 

Non-fuel Hydrous 0.10% 475.78 

Average Price 446.71 
Source: Conab (2008-B) and (Licht, 2008), own elaboration 

 

 Energy price is extracted from the statistical report of the Brazilian Electricity Research 

Company (EPE). To construct the data used in Section 2.3’s methodology, average fare (129.13 

R$/MWh) was taken and divided by exchange rate of 1US$ = R$ 1.9516, which is the period 
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average for the year 2007 (FXHISTORY, 2008). The result is an electricity cost of 66.17 

US$/MWh.  

 

2.1.2 Brazilian sugar cane productivity 
 

Sugar cane productivity, measured in fresh ton/hectare, are from the brand-new study about 

profile of Brazilian sugar and ethanol sector of National Supply Company (Conab, 2008-B). The 

productivity average from the season 2007/08 is presented in Table 2.2. 

 

Table 2.2: Brazilian productivity average 

Region Productivity, t/ha 

Center-South 84.3 

North-Northeast 65.8 

Brazil 81.4 
Source: Conab (2008-B), own elaboration 

2.1.3 Brazilian ethanol productivity 
 

Ethanol average productivity (kilogram/liter) is also collected from Conab (2008-B) for the 

season 2007/08. To produce 1 liter of anhydrous ethanol 12.5 kg sugar cane is used. Following 

this principle, the ethanol average for Center-South region is weighted according to the kind of 

biofuel share to determine the ethanol average. Finally, to standardize this average into liter of 

ethanol per ton, the average in kg/l is inverted and multiplied by 1000, for which the final value 

(82.4 l/ton sugar cane) is found. Table 2.3 presents this procedure. 

 

Table 2.3: Brazilian productivity average for Center-South Region 

Ethanol Share (%) 
Sugar cane need 

(kg/lEtOH) 

Anhydrous 40.30% 12.5 

Hydrous 59.60% 11.9 

Non-fuel Hydrous 0.10% 11.9 

Average Productivity (kg/l EtOH) 12.14 

Average Productivity (l/ton sugar cane) 82.4 
Source: Conab (2008-B), own elaboration 
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2.1.4 Investment costs 
 

In this study, multiple sources are used. The investment costs are specified as: i) Plant costs; ii) 

Machines costs, for agricultural purpose; iii) other running costs, which include a) labor, b) 

insurance, taxes and other costs, c) other operation costs; and iv) land costs; v) trash costs. 

 

For Plant and Machine costs, measured in US$/ton and US$/ha, are used data provided by 

Cunha (2006). As these data are for a distillery to produce sugar and ethanol with capacity of 

processing 2 million sugar cane per season (164,720 M3), they are scaled up according with 

scaling factor of 0.6: Updated costs = basic costs * (new capacity/old capacity)^0.6. 

 

Other running costs were collected from a recent study presented by Goldemberg (2008). The 

original values were in €/100 l4. To transform these values into US$/l was used the following 

exchange rate: 1€ equals 1.205 US$ (FXHISTORY, 2008) because it simulates the exchange rate 

of as the data were produced. Finally all values are referenced to 2007 using Chemical 

Engineering Plant Cost Index (CEI). Table 2.4 presents these costs. 

 

Table 2. 4: Investment cost for the first generation biofuel production 

 

Item Unit Value 

Plant Cost 1st Generation US$/ton sc                 53.50  

Machines US$/ha                 1,307  

Other running costs US$/l                  47.57  

Labor  US$/l                    7.45  

Insurance, taxes and other  costs US$/l                    6.88  

Other operation costs US$/l                  33.24  
Source: Cunha (2006), Goldemberg (2008), own elaboration 

 

For the second generation plant investment costs, an estimate was provided by research of 

Mladjan Stojanovic from Agrotechnology and Food Innovations BV in July 2008. It will be 

detailed in Section 2.3.  

                                                
4 In the article was written €/1000 l. However, the number was considered too small. After checking the original source 
mentioned by author, it was assumed that the correct value is €/100 l. 
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 Land prices were retrieved pasture land prices from database of Agricultural Economics Institute 

for some São Paulo state’s regions (IEA, 2008). A land price average for a typical production area 

in Center-South region (10,588.85 R$/ha) was collected. Because the average considers only the 

prices but not the size of traded land, seventy per cent of this value was considered and divided 

by exchange rate of 1US$ = R$ 1.9516. The result is a price of 3,798.01 US$/ha. Finally, trash 

costs were collected from Finguerut (2006): 13.70 US$/ton in 2006 values. Considering the 

material with 50% humidity and value referenced to 2007, the trash costs equal 7.24 US$/ton. 

 

2.2 Theoretical Methodology 
 

To deal with the choice of building a new plant using second generation biofuel technology or 

expanding a biofuel production using conventional plant and more land, the following standard 

methods for the financial appraisal for long-term projects will be applied: i) Payback time (PB), ii) 

Net present value (NPV), and iii) Internal rate of return (IRR)5. 

 

2.2.1 Payback (PB) 
 

 Payback is the time needed for a project to recover the original investment in future cash flows. 

For instance, if a four-year project has an initial investment of US$ 600, an estimated net cash 

inflow of US$ 200 yearly (vide Table 2.5), the payback is calculated as follows. 

Table 2. 5: Cash flow of a 4-year investment 

Year Initial Investment (US$) Net cash flow (US$) 

0 600 - 
1 - 200 
2 - 200 
3 - 200 
4 - 200 

 

  PB = 200+200+200 = 1st+2nd+3rd = 3 years 

                                                
5 This framework is overwhelmingly known in financial management and is based on Van Horne (1992), Diacogiannis 
(1993), Pinches (1994), Broadbent and Cullen (2004), and Gardebroek and Peerlings (2006). 
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Thus, the payback would be 3 years. However, looking only at this concept, it is not possible to 

know if the project is good or not. The concept only says when the nominal initial investment 

can be recuperated.6 

 

2.2.2 Net Present Value (NPV) 

 

 Payback is a limited parameter because it ignores the time value of the money concept, which 

means that US$ 1 today differs US$ 1 in the future. To consider this, the present value of future 

benefits and costs need to be taken into account. 

 To reach this aim, the cash flow should be discounted back to its net present value (NPV) using 

the rate of return that can be earned on an investment in the financial market with similar risk. 

Each discounted cash inflow and outflow should be summed. Thus: 

t
N

t
t

t
N

t
t rBrCCNPV )1/()1/(

11
0 +++−−= ∑∑

==

    (1) 

Or in short: 

t
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t
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N

t
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 = t
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  (2) 

Taking the net yield ( tY ): 

ttt CBY −=          (3) 

Plugging equation 3 in equation 2, we have: 

t
N

t
t rYNPV )1/(

0

+=∑
=

        (4) 

Where: 

                                                
6 For other basic appraisal techniques’ examples, vide Broadbent and Cullen (2004). 
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0C  - initial investment  tC  - cost at time t  tB  - benefit at time t 

tY  - yield at time t   t - time of the cash flow N - life time of the project 

r - discount rate  
 
Some assets, namely perpetuity, give a constant cash flow stream that goes forever7. The present 

value of perpetuity with first payment starting in one period from now is equal to constant cash 

flow stream divided by discount rate, as follows8. 

rSrSNPV t
t

t

t
t /)1/(

1

=+= ∑
∞→

=

      (5) 

Where: 
St - annual cash flow 
r - discount rate  
 

 Using equations 4 and 5, cash flows’ net present value can be determined. This method 

considers the value of the money concept and for this reason it can be used for taking financial 

project decisions. The decision rule for NPV is as follows: i) if NPV is positive, the project is 

acceptable; ii) if NPV is zero, the investor is indifferent; iii) if NPV is negative, the project should 

be rejected. Finally, the bigger NPV, the better the investment. 

