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ABSTRACT: In structural engineering, a distinction can be madebetween a structure’s resistance and its stress.
A failure may then be defined as the event in which—due to deterioration—the resistance drops below the
stress. This paper proposes a method to combine the two stochastic processes of deteriorating resistance and
fluctuating load for computing the time-dependent reliability of a structural system. As deterioration is often
uncertain and non-negative, it can best be regarded as a gamma process. A gamma process is a stochastic
process with independent non-negative increments having agamma distribution with identical scale parameter.
The stress is assumed to be a stochastic process of random loads exceeding a certain threshold and occurring
according to a Poisson process. The variability of the random loads is modelled by a peaks-over-threshold
distribution (such as the generalised Pareto distribution). These stochastic processes of deterioration and load
can be combined in a straightforward manner to perform a time-dependent reliability analysis.

1 INTRODUCTION

In structural engineering, a distinction can often be
made between a structure’s resistance and its applied
stress. A failure may then be defined as the event
in which—due to deterioration—the resistance drops
below the stress. This paper proposes a method to
combine the two stochastic processes of deteriorat-
ing resistance and fluctuating load for computing the
time-dependent reliability of a structural system.

As deterioration is generally uncertain and non-
decreasing, it can best be regarded as a gamma pro-
cess (see, e.g., Abdel-Hameed, 1975). In words, a
gamma process is a stochastic process with indepen-
dent non-negative increments having a gamma distri-
bution with identical scale parameter. The stress is as-
sumed to be a stochastic process of random loads oc-
curring at random times in the same way as it was
done by Ellingwood and Mori (1993). We adopt their
assumption of the loads occurring according to a Pois-
son process. The difference is that we consider only
loads larger than a certain threshold rather than the
loads themselves, because the Poisson assumption is
then better justified. In order to determine the proba-
bility distribution of extreme loads (such as water lev-
els, discharges, waves, winds, temperatures and rain-
fall), we use the peaks-over-threshold method. Ex-

ceedances over the threshold are typically assumed to
have a generalised Pareto distribution.

Given the above definitions of the stochastic pro-
cesses of deterioration and load, they can now be
combined in a straightforward manner to compute
the time-dependent reliability. This method extends
the approach of Mori and Ellingwood (1994), who
modelled the uncertainty in the deterioration process
by posing a probability distribution on the damage
growth rate rather than assuming a stochastic process
with independent increments. In order to combine the
extreme load events with the deteriorating resistance,
we assume the load threshold exceedances as a se-
ries of pulses having an “infinitely small” duration.
As a consequence, we may then suppose that the re-
sistance does not degrade during extreme load events
and that failure only occurs during exceedances of the
load threshold.

The paper is organised as follows. The stochastic
processes of deteriorating resistance and fluctuating
load are presented in Section 2 and 3, respectively.
These two stochastic processes are combined for the
purpose of time-dependent reliability analysis in Sec-
tion 4. The proposed method is applied to a dike reli-
ability problem in Section 5 and conclusions are for-
mulated in Section 6.
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2 STOCHASTIC DETERIORATION PROCESS

In structural engineering, a distinction can often be
made between a structure’s resistance (e.g. the crest-
level of a dike) and its applied stress (e.g. the wa-
ter level to be withstood). A failure may then be de-
fined as the event in which the deteriorating resistance
drops below the stress.

Because deterioration is uncertain, it can best
be regarded as a time-dependent stochastic process
{X(t), t ≥ 0} whereX(t) is a random quantity for
all t ≥ 0. At first glance, it seems possible to repre-
sent the uncertainty in a deterioration process by the
normal distribution. This probability distribution has
been used for modelling the exchange value of shares
and the movement of small particles in fluids and air.
A characteristic feature of this model, also denoted
by the Brownian motion with drift (see, e.g., Karlin
and Taylor, 1975, Chapter 7), is that a structure’s re-
sistance alternately increases and decreases, like the
exchange value of a share. For this reason, the Brow-
nian motion is inadequate in modelling deterioration
which proceeds in one direction. For example, a dike
of which the height is subject to a Brownian deterio-
ration can, according to the model, spontaneously rise
up, which of course cannot occur in practice.

