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Chapter 1

Introduction

1.1 Background to the Research

Optimization of land use is a major policy objective in most countries. How-

ever, for making decisions about allocating land use in the face of competing

demands from different sectors, reliable information on natural resources is an

important prerequisite because it enables decision-making agencies to estimate

prospective benefits from different uses of the land and prioritize them based on

the social and economic needs of the society. Several natural resources such as

forest, surface water and soil are generally exposed on the surface, and, hence

they are directly mapped using ground and aerospace survey data. Other nat-

ural resources including mineral deposits, occur below the land surface and

cannot, therefore, be mapped directly. However, it is possible to map mineral

potential.

1.1.1 Mineral Potential

The term ‘mineral deposits,’ as used here, refers to accumulations or concentra-

tions of one or more useful substances that are generally sparsely distributed in

the earth’s crust (Bateman, 1951a), which include large and small mineral de-

posits, mineral occurrences and mineral prospects. The term ‘mineralization’

refers to the collective geological processes that lead to the formation of mineral

deposits (Bateman, 1951b). The term ‘mineral potential’ describes the possi-

bility of the presence of mineral deposits or mineralization. Mineral potential

does not take into account economic factors such as deposit grade, tonnage,

physical, chemical and mineralogical characteristics, nature and thickness of
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overburden, availability of man power and technology, market demand, etc.,

as these are typically unknown during mineral potential mapping.

Mineral potential mapping of an area involves demarcation of potentially-

mineralized zones based on geologic features that exhibit significant spatial

association with target mineral deposits. These features, which are termed

recognition criteria, are spatial features indicative of various genetic earth pro-

cesses that acted conjunctively to form the deposits in the area. Recognition

criteria are sometimes directly observable; more often, their presence is in-

ferred from their responses in various spatial datasets, which are appropriately

processed to enhance and extract the recognition criteria to obtain evidential

or predictor maps.

1.1.2 Mathematical geological modeling of mineral potential

In traditional approaches to mineral potential mapping, the predictor maps

are interpreted, either individually or conjunctively using manual overlay, to

demarcate potentially-mineralized zones. In recent years, use of geographic in-

formation systems (GIS) for digital overlay of predictive maps has supplanted

these traditional approaches. However, naive applications of GIS, which in-

volve, for example, simple overlay or Boolean operations to combine predictor

maps, are usually unsuitable for mineral potential mapping because they tend

to give equal importance to all recognition criteria. Given the complexity of

earth systems that form mineral deposits, it is too naive to assume that all

earth processes that were involved in the formation of the target mineral de-

posits made equal contributions and, hence, all recognition criteria have equal

importance as indicators of the target mineral deposits.

It is pragmatic to assume that the process of mineralization responds to

random (or stochastic) spatial controls on localization of mineral deposits.

Stochastic processes are readily modeled by the application of mathematics

(for example, Agterberg, 1974; Alberti and Uhlmann, 1982; Nelson, 1995). It

is possible to use appropriate mathematical geological models of the relation

between recognition criteria and target mineral deposits for mineral potential

mapping. What is important is the selection of appropriate mathematical ge-

ological model(s).

Although a variety of models and their applications to map mineral poten-

tial are documented in the published literature (for references, see succeeding

chapters), a comprehensive study involving applications of several models to

the same area is lacking. Such a study can help to establish strengths and lim-
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itations of different modeling techniques and, therefore, can facilitate selecting

appropriate model(s) for mapping mineral potential of geologically comparable

areas.

1.2 Main Research Question

A mathematical geological model for mineral potential mapping can be de-

fined as a highly-simplified mathematical representation of the relation be-

tween recognition criteria (generally represented by predictor maps) and the

target mineral deposits. A generalized mathematical geological model can be

empirically represented as below (see also Bonham-Carter, 1994):

MPM = {f(xij), Pk}, (1.1)

where MPM is a mineral potential map, xij is the jth (j = 1 to L) pattern on

the ith predictor map Xi (i = 1 to N), Pk is the kth (k = 1 to K) parameter

of the mathematical function f , L is the total number patterns on Xi, N is the

total number of predictor maps and K is the total number of parameters of the

function f .

Based on whether the relationship is hypothesized to be linear or non-linear,

a variety of linear and non-linear functions can be used to approximate the rela-

tionship between recognition criteria and mineral deposits. The main problem

in spatial-mathematical-model-based approaches to mineral potential mapping

is the selection of appropriate functions that can effectively approximate the

relation between the target mineral deposits and recognition criteria as well as

account for dependencies amongst the recognition criteria. Therefore, a key

research question is:

• which mathematical function(s) can be used most effectively to approxi-

mate the relationship between a set of recognition criteria (or predictor

maps) and the target mineral deposits?

1.3 Main Research Objectives

In this research, a variety of linear and non-linear mathematical functions are

investigated in the framework of mathematical geological models using the

available regional-scale geoscientific database of a study area in the Aravalli

metallogenic province of India with the following objectives:
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• to identify and map important regional-scale recognition criteria for base-

metal deposits of the Aravalli province,

• to evaluate a series of mathematical functions for capturing approxi-

mately spatial relationships between predictor maps and target mineral

deposits and, if required, develop procedures to implement them in a

GIS-environment,

• to evaluate mathematical geological models for regional-scale base-metal

potential mapping of the study area, and

• to identify major strengths and limitations of various models.

1.4 Modeling Assumptions

Every model is based on certain assumptions, which the modeler assumes to

be true in order to build the model. The mathematical geological models

described in this thesis are based on the following assumptions:

• the geology of the target area has been mapped and studied, and there

exist basic data (predictor maps) for modeling;

• the data are reliable; and

• the genetic characters of at least some of the deposits in the area are

known, or can be extrapolated from deposits occurring in similar geolog-

ical environments elsewhere.

The above-mentioned basic assumptions pertain to a model that uses only

conceptual knowledge for estimating model parameters. The following assump-

tion is added for a model that uses empirical data (or both empirical data and

conceptual knowledge) for estimating model parameters:

• a sufficient number of known mineral deposits occur in the area, and they

have been well-studied and documented.

1.5 Research Methodology

A flow chart of the generalized methodology used in this research for spatial-

mathematical-model-based mineral potential mapping is shown in Fig. 1.1.

The research is implemented in the following sequential steps.
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Figure 1.1: Flowchart of generalized procedures used for mineral potential mapping.
Small rectangular boxes contain objects created at various stages and small elliptical
boxes contain processes used for creating the objects. Shaded area represents GIS
environment and contains objects and processes that were, respectively, created and
implemented within the GIS. Mathematical modeling was implemented, depending on
the model, both inside and outside the GIS and so lies partially inside the shaded
area.

5



Introduction

• Step 1: Base-metal deposit recognition criteria in the study area were

identified and then represented as predictor maps.

• Step 2: The predictor maps were digitally superposed in the GIS to

generate a unique conditions grid.

• Step 3: The unique conditions grid was processed using the mathematical

geological models either inside or outside the GIS.

• Step 4: The outputs of the mathematical geological models were mapped

to generate continuous-scale favorability maps.

• Step 5: The continuous-scale favorability maps were reclassified to gen-

erate binary favorability maps.

• Step 6: Binary favorability maps were validated to derive mineral poten-

tial maps.

Step 1: Identification of base-metal deposit recognition criteria

In this research, a conceptual approach (Hodgson and Troop, 1988) was used

for identifying regional-scale (1:250,000) recognition criteria for base-metal de-

posits in the study area and representing them as predictor maps for inputting

to the mathematical geological models. The approach was implemented in the

following steps:

• A conceptual model of base-metal metallogenesis in the framework of

overall tectono-stratigraphic evolution of the study area was selected

based on published studies coupled with a new interpretive syntheses

of regional-scale exploration data.

• Controls on mineralization and recognition criteria for base metal de-

posits in the study area were identified based on the conceptual model.

• Predictor maps representing the recognition criteria were generated by

processing, interpretation and reclassification of the exploration datasets.

Step 2: Generation of unique conditions grid

A ‘unique conditions grid map’ was generated by combining predictor maps in

the GIS. It is defined as “an integer grid formed by the combination of two

or more predictor maps, in which the class values represent uniquely-occurring
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combinations of the classes of the input themes” (Kemp et al., 1999). An

attribute table associated with a unique conditions grid map (unique conditions

table) contains one record per unique condition class and one field for each

predictor map. The predictor maps were input to the mathematical geological

models in the form of a unique conditions grid.

Step 3: Mathematical geological modeling

The mathematical geological models were implemented either inside the GIS

or outside the GIS using specialized computer programs, depending on the

software resources required to implement their parameter-learning algorithms.

Similarly, procedures used for implementing each mathematical geological model

depend on the specific requirements of the model, and are described in detail

in relevant chapters of this thesis.

In general, all mathematical geological models were implemented in the

following two steps.

• Each model was first trained by estimating the model parameters either

heuristically from conceptual knowledge or algorithmically from training

data.

• The trained model was then used to process the unique conditions grid.

The output for each unique condition was stored in a new field in the

unique conditions table.

Step 4: Generation of continuous-scale favorability maps

The outputs of each mathematical geological model for the unique conditions

were mapped in the GIS to generate a continuous-scale favorability map (if the

modeling was implemented outside the GIS, the processed unique conditions

grid was imported back into the GIS). For each unique condition, the output

of the mathematical geological model, irrespective of its form, was interpreted

as a relative favorability value.

Step 5: Generation of binary favorability maps

Continuous-scale favorability maps are cumbersome to interpret for demarcat-

ing areas of mineral potential because they represent favorability in a contin-

uous scale from 0 (minimum) to 1 (maximum). Thresholding the favorability

values based on some objective criteria facilitates the demarcation of mineral
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potential zones. In this research, a graphical procedure based on the hypothe-

sis that mineral-bearing areas occupy a very small proportion of the total area

of a metallogenic province (Boleneus et al., 2001) was used to identify thresh-

old favorability values, which were then used to reclassify the continuous-scale

favorability maps into binary favorability maps.

Step 6: Validation of binary favorability maps

The binary favorability maps were validated by overlaying locations of known

deposits chosen for validation on the binary favorability maps. After the val-

idation, the binary favorability maps could be used as base-metal potential

maps of the study area.

1.6 Organization of the Thesis

This thesis is a compilation of the results of research work carried out to apply

and evaluate a number of mathematical geological models, based on different

linear and non-linear mathematical functions, for mineral potential mapping.

With the exception of this introductory chapter and the concluding chapter,

each chapter of the thesis has been published in a peer-reviewed international

journal. The contents of the papers, however, have been edited to avoid rep-

etition and to underscore the essential continuity between different chapters.

The relation between different chapters is summarized in Fig. 1.2.

Chapter 2 introduces the reader to the geology of the study area and the

exploration datasets used in the research. It applies a conceptual model of

base-metal metallogenesis in the study area to identify deposit recognition

criteria, which are represented as predictor maps, validated using empirical

spatial analyses, and subsequently used as inputs in applications of the math-

ematical geological models. Portions of this chapter have been published as

“Knowledge-driven and Data-driven Fuzzy Models for Predictive Mineral Po-

tential Mapping” (Porwal et al., 2003a) and “Tectonostratigraphy and base-

metal mineralization controls, Aravalli province (western India): new interpre-

tations from geophysical data” (Porwal et al., 2006b).

Chapter 3 develops new “Knowledge-driven and Data-driven Fuzzy

Models for Predictive Mineral Potential Mapping” (Porwal et al., 2003a). For

deriving fuzzy membership values of input predictor maps, the knowledge-

driven fuzzy model uses a logistic membership function, whereas the data-

driven model uses a piece-wise linear function. In both models, a multi-stage
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Figure 1.2: Relation of different chapters in this thesis; solid and dashed connector lines represent, respectively, direct and
indirect linkages.
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inference engine is used to combine the predictor patterns. A graphical defuzzi-

fication procedure is used in both models for the generating mineral potential

maps.

Chapter 4 describes “Extended Weights-of-Evidence Modeling for Predic-

tive Mapping of Base Metal Deposit Potential in Aravalli Province, Western

India” (Porwal et al., 2003b). The model applies the Bayesian equation in a

log-linear form to model multi-class predictor maps for mineral potential map-

ping in an attempt to maximize mineral potential information.

Chapter 5 implements a hybrid fuzzy weights-of-evidence model by intro-

ducing fuzzy modeling procedures in the framework of an extended weights-of-

evidence model. This chapter is based on a paper titled “A Hybrid Fuzzy

Weights of Evidence Model for Mineral Potential Mapping”(Porwal et al.,

2006c).

Chapter 6 applies an artificial neural network based on radial basis func-

tions to mineral potential mapping. The learning algorithms for estimating the

parameters of the neural network required specialized computer programs and,

therefore, are implemented outside the GIS. The chapter has been published

as “Artificial Neural Networks for Mineral Potential Mapping: A Case Study

from Aravalli Province, Western India” (Porwal et al., 2003c).

Chapter 7 describes “A Hybrid Neuro-Fuzzy Model for Mineral Potential

Mapping”(Porwal et al., 2004a). By implementing a fuzzy model in the frame-

work of an adaptive neural network, this hybrid model seeks to optimize the

estimation of parameters of the fuzzy model. The hybrid parameter-learning

algorithms are implemented outside the GIS.

Chapter 8 investigates an augmented naive Bayesian classifier that uses the

non-linear Bayesian equation without any simplification and thus recognizes

and accounts for conditional dependencies amongst input predictor patterns.

The chapter also examines the effects of violations of the conditional indepen-

dence assumption in Bayesian approaches to mineral potential mapping. The

parameter-learning algorithms are implemented outside GIS. The chapter has

been published as “Bayesian Network Classifiers for Mineral Potential Map-

ping” (Porwal et al., 2006a).

In Chapter 9, the mathematical geological models and their applications

to base-metal potential mapping in the study area are reviewed vis-à-vis the

research objectives and, based on the reviews, conclusions regarding their re-

spective strengths and limitations are drawn. The chapter also outlines some

recommendations for future research on mathematical geological modeling.
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Base-Metal Potential

Recognition Criteria in Study

Area

This chapter describes the application of a conceptual model of base-metal met-

allogenesis in the study area to identify deposit recognition criteria, which are

represented as predictor maps, validated using empirical spatial analyses and

subsequently used as inputs in evaluation applications of GIS-based mathemat-

ical geological models described in this research. First, tectono-stratigraphy

and base-metal mineralizations of the study area are described. Then, ex-

ploration data inputs to a GIS of the study area are described. Conjunc-

tive interpretations of processed exploration data are described next. Then,

a conceptual model of base-metal metallogenesis in the framework of overall

tectono-stratigraphic evolution of the study area is used to identify mineral-

ization controls and recognition criteria for base-metal deposits. Finally, em-

pirical models are used to validate spatial association of base-metal deposits

and the recognition criteria. Portions of this chapter have been published as

“Knowledge-driven and Data-driven Fuzzy Models for Predictive Mineral Po-

tential Mapping” (Porwal et al., 2003a) and “Tectonostratigraphy and base-

metal mineralization controls, Aravalli province (western India): new interpre-

tations from geophysical data” (Porwal et al., 2006b).

11



Base-Metal Recognition Criteria in Study Area

2.1 Study Area

The Aravalli province (Fig.2.1), which is located in the state of Rajasthan,

India, constitutes the most important metallogenic province for base-metal

deposits in India and hosts the entire economically-viable lead-zinc resource-

base of the country. The economically-viable reserves of lead and zinc in the

province stand at 130 million tonnes with average grades of 2.2% Pb and

9.2% Zn; possible resources in producing mines and deposits under detailed

exploration amount to 30 million tonnes (Paliwal, et al., 1986; Kala, 2001;

Haldar, 2001). The province is characterized by an Archaean basement over-

lain by thick successions of intensely deformed and metamorphosed volcanic

and sedimentary rocks. Eastern parts of the province comprise flat and largely

soil-covered peneplains occupied by Archaean basement rocks. Central parts

of the province comprise the NNE-SSW trending and 700-km-long Aravalli

Mountain Chain, which is composed of Palaeo- to Meso-Proterozoic meta-

volcano-sedimentary rocks. Western parts of the province blend into the Great

Thar Desert and are occupied by Neo-Proterozoic magmatic rocks.

A block (about 50,000 km2) of the Aravalli province between latitudes

23◦30’ N and 26◦ N and longitudes 73◦ E and 75◦ E (Fig. 2.2) was selected

and used in this research as a study area for demonstrating the applications

of various mathematical geological models to mineral potential mapping. The

study area contains more than 90% of the province’s base-metal deposits plus

several base-metal prospects, occurrences and abandoned mining pits, which

have made it a prime exploration target area for base metals. It has been rel-

atively well explored by different governmental agencies. Significant amounts

of reliable and public domain data are available, largely generated by the Ge-

ological Survey of India. Moreover, genetic attributes of most of the major

deposits in the study area are documented in published literature. There-

fore, the study area meets all the assumptions stated in chapter 1 for applying

spatial-mathematical-model-based approaches to mineral potential mapping.

2.1.1 Previous geological work in study area

The broad tectono-stratigraphic framework of the study area was first defined

by Heron (1917, 1939, 1953). Since then, several field and laboratory studies

have contributed to a much better understanding of the tectono-stratigraphy of

the study area (Roy, 1988a; Gupta et al., 1997; Roy and Kataria, 1999; Sinha-

Roy et al., 1998; Deb, 2000a). Similarly, larger base-metal deposits in the
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Figure 2.1: Location of study area showing boundaries of aeromagnetic and gravity
surveys. Shaded-relief image of digital elevation model of Rajasthan in background is
created from 90-m resolution SRTM (Shuttle Radar Topography Mission) data.
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Figure 2.2: Generalized geological map of study area showing important base-metal
mineralized belts and deposits (After Sinha-Roy et al., 1998).
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study area are well studied and documented (e.g., Mookherjee, 1964a, 1964b,

1965; Poddar, 1965; Straczec and Srikant, 1967; Chauhan, 1977; Gandhi et

al., 1984; Deb, 1986, 1990; Deb and Bhattacharya, 1980; Deb et al. 1989;

Ranawat et al., 1988; Sarkar, 2000; Gandhi, 2001; Haldar and Deb, 2001; Roy,

2001) and, thus, much is fairly well known about major controls on base-metal

mineralizations in the study area.

The study area is generally divided into three major tectono-stratigraphic

units (Heron, 1953; Gupta et al., 1980, 1997; Roy, 1988b).

Bhilwara supergroup. This Archaean supergroup (Raja Rao et al., 1971;

Gupta et al., 1980, 1997; Fig. 2.3A), comprising largely a heterogeneous com-

plex of granite and granodioritic gneisses, migmatites, ampbhibolites and gran-

ulites, constitutes the basement of the study area. It also contains enclaves of

meta-volcanic-sedimentary rocks (Gupta et al., 1980, 1997). Several workers

have reported remnants of greenstone sequences from the basement complex

(Sinha-Roy, 1985; Sahu and Mathur, 1991; Upadhyaya et al., 1992). The spa-

tial distribution of basement rocks in central parts of the study area (Figs. 2.3

and 2.4) is ill defined and widely debated (see below). Consequently, it is re-

ferred to by various names in the literature, viz., Mewar Gneiss (Roy, 1988b,

1990; Roy and Kroner, 1996; Fig. 2.3B), Banded Gneissic Complex (Heron,

1953; Sharma, 1988; Sugden et al., 1990; Bose, 2000; Deb and Thorpe, 2001;

Fig. 2.4A) and Basement Complex (Sinha-Roy et al., 1998; Fig. 2.4B). In

spite of several commonalities, each name has a different spatial connotation

(Figs. 2.3 and 2.4).

Aravalli supergroup. This Palaeo- to Meso-Proterozoic supergroup (Figs. 2.3

and 2.4) exhibits an inverted V-shaped geometry. It is bisected roughly along

its long axis by a narrow, linearly-disposed suite of ultramafic rocks that sep-

arate a shallow-water shelf association of (predominantly dolomitic) carbon-

ates and a variety of clastic sedimentary rocks in the east from a carbonate-

free deep-water association of pelitic sediments intercalated by thin bands of

quartzites in the west (Roy and Paliwal, 1981). In southern parts of the study

area, this supergroup is separated from the basement by a profound erosional

unconformity (Roy and Paliwal, 1981; Roy et al., 1988) but, in the central

parts, the boundary between the two is blurred by a pervasive migmatization

and soil cover. The central parts comprise several linear belts of base-metal-

bearing metasedimentary sequences (outlined in black in Figs. 2.3 and 2.4) sep-
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arated by wide tracts of gneisses and migmatites or soil cover. These metasedi-

mentary sequences host some of the largest Pb-Zn deposits of the country. The

central parts have been variously classified en bloc into the Archaean Bhilwara

supergroup (Gupta et al., 1980, 1997; Fig. 2.3A), into the Proterozoic Aravalli

supergroup (Roy, 1988b; Roy et al., 1993; Roy and Kataria, 1999; Fig. 2.3B),

or into a separate group called ‘Bhilwara belt’ of Proterozoic age (Sugden et

al., 1990; Fig. 2.4A). Sinha-Roy et al. (1998) separate these base-metal-bearing

metasedimentary enclaves from surrounding gneisses and migmatites and con-

sider the latter as parts of Archaean basement and the former as Aravalli-

equivalent Proterozoic outliers (Fig. 2.4B). The tectono-stratigraphic status

of the Hindoli volcano-sedimentary sequences along the eastern margin of the

study area (outlined in white in Figs. 2.3 and 2.4) is also unresolved. They

have been variously classified into the Archaean Bhilwara Supergroup (Gupta

et al., 1980; 1997; Fig. 2.3A), into the Proterozoic Aravalli supergroup (Roy,

1988b; Roy and Kataria, 1999; Fig. 2.3B), into the Proterozoic Bhilwara belt

(Sugden et al., 1990; Fig. 2.4A) and into the Archaean Basement Complex

(Sinha-Roy, 1988; Sinha-Roy et al., 1998; Fig. 2.4B).

Delhi supergroup. Flanking the Aravalli supergroup in the west with a

well-defined unconformity (Figs. 2.3 and 2.4), this Meso- to Neo-Proterozoic

supergroup comprises an arenite-dominated assemblage in the east and a pelite-

dominated assemblage in the west. Metavolcanic rocks have much wider tem-

poral and spatial distributions in the Delhi supergroup than in the Aravalli

supergroup. Along its western margin, the Delhi supergroup includes a suite

of base-metal-bearing volcano-sedimentary rocks (Heron, 1953; Gupta et al.,

1980; 1997; Sinha-Roy et al., 1998; Roy and Kataria, 1999) and rocks showing

ophiolitic affinity (Phulad ophiolites, cf. Gupta et al., 1980, 1997; Sugden et

al., 1990). This suite of rocks has been identified as a separate tectonic terrane

by Deb et al. (2001).

In addition to the above major tectonostratigraphic units, the study area

also contains largely undeformed and unmetamorphosed sedimentary sequences

of Neo-Proterozoic to Lower Cambrian age (Marwar and Vindhyan super-

groups; Fig. 2.2). The western parts of the study area comprise the Neo-

Proterozoic Malani Igneous Suite (Fig. 2.2), which represents a major period

of anorogenic magmatism (A-type) in the Aravalli province and forms the

third largest felsic magmatic terrane in the world (Kochar, 2000). This suite
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comprises a variety of granites and cogenetic acidic volcanic rocks showing

spectacular ring structures and radial dykes.

Base-metal mineralizations in study area

Base-metal deposits in the study area are hosted by supracrustal rocks of the

Aravalli supergroup and Delhi supergroup (Fig. 2.2). Major concentrations of

base-metal mineralization in the Aravalli supergroup occur in the Rampura-

Agucha deposit and in the Pur-Banera, Bethumni-Dariba-Bhinder and Zawar

mineralized zones (Fig. 2.2). Rampura-Agucha is a world-class Zn-Pb-(Ag) de-

posit with the highest combined metal grade (about 15%) among base-metal

deposits in India. In the Bethumni-Dariba-Bhinder zone, Zn-Pb-(Cu) deposits

are located in a 17 km long belt running from Bethumni in north to Dariba

in south, with a pyrite zone further south around Bhinder. Pur-Banera is a

low-grade polymetallic zone with several small deposits/prospects. Middle Ar-

avalli sequences host Zn-Pb deposits in the Zawar zone. In addition, low-grade

Cu(-Pb-Zn) mineralizations occur in basal sequences of the Aravalli super-

group (Fig. 2.2). The Delhi supergroup hosts smaller deposits of Cu-Zn and

Zn-Pb-Cu in the Basantgarh zone. Table 2.1 summarizes the available geolog-

ical information on important mineralized zones in the study area.

Base-metal mineralization in the study area shows systemic variation in

time and space. Broadly, the following phases of base-metal metallogeny can

be recognized.

The oldest phase is represented by low-grade dolomite-hosted Cu-(Pb-Zn)

deposits in basal sequences of the Aravalli group (Fig. 2.2). The deposits show

close spatial association with metamorphosed mafic volcanic rocks. Detailed

genetic studies on this phase of base-metal mineralization are not available.

The age of this phase of mineralization can be constrained at ca. 2000 Ma by

extrapolating available geochronological data from basal volcanic rocks (Deb

and Thorpe, 2001).

The second phase of base-metal mineralization, which has been dated at

ca. 1800 Ma (Deb and Thorpe, 2001), is represented by large SEDEX-type

Zn-Pb deposits (Menzie and Mossier, 1986; Goodfellow, 2001; Fig. 2.9B) at

Rampura-Agucha and in the Pur-Banera, Bethumni-Dariba-Bhinder and Za-

war zone of the Aravalli supergroup. Base-metal sulphide deposits in the

Aravalli-equivalent outliers (Fig. 2.2) were formed by convective seawater cir-

culation in zones of crustal extension (Deb, 1986; Deb and Sarkar, 1990). Metal

content of exhalative brines was precipitated in second-order troughs with high
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Figure 2.3: Tectonostratigraphic interpretations of south-central parts of Aravalli province: (A) after Gupta et al. (1997) and
(B) after Roy (1988b). Areas demarcated by black and white lines are, respectively, base-metal bearing metasedimentary enclaves
of Bhilwara area and low-grade meta-volcano-sedimentary sequences of Hindoli area.
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Figure 2.4: Tectonostratigraphic interpretations of south-central parts of Aravalli province: (A) after Sugden et al. (1990) and (B)
after Sinha-Roy et al. (1998). Areas demarcated by black and white lines are, respectively, base-metal bearing metasedimentary
enclaves of Bhilwara area and low-grade meta-volcano-sedimentary sequences of Hindoli area.
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Table 2.1: Summary of available information on important mineralized zones in study area

Rampura Agucha Rajpura Dariba Pur-Banera Zawar Basantgarh
Deposit Zone Zone Zone Zone

Age ∼ 1800Ma ∼ 1800 Ma ∼ 1800 Ma ∼ 1700 Ma ∼ 1000 Ma

Reserves(MT) 60 261 64 8

Combined
metal grade
(Wt%)

15.5 2.6-7.38 Low grade 6.7 9.8

Type SEDEX SEDEX SEDEX SEDEX VMS

Host lithology Graphitic mica
schist with
sillimanite

Recrystallized
siliceous dolomite;
carbonaceous chert;
graphitic mica
schists

Fine grained, grey
dolomite, commonly
gritty/arkosic

Calc-silicates;
associated banded
magnetite quartzite

Hornblende schists;
Anthophyllite-
chlorite
schists

Geological
setting

Isolated
metasedimentary
enclave within the
basement; geological
sequence comprises
striped amphibolite,
diopside-garnet
amphibolite,
graphite-garnet-
mica-sillimanite
gneisses, aplite,
feldspathic, arkosic
quartzite, pegmatite

Linear intracratonic
basins within
basement; geological
sequence comprises
calc biotite schist
grading to
recrystallized cross
bedded dolomite
with conformable
amphibolite,
siliceous carbonate
rock, carbonaceous
chert, graphite mica,
banded magnetite
quartzite,
ferrugineous breccia
in ore zone

Second order basins
close to a basement
inlier; geological
sequence comprises
conglomerate, grit,
quartzite (often
arkosic), phyllite and
greywacke, impure
dolomite

Linear intracratonic
basins within
basement; geological
sequence comprises
calc-silicates,
hornblende schists,
graphite mica
schists, banded
magnetite quartzite

Linear belts of
volcanic rocks;
geological sequence
comprises
metamorphosed and
altered volcanic
rocks (hornblende-
biotite-quartz schist,
cordierite-
anthophyllite-
sericite-quartz schist,
amphibolite etc.
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Table 2.1 Continued
Rampura Agucha Rajpura Dariba Pur-Banera Zawar Basantgarh
Deposit Zone Zone Zone Zone

Volcanics Amphibolite (mafic
volcanics)

Amphibolites (mafic
volcanics?) in
footwall argillites
and tuffaceous layers
in graphite mica
schist

Hornblende schist None represented Metamorphosed and
altered mafic and
bimodal volcanics

Organic
association

Ubiquitous graphite Carbonaceous
matter intimately
associated with
Pb-Zn

Graphite associated
with host rocks

Host rocks
carbonaceous at
places

None represented

Metamorphism Upper Amphibolite
facies (Max
temperature: 650 C
Max pressure : 6
kbar)

Amphibolite; (Max
pressure: 5.4 kbar,
Max temperature:
555 C)

Amphibolite;
ubiquitous evidence
of remobilization

Green schist;
ubiquitous evidence
of remobilization

Amphibolite(?)

References Gandhi et al.
(1984), Ranawat et

al. (1988), Deb et al.
(1989), Deb and
Sarkar (1990),
Ranawat and
Sharma (1990), Deb
and Thrope (2001),
Haldar (2001), Roy
(2001)

Poddar (1974),
Chauhan (1977),
Deb and Kumar
(1982), Deb (1986),
Deb et al. (1989),
Deb and Sarkar
(1990), Deb and
Thrope (2001),
Haldar (2001)

Raghunandan et al.
(1981); Deb and
Thorpe (2001)

Straczec and Srikant
(1962); Deb et al.
(1989), Deb and
Sarkar (1990), Deb
and Thorpe (2001)

Raghunandan et al.
(1981), Deb (1999,
2000b)
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biological activity. It must be mentioned here that the Rampura-Agucha de-

posit does not show all characteristics that are typical of SEDEX deposits

(Gandhi, 2001), mainly because it has undergone high-grade metamorphism

( 700◦) that has obliterated most of the pre-metamorphic features of the de-

posit. The deposit is geologically similar to the Broken Hill deposit of Australia

for which the SEDEX model has been questioned by several authors (for ex-

ample, Plimer, 1986; Beeson, 1990; Pongratz and Davidson, 1996; Large et

al., 1996). However, Gandhi (2001) convincingly argues in favor of a SEDEX

origin of the deposit on the basis of its mineralogical composition, form and

mode of occurrence, host rock lithology and geotectonic environment. The Zn-

Pb deposits of the Aravalli group (Fig. 2.2) were formed close to a basement

inlier, in second-order basins with biological activity, by hydrothermal fluids

convecting through a heterogeneous source (Deb et al., 1989; Deb and Sarkar,

1990).

The third phase of base-metal mineralization is represented by the Zn-

Pb-Cu and Cu-Zn deposits in the Basantgarh zone of the Delhi supergroup

(Fig. 2.2). These deposits, which are associated with metamorphosed and

altered low-K tholeiites and calc-alkaline basalts, show affinity to VMS-type

deposits (Deb, 2000b). Deb and Thorpe (2001) have dated this phase of min-

eralization at ca. 1000 Ma.

2.1.2 Data requirements for further tectonostratigraphic studies

Since the pioneering works of Heron (1917, 1939, 1953), significant progress

has been made in understanding the tectono-stratigraphy of the study area.

However, as the foregoing discussion shows, the following questions (amongst

others) remain unresolved.

• Are the Hindoli sequences parts of the basement?

• What is the tectono-stratigraphic status of base-metal-bearing metased-

imentary enclaves in central parts of the study area?

• Do base-metal-bearing meta-volcanic-sedimentary sequences along the

western margin of the Delhi supergroup constitute a separate tectono-

stratigraphic domain?

Until very recently, most tectonostratigraphic studies in the study area re-

lied entirely on structural, lithological and lithogeochemical data, with very
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little consideration of geophysical data. Certain geophysical data provide in-

formation about the 3-dimensional structure of the lithosphere and can thus

provide insights into unresolved tectono-stratigraphic issues in the study area.

For example, recent deep seismic reflectivity and gravity studies over the 400-

km long Nagaur-Jhalawar transect across central parts of the Aravalli province,

carried out by the National Geophysical Research Institute (NGRI) of India,

provided a better understanding of crustal structure and tectonic evolution of

the province (Tewari et al., 1995, 1997a, 1997b, 1998, 2000; Rajendra Prasad

et al., 1998, 1999; Mishra et al., 1998, 2000; Vijaya Rao et al., 2000; Satyavani

et al., 2001).

Variations in the geomagnetic field, or magnetic anomalies, are caused by

variations in content of magnetite and other ferromagnetic minerals in crustal

rocks formed at temperatures above the Curie point (∼50 km below earth’s

surface). Magnetic anomalies thus reflect compositional and geometric varia-

tions of outcropping and concealed crustal rocks. Similarly, lateral variations

in the Earth’s gravitational field, or gravity anomalies, are essentially caused

by lateral variations of subsurface mass distribution and, therefore, reflect sub-

surface density variations. Bouguer gravity anomalies, which are determined

by applying free-air, Bouguer and terrane corrections to observed gravitational

field values (in order to eliminate effects of latitude, elevation and topography),

reflect lateral variations in density of subsurface rocks. In addition, Bouguer

gravity anomalies are, in general, useful for modeling subsurface mass distri-

butions (Bott and Hinze, 1995). Therefore, magnetic and Bouguer gravity

anomalies can provide useful insights into tectonics of a province, especially

when interpreted in conjunction with surface geological data.

In this research, conjunctive interpretations of total magnetic field inten-

sity data, Bouguer gravity data and other exploration data with the aid of a

geographic information system (GIS) are used to address the above unresolved

tectono-stratigraphic issues in the study area.

2.2 Exploration Database and Geophysical Data

Processing

Available public domain multi-disciplinary spatial data were digitized to cre-

ate a consistent regional-scale GIS of the study area that could be digitally

processed to generate (a) relevant thematic maps for conjunctive tectono-

stratigraphic and metallogenetic interpretations and (b) predictor maps for rep-
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Table 2.2: Exploration datasets input to GIS

S.No. Dataset Scale Source Format
1. Lithostratigraphic

data
1:250000 Gupta et al. (1995a). Hard copy (4

sheets)

2. Structural data 1:250000 Gupta et al. (1995b). Hard copy (4
sheets)

3. Base-metal
deposits data

1:250000 Raghunandan et al., (1981);
DMGR (1990); In-house
reports of DMGR.

Published and
unpublished
technical
reports

4. Geochronological
data

- Vinogradov et al. (1964);
Crawford (1970); Sivaraman
and Odom (1982); Chodhary
et al. (1984); Sarkar et al.

(1992); Deb et al. (1989);
Wiedenbeck and Goswami
(1994); Roy and Kroner
(1996); Fareeduddin and
Kroner (1998); Wiedenbeck et

al. (1996); Deb et al. (2001);
Deb and Thorpe (2001).

Published
research
literature.

5. Total magnetic
field intensity
data

1:250000 GSI (1981). Hard copy (4
sheets of
contour maps)

6. Bouguer gravity
data

1:1000000 Reddi and Ramakrishna
(1988a).

Hard copy (1
sheet of
contour map)

resenting recognition criteria and inputting to mathematical geological models.

Datasets input to the GIS (Table 2.2) include lithostratigraphic data (Gupta

et al., 1995a), structural data (Gupta et al., 1995b), base-metal deposit/occurrence

data (from various sources), geochronological data (from various sources), total

magnetic field intensity maps (GSI, 1981) and a Bouguer gravity map (Reddi

and Ramakrishna, 1988a). Because the datasets come from diverse sources,

they were all georeferenced to the same Universal Transverse Mercator (UTM)

projection for accurate spatial data overlay.

Lithostratigraphic data

Lithostratigraphic data of the study area are available in the form of a hard-

copy or analog map (in 4 sheets on 1:250,000 scale) published by the Geolog-

ical Survey of India (Gupta et al., 1995a). The lithostratigraphic map was

synthesized from a number of regional-scale maps and relevant geological data

24



Chapter 2

produced by teams of geologists belonging to the Geological Survey of India

over decades of systematic field mapping in the study area. In the map, various

lithostratigraphic units are classified up to the level of formation. The ratio-

nale for the lithostratigraphic classifications are given by Gupta et al. (1997).

To input the lithostratigraphic data into the GIS, each lithological unit on

the map was manually digitized as a polygonal feature using the UTM pro-

jection and its lithological and stratigraphic attributes (lithotype, formation,

group and supergroup) were recorded in an associated attribute table.

Structural data

Gupta et al. (1995b) compiled a synthesized structural map from a number

of regional-scale structural maps and relevant structural data produced by

teams of geologists of the Geological Survey of India over decades of systematic

structural mapping in the study area. The structural map has been published

by the Geological Survey of India in 4 sheets on 1:250,000 scale. By interpreting

the structural data in terms of the overall tectonostratigraphic evolution of

the study area, Gupta et al. (1995b) defined several phases and cycles of

deformation in the study area and classified each structural feature into a

phase and a cycle of deformation. The rationale for the classifications is given

by Gupta et al. (1997).

To input the structural data into the GIS, each feature on the structural

map was manually digitized as a polyline and its attributes (nature, type, phase

and cycle of deformation) were recorded in an associated attribute table. The

digitization was carried out using the UTM projection.

Base-metal deposit/occurrence data

Raghunandan et al. (1981) compiled detailed information on location, geology,

mineralization, reserves and status of exploration of all base-metal deposits of

India. Information pertaining to base-metal deposits in the study area was ex-

tracted from their compilation to create a base-metal deposit/occurrence data-

base, which was updated using mineral information available in the Rajasthan

State Department of Mines and Geology. The updated data-base contained

information on 54 known base-metal deposits in the study area.

The location of each base-metal deposit or occurrence was manually digi-

tized as a point in the GIS using the UTM projection and its attributes (ore

minerals, host rocks, reserves and grade) were recorded in an associated at-
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tribute table.

Geochronological data

The geochronological data of radioactively-dated rocks and their locations in

the study area are available in published research literature (Vinogradov et

al., 1964; Crawford, 1970; Sivaraman and Odom, 1982; Chodhary et al., 1984;

Sarkar et al., 1989; Deb et al., 1989; Wiedenbeck and Goswami, 1994; Roy and

Kroner, 1996; Fareeduddin and Kroner, 1998; Wiedenbeck et al. 1996; Deb

et al., 2001; Deb and Thorpe, 2001). Deb and Thorpe (2001) give a detailed

synthesis and analysis of the geochronological data of the study area. The

above literature was used to create a geochronological data-base of the study

area containing locality and age data of radioactively-dated rocks.

The location of each radioactively-dated rock was manually digitized as a

point in the GIS using the UTM projection and its age was recorded in an

associated attribute table.

Total magnetic field intensity data

A large portion of the study area (Fig. 2.1) was covered by two adjacent multi-

sensor airborne magnetic surveys carried out by the United States Agency

for International Development (USAID) and the Bureau de Recherches Ge-

ologiques et Minieres/Compagnie Generale de Geophysique (BRGM/CCG).

The average flightline spacing and flight height in the case of the USAID sur-

vey were, respectively, 400 m and 60 m. The average flightline spacing and

flight height in the case of the BRGM/CCG survey were, respectively, 400 m

and 130 m. Raw data from the two surveys were processed and published

by the Geological Survey of India in two sets of total magnetic field intensity

contour maps (2 sheets for each set of data) with 10-nT contour interval (GSI,

1981).

The intersections of contours and flightlines on the total magnetic field in-

tensity maps were manually digitized into the GIS as points using the UTM

projection and the total magnetic field intensity value at each intersection point

was stored in an associated attribute table. The two sets of total magnetic field

intensity data were exported in two ASCII files using a xyz format (x and y de-

fine a co-ordinate pair for digitized magnetic value z) for processing outside the

GIS using digital techniques (see below). Images of processed total magnetic

field intensity data were input into the GIS as additional thematic layers.
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Bouguer gravity data

Bouguer gravity data of the Aravalli province are available in the form of a

contour map, with a 5 mgal contour interval, published by Geological Survey

of India (Reddi and Ramakrishna, 1988a). Areal coverage of the Bouguer

gravity data is shown in Fig. 2.1. The data are based on gravity surveys along

roads and tracks at station intervals of 2 km with elevation accuracy of 2 m

(Ramakrishna and Bhaskara Rao, 1981). The data are, therefore, regional in

nature with an overall accuracy of 1-2 mgal (Ramakrishna and Bhaskara Rao,

1981; Reddi and Ramakrishna, 1988b; Mishra et al., 2000).

The contours on the Bouguer gravity map were manually digitized into the

GIS as polylines using the UTM projection and the Bouguer gravity value of

each contour was stored in an associated attribute table. The Bouguer gravity

contours were then converted into point features and exported in ASCII files

using a xyz format (x and y define a co-ordinate pair for each Bouguer gravity

value z) for processing outside the GIS using digital techniques (see below).

Images of digitally processed Bouguer gravity data were input into the GIS as

additional thematic layers.

2.2.1 Geophysical data processing

The geophysical data were processed outside the GIS using specialized software

systems (mainly, Oasis Montaj and GM-SYS), as described below.

Total magnetic field intensity data

The two sets of total magnetic field intensity data, which were exported from

the GIS in xyz format (see above), were gridded using the minimum curvature

method (Briggs, 1974; Swain, 1976) and a cell size of 250 m. Resulting grids

were contoured automatically and then compared with original contour maps

to determine the accuracy of digital data capture. Original contour maps and

computer-generated contours maps were very similar. Subsequently, the two

grids were reduced to a common datum by upward-continuing the USAID grid

to the level at which the BRGM/CGG data was acquired.

Noise reduction. The International Geomagnetic Reference Field (IGRF)

values were removed from the grids to minimize the effect of regional mag-

netic field. Images of residual grids show several high-frequency anomalies

that appear unrelated to probable geological sources. In addition, the USAID
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grid shows distinct NW-SE trending flightline-related noise. High-frequency

anomalies in the BRGM/CCG grid were filtered using a low-pass Butterworth

filter (k0 = 0.0005). High-frequency anomalies and flightline-related noise in

the USAID grid were suppressed by applying a combination of high-pass But-

terworth (k0 = 0.0005) and directional cosine filters (Minty, 1991). Filtering

was performed in the wavenumber domain by transforming gridded data to

wavenumbers using Fourier analysis. After filtering, the data were transformed

back to the spatial domain. The two grids were then merged and re-gridded

using the minimum curvature method and a cell size of 250 m.

