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ABSTRACT: In structural engineering, a distinction can be maekveen a structure’s resistance and its stress.
A failure may then be defined as the event in which—due to aetdion—the resistance drops below the
stress. This paper proposes a method to combine the twoastiixiprocesses of deteriorating resistance and
fluctuating load for computing the time-dependent religbibf a structural system. As deterioration is often
uncertain and non-negative, it can best be regarded as a @ammooess. A gamma process is a stochastic
process with independent non-negative increments hawyagrana distribution with identical scale parameter.
The stress is assumed to be a stochastic process of randdsndreeeding a certain threshold and occurring
according to a Poisson process. The variability of the remttzads is modelled by a peaks-over-threshold
distribution (such as the generalised Pareto distribltidhese stochastic processes of deterioration and load
can be combined in a straightforward manner to perform a-tiependent reliability analysis.

1 INTRODUCTION ceedances over the threshold are typically assumed to
have a generalised Pareto distribution.

In structural engineering, a distinction can often be
made between a structure’s resistance and its appliedesses of deterioration and load, they can now be
stress. A failure may then be defined as the even : . : !

in which—due to deterioration—the resistance dropg ombined in a straightforward manner to compute

below the stress. This paper proposes a method %fe time-dependent reliability. This method extends

Given the above definitions of the stochastic pro-

combine the two stochastic processes of deterioraf- e approach of Mori and Ellingwood (1994), who

: : . X odelled the uncertainty in the deterioration process
ing resistance and fluctuating load for computing theDy posing a probabilityydistribution on the dgmage

t|me-depen.dent_ re“‘?b'“ty oF & structuiral ;ystem. growth rate rather than assuming a stochastic process
As deterioration is generally uncertain and non-yith independent increments. In order to combine the
decreasing, it can best be regarded as a gamma prgsireme load events with the deteriorating resistance,
cess (see, e.g., Abdel-Hameed, 1975). In words, e assume the load threshold exceedances as a se-
gamma process is a stochastic process with indepefyas of pulses having an “infinitely small” duration.
dent non-negative increments having a gamma distriag 5 consequence, we may then suppose that the re-
bution with identical scale parameter. The stress is aSsistance does not degrade during extreme load events

sumed to be a stochastic process of random loads ogp that failure only occurs during exceedances of the
curring at random times in the same way as it Wagoad threshold.

done by Ellingwood and Mori (1993). We adopt their

assumption of the loads occurring according to a Pois- The paper is organised as follows. The stochastic
son process. The difference is that we consider onlyprocesses of deteriorating resistance and fluctuating
loads larger than a certain threshold rather than thivad are presented in Section 2 and 3, respectively.
loads themselves, because the Poisson assumptionTieese two stochastic processes are combined for the
then better justified. In order to determine the probajpurpose of time-dependent reliability analysis in Sec-
bility distribution of extreme loads (such as water lev-tion 4. The proposed method is applied to a dike reli-
els, discharges, waves, winds, temperatures and raiability problem in Section 5 and conclusions are for-
fall), we use the peaks-over-threshold method. Exmulated in Section 6.
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2 STOCHASTIC DETERIORATION PROCESS tinuous, real-valued function far> 0 with v(0) = 0.
The gamma process with shape functign) > 0 and

In structural engineering, a distinction can often bescale parameter > 0 is a continuous-time stochastic

made between a structure’s resistance (e.g. the cregirocess X (¢),¢ > 0} with the following properties:

level of a dike) and its applied stress (e.g. the wa-

ter level to be withstood). A failure may then be de- 1. X(0) = 0 with probability one;

fined as the eventin which the deteriorating resistance 2. X(1)—X(t) ~Gav(r) —v(t),u) for r >t > 0;

drops below the stress. L 3. X (¢) has independent increments.
Because deterioration is uncertain, it can best

be regarded as a time-dependent stochastic Proceggt x (+) denote the deterioration at timgt > 0, and
{X(?), t > 0} where X () is a random quantity for ot the probability density function ok (t), in con-

all't > 0. At first glance, it seems possible to repre-¢o iy with the definition of the gamma process, be
sent the uncertainty in a deterioration process by thﬁiven by

normal distribution. This probability distribution has

been used for modelling the exchange value of shareﬁX(t)(x) = Ga(z|v(t),u) (1)

and the movement of small particles in fluids and air.