In order for the stochastic deterioration process to
proceed in one direction, we can best consider it as a
gamma process (see, e.g., van Noortwijk et al., 1997).
In words, a gamma process is a stochastic process
with independent non-negative increments (e.g. the
increments of crest-level decline of a dike) having
a gamma distribution with identical scale parameter.
In the case of a gamma deterioration, dikes can only
sink. To the best of the authors’ knowledge, Abdel-
Hameed (1975) was the first to propose the gamma
process as a proper model for deterioration occur-
ring random in time. The gamma process is suitable
to model gradual damage monotonically accumulat-
ing over time, such as wear, fatigue, corrosion, crack
growth, erosion, consumption, creep, swell, etc. For
the mathematical aspects of gamma processes, see
Dufresne et al. (1991), Ferguson and Klass (1972),
Singpurwalla (1997), and van der Weide (1997). An
advantage of gamma processes is that the required
calculations are relatively straightforward.

In mathematical terms, the gamma process is de-
fined as follows. Recall that a random quantityX has
a gamma distribution with shape parameterv > 0 and
scale parameteru > 0 if its probability density func-
tion is given by:

Ga(x|v,u) =
uv

Γ(v)
xv−1 exp{−ux} I(0,∞)(x),

whereIA(x) = 1 for x ∈ A andIA(x) = 0 for x 6∈ A.
Furthermore, letv(t) be a non-decreasing, right con-

tinuous, real-valued function fort ≥ 0 with v(0) ≡ 0.
The gamma process with shape functionv(t) > 0 and
scale parameteru > 0 is a continuous-time stochastic
process{X(t), t ≥ 0} with the following properties:

1. X(0) = 0 with probability one;
2. X(τ)−X(t)∼ Ga(v(τ)− v(t), u) for τ > t≥ 0;
3. X(t) has independent increments.

Let X(t) denote the deterioration at timet, t ≥ 0, and
let the probability density function ofX(t), in con-
formity with the definition of the gamma process, be
given by

fX(t)(x) = Ga(x |v(t), u) (1)

with

E(X(t)) =
v(t)

u
, Var(X(t)) =

v(t)

u2
. (2)

A component is said to fail when its deteriorating
resistance, denoted byR(t) = r0 −X(t), drops below
the stresss (see Figure 1). For the time being, we as-
sume both the initial resistancer0 and the stresss to
be deterministic. Let the time at which failure occurs
be denoted by the lifetimeT . Due to the gamma dis-
tributed deterioration, Eq. (1), the lifetime distribution
can then be written as:

F (t) = Pr{T ≤ t} = Pr{X(t) ≥ r0 − s} =

=

∫ ∞

x=r0−s

fX(t)(x)dx =
Γ(v(t), [r0 − s]u)

Γ(v(t))
,

where Γ(a,x) =
∫ ∞

t=x
ta−1e−t dt is the incomplete

gamma function forx ≥ 0 anda > 0. Using the chain
rule for differentiation, the probability density func-
tion of the lifetime is

f(t) = F ′(t) =
∂

∂ṽ

[

Γ(ṽ, [r0 − s]u)

Γ(ṽ)

]∣

∣

∣

∣

ṽ=v(t)

v′(t) (3)

under the assumption that the shape functionv(t) is
differentiable. The partial derivative in Eq. (3) can be
calculated by the algorithm of Moore (1982). Using a
series expansion and a continued fraction expansion,
this algorithm computes the first and second partial
derivatives with respect tox anda of the incomplete
gamma integral

P (a,x) =
1

Γ(a)

∫ x

t=0

ta−1e−t dt =
Γ(a)− Γ(a,x)

Γ(a)
.

Under the assumption of modelling temporal vari-
ability in the deterioration in terms of a gamma pro-
cess, the question which remains to be answered is
how its expected deterioration increases over time.
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Empirical studies show that the expected deteriora-
tion at timet is often proportional to a power law:

E(X(t)) =
v(t)

u
=

atb

u
(4)

for some physical constantsu > 0, a > 0, andb > 0.
Some examples are the expected degradation of con-
crete due to corrosion of reinforcement (linear:b =
1), sulfate attack (parabolic:b = 2), and diffusion-
controlled aging (square root:b = 0.5) studied by
Ellingwood and Mori (1993). Because there is often
engineering knowledge available about the shape of
the expected deterioration (for example, in terms of
the parameterb in Eq. (4)), this parameter may be as-
sumed constant. In the event of expected deteriora-
tion in terms of a power law, the parametersa andu
yet must be assessed by using expert judgment and/or
statistics. It should be noted that the analysis of this
paper is not restricted to using a power law for mod-
elling the expected deterioration over time. As a mat-
ter of fact, any shape functionv(t) suffices, as long
as it is a non-decreasing, right continuous, and real-
valued function.