Processing and visualization. To re-position magnetic anomalies over

their crustal sources, total magnetic field intensity is generally reduced to the

pole. However, at low magnetic latitudes, this process results in undesirable

amplification of N-S trending anomalies (MacLeod et al., 1993). Amplitude of

a 3D analytical signal of total magnetic field produces maxima over a magnetic

source, irrespective of direction of magnetization and, therefore, an anomaly

is re-positioned over its magnetic source without being affected by magnetic

latitude (Roest et al., 1992; MacLeod et al., 1993). Due to the low magnetic

latitude of the area, 3-D analytical signals were calculated instead of reduc-

ing total magnetic field intensity data to the pole. A first vertical derivative

(FVD) filter was applied to enhance short wavelength (near-surface) anomalies

and then the filtered data were upward-continued to various heights ranging

from 2 to 8 km to enhance long wavelength (deep-seated) anomalies. Subse-

quently, all processed magnetic grids were displayed as shaded-relief images

and then imported into the GIS to facilitate interpretation in conjunction with

the other datasets.

Bouguer gravity data

The Bouguer gravity data, which were exported from the GIS in xyz format

(see above), were gridded using the minimum curvature method and a cell size

of 2 km. The same procedure, as described above to capture aeromagnetic

data, was used to verify the accuracy of digital data capture.

Processing and visualization. The gravity data were upward-continued

to various heights ranging from 1 km to 20 km to enhance long wavelength

(deep-seated) anomalies. Using the method described by Boyce and Morris

(2002), the residual field was separated from the regional field by subtracting
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the gravity data upward-continued to 500 m from the original gravity data. A

FVD filter was then applied to the residual gravity data in order to enhance

near-surface anomalies. The processed gravity grids were displayed as shaded-

relief images to enhance anomaly features and then imported into the GIS.

2.3 Conjunctive Interpretations of Processed Data

The images of the digitally-processed geophysical data were interpreted in con-

junction with surface geological data with the aid of GIS-based overlay tech-

niques to gain insights into the tectono-stratigraphy of the study area.

Regional lineaments

Thematic layers created from the geophysical datasets show prominent regional-

scale lineaments comprising (a) composite linear to curvilinear features hav-

ing distinct characteristics from adjacent features or (b) boundaries between

crustal domains having distinct characteristics. Regional lineaments are par-

ticularly well-defined on the total magnetic field intensity image (Fig. 2.5A)

and on the FVD residual gravity image (Fig. 2.6A). Lineaments were digi-

tized from each shaded-relief image (Figs. 2.5B and 2.6B), resulting in two

new thematic layers. Magnetic lineaments show northwesterly to northeast-

erly trends and, except lineaments M6, M7 and M12, extend for more than 50

km (Fig. 2.5B). Most magnetic lineaments are discernible in the FVD resid-

ual gravity image (Fig. 2.6A), although most are indiscernible in the Bouguer

gravity image (Fig. 2.7A), perhaps due to lower resolution of the gravity data.

The FVD residual gravity image (Fig. 2.6A) shows that magnetic lineament

M15 (Fig. 2.5B) extends much further towards northeast and southwest before

changing its trend (gravity lineament G7 on Fig. 2.6B). The lineament coincides

with the western boundary of the central gravity high in the Bouguer grav-

ity image (Fig. 2.7A). Similarly, magnetic lineament M13 (Fig. 2.5B), which

coincides with gravity lineament G5 (Fig. 2.6B), extends further southwards,

swings anticlockwise and continues further east with an ENE-WSW trend. The

southern section of the lineament is discernible in the Bouguer gravity image

(Fig. 2.7A). Magnetic lineament M10 (Fig. 2.5B) is also traceable in the FVD

residual gravity image (Fig. 2.6A; G4 in Fig. 2.6B). The eastern boundary

of the central gravity high in the Bouguer gravity image (Fig. 2.7A) forms a

well-defined lineament in the FVD residual gravity image (Fig. 2.6A; G1 in

Fig. 2.6B).
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Figure 2.5: (A) Shaded-relief image of total magnetic field intensity and (B) interpreted lineaments.
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Mafic magmatic rocks

By overlaying the lithological layer on the 3-D analytical signals layer (Fig. 2.8A),

it was found that high analytical signals coincide spatially with mapped mafic

magmatic rocks. As compared to metasedimentary and acidic magmatic rocks,

mafic magmatic rocks contain much higher concentrations of magnetite and

ferromagnesian minerals and, thus, generate stronger analytical signals. More-

over, analytical signal anomalies are positioned directly above their crustal

causative bodies. The analytical signals image (Fig. 2.8A) was thus used to in-

terpret presence of other (i.e., unmapped) mafic magmatic bodies in the area.

The interpreted mafic magmatic bodies show good spatial coincidence with

mafic magmatic bodies mapped by Gupta et al. (1995a). However, the inter-

preted mafic magmatic bodies have wider areal extents than respective mapped

mafic magmatic bodies, which indicates wider subsurface extensions of these

bodies below weakly magnetic metasedimentary rocks. Based on available in-

formation about mapped (Gupta et al., 1995a) and unmapped (Gupta et al.,

1997) mafic magmatic bodies, interpreted mafic magmatic bodies were classi-

fied as: (a) mafic metavolcanic rocks, (b) serpentinites, (c) basic granulites,

(d) norite, (e) amphibolite and (f) unclassified mafic rocks (Fig. 2.8B).

Tectonic domains

For a qualitative tectonic interpretation, the most important characteristics

of magnetic anomalies are their trends, relative amplitudes and wavelengths.

Trends of anomalies depend on orientations of magnetic sources, which, in turn,

are tectonically controlled. Wavelengths and relative amplitudes of anomalies

indicate, respectively, lateral extent and a combination of vertical extent and

relative magnetic susceptibilities of causative bodies. Together, such character-

istics of magnetic anomalies reflect the tectonic character of a crustal domain.

The magnetic image (Fig. 2.5A) was interpreted, based on anomaly character-

istics mentioned above, with the objective of dividing the area into a number

of tectonic domains (Fig. 2.9A). Due to incomplete aeromagnetic coverage, do-

mains in eastern parts of the area were demarcated based on the FVD residual

gravity image and on available tectono-stratigraphic information. The tec-

tonic domains show linear dispositions, occur as parallel or sub-parallel belts

having distinctive features in most thematic layers and show good spatial coin-

cidence with major lithostratigraphic belts identified by Sugden et al. (1990)

and Sinha-Roy et al. (1998).
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Crustal structure

The Bouguer gravity image (Fig. 2.7A) shows a prominent and broad N-S

to NNE-SSW trending gravity high flanked by gravity lows along boundaries

characterized by steep gradients. The amplitude of the central gravity high

and gradients of peripheral gravity lows show a decline from north to south.

The pattern is enhanced in upward-continued gravity images (e.g., Fig. 2.7B).

However, the pattern is faintly discernible in the FVD residual gravity image

(Fig. 2.6A), in which the central gravity high is replaced by a largely low-

residual gravity matrix ingrained with bands of high residual gravity, especially

in the Sandmata domain (Figs. 2.6A and 2.9A). Because upward-continuation

and FVD filters enhance long wavelength (deep-seated) and short wavelength

(near-surface) anomalies, respectively, two explanations can be advocated for

the central gravity high. First, the source of the central gravity high is a

southward-plunging high-density body at deeper crustal levels. Second, near-

surface sources do not contribute significantly to the central gravity high ex-

cept in the Sandmata domain, where high residual gravity bands that correlate

broadly with exposed high-density granulitic intrusions indicate presence of a

granulitic body emplaced in upper crustal levels.

There is broad correlation between the FVD residual gravity image and

the Bouguer gravity image with respect to the peripheral gravity lows (Figs

2.6A and 2.7A). However, the FVD residual gravity image reveals the presence

of a narrow linear residual gravity high along the eastern edge of the western

peripheral low (Fig. 2.6A), which appears to be the response of exposed high-

density mafic rocks of ophiolitic affinity (Gupta et al., 1980; 1997) comprising

the Sendra-Ambaji domain (Fig. 2.9). The western margin of the eastern pe-

ripheral low is similarly delimited by a narrow residual gravity high (Fig. 2.6A).

A 2D forward gravity modeling procedure was applied to model observed

Bouguer gravity values across a section of central parts of the area (line AA’ on

Figs. 2.6B and 2.9A) using regional magnetic/gravity lineaments as boundaries

between different crustal blocks (Fig. 2.10). Modeling is constrained by deep

seismic reflectivity data along the Nagaur-Jhalawar transect (about 100 km

north of AA’; Tewari et al., 1995) and draws on published gravity models along

this transect (Rajendra Prasad et al., 1998; Mishra et al., 2000). The FVD

residual gravity image (Fig. 2.6A) and the Bouguer gravity image (Fig. 2.7A)

show that main features of the cross-section model (Fig. 2.10), including the

presence of a high-density body in the lower crust and a narrow high-density

body at the contact between the Malani domain and the South Delhi domain,
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are characteristic of the entire Aravalli crust (see also, Mishra et al., 2000).

The westerly dipping moderately low-density body below the Hindoli domain

(Fig. 2.10), imaged as a bunch of westerly-dipping reflections on the deep seis-

mic reflectivity profile along the Nagaur-Jhalawar transect, is interpreted as

a crustal-scale thrust (Jahazpur Thrust) originating from the Moho (Tewari

et al., 1998; Rajendra Prasad et al., 1998; Vijaya Rao et al., 2000). Tewari

et al. (1998) suggest that the Jahazpur Thrust may have served as a channel

for transportation of high-density mafic materials to the near surface. This

is supported by the FVD residual gravity image (Fig. 2.6A), which shows a

narrow near-surface high-density body along the contact between the Hindoli

domain and the Mangalwar domain (gravity lineament G1 in Fig. 2.6B).

2.3.1 Constitution and spatial distribution of tectonic domains

Sugden et al. (1990) and Deb and Sarkar (1990) used lithological and struc-

tural criteria to divide the study area into sub-parallel tectonic belts from east

to west (Fig. 2.4A): (a) the Banded Gneissic Complex (BGC) (b) the Bhilwara

belt (c) the Aravalli belt (d) the Jharol belt, (e) the South Delhi belt and (f) the

Erinpura granites (Malani Igneous suite). Although these belts broadly cor-

relate with tectonic domains interpreted from the geophysical data (Fig. 2.9),

their constitution and spatial distribution are quite different from some of the

tectonic domains.

The geophysical data indicate that the Bhilwara belt as defined by Sugden

et al. (1990; Fig. 2.4A) possibly comprises three tectonic domains, viz., the

Hindoli domain, the Mangalwar Domain and the Bhilwara domain (Fig. 2.9),

which are delimited by crustal scale regional gravity or magnetic lineaments

(M1 to M5 and G1 in Figs. 2.5B and 2.6B, respectively). The Hindoli domain

comprises bimodal volcanic and turbidite sequences characterized by low-grade

greenschist facies metamorphism, whereas the Mangalwar domain comprises

gneisses and migmatites characterized by high-grade amphibolite facies meta-

morphism. Several deep seismic reflectivity studies (Tewari et al., 1998; Rajen-

dra Prasad et al., 1998; Vijaya Rao et al., 2000) have shown that the Hindoli

and Mangalwar domains, which are separated by the deep-seated Jahazpur

Thrust (marked by gravity lineament G1; Fig. 2.6B), have different crustal

characteristics. Similarly, the Bhilwara domain, which comprises linearly-

disposed enclaves of base-metal-bearing clastic metasediments and carbonates

with associated mafic metavolcanics, are separated from the surrounding Man-

galwar domain by prominent magnetic lineaments (M1 to M5 in Fig. 2.5B).
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Figure 2.10: Model of crustal section along transect AA’ (Figs. 2.6B and 2.9B) based
on Bouguer gravity data. Causative sources and densities (in parenthesis; in gm/cc):
1 - Vindhyan domain (2.56); 1A - high density body below Vindhyan domain (2.9);
2 - Hindoli domain (2.65); 2A - high density body below Hindoli domain (2.85); 3
- Mangalwar domain (2.75); 3A - Berach granite (intrusive in Mangalwar domain)
(2.62); 4 - Bhilwara domain (2.72); 5 - Sandmata domain (2.76); 6 - South Delhi
domain (2.72); 7 - Sendra-Ambaji domain (2.9); 8 - Malani domain (2.62); 8A - high
density body below Malani domain (2.9); 9 - Upper Crust (2.7); 10 - high density body
within Lower Crust (3.04); 11 - Lower Crust (2.9); 12-Mantle (3.3). Crustal structure is
constrained by deep seismic reflectivity data along Nagaur-Jhalawar transect (about
100 km north of AA’; Tewari et al., 1997). Densities of various blocks are from
published gravity models along Nagaur-Jhalawar transect (Rajendra Prasad et al.,
1998; Mishra et al., 2000). M1, M2, M8, M13 to 15 are magnetic lineaments (Fig. 2.5B.
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Difference in tectonic constitution of the Bhilwara and Mangalwar domains

is reflected in the magnetic data (Fig. 2.5A): the Bhilwara domain is char-

acterized by pronounced high-amplitude, short-wavelength, NW-SE trending

linear anomalies; whereas the Mangalwar domain is characterized by flat and

subdued anomalies. Significantly, the difference between magnetic responses

of the Bhilwara and Mangalwar domains persists even in upward-continued

magnetic data, which indicates that they may have fundamentally different

tectonic constitutions. Based on detailed structural and lithological consider-

ations, Sinha-Roy (1988; 1989) and Sinha-Roy and Chore (1991) separate the

base-metal-bearing metasedimentary enclaves of the Bhilwara domain from the

gneisses and migmatites of the Mangalwar domain.

The geophysical data indicate that the Delhi supergroup comprises two

distinct tectonic domains (Fig. 2.9) - the South Delhi domain to the east and

the Sendra-Ambaji domain (cf. Deb et al., 2001) to the west - separated by

conspicuous magnetic lineament (M14 on Fig. 2.5B). The South Delhi domain,

on one hand, is composed largely of arenaceous and calcareous metasediments

with subsidiary volcanic rocks. The Sendra-Ambaji domain, on the other hand,

is composed predominantly of volcanic-sedimentary sequences with higher pro-

portions of magmatic rocks consisting of bimodal volcanics, a complex petro-

logical association of metamorphosed low-K tholeiites with well-preserved relict

pillows, small bodies of pyroxenites, layered gabbros and serpentinites (Phu-

lad ophiolite suite; Gupta et al., 1980; 1997; Sugden et al., 1990). Based on

extensive geochronological studies, Deb et al. (2001) conclude that rock as-

semblages of the Sendra-Ambaji domain constitute a distinct tectonic terrane

and should be separate from the Delhi supergroup. Difference in tectonic con-

stitution of the South Delhi and Sendra-Ambaji domains is reflected in their

contrasting magnetic response: the South Delhi domain is characterized by a

flat and subdued magnetic response; whereas the Sendra-Ambaji domain is

characterized by NE-SW trending high amplitude anomalies (Fig. 2.5A). The

crustal section modeled using the Bouguer gravity data (Fig. 2.10) also shows

the Sendra-Ambaji domain as a westerly dipping zone of high density along

the western fringe of the South Delhi domain (Rajendra Prasad, 1998).

2.3.2 Stratigraphic correlations

The available geochronological, structural and petrological data suggest that

the Sandmata and Mangalwar domains comprise the Archaean basement in the

area (Gupta et al., 1997). Although no incontrovertible Archaean dates have
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been reported from the Sandmata domain, structural and petrological consid-

erations suggest that it is a basement block that has undergone tectono-thermal

reconstitution resulting from emplacement of granulites during the Proterozoic

(Sharma, 1988; Sinha-Roy, 1988; 2001; Roy and Kataria, 1999; Bose, 2000).

In the case of the Mangalwar domain, undoubted Archaean ages have been

reported from its southern parts (MacDougall et al., 1983 1984; Gopalan et

al., 1990; Weidenbeck and Goswami, 1994; Roy and Kroener, 1996). However,

stratigraphic equivalence of southern parts with other parts of the Mangalwar

domain has been questioned strongly by Roy (1988b) and Roy and Kataria

(1999), who consider southern parts of the Mangalwar domain (∼Mewar gneiss;

cf. Roy, 1988b) as Archaean and other parts (mapped as Bhilwara belt by

Sugden et al., 1990; Fig. 2.4A) as Proterozoic. Nevertheless, based on the geo-

physical data, there seems to be absence of a definitive discontinuity between

southern and other parts of the Mangalwar domain (Figs. 2.5A, 2.6A, 2.7A

and 2.7B) and therefore the interpretation of Sinha-Roy (1988) that the Man-

galwar domain is a single block of Archaean basement rocks seems plausible.

It is pointed out, however, that the issue can only be resolved through detailed

geochronological studies.

The geochronological data indicate that the Aravalli, Bhilwara and Hin-

doli domains are Palaeo-Proterozoic and stratigraphically coeval. The age of

the Aravalli domain is constrained between ca. 2075 Ma and 2150 Ma for its

basal sequences (Deb and Thorpe, 2001) and between ca. 1690 Ma and 1710

Ma for its middle sequences (Deb et al., 1989; Deb and Thorpe, 2001); no

specific age constraints are available for its upper sequences. However, based

on indirect evidence, Sinha-Roy (2001) constrains closure of Aravalli basins

between 1500 and 1600 Ma (see also, Roy and Kataria, 1999; Deb and Thorpe,

2001). Deb and Thorpe (2001) have dated the basal sequences of the Hindoli

domain at 1854±7 Ma. The age of the Bhilwara domain is constrained at

ca. 1800 Ma based on Pb isotope data from syngenetic base-metal deposits

(Deb et al., 1989). No geochronological data are available from the Raialo do-

main. Most authors consider metasedimentary rocks of the Raialo domain as

Palaeo-Proterozoic and stratigraphically equivalent to lower Aravalli sequences

(Gupta et al., 1980, 1995a, 1997; Roy et al., 1988; Sinha-Roy, 2001). However,

Sinha-Roy et al. (1993) suggested a possibility that the Raialo rocks are parts

of the Archaean basement and are separated from the Aravalli rocks by the Ba-

nas lineament (M6 on Fig. 2.5B), which has a strong topographic expression as

well. The Banas lineament possibly does not have a deep-seated origin because
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(a) there is evidence of physical continuation of litho-units as well as magnetic

anomalies across it and (b) it does not persist in upward-continued magnetic

data. Therefore, it seems likely that the Raialo domain is Palaeo-Proterozoic

and stratigraphically coeval with the Aravalli domain.

Geochronological data are unavailable for the Jharol domain. Its strati-

graphic status is constrained mainly by field relations, which indicate that it

stratigraphically overlies the Aravalli domain (Gupta et al., 1980; 1997; Roy

et al., 1988; Sinha-Roy et al., 1998). The age of the Delhi domain is also

poorly constrained. Deb and Thorpe (2001) indicate an age of ca. 1800 Ma for

initialization of Delhi sedimentation, while Sinha-Roy (2001) suggests a much

younger age (ca. 1500). Similarly, the age of closure of Delhi basins has been

constrained variously at ca. 1400 Ma (Chodhary et al., 1984; Roy and Das,

1985), ca. 1500 (Deb and Thorpe, 2001) and at ca. 900 Ma (Sinha-Roy, 2001).

The age of the Sendra-Ambaji domain is constrained at ca. 1000 Ma by Deb

et al. (2001). Age data of the Malani domain cluster around 850 Ma.

2.4 Conceptual Model of Tectonostratigraphy and

Metallogenesis

2.4.1 Evolution of tectonic domains and base-metal mineral-

ization

Sinha-Roy (1985, 1988, 2001) and Sinha-Roy et al. (1995) postulate tectonic

evolution of Aravalli province in the framework of near-orderly Proterozoic

Wilson cycles (see also Deb and Sarkar, 1990; Sugden et al, 1990). They hy-

pothesized that recurrent phases of extensional and compressional tectonics

of the province in Proterozoic resulted in sequential opening and closing of

intracratonic rifts. Sinha-Roy (2000, 2001) described a conceptual model of

metallogenesis in the Aravalli province in the framework of the above Protero-

zoic cycles. Based on his model, evolution of the main tectonic domains and

associated base-metal mineralizations in the study area can be envisaged in

the framework of Proterozoic tectonic events as follows (Fig. 2.11).

1. At ca. 2500 Ma, the basement complex comprising the Mangalwar and

Sandmata domains was cratonized.

2. At ca. 2000 Ma, the Aravalli rift opened and, possibly through a second

phase of rifting at ca. 1800 Ma, evolved into an ocean that closed at ca.
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Figure 2.11: Plate tectonic cartoon showing the linkage between crustal evolution
and metallogeny in study area (from Sinha-Roy, 2001).
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1500 Ma (Sinha-Roy, 2001). Synsedimentary mafic volcanics and near-

shore sediments deposited on the shelf of the Aravalli ocean constitute the

Aravalli domain, while deep-sea sediments deposited in the Aravalli ocean

constitute the Jharol domain. The Rikhabhdev domain, which com-

prises highly tectonized serpentinites, minor meta-gabbro, meta-basalt

and chert (‘Rikhabhdev ultramafics’), possibly represents an ophiolite

assemblage obducted due to closing of the Aravalli ocean (Sinha-Roy,

1984, 1988, 2000; Sugden et al., 1990; Deb and Sarkar, 1990). The first

phase of the rifting was accompanied by minor Cu(-Pb-Zn) mineraliza-

tion, while the second phase of the rifting was accompanied by a major

SEDEX-type stratabound Zn-Pb mineralization event in the Zawar zone.

The Zawar deposits were formed close to a basement inlier, in second-

order basins with biological activity, by hydrothermal fluids convecting

through a heterogeneous source comprising various sediments (Deb et al.,

1989; Deb and Sarkar, 1990).

3. At ca. 1800 Ma, several rifts opened in the Mangalwar domain accompa-

nied by mafic volcanism, possibly as pull-apart basins due to large-scale

wrench faulting associated with distensional tectonics related to the sec-

ond stage of the Aravalli rifting (Sinha-Roy, 1989; Sinha-Roy and Chore,

1991; Sinha-Roy, 2000). These narrow rifts were, however, aborted. They

are represented by linear metasedimentary enclaves in the Mangalwar do-

main and constitute the Bhilwara domain. These aborted rifts provided

favorable locales for massive SEDEX type stratabound and stratiform

Zn-Pb and Zn-Pb-Cu mineralizations at Rampura-Agucha and in the

Bethumni-Dariba-Bhinder and Pur-Banera belts, which were formed by

convective seawater circulation in zones of crustal extension (Deb, 1986;

Deb and Sarkar, 1990). Metal content of exhalative brines was precipi-

tated in second-order troughs with high biological activity.

4. At ca. 1500 Ma, the Delhi rift opened and developed into an ocean,

which was subsequently closed following subduction of Delhi ocean crust

at ca. 1000 Ma (Sinha-Roy, 2001). This resulted in formation of an island

arc along western margin of Delhi ocean, which contained VMS-type Zn-

Pb-Cu in Deri area. Subsequent closure of the back-arc basin (floored

by oceanic crust; Sinha-Roy, 2001), possibly due to a second stage of

subduction at ca. 900 Ma, resulted in obduction and emplacement of

an ophiolite melange accompanied by VMS-type Cu-Zn mineralizations
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in the Basantgarh zone. Sediments deposited in the Delhi rift constitute

the Delhi domain, while the back-arc and island arc sequences, including

the ophiolite melange, constitute the Sendra-Ambaji domain.

The magnetic lineaments show consistent spatial association with linear

belts of mafic magmatic bodies (Fig. 2.12). The tectonic domains delimited by

these lineaments have distinctive lithological, metamorphic and metallogenic

characteristics, which suggest that these lineaments possibly represent crustal-

scale discontinuities. This is further supported by (a) spatial coincidence of at

least some of these lineaments with established tectono-stratigraphic disconti-

nuities in the area (b) persistence of these lineaments (except Banas lineament)

in upward-continued magnetic data. In the framework of the tectonic evolution

outlined above, the magnetic lineaments are interpreted as traces of the mar-

gins of Proterozoic crustal segments (represented by tectonic domains) and,

by implication, boundaries of intracratonic rifts (the Aravalli, Bhilwara and

South Delhi domains) or subduction zones (the Sendra-Ambaji domain). As

boundaries of intracratonic rifts are generally marked by crustal scale exten-

sional faults, lineaments M1 to M5, M9 and M13 (Fig. 2.5B), which mark

boundaries of the Bhilwara, Aravalli and Delhi domains, respectively, can be

interpreted as crustal scale extensional faults. Similarly, lineaments M14 and

M15 (Fig. 2.5B), which delimit the Sendra-Ambaji domain, can be interpreted

as crustal scale (compressional?) faults.

2.4.2 Generalized geological setting of base-metal mineraliza-

tions

The conceptual model outlined above indicates that major SEDEX-type base-

metal mineralization in the study area is linked to the extensional tectonic

event at ca. 1800 Ma that resulted in (a) formation of the (aborted) Bhilwara

intracratonic rifts and (b) a second stage of rifting in the Aravalli intracratonic

rifts that led to deepening of the Aravalli ocean. The settings of the SEDEX

mineralization in the study area are similar to the following generalized setting

of SEDEX deposits (after Goodfellow, 2001, see also Fig. 2.13).

• Most SEDEX deposits are hosted by basinal sediments deposited within

failed intracratonic rifts or fault-bounded grabens or rifted continental

margins and are formed during reactivation of extensional structures.
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Figure 2.12: Map overlay of mafic igneous rocks, magnetic lineaments and base-metal
deposits.

• There is a close temporal and spatial relationship between SEDEX de-

posits and mafic magmatic rocks, which indicates that magma injection

into the lithosphere may have played an essential role in establishing the

heat necessary to generate metalliferous hydrothermal fluids and associ-

ated SEDEX deposits.

• The ambient sedimentary rocks for SEDEX deposits comprise carbona-

ceous chert, shale, siltstone and coarser clastics, sedimentary breccias

and carbonate rocks.

• There is a close correlation between anoxic conditions and SEDEX de-

posits, and a similarity in δ34S trends of hydrothermal and ambient sedi-

mentary sulfides, which indicate that most of the reduced sulfur in many

deposits was derived from the ambient water column and that a reduc-
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Figure 2.13: Schematic section through a rift-controlled sedimentary basin showing
idealized setting of SEDEX deposits. SEDEX deposits are hosted by the cover se-
quence to an intracratonic rift system filled by continental clastics, marine clastics
and rift-related volcanic rocks. The rift cover sequence acts as hydrothermal cap
rocks (base marked by bold dashed line) to brines during their heating by deep mag-
matism or burial. Geopressured heated brines flow to the contemporaneous surface of
the cover sequence when the cap rock is ruptured by renewed extensional tectonism.
(From Lydon, 1996, 2001).

ing environment may have been essential to the formation of SEDEX

deposits.

• Sedimentary textures (for example, graded and cross-laminated beds)

and other evidence suggest that most of the sulfides were deposited as

sediments on the sea floor.

The VMS-type mineralization in the Basantgarh zone of the Sendra-Ambaji

domain, on the other hand, appears to be related to compressional tectonic

events at ca. 1000, that led to the closure of Delhi rifts.

2.4.3 Mineralization controls and deposit recognition criteria

Most deposits/prospects in basal sequences of the Aravalli domain are confined

to specific stratigraphic horizons and associated with metavolcanic-dolomite-

phyllite assemblages. This indicates prominent lithological and stratigraphic

control on the first phase of base-metal mineralization. Presence of mafic
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metavolcanic (amphibolite) rocks in the host-rock assemblage indicates a pos-

sible heat-source control for generation and circulation of metalliferous fluids.

The stratigraphically-controlled stratiform-to-stratabound nature of the

large sediment-hosted SEDEX-type base-metal deposits of Rampura-Agucha

and in Pur-Banera, Bethumni-Dariba-Bhinder and Zawar zones indicate lithol-

ogy, stratigraphy and (palaeo-)sedimentary environment as primary regional

controls on the second phase of base-metal mineralization. However, presence

of mafic metavolcanic rocks (amphibolite) in the host-lithological assemblages

(Table 2.1) indicates a possible heat-source control for generation and circu-

lation of metalliferous fluids. Field evidence of widespread post-genetic remo-

bilization and translocation along regional fold axes, especially in the Zawar

and Pur-Banera mineralized zones (Raghunandan, 1981; Singh, 1988), suggests

that regional folding also constitutes an important control on mineralization.

The smaller VMS-type deposits in the Sendra-Ambaji domain are, accord-

ing to Deb (2000b), associated with: (a) metamorphosed bimodal volcanic

rocks (Ambaji and Deri deposits, which fall outside the study area); and (b)

metamorphosed mafic volcanic rocks (Basantgarh deposit). These associa-

tions indicate strong magmatic control on mineralization. The mineralization

also shows a regional stratigraphic control, as indicated by occurrences of de-

posits/prospects only in specific stratigraphic horizons.

From the foregoing description of the generalized geological setting of SEDEX

deposits and the base-metal deposit settings in the study area, it can be in-

ferred that lithology, stratigraphy, sedimentary environment, heat source, tec-

tonic setting and structure constitute the most important regional controls on

base-metal mineralizations in the study area. Accordingly, the following are

considered as the most significant recognition criteria for base-metal deposits

in the study area (Porwal et al., 2003a):

1. host rock lithology,

2. stratigraphic position,

3. (palaeo-)sedimentary environment,

4. association of mafic volcanic rocks,

5. proximity to favorable structures.

The first three criteria are based on the stratigraphically-controlled synsedi-

mentational nature of the mineralization. The fourth criterion is based on the
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suggestion of Deb (1999) and Goodfellow (2001) that mafic volcanic rocks in

ore environments provided the heat necessary for the generation and circula-

tion of exhalative brines in the case of SEDEX deposits and form a significant

source of metals in the case of VMS deposits. The fifth criterion is based

on the following considerations. The extensional/compressional faults, which

mark the boundaries of the tectonic domains, could have provided structural

permeability for migration of metalliferous hydrothermal fluids. These faults

could also have focussed magmatic fluids, which, in turn, could have provided

heat-source controls for convection of hydrothermal fluids, as evidenced by

their close spatial association with mafic volcanic rocks. Furthermore, there

is a strong evidence of extensive post-genetic remobilization and relocation of

ores during subsequent deformation, especially in the Zawar and Pur-Banera

zones (Raghunandan, 1981; Singh, 1988).

It may be noticed that the recognition criteria were identified from the

SEDEX deposits, but there is some overlap of the recognition criteria of the

SEDEX and VMS type base-metal deposits (for example, association of mafic

volcanic rocks, proximity to favorable structures etc.) in the study area. As

a result, several of the mathematical models applied in this research predict

base-metal potential zones in the Sendra-Ambaji domain, which is tectonically

favorable for VMS-type base-metal mineralization (Section 2.4.1).

2.5 Empirical Models of Spatial Association of Recog-

nition Criteria with Known Base-Metal Deposits

Recognition criteria for base-metal deposits in the study area were represented

as predictor maps by processing, interpreting and/or reclassifying the explo-

ration data enumerated in Table 2.2. The procedures used are described in the

following sections. The x and y dimensions of each of the predictor map shown

in the following sections are 200 km and 275 km, respectively.

Recognition criterion 1: Host rock lithology

The lithostratigraphic map (Gupta et al., 1995a) was used to generate an ev-

idential map for the recognition criterion ‘host rock lithology.’ Irrespective

of their stratigraphic positions, all lithologies on the map were extracted to

create a map containing 136 classes of lithologies, most of which differed only

in respect of textures and/or metamorphic grades. Because this large number
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of classes would result in prohibitively large dimensionality of input data, the

map was simplified by merging the classes with similar lithological composi-

tions. The simplified map was analyzed and classes considered unrelated to

base-metal mineralizations, such as intrusive granites, trap basalt etc, were

merged to create a new class comprising lithologies unrelated to base-metal

mineralization. The reclassified map, to be used as a predictor map represent-

ing the recognition criterion ‘host rock lithology,’ is shown in Fig. 2.14A.

Recognition criterion 2: Stratigraphic position

The lithostratigraphic map (Gupta et al., 1995a) was reclassified to create an

evidential map for the recognition criterion ‘stratigraphic position.’ All strati-

graphic formations and their stratigraphic attributes (groups and supergroups)

were extracted to create a stratigraphic map of the study area. However, the

map contained 103 classes of stratigraphic formations, which would lead to un-

desirably large dimensionality of input data (see above). Therefore the map was

generalized by merging stratigraphic formations based on their stratigraphic

groups. The simplified map was analyzed and stratigraphic groups considered

unrelated to base-metal mineralizations, for example, the Vindhyan group,

Malani igneous suite, Deccan Traps, etc., were merged to create a new class

comprising stratigraphic groups not related to base-metal mineralizations. The

reclassified stratigraphic map, to be used as a predictor map representing the

recognition criterion ‘stratigraphic position,’ is shown in Fig. 2.14B.

Recognition criterion 3: (Palaeo-)sedimentary environment

A (palaeo-)sedimentary environment map of the study area is not available.

However, Gupta et al. (1997) give detailed information on mineralogy, tex-

ture, structure and interpreted depositional conditions of constituent meta-

sedimentary rocks for each stratigraphic formation. Based on this information,

the sedimentary environment of each stratigraphic formation was deduced to

generate a map representing the recognition criterion ‘(palaeo-)sedimentary

environment’ (Fig. 2.15A), which is to be used as one of the input predictor

maps. Although the number of stratigraphic formations is large, the num-

ber of classes in the map of sedimentary environments is small because many

stratigraphic formations have the same interpreted sedimentary environment.

49



B
a
s
e
-
M

e
t
a
l

R
e
c
o
g
n
it

io
n

C
r
it

e
r
ia

in
S
t
u
d
y

A
r
e
a

(A) (B)

�  ! " # $ % ! % "  & ' $

( ) * + , - . , / 0 1 + 2 3 4 / 0 5 3 6 7 8 3 9 / + * , /

: ; < ' !  & ' = & > ?  $ ' @ ' &  ! $

A % B @  & % & ' $ C B ; ' % $ $ ' $

D <  E F % & % " @ ' &  # E ' ! % & ' $

A  B ; ' & % & ' G H  < & I % & '

J > ! > @ % & ' K = > ! > @ % & % " @  < ? ! '

�  ! " # $ " F % $ & K B ; ' % $ $

L L

L

L

L L

L
L
L

L
L
L

L
L
L

L L L

M N N M N O N P Q R S T U V U W X

Y

Z [
\]
\̂ \̂

\]
\O

_ M _̂ _ ]
_ ]_̂_ M  ̀ $ % " < > " a $

b b

b

b

b b

b
b
b

b
b
b

b
b
b

b b b

c d d c d e d f g h i j k l k m n

o

p q
rs
rt rt

rs
re

u c u t u s
u su tu c

v w x y z {

| } ~ � � � � � ~ �

� w � { x �

� � y � { x � � � � z � x � � � � � x { �

� x � � x { � x y � z � � { � �

� x � � x � x � z � � { � �

� x � � � y x � � x y � � x

� � x � � � y

� x � w � � x y x

� � � x y �

Figure 2.14: Predictor map of (A) lithologies and (B) stratigraphic groups.
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Recognition criterion 4: Association of mafic volcanic rocks

An evidential map for the recognition criterion ‘association of mafic volcanic

rocks’ was generated by reclassifying the map of mafic magmatic rocks (Fig. 2.8B),

which was interpreted from total magnetic field intensity data. With the ex-

ception of the class ‘mafic meta-volcanic rocks,’ all classes on the map were

merged to create a new class comprising all mafic rocks that are not related to

base-metal mineralization in the study area. The resulting binary map of mafic

magmatic rocks, to be used as a predictor map for the recognition criterion

‘association of mafic volcanic rocks,’ is shown in Fig. 2.15B.

Recognition criterion 5: Proximity to favorable structures

As discussed in Section 2.4.3, crustal-scale faults could have played significant

role in localizing base-metal mineralizations and comprise favorable structural

locales for base-metal deposits in the study area. Because the regional mag-

netic lineaments are interpreted as defining traces of crustal-scale faults (see

Section 2.4.1), they were dilated and used as one of the predictor maps for the

recognition criteria ‘proximity to favorable structures.’ The dilation was car-

ried out by creating five buffer zones around the lineaments, each 2 km wide,

up to a distance of 10 km. A sixth zone comprising parts of the study area at

a distance greater than 10 km from the lineaments was added to generate a

predictor map of buffered distances from regional lineaments (Fig. 2.18A).

In order to identify favorable structural trends that might have controlled

localization of base-metal deposits, Fry analysis (Fry, 1979), which uses a geo-

metrical method of spatial autocorrelation for point data, was performed using

the procedure described by Vearncombe and Vearncombe (1999). For n points

there are n2 − n spatial relationships and, because of the square function, the

method yields interpretable results with small as well as large data sets.

Fry plot translations of point locations of all base metal deposits in the

study area and the corresponding rose diagram of orientations of point-to-

point translations indicate a predominant north-east trend and less dominant

north-west trend (Fig. 2.16). Figure 2.17 shows that the north-east trend is de-

fined by the major SEDEX-type base-metal deposits that formed in the second

phase of mineralization in the study area (∼ 1800 Ma metallogenetic episode),

while the north-west trend is defined by smaller deposits that formed in the

first phase of mineralization (∼ 2000 Ma metallogenetic episode).
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Figure 2.15: Predictor map of (A) sedimentary environments and (B) mafic magmatic rocks.
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The third phase of mineralization is represented by just one deposit in

the study area, and therefore a Fry analysis of this phase was not applicable.

Vearncombe and Vearncombe (1999) show that trends identified in Fry anal-

ysis can be used to identify the favorable structural trends for mineralization.

The above results therefore indicate that north-east and north-west are the two

favorable trends of base-metal mineralization in the study area. As discussed

in previous sections, the primary controls on base-metal mineralizations in the

study area are lithostratigraphic. Therefore, the favorable trends identified by

the Fry analysis are interpreted to indicate favorable structural trends of base-

metal-hosting lithostratigraphic units. Because trends of magnetic anomalies

reflect trends of source lithostratigraphic units, the trends of anomalies on the

shaded-relief image of the total magnetic field intensity data (Fig. 2.5A) were

mapped. A rose diagram of the lineaments thus obtained indicated four pre-

ferred orientations, viz., NE-SW, NW-SE, E-W and N-S. Based on the results

of the Fry analysis described above, the NE- and NW-trending lineaments were

extracted as separate maps and each set of lineaments was dilated by buffering

into 5 zones, each 1.5 km wide, up to a distance of 7.5 km. To these was added

a sixth zone comprising parts of the study area at a distance greater than

7.5 km from the lineaments. In this way two more predictor maps, namely,

a map of buffered distances from NE-trending lineaments (Fig. 2.18B) and a

map of NW-trending lineaments (Fig. 2.19A), were generated to represent the

recognition criterion ‘proximity to favorable structures.’

A fourth predictor map was generated by extracting regional fold axes from

the structural map of the study area (Gupta et al., 1995b). Well-documented

evidence of post-genetic remobilization and translocation of ore lenses along

regional fold axes, especially in Zawar deposits and Pur-Banera mineralized

zones, indicate that regional fold axes form favorable structural locales for

post-genetic concentration of base-metals in the study area (Raghunandan et

al., 1981; Singh, 1988; Roy, 2001). The regional fold axes were dilated by

buffering into ten zones, each 500 m wide, up to a distance of 5 km. Parts of

the study area at a distance greater than 5 km from the fold axes were classified

as the eleventh zone to generate the evidential map of buffered distances from

fold axes (Fig. 2.19B), which was used as an additional predictor map for the

recognition criterion ‘proximity to favorable structures.’
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(A) (B)

Figure 2.16: (A) Fry plot translations (black dots) of point locations of base metal
deposits (white dots) in study area and (B) corresponding rose diagram of orientations
of point-to-point translations. Map coordinates are in meters (UTM zone 43). Petal
units of rose diagram are measured in relative frequency of orientations.

2.5.1 Spatial association with polygonal geological features

Spatial associations of known base-metal deposits and the four sets of polyg-

onal geological predictor maps, namely, lithologies, stratigraphic groups, sed-

imentary environment and mafic volcanic rocks, were tested empirically by

estimating the ratio of percentage of known deposits in a polygonal feature

to percentage of the study area occupied by the polygonal feature. This ra-

tio is indicative of conditional probability of occurrence of a base-metal de-

posit/occurrence, given the presence of a polygonal feature.

The results (Table 2.3) indicate that base-metal deposits have strong spa-

tial associations with particular lithologies (dolomite, graphitic meta-pelites,

calc-silicates and magnetite quartzite) and weak spatial associations with other

rocks. Similarly, strong spatial associations are indicated between base-metal

deposits and certain stratigraphic groups (Rajpura-Dariba, Pur-Banera, De-

bari and Nathdwara groups). Shelf sedimentary environments, especially if

characterized anaerobic conditions, show strong spatial associations with base-

metal deposits. The results also indicate a strong spatial association between
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(A) (C)

(B) (D)

Figure 2.17: Fry plot translations (black dots) of point locations of base metal de-
posits (white dots) of (A) 1800 Ma metallogenic event and (B) 2000 Ma metallogenic
event, and rose diagram of orientations of point-to-point translations for (C) 1800 Ma
metallogenic event and (D) 2000 Ma metallogenic event. Map coordinates are in me-
ters (UTM zone 43). Petal units of rose diagram are measured in relative frequency
of orientations.
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Table 2.3: Spatial association of known base metal deposits and polygonal
predictor features

Predictor map pattern % deposits in feature
% area in feature

Predictor map of lithologies
1 Dolomite/dolomitic Marble 20.90
2 Calc-silicates 26.20
3 Graphic meta-pelites 28.28
4 Magnetite quartzite 60.96
5 Calc-schist/calc-gneiss 0.59
6 Quartzite/Arkose/Conglomerate 0.30
7 Migmatite/Gneisses 0.10
8 Not related to base metals 0.00
Predictor map of stratigraphic groups
1 Rajpura-Dariba group 62.33
2 Pur-Banera group 43.56
3 Debari groups 6.24
4 Nathdwara group 7.21
5 Phulad group 3.14
6 Udaipur group 1.36
7 Jharol group 0.17
8 Sandmata Complex 0.25
9 Mangalwar Complex 0.09
10 Not related to base metals 0.00
Predictor map of sedimentary environments
1 Proximal shelf; restricted; anaerobic 22.16
2 Proximal shelf; anaerobic 4.23
3 Distal shelf; restricted; anaerobic 44.11
4 Proximal shelf; partly anaerobic 57.41
5 Deep sea 0.10
6 Basement Complex 0.06
7 Not related to base metals 0.00
Predictor map of mafic igneous rocks
1 Mafic volcanic rocks 99.55
2 Not related to base metals 2.41

base-metal deposits and mafic volcanic rocks.