 

2.2.3 Internal Rate of Return (IRR) 

 
 The IRR stands for the economic yield on the investment. In other words, this is the effective 

return rate (profitability) which can be earned on the invested capital. Therefore, the equation 4 

should be equaled to zero: 

0)1/(
0

=+=∑
=

t
N

t
t IRRYNPV        (6) 

 Graphically IRR is the point at which the NPV intersects the horizontal axis (NPV equals to 

zero). Vide Figure 2.1 for an example in which the IRR is 5.5%. 

 
 
 

                                                
7 Gardebroek and Peerlings (2006) apply perpetuity for valuation of land. 
8 See Pinches (1994) for a demonstration of this formula. 
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Figure 2.1: Project’s NPV against Discount Rate 
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 The decision rule for IRR is as follows: i) if IRR is greater than the cost of capital, the project is 

acceptable; ii) if IRR is equal to the cost of capital, the investor is indifferent; iii) if IRR is smaller 

than the cost of capital, the project should be rejected. Finally, for the situation in which multiple 

IRR happens, NPV is a preferred tool9. Finally, the bigger IRR, the better the investment. 

 

2.3 Appraisal Methodology: a cost benefit analysis 

 
In the next section a cost benefit analysis is performed utilizing similar framework used for Curry 

and Weiss (1993), Zerbe Jr. and Dively (1994) and Perkins (1994). Some adaptations were needed 

to apply this tool to a biofuel plant options. 

 

The appraisal methodology considers that a first generation plant produces biofuels in the 

conventional way using only the sugar cane juice and that second generation plant produces 

biofuels integrating the conventional production and also production from lignocellulosic 

biomass (bagasse and trash). Both plants produce 200,000 M3. Furthermore, the integrated plant 

shares investment and part of its operation cost.  

 

                                                
9 For a complete debate about multiple IRR, see Van Horne (1992), Pinches (1994), Broadbent and Cullen (2004). 
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Thus, based on concepts presented in the previous section, the appraisal methodology performs 

a cost benefit analysis using following items (see Table 2.6). 

 

Table 2. 6: Appraisal Methodology 
2.3.1) Fixed costs 

  Plant Cost (1st generation costs or 2nd generation costs) 

  Machines 

  Land 

 

2.3.2) Working capital 

 

2.3.3) Operating Costs 

  Ethanol operating costs 

  Royalties (only for second generation costs) 

 

2.3.4) Total Revenue 

  Ethanol revenue plus Energy revenue 

 

2.3.5) Tax = Tax Rate * Income before Tax (IBT) 

 Tax Rate 

  Income before tax (IBT) 

 

2.3.6) Net cash flow: Total revenue - Fixed costs - Operating costs (including Royalties 

for 2nd generation plant) – Tax 

 

2.3.7) Project Appraisal (NPV, IRR, Payback time) 

 

2.3.8) Price Simulation 

 Minimum selling price 

2.3.1 Fixed costs 
 

For the purpose of this research, fixed costs stand for plant, machine and land costs. 
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Plant costs 

Once that for first plus second generation plant is necessary to integrate the cost, the calculation 

of the plant costs has different assumptions as follows. 

 

   1St generation methodology: Plant costs are collected in a presentation by Cunha (2006) 

based on 164,720 m3 plant that produces sugar and ethanol. In this work the capacity is 200,000 

M3. Therefore, total costs are scaled up. As a consequence, the following formula applies for the 

conventional plant: 

  1st generation plant investment = plant cost per ton * ton per year 

 

Resulting a total investment for the 1st generation plant of US$114.0 million. 

 

  2nd generation methodology: For the second generation plant investment costs, an 

estimate was provided by the research of Mladjan Stojanovic from Agrotechnology and Food 

Innovations BV. Second generation sugarcane ethanol plant cost was estimated using literature 

data (Cardona Alzate & Sánchez Toro, 2006 and Eggeman & Elander, 2005) that assumes dilute 

acid pretreatment of lignocellulose. However, as this project considers that only one plant will 

work using both system producing 200,000 M3, the costs were scaled down10 considering the 

share of conventional and second generation systems. The total volume is reached under the 

condition that all bagasse and trash produced at the field are used for EtOH production, while 

extra trash is purchased to burn for plant power requirements. The total investment for the 

integrated plant is therefore US$ 188.3 million (vide Table 2.7). 

 

Table 2.7: Estimate of investment cost for second generation plant 
 
  Separate plants 
 1st gen 2nd gen 
Total capacity, Ml 200 200 
Base cost, MUS$ (2007) 150 227.25 
Present Capacity, Ml 100.78 99.22 
Present Cost, MUS$ (2007) 99.43 149.22 
  Integrated plant, MUS$ 
Total Cost, MUS$ (2007) 188.32 

                                                
10 Using the same formula used previously: Updated costs = basic costs * (new capacity/old capacity)^0.6. 
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Machines 

Machine costs are collected in a presentation by Cunha (2006), standardized for 2007 using CEI 

and scaled up to 200,000 M3. 

  Machines costs = machines cost per ha * amount of land 

For conventional plant, machines cost represents US$ 30.1 million, while for integrated plant 

this is US$ 15.2 million. 

 

Therefore, the total equipment investment that is sum of the plant and machines investment is as 

follows: 

1st gen plant: US$ 144.1 million  2nd gen. plant t: US$ 203.5 million. 

 

Land costs 

According to Conab (2008-B), 65% of added land used for sugar cane crop is former grazing 

area. Thus pasture land is the proxy for land price in Brazil. To construct this parameter, prices 

were collected in Instituto de Economia Agrícola database. Furthermore, it is assumed that 70% 

of average pasture land price represents the land price because the land price average is not 

weighted by the total amount of land sold. The result is a price of 3,798.01 US$/ha. 

  Land costs = land cost per ha * amount of land 

 

2.3.2 Working capital 
 

As the model does not treat in detail stocks of materials, biofuel stocks and the work in process, 

it was considered that a share of 6% equipment investment is used as working capital, having in 

mind 18 years project life. See Perkins (1994) for further discussion on working capital. 

  Working capital = total plant investment * 6% 

 

2.3.3 Operating costs 
 

For both plants the operating costs are determined. Only for the second generation biofuel plant 

royalties are paid. 
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Ethanol operating costs 

The volume of 200,000 M3 times the cost per liter. Ethanol costs per liter based on Goldemberg 

(2008) were transformed in US$ and referenced to 2007 using CEI. 

   Ethanol operating costs: volume * ethanol cost/liter 

 

Royalties 

5% of ethanol revenue produced with second generation will paid as a compensation for 

technology use. 

  Royalties = 2nd generation biofuel production * 5% 

 

2.3.4 Total Revenue 
 

Total revenue is the sum of ethanol and energy revenues. Ethanol Price is the weighted price 

provided by Licht (2008) as in the Table 2.1. Electrical Energy Price is the price average of 66.17 

US$/MWh provided by EPE (2007). Coefficients 1 and 2 stand for the possibility of not full 

operation (less than full-time). It was adopted as being 95%. Coefficient 3 is the trade energy 

share that can be sold to public grid. As a new plant is being built, it was considered 100%. 