An important special case is the gamma process
with stationary increments, which is defined as a
gamma process with shape functionat > 0, t ≥ 0, and
scale parameteru > 0. The corresponding probability
density function ofX(t) is then given by

fX(t)(x) = Ga(x |at, u) . (5)

Due to the stationarity, both the mean value and the
variance of the deterioration are linear in time; that is,

E(X(t)) =
at

u
, Var(X(t)) =

at

u2
.

A stochastic process has stationary increments if the
probability distribution of the incrementsX(t + h)−
X(t) depends only onh for all t, h ≥ 0.

A very useful property of the gamma process with
stationary increments is that the gamma density in
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Figure 1: Stochastic processes of deterioration and
stress/load.

Eq. (5) transforms into an exponential density ift =
a−1. When the unit-time length is chosen to bea−1,
the increments of deterioration are exponentially dis-
tributed with meanu−1 and the probability of failure
in unit time i reduces to a shifted Poisson distribu-
tion with mean1 + u(r0 − s) (van Noortwijk et al.,
1995) for i = 1,2,3, . . . Note that a shifted Poisson
distribution is defined fori = 1,2, . . . rather than for
i = 0,1, . . . A physical explanation for the appear-
ance of the Poisson distribution is that it represents
the probability that exactlyi exponentially distributed
jumps with meanu−1 cause the component to fail;
that is, cause the cumulative amount of deterioration
to exceedr0 − s.

The unit time for which the increments of dete-
rioration are exponentially distributed, facilitates the
algebraic manipulations considerably and, moreover,
often results in a very good approximation of the opti-
mal design or maintenance decision, especially when
the expected cost must be calculated.

Although it is not the purpose of this paper to give
a rigourous mathematical treatise on the gamma pro-
cess, we would like to explain the reader one impor-
tant property of the gamma process, namely that it is
a jump process. The key for showing this lies in the
technique of Laplace transforms. In doing so, we first
give the Laplace transform of a compound Poisson
process representing jumps with intensityµ having
random size. Then, we shall show that the Laplace
transform of the gamma process can be rewritten in
the same form as the Laplace transform of the com-
pound Poisson process. For convenience, the proof is
given for a compound Poisson process and a gamma
process with stationary increments.

Let the continuous-time stochastic deterioration
process{X(t), t ≥ 0} be a compound Poisson pro-
cess given byX(t) =

∑N(t)
i=1 Di, where

1. the number of jumps{N(t), t ≥ 0} is a Poisson
process with jump intensityµ,

2. the jumps{Di, i = 1,2, . . .} are independent and
identically distributed random quantities having
distributionPr{D ≤ δ} = FD(δ),

3. the process{N(t), t ≥ 0} and the sequence
{Di, i = 1,2, . . .} are independent.

The Laplace transform of the compound Poisson pro-
cessX(t) is

E
(

e−sX(t)
)

= exp
{

µt
(

E(e−sD)− 1
)}

. (6)

According to De Finetti (1975, Chapter 8), this
Laplace transform can be rewritten as

E
(

e−sX(t)
)

= exp

{

µt

∫ ∞

δ=0

(

e−sδ − 1
)

dFD(δ)

}

=

= exp

{

t

∫ ∞

δ=0

(

e−sδ − 1
)

[−dQ(δ)]

}

, (7)
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wheres > 0 and

Q(δ) = µ [1− FD(δ)] = µ

∫ ∞

z=δ

fD(z)dz

represents the intensity of jumps whose magnitude is
larger thanδ for δ > 0. The negative derivative of
Q(δ), q(δ) = −Q′(δ), is also called the Ĺevy mea-
sure of{X(t), t ≥ 0}. The measureq(δ) = µfD(δ)
is a positive measure, but not a probability measure
because

∫ ∞

δ=0
q(δ)dδ = µ 6= 1. Note that the expected

number of jumps of all sizes per unit time (jump in-
tensity) is finite; that is,Q(0) = µ is finite. Indeed, for
a compound Poisson process, the number of jumps
in any time interval is finite with probability one. Fur-
thermore, the expected value ofX(t) is also finite and
has the value

E(X(t)) = t

∫ ∞

δ=0

δ [−dQ(δ)] = µE(D)t.