The above results validate the interpretation based on a conceptual model

of base-metal metallogenesis that host rock lithology, stratigraphic position,

(palaeo-)sedimentary environment and association of mafic volcanic rocks are

important recognition criteria for base-metal deposits in the study area.

2.5.2 Spatial association with linear geological features

Using the procedures described by Bonham-Carter (1994), proximity analyses

were performed to test spatial associations of known base-metal deposits and

the four sets of predictor curvilinear features described above, namely, regional

lineaments, NE-trending lineaments, NW-trending lineaments and regional
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Figure 2.18: Predictor map of buffered distances from (A) regional lineaments and (B) NE-trending lineaments.57
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fold axes. Figure 2.20 shows plots of cumulative percentage of pixels in dis-

tance corridors around the linear features and cumulative percentage of base-

metal deposit pixels in the distance corridors. The former represent random

(probability) distribution of occurrence of points (that could be occupied by

base-metal deposits) around the linear features, whilst the latter represent ob-

served distribution of base-metal deposit/occurrence points around the linear

features. Plots of the observed distribution of base-metal occurrence points

are higher than the plots of random distribution of points around the linear

feature in each case, which indicates that the probability of base-metal oc-

currence around the linear features is higher than would be expected due to

chance. The plots further indicate that base-metal deposits have a positive

spatial association with each set of linear features. The distance to linear

features in which there is highest separation between the plots represents the

distance of optimal positive spatial between base-metal occurrences and linear

geological features. Thus, the positive spatial association between base-metal

occurrences and regional lineaments is maximum at 6 km (Fig. 2.20A), the

positive spatial association between base-metal occurrences and NE-trending

lineaments is maximum at 7 km (Fig. 2.20B), the positive spatial association

between base-metal occurrences and NW-trending lineaments is maximum at

3 km (Fig. 2.20C) and the positive spatial association between base-metal oc-

currences and regional fold axes is optimal at 2 km (Fig. 2.20D). These optimal

distances of positive spatial associations depict zones around linear geological

features in which there is the highest probability for occurrence of base-metal

deposits.

The above results validate the interpretation based on a conceptual model

of base-metal metallogenesis that proximity to favorable structures forms an

important recognition criteria for base-metal deposits in the study area.

2.6 Concluding Remarks

Analysis of conjunctive interpretations of geological and geophysical datasets

vis-á-vis a review of tectono-stratigraphic studies in Aravalli province indicate

that interpreted tectonic domains, based on magnetic anomalies, have distinct

crustal, lithological, metamorphic and metallogenic characteristics and corre-

late broadly with lithostratigraphic belts identified by several earlier workers.

The analyses contribute the following new or revised interpretations to those of

earlier workers. First, Hindoli sequences probably constitute an independent
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Figure 2.20: Plots of cumulative percentage of pixels in distance corridors around linear features and cumulative percentage
of base-metal occurrence pixels in distance corridors for (A) regional lineaments, (B) NE-trending lineaments, (C) NW-trending
lineaments and (D) regional fold axes.
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Palaeo-Proterozoic tectonic domain and do not form part of Archaean base-

ment complex. Second, base-metal-bearing metasedimentary enclaves in cen-

tral parts of the area also constitute an independent Palaeo-Proterozoic tec-

tonic domain, quite distinct from surrounding (basement complex?) rocks.

Third, base-metal-bearing meta-volcanic-sedimentary sequences along western

margins of Delhi supergroup constitute an independent Neo-Proterozoic tec-

tonic domain.

Based on the conceptual model of base-metal metallogenesis in the study

area and generalized geological setting of SEDEX deposits, host rock lithology,

stratigraphic position, (palaeo-)sedimentary environment, association of mafic

volcanic rocks, proximity to favorable structures are identified as significant

regional-scale recognition criteria for base-metal deposits in the study area.

Empirical modeling of spatial associations indicates strong spatial associations

between the known base-metal deposits and each recognition criterion (rep-

resented as one or more predictor maps). The empirical modeling therefore

validates the recognition criteria that were identified by conceptual modeling.

The results of the simple empirical models of spatial associations between

known base-metal deposits and each of the recognition criteria described in

this chapter can be useful in ranking or weighting the relative importance of

each predictor pattern as an indicator of base-metal deposits in the study area.

Note, however, that the simple empirical associations of known base-metal de-

posits with polygonal predictor features and with linear predictor features were

quantified in different ways. In addition, the simple empirical models presented

in this chapter do not depict spatial relationships amongst recognition criteria

with respect to the base-metal deposits. Predictive mapping of mineral poten-

tial requires (a) uniform representation of spatial associations between target

mineral deposits and recognition criteria, (b) quantitative representation of

spatial relationships amongst recognition criteria with respect to target min-

eral deposits and (c) a systematic way of combining predictor patterns that

is hypothesized to be representative of the complex process of mineral deposit

formation. These requirements can be met through complex mathematical

geological modeling. In the succeeding chapters, different mathematical geo-

logical models for weighting and combining predictor maps are developed and

evaluated by applications to base-metal potential mapping in the study area.
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Knowledge-driven and

Data-driven Fuzzy Models

This chapter describes “Knowledge-driven and Data-driven Fuzzy Models for

Predictive Mineral Potential Mapping” (Porwal et al., 2003a). The knowledge-

driven fuzzy model uses a logistic membership function for deriving fuzzy mem-

bership values of input predictor maps, whereas the data-driven model uses a

piece-wise linear function based on quantified spatial associations between pre-

dictor patterns and known mineral deposits for deriving fuzzy membership

values of input predictor maps. A graphical defuzzification procedure is used

in both models for the interpretation of output fuzzy favorability maps. The

models are demonstrated for mapping base metal deposit potential in the study

area.

3.1 Introduction

Although real-world geodata are invariably multi-class or continuous in na-

ture, several quantitative models for mineral potential mapping, for example,

weights-of-evidence models (Agterberg, 1989; Agterberg et al., 1990; Bonham-

Carter and Agterberg, 1990) use binary predictor maps. The generalization

and reclassification of geodata into binary maps, however, may result in dis-

tortion and possible loss of valuable information. Moreover, reclassification

rules are based on available information and these rules may change as more

information becomes available. A preferred predictive model is one that (a)

accommodates the multi-class and/or continuous nature of geodata and (b) is

sufficiently robust to assimilate ‘informational fuzziness’ (Zimmermann, 1991)

63



Knowledge-driven and Data-driven Fuzzy Models

that is inherent in most geodata. Predictive models based on the theory of

fuzzy sets fulfill both these criteria. Although the weights-of-evidence method

can be adapted for modeling multi-class and continuous data (e.g., Porwal and

Hale, 2000; Porwal et al., 2003b; also see Chapter 4 of this thesis), the appli-

cation of fuzzy set theory provides a better theoretical framework for dealing

with the complexity of modeling multi-class data in a flexible and yet consis-

tent way. Moreover, the weights-of-evidence method generally requires large

amounts of training data in order to minimize uncertainty and hence is applied

to relatively well-explored provinces. In contrast, fuzzy models are equally ef-

ficacious in both poorly- and well-explored provinces.

Variables of fuzzy models for mineral potential mapping consist of the

recognition criteria for the target mineralization. These are selected by us-

ing either (a) empirical methods based on a statistical (or heuristic) evaluation

of geological characteristics of known mineral deposits or (b) an appropriate

genetic mineral deposit model. Spatial data sets that provide evidence for the

recognition criteria are then processed to generate multi-class predictor maps

for modeling. The most significant procedures in approaches to fuzzy modeling

are the definition of fuzzy membership values of multi-class predictor maps and

the selection of appropriate inference network and fuzzy set operators for com-

bining the predictor maps. In a knowledge-driven approach, fuzzy membership

values are assigned subjectively by the modeler based on his knowledge and

exploration experience. In a data-driven approach, fuzzy membership values

are calculated from exploration data. The fuzzified predictor maps are then

combined through a single- or multi-stage inference network using appropriate

fuzzy set operators to generate fuzzy favorability maps. Finally, the fuzzy fa-

vorability maps are defuzzified for demarcating exploration targets. Most of

the published studies document the knowledge-driven approach, although in

recent years attempts have been made to incorporate the data-driven approach

in fuzzy modeling.

3.1.1 Previous work

An et al . (1991) used a number of multi-class geophysical and geological maps

to build a fuzzy model for predictive mapping of base metal and iron deposits

in the Farley Lake mining area, Canada. They assigned fuzzy membership

values to the predictor maps based on expert knowledge and combined them

through a single-stage inference network using the fuzzy γ operator. Get-

tings and Bultman (1993) applied the fuzzy set theory to map favorability for
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quartz-carbonate vein deposits in southeastern Arizona, USA. They assigned

fuzzy membership values to predictor maps subjectively and combined them

through a single-stage inference network using the fuzzy intersection operator

to generate a fuzzy favorability map. Porwal and Sides (2000) developed a

knowledge-driven fuzzy model for mapping potential for SEDEX-type base-

metal deposits in the Aravalli Province, Western India. They used a single-

stage inference network based on the fuzzy γ operator to combine predictor

maps. Carranza and Hale (2001) used quantified spatial association of known

gold deposits and geological features in the Baguio district of the Philippines

to guide assignment of fuzzy membership values to predictor maps, which they

combined through a two-stage inference network using a variety of fuzzy set

operators.

Cheng and Agterberg (1999) proposed a fuzzy weights-of-evidence model,

which generalizes the weights-of-evidence model (Agterberg, 1989; Agterberg

and Bonham-Carter, 1990; Bonham-Carter, 1994) to include multi-class pre-

dictor maps. They defined ‘fuzzy probability’ in terms of fuzzy membership

values and used it to calculate ‘fuzzy weights of evidence’ of all patterns in

input predictor maps and combined them using a log linear function under an

assumption of conditional independence of the predictor maps to derive ‘fuzzy

posterior probability’ of mineral deposits. The model, as much probabilistic as

fuzzy, uses a data-driven approach for calculating fuzzy membership values.

Knox-Robinson (2000) introduced the application of vector algebra in fuzzy

modeling. He represented favorability as a vector, whose direction and magni-

tude are defined by fuzzified prospectivity and confidence values, respectively.

The former value is the conventional fuzzy membership value of a predictor

pattern, while the latter value is a measure of the modeler’s confidence in a

prospectivity value. The confidence value is assigned subjectively taking into

consideration (a) the significance of a factor (i.e., predictor pattern) in the

genesis of the target mineralization and (b) the precision with which it has

been mapped (low for inferred features and 0 for ‘no data’ areas). The fa-

vorability vectors at each location are combined by calculating the resultant

vector, whose direction and magnitude represent the combined favorability and

confidence, respectively.
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3.2 Fuzzy Model

Real-world models of complex natural phenomena are marked by two kinds of

uncertainties, viz., the stochastic and the systemic uncertainties. The stochas-

tic uncertainties arise out of lack of complete information, and can be dealt

with appropriately by statistical and probabilistic means, under the assump-

tion that the phenomena and model parameters are well-defined. The systemic

uncertainties, on the other hand, are non-statistical and are intrinsically as-

sociated with the models. These can have several sources; but arise mainly

from the fact that natural phenomena are seldom deterministic and crisp and

therefore there is always a semantic or informational fuzziness associated with

them. These uncertainties, which arise from vagueness (or ‘fuzziness’) in the

definition of the phenomena and their parameters, are best treated using the

concepts of fuzzy sets and fuzzy mathematics (Zadeh, 1965; Zimmerman, 1991;

Robinson, 2003).

3.2.1 Fuzzy set theory

If X is a collection of objects denoted generically by x , then a fuzzy set Ã, in

X , is a set of ordered pairs:

Ã =
{(

x, µÃ(x)
)

| x ∈ X
}

, (3.1)

where µÃ is called the membership function or grade of membership (also

degree of compatibility or degree of truth) of x in Ã, which maps X to the

membership space M (Zimmermann, 1991). When M contains only two points

0 and 1, Ã is non-fuzzy and µÃ is identical to the characteristic function of a

classical set.

For combining fuzzy sets, Zadeh (1965) and Zimmermann (1991) define a

number of set operators based on fuzzy mathematics. The most commonly-

used operators in fuzzy modeling are the intersection, the union, the comple-

ment, the algebraic sum, the algebraic product and the γ operator (Bonham-

Carter, 1994). The fuzzy γ operator is defined in terms of the algebraic sum

and the algebraic product as follows (Zimmermann and Zysno, 1980; Bonham-

Carter, 1994):

µcombination = (1−
n

∏

i=1

(1− µi))
γ · (

n
∏

i=1

µi)
1−γ , (3.2)
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where µÃi
is the fuzzy membership function for the ith fuzzy set (i =1 to n), n

is the total number of fuzzy sets to be combined, and γ is a parameter chosen

in the range (0,1). The first term in the right hand side of the above equation is

the fuzzy algebraic sum and second term is the fuzzy algebraic product. When

γ = 1, the combination is the same as the fuzzy algebraic sum; and when γ = 0,

the combination equals the fuzzy algebraic product. Judicious selection of the

value of γ produces output values that ensure flexible compromise between the

”increasive” tendencies of the fuzzy algebraic sum and the ”decreasive” effects

of the fuzzy algebraic product, as shown by Bonham-Carter (1994, p. 297).

3.2.2 Fuzzy modeling procedures

Typically, a fuzzy model comprises the following feedforward modules (Fig. 3.1):

1. a fuzzifier (encoder);

2. an inference engine (processor); and

3. a defuzzifier (decoder).

Fuzzifier

A fuzzifier has the function of converting (or encoding) input categorical or

numeric data (crisp values) into fuzzy values. Because these values propagate

through a model and ultimately determine the output, fuzzification is the most

crucial procedure in fuzzy modeling. Fuzzification of input data always relates

to a fuzzy proposition and is carried out by means of a membership function

(µÃ in Equation 3.1), which can be derived either from a priori knowledge

of a system or by using input data (both categorical and numeric). Thole et

al . (1979) and Zimmerman (1991) describe various membership functions that

can be used for fuzzification.

Figure 3.1: Architecture of a typical fuzzy model.
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Inference engine

An inference engine is the mind of a fuzzy model. Its function is to filter

out informational noise and create a synthesized fuzzy set from the individual

fuzzy sets transmitted by the fuzzifier. It constitutes a number of parallel

and/or serial networks that sequentially combine fuzzy sets through fuzzy set

operators. There are no general guidelines for designing an inference engine

except that it should simulate the human decision-making process.

Defuzzifier

A defuzzifier transforms the synthesized fuzzy set back to a crisp set, which

expresses the result of modeling. It can be a mathematical function or a

subjectively- or objectively-defined threshold fuzzy value. Hellendoorn and

Thomas (1993) describe a number of criteria that an ideal defuzzification pro-

cedure should satisfy. The most important criterion is that a small change in

inputs of a fuzzy model should not cause a significant change in output.

3.3 Fuzzy Models for Mineral Potential Mapping

A generalized fuzzy model for predictive mineral mapping can be defined as

follows. If X is a set of n predictor maps Xi (i=1 to n) with r patterns (or

classes) denoted generically by xij (j=1 to r), then n fuzzy sets Ãi (i=1 to n)

in X , containing ‘favorable indicators for the target mineral deposit-type’, can

be defined as follows:

Ãi =
{(

xij , µÃi
(xij)

)

| xij ∈ Xi

}

, (3.3)

where µÃi
is the membership function for estimating the fuzzy membership

value of xij in the fuzzy set Ãi.

The membership function µÃi
has following properties:

1. 0 ≤ µÃi
(xij) ≤ 1;

2. 0.5 < µÃi
(xij) ≤ 1 if xij is a positive indicator of target mineral deposit-

type;

3. µÃi
(xij) = 0.5 if, and only if, xij is a neutral indicator of target mineral

deposit-type; and
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4. 0 ≤ µÃi
(xij) < 0.5 if xij is a negative indicator of target mineral deposit-

type.

The n fuzzy sets Ãi so obtained can be combined using one or more of the

fuzzy set operators described by Zimmermann (1991) to generate a synthesized

fuzzy set F̃ :

F̃ =

n
∑

i=0

Ãi, (3.4)

where
∑

denotes fuzzy set operations. The synthesized set F̃ can be defined

as a fuzzy set containing ‘favorable exploration targets’. However, as the result

of modeling should be well-defined and, therefore, crisp, the synthesized fuzzy

set F̃ is transformed back to a crisp binary set, F , which also is a set of

‘favorable exploration targets’, but its membership is confined to 0 or 1. A

given spatial unit can have a membership value of either 1 (favorable target)

or 0 (unfavorable target) in this set.

3.3.1 Knowledge-driven fuzzy Model

The knowledge-driven model is described below in terms of the three con-

stituent modules of a fuzzy model, viz., a fuzzifier, an inference engine and a

defuzzifier.

Fuzzifier

The following logistic membership function is used for fuzzification of multi-

class predictor maps in a knowledge-driven approach (after Zimmermann, 1991):

µÃi
(xij) =

1

1 + e−a(csij−b)
, (3.5)

where b is the inflexion point, a is the slope of the function and csij , the class

score of xij , is calculated using the following equation:

csij = wi × wij , (3.6)

where wi is the map weight of the i th predictor map and wij is the class weight

of the j th pattern on the i th predictor map.

Based on their subjectively-assessed favorability, all patterns on a predictor

map are ranked on a scale of 1 to 10 in a reverse direction, i.e., the most

favorable pattern is ranked 10, and the least favorable pattern is ranked 1.
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Table 3.1: Variation of output fuzzy membership values with parameters of
logistic membership function for a synthetic dataset

Predictor map Class score Fuzzy membership value
pattern csij a = 0.1 a = 0.2 a = 0.05

(xij) b = 50 b = 10 b = 25
x11 0 0.01 0.00 0.08
x12 10 0.02 0.00 0.12
x13 20 0.05 0.00 0.18
x14 30 0.12 0.02 0.27
x15 40 0.27 0.12 0.38
x16 50 0.50 0.50 0.50
x17 60 0.73 0.88 0.62
x18 70 0.88 0.98 0.73
x19 80 0.95 1.00 0.82
x110 100 0.99 1.00 0.92

Note: a and b are, respectively, slope and inflexion point of the logistic
membership function

In this scheme, the rank of a pattern is its weight. As much as possible, the

patterns are ranked at equal intervals. This method of allotting weights by

ranking is simple and objective, as most experts would agree upon the rank

of a pattern, although each might come up with a different value if asked to

assign weight to it.

Similarly, based on the importance of their respective recognition criteria

and the confidence in their fidelity and precision, predictor maps are assigned

weights in a procedure similar to the one described above for predictor patterns.

The parameters b and a, which represent the inflexion point and the slope of

the logistic function, determine the shape of the function and, hence, the output

of the fuzzifier. As illustrated by Table 3.1 and Fig. 3.2 for a synthetic dataset,

depending on the values of the parameters b and a, the logistic membership

function returns different fuzzy values for a given input predictor pattern. The

parameters b and a are chosen heuristically based on a subjective assessment

of favorability of various predictor patterns.

Inference engine

The design of an inference engine to create a synthesized fuzzy favorability

map depends upon the nature of mineralization and types of available predictor

maps. The nature of a mineral deposit is the end-result of a complex interplay

of several earth processes that leave behind their signatures in form of geologic

features associated with the mineral deposit. These features (or recognition

criteria) are characterized by their responses in geodata sets, which are used
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Figure 3.2: Variation of output fuzzy membership values with parameters of logistic
membership function for a synthetic dataset.

as predictor maps in mineral exploration. A single predictor map can indicate

presence of more than one recognition criteria and several predictor maps can

indicate the presence of a single recognition criterion. Because an inference

engine seeks to generate a synthesized fuzzy favorability map by combining

individual fuzzified predictor maps its design should reflect the subtle relation-

ships among genetic processes, recognition criteria and predictor maps. In fact

it is possible for a single model to have several valid inference engines based

on different inference networks and fuzzy operators. For example, Carranza

and Hale (2001) give a detailed analysis of various inference engines used by

them in fuzzy modeling of the epithermal gold potential of the Baguio district,

The Philippines. The selection of appropriate fuzzy set operators is particu-

larly important in designing an inference engine. Knox-Robinson (2000) gives

a critical review of various fuzzy operators that are used for combining fuzzified

predictor maps into a synthesized fuzzy favorability map.
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Defuzzifier

The synthesized fuzzy favorability map cannot be interpreted objectively for

demarcating specific exploration target areas, as it shows favorability in a con-

tinuous scale from the most unfavorable (lowest fuzzy membership value) to

the most favorable (highest fuzzy membership value). The following graphical

procedure is thus used to defuzzify the synthesized fuzzy favorability map into

a binary favorability map. The cumulative fuzzy membership values of the syn-

thesized favorability map are plotted against the cumulative area, which yields

a rounded Γ-shaped curve. Initially, the slope of the curve is very steep (close

to 90◦), which falls down to less than 45◦ in the middle, and finally becomes

close to 0◦, signifying that the rate of increase of the cumulative membership

values falls as the area increases. In spatial terms, the curve implies that the

cumulative (search) area becomes progressively larger without corresponding

gain in terms of increase in the cumulative favorability. The point at which

there is the sharpest fall in the slope of the curve is determined by visual in-

spection. The fuzzy membership value corresponding to this point is taken as

the threshold value for defuzzifying (i.e., reclassifying) the synthesized fuzzy

favorability map into a binary favorability map, provided that this value is

greater than 0.5 on the basis of the properties of the fuzzy membership func-

tion defined further above. If it is less than 0.5, the design of the model is

revised to increase combined fuzzy membership values. This can be achieved

by (a) adjusting values of the parameters of the logistic membership function

(a and b in Equation 3.5) and/or (b) using additive operators or by increasing

the values of the fuzzy γ operator in the inference networks. The process is

repeated until a threshold fuzzy membership value greater than 0.5 is obtained.

3.3.2 Data-driven fuzzy model

A data-driven fuzzy model differs from the knowledge-driven model only in

respect of the fuzzifier module. The other two modules remain the same.

Therefore, only the fuzzifier module of the proposed data-driven model is de-

scribed here.

The following piece-wise linear membership function based on the contrast

(C) value (Bonham-Carter, 1994, p. 255) is used as a fuzzifier in the proposed

data-driven model:
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µÃi
(xij) =











0.01 if Cij = Cmin & Cmin < 0

0.5−
Cij

2×Cmin
if Cmin < Cij ≤ 0

0.5 +
Cij

2×Cmax
if 0 ≤ Cij ≤ Cmax











(3.7)

where µÃi
is the fuzzy membership function defining the membership value of

xij in the fuzzy set Ãi (Equation 3.3), Cij is the contrast value of xij , Cmin

and Cmax are the minimum and maximum contrast values, respectively, in the

complete data set.

The following relationship determines Cij (Bonham-Carter, 1994):

Cij = W+
ij −W−

ij , (3.8)

where W+
ij and W−

ij are, respectively, positive and negative weights of evidence

of the jth pattern on the ith predictor map. The weights of evidence are

calculated using the following equations:

W+
ij = loge

P (xij/D)

P
(

xij/D
) (3.9)

and

W−
ij = loge

P (xij/D)

P
(

xij/D
) , (3.10)

where xij and xij denote, respectively, the presence and absence of the predictor

pattern xij , and D and D denote, respectively, the presence and absence of the

target mineral deposit-type.

Equation 3.9 and 3.10 basically quantify the spatial association between a

set of predictor patterns and a set of mineral deposits. Two weights, W+
ij and

W−
ij are calculated for each predictor pattern xij . W+

ij quantifies the positive

association (the probability of the occurrence of the mineral deposit-type, given

the presence of xij), and W−
ij measures the negative correlation (probability of

occurrence of the mineral deposit-type, given the absence of xij). The contrast

(Ci), measures the overall spatial association between the predictor pattern xij

and the mineral deposit-type D. Studentized contrast, s(C), is a measure of

certainty with which a contrast value is known and therefore provides a more

reliable measure of spatial association (Bonham-Carter, 1994, p. 323). It is

73



Knowledge-driven and Data-driven Fuzzy Models

defined as follows:

s(C) = C/σC , (3.11)

where σC is the standard deviation of contrast.

The studentized contrast is, therefore, a robust measure of favorability of

xij , and can be also be used in Equation 3.7 for calculating the fuzzy member-

ship value of a predictor pattern in the fuzzy set ‘favorable indicators of target

mineral deposit-type’.

3.3.3 Conditional independence

An assumption of conditional independence amongst the predictor maps was

not made for the proposed fuzzy models. Theoretically, the fuzzy set theory

does not require conditional independence for various set operations. However,

conditional dependence may create problems in complex fuzzy operations, like

combining maps using fuzzy algebraic product, fuzzy algebraic sum or fuzzy γ

operator, where the additive effect of conditionally-dependent maps may result

in erroneous values. However, because conditional dependence amongst maps

is generally because of one of the following two reasons, (1) the maps represent

the same recognition criterion or (2) there is possibly a genetic link between the

recognition criteria represented by them, appropriate inference network can be

designed to combine possible conditionally-dependent maps, using operators

like the fuzzy AND or the fuzzy OR.

3.4 Application to Base-Metal Potential Mapping in

Aravalli Province

3.4.1 Data preprocessing

Because the two parameters of the gaussian fuzzy membership function, namely,

the inflexion point and the slope (b and a, respectively in Equation 3.5), are

estimated heuristically, there is no possibility of over-fitting in the estimation

of these parameters because of dimensionality of input data (see Chapter 7, p.

191, for a discussion of problems related to dimensionality of input data in the

estimation of the parameters of fuzzy membership functions). Consequently, all

of the predictor maps, namely, the maps of lithologies, stratigraphic groups,

sedimentary environments, mafic igneous rocks, buffered distances from re-

gional lineaments, buffered distances from NW-trending lineaments, buffered

74



Chapter 3

distances from NE-trending lineaments and buffered distances from fold axes,

were used as such without any processing or reclassification in the fuzzy models.

Training and validation deposits. A subset of 30 deposits, regarded as

‘discovered’ and randomly selected from the known base-metal deposits, was

used to train the data-driven fuzzy model. The remaining 24 deposits were

regarded as ‘undiscovered’ and used to validate the data-driven model.

3.4.2 Knowledge-driven fuzzy modeling

Fuzzifier

The eight multi-class predictor maps mentioned above were fuzzified using the

membership function defined in Equation 3.5. The values of the parameters b

and a were taken as 50 and 0.1, respectively, which yield a curve that is sym-

metrical about the inflexion point (Curve A in Fig. 3.2). The function returns

a fuzzy membership value of 0.5 for a class score of 50. The class scores for

predictor patterns were calculated from class weights and map weights (Equa-

tion 3.6), which were assigned subjectively using the procedure described in

Section 3.3.1. The class weights, map weights, class scores and knowledge-

driven fuzzy membership values for the predictor maps are given in Table 3.2.

The predictor maps and patterns were ranked on the basis of experience of

base-metal exploration in the province, informal discussions with mining geol-

ogists of M/s Hindustan Zinc Ltd., which owns most of the large base-metal

deposits in the area, and recommendations of various authors, especially Deb

(1999) and Sarkar (2000).

Amongst the eight predictor maps, the lithological map was ranked 10,

as the base-metal mineralization in the province is controlled primarily by

host rock lithology. Among various lithologies, high ranks were assigned on

both theoretical grounds and actual field observations to dolomite, calc-silicates

(metamorphosed siliceous dolomite) and graphitic meta-pelites. Moderately-

high ranks were assigned to magnetite quartzites, which forms a common host

rock in Pur-Banera zone and meta-basites, which host VMS-type sulfide de-

posits of Basantgarh area in the South Delhi belt. Calc-schists/gneisses and

quartzite (and associated rocks like arkose and conglomerate) were assigned

moderately-low ranks, while migmatites and gneisses, which form the bulk of

the basement complex, were assigned low ranks. Other lithologies like gran-

ite, trap basalt etc., which have no relation whatsoever with the base-metal
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mineralization in the province were ranked the lowest.

Sedimentary environment is a significant factor in the formation of SEDEX-

type base-metal deposits. However, the sedimentary environment map was

ranked 9, lower than the lithological map, because the sedimentary environ-

ments were inferred and not directly mapped. A majority of the base-metal

deposits in the Aravalli province are hosted by rift-cover sequences consisting

of proximal shelf (shallow water) sedimentary facies, which were deposited in

restricted basins with anaerobic conditions. Consequently, high ranks were

assigned to proximal shelf environments especially when characterized by re-

stricted basins conditions with an anaerobic environment. The restricted basin

conditions in distal shelf with an anaerobic environment and proximal shelf con-

ditions with a partly anaerobic environment were assigned moderately-high and

moderately-low rank, respectively. The deep sea environment was assigned a

low rank. The sedimentary environment of the basement complex could not be

established and moreover it does not host any significant base-metal deposit.

Therefore the basement complex along with several other extrusive and intru-

sive igneous environments that are not related to base-metal mineralization

were assigned the lowest ranks.

The map of stratigraphic groups was also ranked 9 in view of the stratigraphically-

controlled distribution of the base-metal deposits in the Aravalli province (Deb,

1999; Deb and Thorpe, 2001). Deb and Thorpe (2001) have established two

prominent metallogenic epochs in the province at Ca. 1.8 Ga and Ca. 1.0 Ga,

which gave rise to the SEDEX-type deposits of the Aravalli and Bhilwara belts

and the VMS-type deposits of the Sendra-Ambaji belt, respectively. How-

ever, as absolute ages are meagerly available, stratigraphic proximity to the

groups of rocks with known mineral deposits was used for assigning ranks

to various groups of rocks in the province. Stratigraphic groups with known

base-metal deposits and their stratigraphically-equivalent groups were assigned

high ranks, while the stratigraphically-closer groups were assigned moderately-

high ranks. Those groups that are stratigraphically-farther apart were as-

signed moderately-low ranks, while those that are stratigraphically-farthest

apart were assigned low ranks. Finally, a number of stratigraphic groups,

which have no relationship with the base-metal mineralization were assigned

the lowest rank. These groups include younger stratigraphic units comprising

extrusive and intrusive igneous or sedimentary rocks.

There are only two patterns on the predictor map of mafic igneous rocks,

namely, mafic metavolcanic rocks and other basic rocks that do not have any
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Table 3.2: Data-driven and knowledge-driven fuzzy membership values for
predictor maps

Predictor map Class Class Knowledge- Studentized Data-
Pattern Weight Score driven Contrast driven

Fuzzy Fuzzy
(xij) (wj) (csij) Membership (s(Ci)) Membership

Predictor map of lithologies (Map weight - 10)
1 Dolomite/dolomitic

Marble
10 100 0.99 9.4232 0.98

2 Calc-silicates 9 90 0.98 7.9338 0.91
3 Graphic meta-pelites 8 80 0.95 6.8287 0.85
4 Magnetite quartzite 7 70 0.88 4.8071 0.75
5 Calc-schist/calc-gneiss 5 50 0.50 0.0088 0.50
6 Quartzite/Arkose/

Conglomerate
4 40 0.27 -0.6942 0.41

7 Migmatite/Gneisses 2 20 0.05 -1.9292 0.26
8 Not related to base-

metals
1 10 0.02 ND 0.01

Predictor map of stratigraphic groups (Map weight - 9)
1 Rajpura-Dariba group 10 90 0.98 8.3418 0.93
2 Pur-Banera group 9 81 0.96 9.7947 1.00
3 Debari groups 8 72 0.90 5.9451 0.80
4 Nathdwara group 7 63 0.79 2.5476 0.63
5 Udaipur group 5 45 0.38 -0.0276 0.50
6 Jharol group 4 36 0.20 -1.2360 0.34
7 Sandmata Complex 3 27 0.09 -0.8217 0.40
8 Mangalwar Complex 2 18 0.04 -1.9389 0.25
9 Not related to base-

metals
1 9 0.02 ND 0.01

Predictor map of sedimentary environments (Map weight - 9)
1 Prox. shelf; restricted;

anaerobic
10 90 0.98 7.2055 0.87

2 Prox. shelf; anaerobic 8 72 0.90 6.5347 0.83
3 Distal shelf; restricted;

anaerobic
6 54 0.60 4.7974 0.74

4 Prox. shelf; partly
anaerobic

4 36 0.20 4.8071 0.75

5 Deep sea 2 18 0.04 -1.8585 0.27
6 Basement Complex 1 9 0.02 -2.4594 0.19
7 Not related to base-

metals
1 9 0.02 ND 0.01

Predictor map of mafic igneous rocks (Map weight - 8)
1 Mafic volcanic rocks 10 80 0.95 8.4795 0.93
2 Not related to base-

metals
1 8 0.01 -8.4795 0.01

Predictor map of buffered distances from regional lineaments (Map weight - 8)
1 0-2 Km 10 80 0.95 2.9348 0.65
2 2-4 Km 8 64 0.80 3.8098 0.69
3 4-6 Km 6 48 0.45 0.9251 0.55
4 6-8 Km 4 32 0.14 -0.0984 0.49
5 8-10 Km 2 16 0.03 -0.6125 0.42
6 >10 Km 1 8 0.01 -3.9548 0.01
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(Table 3.2 Contd.)
Predictor map Class Class Knowledge- Studentized Data-
Pattern Weight Score driven Contrast driven

Fuzzy Fuzzy
(xij) (wj) (csij) Membership (s(Ci)) Membership

Predictor map of buffered distances from NE-trending lineaments (Map weight - 6)
1 0-1.5 Km 10 60 0.73 2.9668 0.65
2 1.5-3 Km 8 48 0.45 2.2137 0.61
3 3-4.5 Km 6 36 0.20 1.5264 0.58
4 4.5-6 Km 4 24 0.07 -0.0555 0.49
5 6-7.5 Km 2 12 0.02 0.2043 0.51
6 >7.5 Km 1 6 0.01 -3.8227 0.02
Predictor map of buffered distances from NW-trending lineaments (Map weight - 6)
1 0-1.5 Km 10 60 0.73 4.2870 0.72
2 1.5-3 Km 8 48 0.45 2.9002 0.65
3 3-4.5 Km 6 36 0.20 -0.2657 0.47
4 4.5-6 Km 4 24 0.07 0.2324 0.51
5 6-7.5 Km 2 12 0.02 -0.2641 0.47
6 >7.5 Km 1 6 0.01 -3.8645 0.01
Predictor map of buffered distances from fold axes (Map weight - 7)
1 0-0.5 Km 10 70 0.88 5.9265 0.80
2 0.5-1 Km 9 63 0.79 2.5534 0.63
3 1-1.5 Km 8 56 0.65 1.5165 0.58
4 1.5-2 Km 7 49 0.48 -0.5360 0.43
5 2-2.5 Km 6 42 0.31 ND 0.01
6 2.5-3 Km 5 35 0.18 ND 0.01
7 3-3.5 Km 4 28 0.10 ND 0.01
8 3.5-4 Km 3 21 0.05 ND 0.01
9 4-4.5 Km 2 14 0.03 ND 0.01
10 4.5-5 Km 1 7 0.01 ND 0.01
11 >5 Km 1 7 0.01 -2.9505 0.13
ND: Not Determinable.

relation with base metal mineralization (e.g., the serpentinites, mafic gran-

ulites etc.). The former were assigned the highest rank, while the latter were

assigned the lowest rank. The map was ranked high at 8, although lower than

the lithological, stratigraphic and the sedimentary environment maps because

(a) there is an undeniable spatial association of these rocks with some of the

largest base-metal deposits in the province, although the genetic relationship

of the SEDEX-type base-metal mineralization with mafic metavolcanic rocks

is not as well-established as it is with lithology, stratigraphy and sedimentary

environment and (b) the map was interpreted from the total magnetic field

intensity data and is therefore an inferred map.

The regional lineaments, which provide evidence for the crustal-scale faults

in the Aravalli province, have a positive spatial association with the base-metal

deposits. However, because the lineaments were interpreted from the total

magnetic field intensity data, the map of regional lineaments was assigned a

map rank of 8. The buffer zones were ranked in the reverse order of their
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distances from the lineaments.

The predictor map of buffered distances from fold axes was assigned a rank

of 7 in view of the specific evidence of post genetic remobilization and reloca-

tion of ores during polyphase deformation of the province. In many areas, the

hinges of the folds form the preferred sites for concentration. The buffer zones

were ranked in the reverse order of their distances from the fold axes.

The two predictor maps of buffered distances from NE-trending and NW-

trending lineaments were ranked 6 each, lower than the predictor map of

buffered distances from fold axes. It is because the lineaments were interpreted

from the total magnetic field intensity data and therefore these are inferred

maps. The ranks to buffer zones were assigned in the reverse order of their

distances from lineaments.

Inference engine

The two-stage inference engine used here (Fig. 3.3) comprises four parallel

networks that sequentially combine collateral fuzzy predictor maps transmitted

by the fuzzifier through the fuzzy OR and fuzzy AND operators to yield four

intermediate fuzzy predictor maps in the first stage, which are combined in

the second stage using the fuzzy γ operator to generate the synthesized fuzzy

favorability map.

The first parallel network combines the two fuzzy predictor maps of buffered

distances from NE-trending and NW-trending lineaments using the fuzzy AND

operator to yield a combined fuzzy predictor map of buffered distances from

both sets of lineaments, which, in turn, is combined with the fuzzy predictor

map of buffered distances from fold axes using the fuzzy OR operator to yield

an intermediate fuzzy predictor map of favorable structural features for post-

genetic concentration of ore. The second parallel network combines the fuzzy

predictor map of the mafic igneous rocks with the fuzzy predictor map of

buffered distances from regional lineaments using the fuzzy OR operator to

generate an intermediate fuzzy predictor map of favorable heat sources. The

third parallel network combines the fuzzy predictor map of lithologies and the

fuzzy predictor map of sedimentary environments using fuzzy AND to yield

an intermediate fuzzy predictor map showing the favorable base-metal hosting

environments. The fourth parallel network transmits the fuzzy predictor map

of stratigraphic groups as such to the second stage. The intermediate fuzzy

predictor map showing favorable stratigraphic groups is therefore the same as

the one transmitted by the fuzzifier.
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Figure 3.3: Two-stage inference engine used for generating synthesized fuzzy favorability maps in Fig. 3.4 and Fig. 3.7.
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The maps more likely to be conditionally-dependent were combined in the

first stage of the inference engine using the fuzzy AND and the fuzzy OR

operators. The choice of the fuzzy AND operator or the fuzzy OR operator

in the parallel networks described above depended upon whether the presence

of only one of the two fuzzy predictor maps to be combined was sufficient

or whether the presence of both fuzzy predictor maps was mandatory for the

recognition of base-metal deposits in the province.

The intermediate fuzzy predictor maps were combined in the second stage

of the inference engine using the fuzzy γ operator with γ = 0.75, 0.79, 0.83 and

0.87, to produce the four synthesized fuzzy favorability maps shown in Fig. 3.4.

Defuzzifier

Table 3.3 gives the combined fuzzy favorability values and their respective area

coverage in the synthesized fuzzy favorability maps. The plots of the cumula-

tive fuzzy favorability and the cumulative areas are shown in the Fig. 3.5. It

can be seen from the plots and Table 3.3 that the threshold combined favor-

ability value is less than 0.5 for the three maps obtained by using γ values of

0.75, 0.79 and 0.83, while it is 0.5 for the map obtained by using a γ value of

0.87. The former maps were therefore rejected and the latter was defuzzified

using 0.5 as the threshold. The resulting binary favorability map is shown in

Fig. 3.6.

Model validation

The knowledge-driven model was validated by overlaying the locations of known

mineral deposits on the binary favorability map (Fig. 3.6). Table 3.4 shows

that in the binary favorability map, high favorability areas, which occupy 8.9%

of the study area, contain 87.0% of the known base-metal deposits.

3.4.3 Data-driven fuzzy modeling

In the data-driven model, the predictor maps were fuzzified using the piece-wise

linear membership function defined in Equation 3.7. The studentized contrast

values were calculated using the procedure and software described by Kemp et

al . (1999). Table 3.2 gives the studentized contrast values and the data-driven

fuzzy membership values for each predictor map.

The fuzzified predictor maps were combined using the same inference en-

gine (Fig. 3.3) that was used in the knowledge-driven model. Fig. 3.7 shows
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Figure 3.4: Continuous-scale knowledge-driven synthesized fuzzy favorability maps
obtained by using a γ value of (A) 0.75, (B) 0.79, (C) 0.83 and (D) 0.87. Combined
fuzzy favorability varies from 0 (white) to 1 (black).
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Figure 3.5: Variation of cumulative combined fuzzy favorability with cumulative
area in knowledge-driven synthesized fuzzy favorability maps in (A) Fig. 3.4A, (B)
Fig. 3.4B, (C) Fig. 3.4C and (D) Fig. 3.4D. Note sharp change in slope of curves
(marked by arrows) at cumulative combined fuzzy favorability values of (A) 4.2 (B)
4.2 (C) 3.9 and (D) 3.5. These values, respectively, correspond to threshold combined
fuzzy favorability values (Table 3.3) of (A) 0.3 (B) 0.3 (C) 0.4 and (D) 0.5.
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Table 3.3: Defuzzification of Knowledge-driven synthesized fuzzy maps

Model Combined Fuzzy Cumulative Area Cumulative
Favorability Values Combined Fuzzy (Km2) Area
(Class Marks) Favorability Values (Km2)

γ=0.75 0.9 0.9 536 536
0.8 1.7 499 1035
0.7 2.4 298 1333
0.6 3.0 196 1529
0.5 3.5 132 1661
0.4 3.9 670 2331
0.3 4.2 1997 4328
0.2 4.4 7681 12009
0.1 4.5 35811 47820

γ=0.79 0.9 0.9 631 631
0.8 1.7 499 1130
0.7 2.4 320 1450
0.6 3.0 166 1616
0.5 3.5 96 1712
0.4 3.9 1362 3074
0.3 4.2 2621 5695
0.2 4.4 10281 15976
0.1 4.5 31844 47820

γ=0.83 0.9 0.9 674 674
0.8 1.7 574 1248
0.7 2.4 292 1540
0.6 3.0 129 1669
0.5 3.5 799 2468
0.4 3.9 2223 4691
0.3 4.2 6852 11543
0.2 4.4 9784 21327
0.1 4.5 26493 47820

γ=0.87 0.9 0.9 902 902
(Selected 0.8 1.7 544 1446
Model) 0.7 2.4 209 1655

0.6 3.0 682 2337
0.5 3.5 1942 4279
0.4 3.9 5533 9812
0.3 4.2 7001 16813
0.2 4.4 8662 25475
0.1 4.5 22345 47820

Rows of underlined figures correspond to threshold combined favorability values for each model
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Figure 3.7: Continuous-scale data-driven synthesized fuzzy favorability maps ob-
tained by using a γ value of (A) 0.75, (B) 0.79, (C) 0.83 and (D) 0.87. Combined
fuzzy favorability varies from 0 (white) to 1 (black).
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Figure 3.8: Variation of cumulative combined fuzzy favorability with cumulative area
in data-driven synthesized fuzzy favorability maps in (A) Fig. 3.7A, (B) Fig. 3.7B, (C)
Fig. 3.7C and (D) Fig. 3.7D. Note sharp change in slope of curves (marked by arrows)
at cumulative combined fuzzy favorability values of (A) 4.2 (B) 3.9 (C) 3.5 and (D)
3.5. These values, respectively, correspond to threshold combined fuzzy favorability
values (Table 3.5) of (A) 0.3 (B) 0.4 (C) 0.5 and (D) 0.5.
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Table 3.4: Validation of Favorability maps

Favorability Map Favorability zone Percent Percent Percent
study validation training
area deposits deposits

Based on knowledge-driven High favorability 8.9 —-87.0—-
fuzzy model Low favorability 91.1 —-13.0—-
Based on data-driven High favorability 5.4 87.5 83.3
fuzzy model Moderate favorability 94.6 12.5 16.7

the synthesized fuzzy favorability maps obtained using γ values of 0.75, 0.79,

0.83 and 0.87. The combined fuzzy favorability values and their respective area

coverage in the four synthesized fuzzy favorability maps are given in Table 3.5.