  Total revenue = Ethanol revenue + Energy revenue 

   Ethanol revenue = volume * ethanol price * coefficient 1 

   Energy revenue = amount of energy sold to the public grid * energy price * coefficient 2 

* coefficient 3 

 

2.3.5 Tax 
Stands for the tax rate times the income before tax (Tax: Tax rate * Income Before Tax ). 

 

Tax rate 

Load Tax in Brazil is above of 40%. There are many taxes and a complex tax system exist. At 

moment, personal income tax has two ranges 16.5% and 27.5%. Van Horne (1992) applies 40% 

for some simulations. The appropriate tax rate depends on the tax system and it varies a lot from 

country to country. For the purpose of this simulation a tax rate of 35% is adopted.  
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Income Before Tax (IBT): stand for total revenue minus operating costs including royalties for 

the second generation plant, minus interest payment, minus depreciation. Revenue and operating 

costs are shown above. Interest payment and depreciation are shown as follows. 

   IBT: Total revenue – Operating costs (including Royalties only for the 2nd 

generation plant) – Interest payment – Depreciation 

   Interest Payment: Debt * interest rate 

 

For tax treatment, debt control is performed and the interest payment is considered to determine 

the taxable income. A constant amortization system is used with three years waiting period for 

interest payment. During this period, the owed interest is aggregated to debt. 

 

Depreciation 

It is adapted a Modified Accelerated Cost Recovery System (MACRS) to a 15 year asset. 

According to Pinches (1994), industrial steam and electric-generation equipments are 15 year 

class asset. One-half of MACRS’ depreciation in the first year and MACRS’ depreciation rates 

(declining balance method11) were taken up to class life. As the project has only 15 year life span, 

then it is applied straight line depreciation until the rest of the depreciation period. The following 

graph shows the depreciation rate behavior.  

Figure 2.2: Depreciation Rate 
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11   Declining balance method = M * (1/N), Where: M (multiplier): 150% for a 15 year asset and N (normal 
recovery Period): 15 year class asset. 
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2.3.6  Net cash flow 
 

 Finally, the financial project cash flow is determined considering costs and benefits that are 

generated over economic life span investment. The following equation summarizes the 

methodology’s net cash flow. 

Net cash flow: Total revenue - Fixed costs – Working capital - Operating costs (including 

Royalties for 2nd gen.) - Tax 

 

2.3.7 Project Appraisal 
 

Using the theoretical methodology developed in section 2.2, Payback, NPV, IRR for 

conventional and second generation plant are determined. The input for this calculation is the net 

cash flow based on cost benefit analysis. 

 

2.3.8 Price Simulation 
 

Minimum price that the biofuel can be sold to guarantee an internal rate of return at 10%, which 

is the baseline, is calculated for both plants. Other assumptions and hypothesis are presented as 

follows. 

 

Investment interest rate 

An estimate interest rate of 10% per year is used. In April 2008 the bond reference rate (SELIC 

rate) in Brazil was 11.25% per year and Long term run interest rate (TJLP) was 6.25% per year. 

Private rate, in general higher, also applies. Most cases, an interest rate mix is made in which own 

capital is used to favor better financing conditions. 

 

Productivity growth rate 

Considering a growth rate of 1.5% per year, from 2008 until 2025, the Brazilian sugar cane 

productivity average will grow from 81.4 ton/ha to 104.8 ton/ha. For the purpose of this work, 

the average of 92.66 ton per ha is used. This procedure is taken to avoid the need of reducing 

crop area every year. The idea behind of this action is to avoid that the model can be an agent 
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speculative in land use. Similar idea applies for ethanol productivity average that will grow from 

82.4 l/ha to 106.1 l/ha, with consolidated average of 93.75 liter per ton of sugar cane. 

 

Price growth rate 

A yearly growth rate of biofuel and energy price of 3% is considered based on rough calculation 

of biofuel price in dollar from 2000 and 2006 in Brazil. 

 

Land Appreciation 

The ratio between first class land and pasture land in Brazil from 1980 to 2001 varied from 1.5 to 

2.5 according to Rezende (2002). Taking this in terms of land appreciation rate, the value of 

2.46% a year comes out (land appreciation rate = (2.5/1.5)^(1/21) -1 = 2.46%). This is used in 

this work to simulate the land valorization.  

 

Residual value of the investment 

The salvage value of 5% is considered for machine and plant. Furthermore, all land is sold at the 

end of life span project in 2025. 

 

2.4 CO2 assessment: a first attempt 
 

First, it is assumed that the extra land used for the first generation represents the land saved for 

the second generation and that for this reason a revenue may compensate second generation 

investors. In other words, it is ignored that the second generation plant indeed repays the CO2 

debt quicker once it produces more ethanol per ton sugar cane and only the economic aspect is 

considered. This hypothesis will be relaxed in section 2.4.1 where the repayment time is studied. 

For this purpose, the repayment is divided into carbon storage, ethanol displacement and 

transportation emission. 

 

2.4.1 Minimum price per ton CO2 debt 
Minimum price per ton CO2 stands for the price that equals the investments between 

conventional and second generation plants. This value represents the money amount that makes 

both investments economically equal considering revenue for CO2 avoidance to second 
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generation plant. The CO2 revenue stream is discounted and compared with the difference 

between net present value of 1st and 2nd generation plant as follows. 

  NPV (CO2 Debt avoided * Price CO2 per ton ) = ∆NPV 

 

CO2 Debt avoided stands for the amount that is avoided because less land is used once that 

second generation technology is being applied. The scenario reference is a conversion of 

Brazilian Cerrado in a wooded ecosystem into sugar cane (sc) biofuel production (Fargione et al., 

2008). The revenue payment is considered annually according with the existing CO2 debt. Initial 

carbon debt and CO2 repayment are 165 ton CO2 per hectare and 9.8 ton CO2 per year per 

hectare, respectively (Fargione et al., 2008). Thus, this CO2 debt goes down yearly up to zero with 

annual payment after 17 years12 (See Figure 2.3). 

 

CO2 Debt avoided = Initial carbon debt – annual repayment 

Land saved = difference between land required for conventional and second generation plants 

Initial carbon debt = 165 ton CO2 per hectare * land saved 

Annual repayment = 9.8 ton CO2 per year per hectare * land saved 

 

Price CO2 per ton is the unknown that will be found in the model. This price will grow at the 

same growth rate of prices (3% per year). The time life of revenue stream is 17 years. 

 

Figure 2. 3: CO2 Debt against time 
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12 This value is presented in Table 2.8. 
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∆NPV stands for the difference between the net present values between conventional and 

second generation plant investments. 

  ∆NPV = NPV conventional plant – NPV second generation plant 

 

2.4.2 Repayment time 
 

 First of all, Fargione et al. (2008) consider annual life-cycle GHG reduction from biofuels, 

including displaced fossil fuels and soil carbon storage. A first attempt is to separate soil carbon 

storage from the rest of GHG reduction from biofuels’ contribution as follows. 

 

Repayment = Net CO2 avoidance’s EtOH + Net CO2 storage – Transport CO2 emission 

 

Net offset is 9.8 Mg CO2/ha annual and Transport CO2 emission is 0.195 Mg CO2/ha (Fargione 

et al., 2008). An estimate for net CO2 avoidance’s EtOH is performed as follows. 