A characteristic feature of this model, also denotedyith

by the Brownian motion with drift (see, e.g., Karlin 0 0

and Taylor, 1975, Chapter 7), is that a structure’s re- _o(t _ ol

sistance alternately increases and decreases, like tf%X(t) )= var(X(t)) (2)

exchange value of a share. For this reason, the Brow- , , , . L

nian motion is inadequate in modelling deterioration A component is said to fail when its deteriorating

which proceeds in one direction. For example, a dikd€sistance, denoted (1) = o — X (¢), drops below

of which the height is subject to a Brownian deterio-the stress (see Figure 1). For the time being, we as-

ration can, according to the model, spontaneously risgUMe both the initial resistaneg and the stress to

up, which of course cannot occur in practice. be deterministic. Let the time at which failure occurs
In order for the stochastic deterioration process td?€ denoted by the lifetim&. Due to the gamma dis-

proceed in one direction, we can best consider it as §ibuted deterioration, Eq. (1), the lifetime distributio

gamma process (see, e.g., van Noortwijk et al., 1997f:an then be written as:

In words, a gamma process is a stochastic proce _ _ _

with independent non-negative increments (e.g. thseﬁ(t) N P::{T St =PriX() 2 7o = s} =
increments of crest-level decline of a dike) having _ / Fr (@) dz = T(v(t), [ro — s]u)

a gamma distribution with identical scale parameter. wero—s C(v(t)) ’

In the case of a gamma deterioration, dikes can only - ) _

sink. To the best of the authors’ knowledge, Abdel-where T'(a,z) = [~ t*"'e~*dt is the incomplete
Hameed (1975) was the first to propose the gamm&amma function for: > 0 anda > 0. Using the chain
process as a proper model for deterioration occurtule for differentiation, the probability density func-
ring random in time. The gamma process is suitabldion of the lifetime is

)

U u? -’

to model gradual damage monotonically accumulat- 8 [T(, [ro — s]u)
ing over time, such as wear, fatigue, corrosion, crackf(t) = F'(t) = — {%} ‘ v'(t) (3)
growth, erosion, consumption, creep, swell, etc. For dv I'() d=v(t)

the mathematical aspects of gamma processes, see _ o

Dufresne et al. (1991), Ferguson and Klass (1972)ynder the assumption that the shape functit) is

Singpurwalla (1997), and van der Weide (1997). Andifferentiable. The part_lal derivative in Eq. (3) can be

advantage of gamma processes is that the requireglculated by the algorithm of Moore (1982). Using a

calculations are relatively straightforward. series expansion and a continued fraction expansion,
In mathematical terms, the gamma process is dethis algorithm computes the first and second partial

fined as follows. Recall that a random quantifyhas ~ derivatives with respect to anda of the incomplete

a gamma distribution with shape parameter 0 and gamma integral

scale parameter > 0 if its probability density func-

tion is given by: p _ 1 /x pa—lo—t gy — I'(a) —T(a,z) '
; O A X0
_ v—1
Galz|v,u) = TON exp{—ur} Jo.00) (7). Under the assumption of modelling temporal vari-

ability in the deterioration in terms of a gamma pro-
wherel (z) =1forxz € Aandls(x) =0forxz ¢ A.  cess, the question which remains to be answered is
Furthermore, let(t) be a non-decreasing, right con- how its expected deterioration increases over time.
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Empirical studies show that the expected deteriorakq. (5) transforms into an exponential density #

tion at timet is often proportional to a power law: a~1. When the unit-time length is chosen to be',
, the increments of deterioration are exponentially dis-
BE(X(1)) = u(t) _at” 4) tributed with mean,~! and the probability of failure
u u in unit time 7 reduces to a shifted Poisson distribu-

tion with meanl + u(ro — s) (van Noortwijk et al.,
1995) fori = 1,2,3,... Note that a shifted Poisson
istribution is defined foi = 1,2,... rather than for