The plots of the cumulative fuzzy favorability and the cumulative areas are

shown in Fig. 3.8. It can be seen from the plots and Table 3.5 that the thresh-

old combined fuzzy favorability value is 0.3 and 0.4 for the synthesized fuzzy

favorability maps obtained by using γ values of 0.75 and 0.79, respectively,

while it is 0.5 for the synthesized fuzzy favorability maps obtained by using γ

values of 0.83 and 0.87. The first two synthesized fuzzy favorability maps were

rejected because the threshold combined favorability value is less than 0.5. For

the last two synthesized fuzzy favorability maps, the threshold combined fuzzy

favorability value corresponds to cumulative areas of 2582 km2 and 4665 km2

respectively. Of these maps, the synthesized fuzzy favorability map obtained

by using a γ value of 0.83 was selected because the threshold combined fuzzy

favorability value narrows down the search area more judiciously in this map.

This map was therefore defuzzified by using 0.5 as the threshold combined

favorability. The resulting binary favorability map is shown in Fig. 3.9.

Model validation

The model was validated by overlaying the validation base-metal deposits on

the binary favorability map (Fig. 3.9). Table 3.4 shows that favorable areas,

which occupy 5.4% of the study area, contain 87.5% of the validation deposits

and 83.3% of the training deposits.

3.5 Discussion

As mentioned earlier, one of the most significant procedures in approaches to

fuzzy modeling is the definition of fuzzy membership values. The logistic mem-

bership function (Equation 3.5) used as the fuzzifier in the knowledge-driven
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Table 3.5: Defuzzification of Data-driven synthesized fuzzy maps

Model Combined Fuzzy Cumulative Area Cumulative
Favorability Values Combined Fuzzy (Km2) Area
(Class Marks) Favorability Values (Km2)

γ=0.75 0.9 0.9 481 481
0.8 1.7 759 1240
0.7 2.4 405 1645
0.6 3.0 306 1951
0.5 3.5 303 2254
0.4 3.9 208 2462
0.3 4.2 1905 4367
0.2 4.4 10346 14713
0.1 4.5 33107 47820

γ=0.79 0.9 0.9 648 648
0.8 1.7 795 1443
0.7 2.4 313 1756
0.6 3.0 302 2058
0.5 3.5 317 2375
0.4 3.9 650 3025
0.3 4.2 7977 11002
0.2 4.4 7883 18885
0.1 4.5 28935 47820

γ=0.83 0.9 0.9 810 810
(Selected 0.8 1.7 759 1569
Model) 0.7 2.4 381 1950

0.6 3.0 320 2270
0.5 3.5 311 2581
0.4 3.9 3623 6204
0.3 4.2 7650 13854
0.2 4.4 12606 26460
0.1 4.5 21360 47820

γ=0.87 0.9 0.9 1152 1152
0.8 1.7 582 1734
0.7 2.4 365 2099
0.6 3.0 340 2439
0.5 3.5 2226 4665
0.4 3.9 8249 12914
0.3 4.2 7566 20480
0.2 4.4 10569 31049
0.1 4.5 16771 47820

Rows of underlined figures correspond to threshold combined favorability values for each model
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Figure 3.10: Variation of fuzzy membership values with class scores for predictor
map of stratigraphy.

model is S-shaped, as demanded by several authors (Goguen, 1969; Zadeh,

1971), and returns membership values that lie between 0 and 1. The signif-

icance of this function lies in the fact that the relationship between physical

units and perceptions is generally exponential (Helson, 1964; Zimmermann,

1991), and the function offers a mathematical way of expressing this rela-

tionship. Fig. 3.10 shows a plot of class scores and fuzzy membership values

returned by this function for the predictor map of stratigraphy. It can be seen

that the differences in the membership values are much larger in the central

part of the curve than along its tails, which means that the function separates

the unfavorable stratigraphic groups from the favorable stratigraphic groups

quite clearly, although amongst the favorable (and unfavorable) stratigraphic

groups the distinction is less well-defined. In a spatial domain, this implies

that high favorability and low favorability areas are well-defined in the synthe-

sized fuzzy favorability map and there are fewer areas in the low favorability

and in the high favorability areas with transitional favorability. Defuzzifica-

tion of the synthesized fuzzy favorability map is therefore more robust. This
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is well-illustrated by the synthesized fuzzy favorability maps of the base-metal

deposit potential in the study area predicted by the knowledge-driven model.

For example, in the synthesized fuzzy favorability map obtained by using a γ

value of 0.87 (Fig. 3.4D), 79% of the area has a combined fuzzy membership

value of 0.3 or less (low favorability), 15% of the area has a combined fuzzy

membership value between 0.4 and 0.5 (transitional favorability), while 6% of

the area has the combined fuzzy membership value ≥ 0.6 (high favorability).

This implies that 85% of the area has a well-defined favorability, whether high

or low, whereas only 15% has a transitional favorability. The transitional fa-

vorability area can be further reduced by increasing the value of the parameter

a and b (Equation 3.5), which control the shape of the logistic membership

function. As demonstrated by Table 3.1 and Fig. 3.2, an increase in value of a

increases the slope of the function, which in turn, results in a wider separation

of the fuzzy membership values of the favorable predictor patterns from those

of the unfavorable predictor patterns. However, the fuzzifier should be tuned

very carefully, as very high values of the parameter a could convert a multi-

class predictor map into a crisp map, rather than into a fuzzy map.

The concept of assignment of weight to a predictor map in order to calcu-

late class scores in the knowledge-driven model is very similar to the concept of

‘confidence value’ proposed by Knox-Robinson (2000). A class score (product

of the class and map weights; Equation 3.6) therefore reflects the relative im-

portance of each map as well as that of each pattern on the map, as suggested

by Bonham-Carter (1994).

The piece-wise linear membership function used for the fuzzification of pre-

dictor patterns maps in the data-driven model is similar to the one used by

Cheng and Agterberg (1999) for calculating fuzzy membership values in their

fuzzy weights-of-evidence model. However, the membership function (Equa-

tion 3.7) defined here differs in following aspects.

1. The function never returns a membership value of 0.

2. A piece-wise linear nature of the function ensures that it returns a mem-

bership value of 0.5 for a contrast value of 0. This is in keeping with the

properties of the fuzzy membership function defined in Equation 3.3. A

simple linear function, like the one used by Cheng and Agterberg (1999)

would return a membership value of 0.5 if, and only if, the contrast values

are symmetrically distributed about 0.
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3. Instead of using map-wise maximum and minimum contrast values, the

proposed function uses the maximum and minimum contrast values of the

complete data set. As a result, the membership values have an element

of map weight incorporated in them.

In the creation of a synthesized favorability map, one of the main functions

of an inference engine is to filter out informational noise from the individual

fuzzified predictor maps transmitted by the fuzzifier. The selection of appropri-

ate fuzzy set operators at various stages in the inference networks is, therefore,

very important. As pointed out by Knox-Robinson (2000), if there was an

extremely low-value or high-value noise in any of the fuzzified predictor maps,

the fuzzy AND or the fuzzy OR operators would propagate it to the synthe-

sized fuzzy favorability map. The fuzzy algebraic sum and the fuzzy algebraic

product operators, if used individually, could amplify the noise because of their

respective increasive and decreasive tendencies. The fuzzy γ operator, which

balances these tendencies of the fuzzy algebraic sum and fuzzy algebraic prod-

uct operators by using appropriate values of γ, provides an effective way of

controlling the propagation of extreme-value noise to the output. The synthe-

sized fuzzy favorability maps produced by the fuzzy γ operator are therefore

consistent and realistic.

The graphical method used here for defuzzification of synthesized fuzzy fa-

vorability maps allows further fine-tuning of the inference engine, if the thresh-

old combined fuzzy favorability value is less than 0.5. However, this should be

cautiously done, as an excessive use of increasive fuzzy operators or a very

high γ value in the fuzzy γ operator can propagate extreme-value noise in the

synthesized fuzzy favorability map and eventually in the binary favorability

map.

The results of applying the knowledge-driven and data-driven fuzzy models

to predictive mapping of base-metal deposit potential in the Aravalli province

are remarkably similar, both in terms of their strengths and their weaknesses.

In terms of strength, each model outlines potential zones occupying less than

10% of the study area, which predict over 85% of the known base-metal de-

posits. This is a significant result both in terms of reduction in search area

and the number of deposits predicted. The data-driven model works better

than the knowledge-driven model in that it narrows down the search area to

less than 6% of the study area, while predicting roughly the same number of

known deposits. However, in absolute terms, the search areas predicted by the

knowledge-driven and data-driven models are still quite large (4279 km2 and
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2582 km2, respectively). This is primarily because the focus in the present ex-

ercise was on demarcating favorable mineralized zones on a regional scale based

on regional-scale (1:250,000) predictor maps. With larger-scale predictor maps,

the same models can be further tested to demarcate specific prospects within

the predicted favorable mineralized zones.

Both of the models are weak in that they fail to predict the Rampura-

Agucha deposit, which is the only world-class base-metal deposit known in

the province. The Rampura-Agucha deposit was discovered accidentally by

the Rajasthan State Mines and Geology Department during one of its recon-

naissance projects for non-metallic minerals in the area (although subsequent

mining operations in the area revealed ancient workings dating back to Ca.

400 BC!). The deposit is located in a soil-covered local meta-sedimentary en-

clave, well within the basement complex, which shows no physical continuity

with the main sedimentary basins of the Bhilwara belt and which is barely

mappable on a regional scale. Since its discovery in late seventies, a number of

Indian and multinational exploration agencies have been carrying out exten-

sive exploration, including close-spaced airborne geophysical surveys, to locate

a base-metal mineralized zone in the area, but not much success has been re-

ported so far. The deposit, though having features of a typical SEDEX-deposit

on a local scale, remains a spatial anomaly in its regional geological setting.

Predicting such a deposit using regional-scale recognition criteria and data

is rather difficult. A local-scale knowledge-driven model of the north-central

part of the basement complex using large-scale predictor maps and local-scale

recognition criteria could predict the Rampura-Agucha deposit and thus help

in demarcating other favorable sedimentary enclaves within the basement com-

plex. Alternatively, globally generated data-driven models could be used, as

described by Singer and Kouda (1999).

A comparison of the binary favorability maps generated by the two mod-

els reveals some interesting features. As prognosticated by a high correlation

coefficient of 0.85 between the data-driven and knowledge-driven fuzzy mem-

bership values, a majority of the favorable areas predicted by the data-driven

fuzzy model are also predicted by the knowledge-driven fuzzy model. However,

several narrow curvilinear zones of favorability in the Jharol belt are predicted

only by the data-driven fuzzy model. These zones are occupied by thin bands

of folded quartzite unit, which host a small base-metal deposit at Padar-Ki-Pal.

As weights of evidence and contrast values depend on the number of training

points contained by a feature and its area, the rock unit gets a high data-driven
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fuzzy membership value. For the same reason, the corresponding stratigraphic

group (Jharol group) and sedimentary environment (deep sea) also get high

data-driven fuzzy membership values. The knowledge-driven fuzzy member-

ship values are low because (1) quartzite is not a favorable host rock (2) deep

sea is not a favorable sedimentary environment and (3) the Jharol group is

far removed in temporal terms from major base-metal-hosting stratigraphic

groups in the province. As a result, these zones are predicted favorable by the

data-driven model and unfavorable by the knowledge-driven model. This im-

plies that the knowledge-driven evaluation of the detailed geological setting of

the Jharol belt requires a review, especially because the presence of quartzites

indicate a local transgressive-shallow sedimentary environment. In the present

application, the entire Jharol belt, which is dominated by carbonate-free pelitic

sequences, was considered to be characterized by a deep sea sedimentary envi-

ronment (Roy and Paliwal, 1981; Roy et al., 1988, 1993).

3.6 Conclusions

The applications of knowledge-driven and data-driven fuzzy models to the

study area result in demarcation of potential zones occupying less than 10% of

the study area, which contain at least 83% of the known base-metal deposits.

This is a significant result both in terms of reduction in search area and the

number of deposits predicted, which validates the modeling procedures. The

following conclusions can therefore be drawn from these applications.

• The application of fuzzy set theory to predictive mineral potential map-

ping provides a strong theoretical framework for dealing with the com-

plexity of modeling multi-class predictor maps in a flexible and consistent

way.

• The functionality of all the three basic modules, viz., the fuzzifier, the in-

ference engine and the defuzzifier, is equally important for the successful

implementation of a fuzzy model.

• The logistic membership function defined in Equation 3.5 provides an

operational mathematical tool that simulates human cognition for the

efficient fuzzification of multi-class predictor maps in a knowledge-driven

fuzzy model.
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• The use of the piece-wise linear membership function (Equation 3.7) as

a fuzzifier successfully incorporates a data-driven approach in the fuzzy

modeling for mineral potential mapping.

• Because an inference engine seeks to generate a synthesized fuzzy favora-

bility map by combining individual fuzzified predictor maps though infer-

ence networks and fuzzy set operators, its design should reflect the subtle

relationships among genetic processes, recognition criteria and predictor

maps.

• The defuzzification procedure described in this chapter provides an ob-

jective method for interpreting synthesized fuzzy favorability maps and

demarcating exploration target areas from them.

• A cross-validation of the result of one of the models by the result of

the other model allows further scrutiny and accounting of the geological

significance of each predicted model.

The favorability maps generated by both the knowledge-driven and data-

driven fuzzy models reveal that large tract of areas in north-western and eastern

parts of the study area have very low favorability (Fig. 3.11, see also Figs. 3.4

and 3.7). The tracts in the north-western part of the study area (marked as

A in Figs. 3.11A and 3.11B) are occupied by Neoproterozoic magmatic rocks,

which are Ca. 750 Ma in age and, hence, much younger than both the SEDEX

and VMS phases of mineralizations in the Aravalli province (Chapter 2). The

tracts in the eastern part (marked as B in Fig. 3.11A and 3.11B), on the other

hand, are largely occupied by Archaean lithological assemblages comprising

high-grade migmatites, gneisses and acidic and mafic intrusive rocks, which

are more than 2500 Ma in age and, hence, much older than both the phases of

base-metal mineralizations (Chapter 2). Based on both conceptual metalloge-

netic considerations and the results of the fuzzy models, it can be inferred that

there is little possibility of base-metal mineralization in either of the two tracts.

It was therefore decided to narrow down the study area by removing the low

favorability tracts (Figs. 3.11A and 3.11B) from the original study area. The

revised study area is shown in Fig. 3.11C.

In the data-driven fuzzy model described in this chapter, the theory of

probability was used to calculate weights of evidence of various multi-class

predictor maps for deriving fuzzy membership values. However, the fuzzy set

theory was used for combining the predictor maps and generating favorability
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Figure 3.11: Low favorability tracts in binary favorability maps generated by (A)
knowledge-driven fuzzy model and (B) data-driven fuzzy model. (C) Study area re-
defined on the basis of the fuzzy models.
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maps. Therefore, the fuzzy values calculated here, which, like probability val-

ues, range from 0 to 1, do not represent probability of mineral occurrence but

only indicate favorability in a relative sense. In the next chapter, a data-driven

model is described that combines multi-class predictor maps and generate min-

eral potential maps based on a Bayesian probability framework.
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Extended

Weights-of-Evidence Model

Approaches to mineral potential mapping based on weights-of-evidence model-

ing generally use binary maps, whereas, real-world geospatial data are mostly

multi-class in nature. The consequent reclassification of multi-class maps into

binary maps is a simplification that might result in a loss of information. This

chapter thus describes “Extended Weights-of-Evidence Modeling for Predic-

tive Mapping of base-metal Deposit Potential in Aravalli Province, Western

India” (Porwal et al., 2003b) to demonstrate optimization of mineral potential

information by using multi-class predictor maps, as applied to the study area.

4.1 Introduction

The weights-of-evidence approach to mineral potential mapping uses the theory

of conditional probability to quantify spatial association between a set of pre-

dictor maps and a set of known mineral deposits (Agterberg, 1989; Agterberg

et al., 1990; Bonham-Carter and Agterberg, 1990). The spatial association is

expressed in terms of weights of evidence for each of the predictor maps. The

weights of evidence are combined with the prior probability of occurrence of

mineral deposits using Bayes’ rule in a log-linear form under an assumption of

conditional independence of the maps to derive posterior probability of occur-

rence of mineral deposits.

Approaches to weights-of-evidence modeling were originally developed for

non-spatial applications, particularly in the field of quantitative medical diag-

nosis, where they are applied for weighing and combining evidences in the form
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of clinical symptoms to predict occurrence of a disease in a patient (e.g., Lusted,

1968; Aspinall and Hill, 1983; Spiegelhalter and Knill-Jones, 1984; Reggia and

Perricone, 1985; Spiegelhalter, 1986; Heckerman et al., 1992). Bonham-Carter

(1994) provides an in-depth exposition of the weights-of-evidence approach to

mineral potential mapping.

4.1.1 Previous work

Weights-of-evidence models have been extensively applied to map potential of

a variety of mineral deposits, for example, (a) vein-type gold deposits in Nova

Scotia, Canada (Bonham-Carter et al., 1988); (b) Carlin-type epithermal gold

deposits in Nevada, USA (Mihalasky, 1999); (c) epithermal gold deposits in

the Great Basin of the western USA (Raines, 1999), in northeast Washington

State, USA (Boleneus et al., 2001) and in the Baguio district, the Philippines

(Carranza and Hale, 2000); (d) porphyry copper deposits in British Columbia,

Canada (Singh et al., 1993) and in the Benguet province, the Philippines (Car-

ranza and Hale, 2002); (e) VHMS-type base-metal sulphide deposits in green-

stone terrains of Manitoba, Canada (Wright and Bonham-Carter, 1996) and

(f) SEDEX-type base-metal deposits in the Aravalli province, India (Porwal

and Hale, 2000).

In most of the above-mentioned studies, the model is implemented using

binary predictor maps. Although the computational effort required to imple-

ment the model is considerably reduced by the use of binary predictor maps,

the generalization and reclassification involved in converting real-world geospa-

tial data, which are commonly multi-class or continuous in nature, into binary

maps may result in loss or distortion of valuable information. Moreover, with

recent advances in computer technology, the advantage of using binary pre-

dictor maps in terms of computational effort is no longer such a significant

determinant in deciding a modeling approach as it was when the weights-of-

evidence model was first propounded for spatial applications. Given the easy

availability of cost-effective and high-speed computer hardware, an extended

weights-of-evidence model that uses multi-class predictor maps is preferable to

a simple weights-of-evidence model that uses binary predictor maps, provided

the statistical properties of the model are not degraded by the use of multi-

class predictor maps.

Pan (1996) proposed an extended weights-of-evidence model that uses multi-

class categorical predictor maps for obtaining ‘pseudo-metal’ estimates. Bonham-

Carter and Agterberg (1999) provide a general introduction to the weights-of-
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evidence approach in a multi-class framework. Goodacre et al. (1993) ap-

plied both ‘grey-scale’ weights-of-evidence model (based on multi-class predic-

tor maps) and ‘binary’ weights-of-evidence model (based on binary predictor

maps) to predictive mapping of seismic epicenters in western Quebec (Canada)

and showed that the predictive maps generated using the two models are very

similar. Porwal and Hale (2000) applied the weights-of-evidence analysis of

multi-class predictor maps to generate a favorability map for SEDEX-type

base-metal deposits in Aravalli province, India. Boleneus et al. (2001) used

multi-class categorical and cumulative data in their weights-of-evidence model

for assessment of epithermal gold deposit potential in northeast Washington

State, USA.

4.2 Weights-of-Evidence Model

Bayes’ theorem gives the rule for updating belief in a hypothesis H (i.e. the

probability of H ) given additional evidence E :

p(H|E) = p(H) · p(E|H)/p(E), (4.1)

where the left-hand term, p(H |E ), is called the posterior probability. The term

p(H ) is the prior probability of H , i.e., the belief in H before the evidence E

is considered. The term p(E |H ) is called the likelihood, and the last term,

1/p(E ), which is independent of H , can be regarded as a normalizing or scaling

constant.

Bayes’ rule is derived by rearranging the terms in the product rule from

probability. Using the product rule, Bayes’ rule can be extended to n sequential

updates using n additional evidences:

p(H|E) =
p(H) · p(E1|H) · p(E2|E1, H) · ... · p(En|En−1, ..., E2, E1)

p(E1) · p(E2|E1) · ... · p(En|En−1, ..., E2, E1)
, (4.2)

As each new piece of evidence is factored into the calculation, its effect is

conditional on all previously-considered evidence. This difficulty is overcome by

making an assumption of conditional independence. When multiple evidences

Ei (for i = 1 to n) are conditionally-independent, the multiple update version

of Bayes’ rule reduces to:

p(H|E1, E2, ..., En) = p(H) ·
n

∏

i=1

p(Ei|H)

p(Ei)
. (4.3)
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For spatial application to mineral potential mapping, Agterberg (1989) and

Agterberg et al. (1990) expressed the probability in terms of odds:

O(D|E1, E2, ..., En) = O(D) ·
n

∏

i=1

p(Ei|D)

p(Ei|D̄)
, (4.4)

where D and D̄ indicate presence and absence, respectively, of target mineral

deposit-type D. The above equation can be written in a log-linear form, as:

loge[O(D|E1, E2, ..., En)] = loge[O(D)] +
n

∑

i=1

loge
p(Ei|D)

p(Ei|D̄)
. (4.5)

Here, the hypothesis is that ‘the given spatial unit contains a mineral deposit

of the type D ’. The expression on the left, loge [O(D |E1 ,E2 , ...,En)], is the

posterior logit (log of odds) of target mineral deposit-type, which is the prior

logit of target mineral deposit-type, loge [O(D)], modified by the presence of n

binary predictor map patterns Ei (i=1 to n).

Agterberg (1989) and Agterberg et al. (1990) constructed a similar ex-

pression for posterior logit of mineral deposits, given the absence of n binary

predictor map patterns:

loge[O(D|E1, E2, ..., En)] = loge[O(D)] +
n

∑

i=1

loge
p(Ēi|D)

p(Ēi|D̄)
, (4.6)

where Ēi indicates the absence of the predictor map Ei. The expressions

loge
p(Ei |D)
p(Ei |D̄)

in Equation 4.5 and loge
p(Ēi |D)
p(Ēi |D̄)

in Equation 4.6 are called the pos-

itive and negative weights of evidence, W +
i and W −

i , respectively, of the i th

binary predictor map pattern (i = 1 to n). The strength of association be-

tween target mineral deposit-type and the binary predictor pattern Ei can be

measured in terms of contrast (Ci), which is given by:

Ci = W+
i −W−

i . (4.7)

A positive contrast value indicates a positive spatial association, while a neg-

ative contrast value indicates a negative spatial association.

The Bayesian model for mineral potential mapping based on several binary
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predictor maps can therefore be represented as:

loge[O(D|E1, E2, ..., En)] = loge[O(D)] +
n

∑

i=1

W
+/−
i . (4.8)

The sign of Wi in the above equation depends upon whether the i th binary

pattern is present (+) or absent (−). The updated posterior probability of

mineral deposits can be calculated from posterior logit of mineral deposits:

p(D|E1, E2, ..., En) =
eloge[O(D|E1,E2,...,En)]

1 + eloge[O(D|E1,E2,...,En)]
. (4.9)

The variances of weights of evidence of the i th binary pattern Ei (i=1 to n)

are calculated from the following relations, which are based on the asymptotic

maximum likelihood method (Bishop et al., 1975), as discussed by Agterberg

et al. (1990):

σ2(W+
i ) =

1

p(D|Ei)
+

1

p(D̄|Ei)
(4.10)

and

σ2(W−
i ) =

1

p(D|Ēi)
+

1

p(D̄|Ēi)
. (4.11)

The variance of posterior probability due to variances of weights of evidence

is calculated using the following equation (Agterberg et al., 1990; Bonham-

Carter and Agterberg, 1990):

σ2
1{p(D|E1, E2, ..., En)} = {

1

nD
+

n
∑

i=1

σ2(W
+/−
i )} · {p2(D|E1, E2, ..., En)},

(4.12)

where nD is the number of mineral deposits and the sign of Wi depends upon

whether the i th binary pattern is present (+) or absent (−). The variance of

posterior probability due to the missing j th predictor pattern Pj is calculated

using the following relation (Bonham-Carter and Agterberg, 1990):

σ2
2{p(D|E1, E2, ..., En)} = {p(D|Ej)− p(D)}2 · p(Ej)

+{p(D|Ēj)− p(D)}2 · p(Ēj), (4.13)

where p(D) is now the posterior probability calculated for a region where Ej

is missing while p(D|Ej) and p(D|Ēj) are updated posterior probabilities cal-

culated as if the missing pattern Ej is actually known (Bonham-Carter and
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Agterberg, 1990). The total variance of posterior probability is the sum of vari-

ance due to weights of evidence and variance due to missing predictor patterns,

as given below:

σ2
total{p(D|E1, ..., En)} = σ2

1{p(D|E1, ..., En)}+ σ2
2{p(D|E1, ..., En)}

(4.14)

The goodness of fit between expected frequencies of mineral deposits esti-

mated from posterior probabilities and observed frequencies can be tested by

using either a χ2 test (Agterberg et al., 1990) or a Kolmogorov-Smirnov test

(Bonham-Carter and Agterberg, 1990). A statistically-significant difference

between the observed and estimated frequencies may be due to conditional de-

pendence amongst two or more of the predictor maps. In such a case, pairs of

predictor maps should be tested for conditional independence using the stan-

dard χ2 test (Bonham-Carter and Agterberg, 1990).

4.2.1 Extended relations

Consider that n multi-class predictor maps Mi (i=1 to n) are to be used for

deriving posterior probability of mineral deposits of a type D in an area A

using the theory of conditional probability and Bayes’ rule. Mi (i=1 to n) can

be represented as follows (Pan and Harris, 2000):

M1 = (M1
1 , M2

1 , M3
1 , ......., Mk

1 )

... ... ... (4.15)

Mn = (M1
n, M2

n, M3
n, ......., Mk

n),

where M
j
i is the j th pattern on the i th predictor map (for j=1 to k, i=1 to n).

Each predictor pattern M
j
i can be considered a binary, with present or

absent status. Consequently, the same relations as in the simple weights-of-

evidence model can be used for the extended version. Explicitly, the extended

Bayesian model using multi-class predictor maps can be represented as follows:

loge{O(D|M
j (j=1 to k)
i (i=1 to n) )} = loge[O(D)] +

n
∑

i=1

k
∑

j=1

W
j+/−
i , (4.16)

where the sign of the weights of evidence W j
i depends upon whether M j

i is

present (+) or absent (−). In the above equation, the positive and negative
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weights of evidence for the j th pattern on the i th predictor map (for j=1 to k,

i=1 to n) can be derived using the following relations, respectively:

W j+
i = loge

p(M j
i |D)

p(M j
i |D̄)

(4.17)

and

W j−
i = loge

p(M̄ j
i |D)

p(M̄ j
i |D̄)

, (4.18)

where M̄ j
i and D̄ indicate, respectively, the absence of the predictor pattern

M j
i and target mineral deposit-type D. The updated posterior probability of

target mineral deposit-type can be calculated from the posterior logit of the

mineral deposit-type (Equation 4.16):

p(D|M
j (j=1 to k)
i (i=1 to n) ) =

e
loge{O(D|M

j (j=1 to k)
i (i=1 to n)

)}

1 + e
loge{O(D|M

j (j=1 to k)
i (i=1 to n)

)}
. (4.19)

The variances of weights of evidence are given by:

σ2(W j
i +) =

1

p(D|M j
i )

+
1

p(D̄|M j
i )

(4.20)

and

σ2(W j
i −) =

1

p(D|M̄ j
i )

+
1

p(D̄|M̄ j
i )

. (4.21)

The variance of posterior probability due to variances of weights of evidence

is given by:

σ2
1{p(D|M

j (j=1 to k)
i (i=1 to n) )} =

{
1

nD
+

n
∑

i=1

k
∑

j=1

σ2(W
j+/−
i )} · {p2(D|M

j (j=1 to k)
i (i=1 to n) )}, (4.22)

where nD is number of mineral deposits and the sign of W
j
i depends upon

whether the j th pattern on the i th predictor map is present (+) or absent (−).

The variance of posterior probability due to missing l th pattern on the mth
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predictor map is calculated using the following relation:

σ2
2{p(D|M

j (j=1 to k)
i (i=1 to n) )} =[p(D|M l

m)− p(D)]2 · p(M l
m)

+ [p(D|M̄ l
m)− p(D)]2 · p(M̄ l

m), (4.23)

where p(D) is now the posterior probability calculated for a region where M l
m

is missing while p(D|M l
m) and p(D|M̄ l

m) are updated posterior probabilities

calculated as if the missing pattern M l
m is actually known. The total variance

of posterior probability is the sum of variance due to weights of evidence and

variance due to missing predictor patterns, as given below:

σ2
total{p(D|M

j (j=1 to k)
i (i=1 to n) )} =

σ2
1{p(D|M

j (j=1 to k)
i (i=1 to n) )}+ σ2

2{p(D|M
j (j=1 to k)
i (i=1 to n) )}. (4.24)

The conditional independence of the input multi-class predictor maps can

be verified by testing the goodness of fit between expected frequencies of min-

eral deposits estimated from posterior probabilities and observed frequencies

using a χ2 test (Agterberg et al., 1990; Bonham-Carter and Agterberg, 1990),

Kolmogorov-Smirnov test (Agterberg et al., 1990; Bonham-Carter and Agter-

berg, 1990), omnibus test (OT; Bonham-Carter, 1994) and new omnibus test

(NOT; Agterberg and Cheng, 2002). The performance of the model can also

be tested using Brier score (B̄), which has its root in predictive meteorology

(Glahn and Lowry, 1972). It is given by the following relation:

B̄ = (

∑n
i=1(Pi −Oi)

2

n
) (4.25)

where Pi is the calculated posterior probability and the Oi is the observed

probability (= 1, if a mineral deposit is present, and 0, if it is absent). Values

of Brier score close to 0 indicate a good fit. However, Brier scores have to

be interpreted with care, as they depend on the frequency of an event − the

rarer the event, the better the Brier score. In probabilistic mineral potential

mapping, where the frequency of mineral deposit occurrence is low or rare as

compared to the occurrence of geological evidences, it can be used in a relative

sense in comparing the performance of different models.

The wights-of-evidence models were implemented using the procedure and

software described by Kemp et al. (2001).
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4.3 Application to Base-Metal Potential Mapping in

Aravalli Province

4.3.1 Data preprocesing

It was considered inappropriate to use the buffer corridors around the lin-

eaments and the fold axes as multi-class categorical units in the weights-of-

evidence analysis because the buffer distances were selected subjectively. More-

over, as pointed out by Pan and Harris (2000), the likelihood of violation of

conditional independence increases with the number of predictor maps and

number of patterns on each map. Therefore, the multi-class maps of buffered

distances from regional lineaments, buffered distances from NW-trending linea-

ments, buffered distances from NE-trending lineaments and buffered distances

from fold axes, were converted into binary predictor maps by determining

threshold buffer distances in which spatial association between the linear fea-

tures and the mineral deposits is maximized (Agterberg et al., 1990). The

spatial association is generally measured in terms of contrast (Agterberg et al.,

1990). In the present work, however, studentized contrast, which is a measure

of certainty with which a contrast value is known (Bonham-Carter, 1994, p.

323) and therefore provides a more reliable measure of spatial association, was

used for determining a threshold buffer distance.

The weights of evidence, contrasts and studentized contrasts (C/σC) were

calculated for cumulative buffer distances. The maximum studentized con-

trasts for the regional lineaments, NW-trending lineaments, NE-trending lin-

eaments and fold axes are obtained at distances of 5.5 km, 3 km, 5 km and

1.25 km, respectively (Fig. 4.1). These values were therefore respectively

taken as threshold buffering distances for converting each of the multi-class

buffer distance map into a binary map. The binary map of buffered regional

lineaments (Fig. 4.2A), NW-trending lineaments (Fig. 4.2B), NE-trending lin-

eaments (Fig. 4.2C) and fold axes (Fig. 4.2D), were used as predictor maps of

favorable structures.

In the extended weights-of-evidence analysis, the remaining predictor maps,

namely, the multi-class maps of lithologies, stratigraphic groups and sedimen-

tary environments, and the binary map of mafic igneous rocks were used as

such without any further processing.

For comparison, a simple weights-of-evidence analysis using all of the above

predictor maps in binary form was also carried out. For this, each of the

above-mentioned multi-class categorical maps was converted into a binary pre-
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dictor map by merging patterns with contrast values having the same signs

(Table 4.1). The binary maps are shown in Figs. 4.2 and 4.3.

Training and validation points. A subset of 41 deposits, regarded as ‘dis-

covered’ and randomly extracted from the known base-metal deposits, was used

to train the models. The remaining 13 deposits were regarded as ‘undiscov-

ered’ and were subsequently used to validate the models. As compared to the

fuzzy models, a larger training subset was used for training weights-of-evidence

models in order to reduce uncertainty in the estimated posterior probabilities

because of the use of multi-class predictor maps.

4.3.2 Weights-of-evidence modeling

Computation of weights of evidence

The weights of evidence of the multi-class predictor maps were calculated using

Equations 4.17 and 4.18. Variance of the weights-of-evidence of the multi-class

predictor maps were calculated using Equations 4.20 and 4.21. Similarly, the

weights of evidence of the binary predictor maps were calculated using the

relations given in Equations 4.5 and 4.6. Variance of the weights of evidence of

the binary predictor maps were calculated using Equations 4.10 and 4.11. The

computations were performed using gridded predictor maps taking 1 km2 as

the unit cell size for the analysis. The weights of evidence and contrast values

along with the standard deviation of contrast and studentized contrast values

for each of the predictor maps are given in Table 4.1.

It should be noted that, in Equation 4.17, if p(M j
i |D) is 0, then W j+

i

becomes indeterminable because loge(0) is mathematically invalid and hence

indeterminable. In other words, the weights of evidence of a predictor pattern

are indeterminable if the pattern does not contain any known deposit.

Combining predictor maps

Combining predictor maps in weights-of-evidence modeling involves generation

of a unique conditions grid map (Bonham-Carter and Agterberg, 1990; Kemp

et al., 1999; see Chapter 1, p. 6). The attribute table associated with a unique

conditions grid (unique conditions table) has one record per unique condition

class, and additional fields containing calculated variables can be added for

each record.
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Figure 4.1: Variation of contrast (dashed line) and studentized contrast (solid line)
with distance from (A) regional lineaments (B) NW-trending lineaments (C) NE-
trending lineaments and (D) fold axes. Points of maximum studentized contrast are
marked by arrows.
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Figure 4.2: Binary predictor maps of (A) buffered distances from regional lineaments,
(B) buffered distances from NW-trending lineaments, (C) buffered distances from NE-
trending lineaments and (D) buffered distances from fold axes. Favorable areas based
on each set of geological features are shown in blue and the unfavorable areas are
shown in red.

110



Chapter 4

(A) (B)
&&

&

&

&&

&

&

&

&

&

&

&

&

&

&&&
'(('()*+,-./.01

2
345365375

375365345

879

869 869

879

8:98:9 ;;

;

;

;;

;

;

;

;

;

;

;

;

;

;;;
<==<=>?@ABCDCEF

G
HIJHKJHLJ

HLJHKJHIJ

MLN

MKN MKN

MLN

MONMON

(C) (D)
PP

P

P

PP

P

P

P

P

P

P

P

P

P

PPP
QRRQRSTUVWXYXZ[

\
]̂_]̀_]a_

]a_]̀_]̂_

bac

b̀c b̀c

bac

bdcbdc ee

e

e

ee

e

e

e

e

e

e

e

e

e

eee
fggfghijklmnmop

q
rstrutrvt

rvtrutrst

wvx

wux wux

wvx

wyxwyx

Figure 4.3: Binary predictor maps of (A) lithologies, (B) stratigraphic groups, (C)
sedimentary environments and (D) mafic igneous rocks. Favorable areas based on each
set of geological features are shown in blue and the unfavorable areas are shown in
red.
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Table 4.1: Weights of evidence, contrast and studentized contrast values for predictor
maps

Predictor map W+ σ(W+) W− σ(W−) Contrast σ(C) Student.

Pattern (C ) Contrast
Predictor map of stratigraphy

Binary Map 1.7097 0.1628 -2.8071 0.7071 4.5168 0.7256 6.2248
1 Pur-Banera 3.4652 0.2631 -0.4582 0.2001 3.9234 0.3305 11.8702
2 Rajpura-Dariba 3.8084 0.3630 -0.2187 0.1769 4.0271 0.4038 9.9739
3 Debari 1.4099 0.3341 -0.1984 0.1797 1.6083 0.3794 4.2389
4 Nathdwara 1.9245 1.0041 -0.0217 0.1602 1.9462 1.0168 1.9141
5 Udaipur 0.2523 0.4476 -0.0314 0.1691 0.2836 0.4784 0.5928
6 Sandmata

Complex
-1.4023 1.0001 0.0818 0.1602 -1.4842 1.0129 -1.4653

7 Jharol -1.8215 1.0001 0.1425 0.1602 -1.9640 1.0129 -1.9391
8 Mangalwar

Complex
—-not determinable—-

9 Unrelated to base
metals

—-not determinable—-

Predictor map of lithologies
Binary Map 3.0894 0.1665 -3.5922 1.0000 6.6816 1.0138 6.5908

1 Magnetite
quartzite

7.0037 0.6149 -0.1717 0.1769 7.1754 0.6398 11.2148

2 Dolomite 2.8047 0.2698 -0.4370 0.2042 3.2416 0.3384 9.5805
3 Calc-silicates 2.9783 0.3371 -0.2582 0.1858 3.2365 0.3849 8.4089
4 Graphitic meta-

pelites
3.0631 0.3579 -0.2265 0.1827 3.2896 0.4018 8.1871

5 Quartzite-Arkose-
Conglomerate

-1.1834 1.0002 0.0632 0.1645 -1.2466 1.0136 -1.2298

6 Calc-schist/gneiss —-not determinable—-
7 Migmatites and

gneisses
—-not determinable—-

8 Unrelated to base
metals

—-not determinable—-

Predictor map of sedimentary environments
Binary Map 1.6627 0.1586 -3.5090 1.0000 5.1717 1.0125 5.1078

1 Proximal shelf;
partly anoxic

6.9492 0.6149 -0.1581 0.1691 7.1073 0.6377 11.1449

2 Proximal shelf;
restricted; anoxic

2.8437 0.3368 -0.2350 0.1769 3.0786 0.3804 8.0929

3 Distal shelf; re-
stricted; anoxic

3.7906 0.4591 -0.1273 0.1668 3.9179 0.4885 8.0211

4 Proximal shelf;
anoxic

1.0581 0.2240 -0.4835 0.2183 1.5416 0.3128 4.9288

5 Deep sea -2.2026 1.0001 0.2246 0.1582 -2.4272 1.0125 -2.3972
6 basement Complex —-not determinable—-
7 Unrelated to base

metals
—-not determinable—-
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Table 4.1 Contd.
Predictor map W+ σ(W+) W− σ(W−) Contrast σ(C) Student.

Pattern (C ) Contrast
Predictor map of mafic igneous rocks

Binary map 1.7902 0.1803 -1.2761 0.3163 3.0663 0.3640 8.4230

Predictor map of buffered regional lineaments
Binary map 0.3699 0.1770 -1.0915 0.4473 1.4613 0.4811 3.0377

Predictor map of buffered NW-trending lineaments
Binary map 0.3354 0.1770 -0.8341 0.3781 1.1695 0.4174 2.8017

Predictor map of buffered NE-trending lineaments
Binary map 0.3801 0.1859 -0.6508 0.3163 1.0310 0.3669 2.8099

Predictor map of buffered fold axes
Binary map 0.9818 0.1929 -1.1348 0.3536 2.1166 0.4028 5.2544

Multi-class predictor maps. The three multi-class predictor maps of litholo-

gies, stratigraphic groups and sedimentary environments, and the five binary

predictor maps of mafic igneous rocks, buffered regional lineaments, buffered

NW-trending lineaments, buffered NE-trending lineaments and buffered fold

axes were combined using digital overlay, which resulted in a unique condi-

tion grid map containing 1936 unique conditions. The weights of evidence,

uncertainty due to weights of evidence (standard deviation) and uncertainty

due to missing patterns (standard deviation) were used to calculate the poste-

rior probability and studentized posterior probability for each unique condition

(Equations 4.16, 4.19, 4.22 and 4.23 and 4.24).