On the other hand, the Laplace transform ofX(t)
being a stationary gamma process is

E
(

e−sX(t)
)

=

[

u

u + s

]at

=

= exp

{

at

∫ ∞

δ=0

(

e−sδ − 1
) e−uδ

δ
dδ

}

=

= exp

{

t

∫ ∞

δ=0

(

e−sδ − 1
)

[−dQ(δ)]

}

, (8)

wheres > 0 and

Q(δ) = a

∫ ∞

z=δ

e−uz

z
dz = aE1(uδ)

represents the intensity of jumps whose magnitude is
larger thanδ for δ > 0 (see Dufresne et al., 1991) and
the exponential integral is given by

E1(x) =

∫ ∞

t=x

e−t

t
dt.

The Lévy measure of the gamma process isq(δ) =
−Q′(δ) = aδ−1e−uδ. Because

∫ ∞

δ=0
q(δ)dδ = ∞, this

measure is infinite. Hence, the expected number of
jumps of all sizes per unit time (jump intensity) is in-
finite as well; that is,

Q(0) = lim
δ↓0

Q(δ) = ∞.

Indeed, for a gamma process, the number of jumps in
any time interval is infinite with probability one. Nev-
ertheless,E(X(t)) is finite, as the majority of jumps
are extremely small:

E(X(t)) = t

∫ ∞

δ=0

δdQ(δ) = at

∫ ∞

δ=0

δ
e−uδ

δ
dδ =

at

u
.

The agreement between Eqs. (7) and (8) shows us
that the gamma process indeed is a jump process. As
a matter of fact, the gamma process can be regarded
as a limit of a compound Poisson process in the fol-
lowing manner. Let the probability density function
of the jump sizes be a gamma distribution with shape
parameterv > 0 and scale parameteru > 0 and let
the Poisson jump intensity beµ = aΓ(v)/uv. Accord-
ing to Dufresne et al. (1991), the Laplace transform
of this compound Poisson process is

E
(

e−sX(t)
)

= (9)

= exp

{

at
Γ(v)

uv

∫ ∞

δ=0

(

e−sδ − 1
) uvδv−1

Γ(v)
e−uδ dδ

}

.

Clearly, the Laplace transform of the compound Pois-
son process with jump intensityaΓ(v)/uv and jump
sizes being gamma distributed with shape parameter
v and scale parameteru approaches the Laplace trans-
form of a gamma process with shape functionat and
scale parameteru asv tends to zero from above.

Because deterioration should preferably be mono-
tone, we can therefore best choose the deteriora-
tion process to be a compound Poisson process or a
gamma process. In the presence of inspection data,
the advantage of the gamma process over the com-
pound Poisson process is evident: measurements gen-
erally consist of deterioration increments rather than
of jump intensities and jump sizes.

3 STOCHASTIC LOAD PROCESS

In this section, the design stress is replaced by a
stochastic process of random loads occurring at ran-
dom times in the same way as it was done by Elling-
wood and Mori (1993). We adopt their assumption of
the loads occurring according to a Poisson process.
The only difference is that we consider load thresh-
old exceedances rather than the loads themselves, be-
cause the Poisson assumption is then better justified.

For probabilistic design, the distribution of extreme
loads (such as water levels, discharges, waves, winds,
temperatures and rainfall) is of considerable inter-
est. For example, the probability distribution of high
sea water levels is important for designing sea dikes.
In order to determine the probability distribution of
extreme load quantities, we can use extreme-value
theory. Extreme-value analysis can be based on ei-
ther maxima in a given time period, or on peaks
over a given threshold. The advantage of using peaks
over threshold rather than maxima is the availability
of more observations. Using only maxima generally
leads to loss of information.

In the peaks-over-threshold method, all load values
larger than a certain threshold are considered. The dif-
ferences between these values and a given threshold
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are called exceedances over the threshold. These ex-
ceedances are typically assumed to have a generalised
Pareto distribution.

A random variableY has a generalised Pareto dis-
tribution with scale parameterσ > 0 and shape pa-
rameterc if the probability density function ofY is
given by

Pa(y|σ, c) =



















1

σ

[

1− cy

σ

]
1

c
−1

+
, c 6= 0,

1

σ
exp

{

− y

σ

}

, c = 0,

(10)

where[y]+ = max{0, y} for y > 0. The survival func-
tion is defined by

Pr{Y > y}= F̄Y (y|σ, c) =















[

1− cy

σ

]
1

c

+
, c 6= 0,

exp
{

− y

σ

}

, c = 0.