: e i =0,1,... A physical explanation for the appear-
1), sulfate attack (parabolid = 2), and diffusion- 5,06 of the Poisson distribution is that it represents

controlled aging (square roobt: = 0.5) studied by o : ; ot
Ellingwood and Mori (1993). Because there is often-the probability that exactlyexponentially distributed

. , . mps with meanu~! cause the component to fail;
engineering knowledge available about the shape 1 P P

for some physical constants> 0, a > 0, andb > 0.
Some examples are the expected degradation of co
crete due to corrosion of reinforcement (linear=

A . at is, cause the cumulative amount of deterioration
the expected deterioration (for example, in terms o

: ) 0 exceed — s.
the parametel in Eg. (4)), this parameter may be as- o it time for which the increments of dete-
sumed constant. In the event of expected deteriorgyqaiion are exponentially distributed, facilitates the
tion in terms of a power law, the parameterandu

b db ; iud d/algebraic manipulations considerably and, moreover,
yet must be assessed by using expert jJudgment and/gfan yesults in a very good approximation of the opti-

statistics. It should be noted that the analysis of thisy | gesign or maintenance decision, especially when
paper is not restricted to using a power law for mod-y, o expected cost must be calculated.

elling the expected deterioration over time. As a mat- Although it is not the purpose of this paper to give

ter of fact, any shape function(t) suffices, as long g rjgourous mathematical treatise on the gamma pro-
as it is a non-decreasing, right continuous, and realzesg e would like to explain the reader one impor-
valueq function. . . tant property of the gamma process, namely that it is
/An important special case is the gamma procesg j,mp process. The key for showing this lies in the
with stationary increments, which is defined as &g chnigue of Laplace transforms. In doing so, we first
gamma process with shape functiarn> 0,7 > 0,and  giye the | aplace transform of a compound Poisson
scale parameter > 0. The corresponding probability 5-cess representing jumps with intensityhaving
density function ofX (#) is then given by random size. Then, we shall show that the Laplace
transform of the gamma process can be rewritten in
Fxw(z) = Galz|at,u). ®) the same form asg the Laglace transform of the com-

Due to the stationarity, both the mean value and th®ound Poisson process. For convenience, the proof is

variance of the deterioration are linear in time; that is 9iven for a compound Poisson process and a gamma
process with stationary increments.

_at _at Let the continuous-time stochastic deterioration
E(X(t) = u’ var(X(#)) = u2’ process{ X (t),t > 0} be a compound Poisson pro-
i — VN
A stochastic process has stationary increments if thE8SS 9iven byX (t) = >_,_," D;, where
probability distribution of the increments (¢ + k) — 1. the number of jump$N (t), ¢ > 0} is a Poisson
X (t) depends only on for all ¢,~ > 0. process with jump intensity,

A very useful property of the gamma process with 2 the jumps{D;, i = 1,2,...} are independent and
stationary increments is that the gamma density in  jdentically distributed random quantities having
distributionPr{D < §} = Fp(J),

 Resistance A (1) Initial 3. the process{N(t),t > 0} and the sequence
e e resistance {D;,i=1,2,...} are independent.
Deterioration X (¢) The Laplace transform of the compound Poisson pro-
cessX () is
Sy 5 E(e**W) = exp {ut (E(e™") - 1)}. (6)
S3 : . . . .
Stress/ T s, Failure According to De Finetti (1975, Chapter 8), this
Load T Load Laplace transform can be rewritten as
% : threshold s 00
0 i —> E (e7*") = exp { it / (e —1) dFD((S)} =
0 t time §—=0

Figure 1: Stochastic processes of deterioration and <
g p _ exp{t / (e~ 1) [_d@«m}, )
1

stress/load. :0



wheres > 0 and The agreement between Egs. (7) and (8) shows us
00 that the gamma process indeed is a jump process. As