Binary predictor maps. The eight binary predictor maps of lithologies,

stratigraphic groups, sedimentary environments, mafic igneous rocks, buffered

regional lineaments, buffered NW-trending lineaments, buffered NE-trending

lineaments and buffered fold axes were digitally superposed resulting in a

unique conditions grid map with 724 unique conditions. The weights of ev-

idence, uncertainty due to weights of evidence (standard deviation) and un-

certainty due to missing patterns (standard deviation) were used to calculate

the posterior probability and studentized posterior probability for each unique

condition (Equations 4.8, 4.9, 4.12 and 4.13 and 4.14).
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Table 4.2: χ2 test for goodness of fit based on combining multi-class and binary
predictor maps

Posterior Probability Observed frequency Expected frequency (Oi − Ei)
2

Class of base-metal deposits of base-metal deposits Ei

(Oi) (Ei)
0-0.1 6 1.12 21.177
0.1-0.2 1 1.70 0.290
0.2-0.3 1 0.90 0.012
0.3-0.4 1 2.01 0.510
0.4-0.5 2 3.56 0.686
0.5-0.6 0 1.38 1.378
0.6-0.7 1 3.83 2.091
0.7-0.8 4 6.86 1.191
0.8-0.9 2 3.32 0.524
0.9-1.0 23 16.31 2.740

30.599

Goodness of fit

The goodness of fit between the observed distribution of base-metal deposits

and the expected distribution based on the calculated posterior probabilities

was tested using the χ2 test (Agterberg et al., 1990) and the Kolmogorov-

Smirnov test (Bonham-Carter and Agterberg, 1990).

Table 4.2 gives the details of the χ2 test. The calculated χ2 value is 30.59,

which is higher than the critical χ2 value of 16.919 at 0.05 significance level

and 9 degrees of freedom. The null hypothesis that the two distributions are

the same would be rejected at 95% confidence level. The Kolmogorov-Smirnov

goodness-of-fit test on the expected and observed cumulative distributions of

base-metal deposits also indicates that the two distributions are statistically

different (Fig. 4.4). The calculated value of Kolmogorov-Smirnov statistic is

0.2472, which is higher than the critical Kolmogorov-Smirnov statistic of 0.242

at 0.05 significance level and 30 degrees of freedom. The null hypothesis that

the two distributions are the same would be rejected at 95% confidence level.

A Brier score (Glahn and Lowry, 1972) of 0.054 for the estimated posterior

probability distribution, however, indicates a relative good-fit (see below).

As the above tests indicated a problem of conditional dependence amongst

one or more pairs of predictor maps, a pair-wise conditional independence

test was carried out on the three multi-class and five binary predictor maps,

using the method described by Bonham-Carter and Agterberg (1990). The

results, given in Table 4.3 indicate that predictor map-pair of sedimentary

environments-lithologies may be conditionally dependent. A test of condi-
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Figure 4.4: Variation of cumulative expected and observed frequencies of base-metal
deposits with posterior probability based on 3 multi-class and 5 binary predictor maps.

tional independence on the eight binary maps (Table 4.4) also indicates a

conditional dependence between the map-pairs of sedimentary environments-

lithologies and sedimentary environments-stratigraphic groups.

The predictor map of sedimentary environment was therefore rejected, and

the posterior probabilities along with the standard deviations were recalculated

using the seven conditionally-independent maps only. This reduced the num-

ber of unique conditions to 1562 in the case using the multi-class and binary

predictor maps and 504 in the case using only the binary predictor maps. The

spatial distribution of the posterior probability and studentized posterior prob-

ability calculated using two multi-class (lithologies and stratigraphy) and five

binary (same as before) predictor maps are shown in Fig. 4.5. Fig. 4.6 shows

the spatial distribution of the posterior probability and studentized posterior

probability calculated using seven binary maps (also the same as before, but

excluding the binary predictor map of sedimentary environments).

The χ2 test indicates a better fit between the observed and expected distri-

bution based on the posterior probabilities calculated using the two multi-class

and five binary maps (Table 4.5). The calculated χ2 value in this case is 16.450,

which is less than the critical χ2 value of 16.919 at 0.05 significance level and 9

degrees of freedom. The hypothesis that the two distributions are the same can-

not be rejected at 95% confidence level. The Kolmogorov-Smirnov goodness-

of-fit test also indicates that the two distributions are similar (Fig. 4.7A). The

calculated value of Kolmogorov-Smirnov statistic is 0.1629, which is less than

the critical Kolmogorov-Smirnov statistic of 0.242 at 0.05 significance level and

30 degrees of freedom. The hypothesis that the two distributions are the same
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cannot be rejected at 95% confidence level. The Brier Score estimated using

combination of the two multi-class and five binary maps improves to 0.033

from 0.054 for the posterior probabilities estimated using the three multi-class

and five binary maps, which indicates an improvement in goodness of fit after

rejecting the map of sedimentary environments.

Table 4.6 shows the results of χ2 test on the observed distribution and ex-

pected distribution of the base-metal deposits based on posterior probabilities

calculated using the seven binary maps. The calculated χ2 value in this case is

5.491, which is less than the critical χ2 value of 15.507 at 0.05 significance level

and 8 degrees of freedom. The hypothesis that the two distributions are the

same cannot be rejected at 95% confidence level. The Kolmogorov-Smirnov test

on the expected and observed cumulative distributions of base-metal deposits

also gives a similar result (Fig. 4.7B). The Kolmogorov-Smirnov statistic ob-

tained in this case is 0.1907, which is less than the critical Kolmogorov-Smirnov

statistic of 0.264 at 0.05 significance level and 22 degrees of freedom. The Brier

Score of the posterior probabilities estimated using the seven binary predictor

maps is 0.034.

However, the omnibus test of conditional independence (Bonham-Carter,

1994) gives a value of 0.12 for the posterior probabilities estimated using the

multi-class and the binary predictor maps and a value of 0.14 for the poste-

rior probabilities calculated using only the binary maps, which still indicate

conditional dependency amongst some of the input predictor maps. Similarly,

the new omnibus test (NOT) for conditional independence (Agterberg and

Cheng, 2002) gives a value of 14.32 for posterior probabilities calculated using

the multi-class and binary predictor maps and 10.68 for posterior probabilities

calculated using only the binary predictor maps. The results of NOT indi-

cate that, in both the cases, the null hypothesis that the observed distribution

and the estimated distribution of base-metal deposits are the same is rejected

(p<0.0001) and, therefore, there may be conditional dependence amongst some

of the input predictor maps.
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Table 4.3: Pair-wise χ2 test for conditional independence of multi-class and binary predictor maps

Mafic Buffered Buffered Buffered
Predictor Lithologies Sedimentary igneous regional NW NE Buffered
Maps environments rocks lineaments lineaments lineaments fold axes
Stratigraphic 49.02(56) 57.66(48) 6.36(8) 0.74(8) 0.96(8) 8.89(8) 1.91(8)
groups 74.468 65.171 15.507 15.507 15.507 15.507 15.507
Lithologies 68.42∗(42) 3.01(7) 0.85(7) 6.44(7) 7.28(7) 1.19(7)

58.124 14.067 14.067 14.067 14.067 14.067
Sedimentary 6.36(6) 0.11(6) 2.53(6) 7.09(6) 1.49(6)
environments 12.529 12.52 12.52 12.52 12.52
Mafic 00.46(1) 0.01(1) 0.07(1) 0.03(1)
igneous rocks 3.84 3.84 3.84 3.84
Buffered regional 0.002(1) 0.03(1) 0.38(1)
lineaments 3.84 3.84 3.84
Buffered 1.53(1) 3.83(1)
NW lineaments 3.84 3.84
Buffered 0.32(1)
NE lineaments 3.84
Bold and underlined figures are calculated and tabulated χ2 values (at 0.05% significance level), respectively. Figures in
parentheses are degrees of freedom.
∗Null hypothesis of conditional independence is rejected at 95% confidence level.
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Table 4.4: Pair-wise χ2 test for conditional independence of only binary predictor maps

Mafic Buffered Buffered Buffered
Predictor Lithologies Sedimentary igneous regional NW NE Buffered
Maps environments rocks lineaments lineaments lineaments fold axes
Stratigraphic 4.12∗ 4.37∗ 2.81 0.005 0.22 0.35 0.31
groups
Lithologies 8.99∗∗ 0.30 0.003 0.16 0.38 0.28
Sedimentary 0.36 0.005 0.22 0.35 0.31
environments
Mafic 00.46 0.01 0.07 0.03
igneous rocks
Buffered regional 0.002 0.03 0.38
lineaments
Buffered 1.53 3.83
NW lineaments
Buffered 0.32
NE lineaments

Tabulated χ2 values at 0.05% significance level for 1 degree of freedom is 3.84.
∗Null hypothesis of conditional independence is rejected at 95% confidence level, but not at 98% at confidence level
∗∗Null hypothesis of conditional independence is rejected at both 95% and 98% confidence levels
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Table 4.5: χ2 test for goodness of fit based on combining conditionally-
independent multi-class and binary predictor maps

Posterior Probability Observed frequency Expected frequency (Oi − Ei)
2

Class of base-metal deposits of base-metal deposits Ei

(Oi) (Ei)
0-0.1 7 9.63 0.716
0.1-0.2 3 2.93 0.002
0.2-0.3 2 1.21 0.520
0.3-0.4 5 4.03 0.233
0.4-0.5 1 3.03 1.361
0.5-0.6 4 2.43 1.020
0.6-0.7 0 2.76 2.765
0.7-0.8 4 2.25 1.350
0.8-0.9 1 5.06 3.259
0.9-1.0 14 7.67 5.224

16.450

Table 4.6: χ2 test for goodness of fit based on combining conditionally-
independent binary predictor maps

Posterior Probability Observed frequency Expected frequency (Oi − Ei)
2

Class of base-metal deposits of base-metal deposits Ei

(Oi) (Ei)
0-0.1 9 12.88 1.169
0.1-0.2 3 2.43 0.135
0.2-0.3 5 6.52 0.353
0.3-0.4 1 1.96 0.472
0.4-0.5 3 6.94 2.241
0.5-0.6 0 0.05 0.047
0.6-0.7 2 3.75 0.821
0.7-0.8 7 8.46 0.252
0.8-0.9 11 10.89 0.001

5.491

4.3.3 Favorability maps

It is cumbersome to interpret the posterior probability maps shown in Figs. 4.5A

and 4.6A in terms of delineating the areas favorable for base-metal mineraliza-

tion, as they shows posterior probability of base-metal deposits in a continuous

scale from the least probable (posterior probability=0) to the most probable

(posterior probability≈1). Thresholding the posterior probabilities facilitates

delineation of potential areas. To determine threshold posterior probabilities,

cumulative posterior probability values (rearranged from highest to lowest)

were plotted against corresponding percentage of cumulative area (Fig. 4.8).

The percentage of cumulative area increases as the cumulative (of decreasing)
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Figure 4.5: Continuous-scale maps derived by combining conditionally-independent
multi-class and binary predictor maps: (A) posterior probability, which varies from
0.00 (white) to 0.99 (black) and (B) studentized posterior probability, which varies
from 0.00 (white) to >5.84 (black).

posterior probability increases, but initially the increase in cumulative poste-

rior probability is much higher than the corresponding increase in cumulative

area, whereas later the cumulative area increases without any significant in-

crease in the cumulative posterior probability. The curves for the posterior

probability maps derived by using combination of the multi-class and binary

maps (Fig. 4.5A) and by using only the binary maps (4.6A) are shown in

Fig. 4.8.

Two inflection points can be identified in each curve at which the slope of

the curve changes from steep to moderate and from moderate to flat. The part

of curve below the lower inflection point represents (a) a much higher increase

in cumulative posterior probability compared to increase in cumulative area

and (b) high posterior probabilities in a few percentage of the study area. The

part of curve between the lower and the upper inflection points represents (a)

an almost equal increase in cumulative posterior probability and cumulative

area and (b) moderate posterior probabilities in a few percentage of the study

area. The part of the curve above the higher inflection point represents (a) a

much lower (almost nil) increase in cumulative posterior probability compared
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Figure 4.6: Continuous-scale maps derived by combining conditionally-independent
binary predictor maps: (A) posterior probability, which varies from 0.00 (white) to
0.87 (black) and (B) studentized posterior probability, which varies from 0.21 (white)
to >5.61 (black).

to increase in cumulative area and (b) low posterior probabilities in a very high

percentage of the study area. The two inflection points on each curve were used

as threshold values to reclassify the posterior probability maps into favorabil-

ity maps showing high favorability, moderate favorability and low favorability

zones. High favorability zones are those with posterior probability correspond-

ing to the part of curve below the lower inflection point. Moderate favorability

zones are those with posterior probability corresponding to the part of curve

between the lower and the upper inflection points. Low favorability zones are

those with posterior probability corresponding to the part of curve above the

higher inflection point.

The threshold probabilities corresponding to the lower and upper inflec-

tion points on the curve in Fig. 8A are 0.0622 and 0.0001, respectively. The

threshold probabilities corresponding to the lower and upper inflection points

on the curve in Fig. 8B are 0.0175 and 0.0004, respectively. The resulting fa-

vorability maps are shown in Figs. 4.9 and 4.10. Fig. 4.11 shows the posterior

probabilities as functions of percentage of cumulative area.

Fig. 4.11 indicates that the two favorability maps (Figs. 4.9 and 4.10) are
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Figure 4.7: Variation of cumulative expected and observed frequencies of base-metal
deposits with posterior probability based on using (A) multi-class and binary predictor
maps and (B) only binary predictor maps.

very similar in respect of the distribution of the known base-metal deposits

in the high favorability and moderate favorability zones. In the case of the

curve shown in Fig. 4.11A, one deposit lies close to the threshold that defines

boundary between the moderate favorability and low favorability zones, four

in the middle portion of the part of the curve that corresponds to the moderate

favorability zones, while the rest are either close to the threshold that defines

the boundary between moderate favorability and high favorability zones or in

the upper part of the curve that corresponds to the high favorability zones.

In the case of the curve shown in Fig. 4.11B, two deposits lie at the threshold

that defines boundary between the moderate favorability and low favorability

zones, one in the middle portion of the part of the curve that corresponds to

the moderate favorability zones, while the rest are either close to the threshold

that defines boundary between the moderate favorability and high favorability

zones or in the upper part of the curve that corresponds to the high favorability

zones.

The two favorability maps (Fig. 4.9 and 4.10) are also very similar in terms

of the areal extents of the high favorability zones, moderate favorability zones

and low favorability zones. Based on combination of the multi-class and binary
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Figure 4.8: Variation of cumulative posterior probability with cumulative area in
posterior probability maps shown in (A) Fig. 4.5A and (B) Fig. 4.6A. Inflection points
(marked by arrows) correspond to threshold posterior probability values (figures in
parenthesis) used in generating favorability maps.

predictor maps, the high favorability zones, the moderate favorability zones

and the low favorability zones occupy 3.1%, 4.2% and 92.6% of the study area,

respectively. Based on only the binary predictor maps, the high favorability,

the moderate favorability and the low favorability zones occupy 4.0%, 3.6%

and 92.4% of the study area, respectively.

The major difference between the two favorability maps is in the distribu-

tion of the known deposits in the low favorability zones. There are no deposits

in the low favorability zones in the favorability map derived by combining

multi-class and binary predictor maps (Figs. 4.9 and 4.11A), while there are

two deposits in the low favorability zones in favorability map derived by using

only the binary predictor maps (Figs. 4.10 and 4.11B).

Validation of favorability maps

The favorability maps were validated by overlaying the training subset and

the validation subset of the known base-metal deposits on the favorability

maps (Figs. 4.9 and 4.10) and by plotting on posterior probability curves the

position of these deposits (Fig. 4.11). Table 4.7 shows that in the favorabil-

ity map derived from combining the two multi-class and five binary predictor
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Figure 4.9: Favorability map generated by reclassification of posterior probability
map shown in Fig. 4.5A.
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Figure 4.10: Favorability map generated by reclassification of posterior probability
map shown in Fig. 4.6A.
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(A) (B)

Figure 4.11: Variation of posterior probability with cumulative percent of study area
based on (A) combining multi-class and binary predictor maps and (B) combining
only binary predictor maps. Hollow triangles, filled circles and filled rectangles are
posterior probabilities of training base-metal deposits, validation base-metal deposits
and threshold points, respectively.

maps (Figs. 4.9; and 4.11A), the high favorability zones contain approximately

77% and 85% of the validation and training deposits, respectively, while the

moderate favorability zone contains about 23% and 15% of the validation and

training deposits, respectively. Furthermore, Table 4.7 shows that in the fa-

vorability map derived from using only the binary predictor maps (Figs. 4.10

and 4.11B), the high favorability zones contain approximately 77% and 88%

of the validation and training deposits, respectively; the moderate favorability

zones contain 15% and 10% of the validation and training deposits, respectively

and the low favorability zones contain about 8% and 2% of the validation and

training deposits.

4.4 Discussion

The graphical method adopted in the above applications for the classification of

posterior probability maps into high favorability, moderate favorability and low

favorability zones is based on the assumption that mineral-bearing areas occupy
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Table 4.7: Validation of favorability maps

Favorability map Favorability Percent of Percent of Percent of
zone study area validation training

deposits deposits
Based on combination of High favorability 3.12 76.9 85.4
multi-class and binary Moderate favorability 4.22 23.1 14.6
evidential maps Low favorability 92.66 nil nil
Based on only binary High favorability 3.99 76.9 87.9
evidential maps Moderate favorability 3.58 15.4 9.7

Low favorability 92.43 7.7 2.4

a very small proportion of the total area of a metallogenic province (Boleneus

et al., 2001). Consequently, in the favorability maps shown in Figs. 4.9 and

4.10, the high favorability zones are limited to a very small percentage of the

study area (less than 4%), while the low favorability zones occupy a very large

percentage (more than 90%). The transitional zones between the high favora-

bility zones and the low favorability zones comprise the moderate favorability

zones, which also occupy a very small part of the study area (less than 4%).

Boleneus et al. (2001) obtained similar percentage values for high favorability,

moderate favorability and low favorability regions for epithermal gold deposits

in northeast Washington State, USA. The threshold posterior probability that

defines the high favorability zones is approximately ten times higher than the

prior probability of the training base-metal deposits in the study area, while

the threshold posterior probability that defines the low favorability zones is

approximately ten times lower than the prior probability.

In the plot of Fig. 4.11A, the Rampura-Agucha deposit lies in the middle

part of the curve pertaining to the moderate favorability zones in the favor-

ability map derived by combining multi-class and binary predictor maps. In

the plot of Fig. 4.11B, the Rampura-Agucha deposit lies at the threshold that

defines the moderate favorability and low favorability zones in the favorability

map derived by using only the binary predictor maps. As discussed in Chapter

3, the deposit has several characteristics that make it a difficult deposit to

predict. However, the use of multi-class predictor maps gives a higher poste-

rior probability for the Rampura-Agucha deposit as compared to the posterior

probability calculated using the same predictor maps, but reclassified into bi-

nary form.

An analysis of the studentized posterior probabilities indicates that the

certainty of posterior probabilities increases exponentially with increasing pos-

terior probabilities (Fig. 4.12). This trend is common to both the models
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(Figs. 4.12A and Fig. 4.12B). The high favorability zones in both models com-

prise highly robust posterior probability values (posterior probability/σ > 1.5).

Significantly, the studentized posterior probabilities in the high favorability

zones are not adversely affected by the use of multi-class predictor maps. In

the high favorability zones, the certainty of the posterior probabilities esti-

mated by combining multi-class and binary predictor maps is higher than that

of the posterior probabilities estimated by using only binary predictor maps

(Fig. 4.13). The moderate favorability zones are characterized by studentized

posterior probabilities ranging from 1.0 to 2.0, which indicate transitional cer-

tainty of the posterior probability values. The low favorability zones in both

the models comprise highly uncertain posterior probability values (studentized

posterior probabilities < 1.0). Occurrence of a negligible number of training

points explains the high amount of uncertainty of posterior probabilities in the

low favorability zones (Agterberg et al., 1990).

After the rejection of the conditionally-dependent map of sedimentary en-

vironments, the expected distribution of the base-metal deposits based on the

estimated posterior probabilities shows a better fit with the observed distri-

bution as indicated by the χ2 and the Kolmogorov-Smirnov tests. The Brier

score also indicates an improvement of goodness of fit after the rejection of the

predictor map of sedimentary environment. However, the results of the om-

nibus and new omnibus tests for conditional independence on the estimated

posterior probability values indicate that the possibility of conditional depen-

dence amongst some of the input predictor maps cannot be ruled out in either

case. Nevertheless, as the results of all the above-mentioned tests are similar

for the posterior probabilities estimated using combination of the multi-class

and binary predictor maps and only the binary predictor maps, it can be sur-

mised that the conditional dependence is not significantly enhanced by the use

of multi-class predictor maps in the present case.

In view of the suspected conditional dependence amongst the input pre-

dictor maps and the large amount of uncertainty in the estimated posterior

probability values in a large part of the study area, the estimated posterior

probabilities should not be interpreted in an absolute sense. The classification

of the study area into the high favorability, moderate favorability and the low

favorability zones, therefore, reflects only the relative favorability of various

tracts in the study area, and should be interpreted as such. As pointed out

by Pan and Harris (2000), the bias effect of the conditional dependence can

be considerably mitigated by interpreting the posterior probabilities in rela-
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tive terms. Alternatively, fuzzy operators like the fuzzy OR or the fuzzy AND

can be used to combine the weights of evidence of suspected conditionally-

dependent predictor maps, as suggested by Agterberg (1992).

4.5 Conclusions

The application of an extended weights-of-evidence model using multi-class

predictor maps to the study area results in demarcation of high favorability

zones occupying less than 4% of the study area, which predict at least 83% of

the known base-metal deposits; moderate favorability zones, which occupy less

than 4% of the study area and contain 17% of the known base-metal deposits;

and low favorability zones that occupy 92% of the study area and do not

contain any known base-metal deposit. The application of a simple weights-of-

evidence model using only binary predictor maps to the study area results in

demarcation of the high favorability, moderate favorability and low favorability

zones that are similar in terms of areal extension to those demarcated by the

extended weights-of-evidence model. However, in the case of the simple weights

of evidence model, the low favorability zones contain approximately 4% of the

known base-metal deposits. Based on a comparison of the two applications,

the following conclusions can be drawn.

• The extended weights-of-evidence model derived using multi-class and bi-

nary predictor maps has a slightly better prediction rate than the simple

weights-of-evidence derived using only binary predictor maps.

• The use of multi-class predictor maps in weights-of-evidence modeling

results in enhanced and finely-differentiated posterior probabilities.

• The statistical properties of the weights of evidence, the contrasts and

the posterior probabilities are not significantly degraded by the use of

multi-class predictor maps in the weights-of-evidence modeling.

• In practice, it may not be always possible to rule out conditional depen-

dence amongst two or more of the input predictor maps. As a result the

estimated posterior probabilities may be artificially deflated or inflated.

In such cases, these values can be used in relative terms to rank areas as

highly favorable, moderately favorable or less favorable with respect to

the target mineralization.
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(B)

(A)

Figure 4.12: Variation of studentized posterior probability with posterior probability
based on (A) combining multi-class and binary predictor maps and (B) combining
only binary predictor maps.
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Figure 4.13: Favorability map (Fig. 4.9) showing high favorability, moderate favora-
bility and low favorability zones in which posterior probabilities based on combining
multi-class and binary predictor maps have higher certainty than posterior probabili-
ties based only on binary predictor maps. Zones in which posterior probabilities based
on combining multi-class and binary predictor maps have less certainty than posterior
probabilities based only on binary predictor maps are masked out (in white).

The extended weight-of-evidence offers a simple and intuitive approach to

mineral potential mapping based on multi-class predictor maps. However, the

model may become less robust when applied to poorly-explored metallogenic

provinces, which contain none or very few known mineral deposits. The prob-

lem can be addressed by extrapolating the weights of evidence for predictor

maps that contain none or very few training deposits from weights-of-evidence

models of geologically-similar, well-explored metallogenic provinces elsewhere

in the world. It is also possible to assign ‘expert weights of evidence’ to such

predictor maps based on available metallogenetic information. The next chap-

ter describes a consistent method of using expert knowledge in a weights-of-

evidence model by applying the theory of fuzzy sets.
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Hybrid Fuzzy

Weights-of-Evidence Model

This chapter is based on a paper titled “A Hybrid Fuzzy Weights of Evidence

Model for Mineral Potential Mapping”(Porwal et al., 2006c). The model com-

bines knowledge-based fuzzy membership values with data-based conditional

probabilities for mineral potential mapping.

5.1 Introduction

Uncertainty in mineral potential mapping is generally attributed to insuffi-

cient data on predictor patterns or mineral deposits. This type of uncertainty

(stochastic uncertainty, cf. Zimmerman, 1991), which arises from inadequate

information, is dealt with appropriately by using the theory of probability

under the assumption that model parameters and variables are well defined.

Weights-of-evidence models (Agterberg, 1989; Agterberg et al., 1990; Bonham-

Carter and Agterberg, 1990), which are based on the Bayesian theory of condi-

tional probability, offer methods of quantifying stochastic uncertainty in terms

of variance of posterior probability. Owing to their intuitive approach and easy

implementation, these models have been used to map potential of a variety of

mineral deposit types (see Chapter 4 for references).

However, the spatial localization of a mineral deposit is seldom determin-

istic and therefore it is difficult to define all model variables that describe the

phenomenon completely and adequately. Moreover, information on some of

the variables may be derived from a subjective interpretation of primary data

(for example, remote sensing or geophysical data), a process that is essen-
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tially based on heuristics and expert-knowledge. This gives rise to systemic

uncertainty, which is non-statistical and intrinsically associated with modeling

procedures. Unlike stochastic uncertainty, it is not data-dependent and hence

cannot be addressed using probabilistic approaches. Systemic uncertainty is

best treated using the theory of fuzzy sets and fuzzy mathematics (Zadeh,

1965; Zimmerman, 1991). Fuzzy models have been widely used for dealing

with systemic uncertainty in mineral potential mapping by applying appropri-

ate fuzzy membership functions and inference engines (Porwal et al., 2003a).

Cheng and Agterberg (1999) proposed a new fuzzy weights-of-evidence ap-

proach, which generalizes the classic weights-of-evidence approach by incorpo-

rating fuzzy mathematics in the modeling procedure. The method involves (a)

creating a fuzzy set of ‘favorable indicators of the target mineral deposit-type’

for each predictor map, (b) defining a knowledge-based or data-based mem-

bership function to calculate a fuzzy membership value for each pattern on a

predictor map in a corresponding fuzzy set, (c) calculating a fuzzy weight of

evidence for each pattern on a predictor map, (d) combining the fuzzy weights

of evidence to calculate, for each unique combination of predictor patterns,

a fuzzy posterior probability and the variance of the fuzzy posterior proba-

bility due to missing patterns, mis-assigned patterns and fuzzy membership

function, and (e) mapping the fuzzy posterior probabilities to generate a fuzzy

posterior probability map. The fuzzy posterior probability map can be sub-

sequently reclassified to generate a binary or ternary favorability map. The

fuzzy weights-of-evidence approach is particularly suitable for provinces with

meagre exploration data or very few known mineral deposits.

The fuzzy weights-of-evidence approach can be either (Cheng and Agter-

berg, 1999) (a) purely data-driven, when a data-based function is used for cal-

culating fuzzy membership values or (b) hybrid knowledge-cum-data-driven,

when a knowledge-based function is used for calculating fuzzy membership

values. In both the forms, multi-class predictor maps can be used without

generalization and reclassification into binary predictor maps. Cheng and

Agterberg (1999) applied the fuzzy weights-of-evidence method in a purely

data-driven form to map gold deposit potential in Meguma Terrane, Nova Sco-

tia, Canada. Here, a hybrid knowledge-cum-data-driven weights-of-evidence

approach is demonstrated.
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5.2 Hybrid Fuzzy Weights-of-Evidence Model

If X is a superset of n multi-class conditionally independent predictor maps

Xi (i=1 to n), each containing m patterns denoted generically by xij (j=1 to

m), then the strength of xij , the jth pattern on the ith predictor map Xi, as

an indicator of a target mineral deposit-type D can be estimated in terms of

class score (csij), which is defined as follows (Porwal et al., 2003a):

csij = wi × wij (∀ xij ∈ Xi), (5.1)

where wi is the map weight of the ith predictor map and wij is the class weight

of the jth pattern on the ith predictor map. The procedure for assigning class

weights and map weights is described by Porwal et al., (2003a) and given in

Chapter 3 (p. 69).

Based on class scores, a set of n fuzzy sets Ãi (i=1 to n) in X , containing

‘favorable indicators of target mineral deposit-type,’ can be defined as follows

(Porwal et al., 2003a):

Ãi =
{(

xij , µÃi
(xij)

)

∀xij ∈ Xi

}

, (5.2)

where µÃi
is the membership function for estimating the membership value of

xij in the fuzzy set Ã1. It is defined as follows (Porwal et al., 2003a):

µÃi
(xij) =

1

1 + e−a(csij−b)
(∀xij ∈ Xi), (5.3)

where a and b are the parameters that, respectively, define the slope and the

inflexion point of the Gaussian function.

Cheng and Agterberg (1999) proposed the following fuzzy weights-of-evidence

model for deriving fuzzy posterior probability of the deposit type D, given n

predictor maps Xi and n corresponding fuzzy sets as defined above in Equa-

tion 5.2:

logeO[D|X1, X2...Xn] = logeO[D] +
n

∑

i=1

m
∑

j=1

Wµ
Ãi

(xij), (5.4)

where Wµ
Ãi

(xij) is the fuzzy weight of evidence of the jth pattern on the ith

predictor map, and is calculated using the following relation (Cheng and Agter-
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berg, 1999):

Wµ
Ãi(xij)

= loge

µÃi
(xij)P [Ai1|D] + {1− µÃi

(xij)}P [Ai2|D]

µÃi
(xij)P [Ai1|D̄] + {1− µÃi

(xij)}P [Ai2|D̄]
, (5.5)

where P [Ai1|D] and P [Ai2|D] are the conditional probabilities of two crisp sets

Ai1 and Ai2, respectively, given the presence of a deposit, and P [Ai1|D̄] and

P [Ai2|D̄] are the conditional probabilities of the two crisp sets Ai1 and Ai2,

respectively, given the absence of a deposit. The two crisp sets Ai1 and Ai2

(i=1 to n) in the fuzzy sets Ãi are defined as follows (Cheng and Agterberg,

1999):

Ai1 = {xij |µÃi
(xij) = MAX[µÃi

(xij)]∀xij ∈ Xi},

Ai2 = {xj |µÃi
(xij) = MIN [µÃi

(xij)]∀xij ∈ Xi}. (5.6)

Fuzzy posterior probability can then be calculated as (Cheng and Agterberg,

1999):

P [D|X1, X2...Xn] =
elogeO[D|X1,X2...Xn]

1 + elogeO[D|X1,X2...Xn]
. (5.7)

The variance of fuzzy posterior probability due to the jth missing pattern xkj

on the kth predictor map Xk is estimated as follows (Cheng and Agterberg,
1999):

σ2
xkj

(P [D|X1,X2...Xn]) =

{P [D|xkj ]− P [D]}2 P [xkj ] + {P [D|x̄kj ]− P [D]}2 P [x̄kj ], (5.8)

where x̄kj denotes the absence of the predictor pattern xkj . For a predictor

map Xl, the variance due to the mis-assigned pattern from xlj to x̄lj or vice

versa is estimated as follows (Cheng and Agterberg, 1999):

σ2
xlj

(P [D|X1, X2...Xn]) = {P [D|x̄lj ]− P [D|xlj ]}
2 P [xlj ],

σ2
x̄lj

(P [D|X1, X2...Xn]) = {P [D|xlj ]− P [D|x̄lj ]}
2 P [x̄lj ], (5.9)

where x̄lj denotes the absence of the predictor pattern xlj . The variance due
to the fuzzy membership function, µÃi

, is expressed as (Cheng and Agterberg,
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1999):

σ2
µÃi

(P [D|X1,X2...Xn]) =

2µÃi
(1− µÃi

)

P [µÃi
]

P [Xi]P [X̄i]
{

σ2
Xi

(P [D|X1,X2...Xn]) + σ2
X̄i

(P [D|X1,X2...Xn]
}

.

(5.10)

5.3 Application to Base-Metal Potential Mapping in

Aravalli Province

5.3.1 Data preprocessing

Like the classic weights-of-evidence approach, the fuzzy weights-of-evidence ap-

proach also uses Bayes’ rule under an assumption of conditional independence

of input predictor maps for estimating fuzzy posterior probabilities. Because

the results of various tests for goodness of fit between the observed and ex-

pected distribution of base-metal deposits in the study area and the map-pair

wise χ2 test for conditional independence, which have been described in Chap-

ter 4 (pp. 114-118), indicate conditional dependence between the map pairs of

(a) sedimentary environments and stratigraphic groups and (b) sedimentary

environments and lithologies, it was decided not to include the map of sedimen-

tary environments in the fuzzy weights-of-evidence analysis. However, because

a fuzzy weights-of-evidence model uses both expert knowledge and exploration

datasets for parameter estimation, it can be conveniently used with multi-class

predictor maps, as discussed in Section 5.4 below. It was therefore decided to

use all the remaining predictor maps, including the maps of buffer distances,

in their original multi-class form.

Training and validation points. The fuzzy weights-of-evidence approach

combines expert knowledge with empirical data and, hence, it can be effectively

implemented in modeling situations where there are only a few training points

available. Therefore, it was decided to use the same sets of training points and

validation points that were used in fuzzy modeling (Chapter 3, p. 75).
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5.3.2 Fuzzy weights-of-evidence modeling

Computation of fuzzy weights of evidence

For each pattern on a multi-class predictor map, the computation of a fuzzy

weight of evidence requires (Equation 5.5) (a) a fuzzy membership value and

(b) the conditional probabilities (given the presence and the absence of a base-

metal deposit) of the patterns with the highest and lowest fuzzy membership

values. Fuzzy membership values of the predictor maps were calculated using

the membership function defined in Equation 5.3. The values of the param-

eters b and a of the function were taken as 50 and 0.1, respectively, which

yield a curve that is symmetrical about the inflexion point. The class scores

were calculated from class weights and map weights (Equation 5.1), which were

assigned subjectively using the ranking procedure described by Porwal et al.

(2003a) and given in Chapter 3 (p. 69). The detailed rationale for the ranking

of the predictor maps and individual patterns has been elaborated by Porwal

et al. (2003a) and can also be found in Chapter 3 (pp. 75-79).

The conditional probabilities of each individual pattern on a predictor map,

given the presence and absence of a base-metal deposit, were also calculated.

The class weights, map weights, class scores, knowledge-driven fuzzy member-

ship values and conditional probabilities for the predictor maps are given in

Table 5.1. Based on the fuzzy membership values and the conditional proba-

bilities, fuzzy weights of evidence were calculated using Equations 5.5 and 5.6.

The computations were performed using the gridded predictor maps taking

1 km2 as the unit cell size. The fuzzy weights of evidence are also given in

Table 5.1.

Combining predictor maps

The gridded multi-class predictor maps were combined using digital overlay,

which resulted in a unique condition grid map containing 20258 unique condi-

tions. The fuzzy posterior probability for each unique condition was estimated

from the fuzzy weights of evidence and the prior probability of base-metal de-

posits (Equations 5.4 and 5.5). Similarly, the variance of fuzzy posterior prob-

ability due to missing patterns, mis-assigned patterns and fuzzy membership

function were calculated using Equations 5.8, 5.9 and 5.10, respectively. The

spatial distribution of fuzzy posterior probabilities is shown in Fig. 5.1. The

spatial distributions of variance due to fuzzy membership function and vari-
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Table 5.1: Class scores, fuzzy membership values and fuzzy weights of evidence

Predictor map Class Class Fuzzy Conditional Conditional Fuzzy
Pattern weight score value probability probability WofE
(Xij) (wj) (xij) (µ

Ãij
) P [Xi|D] P [X|D̄]

Predictor map of lithologies (Map weight - 10)
1 Dolomite/dolomitic-marble 10 100 0.99 0.1739 0.022 1.8265
2 Calc-silicates 9 90 0.98 0.3043 0.0118 1.6288
3 Graphitic meta-pelites 8 80 0.95 0.3043 0.0096 1.1837
4 Magnetite quartzite 7 70 0.88 0.2174 0.0002 0.5244
5 Calc-schist/gneiss 5 50 0.5 0 0.0467 -1.264
6 Qzite-Arkose-Conglomerate 4 40 0.27 0 0.0839 -2.236
7 Migmatites; gneisses 2 20 0.05 0 0.2092 -4.174
8 Unrelated to base metals 1 10 0.02 0 0.5935 -5.12
Predictor map of stratigraphic groups (Map weight - 9)
1 Rajpura-Dariba group 10 90 0.98 0.2609 0.0044 3.0684
2 Pur-Banera group 9 81 0.96 0.5217 0.0117 2.5593
3 Debari group 8 72 0.09 0.087 0.0545 1.7249
4 Nathdwara group 7 63 0.79 0 0.0036 0.9093
5 Udaipur group 5 45 0.38 0.087 0.0961 -0.87
6 Jharol group 4 36 0.20 0 0.1528 -1.762
7 Sandmata Complex 3 27 0.09 0.0435 0.1005 -2.688
8 Mangalwar Complex 2 18 0.04 0 0.1925 -3.551
9 Unrelated to base metals 1 9 0.02 0 0.3738 -4.265
Predictor map of mafic igneous rocks (Map weight - 8)
1 Basic metavolcanic rocks 10 80 0.95 0.7391 0.1265 1.4737
2 Unrelated to base metals 1 8 0.01 0.2609 0.8731 -1.181
Predictor map of buffered distances from regional lineaments (Map weight - 8)
1 0-2 Km 10 80 0.9526 0.2609 0.1897 0.2455
2 2-4 Km 8 64 0.8022 0.4348 0.1633 0.008
3 4-6 Km 6 48 0.4502 0.2174 0.1336 -0.622
4 6-8 Km 4 32 0.1419 0.0435 0.1066 -1.41
5 8-10 Km 2 16 0.0323 0 0.083 -1.843
6 >10 Km 1 8 0.0148 0.0435 0.3235 -1.929
Predictor map of buffered distances from NW-trending lineaments (Map weight - 6)
1 0-1.5 Km 10 60 0.7311 0.4783 0.243 0.3142
2 1.5-3 Km 8 48 0.4502 0.2609 0.1822 -0.178
3 3-4.5 Km 6 36 0.1978 0.1739 0.1169 -0.858
4 4.5-6 km 4 24 0.0691 0 0.0793 -1.456
5 6-7.5 Km 2 12 0.0219 0.0435 0.0574 -1.795
6 >7.5 Km 1 6 0.0121 0.0435 0.3209 -1.881
Predictor map of buffered distances from NE-trending lineaments (Map weight - 6)
1 0-1.5 Km 10 60 0.7311 0.3913 0.189 0.3257
2 1.5-3 Km 8 48 0.4502 0.2609 0.1678 -0.147
3 3-4.5 Km 6 36 0.1978 0.1304 0.136 -0.684
4 4.5-6 Km 4 24 0.0691 0.087 0.1056 -1.049
5 6-7.5 Km 2 12 0.0219 0.0435 0.0841 -1.211
6 >7.5 Km 1 6 0.0121 0.087 0.3171 -1.247
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Table 5.1 contd.
Predictor map Class Class Fuzzy Conditional Conditional Fuzzy
Pattern weight score value probability probability WofE
(Xij) (wj) (xij) (µ

Ãij
) P [Xi|D] P [X|D̄]

Predictor map of buffered distances from fold axes (Map weight - 7)
1 0-0.5 Km 10 70 0.8808 0.6957 0.1128 1.7741
2 0.5-1 Km 9 63 0.7858 0.1739 0.1026 1.7303
3 1-1.5 Km 8 56 0.6457 0.0435 0.0908 1.6476
4 1.5-2 Km 7 49 0.475 0 0.0787 1.4992
5 2-2.5 Km 6 42 0.31 0 0.0699 1.2542
6 2.5-3 Km 5 35 0.1824 0 0.061 0.8911
7 3-3.5 Km 4 28 0.0998 0 0.0523 0.4135
8 3.5-4 Km 3 21 0.0522 0 0.0466 -0.154
9 4-4.5 Km 2 14 0.0266 0 0.0415 -0.783
10 4.5-5 Km 1 7 0.0134 0 0.0385 -1.444
11 >5 Km 1 7 0.0134 0.087 0.3051 -1.444

ance due to missing patterns and mis-assigned patterns are shown in Fig. 5.2.

A comparison of Figs. 5.2A and Fig. 5.2B shows that, in all parts of the study

area, the uncertainty in fuzzy posterior probabilities due to fuzzy membership

function is much smaller than the uncertainty in fuzzy posterior probabilities

due to missing patterns and mis-assigned patterns.

5.3.3 Favorability maps

It is cumbersome to interpret the fuzzy posterior probability map (Fig. 5.1)

for selecting target areas for base-metal exploration, as it shows the fuzzy pos-

terior probability of base-metal deposits in a continuous scale from the least

probable (fuzzy posterior probability ∼0) to the most probable (fuzzy poste-

rior probability ∼0.5). Moreover, a fuzzy posterior probability should not be

interpreted in the absolute sense of probability per se (see below). The fuzzy

posterior probability map (Fig. 5.1) was therefore reclassified into a ternary

favorability map showing high favorability, moderate favorability and low fa-

vorability zones for base-metal deposits in the study area. The threshold fuzzy

posterior probability values for the high favorability and low favorability zones

were determined using the graphical method used by Porwal et al. (2003b)

and described in Chapter 4 (pp. 119-??). The fuzzy posterior probabilities

corresponding to the lower and the upper inflection points (0.0016 and 0.0002,

respectively) in the plot of the cumulative fuzzy posterior probability values

(rearranged in a descending order) against the percentage of cumulative area

(Fig. 5.3) were taken as the threshold values for the reclassification of the fuzzy

posterior probability map into a ternary favorability map (Fig. 5.4).
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Figure 5.1: Continuous-scale map showing fuzzy posterior probability, which varies
from 0.00 (white) to 0.48 (black).

Validation of favorability map

The favorability map (Fig. 5.4) was validated by overlaying the deposit train-

ing points and deposit validation points and by plotting the position of these

deposits on a fuzzy posterior probability values versus percentage of cumulative

area curve (Fig. 5.5). Table 5.2 shows that in the favorability map (a) the high

favorability zones occupy 5.9% of the study area and contain 75% and 96.7% of

the deposit validation points and deposit training points, respectively, (b) the

moderate favorability zones occupy 4.3% of the study area and contain 12.5%

of the deposit validation points and no deposit training points and (c) the low

favorability zones occupy 89.7% of the study area and contain 12.5% and 3.3%

of the deposit validation points and deposit training points, respectively.