The range ofy is0 < y <∞ for c≤ 0 and0 < y < σ/c
for c > 0. The casec = 0, which is the exponen-
tial distribution, is the limiting distribution asc → 0.
The generalised Pareto distribution mathematically
arises as a class of limit distributions for exceeding
a certain threshold, as the threshold increases toward
the distribution’s right tail. The conditions that must
be satisfied in order to assure the existence of such
limit distributions are rather mild. For the mathemat-
ical details, we refer to Pickands III (1975) and De
Haan (1990).

Apart from the probability distribution of load
threshold exceedances, the stochastic process of the
occurrence times of these load exceedances needs to
be specified. In doing so, we define the load thresh-
old exceedance to beY = S − s0 ≥ 0 with thresh-
old s0. Threshold exceedancesY1, . . . , Yn are assumed
to be mutually independent and to have a generalised
Pareto distribution, whereYi = Si − s0, i = 1, . . . , n.
In most hydrological applications, the occurrence pro-
cess of exceedances of large thresholds can be re-
garded as a Poisson process (see, e.g., Buishand,
1989). To overcome the problem of dependence be-
tween successive threshold exceedances in very small
time periods, threshold exceedances are defined to
be the peaks inclustersof threshold exceedances.
Approximating the occurrence process of threshold
exceedances by a Poisson process is supported by
asymptotic extreme-value theory (Leadbetter, 1983).

The Poisson assumption implies that the probabil-
ity that exactlyn load threshold exceedances occur in
time interval(0, t] can be written as

Pr{N(t) = n} =
(λt)n

n!
exp{−λt} , (11)

n = 0,1,2, . . . for all t ≥ 0; that is, the random quan-
tity N(t) follows a Poisson distribution with param-
eterλt. This parameter equals the expected number
of threshold exceedances in time period(0, t]. The
Poisson process{N(t), t ≥ 0} with N(0) = 0 has
independent increments. Because the thresholds are
exceeded according to a Poisson process, the inter-
occurrence time of threshold exceedances has an ex-
ponential distribution with meanλ−1:

Pr{T ≤ t} = FT (t|λ) = 1− exp{−λt} . (12)

4 COMBINED DETERIORATION AND LOAD

Now we have defined both the stochastic process of
deterioration and the stochastic process of load, the
question arises how we can best combine them. In this
respect, we also follow the approach of Ellingwood
and Mori (1993). On the basis of a useful property of
the Poisson process, they proposed an elegant way to
combine stochastic load with a resistance decreasing
over time. Mori and Ellingwood (1993) claim that the
deterioration can be treated as deterministic, because
“its variability was found to have a second-order ef-
fect on the structural reliability”. This conclusion is
based on Mori and Ellingwood (1994) in which they
modelled the uncertainty in the deterioration process
by posing a probability distribution on the damage
growth ratea/u of the power law in Eq. (4). How-
ever, in Section 5, we will show this conclusion is not
always justified.

In order to combine the load events with the dete-
riorating resistance, Mori and Ellingwood (1993) as-
sumed that the duration of extreme load events is gen-
erally very short and is negligible in comparison with
the service life of a structure. Therefore, they regard
the load threshold exceedances as a series of pulses
having an “infinitely small” duration (see Figure 1).
As a consequence, we may then suppose that the re-
sistance does not degrade during the occurrence of
an extreme load event. Furthermore, they assume that
failure can only occur during exceedances of the load
threshold.

Consider the times at which changes of the Pois-
son process occur in time interval[0, t] (in terms of
threshold exceedances of the load); i.e., consider

Yi =
∑i

h=1 Th, i = 1, . . . , n,

where the inter-occurrence timesT1, . . . , Tn are in-
dependent, identically distributed, random quantities
having an exponential distribution with meanλ−1,
and note that0 ≤ Y1 ≤ Y2 ≤ · · · ≤ Yn ≤ t. Karlin and
Taylor (1975, Pages 126-127) show us thatY1, . . . , Yn

can be regarded as a set of order statistics of sizen
associated with a sample ofn independent uniformly
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distributed random quantities on the interval[0, t].
The conditional probability distribution of the occur-
rence time of a load threshold exceedance, given one
exceedance of the load threshold occurred in(0, t], di-
rectly follows from the memoryless property of the
exponential distribution: it is a uniform distribution
on the interval[0, t].