Q) =pu[l = Fp(&)] = p fo(2)dz a matter of fact, the gamma process can be regarded
2=5 as a limit of a compound Poisson process in the fol-

gowing manner. Let the probability density function

of the jump sizes be a gamma distribution with shape

parametern > 0 and scale parameter > 0 and let

the Poisson jump intensity he= aI'(v) /u”. Accord-

éng to Dufresne et al. (1991), the Laplace transform

of this compound Poisson process is

represents the intensity of jumps whose magnitude i
larger thans for 6 > 0. The negative derivative of
Q9), q(6) = —Q'(0), is also called the &vy mea-
sure of { X (¢), ¢ > 0}. The measure(d) = nfp(d)

is a positive measure, but not a probability measur
because/ 5°:°0q(6) dé = u # 1. Note that the expected
number of jumps of all sizes per unit time (jump in- g (e—sX(t)) — 9)
tensity) is finite; that is@)(0) = w is finite. Indeed, for r 0 vgo-1

a compound Poisson process, the number of jumps — exp{at (”)/ e _ 1) u e~ uo dé}.
in any time interval is finite with probability one. Fur- u” Js=o I'(v)

thermore, the expected value8f?) is also finite and  cjearly, the Laplace transform of the compound Pois-

has the value son process with jump intensityf’(v) /u* and jump
00 sizes being gamma distributed with shape parameter
E(X(1) = t/ 6 [=dQ(d)] = pE(D)t. v and scale parameterapproaches the Laplace trans-
6=0 form of a gamma process with shape functigrand
On the other hand, the Laplace transformoft)  Scale parameter asv tends to zero from above.
being a stationary gamma process is Because deterioration should preferably be mc_)no-
. tone, we can therefore best choose the deteriora-
B (e-sX0y _ | ¥ “ tion process to be a compound Poisson process or a
(e ) T luts| gamma process. In the presence of inspection data,

the advantage of the gamma process over the com-

oo —ud
= exp {at/ (6—86 _ 1) ¢ dd} - pound Poisson process is evident: measurements gen-
5=0 0 erally consist of deterioration increments rather than
* of jump intensities and jump sizes.
= eoft[ @ anl).  ®
=0
wheres > 0 and 3 STOCHASTIC LOAD PROCESS
Q) = a/ c dz = aFE(ud) In this section, the design stress is replaced by a
=5 < stochastic process of random loads occurring at ran-

dom times in the same way as it was done by Elling-
wood and Mori (1993). We adopt their assumption of
the loads occurring according to a Poisson process.
The only difference is that we consider load thresh-

represents the intensity of jumps whose magnitude i
larger thar for § > 0 (see Dufresne et al., 1991) and
the exponential integral is given by

00 o=t old exceedances rather than the loads themselves, be-
Ey(z) = / —~dt. cause the Poisson assumption is then better justified.
= For probabilistic design, the distribution of extreme
The Levy measure of the gamma processg(i§) = loads (such as water levels, discharges, waves, winds,

—Q'(6) = adte ¥, Becausefoj q(6)ds = oo, this ~ temperatures and rainfall) is of considerable inter-

measure is infinite. Hence, the expected number ofst. For example, the probability distribution of high
jumps of all sizes per unit time (jump intensity) is in- sea water levels is important for designing sea dikes.

finite as well; that is, In order to determine the probability distribution of
extreme load quantities, we can use extreme-value
Q(0) =1lim Q(J) = . theory. Extreme-value analysis can be based on ei-

210 ther maxima in a given time period, or on peaks

Indeed, for a gamma process, the number of jumps ifver a given threshold. The advantage of using peaks
any time interval is infinite with probability one. Nev- over threshold rather than maxima is the availability
erthelessE (X (t)) is finite, as the majority of jumps Of more observations. Using only maxima generally

are extremely small: leads to loss of information.
In the peaks-over-threshold method, all load values
o o eTud at larger than a certain threshold are considered. The dif-
E(X(t) = t/6:0 0dQ(0) = at /5:05 5@ =" ferences between these values and a given threshold



are called exceedances over the threshold. These ex-=0,1,2,... for all ¢t > 0; that is, the random quan-
ceedances are typically assumed to have a generaliséty N(t¢) follows a Poisson distribution with param-

Pareto distribution.