Table 5.2: Validation of Favorability map

Favorability zone Percent of Percent of Percent of
study area Validation deposits Training deposits

High favorability 5.9 75.1 96.7
Moderate favorability 4.3 12.5 Nil
Low favorability 89.8 12.5 3.3
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Figure 5.2: Continuous-scale maps showing (A) variance in fuzzy posterior proba-
bility due to fuzzy membership function, which varies from 0.0000 (white) to 0.0001
(black) and (B) variance in fuzzy posterior probability due to missing and mis-assigned
patterns, which varies from 0.0000 (white) to 0.2148 (black).

5.4 Discussion

Systemic uncertainties in mathematical geological models for mineral potential

mapping generally arise from (a) imprecision in mapping of predictor patterns,

(b) involvement of heuristics in generation of one or more predictor patterns

(for example, several predictor patterns the present application were based on

interpretations of total magnetic field intensity data) and (c) unknown con-

tribution of different genetic factors, and hence of predictor patterns which

represent them, in spatial localization of mineral deposits. Unlike stochastic

uncertainties, they are not data-dependent and hence cannot be addressed us-

ing probabilistic approaches. Systemic uncertainties are best treated using the

theory of fuzzy sets and fuzzy mathematics (Zadeh, 1965; Zimmerman, 1991).

The knowledge-based logistic function (Equation 5.3) used in the hybrid fuzzy

weights-of-evidence model provides a framework for dealing with systemic un-

certainties in a flexible and consistent way. The function uses map weights and
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Figure 5.3: Variation of cumulative posterior probability with cumulative percent of
study area.

class weights to derive fuzzy membership values of predictor patterns (Equa-

tions 5.2 and 5.3). Map weight, which is very similar in concept to ‘confidence

value’ (Knox-Robinson, 2000), is assigned on the basis of (a) the fidelity and

precision of a predictor map and (b) the relative importance of the recognition

criteria represented by a predictor map.

The S-shaped logistic membership function transforms linearly-distributed

class scores to logistically-distributed fuzzy membership values, so that the

differences in fuzzy membership values are much larger in the central part of

the curve than along its tails, as illustrated by Porwal et al. (2003a) and dis-

cussed in Chapter 3. The function therefore provides adequate quantitative

differentiation between unfavorable patterns and favorable patterns, although

amongst favorable (and unfavorable) patterns, the differentiation is not so well

defined. In spatial domain, this results in a well-defined distinction between

high favorability zones and low favorability zones.

Cheng and Agterberg (1999) used a linear fuzzy membership function based
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bility map shown in Fig. 5.1.
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Figure 5.5: Variation of fuzzy posterior probability with cumulative percent of study
area. Triangles are training base-metal deposits and circles are validation base-metal
deposits.

on contrast (Bonham-Carter and Agterberg, 1990). The use of contrast for cal-

culating fuzzy membership values incorporates a purely data-driven approach

in the modeling procedure. However, it is suitable for multi-class predictor

maps only if each pattern contains at least one known deposit, because con-

trast values (W+ − W−) are calculated from weights of evidence and, if a

pattern does not contain any training point, its weights of evidence and, there-

fore, contrast cannot be determined (see below). The knowledge-based logistic

function (Equation 5.3), on the other hand, can be applied to derive fuzzy

membership even if there are one or more patterns in a multi-class predictor

map that do not contain any known deposits.

As discussed in Chapter 4, the weights of evidence for the predictor pattern

xi are calculated from the conditional probabilities of the pattern, given the

absence and presence of a deposit, using the following equations (Agterberg,
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1989; Agterberg et al., 1990; Bonham-Carter and Agterberg, 1990):

W+
j = log

p(xi|D)

p(xi|D̄)
,

W−
j = log

p(x̄i|D)

p(x̄i|D̄)
. (5.11)

It follows from the above equations that a positive weights of evidence can be

calculated for a predictor pattern, if, and only if, it contains at least one known

deposit (as log(0) is mathematically invalid and hence indeterminable). Classic

weights-of-evidence models are therefore generally used with binary predictor

maps. These models have been used with multi-class predictor maps also

(Chapter 4 and references therein), but in such cases the weights of evidence

are determinable only for the patterns that contain at least one known deposit

(although it is possible to extrapolate the weights of evidence of the patterns

that do not contain any known deposits from weights-of-evidence models of

well-explored areas worldwide, as suggested by Singer and Kouda, 1999). On

the other hand, the calculation of fuzzy weights of evidence (Equations 5.5

and 5.6) for all patterns in a predictor map requires the conditional probabil-

ities of only the patterns with the highest and the lowest fuzzy membership

values, given the presence and absence of a deposit. The fuzzy weights of ev-

idence are therefore indeterminable if, and only if, neither the pattern with

the highest fuzzy membership value nor the pattern with the lowest fuzzy

membership value contains any known deposit, which can happen rarely. At

the least, the pattern with the highest fuzzy membership value will always

contain at least one known deposit. Consequently, fuzzy weights of evidence

models are more conveniently used with multi-class predictor maps, even if

there are very few known deposits available. For the same reason, the fuzzy

weights-of-evidence can be effectively used for mineral potential mapping in

poorly-explored provinces containing very few known mineral deposits.

The fuzzy weights-of-evidence model (Equation 5.4) uses a modified Bayes’

rule (Cheng and Agterberg, 1999) under an assumption of conditional inde-

pendence for combining fuzzy weights-of-evidence to derive fuzzy posterior

probability. The linear nature of the model entails that fuzzy posterior prob-

ability is highly sensitive to the violation of the assumption of conditional

independence amongst two or more predictor maps. As discussed by Singer

and Kouda (1999), the assumption of conditional independence is often diffi-

cult to validate using a pair-wise χ2 test. Even if Kolmogorov-Smirnov and χ2
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tests for goodness-of-fit return a statistically-significant goodness of fit between

observed and expected frequencies of deposits, the omnibus (Bonham-Carter,

1994) and/or new omnibus (Agterberg and Cheng, 2002) tests for conditional

independence may indicate conditional dependence between some of the input

predictor patterns (Porwal et al., 2003b; see also Chapter 4, pp. 114-119). In

practice, it is often difficult to rule out the possibility of conditional depen-

dence amongst two or more predictor patterns. In such cases, fuzzy posterior

probabilities calculated using the modified Bayes’ rule may be artificially in-

flated (in the case of favorable conditionally-dependent patterns) or deflated

(in the case of unfavorable conditionally-dependent patterns) and hence can-

not be interpreted in an absolute sense for decision-making. Moreover, a fuzzy

posterior probability is an updated prior probability of a deposit-type, given

the presence of a number of input predictor patterns, and can be accepted in an

absolute sense, if, and only if, it is assumed that the input predictor patterns

adequately represent all geologic processes that were responsible for the spa-

tial localization of the deposit-type. Such an assumption may not justified in

practice. In addition, there is always an uncertainty (due to missing patterns,

mis-assigned patterns and fuzzy membership function) associated with fuzzy

posterior probability values. However, the effect of overestimation and/or un-

derestimation of fuzzy posterior probability can be considerably mitigated if

the exploration targets are selected on the basis of relative favorability rather

than absolute fuzzy posterior probabilities, as suggested by Pan and Harris

(2000) for the ordinary weights-of-evidence approach. Therefore, the fuzzy

posterior probabilities were interpreted to rank areas in terms of relative fa-

vorability with respect to base-metal deposits.

A comparison of uncertainty due to fuzzy membership function (Fig. 5.2A)

and uncertainty due to missing and mis-assigned patterns (Fig. 5.2B) shows

that the former is much lower in all parts of the study area, which indicates that

if the ‘missing pattern’ areas are assigned appropriate fuzzy membership values

then the total uncertainty in fuzzy posterior probabilities can be reduced, as

suggested by Cheng and Agterberg (1999).

5.5 Conclusions

The fuzzy weights-of-evidence model predicts high favorability zones that oc-

cupy 6% of the study area, which contain 75% of the validation base-metal

deposits. This result compares well with the result of the extended weights-of-
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evidence model described in Chapter 4, although a smaller number of training

points was used in the fuzzy weights-of-evidence model. The following conclu-

sions are drawn from the application of the hybrid fuzzy weights-of-evidence

procedure to the study area.

• The use of a knowledge-driven membership function in the fuzzy weights-

of-evidence approach allows the treatment of systemic uncertainties in

mineral potential mapping in a flexible and consistent way.

• The knowledge-based logistic membership function used in this appli-

cation results in a well-defined distinction between favorable zones and

unfavorable zones.

• Multi-class predictor maps can be more conveniently used in hybrid fuzzy

weights-of-evidence models.

• A fuzzy weights-of-evidence model can be effectively implemented with

fewer training points, which indicates its effectiveness in less-explored

areas.

• In practice, it may not be always possible to rule out conditional depen-

dence amongst two or more of the input predictor maps. As a result

the estimated fuzzy posterior probabilities may be artificially deflated or

inflated. In such cases, these values can be used in relative terms to rank

areas in terms of favorability with respect to the target deposit-type.

The hybrid fuzzy weights-of-evidence and weights-of-evidence models de-

scribed, respectively, in this and the previous chapter, assume a (log-)linear

relationship between predictor maps and the target mineral deposit-type, and,

therefore, use a simplified version of Bayesian equation under an assumption of

conditional independence of predictor maps to approximate this relationship.

The parameters of the function, namely, the prior probability and a conditional

probability for each independent variable, are estimated from exploration data

sets in weights-of-evidence models and from a combination of expert knowl-

edge and exploration data sets in hybrid fuzzy weights-of-evidence models.

However, given the complexity of earth systems that result in the formation of

mineral deposits, linear functions may not adequately approximate the relation

between predictor maps and the target mineral deposit-type. The fuzzy models

described in Chapter 3 use non-linear fuzzy mathematics to approximate such

a relationship. In these models, the parameters of various functions, namely,
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the slope and inflexion of the gaussian function, the slope of the piece-wise

linear function and the γ operator in the fuzzy aggregation operations, are

estimated heuristically. Heuristic estimation of function parameters, however,

may compound systemic uncertainty in a model. The next chapter describes an

artificial neural network model that uses a series of non-linear radial basis func-

tions to approximate the relationship between geological processes and mineral

deposits. The parameters of the neural network are estimated algorithmically

from the exploration data sets using a fullpropagation algorithm.
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Artificial Neural Network

Model

This chapter describes a radial basis functional link net (RBFLN), which is an

artificial neural network based on radial basis functions, and demonstrates its

application to base-metal potential mapping in the study area.

The chapter has been published as “Artificial Neural Networks for Mineral

Potential Mapping: A Case Study from Aravalli Province, Western India”

(Porwal et al., 2003c).

6.1 Introduction

Artificial neural networks (or neural networks) imitate human cognition in de-

riving knowledge inductively by learning on samples of training data and using

it for generalization beyond the training data. Their architecture comprises a

number of interconnected computational layers of neural units called neurons,

which are essentially mathematical functions that map each sample of input

feature vector in a training data set to its output target vector. The mapping

is controlled by inter-neuron connection strengths known as synaptic weights

(Haykin, 1994), which are dynamically modified until each input feature vector

is mapped correctly to its known output target vector. Synaptic weights are

therefore repositories of knowledge, which is used by a trained neural network

for generalization beyond training data (Haykin, 1994).

Linear mathematical methods, despite of their well-known optimization

techniques, can not be appropriately applied to model complex and vague pat-

terns. On the other hand, neural networks, owing to their non-linear nature,
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provide techniques for modeling complex real-world situations. Neural net-

works are good pattern recognition engines and robust classifiers, with the

ability to generalize on the basis of imprecise input data. They offer ideal solu-

tions to a variety of classification problems such as in speech, character, signal

and pattern recognition (e.g., Waibel and Lee, 1990; LeCun et al., 1990a;

Guyon, 1991; Sackinger et al., 1992; Zuqiang Zhao, 1992; Tsopanoglou and

Mourjopoulos, 1994; Augusteijn and McCarthy, 1995; Bishop, 1995; Torkkola

and Kohonen, 1995; Bennani, 1999; Kapusta and Gajer, 2000; Mitiche and

Lebidoff, 2001). They can also be used for predictive modeling of complex

natural phenomena due to physical processes that are not directly observable

and therefore are ill-defined. For example, the formation and localization of

mineral deposits are the end-result of a complex interplay of several earth pro-

cesses that leave behind their signatures in form of geologic features associated

with the mineral deposits. These geological features are characterized by their

responses in one or more spatial geodata sets that are used as predictor maps

in quantitative mineral potential mapping. The relationship between predic-

tor maps and mineral deposits appears to be far too complex to be modeled

adequately by using linear approximations. Probabilistic and regression ap-

proaches have been traditionally used to model this relationship for predictive

mineral potential mapping (see Chapter 4 for references). However, the appli-

cation of neural networks to predictive mineral potential mapping provides a

robust non-linear alternative to these approaches.

6.1.1 Previous work

In a seminal work, Singer and Kouda (1996) used a three-layer feed-forward

neural network with a single hidden layer of neurons to estimate distances to

the nearest Kuroko-type base-metal deposit in the Hokuroku district, northern

Japan. The input layer consisted of three variables derived from drill-hole data.

The hidden layer comprised five neurons, each of which employed a hyperbolic

tangent activation function. The output layer contained the distance to base-

metal deposits. The neural network was trained on data from a subset of bore

holes using the algorithm of annealing plus conjugate gradients described by

Masters (1993). The synaptic weights were dynamically adjusted until the

mean squared error of scaled distance to base-metal deposits was minimized.

The trained neural network was validated by applying to data from all drill

holes. It succeeded in identifying all of the known deposits in the study area.

Singer and Kouda (1997a) examined the capability of a probabilistic neural
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network based on Parzen density estimation (Parzen, 1962) to classify mineral

deposits into types based on the presence or absence of certain minerals. The

probabilistic neural network was trained on a subset of deposits; the remaining

deposits were used for validation only. The output, for each deposit, was one

of several pre-defined deposit classes. The trained probabilistic neural network

correctly classified 97% of the training deposits and 88% of the validation de-

posits.

Singer and Kouda (1997b) investigated the use of a similar probabilistic

neural network for integrating information available in large mineral databases

to classify sites by deposit-types. Using the algorithms developed by Masters

(1995), they trained a probabilistic neural network on a number of reported

ore and alteration minerals and generalized rock types from a large number of

deposits. The output, for each deposit, was one of several well-typed deposit

classes. The trained probabilistic neural network was validated by compari-

son of the probabilistic neural network’s classification of a number of deposits

from Nevada (USA) with that of experts. The authors report an overall 53%

agreement between the probabilistic neural network and the experts, which is

lower than the success rate reported by Singer and Kouda (1997a). These re-

sults reflect effects of sparse information available in mineral occurrence data

compared to the well-studied deposit data use for training. However, based

on a comparison of the spatial distribution of deposit classes estimated by

probabilistic neural network and permissive tracts identified by experts, they

concluded that the probabilistic neural network can be efficient in identifying

terranes permissive for grouped deposit classes in over 95% of the cases.

Singer and Kouda (1999) demonstrated the superior performance of proba-

bilistic neural networks as compared to the weights-of-evidence method in clas-

sification of locations as mineral deposits or non-deposits with data from Chisel

Lake-Anderson Lake, Manitoba, Canada. On the basis of an analysis of the

two approaches, they also concluded that the posterior probabilities produced

by weights-of-evidence method are biased upwards and therefore probabilistic

neural networks should be considered where unbiased estimates are required.

Harris and Pan (1999) demonstrated the application of a predictive prob-

abilistic neural network for mapping gold potential in a well-explored control

area and compared its performance with some traditional multivariate statisti-

cal techniques. They described each quadrat in the control area by the presence

or absence of gold mineralization and measurements on eight geological vari-

ables, and trained a probabilistic neural network using the geological variables
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of a small subset of the control quadrats. The output value, for each quadrat,

was either 1 (mineralized) or 0 (barren). They used the trained probabilistic

neural network to process all control quadrats and evaluated its performance

by the extent to which all the quadrats were correctly classified as mineral-

ized or barren with respect to gold. The trained probabilistic neural network

correctly classified approximately 90% of all the quadrats in the control area.

Significantly, the authors reported a higher percentage of correct classification

of the control quadrats achieved by the probabilistic neural network than by

traditional multivariate statistical techniques like logistic regression and dis-

criminant analysis.

Brown et al. (2000) used a multilayer perceptron neural network to es-

timate the favorability for gold deposits in the Tenterfield area, New South

Wales (Australia). They trained a series of multilayer perceptron neural net-

works with different sets of random initial weights using a gradient-descent

back-propagation algorithm and selected the network that gave the best clas-

sification performance for an independent set of validation samples. Based on

a comparison of several statistical measures of the prospectivity maps derived

using the multilayer perceptron neural network, weights-of-evidence analysis

and fuzzy logic, the authors concluded that the multilayer perceptron neural

network out-performs, or at least matches the performance of the other two

methods of mineral prospectivity mapping.

In order to address the problem of paucity of deposit samples in neural

network applications to mineral potential mapping, Brown et al. (2003) ex-

perimented by training a multilayer perceptron neural network on a synthetic

training dataset, which was generated by adding random noise to the original

training dataset. Their experiments for gold potential mapping in the Kalgo-

orlie Terrane orogenic gold province show that the classification performance

of a trained multilayer perceptron and the quality of the resultant favorability

map increase significantly with increased numbers of deposit patterns.

Singer and Kouda (2003) tested the ability of a probabilistic neural net-

work to classify deposits into types on the basis of deposit tonnage and average

Cu, Mo, Ag, Au, Zn, and Pb grades in order to examine whether this type of

system might serve as a basis for integrating geoscience information available

in large mineral databases to classify sites by deposit type. Total tonnages and

average grades of 1,137 well-explored deposits identified in published grade and

tonnage models representing 13 deposit types were used to train and test the

network. Tests were performed with a probabilistic neural network employ-
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ing a Gaussian kernel and separate sigma weights for each class (type) and

each variable (grade or tonnage). Deposit types were selected to challenge the

neural network. The authors report an overall 75% agreement between the

experts and the neural network, which is quite significant given the difficult

test conditions. In a separate test, the probabilistic neural network correctly

classed 93% of 336 deposits in eight deposit types when trained with presence

or absence of 58 minerals and six generalized rock types. The authors conclude

that the overall success rate of the probabilistic neural network when trained

on tonnage and average grades would probably be more than 90% with addi-

tional information on the presence of a few rock types.

Bougrain et al. (2003) used artificial neural networks for continental-scale

mineral potential mapping. They identified 25 attributes as known factors

or potential factors controlling the formation of gold deposits in the Andes

Cordillera and applied various multilayer perceptrons to discriminate possible

mineralized sites from barren sites. They also used the optimal brain damage

algorithm by LeCun et al. (1990b) to order the 25 attributes by their rele-

vance to the classification. Their work demonstrates that neural networks can

be used efficiently in continental-scale mineral potential mapping.

6.2 Radial Basis Functional Link Net

A radial basis function centered on an N-dimensional feature vector v with a

spread parameter σ is defined on N-dimensional feature vectors x as follows:

y = e[−‖x−v‖2/2σ2]. (6.1)

The response surface of a single radial unit is a Gaussian function, peaked

at the center of the feature vector and descending outwards (Fig. 6.1). The

name radial indicates that all points x equidistant from v return the same

value of y. A number M of these radial basis functions can be centered on M

feature vectors so that their circular disks of radius σ cover a bounded region

of interest in the feature space (Fig. 6.2). The values of a radial basis function

satisfy the condition that 0 < y ≤ 1.

A radial basis function network (Fig. 6.3) is a three-layer feed-forward net-

work comprising the following layers:

1. an input layer of N(= number of variables or dimensions of feature vec-

tors) neurons, each of which receives a component of input feature vector,
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Figure 6.1: Perspective view of radial basis function in two-dimensional feature space.

2. a hidden layer of M neurons, each containing a radial basis function and

3. an output layer of J(= number of target vectors) neurons, which return

the output for each input feature vector.

It implements the following composite mapping:

x −→ y −→ z←− t

where z and t are the output and target vectors, respectively.

Given a training data set containing Q vectors, an incoming vector x from

the input layer activates a neuron (radial basis function) in the hidden layer,

which returns a unique value of y (Looney and Yu, 2001):

yq
m = e[−‖xq−vm‖2/2σ2

m], (6.3)

where vm and σm (m=1 to M) are the centre vector and spread parameter of

the mth radial basis function and xq (q = 1 to Q) is the qth training vector.

The values of y are multiplied by synaptic weights along the lines connect-

ing the neurons of the hidden layer to the neurons of the output layer and

156



Chapter 6

Figure 6.2: Plan view of two-dimensional feature space with M radial basis functions.

summed in the neurons of the output layer (Looney and Yu, 2001):

zq
j = (1/M)[

M
∑

m=1

umj × yq
m + bj ]←− t, (6.4)

where j=1 to J . The synaptic weights, umj , are dynamically modified to force

the outputs z to match the targets t as closely as possible. The bias, bj , is

included at each neuron in the output layer.

Looney (2002) derived radial basis functional link nets (RBFLNs) by ex-

tending the radial basis function neural network architecture to random vector

functional link nets described by Pao et al . (1994). An RBFLN is a near-replica

of radial basis function neural network but differs in that it has additional lines

of propagation that directly connect neurons in the input layer to neurons in

the output layer (Fig. 6.3). An RBFLN therefore implements the following

composite mapping:

x
�� -

y
@R

z � t

The lines connecting the N neurons in the input layer to the J neurons in the
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Figure 6.3: Radial basis functional link net (RBFLN).
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output layer carry an extra set of synaptic weights, wnj (Fig. 6.3). Clearly,

RBFLNs are a generalization of radial basis function neural networks. The two

are the same when the extra weights, wnj , are set to zero. A radial basis func-

tion neural network represents a nonlinear model while an RBFLN includes

that nonlinear model as well as a linear model (the direct lines from the input

to the output nodes) so that the linear parts of a mapping do not need to be

approximated by the nonlinear model. Thus the RBFLN is a more complete

model of a general nonlinear mapping. The output components of RBFLNs

differ from those of radial basis function neural network (Equation 6.4) and

are given by (Looney and Yu, 2001):

zq
j = [1/(M + N)][

M
∑

m=1

umj × yq
m +

N
∑

n=1

wnj × xq
n + bj ]←− t, (6.5)

where

yq
m = e[−‖xq−vm‖2/2σ2

m]. (6.6)

6.2.1 Training of radial basis functional link nets

Given a training data set containing Q feature vectors and Q associated output

target vectors

{xq : q = 1, 2, ........, Q} and {tq : q = 1, 2, ........, Q},

an RBFLN is trained in the following stages (Looney and Yu, 2001; Looney,

2002):

• initialization of centers, spread parameters and synaptic weights

• adjustment of synaptic weights and spread parameter to minimize the

output total sum-squared error defined as the sum of partial sum-squared

errors (Looney and Yu, 2001):

E =

Q
∑

q=1

Eq =

Q
∑

q=1

J
∑

j=1

(tq
j − zq

j)
2
. (6.7)
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Training on synaptic weights is via steepest descent iteration:

umj ← umj − η1(δE/δumj) = umj + (η1/(M + N))

Q
∑

q=1

(tq
j − zq

j)y
q
m, (6.8)

and

wmj ← wmj − η2(δE/δwmj) = wmj + (η2/(M + N))

Q
∑

q=1

(tq
j − zq

j)x
q
m. (6.9)

Each center and spread parameter is also updated with steepest descent iter-

ation (Looney and Yu, 2001):

vm
n ← vm

n − η3(δE/δvm
n ) =

vm
n + [η3/σ2

m]

Q
∑

q=1

{
J

∑

j=1

(tq
j − zq

j)umj}y
q
m(xq

n − vm
n ), (6.10)

and

σ2
m ← σ2

m − η4(δE/δσ2
m) =

σ2
m + [η4/σ4

m]

Q
∑

q=1

{
J

∑

j=1

(tq
j − zq

j)umj}[y
q
m‖x

q
n − vm

n ‖
2]. (6.11)

In Equations 6.8 to 6.11, ηi (i=1 to 4) are learning rates.

Using the fullpropagation method described by Looney (1997), the neural

network is trained using the steepest descent iteration on the total sum-squared

error, for all Q input feature vectors at a time, so that each adjustment of each

synaptic weight is influenced by all Q input feature vectors.

Full learning algorithm for radial basis functional link nets

The high-level full training algorithm for RBFLNs, which adjusts the centers

and spread parameters along with the synaptic weights, is given below (after

Looney and Yu, 2001; Looney, 2002):

Full training initialization.

160



Chapter 6

1. Given R randomly ordered sample vectors {xr : q = 1, ..., R} of dimension

N , select Q(< R) vectors for training and save the remaining (R−Q)

for testing (validation of) the training.

2. For a very large Q, choose M such that M overlapping radial basis func-

tions cover the entire feature space and take vm = xm (for m = 1, ..., M).

If M > Q, then take vm = xm (for m = 1, ..., M) and draw the remaining

(M −Q) radial basis functions centered at random in the feature space.

3. Compute initial σ = [1/(2M)]1/N and take σm = σ (for m = 1, ..., M).

4. Select all weights umj and wnj randomly between 0.5 and 0.5 (for j =

1, ..., J ; m = 1, ..., M and n = 1, ..., N). Specify I iterations.

Full training iteration.

5. Compute yq
m from Equation 6.6 (for each m = 1, ..., M and q = 1, ..., Q).

6. Compute zq
j from Equation 6.5 (for each j = 1, ..., J and q = 1, ..., Q).

7. Update the synaptic weights from Equations 6.8 and 6.9.

8. Update the centers from Equation 6.10 and the spreads from Equa-

tion 6.11.

9. At every P th iteration (e.g., P = 20 or P = 50), put the validation vectors

through the network, record the validation total sum squared error value

(TSSEval) and stop when TSSEval increases for the first time and all

training and test vectors are mapped into the correct targets.

10. If I iterations are done, then stop, else go to Step 5 above.

The algorithm was implemented using the procedure and software described

by Looney and Yu (2001) and Kemp et al. (2001).

6.3 Implementation of Radial Basis Functional Link

Nets

6.3.1 Data preprocessing

‘Curse of dimensionality’

The term ‘curse of dimensionality’ was coined by Bellman (1961) to express

problems caused by the growth of hypervolume as a function of dimensionality.
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In neural network-based models, the curse of dimensionality is expressed in the

following problem. Many neural networks are used for mapping an input fea-

ture space to an output feature space. In such cases, the neural network should

be able to ‘monitor’ every part of its input feature space in order to know how

that part of the feature space should be mapped. Covering the input feature

space entirely takes resources (in terms of sample data) and, in most cases, the

amount of resources needed is proportional to the hypervolume of the input

space. The goodness of the representation in neural networks can be measured

in terms of the average distance from a random point in the feature space to

the nearest network unit: the shorter the distance, the better is the representa-

tion of the data. It is intuitively clear that the total number of units required

to keep the average distance adequately small increases in direct proportion to

the increase in dimensionality of the feature space. For example, in the case of

an RBFLN, the number of radial basis functions required to keep the average

distance between the centers of the radial basis functions adequately small in-

creases in direct proportion to the increase in dimensionality of feature space.

As the number of radial basis functions increases, the number of parameters of

the RBFLN, namely, the spreads and centers of the radial basis functions and

the synaptic weights, also increases. Because these parameters are, in effect,

repositories of the knowledge, their robust estimation is vital for optimizing

the generalization capability of the RBFLN, which requires a large number of

training samples. This entails that the number of training samples required to

train the RBFLN increases with the increase in the dimensionality of feature

space. Because the dimensions of feature space are equal to the dimensions of

input training samples, the higher the dimensionality of the training samples,

the higher is the number of training samples required for an effective imple-

mentation of an RBFLN.

A priori information can help mitigate the curse of dimensionality. A care-

ful selection and scaling of the input feature vectors can extenuate the severity

of the problem. In an application to mineral potential mapping, this implies

that, if an adequately large number of training samples (i.e., known mineral

deposits) are not available, the available predictor maps should be carefully

scrutinized, and on the basis of a priori conceptual-genetic information on the

target mineral deposit-type, only the most relevant maps should be selected

for modeling. Although multi-class predictor maps can be conveniently used

in RBFLNs, the maps should be reclassified, if possible, in order to reduce the

number of classes and the overall dimensionality of the data set.
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Data encoding

An RBFLN, like all neural networks, can accept only numeric input data, and

performs better if numeric input data are in a fairly-narrow range. This poses

a problem when input data are non-numeric or missing or if they are in an

unusual range. Real-world geospatial data are often non-numeric (categoric)

and frequently missing in some parts.

Categorical predictor maps can be converted into numeric predictor maps

using one-of-n encoding schemes (Masters, 1993), which involve transforming

a multi-class predictor map containing n classes to n binary predictor maps.

On each of the n binary maps, one and, only one, class is encoded 1; all of the

remaining classes are encoded 0.

Feature vectors

In the context of an RBFLN, each unique combination of predictor patterns

(‘unique condition,’ see Chapter 1, p. 6) can be considered a vector of predictor

features (or a feature vector) and, therefore, a unique condition map can be

termed a feature vector map. The components of feature vectors are defined

by the attributes of unique conditions. In an N -dimensional feature space, the

location of each feature vector is defined by the values of its N components.

Target, training and validation vectors. Target vectors define output

vectors to which input feature vectors are mapped by a neural network. In-

put feature vectors with known target vectors constitute training samples for

a neural network. Validation samples also have known target vectors, but are

used exclusively for validating the training of the neural network.

In mineral potential mapping, there is only one single-dimensional binary

target vector, encoded as 1 or 0, which represents presence or absence, respec-

tively, of a mineral deposit. The feature vectors defined by presence or by

absence of a mineral deposit constitute training and validation samples. The

feature vectors that are defined by presence of a mineral deposit are referred

to as deposit training/validation samples and those defined by absence of min-

eral deposits are referred to as non-deposit training/validation samples. It is

simple to select the former because they constitute the feature vectors that

are spatially-coincident with the locations of known mineral deposits. How-

ever, selecting without uncertainty non-deposit training samples is often diffi-

cult. Both data-driven and knowledge-driven approaches can be used for this
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purpose. With the former approach, Kemp et al . (2001) suggested that non-

deposit locations can be randomly extracted from the locations that have been

previously-modeled as having very low probability of hosting a target mineral

deposit type, and feature vectors spatially-coincident with these locations can

be selected as non-deposit training/validation samples. Alternatively, based on

an expert knowledge of genetic models of the target mineral deposit type, the

feature vectors that are least-likely to be associated with the target mineral

deposit type can be selected as non-deposit training/validation samples.

6.3.2 Training of radial basis functional link nets

Training an RBFLN involves determining (a) the number, centers and spread

parameters of the radial basis functions (hidden neurons) and (b) the synaptic

weights that induce a correct classification of all training samples with a min-

imum total sum squared error. However, the number of incorrectly classified

training samples and the total sum squared error decreases indefinitely with

increasing number of training iterations and hidden neurons.

With increasing number of training iterations, a specialized training on spe-

cific training samples sets in, which keeps decreasing the number of incorrectly-

classified samples and the total sum squared error. Although the specialized

training results in a correct classification of all training samples with a negli-

gible sum squared error, it simultaneously reduces the capacity of the network

to generalize and therefore generates an over-learned network that is highly ef-

ficient in classifying training samples, but is not so efficient in classifying other

feature vectors.

For an optimal performance of an RBFLN, the number of radial basis

functions in the hidden layer should be large enough to cover the entire feature

space. This requires a large number of training samples, as each training sam-

ple forms the center of a radial basis function in the feature space. In practice,

however, the number of training samples can never be considered sufficiently

large to cover the entire feature space. Therefore, extra radial basis functions

are drawn and centered randomly in the feature space, which provides higher

resolution and more non-linearity and therefore improves the performance of

an RBFLN. However, too many extra radial basis functions can induce an

RBFLN to focus excessively on specific characters of individual training sam-

ples and thereby reduce its capability to generalize.

It is therefore necessary to tune the number of training iterations and hid-

den neurons in such a way that, on one hand, the generalized training is max-
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imized and, on the other hand, the specialized training is avoided. A set of

validation samples can be used to determine the onset of specialized train-

ing, which is indicated by (a) a reversal in the increasing trend of numbers of

correctly-classified validation samples, (b) a reversal in the decreasing trend of

total sum squared error for the validation samples or (c) a correct classification

of all training samples.

Masters (1993) recommends that in feedforward neural networks as few

hidden neurons should be used as possible, and it is preferable to start the

training with too few hidden neurons. He also describes an effective training

procedure to avoid over-learning, which involves using (a) a set of training

samples to train a neural network, (b) a set of validation samples to validate

the trained network and (c) a set of training test samples to check the gener-

alization ability of the trained and validated network. However, if inadequate

number of deposit samples are available, the set of validation samples can be

used to both validate the training and infer the generalization capability of the

trained RBFLN.

6.4 Application to Base-Metal Potential Mapping in

Aravalli Province

6.4.1 Data preprocessing

As discussed above, in order to build a robust RBFLN-based model, sufficiently

large number of training samples, in proportion to the dimensionality of train-

ing samples, should be available. Keeping in mind the inadequate number of

training samples (see below), it was decided to reduce the dimensionality of

input training feature vectors for a robust estimation of network parameters.

The available predictor maps were scrutinized, and on the basis of a priori

conceptual-genetic information and previous modeling experience, the map of

sedimentary environments was excluded. This map, which shows strong depen-

dence on the predictor maps of lithologies and stratigraphic groups (Chapter 4),

was largely interpreted from lithological data (Chapter 2) and therefore some

of the information contained in this map might be redundant. Similarly, the

multi-class predictor maps of buffered distances, namely, the maps of buffered

distances from regional lineaments, buffered distances from NW-trending linea-

ments, buffered distances from NE-trending lineaments and buffered distances

from fold axes, were used in binary form, as explained in Chapter 4.
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Therefore, the predictor maps used in the neural network model included

the multi-class predictor maps of lithologies and stratigraphic groups, and

the binary predictor maps of mafic igneous rocks, buffered distances from re-

gional lineaments, buffered distances from NW-trending lineaments, buffered

distances from NE-trending lineaments and buffered distances from fold axes.

Data encoding

The one-of-n encoding procedure was used for converting the multi-class cat-

egoric maps of lithologies and stratigraphic groups to binary maps. On each

binary map, exactly one class was coded as 1 and the remaining classes were

coded as 0. In this way 17 binary predictor maps were generated from the two

multi-class predictor maps. Of these, 11 binary predictor maps were used for

subsequent neural network processing. Three binary maps of lithologies, which

have no known relationship with base-metal mineralization in the province,

were not used. These maps included the binary maps of calc-schist, migmatites

and other younger intrusive/extrusive rocks. Similarly, three binary maps of

stratigraphic groups, which have no known relation with base-metal mineral-

ization in the province, were not used. These maps are the binary maps of

Sandmata Complex, Mangalwar Complex and younger stratigraphic groups.

Each of the two classes in the five binary predictor maps of mafic igneous

rocks, buffered regional lineaments, buffered NW-trending lineaments, buffered

NE-trending lineaments and buffered fold axes was coded as either 1 or 0, in-

dicating, respectively, the presence or absence of the predictor pattern.

Feature vectors

The 16 binary predictor maps were digitally-superposed and unique combina-

tions of the predictor maps in a unit area of 1 km2 were mapped to generate

a feature vector map constituting 519 feature vectors. As the operation was

carried out in a GIS-environment, an associated database table was automat-

ically generated, which held the components of the feature vectors. In the

table, each feature vector is described by a unique identification number and

16 components, each representing a predictor pattern encoded as either 1 or 0.

Training and validation vectors The deposit training samples and de-

posit validation samples were selected on the basis of the same training and

validation deposits that were used, respectively, for training and validating the
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weights-of-evidence models (Chapter 4), with the exception of the VMS-type

Basantgarh deposit, which was moved from the training set to the validation

set. This was done in order to train the neural network exclusively on SEDEX-

type deposits. The feature vectors spatially-coincident with the locations of

the 40 training and 14 validation deposits were extracted to generate deposit

training and deposit validation samples, respectively. As several feature vec-

tors contained more than one deposit, a total of 24 deposit training samples

and 12 deposit validation samples were generated.

For generating non-deposit training and non-deposit validation samples, 3

non-deposit locations, which were modeled by the extended weights-of-evidence

analysis (Chapter 4) as having the lowest posterior probability of hosting base-

metal deposits, were extracted from each of the 16 predictor maps. Of these,

2 locations were randomly extracted as non-deposit training points and 1 lo-

cation was extracted as a non-deposit validation point. The feature vectors

spatially-coincident with the non-deposit training and non-deposit validation

points were extracted to generate 32 non-deposit training and 16 non-deposit

validation samples, respectively.

The deposit and non-deposit training samples were combined to generate

a set of 56 training samples, of which 24 contained a deposit. However, it

was found during the training that the RBFLN learns to recognize the deposit

validation samples more efficiently if the deposit and non-deposit samples are

equally represented in the training set. Eight non-deposit training samples

were therefore randomly selected and removed from the set of training samples

(each predictor map was still represented by at least one non-deposit sample),

giving a set of 48 training samples in which both deposit and non-deposit sam-

ples were equally represented. The deposit and non-deposit validation samples

were combined to generate a set of 28 validation samples.

6.4.2 Training of radial basis functional link nets

Because of an inadequate number of training samples available in the study

area, the set of validation samples was used to both validate the training and in-

fer the generalization capability of the trained RBFLN. The two sets of training

samples (see above) were used for training a series of RBFLNs having different

numbers of hidden neurons. For both sets, an identical training procedure was

followed and the same set of validation samples was used for validating the

training.

The training was initiated with an RBFLN having 50 hidden neurons. The
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network was trained for 100 iterations, using a set of randomly-initialized cen-

ters and weights, and the number of correctly-classified training samples and

the total sum squared error (TSSEtrn) were recorded. Then the validation

samples were processed using the same network and the number of correctly-

classified validation samples and the total sum squared error (TSSEval) were

recorded. A threshold of 0.5 was applied to the output value for making a

classification. This two-step process was repeated by stepping up the number

of iterations in the increments of 20 until all training samples were correctly

classified and (TSSEtrn) converged close to zero. The procedure was repeated

five times, each time using a different set of randomly-initialized weights and

centers, for selecting the set of initial weights and centers and that gave the

best performance for the validation samples.

The same training procedure was repeated using 60, 70, 80, 100, 125 and

150 hidden neurons in the RBFLN. The results indicated that the generalized

training of the RBFLN with 50, 60, 70, 80, 100, 125 and 150 hidden neurons

was completed in 180, 180, 200, 200, 220, 240 and 260 iterations, respectively,

using the first set of training samples (containing 24 deposit and 36 non-deposit

samples) and in 220, 240, 240, 260, 260, 280 and 300 iterations, respectively,

using the second set of training samples (containing 24 deposit and 24 non-

deposit samples). Table 6.1 shows that, at the completion of the generalized

training, the best performance in classification is achieved by the RBFLN hav-

ing 70 neurons in the hidden layer and trained on the second set of training

samples (containing equal number of deposit and non-deposit training sam-

ples). Any further increase in the number of hidden neurons does not improve

the performance of the neural network. This network was therefore used for

predictive classification of all the feature vectors.

6.4.3 Favorability maps

The output value for each feature vector predicts the extent to which the fea-

ture vector belongs to either the class that contains base-metal deposits or the

class that does not contain a base-metal deposit. These values, which ranged

from -0.1449 to 1.3388, were re-scaled between 0 and 1 and mapped to generate

a predictive classification map (Fig. 6.4). Fig. 6.5 shows the plot of predictive

classification values against the percentage of cumulative area.

It is cumbersome to interpret the predictive classification map shown in

Fig. 6.4 in terms of delineating the areas favorable for base-metal mineraliza-

tion, as it shows the predictive classification values in a continuous scale of
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Table 6.1: Performance of RBFLNs at completion of generalized training

Training Set 1
No. of (56 samples; 24 deposit & 32 non-deposit)
hidden No. of % of correctly-classified
neurons iterations TSSEval validation samples

deposit non-deposit
50 180 1.7854 72.7 100
60 180 1.7853 72.7 100
70 200 1.7739 72.7 100
80 200 1.7783 72.7 100
100 220 1.7802 72.7 100
125 240 1.7844 72.7 100
150 260 1.7859 72.7 100

Training Set 2
No. of (48 samples; 24 deposit & 24 non-deposit)
hidden No. of % of correctly-classified
neurons iterations validation samples

deposit non-deposit
50 220 1.5716 72.7 100
60 230 1.5674 72.7 100
70 240 1.5631 81.8 100
80 260 1.5693 81.8 100
100 260 1.5690 81.8 100
125 280 1.5698 81.8 100
150 300 1.5699 81.8 100

0 to 1. Thresholding the predictive classification values facilitates the selec-

tion of exploration targets. Accordingly, the predictive classification map was

reclassified into a binary favorability map (Fig. 6.6) and a ternary favorabil-

ity map (Fig. 6.7). The binary favorability map (Fig. 6.6) was generated by

applying a threshold of 0.5 on the predictive favorability map. The ternary

favorability map (Fig. 6.7) was generated by applying two threshold predictive

classification values, represented by the two inflexion points along the predic-

tive classification values versus percentage of cumulative area curve (Fig. 6.5).

The lower inflexion point (70.1, 0.182) represents a threshold for distinguishing

zones with low favorability from zones with moderate favorability while the up-

per inflexion point (94.4, 0.495) represents a threshold value for distinguishing

zones with moderate favorability from zones with high favorability.

Validation of favorability maps

The favorability maps were validated by overlaying the deposit training points

and the deposit validation points and by plotting the position of these deposits

on the predictive classification value versus percentage of cumulative area curve
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Figure 6.4: Continuous-scale predictive classification map. Predictive classification
values range from 0 (white) to 1 (black).

(Fig. 6.5). In the binary favorability map (Table 6.2 and Fig. 6.6), (a) the high

favorability zones occupy 5.5% of the study area and contain 97.5% and 83% of

the deposit training and validation points, respectively and (b) the low favor-

ability zones occupy 94.5% of the study area and contain 2.5% and 17% of the

deposit training and validation points, respectively. In the ternary favorability

map (Table 6.2 and Fig. 6.7), (a) the high favorability zones occupy 6% of

the study area and contain 97.5% and 83% of the deposit training and deposit

validation points, respectively, (b) the moderate favorability zones occupy 24%

of the study area and contain 2.5% and 17% of the deposit training and val-

idation points, respectively and (c) the low favorability zones occupy 70% of

the study area and do not contain any known deposits.
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Figure 6.5: Variation of predictive classification values with cumulative percent of
study area. Circles are validation deposits and triangles are training deposits.