 

Considering the chemical equation of ethanol combustion and the fact that CO2 biomass 

combustion can be absorbed by growing plants:  

C2H5OH + 3O2 → 2CO2 + 3H20 (1 mol ethanol → 2 moles CO2) 

It is possible to realize that 1 mol of ethanol combusted corresponds to 2 mols of CO2 emitted 

and that 1 ton ethanol can stock 1.91 ton CO2. This is the amount of CO2 that will be recycled. 

Taking Fargione et al. (2008)’s reference (Macedo et al., 2004), we have average of 68.7 

t/ha.annum from season 1998/99 to 2002/03 and 86.0 l/ton sugar cane. Furthermore, the 

EtOH density is 0.789 kg/l.  

 

To determine the EtOH production (l/ha), the following formula is applied. 

Production (l EtOH/ha) = EtOH productivity (l/ton sc) * sc productivity (ton sc/ha) 

 

The production in l EtOH/ha is multiplied by EtOH density to determine the production in kg 

EtOH/ha: 

Production (kg EtOH/ha) = EtOH Production (l EtOH/ha) * EtOH density 

 

Then the Net CO2 avoidance’s EtOH is determined: 
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Net CO2 avoidance’s EtOH (ton CO2/ha) = Production (kg EtOH/ha) * CO2 stocked tsc 

 

Finally, the Net CO2 storage (ton CO2/ha) is found: 

Net CO2 storage = Net offset - Net CO2 avoidance’s EtOH – Transport CO2 emission 

 

Last but not least, the repayment time is determined: 

Repayment time (years) = Carbon debt (t CO2/ha)/ Repayment 

 

In the next chapter, Net CO2 storage and Transport CO2 emission are fixed (based on Fargione 

et al., 2008) and Net CO2 avoidance’s EtOH and Repayment are updated considering that sugar 

cane and ethanol productivity increase with the second generation plant use. Table 2.8 shows the 

repayment time based on Fargione et al. (2008). 

 

Table 2. 8: Repayment time Fargione et al.’s scenario (2008) 

Carbon debt CO2 , t/ha 165 

Productivity, l/tsc  86.00  

Productivity, tsc/ha 68.70  

Production, EtOH l/ha  5,908  

Density ETOH, kg/l  0.789  

Production EtOH, kg/ha  4,662  

tCO2 captured/t EtOH  1.91  

Net CO2 avoidance' EtOH, tCO2/ha  8.90  

Transportation emission, tCO2/ha  0.195  

Net CO2 storage, tCO2/ha  1.09  

Net offset, tCO2/ha  9.80  

Repayment time, years 17 
 

Last, the summary of the appraisal methodology built in sections 2.3 and 2.4 can be found in 

Appendix. Using the model written in these spreadsheets13, all simulations, scenarios, and 

sensitivity analysis of this project can be performed. 

                                                
13 For more details about using spreadsheets on financial management, see Diacogiannis (1993). 
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3 Results 

 
This chapter presents the main results produced using methodology developed in chapter 2. 
Section 3.1 shows economic results, while section 3.2 deals with environmental ones. 

3.1 Economic Assessment 

 

3.1.1 Economic analyses 

 
Applying the appraisal methodology developed in chapter 2, the following results are obtained. 
They provide the base for comparison of different scenarios to be simulated in the next sections. 
The economic comments can be seen at section 4.1. 
 

Table 3. 1: 1st gen. plant – economic results 
  years 
Project life 18 
Pay-back time 8,4 
 MUS$ (2007) 
Electricity revenue  (198,510 MWh) 13.6 
Internal rate of return (IRR) 18.70% 
  MUS$ (2007) 
NPV 213,0 
  US$/l 
Minimum Selling Price 0.31 
  MUS$ (2007) 
Plant Investment 114,0 
Machines 30.1 
Land Investment 87,4 
Total investment 231,5 

 
Table 3. 2: 2nd gen. plant – economic results 

  years 
Project life 18 
Pay-back time 8,1 
Electricity revenue  (0 MWh) 0 
Internal rate of return (IRR) 13.50% 
  MUS$ (2007) 
NPV 78,5 
  US$/l 
Minimum Selling Price 0.40 
  MUS$ (2007) 
Plant Investment 188.3 
Machines 15.2 
Land Investment 44,1 
Total investment 247,6 
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3.1.2 Scenario 1: Productivity gains (S1) 

 
This scenario simulates sugar cane and ethanol productivity increase. Brazilian agricultural 
productivity and ethanol productivity have grown considerably in the recent period and deserve 
special attention in this work. Thus, S1 varies the productivity growth rate from 0.5% to 4.0% 
per year and obtains the plant profitability (see Figures 3.1 and 3.2) considering the initial 
hypothesis (sugar cane productivity of 81.4 ton/ha and ethanol productivity of 82.4 l/ha). 
 
 

Figure 3. 1: 1st gen. plant - IRR versus productivity growth and price 
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Figure 3. 2: 2nd gen. plant - IRR versus productivity growth and price 
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3.1.3 Scenario 2: Process improvement (S2) 

 
Once that the best technology available is being considered not much space exists for drastic 
changes. However, in the carried discussion an important doubt rose up about ethanol yield 
fermentation. The baseline is that cellulose and hemicellulose will be converted in sugar at rate of 
43%. In reality, this value can be a bit lower or higher. To eliminate this doubt, S2 simulates the 
ethanol yield fermentation range of 39% a 47% against profitability of second generation and 
selling price, once that this issue is applicable only for this kind of plant. The results are presented 
in the following table. 
 

Table 3. 3: 2nd gen. plant: EtOH yield versus min. selling price, IRR and land saved 

EtOH yield fermentation Minimum Selling price IRR Land saved, ha 

39% 0.40 13.5% 10,860 

41% 0.40 13.5% 11,148 

43% 0.40 13.5% 11,422 

45% 0.40 13.5% 11,683 

47% 0.40 13.5% 11,933 

3.1.4 Scenario 3: Energy conversion development (S3) 

 
Electricity is a source of revenue for the first generation plant. In our model, conventional plant 
sells electricity and second generation plant buys trash to produce energy to meet its internal 
demand. Besides, in baseline scenario, the conversion of steam into electricity is 20%. According 
to studied literature, this parameter can vary from 20% to 40%. So, S3 simulates this range 
against the profitability and ethanol price for the first generation plant (see Figure 3.3). 
 

Figure 3. 3: 1st gen. plant - IRR versus energy conversion factor and price 
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3.1.5 Economic sensitivity analysis 

 
The robustness of the model and the sensitivity to some assumptions made are tested by 
sensitivity analyses. Economic sensitivity analysis for the first and second generation plants is 
carried out to assess the impact of equipment investment, land prices and trash costs on the 
minimum selling price and profitability. The equipment investment (plant plus machines costs), 
land prices and trash costs vary from -75% to +100% and the minimum selling price and IRR are 
determined for the first generation plant (see Figures 3.4 and 3.5) and for second generation plant 
(see Figures 3.6 and 3.7). 
 