eter \t. This parameter equals the expected number

A random variablé” has a generalised Pareto dis- of threshold exceedances in time perigdt]. The

tribution with scale parameter > 0 and shape pa-
rameterc if the probability density function ot is
given by

P'd(y|0', C) = (10)

where[y|; = max{0,y} for y > 0. The survival func-
tion is defined by
i
ol

exp{—g}, c=0.
o

c# 0,
Pr{Y >y} = Fy(ylo,c) =

Poisson proces$N (t),t > 0} with N(0) = 0 has
independent increments. Because the thresholds are
exceeded according to a Poisson process, the inter-
occurrence time of threshold exceedances has an ex-
ponential distribution with meak—:

Pr{T <t} = Fr(t|]\) =1 —exp{—Xt}. (12)

4 COMBINED DETERIORATION AND LOAD

Now we have defined both the stochastic process of
deterioration and the stochastic process of load, the
guestion arises how we can best combine them. In this
respect, we also follow the approach of Ellingwood
and Mori (1993). On the basis of a useful property of
the Poisson process, they proposed an elegant way to

combine stochastic load with a resistance decreasing
over time. Mori and Ellingwood (1993) claim that the
for ¢ > 0. The casec = 0, which is the exponen- deterioration can be treated as deterministic, because
tial distribution, is the limiting distribution as — 0.  'its variability was found to have a second-order ef-

The generalised Pareto distribution mathematicallyf€ct on the structural reliability”. This conclusion is
arises as a class of limit distributions for exceeding?@seéd on Mori and Ellingwood (1994) in which they
a certain threshold, as the threshold increases towafgodelled the uncertainty in the deterioration process
the distribution’s right tail. The conditions that must bY Posing a probability distribution on the damage
be satisfied in order to assure the existence of suc@rowth ratea/u of the power law in Eq. (4). How-
limit distributions are rather mild. For the mathemat- €Ver, in Section 5, we will show this conclusion is not
ical details, we refer to Pickands Il (1975) and Dealways justified. _

Haan (1990). _In order to combine the load events with the dete-
Apart from the probability distribution of load riorating resistance, Mori and Ellingwood (1993) as-
threshold exceedances, the stochastic process of tigmed that the duration of extreme load events is gen-

occurrence times of these load exceedances needs§ER!ly very short and is negligible in comparison with
be Specrﬁed In d0|ng S0, we deﬂne the |0ad threshthe service ||fe Of a structure. Therefore, they I’egal‘d
old exceedance to bE = S — s, > 0 with thresh- the load threshold exceedances as a series of pulses
old so. Threshold exceedancks . . ., Y, are assumed having an “infinitely small” duration (see Figure 1).
to be mutually independent and to have a generaliseiS & consequence, we may then suppose that the re-
Pareto distribution, wher&, = S; — 55,7 = 1,...,n.  Sistance does not degrade during the occurrence of
In most hydrological applications, the occurrence pro-2n extreme load event. Furthermore, they assume that
cess of exceedances of large thresholds can be rilure can only occur during exceedances of the load
garded as a Poisson process (see, e.g., Buisharfireshold. _ _ _
1989). To overcome the problem of dependence be- Consider the times at which changes of the Pois-
tween successive threshold exceedances in very sm&®N process occur in time interv, ¢] (in terms of
time periods, threshold exceedances are defined #§reshold exceedances of the load); i.e., consider
be the peaks irtlustersof threshold exceedances. ; ,
Approximating the occurrence process of threshold’i = 2p1 Th,  1=1,...
exceedances by a Poisson process is supported
asymptotic extreme-value theory (Leadbetter, 1983)
The Poisson assumption implies that the probabi
ity that exactlyn load threshold exceedances occur in
time interval(0, ¢] can be written as

OO s {213,

TherangeofjisO <y <ocforc<O0andd <y <o/c

7n7

t\%ere the inter-occurrence timés, ..., 7T, are in-
|'_dependent, identically distributed, random quantities
having an exponential distribution with mea!,
and notethab <Y; <Y, <... <Y, <t. Karlin and
Taylor (1975, Pages 126-127) show us thiat .., Y,

can be regarded as a set of order statistics of size
associated with a sample ofindependent uniformly