6.5 Discussion

One of the most important procedures in the implementation of a neural net-

work application is the selection of appropriate training samples that ade-

quately represent all feature vectors to be classified. This implies that, in the

case of an application to mineral potential mapping, the deposit samples and

non-deposit samples should be represented in the same proportion in the set

of training samples as they are expected to occur in the general population.

However if deposit samples and non-deposit samples are represented in the

training set in the same proportion as they are expected to occur in the general

population, the performance of a neural network is optimized for recognizing

non-deposit samples rather than deposit samples, as discussed by Brown et al.

(2000). This may give rise to a large number of type II errors, which have seri-

ous consequences in mineral potential mapping. The problem can be addressed
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Figure 6.6: Binary favorability map generated by reclassification of predictive clas-
sification map shown in Fig. 6.4
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Figure 6.7: Ternary favorability map generated by reclassification of predictive
classification map shown in Fig. 6.4
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Table 6.2: Validation of Favorability maps

Favorability Map Favorability zone Percent of Percent of Percent of
study Validation Training
area deposits deposits

Binary High favorability 5.5 83.0 97.5
Low favorability 94.5 17.0 2.5

Ternary High favorability 6.0 83.0 97.5
Moderate favorability 24.0 17.0 2.5
Low favorability 94.0 Nil Nil

by using the one-sided selection procedure (Kubat and Matwin, 1997; Kubat

et al., 1998; Brown et al., 2000) to balance the number of deposit samples and

non-deposit samples in the training set. As Table 6.1 shows, the performance

of an RBFLN is improved by using a set of training samples that contains an

equal number of deposit and non-deposit training samples, irrespective of their

expected probability of occurrence in the total population.

As compared to the weights-of-evidence approach, multi-class evidential

maps can be more conveniently used in the neural network approach. One-of-

n encoding schemes provide a consistent method of using multi-class categorical

maps in a neural network application. Moreover, in the weights of evidence

approach, the output posterior probability values are highly sensitive to the

violation of the assumption of conditional independence because of the linear

nature of Bayes’ equation used for combining evidential maps. As discussed

by Singer and Kouda (1999) and Porwal et al. (2003b), the assumption of con-

ditional independence is often difficult to validate. The non-linear nature of

neural networks, on the other hand, ensures that the output is not likely to be

affected by the conditional dependence amongst two or more input evidential

maps.

Nevertheless, RBFLNs are sensitive to the curse of dimensionality. Conse-

quently, unless a large number of training samples are available, it is preferable

to preprocess predictor maps in order to reduce the dimensionality of input

feature vectors. Alternatively, statistical tools like factor analysis or principal

component analysis can be used to reduce the dimensionality of input feature

vectors (Porwal et al., 2004a).

In the favorability maps (Figs. 6.6 and 6.7), the high favorability zones are

confined to specific lithologies in the stratigraphic groups of Palaeoproterozoic

age, which suggests a strong lithostratigraphic control over base-metal min-

eralization in the province. This is consistent with the conceptual model of

base-metal metallogeny in the Aravalli province proposed by Deb and Thorpe
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(2001), which envisages (a) a Palaeoproterozoic metallogenic epoch at ca. 1800

Ma and (b) a Mesoproterozoic metallogenic epoch at ca. 1000 Ma. The for-

mer resulted in the formation of the SEDEX type deposits of the Bhilwara

and the Aravalli belts, while the latter resulted in the formation of the smaller

VMS-type deposits of the South Delhi belt. Because the two types of mineral-

izations have different characteristics, it was not considered appropriate to use

the same RBFLN to map the potential of both types of base-metal deposits

and therefore the VMS-type Basantgarh deposit was removed from the set of

training deposits. As a result, the trained RBFLN did not learn to recognize

the specific characteristics of VMS-type deposits and hence the Mesoprotero-

zoic metallogenic epoch is not represented in the high favorability zones.

The high favorability zones contain all major SEDEX-type base-metal de-

posits of the study area, including the world class deposit of Rampura-Agucha

and other large deposits of the Bhilwara and Aravalli belts. As discussed in

Chapter 3, the Rampura-Agucha has several characteristics that makes it a

particularly difficult deposit to predict using mathematical geological tools.

The deposit is classified in low favorability zones in the favorability maps de-

rived using the fuzzy, weights-of-evidence and hybrid fuzzy weights-of-evidence

approaches (Chapters 3, 4 and 5). The correct classification of the Rampura-

Agucha deposit (predictive classification value: 0.566) by the RBFLN therefore

demonstrates the ability of an RBFLN to recognize the critical component(s)

(in this case, the host lithology of graphitic schist) in a feature vector and

respond in a highly non-linear way to maximize the contribution of such com-

ponent(s) to the output. The neural network also classifies three more similar

small metasedimentary enclaves in the basement complex (in vicinity of the

Rampura-Agucha deposit) in the high favorability zones.

The moderate favorability zones (Fig. 6.7) contain one training deposit and

two validation deposits. The training deposit (Padar-Ki-Pal) has a predictive

classification values of 0.459, which is close to the threshold of high favorability

(Fig. 6.7). It is a small, low grade Cu-(Zn-Pb) deposit hosted by quartzites

in the Jharol belt. So far, this is the only reported occurrence of base-metal

mineralization from the Jharol belt. However, the ternary favorability map

(Fig. 6.7) shows that there are several areas of moderate favorability in the

Jharol belt that can be potential targets for base-metal exploration in the

Jharol belt. One of the two validation deposits contained in the moderate fa-

vorability zones is the VMS-type Basantgarh deposit of the South Delhi belt,

which is genetically different from the deposits of the Bhilwara and Aravalli
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belts that were used for training the neural network. Although the deposit

shares two common characteristics with the deposits of Bhilwara and Aravalli

belt, viz., association of mafic volcanic rocks and proximity to crustal-scale

faults, the neural network returns a much lower predictive classification value

(0.256) for the deposit as compared to the deposits of the Bhilwara and Aravalli

belt. This demonstrates the ability of the neural network to recognize overall

difference between the feature vector representing the Basantgarh deposit and

the feature vectors used for training the neural network, especially the lack

of critical components (favorable host lithology and stratigraphy) in the for-

mer, and respond by returning a low predictive classification value. The other

validation deposit classified in the moderate favorability zones is a minor low

grade Cu deposit hosted by quartzites in the basal sequences of the Aravalli

belt.

6.6 Conclusions

The application of an RBFLN to base-metal deposit potential mapping in the

Aravalli province results in a regional-scale demarcation of (a) high favorability

zones occupying 6% of the study area, which predict 92% of the known base-

metal deposits, (b) moderate favorability zones, which represent an additional

24% area and contain 8% of the known deposits and (c) low favorability areas

that occupy 70% of the study area and do not contain any known deposits.

Significantly, the neural network identifies the Rampura-Agucha deposit in

high favorability zones.

The following conclusions can be drawn from the application of the RBFLN

to map the potential of base-metals in the study area.

• One-sided selection of the training data, i.e., selecting an approximately

equal number of deposit and non-deposit samples in the training data,

can effectively enhance the performance of an RBFLN for mineral poten-

tial mapping.

• Because of the non-linear nature of RBFLNs, their output is not likely to

be affected by conditional dependence amongst predictor maps. However,

high dimensionality of input feature vectors may adversely affect the

performance of an RBFLN, particularly if adequately large number of

training samples are not available. Consequently, input predictor maps

should be scrutinized for possible redundancy and suitably preprocessed
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to reduce dimensionality.

• RBFLNs have the capability of recognizing the critical features in a data

set that are required to make a correct classification and of responding

in a highly non-linear fashion, so that the contribution of such features

is maximized in the output.

• RBFLNs can be effectively used for selecting target areas for exploration.

However, in this application, regional-scale predictor maps were used for

demarcating favorability zones in the study area. Radial-basis-functional-

link-net-based models require further testing for modeling larger-scale

predictor maps to demarcate specific prospects within the predicted high

favorability zones.

• The spatial distribution of the high favorability zones is consistent with

the conceptual models of base-metal metallogeny in the province, which

emphasize a strong litho-stratigraphic control over base-metal mineral-

ization (Chapter 2. However, in the present application, the RBFLN was

trained on only SEDEX-type deposits and therefore areas favorable for

VMS-type deposits are not represented in the high favorability zones.

Similar RBFLNs can be trained on VMS-type deposits to demarcate

zones favorable for VMS-type base-metal deposits in the province.

The high performance level of the RBFLN can be attributed to the flexibil-

ity of the neural network and its ability to take into account the input variables

as well as the relationships between them. Furthermore, the neural network

is able to detect patterns and trends in the noisy exploration data sets and to

condition its response so as to maximize the contribution of the patterns that

are critical for making correct classifications.

However, it is purely a data-driven model and therefore the output of the

neural network is entirely dependent on the fidelity of training samples in rep-

resenting the target mineralization. It is not possible to incorporate expert

knowledge in the modeling procedure to compensate for possible deficiencies

in the training data. On the other hand, the knowledge-based fuzzy model de-

scribed in Chapter 3 provides efficient system for using expert knowledge but

offers no mechanism for incorporating exploration data in the modeling proce-

dure. In the next chapter, a hybrid neuro-fuzzy model is described, which con-

sistently utilizes both expert knowledge and exploration data by implementing

a fuzzy inference system in the framework of artificial neural networks.

177





Chapter 7

Hybrid Neuro-fuzzy Model

This chapter describes “A Hybrid Neuro-Fuzzy Model for Mineral Potential

Mapping”(Porwal et al., 2004a). The model implements a Takagi-Sugeno type

fuzzy inference system in a four-layered feed-forward adaptive neural network,

which is demonstrated for application to base-metal potential mapping in the

study area.

7.1 Introduction

Earth science information that is used in mineral potential mapping has an

empirical component comprising an exploration data-base and a conceptual

component comprising an expert knowledge-base. Data-driven approaches

to mineral potential mapping are based on the empirical component whereas

knowledge-driven approaches are based on the conceptual component. How-

ever, the two approaches are generally considered dichotomous and therefore

implemented in mutual exclusion. On the one hand, data-driven approaches

do not support a direct use of conceptual information in modeling procedures,

although it is used for identification of recognition criteria and preprocessing

of input evidential maps. On the other hand, knowledge-driven approaches

do not support a direct use of empirical information in modeling procedures,

although it is used in an inductive way to strengthen knowledge-base. Conse-

quently, a significant proportion of available earth science information remains

under-utilized in both types of approaches to mineral potential mapping.

Optimal utilization of earth science information requires a supplementary

as well as a complementary utilization of the conceptual and empirical compo-
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nents. There are several methods available, which allow a supplementary use

of conceptual information in a data-driven approach. For example, Porwal et

al. (2003a) proposed a data-driven fuzzy approach, which uses a knowledge-

based inference engine for combining fuzzified evidential maps (Chapter 3).

Similarly, in the data-driven weights-of-evidence approach, a mineral deposit

expert can use his knowledge to assign ‘expert weights of evidence’ to patterns

that contain few or no training points.

Cheng and Agterberg (1999) proposed a fuzzy weights-of-evidence approach

that, in a hybrid form, allows a complementary utilization of both empirical

and conceptual information. In the hybrid fuzzy weights-of-evidence approach,

knowledge-based fuzzy membership values are combined with data-based con-

ditional probabilities to derive fuzzy weights of evidence and fuzzy posterior

probabilities (Chapter 5).

The hybrid neuro-fuzzy model described in this chapter effectively combines

the conceptual and empirical components of available earth science information

for predictive mineral potential mapping. The model, which can be viewed as

a knowledge-based artificial neural network, develops and implements a fuzzy

inference system in the framework of adaptive neural networks.

Mineral potential mapping of an area involves predictive classification of

each spatial unit having a unique combination of spatially-coincident predictor

patterns (unique conditions) as mineralized or barren with respect to the target

mineral deposit type. In the hybrid neuro-fuzzy approach, each unique condi-

tion is considered an input feature vector, whose components are derived by

expert-knowledge-based ordinal encoding of the constituent predictor patterns.

A subset of feature vectors with known targets (i.e., unique conditions known

to be associated with either a mineralized or a barren location) is extracted

from the set of all feature vectors and is used as a set of training samples.

Components of training feature vectors are fuzzified using appropriate fuzzy

membership functions and combined using fuzzy if-then rules in a fuzzy in-

ference system. The parameters of the fuzzy inference system are iteratively

modified to map each training sample to its target. The fuzzy inference system

that produces the best mapping is used to fuzzify and combine the components

of all feature vectors. The output predictive classification value, for each fea-

ture vector, indicates the extent to which the feature vector belongs to either

the mineralized class or the barren class. These values can be mapped to gen-

erate a favorability map for the target mineral deposit type.
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7.2 Hybrid Neuro-Fuzzy Model

A fuzzy inference system simulates human cognition in modeling the concep-

tual component of information by employing fuzzy membership functions and

fuzzy if-then rules. Several fuzzy inference systems have been described by

different workers (Zadeh, 1973; Mamdani, 1974; Mamdani and Assilian, 1975;

Tsukamoto, 1979; Takagi and Sugeno, 1985; Sugeno and Kang, 1988; Sugeno

and Tanaka, 1991) but the most commonly-used are Mamdani type (Mam-

dani, 1974; Mamdani and Assilian, 1975) and Takagi-Sugeno type, which is

also known as Takagi-Sugeno-Kang type (Takagi and Sugeno, 1985; Sugeno

and Kang, 1988; Sugeno and Tanaka, 1991). In the case of a Mamdani type

fuzzy inference system, both premise (if) and consequent (then) parts of a fuzzy

if-then rule are fuzzy propositions. In the case of a Takagi-Sugeno type fuzzy

inference system, where the premise part of a fuzzy rule is a fuzzy proposition,

the consequent part is a mathematical function, usually a zero or first degree

polynomial function.

The hybrid neuro-fuzzy model for mineral potential mapping described

here is a Takagi-Sugeno type fuzzy inference system, which is implemented in

the framework of adaptive neural networks. It is an adaptation of “adaptive-

network-based fuzzy inference system” (ANFIS; Jang, 1993) for mineral po-

tential mapping.

7.2.1 Theoretical background

If X is a superset of n multi-class predictor maps Xi (i=1 to n), each containing

m patterns, then the strength of xij , the jth (j=1 to m) pattern on the ith

predictor map Xi, as an indicator of a target mineral deposit-type can be

estimated in terms of class score (csij), which is defined as (Porwal et al.,

2003a):

csij = wi × wij (∀ xij ∈ Xi), (7.1)

where wi is the map weight of the ith predictor map and wij is the class weight

of the jth pattern on the ith predictor map. The procedure for assigning class

weights and map weights is described by Porwal et al. (2003a) and given in

Chapter 3 (p. 69).

Based on the class scores of predictor patterns, n fuzzy sets Ã1
i (i=1 to n)

in X , containing ‘favorable indicators of target mineral deposit-type,’ can be
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defined as:

Ã1
i =

{(

xij , µÃ1
i
(xij)

)

∀xij ∈ Xi

}

, (7.2)

where the fuzzy membership function µÃ1
i

for estimating the fuzzy membership

value of xij in Ã1
i is defined as:

µÃ1
i
(xij) = e

−(csij−ci1)2

2σ2
i1 (∀xij ∈ Xi), (7.3)

where ci1 (i=1 to n) and σi1 (i=1 to n) are the parameters that, respectively,

define the center and the spread of the Gaussian function and csij is the class

score of xij (Equation 7.1).

Similarly, n fuzzy sets Ã2
i (i=1 to n) in X , containing ‘unfavorable indica-

tors of target mineral deposit-type,’ can be defined as follows:

Ã2
i =

{(

xij , µÃ2
i
(xij)

)

∀xij ∈ Xi

}

, (7.4)

where the fuzzy membership function µÃ2
i

for estimating the fuzzy membership

value of xij in Ã2
i is defined as:

µÃ2
i
(xij) = e

−(csij−ci2)2

2σ2
i2 (∀xij ∈ Xi), (7.5)

where ci2 (i=1 to n) and σi2 (i=1 to n) are the parameters that, respectively,

define the center and the spread of the Gaussian function and csij is the class

score of xij (Equation 7.1).

In the context of a hybrid neuro-fuzzy model, each unique combination of

spatially-coincident predictor patterns (‘unique conditions,’ see Chapter 1, p.

6) is considered a vector of predictor features (or a feature vector). Because

each predictor map is represented by one, and only one, pattern in a feature

vector, the number of components (or dimensions) of the feature vector is equal

to the number of predictor maps. The favorability of a feature vector with re-

spect to target mineral deposit-type is estimated as follows.

Consider, for simplicity, a two-dimensional feature vector T = [x1j , x2j ],

where x1j and x2j are the patterns representing, respectively, the predictor

maps X1 and X2 in the feature vector. The membership values of x1j in the

fuzzy sets Ã1
1 and Ã2

1 are estimated using the fuzzy membership functions µÃ1
1

(Equation 7.3) and µÃ2
1

(Equation 7.5), respectively. Similarly, the member-

ship values of x2j in the fuzzy sets Ã1
2 and Ã2

2 are estimated using the fuzzy
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membership functions µÃ1
2

(Equation 7.3) and µÃ2
2

(Equation 7.5), respectively.

The favorability of T with respect to target mineral deposit-type is derived by

combining the fuzzy membership values of x1j in Ã1
1 and Ã2

1 and those of x2j in

Ã1
2 and Ã2

2 using a Takagi-Sugeno type fuzzy inference system based on fuzzy

if-then rules (Jang and Sun, 1995; Jang, 1993).

A typical fuzzy if-then rule in a generalized Takagi-Sugeno type fuzzy in-

ference system has the following form (Jang and Sun, 1995):

IF x is a AND y is b THEN z = f(x, y)

where x and y are input variables, a and b are fuzzy membership values of

x and y, respectively, in the antecedent part of the fuzzy if-then rule and

z = f(x, y) is a crisp function in the consequent part of the rule. Usually,

f(x, y) is a polynomial in the input variables x and y, but it can be any function

as long as it can appropriately describe the output of the system (Jang and Sun,

1995). When f(x, y) is a first-order polynomial, the resulting fuzzy inference

system in called a first-order Takagi-Sugeno type fuzzy inference system (Jang

and Sun, 1995), which was originally proposed by Takagi and Sugeno (1985).

When f(x, y) is a constant, the resulting fuzzy inference system in called a

zero-order Takagi-Sugeno type fuzzy inference system (Jang and Sun, 1995).

The higher the order of the polynomial function in a fuzzy inference system,

the larger is the number of the function parameters and, consequently, the

larger is the number of training samples required for a robust estimation of

these parameters. Therefore, the order of a fuzzy inference system used in an

application is largely determined by the number of available training samples.

In the case of the feature vector T , there are two input predictor patterns,

x1j and x2j , and four membership functions, µÃ1
1
, µÃ2

1
, µÃ1

2
and µÃ2

2
, which

can be combined using a first-order Takagi-Sugeno type fuzzy inference system

based on the following fuzzy if-then rules:

1. IF x1j is µÃ1
1
(x1j) AND x2j is µÃ1

2
(x2j) THEN F1 = P10+P11x1j+P12x2j ,

2. IF x1j is µÃ1
1
(x1j) AND x2j is µÃ2

2
(x2j) THEN F2 = P20+P21x1j+P22x2j ,

3. IF x1j is µÃ2
1
(x1j) AND x2j is µÃ1

2
(x2j) THEN F3 = P30+P31x1j+P32x2j ,

4. IF x1j is µÃ2
1
(x1j) AND x2j is µÃ2

2
(x2j) THEN F4 = P40+P41x1j+P42x2j ,

where Pki (k = 1 to 4, i = 0 to 2) is the parameter of the polynomial function

in the consequent part of the kth fuzzy if-then rule.
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The above fuzzy inference system is characterized by four fuzzy if-then

rules, each of which contains, in the consequent part, a first-order polynomial

function characterized by three parameters. Therefore, a first-order Takagi-

Sugeno type fuzzy inference system with two input predictor maps and two

fuzzy membership functions for each map results in 22(= 4) fuzzy if-then rules

and 22(2 + 1)(= 12) function parameters. In general, a first-order Takagi-

Sugeno type fuzzy inference system with n predictor maps and 2n fuzzy mem-

bership functions contains 2n fuzzy if-then rules and 2n(n + 1) function pa-

rameters. Even for a moderately-large n, robust estimation of the function

parameters would require a large number of training samples of known mineral

deposits, which may not always be available. In such cases, it is preferable to

use a zero-order Takagi-Sugeno type fuzzy inference system, which, in the case

of the feature vector T , comprises the following fuzzy if-then rules:

1. IF x1j is µÃ1
1
(x1j) AND x2j is µÃ1

2
(x2j) THEN F1 = P1,

2. IF x1j is µÃ1
1
(x1j) AND x2j is µÃ2

2
(x2j) THEN F2 = P2,

3. IF x1j is µÃ2
1
(x1j) AND x2j is µÃ1

2
(x2j) THEN F3 = P3,

4. IF x1j is µÃ2
1
(x1j) AND x2j is µÃ2

2
(x2j) THEN F4 = P4,

where Pk (k = 1 to 4) is the parameter of the constant function in the con-

sequent part of the kth fuzzy if-the rule. The number of function parameters

is reduced to 22(= 4) for the zero-order Takagi-Sugeno fuzzy inference system

from 22(2 + 1)(= 12) for the first-order Takagi-Sugeno fuzzy inference system.

In general, a zero-order Takagi-Sugeno type fuzzy inference system with n pre-

dictor maps and 2n fuzzy membership functions contains 2n fuzzy if-then rules

and 2n function parameters.

The firing strengths si (i = 1 to 4) of the above fuzzy if-then rules are

calculated using prod t-norm operator as follows (Jang, 1993):

s1 = µÃ1
1(x1j)

× µÃ1
2(x2j)

,

s2 = µÃ1
1(x1j)

× µÃ2
2(x2j)

,

s3 = µÃ2
1(x1j)

× µÃ1
2(x2j)

,

s4 = µÃ2
1(x1j)

× µÃ2
2(x2j)

. (7.6)

As a matter of fact, other t-norm operators that perform generalized AND can

also be used for combining the fuzzy membership values in order to determine
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the firing strengths of the fuzzy if-then rules (Jang, 1993). The output, Ok, of

the kth (k = 1 to 4) fuzzy if-then rule is:

Ok = sk · Fk, (7.7)

where Fk (k = 1 to 4) is the value of the function in the consequent part of

the kth fuzzy if-then rule. The overall output of the fuzzy inference system is

the weighted average of the output of all the four fuzzy if-then rules:

Overall Output =

∑4
k=1 Ok

∑4
k=1 sk

. (7.8)

The overall output is a measure of combined favorability of the feature vector

T with respect to a target mineral deposit-type.

The above procedure can be easily extended for estimating the favorability

of a feature vector comprising more than two predictor maps.

In a simple Takagi-Sugeno type fuzzy inference system, the parameters

of fuzzy membership functions and consequent polynomial functions are es-

timated heuristically. However, in a hybrid neuro-fuzzy model, an ANFIS is

used for estimating these parameters (Jang, 1993; Jang and Sun, 1995).

7.2.2 Architecture of adaptive neuro-fuzzy inference system

The basic architecture of an ANFIS comprises a Takagi-Sugeno type fuzzy

inference system in a five-layer feed-forward network (Jang, 1993). Fig. 7.1

shows the simplified four-layer ANFIS architecture used in a hybrid neuro-

fuzzy model for mineral potential mapping. The basic functionality of each

layer is summarized in the following paragraphs.

Layer 1. There are 2n (=the number of fuzzy sets defined in the superset X)

nodes in this layer. One half of the nodes (= n) contain the adaptive Gaussian

fuzzy membership function defined in Equation 7.3, each of which receives one

component (a predictor pattern xij encoded as a class score csij) of an incoming

n-dimensional feature vector and returns its membership value in the fuzzy set

Ã1
i (i = 1 to n) containing ‘favorable indicators of target mineral deposit-

type’. The other half of the nodes (= n) contain the adaptive Gaussian fuzzy

membership function defined in Equation 7.5, each of which also receives one

component of the incoming feature vector and returns its membership value

in the fuzzy set Ã2
i (i = 1 to n) containing ‘unfavorable indicators of target
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Figure 7.1: Simplified ANFIS for mineral potential mapping. Square and circular
nodes contain, respectively, adaptive and fixed functions.

mineral deposit-type’. The parameters c and σ, which control the shape of a

node function, and therefore output fuzzy membership values, are referred to

as premise parameters (Jang, 1993).

Layer 2 Each of the 2n (=the number of fuzzy if-then rules) nodes in this

layer contains a prod t-norm operator as a node function, which synthesizes

information transmitted by Layer 1 and returns a firing strength for each of

the fuzzy if-then rules (cf. Equation 7.6):

sk = µÃq
1
(x1j)× µÃq

2
(x2j)× ...× µÃq

n
(xnj), (7.9)

where q = 1 or 2, depending on whether µÃq
i

defines fuzzy membership value

of xij in the fuzzy set Ã1
i or in the fuzzy set Ã2

i (i = 1 to n). The output of

each node is the normalized firing strength s̄k (k = 1 to 2n) of the kth fuzzy

if-then rule given by:

s̄k =
sk

∑2n

k=1 sk

. (7.10)
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Layer 3 Each of the 2n (=the number of fuzzy if-then rules) nodes in this

layer contains the following adaptive function:

Ok = s̄k · Fk = s̄k(Pk0 + Pk1x1j + Pk2x2j + .... + Pknxnj), (7.11)

where Ok is the output of the kth fuzzy if-then rule. The parameters Pki (k = 1

to 2n, i=0 to n) are referred to as consequent parameters (Jang, 1993). In the

case of a zero-order Takagi-Sugeno type fuzzy inference system, Fk = Pk0.

Layer 4 The single node in this layer synthesizes information transmitted by

Layer 3 and returns the overall output using the following fixed function:

Overall Output =
2n
∑

k=1

Ok (7.12)

7.2.3 Hybrid learning algorithm

Assuming that an ANFIS has two input variables, x1 and x2, the overall output

is (Equations 7.11 and 7.12):

O1 + O2 = s̄1(P10 + P11x1 + P12x2) + s̄2(P20 + P21x1 + P22x2)

= (s̄1)P10 + (s̄1x1)P11 + (s̄1x2)P12 + (s̄2)P20 + (s̄2x2)P21 + (s̄2x2)P22,

(7.13)

which is linear in the consequent parameters Pki, if the premise parameters

and, therefore, the firing strengths sk of the fuzzy if-then rules are fixed. AN-

FIS uses a hybrid learning procedure (Jang and Sun, 1995) for estimation of

the premise and consequent parameters. The hybrid learning procedure esti-

mates the consequent parameters (keeping the premise parameters fixed) in a

forward pass and the premise parameters (keeping the consequent parameters

fixed) in a backward pass. In the forward pass, the information propagates

forward until Layer 3 where the consequent parameters are estimated by the

least square estimator method. In the backward pass, the error signals propa-

gate backwards and the premise parameters are updated by a gradient descent

method. The following description of the hybrid learning procedure is drawn

from Jang (1993) and Jang and Sun (1995).
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Forward pass: Least square estimator method.

For 2n fuzzy if-then rules and Q n-dimensional training vectors (where n is the

number of input predictor maps), Equation 7.13 can be expressed as:

B = AX (7.14)

where B is a column vector containing output values of training vectors, A is

a matrix containing one row for each training vector and X is an unknown

vector whose elements are the consequent parameters Pki. As the number of

consequent parameters is 2n(n + 1)(= M , say), the dimensions of A, X and B

are Q×M , M × 1 and Q× 1, respectively.

A least square estimate of X, denoted by X∗, can be used to minimize

squared error ‖AX-B‖2. It can be computed as below:

X∗ = (AT A)−1AT B, (7.15)

where AT is the transpose of A and (AT A)−1 AT is the pseudo-inverse of A,

if AT A is non-singular. The above equation is expensive in computation when

dealing with matrix inversion and, more over, becomes ill-defined if AT A is

singular. ANFIS uses a recursive least-square method for estimating X as

follows.

If aT
q is the qth row vector of A and bT

q is the qth element of B, then X can

be calculated iteratively as follows:

Xq+1 = Xq +
∑

q+1 aq+1(b
T
q+1 − aT

q+1Xq) (7.16)

∑

q+1 =
∑

q

−

∑

q aq+1a
T
q+1

∑

q

1 + aT
q+1

∑

q aq+1
(for q = 0, 1, ..., Q− 1), (7.17)

where
∑

is called covariance matrix and the least square estimate X∗ is equal

to Xq. The initial conditions are X0 = 0 and
∑

0 = γI, where γ is a large

positive number and I is an identity matrix of M ×M dimensions.

Backward pass: Back-propagation method

Premise parameters of ANFIS are estimated iteratively by using a modified

back-propagation learning rule (Rumelhart et al., 1986) along with the chain

rule as follows. In Equation 7.14, if the estimated output of the qth row vector,

aq, of the matrix A is oq and the actual output is bq, the qth element of B, then
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an error margin for the qth training vector aq can be defined as:

Eq = (bq − oq)
2. (7.18)

If Eq is zero, then the actual output exactly matches the estimated output.

Thus, the objective is to minimize an overall error measure, which is defined

as
∑Q

q=1 Eq, where Q is the total number of training vectors.

In order to use the gradient descent method to minimize the error measure,

a gradient vector is required to be calculated. It should be noted that a small

change in the premise parameters (c or σ) will affect the output of the node

containing the parameters, which, in turn, will affect the output of the single

node in Layer 4 and, hence, the error measure will also change. Therefore in

order to calculate the gradient vector of the parameters, a form of derivative

information has to be passed, starting from Layer 4 and travelling back to

Layer 1.

An error signal, ε(l,i), can be defined as the ordered derivative (Werbos,

1974) of the error measure Eq with respect to the output of node i in Layer l

(l = 1 to 4) as follows:

εl,i =
∂+Eq

∂o(l,i)
, (7.19)

where o(l,i) is the output of the ith node of Layer l.

The error signal for the single output node of Layer 4 can be calculated as:

ε4 =
∂+Ep

∂o(4,1)
=

∂Ep

∂o(4,1)
, = −2(bq − oq).

For the ith node of the (non-output) Layer l (l = 1 to 3), the error signal

can be derived using the chain rule:

ε(l,i) =
∂+E

∂o(l,i)
=

N(l+1)
∑

m=1

∂+E

∂o(l+1,m)

∂f(l+1,m)

∂o(l,i)
(7.21)

=

N(l+1)
∑

m=1

ε(l+1,m)

∂f(l+1,m)

∂o(l,i)
,

where N(l+1) is the number of nodes in Layer (l + 1), o(l+1,m) is the output of

the mth node in Layer (l +1), f(l+1,m) is the nodal function of the mth node in

Layer (l + 1), o(l,i) is the output of the ith node in Layer l and ε(l+1,m) is the
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error signal at the mth node of Layer (l + 1). In other words, the error signal

of an internal node at Layer l can be expressed as a linear combination of the

error signal of the nodes at Layer (l+1). Therefore, for the ith node of Layer

1, the error signal, ε(1,i), can be obtained by first applying Equation 7.20 once

to get error signals at the Layer 4 and then applying Equation 7.21 iteratively

until Layer 1 is reached.

Because the consequent parameters are fixed in the backward pass, the

gradient vector is defined as the derivative of the error measure with respect

to each of the two premise parameters, c and σ, which reside in the nodes of

Layer 1. The chain rule is applied to determine the gradient vectors as follows:

∂+Ep

∂ci
=

∂+Ep

∂o(1,i)

∂µ1,i

∂ci
= ε(1,i)

∂µ(1,i)

∂ci
(7.22)

and
∂+Ep

∂σi
=

∂+Ep

∂o(1,i)

∂µ1,i

∂σi
= ε(1,i)

∂µ(1,i)

∂σi
. (7.23)

In the above equations, ci and σi are, respectively, center and spread of the

gaussian membership function µ(1,i) in the ith node of layer 1.

The derivative of the overall error measure E with respect to ci is:

∂+E

∂ci
=

Q
∑

q=1

∂+Eq

∂ci
=

Q
∑

q=1

ε(1,i)

∂µ(1, i)

∂ci
, (7.24)

where Q is the total number of training vectors. The update expression for the

parameter ci is given by:

4ci = −η
∂+E

∂ci
, (7.25)

where η is the learning rate, which can be expressed as follows:

η =
κ

√

∑N(1)
i=1 (∂E

∂c )2
, (7.26)

where N(1) is the total number of nodes in Layer 1 and κ is the step size or

the length of each transition along the gradient direction in parameter space.

Similarly, the derivative of the overall error measure E with respect to σi

is:

∂+E

∂σi
=

Q
∑

q=1

∂+Eq

∂σi
=

Q
∑

q=1

ε(1,i)

∂µ(1, i)

∂σi
, (7.27)
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where Q is the total number of training vectors. The update expression for the

parameter σi is given by:

4σi = −η
∂+E

∂σi
, (7.28)

where η is the learning rate, which can be expressed as follows:

η =
κ

√

∑N(1)
i=1 (∂E

∂σ )2
, (7.29)

where N(1) is the total number of nodes in Layer 1 and κ is the step size or

the length of each transition along the gradient direction in parameter space.

The above learning procedures were implemented using the software and

procedure described by Jang and Gulley (1995).

7.3 Implementation of Hybrid Neuro-fuzzy Model

7.3.1 Data preprocessing

Curse of dimensionality

For a robust estimation of model parameters of an ANFIS, the number of train-

ing samples should be several times larger than the number of model parame-

ters. However, as the dimensionality of feature space rises, the number of fuzzy

if-then rules and, hence, the number of model parameters rises exponentially.

For an n-dimensional feature space, 2n fuzzy if-then rules are required for the

construction of an adequate fuzzy inference system and therefore 2n × (n + 1)

consequent parameters are required to be estimated. For example, if the di-

mensionality of feature space is 1, the number of consequent parameters in

the fuzzy inference system are 4; however, if the dimensionality of the feature

space rises to 2, the number of consequent parameters in the fuzzy inference

system rises six times to 12. Consequently, the number of training samples

required for a robust estimation of model parameters also rises exponentially

with an increase in the dimensionality of feature space. Training an ANFIS on

insufficient number of training samples can lead to poor estimations of model

parameters and hence lower the generalization capabilities of the ANFIS.

The problem can be addressed by (a) by reducing the dimensions of input

data or (b) by using a zero-order Takagi-Sugeno type fuzzy inference system,

which reduces the number of consequent parameters from 2n(n + 1) to 2n (see

Section 7.2.1) or (c) by using a combination of (a) and (b).
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In an application of ANFIS to mineral potential mapping, if an adequately

large number of training samples (i.e., known mineral deposits) are not avail-

able, the available predictor maps should be carefully scrutinized, and on the

basis of a priori conceptual-genetic information on the target mineral deposit-

type, only the most relevant maps should be selected for modeling. It is also

possible to use statistical tools like principal component analysis and factor

analysis to reduce the dimensionality of input data.

Data encoding

For adaptive neurofuzzy processing in an ANFIS, each input predictor pattern

is encoded as a class score, which is calculated using Equation 7.1 and the

knowledge-based ranking procedure described by Porwal et al. (2003a) and

given in Chapter 3 (p. 69). This type of encoding is intuitive, simple, objective

and, at the same time, easily interpretable.

Feature vectors

In the context of ANFIS, each unique condition is considered a feature vector

and a unique condition map is considered a feature vector map (Chapter 6, p.

163). However, each component of a feature vector is defined by an ordinal

class score. In an N -dimensional feature space, the location of each feature

vector is defined by the class-score values of its N components.

Target, training and validation Vectors. Target vectors define output

vectors to which input feature vectors are mapped by an ANFIS. Input feature

vectors with known target vectors constitute training samples for an ANFIS.

Validation samples also have known target vectors, but are used exclusively

for validating the training of an ANFIS.

In mineral potential mapping, there is only one single-dimensional binary

target vector, encoded as 1 or 0, which represents presence or absence, respec-

tively, of a mineral deposit. The feature vectors defined by presence or by

absence of a mineral deposit constitute training and validation samples. The

feature vectors that are defined by presence of a mineral deposit are referred to

as deposit training/validation samples and those defined by absence of mineral

deposits are referred to as non-deposit training/validation samples. The pro-

cedures for selecting training and validation samples are described in Chapter

6 (p. 163).
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7.3.2 Training of adaptive neuro-fuzzy inference system

The training of an ANFIS involves estimating the values of the premise and

the consequent parameters, which map input training samples to their targets

with a minimum total sum of squared error. However, the total sum of squared

error may decrease indefinitely as a result of the onset of a specialized train-

ing on noisy training samples with increasing number of training epochs. The

specialized training generates a fuzzy inference system that is overlearnt on

training samples and therefore has poor generalization capabilities. In order

to avoid specialized training, an early stopping procedure (Wang et al., 1994)

is used, which involves monitoring the total sum of squared error for an inde-

pendent set of validation samples at the end of each training epoch and halting

the training when it converges to a minimum.

7.4 Application to Base-Metal Potential Mapping in

Aravalli Province

7.4.1 Data preprocessing

The predictor maps used in the application of the hybrid neuro-fuzzy model to

base-metal potential mapping in the study area included the multi-class predic-

tor maps of lithologies and stratigraphic groups, and the binary predictor maps

of mafic igneous rocks, buffered distances from regional lineaments, buffered

distances from NW-trending lineaments, buffered distances from NE-trending

lineaments and buffered distances from fold axes. These are the same maps

that were used in the weights-of-evidence and neural network applications de-

scribed in Chapter 4 and Chapter 6, respectively.

Data encoding: Computation of class Scores

The class scores of the predictor patterns were calculated from class weights

and map weights (Equation 7.1), which were assigned subjectively using the

knowledge-based ranking procedure described by Porwal et al. (2003a). The

detailed rationale for the ranking of the predictor maps and individual patterns

is given in Chapter 3 (pp. 75-79). For each predictor map, the class scores

of ‘missing patterns’ were derived by taking an area-weighted average of class

scores of all patterns. The class weights, map weights and class scores for

the input predictor maps are given in Table 7.1. Each predictor pattern was
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encoded as a class score for the subsequent adaptive neuro-fuzzy processing.

Feature vectors

The seven predictor maps encoded as class scores were digitally-superposed

and unique combinations of the predictor patterns in a unit area of 1 km2

were mapped to generate a map constituting 1562 feature vectors. As the

operation was carried out in a GIS-environment, an associated database was

automatically generated, which held the components of the feature vectors. In

the table, each 7-dimensional feature vector is described by a unique identifi-

cation number and seven numeric components, each representing a predictor

map encoded as a class score.

Training and validation vectors. The deposit training samples and de-

posit validation samples were selected on the basis of the same training and

validation deposits that were used, respectively, for training and validating the

neural network model (Chapter 6). The feature vectors spatially-coincident

with the locations of the 40 training and 14 validation deposits were extracted

to generate deposit training and deposit validation samples, respectively. As

some feature vectors contained more than one deposit, a total of 36 deposit

training samples and 12 deposit validation samples were generated.

For generating non-deposit training and non-deposit validation samples, the

procedure described in Chapter 6 (p. 163) was used. At least 2 non-deposit

locations, which were modeled by the weights-of-evidence analysis as having

the lowest posterior probability of hosting base-metal deposits, were extracted

from each of the 35 predictor patterns. Of these, 1 location was randomly ex-

tracted as non-deposit training points and the remaining locations were used

as non-deposit validation points. The feature vectors spatially-coincident with

the non-deposit training and non-deposit validation points were extracted to

generate non-deposit training and non-deposit validation samples, respectively.

To balance the number of deposit and non-deposit vectors in the training set,

one non-deposit validation vector was randomly selected and shifted from the

validation set to the training set.

The deposit and non-deposit training vectors were combined to generate

a set of 72 training samples and the deposit and non-deposit validation vec-

tors were combined to generate a set of 57 validation samples. Because there

are 1562 feature vectors in this case as compared to 519 in the case of the

RBFLN application, fewer feature vectors contain more than one deposit or
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Table 7.1: Map weights, class weights and class scores

Predictor map/Pattern Map weight Class weight Class score
Predictor map of lithology
1 Dolomite/dolomitic Marble 10 10 100
2 Calc-silicates 10 9 90
3 Graphic meta-pelites 10 8 80
4 Magnetite quartzite 10 7 70
5 Calc-schist/calc-gneiss 10 5 50
6 Quartzite/Arkose/Conglomerate 10 4 40
7 Migmatite/Gneisses 10 2 20
8 Not related to base metals 10 1 10
9 Missing Patterns 10 2.000 20
Predictor map of stratigraphy
1 Rajpura-Dariba group 9 10 90
2 Pur-Banera group 9 9 81
3 Debari groups 9 8 72
4 Nathdwara group 9 7 63
6 Udaipur group 9 5 45
7 Jharol group 9 4 36
8 Sandmata Complex 9 3 27
9 Mangalwar Complex 9 2 18
10 Not related to base metals 9 1 9
11 Missing Patterns 9 2.778 25
Predictor map of mafic igneous rocks
1 Mafic volcanic rocks 8 10 80
2 Not related to base metals 8 1 8
3 Missing Patterns 8 2.125 17
Predictor map of buffered distances from regional lineaments
1 0-5.5 km 8 10 80
2 >5.5 km 8 1 8
3 Missing Patterns 8 4.875 39
Predictor Map of Buffered Distances from NW-trending Lineaments
1 0-3 km 6 10 60
2 >3 km 6 1 6
3 Missing Patterns 6 5.000 30
Predictor map of buffered distances from NE-trending lineaments
1 0-5 km 6 10 60
2 >5 km 6 1 6
3 Missing Patterns 6 5.000 30
Predictor map of buffered distances from fold axes
1 0-1.25 km 7 10 70
2 >1.25 km 7 1 7
3 Missing Patterns 7 2.286 16
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non-deposit, and therefore there are more training and validation samples in

this application.

Reduction of dimensionality of input data: Factor analysis

A first-order Takagi-Sugeno-type ANFIS, which is capable of processing 7-

dimensional input feature vectors, will contain 1024 consequent parameters

and 28 premise parameters (see further above). A prohibitively-large number

of training samples will be required for a robust estimation of such a large

number of parameters. As discussed above, the number of parameters can be

significantly reduced by using a zero-order Takagi-Sugeno-type fuzzy inference

system. However, a zero-order Takagi-Sugeno-type ANFIS that is capable of

processing 7-dimensional input feature vectors, will still contain 128 consequent

parameters and 28 premise parameters. The number of parameters will still

be too high to be robustly estimated using the 72 available training samples.