Figure 3. 4: 1st gen. plant – Min. selling price versus equipment investment, land prices, trash 
costs change 
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Figure 3. 5: 1st gen. plant - IRR versus equipment investment, land prices, trash costs change 

10%

15%

20%

25%

30%

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

Equipment investment, land prices and trash costs c hange

IR
R

Equipment investment Land prices Trash costs
 

 
 



© Agrotechnology and Food Innovations B.V., member of Wageningen UR 35

Figure 3. 6: 2 nd gen. plant –Min. selling price versus equipment investment, land prices, trash 
costs change 
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Figure 3. 7: 2 nd  gen. plant -IRR versus equipment investment, land prices, trash costs change 
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3.2 Environmental analyses 

 

3.2.1 Price per ton CO2 

Using the methodology developed in Section 2.4.1 to the baseline scenario, the following results 
come out. 
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Table 3. 4: Calculation of CO2 price 

Land used in conventional plant, ha 23,024  

Land used in 2nd generation plant, ha 11,602  

Land saved, ha 11,422  

CO2 Debt, t/ha 165 

Initial CO2 debt, t 1,884,564  

Annual repayment, t/ha 9.8  

Annual repayment, t 110,857  

NPV conventional, MUS$ 213,0  

NPV 2nd generation, MUS$ 78,5  

NPV Difference, MUS$ 134,5  

Price US$/tCO2 11.62  

 

3.2.2 Repayment time 

 
Using the methodology developed in Section 2.4.2 to the baseline scenario, the following results 
are determined. 
 

Table 3. 5: Repayment time for baseline scenario 

Carbon debt CO2 , t/ha 165 

Productivity, l/tsc  93.75  

Productivity, tsc/ha  92.66  

Production, EtOH l/ha 8,687  

Density ETOH, kg/l 0.789  

Production EtOH, kg/ha 6,854  

tCO2 captured/t EtOH 1.91  

Net CO2 avoidance' EtOH, tCO2/ha 13.09  

Transportation emission, tCO2/ha 0.195  

Net CO2 storage, tCO2/ha 1.09  

Net offset, tCO2/ha 13.99  

Repayment time, years 11.8  
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3.2.3 Environmental sensitivity analysis  

 
To find out how the repayment time changes when productivity increases, an environmental 
sensitivity analyses is carried out for second generation biofuel. Varying the ethanol productivity 
increase from 0,5% to 4% per year, time to repay biofuel carbon debt changes from 6,5 to 5,5 
years. Similarly, varying the sugar cane productivity increase from 0,5% to 4%, the repayment 
time is between 13 and 9,5 years (See Figure 3.8). 
 

Figure 3. 8: 2nd gen. plant - Repayment time versus productivity growth 
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The same information can be obtained in terms of ethanol and sugar cane productivity. From 
0.5% to 4.0% ethanol productivity growth per year, the productivity ranges between 178.0 and 
210.0 l per sc ton (see Figure 3.9).  
 

Figure 3. 9: 2nd gen. plant - Repayment time versus ethanol productivity 
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For the same growth interval, the sugar cane productivity varies from 85.0 to 116 ton sc per 
hectare (see Figure 3.10). 
 

Figure 3. 10: 2nd gen. plant - Repayment time versus sugar cane productivity 
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4 Discussion 

 
This chapter presents the discussion on economic and environmental issues (sections 4.1 and 4.2) 
based on the analysis presented in previous chapters. Moreover, section 4.3 presents some 
limitations on our analysis. 

4.1 Economic discussion 

 
Under economic point of view (see Tables 3.1 and 3.2), first generation plant is preferable to the 
second generation plant. With IRR of 18.7% and NPV of US$ 213.0 million, it has a large 
economic advantage against the second generation (IRR of 13.5% and NPV of US$ 78.5 million). 
The greater the IRR and NPV, the better the investment (see argumentation on sections 2.2.2 
and 2.2.3). Both plants have similar payback, which is between 8 and 9 years (conventional plant: 
8.4 years and second generation plant: 8.1 years, including the waiting period of 3 years). See 
figures 4.1 and 4.2 for a summary. 

Figure 4. 1: Investments costs and NPV 
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The conventional plant costs US$ 114.0 million while second generation plant costs US$ 188.3 
million. On the other hand, conventional plant needs 23,024 hectares (US$ 87.4 million) while 
second plant needs 11,602 (US$ 42.1 million). This fact has important consequences for 
environmental issue, which is discussed in the next section. Comparing machine costs, one can 
observe that conventional plant project needs to spend almost the double of the second 
generation investment. However, adding up all costs, as a total initial investment, first generation 
plant costs 6.5% less (US$ 231.5 million against US$ 246.6 million). Finally, the conventional 
plant is able to offer ethanol at much lower cost and at higher profitability (0.31 US$/l against 
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0.40 US$/l and IRR of 18.7% against 13.5%, see Figure 4.2). In other words, the first generation 
plant has about 37% higher profitability and can sell the biofuel for about 23% less. 
 

Figure 4. 2: IRR and Minimum selling price 
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Under S1, a range of ethanol and sugar cane productivity growth rate from 0.5% to 4.0% per year 
leads to a range of IRR from 17.5% to 21.5%, and of price from 0.29 US$/l to 0.32 US$/l for 
first generation plant (see Figure 3.1), and from 13.2% to 14.2% and of price from 0.39 US$/l to 
0.40 US$/l for second generation plant (see Figure 3.2). From a growth rate of 1.5% on, ethanol 
productivity growth rate increases the profitability more than sugar cane productivity growth rate. 
Below 1.5%, the opposite happens. 
 
For S2, ethanol yield fermentation changes were not able to change both minimum selling price 
(0.40 US$/l) and IRR (13.5%). This factor does not play an important role in the economic side. 
However, it reduces the land area. Up to 10% more land can be saved compared with the worst 
fermentation process. Therefore, it contributes to the CO2 balance (see Table 3.3) decreasing the 
carbon pay-off period. 
 
In S3 simulation, varying from 20% to 40% energy conversion efficiency from steam to 
electricity, IRR changes from 18.5% to 21.5% and prices changes from 0.31  US$/l to 0.27 US$/l 
(see Figure 3.3). This changes directly the electricity revenue. Each 5% improvement led to about 
0.6% change in IRR and reduction in 1.1% in the minimum selling price. This finding is 
consistent with the general economic theory because technological improvement can increase 
sensibly the efficiency of the plant and consequently the profitability. 
 
The economic sensitivity analysis indicates that with equipment investment, land prices and trash 
costs changes from -75% to 100%, the minimum selling price and IRR varies: 
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i) from 0.22 US$/l to 0.43 US$/l and from 31% to 11%, respectively for the first 
generation (see Figures 3.4 and 3.5); 

ii) from 0.27 US$/l to 0.56 US$/l and from 32% to 4.7%, respectively for the second 
generation (see Figures 3.6 and 3.7); 

 
Furthermore, the conventional plant is more sensitive to equipment investment, land prices and 
trash costs in this order while second generation plant is sensitive to equipment investment and 
almost insensitive to land prices and trash costs changes. The bigger the line slope, the more 
sensitive the plant is (see Figures 3.5 and 3.7). 
 
As a final observation, it is highlighted that the conventional plant is profitable for all economic 
changes, being that its minimum IRR of 11% is superior to baseline interest rate of 10%.  
 

4.2 Environmental discussion 

 
Under environmental point of view (see section 3.2), the second generation plant is preferable to 
conventional plant. Taking a pure economic comparison, the value of US$ 11.62 per ton CO2  
debt could make both investments equal (both value paid per CO2 and debts vary through the 
project). The logic behind is that second plant investor could receive an extra revenue for the 
CO2 avoidance. This kind of approach depends on the government budget and, for sure, of 
political interest. 
 