The conditional probability of no failure in time
interval (0, t], when n independent threshold ex-
ceedances of the loadY are given with cumulative
distribution functionPr{Y ≤ y} = FY (y), can now
be formulated as (Karlin and Taylor, 1975, Page 180)

Pr{no failure in(0, t]|N(t) = n} =

= E

([
∫ t

u=0

FY ([r0 − s0]−X(u))

t
du

]n)

, (13)

wheres0 ≤ r0 and the expectation is defined with re-
spect to the stochastic process{X(t), t > 0}. This
result was obtained by Ellingwood and Mori (1993)
for deterministic deterioration and extended by Mori
and Ellingwood (1994) for deterioration with a ran-
dom damage growth rate. Mathematically, the last
step follows by conditioning on the sample paths of
the gamma process, using the fact that the load thresh-
old exceedances are independent, and applying the
law of total probabilities with respect to the sample
paths of the gamma process. Because failure can only
occur at load threshold exceedances, and these ex-
ceedances are independent and uniformly distributed
on [0, t], we primarily can focus solely on thesen
exceedances. Eq. (13) generalises the lifetime model
of van Noortwijk and Klatter (1999) in which the
load was assumed to be equal to the constant design
stresss.

Invoking the law of total probabilities with respect
to the number of load threshold exceedances, the
probability of no failure in time interval(0, t] or sur-
vival probability can finally be written as

F̄ (t) = 1− F (t) = Pr{no failure in(0, t]} = (14)

=
∞

∑

n=0

Pr{no failure in(0, t]|N(t)=n}Pr{N(t)=n}

=E

(

exp

{

−λ

∫ t

u=0

F̄Y ([r0 − s0]−X(u)) du

})

.

The cumulative distribution function of the lifetime
is:

F (t) = 1−E

(

exp

{

−
∫ t

u=0

k(R(u))du

})

, (15)

whereR(t) = r0 − X(t) and the physics-based ex-
pression

k(r) = λF̄Y (r − s0) = λPr{S > r} (16)

can be interpreted as a killing rate in the sense of
Wenocur (1989). In our stress-strength model, the
killing rate is exactly the frequency of the stressS =
s0 + Y exceeding the strengthr. Hence, Eq. (16)
gives a nice justification of Wenocur’s definition of
the killing rate. By differentiating Eq. (15), the life-
time probability density function becomes

fT (t) = E

(

k(R(t)) exp

{

−
∫ t

τ=0

k(R(τ))dτ

})

. (17)

Wenocur (1989) considers a very interesting exten-
sion of a stationary gamma process for the deteriora-
tion state under two different failure modes. A sys-
tem is said to fail either when its condition reaches
a failure level or when a traumatic event (such as an
extreme load) destroys it. Suppose that the traumatic
events occur as a Poisson process with a rate (called
the ‘killing rate’) which depends on the system’s con-
dition. The latter is a meaningful assumption, since
the worse the condition, the more vulnerable it is to
failure due to trauma.

The following two-dimensional integral remains to
be solved numerically:

E

(

exp

{

−
∫ t

τ=0

k(R(τ))dτ

})

= (18)

lim
n→∞

∫ ∞

0

· · ·
∫ ∞

0

exp

{

−
n

∑

i=1

k (r0 − xi) (ti − ti−1)

}

×fX(t1),...,X(tn)(x1, . . . , xn)dx1 . . . dxn,

where ti = (i/n)t, i = 0, . . . , n. This integral is a
special case of the so-called Kac functional equa-
tion (Beghin et al., 2000; Wenocur, 1989) and can
be solved numerically in two combined steps. The
first step is to approximate the integral over time by
applying numerical integration with respect to the
time grid 0, t1, t2, . . . , tn−1, tn. The second step is to
approximate the integral over the sample paths of
the gamma process by applying Monte Carlo sim-
ulation with respect to the independent increments
X(t1),X(t2)−X(t1), . . . ,X(tn)−X(tn−1).