Pr{N(t)=n} = (11)



distributed random quantities on the interyalt].  can be interpreted as a killing rate in the sense of
The conditional probability distribution of the occur- Wenocur (1989). In our stress-strength model, the
rence time of a load threshold exceedance, given onklling rate is exactly the frequency of the stress-
exceedance of the load threshold occurre@in], di- sy + Y exceeding the strength. Hence, Eq. (16)
rectly follows from the memoryless property of the gives a nice justification of Wenocur’s definition of
exponential distribution: it is a uniform distribution the killing rate. By differentiating Eq. (15), the life-
on the interval0, ¢]. time probability density function becomes

The conditional probability of no failure in time
interval (0,t], when n independent threshold ex- t
ceedances of the load are given with cumulative fr(t) = E(/f(R(t))eXP {—/ /f(R(T))dT}) - (A7)
distribution functionPr{Y < y} = Fy(y), can now =0

be formulated as (Karlin and Taylor, 1975, Page 180) . . .
Wenocur (1989) considers a very interesting exten-

Pr{no failure in(0,t]|N(t) = n} = sion of a stationary gamma process for the deteriora-
t By (fro — so] — X(u)) n tion _state_under two different fz_allure mpdes. A sys-

= F ({/ du} ) , (13) tem is said to fail either when its condition reaches
u=0 ¢ a failure level or when a traumatic event (such as an

wheres, < r, and the expectation is defined with re- extreme load) destroys it. Suppose th_at the traumatic
spect to the stochastic procegX (¢), t > 0}. This evept_s_occur as a Poisson process with a ratf—: (called
result was obtained by Ellingwood and Mori (1993) the ‘killing rate’) which depends on the system's con-
for deterministic deterioration and extended by Moridition. The latter is a meaningful assumption, since
and Ellingwood (1994) for deterioration with a ran- the worse the condition, the more vulnerable it is to
dom damage growth rate. Mathematically, the lasf@ilure due to trauma. o _

step follows by conditioning on the sample paths of The following Mo-dlmen5|onal integral remains to
the gamma process, using the fact that the load thresR€ solved numerically:

old exceedances are independent, and applying the .

law of total probabilities with respect to the sample

paths of the Fg);amma process. Bec%use failure canponl§ (eXp {_ /0 k(R(7)) dT}) - (18)
occur at load threshold exceedances, and these ex- - T;O n
ceedances are independent and uniformly distributed;; , / / exp {_ Zk (ro — 1) (t; — t-l)}
on [0,t], we primarily can focus solely on these  n—c J, 0 — v
exceedances. Eq. (13) generalises the lifetime model d d

of van Noortwijk and Klatter (1999) in which the X I ()X (1) (P15 Tn) ATy,

load was assumed to be equal to the constant design , , . .
stresss. heret, = (i/n)t, i = 0,...,n. This integral is a

Invoking the law of total probabilities with respect SPecial case of the SO'C?‘HEd Kac functional equa-
to the number of load threshold exceedances, thion (Beghin et al., 2000; Wenocur, 1989) and can
probability of no failure in time interval0, ¢] or sur- be solved numerically in two combined steps. The

vival probability can finally be written as first step is to approximate the integral over time by
B applying numerical integration with respect to the
F(t)=1- F(t) =Pr{nofailurein(0,t]} = (14) time grid0,¢,,ts,...,t,—1,t,. The second step is to
o0 approximate the integral over the sample paths of
:ZPr{no failure in(0,¢]|N(t)=n} Pr{N(t)=n}  the gamma process by applying Monte Carlo sim-
=0 ulation with respect to the independent increments
t X(tl),X(tg)—X(tl),,X(tTL)—X(tn_l)
ZE(eXp {—)\/ Fy ([ro — so] — X (u)) dU}) : Although we can approximate a gamma process
u=0