Just to give an example of that this technology can be pushed off if political interest grows, 
average values were calculated as follows (see Table 4.1). The CO2 debt and price evolution can 
be found at appendix. The price average grows at baseline interest rate. 
 

Table 4. 1: Annual revenue to CO2 emission 
 

  years 

Project life, years 18 

CO2 Debt average, t 942,282 

Price average US$/t CO2 29.43 

 MUS$ (2007) 

Annual revenue average to be paid 27.74 

 
Under this hypothesis, a CO2 debt average of 942,282 ton and a price average of US$ 29.43 per 
ton CO2 are found. According to this figures, the annual revenue average of US$ 27.7 million 
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should be paid to second generation investor to equalize his profitability to first generation plant 
investment. 
 
A quick calculation for a typical car use in the Netherlands that has an average mileage of 15,000 
km per year, emitting 0.180 kg CO2 per km (average sized gasoline car) show that the cost to be 
paid to correct the CO2 emission could be low. A total emission of 2.7 ton CO2 is calculated and 
the total cost of US$ 79.50 is determined (See Table 4.2). Therefore, the Dutch drivers could pay 
about US$ 80 per year to have a second generation fuel that accounts for the emission effects. 
 

Table 4. 2: Dutch car cost average for CO2 emission 
 

Distance, km 15,000 

CO2 emission in kgCO2/km 0.180 

Total emission tCO2 2.7 

Price average, US$/tCO2 29.44 

Cost average, US$ 79.50 

 
The sugar cane productivity can also strengthen the CO2 balance. When second generation is 
used, the repayment is even done quicker. Much less land is used: almost 50% less (see Table 
3.4). Revisiting the parameters by Fargione et al. (2008) with the methodology developed in 
Section 2.4.2, an estimated decrease of the repayment time could be lowered from 17 to 11.8 
years (see Tables 2.6 and 3.5). 
 
An environmental sensitivity analysis is performed in Section 3.2.3. From a growth rate of 
ethanol and sugar cane productivity from 0.5% to 4.0% per year, following conclusions can be 
made: 
 

i) from 178 l to 210 l of EtOH produced per ton sugar cane, the repayment time varies 
from 6.5 years to 5.5 years (see Figure 3.9); 

ii) from 85 to 116 ton sugar cane produced per hectare, the repayment time varies from 
13 years to 9.5 years (see Figure 3.10); 

 
For both situations, an average repayment time is lower than in the baseline scenarios (11.8 
years). Besides, the best practices show clearer advantage in the reduction of repayment time with 
second generation plant. 
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4.3 Drawback on the results 

 
Some adopted information merits further considerations. The biofuel and electricity prices 
should be considered carefully and come first. The oil price increase can make the biofuel price  
grow sharply. On the other hand, the price of electricity can have a different behavior. The last 
auction for new energy in Brazil registered a price of R$ 78.87 (US$ 40.41) per MWh. However, 
it is not recommended to use this value in our analyses once that it is the reference to new large 
plant capacity built in northern Brazil. Therefore, the adopted electricity price average is R$ 
129.13 (US$ 66.17) per MWh. Depending on the plant’s geographic location, the received price 
can be even higher! 
 
Investment and operational costs are, in turn, not available in the complete extension that is 
desirable. Besides, in many cases, new distilleries are not completely built, but an expansion is 
carried out. In other cases, mills for sugar and ethanol are installed making the costs segregation 
more difficult. For our analyses, the focus was a distillery that produces only ethanol. Further 
research on this topic may compromise the quality of the analysis. 
 
A real estimate for working capital and royalties should be included, that could replace the rough 
values used here and make these items more reliable. Besides, technological parameters are 
ongoing development and can modify our assumptions. For instance, a quick look in the S3 
shows that first generation plant can still benefit an increase in its revenue with energy 
conversion systems development. 
 
Recently the land prices increased a lot mainly in São Paulo state and this deserves special 
attention too. From 2001 to 2006, the land average price had an increase of 113.6% in São Paulo 
state (Agência Estado, 2008). According to specialists interviewed by the same source, the land 
valorization has not considered the ethanol effect yet, once that until 2012/13 more 31 mills will 
be built and consequently more sugar cane will be required. Although Center-South region is 
considered the ideal place for a new plant, this cost can induce a direction change on this issue.  
 
Last but not least, Brazilian ethanol and sugar cane productivity can have a huge impact on the 
results of this model. The economic and environmental sensitivity analysis could show this 
clearly. Besides, Brazil continues improving its productivity and applying very developed 
technology. As a consequence, these parameters should be revisited any time a new simulation is 
performed. 



© Agrotechnology and Food Innovations B.V., member of Wageningen UR 44

5 Conclusion 

 
A comparison between conventional biofuel plant, which uses only the sugar cane juice to 
produce biofuel, and second generation plant, which combines traditional production with 
lignocellulosic biomass use to produce ethanol, was studied. Applying cost benefit analysis, the 
option of building a second generation biofuel plant was compared with the option of producing 
biofuel via land expansion with the conventional technology use. An attempt of analyzing CO2 
impact was also performed. 
 
The best available data on biofuel production and price, land and electricity’s price for Brazil as 
well as on costs for building a conventional and second generation biofuel plant and their 
operation costs were collected (see Section 2.1). 
 
A methodology for appraising the alternatives to produce biofuel in Brazil was built (see Section 
2.3) and an attempt of evaluating the environmental costs by taking into consideration revenues 
for CO2 avoidance for second generation biofuel plant is developed (see Section 2.4). 
 
Applying this framework, economic assessment and environmental analyses were performed (see 
sections 3.1 and 3.2) as well as a discussion of this results and limitations (see Chapter 4). 
 
Exploring the economic and environmental results, some selected scenarios simulation, and the 
sensitivity analysis the following results arise: 
 

i. From an economic view point, the first generation plant is clearly preferable. With IRR of 
18.7%, Minimum selling price of US$ 0.31 per liter, and NPV of US$ 213.0 million, it has 
a large economic advantage compared to the second generation plant (IRR of 13.5%, 
Minimum selling price of US$ 0.40 per liter and NPV of US$ 78.5 million, see Tables 3.1 
and 3.2). 

ii. From an environmental view point, second generation biofuel plant is preferable. It uses 
49.6% less land and avoids a CO2 debt average of 942,282 ton per year through the life 
project (see Table 3.4 and Section 4.2). 

iii. Productivity gains improve profitability (IRR) and reduce biofuel prices (minimum selling 
prices). Ethanol and sugar cane productivity’s growth rate from 0.5% to 4.0% leads to a 
range of IRR from 17.5% to 21.5%, and of price from 0.29 US$/l to 0.32 US$/l for first 
generation plant, and from 13.2% to 14.2% and of price from 0.39 US$/l to 0.40 US$/l 
for second generation plant (see Figures 3.1 and 3.2). 

iv. Process improvement shows little economic impact but matters on environmental side 
because less land is needed. Up to 10% more land can be saved compared (see Table 3.3). 
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v. Energy conversion development can improve income especially for conventional plant. 
Each 5% improvement lead to about 0.6% change in IRR project and reduction of 1.1% 
in the minimum selling price for conventional plant (see Figure 3.3). 

vi. Equipment investment is the most sensitive parameter to alter biofuel prices and 
profitability. The conventional plant is more sensitive to equipment investment, land 
prices and trash costs in this order (see Figures 3.4 and 3.5) while second generation plant 
is sensitive to equipment investment and almost insensitive to land prices and trash costs 
changes (see Figures 3.6 and 3.7). 

vii. with a payment average of US$ 29.43 or higher per ton CO2 debt, second generation plant 
is a competing alternative to conventional plant (Revenue average of US$ 27.7 million, 
see Table 4.1). On average the technology could be paid at reasonable cost. For instance, 
on average a Dutch car user could pay for its CO2 emission compensating the second 
generation plant investor at cost of about US$ 80 per year (see assumption at Section 
4.2).  

viii. Productivity gains reduce the repayment time of CO2 debt, being that ethanol productivity 
has a stronger contribution. Besides, from a growth rate of ethanol and sugar cane 
productivity from 0.5% to 4.0% per year, the repayment time changes from 11.8 years to 
a range between 6.5 years and 5.5 years and 13 and 9.5, respectively (See Figures 3.8, 3.9 
and 3.10). 