Although we can approximate a gamma process
with a limit of a compound Poisson process, it is not
efficient to simulate a gamma process in such a way.
This is because there are infinitely many jumps in
each finite time interval. A better approach for sim-
ulating a gamma process is simulating independent
increments with respect to very small units of time.
Gamma-increment sampling is defined as drawing in-
dependent samplesδi = xi − xi−1 from the gamma
density with shape functionv(ti) − v(ti−1) and scale
parameteru for everyi = 1,2, . . . , n, wheret0 = x0 =
0.
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5 EXAMPLE: DEN HELDER SEA DEFENSE

For the purpose of illustration, we study the probabil-
ity of failure of a dike section subject to crest-level
decline. The dike section is part of the sea defense at
Den Helder in the North-West of the Netherlands and
was constructed as early as in 1775.

The failure mechanism that we regard is overtop-
ping of the sea dike by waves. Both sea level and
crest-level decline are considered random, whereas
wave run-up is considered fixed. The wave run-up is
represented by the heightz2% (this is the wave run-
up level in metres, which is exceeded by 2% of the
number of incoming waves). Furthermore, the effect
of seiches, gust surges and gust oscillations is taken
into account by the factorb0 [m]. For the Den Helder
sea defense, the wave run-up height is computed as
z2% = 7.52 m and the effect of seiches and gusts
as b0 = 0.2 m. The Den Helder sea defense has a
crest level ofh = 12.33 m +NAP (normal Amster-
dam level). Including the effects of waves, seiches and
gusts, the initial resistance of the dike can be defined
asr0 = h− z2% − b0 = 4.61 m +NAP.

To account for the temporal variability of the
sea level, we assume that the occurrence of ex-
treme sea levels can be modelled with a peaks-over-
threshold distribution. In particular, we use the gen-
eralised Pareto distribution estimated by Philippart et
al. (1995) for observed sea levels at Den Helder. They
estimated the following parameter values:λ = 0.5,
s0 = 2.19, σ = 0.3245, andc = 0.05465. Using this
generalised Pareto distribution, the design water level
with an exceedance probability of10−4 is 4.40 m
+NAP.

Crest-level decline consists of a combination of set-
tlement, subsoil consolidation, and relative sea-level
rise. In van Dantzig (1956), the expected crest-level
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Figure 2: Cumulative distribution and survival func-
tion of the lifetime with CV(X(100)) = 0.3.
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Figure 3: Probability density function of the lifetime
with CV(X(100)) = 0.3.

decline was assumed to be 0.7 m per century. We re-
gard the stochastic process of crest-level decline as
a stationary gamma process with meanE(X(100)) =
0.7 and a corresponding coefficient of variation of 0.3;
that is,

E(X(100)) =
a · 100

u
= 0.7,

CV(X(100)) =

√

Var(X(100)

E(X(100))
=

1√
a · 100

= 0.3.

Solving these equations fora andu leads to the pa-
rameter valuesa = 0.1111 andu = 15.8730. The 5th
and 95th percentile ofX(100) are 0.39 m and 1.08 m,
respectively.

In Figure 2, the cumulative distribution function
and the survival function are shown based on Eq. (15).
In this computation, the number of gamma-process
sample paths is 10,000 with numerical integration
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Figure 4: Probability density function of the lifetime
with deterministic deterioration.
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step size ofti − ti−1 = 2 years for alli. The proba-
bility density function of the lifetime in Eq. (17) is
graphed in Figure 3. In order to investigate the sensi-
tivity of the probability density function of the time to
failure with respect to the uncertainty in the deteriora-
tion, we also computed Eq. (17) with a deterministic
deterioration. Obviously, Figure 4 shows that the un-
certainty in the deterioration really matters in quanti-
fying the uncertainty in the lifetime.

6 CONCLUSIONS

In this paper, a method is presented to compute the
time-dependent reliability of structures where both
the deteriorating resistance and the fluctuating load
are modelled as stochastic processes. The stochas-
tic process of deterioration is modelled as a gamma
process having independent gamma-distributed incre-
ments with identical scale parameter. The stochastic
process of load is modelled as a combination of a
peaks-over-threshold distribution (such as the gener-
alised Pareto distribution) and a Poisson process for
the threshold exceedances. It is shown that the cu-
mulative distribution function of the time to failure
(time at which the resistance drops below the load)
can be formulated as a Kac functional equation. This
equation can be solved by applying a combination of
numerical integration and simulating sample paths of
the gamma process. The advantages of the proposed
method are that a gamma process properly models the
monotonic behaviour of ageing and that peaks-over-
threshold distributions fit in well with extreme-value
statistics.
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