with a limit of a compound Poisson process, it is not
The cumulative distribution function of the lifetime €fficient to simulate a gamma process in such a way.
is: This is because there are infinitely many jumps in
. eiact_h finite time interval. A better zilptp_)roat_crgj for si(;n- t
ulating a gamma process is simulating independen
Fi)=1-F (eXp {_/u_ok(R(“))du}> . (19) increrglentg with repspect to very small %nits oF:‘ time.
- Gamma-increment sampling is defined as drawing in-
where R(t) = ro — X (t) and the physics-based ex- dependent samples = z; — x;,_, from the gamma

pression density with shape function(t;) — v(¢;_,) and scale
- parameter, for everyi = 1,2,...,n, wherety, = 2o =
k(r) = AFy(r—so) = APr{S > r} (16) o.



5 EXAMPLE: DEN HELDER SEA DEFENSE Probability density function of time to failure
0.01 T T T T T -

For the purpose of illustration, we study the probabil- 0-009]
ity of failure of a dike section subject to crest-level o.00s}
decline. The dike section is part of the sea defense ¢
Den Helder in the North-West of the Netherlands ancz
was constructed as early as in 1775. 500081
The failure mechanism that we regard is overtop-20.005¢
ping of the sea dike by waves. Both sea level ancigo_om,
crest-level decline are considered random, wheree=
wave run-up is considered fixed. The wave run-up i<
represented by the heighiy (this is the wave run-  0.002f
up level in metres, which is exceeded by 2% of the o001}
number of incoming waves). Furthermore, the effect o ‘ ‘ ‘ ‘ ‘ ‘ :
of seiches, gust surges and gust oscillations is take 0 50 100 150 timg?yoear] 250 300 350 400
into account by the factdr, [m]. For the Den Helder . ) ) L
sea defense, the wave run-up height is computed ddgure 3: Probability density function of the lifetime
2 = 7.52 m and the effect of seiches and gustsWith CV(X(100)) = 0.3.
as by = 0.2 m. The Den Helder sea defense has a
crest level ofh = 12.33 m +NAP (normal Amster- decline was assumed to be 0.7 m per century. We re-
dam level). Including the effects of waves, seiches an@ard the stochastic process of crest-level decline as
gusts, the initial resistance of the dike can be define@ Stationary gamma process with meanX (100)) =

007}

0.003f

asry = h — 299, — by = 4.61 M +NAP. 0.7 and a corresponding coefficient of variation of 0.3;
To account for the temporal variability of the thatis,
sea level, we assume that the occurrence of ex- 0100

treme sea levels can be modelled with a peaks-over-E(X (100)) =
threshold distribution. In particular, we use the gen-
eralised Pareto distribution estimated by Philippart ebv (X (100)) = Var(X(100) 1 0.3
al. (1995) for observed sea levels at Den Helder. They E(X(100)) Va-100 o
estimated the following parameter values= 0.5, . .
so = 2.19, o = 0.3245, and¢ = 0.05465. Using this Solving these equations farandw leads to the pa-
generalised Pareto distribution, the design water levelemeter values = 0.1111 andu = 15.8730. The 5th
with an exceedance probability ah—* is 4.40 m  and 95th percentile ok (100) are 0.39 m and 1.08 m,
+NAP. respectively.

Crest-level decline consists of a combination of set- In Figure 2, the cumulative distribution function
tlement, subsoil consolidation, and relative sea-levefnd the survival function are shown based on Eq. (15).

rise. In van Dantzig (1956), the expected crest-leveln this computation, the number of gamma-process
sample paths is 10,000 with numerical integration

= 0.7,

Cumulative distribution and survival function of time to failure
1 S T T T T

Probability density function of time to failure

0.01
0.9t

0.0091

| ‘ — F(

. S=1-F@ || 0.008}

0.7f

0.007f

probability
o o
[S -

o
IS
probability density
o o
o o
S o
a_ o

0.004

0.3 0.003}

0.2 0.002}

0.1

AN i 0.001}

-

0 . . . .
0 i . . . . .
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

time [year] time [year]

Figure 2: Cumulative distribution and survival func- Figure 4: Probability density function of the lifetime
tion of the lifetime with CV( X (100)) = 0.3. with deterministic deterioration.
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