 
Tackling the economic feasibility of the second generation biofuel plant in Brazil, this studies 
concludes that under the adopted hypothesis (a chased IRR of 10%), the plant could be 
considered viable (IRR 13.5%). However, when it is compared with conventional plant (IRR 
18.7%), the economic difference is large (5.2%) in favor of the latter. In addition, if an investor 
demands an IRR higher for second generation plant due to the risk involved in this new 
technology (for instance, 4% or 5% more), it could be viable only with reduction of investment 
costs about 15% (see Figure 3.7). 
 
But, on the other hand, the second generation plant can produce much more biofuel using less 
land. Besides, if some revenue is attributed to CO2 avoidance this option can become tenable 
under economic point of view in relative terms as well. Furthermore, this alternative could relieve 
the food crisis once that less land to biofuel production could increase the land availability for 
food production. Last, the CO2 repayment could be done in a reasonable period of time. 
Therefore, a decision about the best choice is multifold and has a broad variety of issues to be 
considered, especially in the political arena. 
 
Finally, the appraisal model represents a useful tool for analyzing many issues related with the 
dilemma involved in the alternatives for biofuel production. And even having in mind that this 
built model is a simplification of reality, the obtained results are consistent with studied literature 
and economic theory. 
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Appendix  

 

Entry data 

 
Basic assumptions Economic parameters

M3/a Trade energy share 100%
Ethanol Plant Capacity 200,000                        Expected ethanol revenue 95%
Brazilian ethanol productivity l/ton sugar cane Energy revenue expectancy 95%

82.4                              Investment interest rate 10%
Sugar cane productivity ton/ha Income tax 35%

81.4                              Residual industry value 5%
Ethanol productivity growth rate 1.50% Land appreciation 2.46%
Sugar cane productivity growth rate 1.50%
Bagasse per ton sugar cane 28%
Trash per ton sugar cane 28%

Costs Prices

1st gen Plant US$/ton sugar cane US$/l
53.5                              Ethanol price 0.45

1st and 2nd gen plant (total investment) M US$ Electricity price US$/MWh
188.3                            66.2         

Machines US$/ha Price growth rate 3.00%
1,307                            

Land US$/ha
3,798                            

Other running costs US$/M3
47.57                            

Labor US$/M3
7.45                              

Insurance, taxes and other  costs US$/M3
6.88                              

Other operation costs US$/M3
33.24                            

Trash costs US$/ton trash
7.24                              

Working capital % equip investment
6%

Royalties % ethanol revenue
5%

2nd generation technology

Bagasse and trash composition (dry matter)
Cellulose 35%
Hemicellulose 25%
Lignin 25%
Ash 15%

Sugars yield hydrolisis
Cellulose 90%
Hemicellulose 90%

EtOH Yield 43%
Fermentation

Energy conversion efficiency
Total Energy to Steam 80%
Steam to Electricity 20%  
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Data Calculation – Part I 
1st + 2nd gen plant

kta m3/a l/a
Plant capacity, EtOH 157.8 200000 200000000

200000000

kta kg l
EtOH productivity 79.52          79518757.95 100784230.6
EtOH productivity per ton sugar cane 73.96906849 93.75
Total sugar cane to be harvested 1,075          
EtOH productivity 78.28          78281242.05 99215769.39
EtOH productivity per ton sugar cane 72.81792 92.29140684

kta kg l
Total bagasse produced 301.007606 301007606
Bagasse (50% wet) per ton sugar cane 280
Total trash produced 301.007606 301007606
Trash per ton sugar cane 280
Total EtOH productivity
Total EtOH productivity per ton sugar cane 146.7869885 186.0418105

t/ha ha
Total area required for sugarcane 92.66 11,602                 

1st gen plant
kta m3/a l/a

Plant capacity, EtOH 157.8 200000 200000000

kta kg l
EtOH productivity 157.8 157800000 200000000
EtOH productivity per ton sugar cane 73.96906849 93.75                  
Total sugar cane to be harvested 2,133          

kta kg l
Total bagasse produced 597.330761 597330761.4
Bagasse (50% wet) per ton sugar cane 280
Total trash produced 597.330761 597330761.4
Trash per ton sugar cane 280

t/ha ha
Total area required for sugarcane 92.66 23,024                 

1st gen plant - Energy produced total
MJ/kg GJ MW MWh

Power potential total, bagasse and trash (50% wet) 9.42075 11254607.54 390.784984
Power potential per ton of bagasse and trash used 9.42075 9.42075
Steam potential total 9003686.032 312.6279872
Steam potential per ton of bagasse and trash used 7.5366
Electricity potential total 1800737.206 62.52559745 500204.7796
Electricity potential per ton of bagasse and trash used 1.50732 0.4187

GJ MW MWh
Steam Demand for internal use 4537200 157.5416667
Rest Energy - Steam 4466486.032 155.0863206
Rest Energy - Steam per ton of bagasse and trash used 3.738704183
Electricity sold to the grid 714637.7652 24.81381129 198,510.49    
Electricity sold to the grid per ton of sugar cane 0.334987895 0.093052193

years
Project life 18

M$ (2007)
Plant Investment 114,028,963        

Machines 30,082,555          

Land Investment 87,444,409          

Total capital investment 231,555,927        
$/l

Minimum Seling Price 0.31
%

Internal rate of return (IRR) 18.7%
years

Pay-back time 8/9

1st gen

2nd gen

Adjust

Adjust all
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Data Calculation – Part II 

 
Bagasse utilization for EtOH 100.00%
Trash utilization for EtOH 100.00%

2nd generation technology Sugars Yeild EtOH Yield
Bagasse and trash composition (dry matter) Hydrolysis Fermentation
Cellulose 35.00% 90.00%
Hemicellulose 25.00% 90.00%
Lignin 25.00% 0.00%
Ash 15.00% 0.00%
Total 100.00%
Total Sugars 60.48% 26.006400%

Energy conversion efficiency
Total Energy to Steam 80.00%
Steam to Electricity 20.00% (20%-old systems
Total Energy to Electricity 16.00% ,40% - new high pressure boilers)

1st gen 2gen
Energy required to produce one liter EtOH (steam)
Pretreatment and SSCF 0 4.23
Distillation and dehydration 21.14 26.42
Evaporation 0 0
Effluent treatment 0 0
Burned lignin 0 0
Feedstock handling 0.96 0
Transportation 0.59 0
Total 22.686 30.65

Integrated 1st + 2nd gen plant
Energy produced GJ MW MWh kta
Lignin Available after hydrolysis (Bagasse + Trash) 1991767.329 69.15858781 75.2519
Unconverted residue available after hydrolysis 170143.0443 5.907744592 18.06046

Power potential total 2161910.373 75.0663324
Power potential per ton of bagasse and trash used 3.5911225
Steam potential total 1729528.299 60.05306592
Steam potential per ton of bagasse and trash used 2.872898
Electricity potential total 345905.6597 12.01061318 96084.90548
Electricity potential per ton of bagasse and trash used 0.159605444

Electricity sold to the grid 0
Electricity sold to the grid per ton of sugar cane 0

GJ MW MWh kta
Steam Demand for internal use 6130000 212.8472222
Missing Energy - Steam 4400471.701 152.7941563
Missing Energy - Steam per ton of bagasse and trash used 7.30956895
Trash demand for missing steam energy 467.1042

years
Project life 18

M$ (2007)
Plant Investment 188,322,091                                                                               

Machines 15,159,236                                                                                 

Land Investment 44,065,087                                                                                 

Total capital investment 247,546,414                                                                               
$/l

Minimum Seling Price 0.40
%

Internal rate of return (IRR) 13.5%
years

Pay-back time 8/9

43.00%

MJ/L
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First Generation Biofuel Results – Part I 

 
 
Parameter Unit Value References Conventional
Ethanol capacity M3 200,000               Data entry

Brazilian ethanol average  l/ton sugar cane 82.4                     Calculated, based on Conab (2008), p.45

Sugar cane productivity ton/ha 81.4                     Calculated, based on Conab (2008), p.45

Plant US$/t 53.5                     Cunha (2006)
scaled up

Machines US$/ha 1,307                   Cunha (2006)
scaled up

Land US$/ha 3,798                   IEA (2008) - 70%  pasture price average

Other running costs US$/M3 47.57                   Goldemberg (2008)
Labor US$/M3 7.45                     

Insurance, taxes and other  costs US$/M3 6.88                     
Other operation costs US$/M3 33.24                   

Trash costs US$/ton trash 7.24                     Finguerut (2006)

Expected ethanol revenue % 95% Parameter for not full operation

Energy revenue expectancy % 95% Parameter for not full operation

Ethanol productivity growth rate % 1.50% Suggestion based on historical data

SC productivity growth rate % 1.50% Suggestion based on historical data

Ethanol price US$/l 0.45 Licht (2008)

Price growth rate % 3.00% Suggestion based on historical data

Income tax % 35% adopted Brazil's average tax

Investment interest rate % 10% Estimate (Selic = 11%, TJLP = 6.75%)

Energy price US$/MWh 66.2                     EPE (2008)

Trade Energy share % 100%

bagasse per ton sugar cane % 28%

trash per ton sugar cane % 28%

Residual industry value % 5% Suggestion for salvage value

Land appreciation % 2.46% Suggestion based on Rezende (2002)

Working capital % 6% Suggestion  
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First Generation Biofuel Results – Part II 

 
Results
Average sugar cane productivity ton/ha 92.66                   

Average ethanol productivity l/ton sugar cane 93.75                   

Need sugar cane thousand tons 2,133                   

Need land ha 23,024                 

Investment
Plant US$ 114,028,963        
Machines US$ 30,082,555          
Equipments' total US$ 144,111,518        
Land US$ 87,444,409          
Total Investment US$ 231,555,927        

Other Costs
Labor US$ 1,490,185            
Insurance, taxes and other costs US$ 1,375,556            
Other operation costs US$ 6,648,518            
Total US$ 9,514,259            

Working capital US$ 8,646,691            

Project appraisal
NPV US$ 213,001,923
IRR % 18.7%
PB 1.43                      8/9

Price simulation
NPV -0.0 
Minimum selling biofuel price 0.31
IRR 10.0%

Calculate
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Second Generation Biofuel Results – Part I 

 
Parameter Unit Value References Conv. + 2nd Gen.
Ethanol capacity M3 200,000               Data entry

Brazilian ethanol average  l/ton sugar cane 82.4                     Calculated, based on Conab (2008), p.45

Sugar cane productivity ton/ha 81.4                     Calculated, based on Conab (2008), p.45

Machines US$/ha 1,307                   Cunha (2006)
scaled up

Land US$/ha 3,798                   IEA (2008) - 70%  pasture price average

Other running costs US$/M3 47.57                   Goldemberg (2008)
Labor US$/M3 7.45                     

Insurance, taxes and other adm. costs US$/M3 6.88                     
Other operation costs US$/M3 33.24                   

Trash costs US$/ton trash 7.24                     Finguerut (2006)

Expected ethanol revenue % 95% Parameter for not full operation

Energy revenue expectancy % 95% Parameter for not full operation

Ethanol productivity growth rate % 1.50% Suggestion based on historical data

SC productivity growth rate % 1.50% Suggestion based on historical data

Ethanol price US$/l 0.45 Licht (2008)

Price growth rate % 3.00% Suggestion based on historical data

Income tax % 35% adopted Brazil's average income tax

Investment interest rate % 10% Estimate (Selic = 11%, TJLP = 6.75%)

Energy price US$/MWh 66.17                   EPE (2008)

Trade Energy share % 100%

bagasse per ton sugar cane % 28.0%

trash per ton sugar cane % 28.0%

Residual industry value % 5% Suggestion for salvage value

Land appreciation % 2.46% Suggestion based on Rezende (2002)

Royalties % 5% Suggestion

Working capital % 6% Suggestion
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Second Generation Biofuel Results – Part II 

 
Results

1st gen ethanol production M3 100,784               

2nd gen ethanol production M3 99,216                 

Average sugar cane productivity ton/ha 92.66                   

Average ethanol productivity l/ton sugar cane 93.75                   

Need sugar cane thousand tons 1,075                   

Need land ha 11,602                 

Investment
1st gen. + 2nd gen. Plant US$ 188,322,091        
Machines US$ 15,159,236          
Equipments' total US$ 203,481,327        
Land US$ 44,065,087          
Total Investment US$ 247,546,414        

Other Costs
Labor US$ 1,490,185            
Insurance, taxes and other costs US$ 1,375,556            
Other operation costs US$ 6,648,518            
Total US$ 9,514,259            

Working capital US$ 12,208,880          

Project appraisal
NPV US$ 78,516,315
IRR % 13.5%
PB 1.06                         8/9

Price simulation
NPV 0
Minimum selling biofuel price 0.40
IRR 10%

Calculate
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CO2 debt and price evolution 

 

Year CO2 Debt (ton) Price US$ per ton CO2 

2008 1,884,564 11.62 

2009 1,773,707 12.78 

2010 1,662,851 14.06 

2011 1,551,994 15.46 

2012 1,441,137 17.01 

2013 1,330,280 18.71 

2014 1,219,424 20.58 

2015 1,108,567 22.64 

2016 997,710 24.90 

2017 886,854 27.39 

2018 775,997 30.13 

2019 665,140 33.14 

2020 554,284 36.46 

2021 443,427 40.10 

2022 332,570 44.11 

2023 221,713 48.53 

2024 110,857 53.38 

2025 0 58.72 

Average 942,282 29.43 

 