It was therefore decided to use statistical tools for reducing the dimensionality

of input feature vectors.

A principal components approach (Davis, 1986) was used for the factor

analysis of the original set of 1562 seven-dimensional feature vectors. This

involved (a) creation of a correlation matrix for the set of all feature vectors,

(b) an eigenanalysis of the correlation matrix for extraction of seven eigenvec-

tors (or factors) and eigenvalues, (c) retention of the first three factors, whose

eigenvalues are more than 1 (i.e., the factors that contain more variance than

the seven original standardized variables) and (d) rotation of the three factors

using the varimax method with Kaiser normalization (Davis, 1986).

The contribution made by each of the seven predictor maps to each ro-

tated factor can be estimated from the rotated factor matrix (Table 7.2). The

major contributors to the first factor are the predictor maps of lithology and

stratigraphy, which represent the primary controls of base-metal mineraliza-

tion in the Aravalli province (recognition criteria 1 and 2; Chapter 2, p. 47).

The major contributors to the second rotated factor are the predictor maps

of mafic igneous rocks and buffered NE-trending lineaments, which represent,

respectively, the heat sources for circulation of exhalative brines (recognition

criterion 4, Chapter 2; p. 47) and favorable structures (recognition criterion

5, Chapter 2; p. 47). The major contributors to the third rotated factor

are the predictor maps of buffered regional lineaments (representing favorable

structural conduits for heat sources and hydrothermal discharge; recognition

criterion 5, Chapter 2; p. 47) and buffered NW-trending lineaments and fold
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Table 7.2: Rotated factor matrix showing loadings of Predictor maps

Factor(eigenvalue)
Predictor map 1(1.537) 2(1.034) 3 (1.010)
Lithologies 0.824 -0.00781 -0.128
Stratigraphic groups 0.742 0.147 0.178
Mafic igneous rocks 0.121 0.678 0.166
Buffered regional lineaments 0.286 0.322 -0.555
Buffered NW-lineaments 0.192 0.176 0.792
Buffered NE-lineaments -0.00612 0.72 -0.132
Buffered fold axes 0.0037 0.00085 0.503

axes (representing favorable structures- recognition criterion 5; Chapter 2, p.

47). The rotated factors are therefore interpreted to represent all the five sig-

nificant recognition criteria for base-metal deposits in the Aravalli province.

Subsequently, the original seven components (predictor maps encoded as

class scores) of each of the 1562 feature vectors were replaced by three compo-

nents (rotated factors) to generate a transformed set of 1562 three-dimensional

feature vectors.

7.4.2 Construction of adaptive neuro-fuzzy inference system

Based on the prototypical ANFIS for mineral potential mapping described

above, an ANFIS was constructed with a network topology of 6-8-8-1 (Fig. 7.2).

Layer 1

As a result of factor analysis and rotation, the two fuzzy sets Ã1 and Ã2 (Equa-

tions 7.2 and 7.4) are now defined in terms of rotated factor scores and not

class scores. Accordingly, the adaptive node functions given in Equations 7.3

and 7.5 are, respectively, modified as follows:

µÃ1
vi

= e

−(fj−ci1)2

2σ2
i1 (∀vi ∈ Vj), (7.30)

and

µÃ2
vi

= e

−(fj−ci2)2

2σ2
i2 (∀vi ∈ Vj), (7.31)

where fj is the rotated factor score of the ith component vi (i=1 to 3) of the

jth feature vector Vj .

Layer 1 contains six nodes, of which three nodes return a fuzzy membership
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Figure 7.2: ANFIS with network topology of 6-8-8-1 for mapping base-metal potential
in study area. Hollow square and hollow circles are, respectively, adaptive and fixed
nodes.
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value for each component of an input feature vector in Ã1 and three nodes

return a fuzzy membership value of each component of an input feature vector

in Ã2. Because each node contains a Gaussian function characterized by two

parameters, there are in all 12 premise parameters to be estimated in this layer.

Layer 2

The ANFIS is based on the following eight zero-order Takagi-Sugeno type fuzzy

if-then rules:

1. IF v1 is unfavorable AND v2 is unfavorable AND v3 is unfavorable

THEN output is P10

2. IF v1 is unfavorable AND v2 is unfavorable AND v3 is favorable

THEN output is P20

3. IF v1 is unfavorable AND v2 is favorable AND v3 is unfavorable

THEN output is P30

4. IF v1 is unfavorable AND v2 is favorable AND v3 is favorable

THEN output is P40

5. IF v1 is favorable AND v2 is unfavorable AND v3 is unfavorable

THEN output is P50

6. IF v1 is favorable AND v2 is unfavorable AND v3 is favorable

THEN output is P60

7. IF v1 is favorable AND v2 is favorable AND v3 is unfavorable

THEN output is P70

8. IF v1 is favorable AND v2 is favorable AND v3 is favorable

THEN output is P80

The firing strengths of the above fuzzy if-then rules are computed in Layer 2.

The layer contains eight fixed nodes, one for each fuzzy if-then rule. Every node

contains a prod t-norm operator, which computes and returns a normalized

firing strength (Equations 7.9 and 7.10) for a corresponding fuzzy if-then rule.
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Layer 3

This layer contains eight adaptive nodes, one for each fuzzy if-then rule. Each

node computes the output of a fuzzy if-then rule using the following function:

Ok = s̄k × Pk0 (k = 1 to 8), (7.32)

The total number of consequent parameters to be estimated in this layer is 8.

Layer 4

The single fixed node in this layer sums the output of Layer 3 and returns an

overall output for an input feature vector as follows:

Overall Output =
8

∑

k=1

Ok (7.33)

7.4.3 Training of adaptive neuro-fuzzy inference system

The ANFIS on the training data for 100 epochs using the hybrid learning algo-

rithm, and monitored the total sum of squared error for the validation samples

at the end of each epoch. The total sum of squared error for validation samples

converged to a minimum of 0.194 at the end of 70 training epochs (Fig. 7.3).

Therefore the adaptive neuro-fuzzy inference system was trained for 70 epochs

to estimate the values of the premise parameters and consequent parameters.

The trained Takagi-Sugeno type fuzzy inference system was used for a pre-

dictive classification all 1562 feature vectors.

7.4.4 Favorability maps

The output predictive classification value for each feature vector predicts the

extent to which the feature vector belongs to either the class that contains

base-metal deposits or the class that does not contain a base-metal deposit and

therefore can be interpreted as a measure favorability of the feature vector with

respect to base-metal mineralization in the study area. The predictive classifi-

cation values, which ranged from −0.1133 to 1.0248, were rescaled between 0

and 1 and mapped to generate a continuous-scale predictive classification map

(Fig. 7.4). Fig. 7.5 shows the plot of predictive classification values against

cumulative percent area.
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Figure 7.3: Number of training epochs versus total sum of squared error for training
vectors (curve A) and validation vectors (curve B).

It is difficult to interpret the continuous-scale predictive classification map

for demarcating target areas for base-metal exploration. The continuous-scale

predictive classification map was therefore reclassified into a binary favorabil-

ity map (Fig. 7.6) showing zones with high favorability and low favorability for

base-metal deposits based on a threshold predictive classification value repre-

sented by the inflexion point (90.25, 0.388) along the curve in Fig. 7.5.

Validation of favorability map

The binary favorability map was validated by overlaying the deposit training

and deposit validation points on the map (Fig. 7.6) and by plotting the position

of these deposits on the predictive classification value versus percent cumulative

percent area curve (Fig. 7.5). Table 7.3 shows that the high favorability zones
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Figure 7.4: Continuous-scale predictive classification map. Predictive classification
value varies from 0 (white) to 1 (black).

occupy 9.75% of the study area and contain all training deposits and 83.3%

of the validation deposits and the low favorability zones occupy 90.25% of the

study area and contain 16.7% of the validation deposits.

All major base-metal deposits of the province, including the world class

deposit of Rampura-Agucha and other large deposits of the Rajpura-Dariba

and Zawar belts, are contained in the high favorability zones. One of the

two validation deposits contained in the low favorability zones is the VMS-

type Basantgarh deposit of the South Delhi belt, which is genetically different

from the SEDEX-type deposits used for training the ANFIS. The other deposit

contained in the low favorability zones is a minor deposit hosted by the basal

sequences of the Aravalli belt.
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Figure 7.5: Variation of predictive classification values with cumulative percent area.
Inflection point (marked by arrow) correspond to threshold value used for generating
binary favorability map. Triangles are training base-metal deposits and circles are
validation base-metal deposits.

Table 7.3: Validation of favorability map

Favorability zone Percent of Percent of Percent of
study validation training
area deposits deposits

High favorability 9.75 83.3 100
Low favorability 90.25 16.7 Nil

7.5 Discussion

One of the most significant procedures in hybrid neuro-fuzzy modeling is the

definition of fuzzy membership values. The Gaussian fuzzy membership func-

tions (Equations 7.3 and 7.5) used in the present model are S-shaped, as ad-

vocated by several authors (Goguen, 1969; Zadeh, 1971; Zimmermann, 1991),

and return membership values that lie between 0 and 1. However, fuzzy mem-

bership values returned by these functions are determined by the values of the

parameters c and σ, which, respectively, define the center and the spread of the

functions. Because the fuzzy membership values propagate through a model

and control the final output, it is important to estimate the values of these

parameters precisely. Porwal et al. (2003a) used a similar Gaussian function

for calculating fuzzy membership values in the knowledge-driven fuzzy model
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for mineral potential mapping (see also Chapter 3, p. 69). However, a fuzzy

model does not possess a learning capability and therefore the values of pa-

rameters of the function were estimated heuristically. Neural networks, on the

other hand, possess an excellent capability of learning from empirical data and

therefore the implementation of fuzzy model in the framework of adaptive neu-

ral networks provides a more efficient method for parameter estimation.

The use of neural networks in hybrid neuro-fuzzy models also provides a

way of compensating for the possible errors in the estimations of class scores,

which are based on a subjective assessment of relative favorability of input

predictor patterns. By adjusting the parameters of the fuzzy inference system,

the neural network in a hybrid neuro-fuzzy model minimizes the contribution

of class scores that are inconsistent with known output.

Because the adaptive neuro-fuzzy inference system in the present applica-

tion was required to classify an input feature vector as favorable or unfavorable

with respect to base-metal deposits, only one single-dimensional binary target

vector that represented presence or absence of a base-metal deposit was defined.

Moreover, only two fuzzy sets were defined, one containing favorable indica-

tors of base-metal deposits and the other containing unfavorable indicators of

base-metal deposits. Theoretically it is possible to create several sets of fuzzy

sets. For example, a third set of fuzzy sets containing ‘moderately favorable

indicators of target mineral deposit-type’ can be created using a bell-shaped

Gaussian function. However, a large number of fuzzy sets results in an unde-

sirably large number of model parameters and therefore should be used only if

a sufficiently large number of training samples are available.

The output of a hybrid neuro-fuzzy model is not likely to be affected by

conditional dependence amongst two or more input predictor maps because

(a) t-norm operators, which implement generalized intersection operations, are

used for calculating firing strengths of fuzzy if-then rules and therefore the con-

tributions of conditionally dependent component is filtered out and (b) values

of the parameters of the consequent linear functions are estimated by a neural

network and are therefore so adjusted that the contributions of conditionally

dependent components are minimized.

In weights-of-evidence models, the weights of evidence for an evidential pat-

tern can be calculated, if, and only if, it contains at least one known deposit

of the target deposit-type. Weights-of-evidence models are therefore generally

implemented using binary evidential maps, as discusses in Chapter 5 (p. 146).

These models, however, have also been used with multi-class evidential maps
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(see Chapter 4 for references) but in such cases the weights of evidence are

determinable only for the patterns that contain at least one known deposit of

the target deposit-type (although it is possible to extrapolate the weights of

evidence of the patterns that do not contain any known deposits from weights-

of-evidence models of well-explored areas worldwide, as suggested by Singer

and Kouda, 1999). In contrast, hybrid neuro-fuzzy models can be conveniently

implemented using multi-class evidential maps, because class scores of eviden-

tial patterns are estimated on the basis of expert knowledge only, irrespective

of whether or not they contain known deposits.

However, a large number of input evidential maps poses a problem in the

application of the hybrid neuro-fuzzy approach to mineral potential mapping,

if the number of available training vectors is small (curse of dimensionality;

Bellman, 1961). This is because as the number of input evidential maps in-

creases, there is an of an exponential increase in the number of fuzzy if-then

rules and, therefore, in the number of consequent parameters. The problem

can be addressed, however, by using a zero-order Takagi-Sugeno type neuro-

fuzzy inference system, which reduces the number of consequent parameters

significantly. In extreme modeling situations, where there are a large number

of evidential maps and very few training vectors available, the values of con-

sequent parameters of a zero-order Takagi-Sugeno type fuzzy inference system

can be fixed as 1. This reduces a Takagi-Sugeno type neuro-fuzzy inference

system to the simple knowledge-driven fuzzy model described by Porwal et al.

(2003a) with the difference that, in this case, the parameters of fuzzy member-

ship functions are estimated by a neural network. Alternatively, the dimensions

of input feature vectors can be reduced by using statistical methods like prin-

cipal component analysis or factor analysis (Davis, 1986), as demonstrated in

the present application. The modeling results indicate that factor analysis pro-

vides an efficient way of reducing the dimensionality of input feature vectors

and thus contributes to a robust estimation of model parameters.

The results also demonstrate the ability of an adaptive neuro-fuzzy infer-

ence system to recognize the patterns that are critical indicators of the target

mineral deposit-type and estimate the values of model parameters in such a

way that the contribution of such patterns is maximized. For example, the

world class deposit of Rampura-Agucha is located in a peneplained and soil-

covered local meta-sedimentary enclave, well-within the basement complex,

which shows no physical continuity with the main sedimentary basins of the

Bhilwara belt. Moreover public-domain structural data are meagre from the
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area and the deposit is not covered in the regional aeromagnetic data used in

this research. However, the hybrid neuro-fuzzy model returned a high predic-

tive classification value of 0.895 for the deposit.

7.6 Conclusions

The application of adaptive neuro-fuzzy inference system to base-metal poten-

tial mapping in the study area results in demarcation of high favorability zones

occupying 9.75% of the study area, which predict 96% of the known base-metal

deposits. This is a significant result both in terms of reduction in search area

and the number of deposits predicted. From this application, therefore, the

following conclusions are drawn.

• The hybrid neuro-fuzzy approach provides a strong modeling framework

for a consistent utilization of both conceptual and empirical components

of earth science information for mineral potential mapping.

• The class score-based Gaussian membership functions provide opera-

tional mathematical tools for an efficient utilization of knowledge-base

in the modeling procedure.

• By implementing a fuzzy inference system in the framework of an adap-

tive neural network, the hybrid neuro-fuzzy approach provides a robust

data-based method for estimating the parameters of the fuzzy inference

system.

• The output of a hybrid neuro-fuzzy model is not likely to be affected by

the conditional dependence amongst two or more predictor maps. More-

over, multi-class predictor maps can be conveniently used in a hybrid

neuro-fuzzy model.

• In the hybrid neuro-fuzzy approach, the problems related to dimensional-

ity of input feature vectors can be addressed by using zero-order Takagi-

Sugeno type fuzzy inference systems and/or statistical methods like fac-

tor analysis.

• Similar hybrid neuro-fuzzy inference system can be constructed and im-

plemented for modeling larger-scale evidential maps to demarcate specific

prospects within the predicted potentially-mineralized zones.
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The high performance levels of the hybrid neuro-fuzzy and neural network

models, described, respectively, in this and the previous chapters, indicate

that machine learning algorithms can efficiently recognize and account for pos-

sible conditional dependencies amongst input predictor patterns. Considering

that the most serious theoretical objection to Bayesian probabilistic models for

mineral potential mapping is posed by the violation of the assumption of con-

ditional independence, suitable parameter learning algorithms can be used to

induce Bayesian models to recognize and account for possible conditional de-

pendencies amongst input predictor patterns. In the next chapter, a Bayesian

network classifier is described that uses probabilistic machine learning algo-

rithms for dealing with conditional dependencies amongst input predictor pat-

terns. The tolerance of Bayesian classifiers for the violation of the conditional

independence assumption is also examined in the next chapter.
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Bayesian Network Classifier

Models

In this chapter, three Bayesian network classifiers for mineral potential map-

ping are described: (a) a naive Bayesian classifier that assumes complete con-

ditional independence of input predictor patterns, (b) an augmented naive

Bayesian classifier that recognizes and accounts for conditional dependencies

amongst input predictor patterns and (c) a selective naive classifier that uses

only conditionally-independent predictor patterns. The three classifiers are

applied to base-metal potential mapping in the study area.

The chapter has been published as “Bayesian Network Classifiers for Min-

eral Potential Mapping” (Porwal et al., 2006a).

8.1 Introduction

A Bayesian network is an annotated directed acyclic graph (DAG) that mod-

els uncertain relationships amongst variables in a complex system (Fig. 8.1).

Fundamental to Bayesian networks is the idea of modularity, i.e., a complex

system can be decomposed into several consistent modules, which are repre-

sented by Markov blankets of the variables. The Markov blanket of a variable

comprises its parent variables, its child variables and parents of its child vari-

ables (Pearl, 1988). Parent and child variables are identified on the basis of

mutual dependencies - a child variable is conditionally dependent on a set of

parent variables. The Markov blankets of all variables can be connected to

obtain a comprehensive representation of the whole complex system.

A Bayesian network is completely described by two components: (a) a
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Variable 3

Absent Present

Absent Absent 0.995 0.005

Absent Present 0.790 0.210

Present Absent 0.125 0.875

Present Present 0.400 0.600

Variable 5
Variable 4Variable 3

Variable 4

Variable 5

Variable 6

Variable 7

Variable 2
Variable 1

Figure 8.1: Simple Bayesian network on seven binary variables. Nodes and directed
arcs represent variables and conditional dependencies, respectively. Shaded nodes
constitute Markov blanket of Variable 5. Contingency table illustrates parameters
(conditional dependencies) associated with Variable 5.

DAG and (b) numeric parameters. The DAG specifies the topological configu-

ration of nodes, which represent variables, and directed arcs, which represent

causal relationships or dependencies amongst the variables. The numeric pa-

rameters quantify the inter-variable dependencies in terms of conditional prob-

abilities. The use of formal probabilistic semantics makes a Bayesian network

amenable to statistical manipulation (Pearl, 1988; Heckerman, 1995).

In their original conception, Bayesian networks were based on a concept-

driven (or Bayesian; Heckerman, 1995) interpretation of probability and there-

fore were mainly used for encoding and propagating uncertain expert knowl-

edge in expert systems (for example, Duda et al., 1978). However, statistical

roots of Bayesian networks and advancement in machine learning led to the

development of intelligent Bayesian networks that are capable of inductive

learning and generalization (for example, Cooper and Herskovits, 1992; Bads-

berg, 1992; Aliferis and Cooper, 1994; Buntine, 1994; Heckerman et al., 1995;

Ramoni and Sebastiani, 1999; Cheng et al., 2002). As in the case of neural

networks, input data for Bayesian networks are formatted as matrices of fea-

ture vectors.

A Bayesian classifier is a special Bayesian network in which one, and only

one, variable represents a class variable and all other variables are considered

as attributes characterizing the class variable. The class variable is at the root
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of the network, i.e., it has no parent variables, while each attribute has at least

the class variable as a parent (depending upon the structure of a Bayesian

classifier, it is possible for an attribute to have other attributes as parents; see

further below). A class variable can have two or more states, with each state

representing a discrete class label. Similarly, attributes can also be binary or

multi-state. The task of a Bayesian classifier is to map an input feature vector

comprising particular instances of attributes to a specific class label. For this,

the classifier is trained on a set of pre-classified feature vectors, which results

in the induction of conditional probabilities of all attributes given the class

variable. The trained classifier applies Bayes’ rule to compute the posterior

probabilities of all states of the class variable given the particular instances

of attributes in the feature vector and predicts the class label that gets the

highest posterior probability.

Mineral potential mapping of an area can be interpreted in terms of predic-

tive classification of each spatial unit having a unique combination of spatially-

coincident predictor patterns (or unique conditions) as mineralized or barren

with respect to a target mineral deposit-type. If (a) the target mineral deposit-

type is considered a binary class variable (with the labels ‘mineralized’ and

‘barren’), (b) predictor patterns are considered attributes that characterize

the class variable and (c) each unique condition is considered a feature vector

containing instances of attributes, then a Bayesian classifier can be constructed

and trained on a subset of pre-classified feature vectors (i.e., the unique con-

ditions that are associated with either a known mineralized or a known barren

location). The trained classifier can be used for processing all feature vectors.

The output determines the extent to which a feature vector belongs to either

the mineralized class or the barren class and can be mapped to generate a

favorability map.

One simple Bayesian classifier that can be used in mineral potential map-

ping is naive Bayesian classifier described by Duda and Hart (1973) and

Langley et al. (1992). However, this classifier assumes complete conditional

independence amongst attributes, which is unrealistic for many predictor pat-

terns used in mineral potential mapping. Although a naive Bayesian classifier

performs well in several domains (Domingos and Pazzani, 1996; Friedman,

1997), Friedman et al. (1997) show that its performance can be improved

by relaxing the assumption of conditional independence. Several Bayesian
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classifiers unrestricted∗ by the conditional independence assumption are de-

scribed in literature, for example, semi-naive Bayesian classifier (Kononenko,

1991); Bayesian multinet classifier (Heckerman, 1990; Geiger and Heckerman,

1996), tree-augmented naive Bayesian classifier (Friedman et al., 1997); aug-

mented naive Bayesian classifier (Friedman et al., 1997) etc. Langley and

Sage (1994) proposed a selective naive Bayesian classifier, which is essentially

a naive Bayesian classifier that makes classification based on only conditionally-

independent variables.

8.2 Bayesian Classifiers

Given a finite set U = {X1, ...Xn} of discrete random variables, a Bayesian

network on U is defined as the following pair (Friedman et al., 1997):

B = 〈G, Θ〉, (8.1)

where G is a DAG and Θ is a set of parameters that quantifies the network.

The DAG G encodes the following assumption: each variable Xi is independent

of its non-descendants, given its parents in G. The set Θ contains a parameter

θxi|Πxi
for each possible value xi of Xi and Πxi

of ΠXi
, where ΠXi

denotes

the set of parents of Xi in G. The Bayesian network B defines a unique joint

probability distribution over U:

PrbB(X1, ..., Xn) =
n

∏

i=1

PrbB(ΠXi
) =

n
∏

i=1

θXi|ΠXi
.

Consider the special case of a set U∗ = {P1, ..., PI , D}, where the variables

P1, ..., PI represent predictor patterns (or, in short, predictors) and D repre-

sents the class variable ‘target mineral deposit-type’. It is assumed that (a)

Pi and D are random discrete variables, (b) Pi can have J (≥ 2) states such

that Pi = {pi1, ..., piJ} and (c) D is binary such that D = {d0 (barren), d1

(mineralized)}. Let Πi = {πi1, ..., πiK} be the set of K (K ≥ 1) parents of Pi

and ΠiD̄ = {Πi−D}. Let ΠD be the set of parents of D. Consider a Bayesian

network B = 〈G, Θ〉 in which D is at the root, i.e., ΠD = ∅ and every predictor

∗In this thesis, the terms augmented naive Bayesian classifier (shortened to augmented

naive classifier) and naive Bayesian classifier (shortened to naive classifier) are used, re-
spectively, for naive Bayesian classifiers unrestricted by the assumption of conditional inde-
pendence and naive Bayesian classifiers sensu stricto (see also Friedman et al., 1997).
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has D as its one, and only one, parent, i.e., Πi = D and ΠiD̄ = ∅. The joint

probability distribution of such a network is given by:

PrbB(P1, ..., PI , D) = α · Prb(D) ·
I

∏

i=1

Prb(PI |D),

where α is a normalizing constant. This is a naive Bayesian classifier as defined
by Langley et al., 1992). Let fm = [p1j , p2j , ..., pIj ] be an I-dimensional input
feature vector, which is required to be classified as either d0 (barren) or d1

(mineralized). The posterior probabilities of d0 and d1 for fm are calculated
using the following sequential updating over every predictor:

Prb(d1|p1j) =
Prb(d1) · Prb(p1j |d1)

Prb(d1) · Prb(p1j |d1) + Prb(d0) · Prb(p1j |d0)
,

P rb(d0|p1j) = 1− Prb(d1|p1j);

Prb(d1|p1j , p2j) =
Prb(d1|p1j) · Prb(p2j |d1)

Prb(d1|p1j) · Prb(p2j |d1) + Prb(d0|p1) · Prb(p2j |d0)
,

P rb(d0|p1j , p2j) = 1− Prb(d1|p1j , p2j);

... (8.4)

Prb(d1|p1j , p2j ..pIj) =

Prb(d1|p1j , p2j , ..p(I−1)j) · Prb(pIj |d1)

Prb(d1|p1j , p2j , ..p(I−1)j) · Prb(pIj |d1) + Prb(d0|p1j , p2j , ..p(I−1)j) · Prb(pIj |d0)
,

P rb(d0|p1j , p2j ..pIj) = 1− Prb(d1|p1j , p2j ..pIj).

If Prb(d1|p1j , p2j ..pIj) > Prb(d0|p1j , p2j ..pIj), fm is classified as d1, otherwise
as d0.

Augmented naive Bayesian classifiers are obtained from naive Bayesian
classifiers by relaxing the restriction that every predictor can have the target
mineral deposit-type as the one, and only one, parent, i.e., ΠiD̄ need not nec-
essarily be a null set. An augmented naive classifier estimates the posterior
probabilities of d0 and d1 for fm using a sequential updating procedure similar
to the one used by a naive classifier. However, while updating the probability
over a predictor Pi, an augmented naive classifier also takes ΠiD̄ into account:

Prb(d1|p1j , p2j ..pIj) =

Prb(d1|p1j , ..p(I−1)j) · Prb(pIj |ΠiD̄, d1)

Prb(d1|p1j , ..p(I−1)j) · Prb(pIj |ΠiD̄, d1) + Prb(d0|p1j , ..p(I−1)j) · Prb(pIj |ΠiD̄, d0)

Prb(d0|p1j , p2j ..pIj) = 1− Prb(d1|p1j , p2j ..pIj). (8.5)
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The relations in Equations 8.4 and 8.5 can be easily expanded for multi-state

class variables. Bayesian classifiers can therefore be applied to any generalized

classification problem in earth sciences.

8.2.1 Training of Bayesian classifiers

The training of B involves estimating (a) the parameters Θ and (b) the DAG

G that provides the best approximation of conditional dependencies in U∗.

Obviously, a naive classifier is a special case of an augmented naive classifier

when G is predefined and only Θ is required to be estimated.

Estimation of parameters

Consider the augmented Bayesian classifier B on U∗ defined above. Assuming

that G is given, the standard Bayesian method to estimate Θ is based on

conjugate analysis (Ramoni and Sebastiani, 1999). Θ is estimated as {Θi},

where Θi = {Θi1, ..,ΘiK} is the set of parameters containing the conditional

probability distribution of Pi|Πi. Because Πi = {D} in the case of a naive

classifier and Πi = {D, ΠiD̄} in the case of an augmented naive classifier,

these conditional probabilities can be directly used in Equations 8.4 and 8.5 ,

respectively, to estimate the posterior probabilities of d0 and d1.

Let T = {t1, ..., tM} be a set of M (I+1)-dimensional training vectors. Let

Θik = [θi1k, .., θiJk] be the parameter vector containing conditional probability

distribution of Pi|πik and θijk = Prb(pij |πik) be the conditional probability

of pij |πik. Let n(pij |πik) be the frequency of pairs (pij |πik) and n(πik) =
∑J

j=1 n(pij |πik) be the frequency of (πik) in T. Assuming that Θik and Θi′k

are independent ∀i 6= i′ (global independence) and Θik and Θik′ are independent

∀k 6= k′ (local independence), the joint prior density factorizes into:

Prb(Θ|T0) =
I

∏

i=1

K
∏

k=1

Prb(Θik|T0),

where T0 symbolizes ‘prior to seeing the training set T’, and the joint posterior

density of Θ factorizes into the products of local likelihoods
∏J

j=1 θ
n(pij |πik)
ijk as

follows:

Prb(Θ|T) ∝
I

∏

i=1

K
∏

k=1

{Prb(Θik|T0)
J

∏

j=1

θ
n(pij |πik)
ijk },
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thus allowing an independent local update of Θik (Spielgelhalter and Lauritzen,

1990; Ramoni and Sebastiani, 1999). Further, if a Dirichlet distribution with

hyper-parameters {αi1k, αi2k, ..., αiJk} (αijk > 0) is used to model the prior

distribution of Θik, i.e., Θik|T0 ∼ D(αi1k, αi2k, ..., αiJk), then the prior density

of Θik can be estimated (Ramoni and Sebastiani, 1999) as:

Θik ∝
J

∏

j=1

θ
(αijk−1)
ijk ,

which is conjugate to the local likelihood. Because (αijk − 1) in the prior

density plays the role of n(pij |πik) in the local likelihood, the prior hyper-

parameters αijk, which encode the modeler’s prior belief, can be interpreted as

frequencies of real or imaginary instances of pij |πik the modeler has seen prior

to the training set T (Friedman et al., 1997; Ramoni and Sebastiani, 1999). The

frequency of real or imaginary instances of pij in the parent configuration of πik

(=
∑J

j=1(αijk − 1)) is called local prior precision and the frequency of real or

imaginary instances of αi (=
∑J

j=1 αij) is called global prior precision (Ramoni

and Sebastiani, 1999). For consistency and in order to enforce local and global

independence of parameters, it is necessary to assume α1 = α2 = ... = αI

(Geiger and Heckerman, 1997). Because the variance of θijk is a decreasing

function of αik (Ramoni and Sebastiani, 1999), a smaller value of global prior

precision denotes a greater uncertainty in the prior belief. Friedman et al.

(1997) describe criteria for selecting the value of global prior precision. In

order to avoid bias due to the prior precision, a value much smaller than the

number of training samples should be used (a global prior precision of 1 is a

reasonable starting point).

Given a global prior precision of α(= α1 = α2 = ... = αI), αijk can be

calculated as:

αijk =
α

J ·K
, (8.9)

where J is the total number of states of the predictor Pi and K is the total

number of parents in Πi, and αik can be calculated as:

αik =
J

∑

j=1

αijk. (8.10)
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Table 8.1: Contingency table

Pi Marginal
Πi pi1 ... pij ... piJ row total
πi1 n(pi1|πi1) ... n(pij |πi1) ... n(piJ |πi1) n(πi1)
.
..

.

..
.
..

.

..
πik n(pi1|πik) ... n(pij |πik) ... n(piJ |πik) n(πik)
.
.
.

.

.

.
.
.
.

.

.

.
πiK n(pi1|πiK) ... n(pij |πiK) ... n(piJ |πiK) n(πiK)

The prior probability of pij |πik can be estimated as prior expectation of θijk|T0:

E(θijk|T0) = Prb(pij |πik) =
αijk

αik
,

and the posterior probability of (pij |πik) can be estimated as posterior expec-

tation of θijk|T (Ramoni and Sebastiani, 1999):

E(θijk|T) = Prb(pij |πik) =
αijk + n(pij |πik)

αik + n(πik)
(8.12)

Thus the information conveyed by T is captured by a simple update of the

prior hyper-parameters αijk by adding the frequency of the pairs (pijk, πik) in

T. Consequently, Prb(pij |πik) can be directly estimated from a contingency

table of frequencies of child-parent dependencies (for example, Table 8.1) using

Algorithm-1.

Estimation of directed acyclic graph

The DAG G can be estimated from training data using score-based or dependency-

based approaches. The score-based approaches view the estimation as a search

for the structure that best fits the training data. In a score-based approach, the

algorithm initializes a structure with no dependencies amongst any nodes and

iteratively adds a directed arc to a particular node and, based on some score,

compares the structure with the previous structure after every new addition.

The process continues until there is no further improvement in the score for

that particular node. The procedure is repeated for every node. Several scor-

ing functions are reported in literature, for example, Bayesian scoring function

(Cooper and Herskovits, 1992; Heckerman et al., 1995; Ramoni and Sebas-

tiani, 1999), entropy-based function (Herskovits, 1991), minimum description

length function (Suzuki, 1996; Lam and Bacchus, 1994) etc. Many of these
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Algorithm-1

1 Based on the confidence in the prior belief, select a value of the global
prior precision (α).

2 Given G and T, construct a contingency table for P1 by collecting the
frequency distribution of the child-parent dependencies.

3 Calculate prior hyper-parameters (α1jk) using Equation 8.9.

4 Substitute every [n(p1j |π1k)] by [α1jk + n(p1j |π1k)] and re-calculate
marginal row totals.

5 Divide every [α1jk+n(p1j |π1k)] by the corresponding marginal row total.
Substitute every [α1jk + n(p1j |π1k)] by the result to obtain Θi.

6 Repeat Steps 2 to 5 for every predictor Pi (i = 2 to I) to obtain Θ.

algorithms require a partial or complete search order (Chickering et al., 1994).

The dependency-based approaches, on the other hand, apply certain condi-

tional independence tests to identify dependencies in the training data and

use these dependencies to develop the structure of G (for example, Wermuth

and Lauritzen, 1983; Srinivas et al., 1990; Sprites et al., 1997; Cheng et al.,

2002). Cheng et al. (2002) provide a recent review of published score-based

and dependency-based algorithms. Heckerman et al. (1995) show that score-

based functions are generally more efficient than dependency-based methods.

In the present work, a score-based function is employed to estimate G.

In the case of a naive classifier, G is completely predefined, i.e., it is as-

sumed that (a) ΠD = ∅ and (b) Πi = {D}. In the case of an augmented naive

classifier, G is only partially predefined, i.e., it is assumed that (a) ΠD = ∅ and

(b) {D} ∈ Πi, but the members of ΠiD̄ are not known.

A marginal likelihood-based score (Cooper and Herskovits, 1992; Ramoni

and Sebastiani, 1999) can be used to estimate Πi in an augmented naive clas-

sifier as follows. Let G = {G0, G1, ...., GG} be a set of DAGs that model all

possible dependencies in an augmented naive classifier. Let Prb(Gg|T0) be the

prior probability of the gth model Gg. Let Θ(g) be the set of parameters which

contains the conditional probability distribution of Pi|Π
(g)
i (∀i = 1 to I), where

Π
(g)
i is specified by the gth DAG Gg. Given T, Bayes equation can be used to
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write the following expression:

Prb(Gg|T) ∝ Prb(Gg|T0)Prb(T|Gg),

where Prb(T|Gg) is the marginal likelihood of Gg with respect to Θ(g). If

Prb(Gg|T0) = Prb(Gg′ |T0) ∀g 6= g′, then

Prb(Gg|T) ∝ Prb(T|Gg),

and, therefore, in order to select the most probable DAG, it is sufficient to

estimate and compare the marginal likelihood Prb(T|Gg) of all DAGs in G.

The marginal likelihood of Gg is given by:

Prb(T|Gg) =

∫

Prb(Θ(g)|T)Prb(T|Θ(g))dΘ(g),

which has a closed form provided (Cooper and Herskovits, 1992) (a) the set of

training samples is complete, i.e., there are no missing data, (b) given Θ(g), the

training samples are independent and (c) the prior distribution of parameters is

conjugate to Prb(T|Θ(g)), or in other words, Θ
(g)
ik |T0 ∼ D(αi1k, αi2k, ..., αiJk)

and the parameters are locally and globally independent. Under the above

assumptions, the marginal likelihood of Gg can be estimated (Cooper and

Herskovits, 1992; Ramoni and Sebastiani, 1999) as:

Prb(T|Gg) =
I

∏

i=1

K
∏

k=1

Γ(αik)

Γ(αik + n(πik))

J
∏

j=1

Γ(αijk + n(pij |πik))

Γ(αijk)
,

where Γ(·) is the Gamma function (Wilks, 1962). The marginal likelihood of Gg

can be decomposed into local marginal likelihood (g(Pi, Πi)) of the predictor

Pi given Πi in Gg:

g(Pi, Πi) =
K
∏

k=1

Γ(αik)

Γ(αik + n(πik))

J
∏

j=1

Γ(αijk + n(pij |πik))

Γ(αijk)
. (8.17)
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Because the value of g(Pi, Πi) is very small, its natural logarithm can be used:

ln[g(Pi, Πi)] ={
K

∑

k=1

ln[Γ(αik)] +
J

∑

j=1

ln[Γ(αijk + n(pij |πik))]}−

{
K

∑

k=1

ln[Γ(αik + n(πik))] +
J

∑

j=1

ln[Γ(αijk)]}. (8.18)

Local marginal log likelihood of a predictor given a set of parents can be

calculated by substituting values for various frequencies in Equation 8.18. The

values can be directly read from a contingency table of frequencies of various

parent-child dependencies (for example, Table 8.1).

Equation 8.17 decomposes the global search for the best DAG into the

computationally more tractable local searches for the best set of parents for

individual predictors. However, for a large number of predictors, even the

local search for parents can become intractable (Chickering et al., 1994) and

therefore conceptual genetic models are used to limit the search space (a) by

specifying a search order on the predictors, so that the search space for the

parents of a predictor is limited to its predecessors in the search order and

(b) by forbidding certain dependencies. Additionally, an upper limit to the

number of parents can be defined.

Let P = {P1, P2, ....PI} be the set of I predictors and let SOP = {P1 �

P2 � P3 � ... � PI}, where Πi ⊆ {P1, P2, ..., Pi−1}, be the search order on

P . Let FPi
(⊂ P ) be a set of predictors that are forbidden to be parents of

Pi. Let MAX be the maximum number of parents allowed for any predictor.

Given SOP and FPi
, the best set of parents for Pi is estimated by adapting the

K2 algorithm (Cooper and Herskovits, 1992) as follows: (a) initialize a naive

classifier, so that ΠD = ∅ and Πi = D (b) move top down in SOP to iteratively

add a predecessor (/∈ FPi
) of Pi to Πi and compute marginal log likelihood

after each addition, (c) expand Πi by including predictors that maximize the

marginal log likelihood and (d) stop when there is no further increase in the

log marginal likelihood or n(Πi) = MAX.

Validation of classifiers: n-Fold cross validation

Most published studies on quantitative mineral potential mapping use hold-

back validation, which involves using a part (for example, about three quarters)

of training samples for training the model and holding back the rest for vali-
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Algorithm-2 (Pseudocode).

Input: global prior precision (α); set of training samples (T), target deposit-type (D), number of
predictors (I); search order (SOP ); forbidden parents (FPi

, i = 1 to I) and maximum number of
parents (MAX).
Output: Πi(i = 1 to I)

START

set ΠD = ∅ \\set D at the root of DAG

FOR (i = 1; i = I; i + +) \\starting with P1, iterate for every predictor in SOP

Πi = D \\add directed arc from D to Pi

calculate αijk \\use Eq. 8.9 to calculate prior hyper-parameters

calculate αik \\use Eq. 8.10 to calculate local prior precision

calculate ln[g(Pi, Πi)] \\use Eq. 8.18 to calculate likelihood of Πi = {D}

max{ln[g(Pi, Πi)]} = ln[g(Pi, Πi)] \\set current likelihood as maximum likelihood

FOR (i′ = 1; i′ < i; i′ + +) \\starting with P1, iterate for every predecessor of Pi

WHILE (n(Πi) ≤ MAX) \\verify that current number of parents is less than
\\maximum allowed

IF (Pi′ /∈ FPi
) \\if Pi′ is not forbidden parent of Pi

Πi = Πi + Pi′ \\add directed arc from Pi′ to Pi

calculate ln[g(Pi, Πi)] \\use Eq. 8.18 to calculate likelihood of current Πi

IF (ln[g(Pi, Πi)] > max{ln[g(Pi, Πi)]}) \\if current likelihood is more than
\\current maximum likelihood

max{ln[g(Pi, Πi)]} = ln[g(Pi, Πi)] \\set current likelihood as maximum
\\likelihood and save the directed arc

ELSE Πi = Πi − Pi′ \\else remove the directed arc

END IF

ELSE Πi = Πi \\if Pi′ is forbidden parent, do not add the directed arc

END IF

END WHILE \\if current number of parents is already equal to maximum
\\allowed, abort nested FOR loop

END FOR \\end of nested FOR loop

END FOR \\end of main FOR loop

END
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Algorithm-3

1. Partition T into n subsets Ti (i = 1 to n), each having (M/n)
samples.

2. Leave T1 out and pool remaining (n − 1) subsets to generate a
new set T1̄ for training a classifier.

3. Train the classifier on T1̄.

4. Validate the classifier on T1 and record the number of correct
classifications.

5. Report percent correct classifications for all subsets.

dating the model. The method, although computationally efficient, has several

limitations, for example, (a) it requires a large number of training samples for

minimizing uncertainty and avoiding over-fitting, (b) the validation is biased

by the selection of training and validation samples and (c) it does not make

an optimal use of available data. These limitations are addressed by leave-

one-out validation, which involves leaving exactly one sample out, training a

model on the rest of the samples and validating the model on the left-out

sample. The process is implemented iteratively for all training samples. This

method is extremely accurate but computationally expensive and, in some

situations, impracticable. In the present application, n-fold cross-validation is

used, which retains the advantages of leave-one-out validation and, at the same

time, is computationally more tractable. Given the set of training samples (T)

containing M samples, Algorithm-3 can be used to implement n-fold cross val-

idation.

Clearly, the higher the value of n, the higher the accuracy of validation

(at n = M , the method becomes leave-one-out validation) and the higher the

computational expense.

The above algorithms were implemented using the software described by

Ramoni and Sebastiani (2000).
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8.3 Implementation of Bayesian classifiers

8.3.1 Data preprocessing

In the case of mineral potential mapping, the class variable is generally binary

with the labels ‘mineralized’ and ‘barren’. The feature vectors associated with

known mineralized or with known barren locations constitute training samples,

which are referred to as deposit or non-deposit training samples, respectively.

Appropriate preprocessing of the exploration database and selection of

training samples is important for a successful implementation of Bayesian clas-

sifiers. The following factors require especial consideration.

Firstly, conditional dependencies are generally state specific and seldom

map specific. Consider, for example, multi-state maps of lithologies and strati-

graphic groups. In the absence of ubiquitous geochronological data, strati-

graphic classifications are generally made on the basis of lithological associ-

ations, which results in significant correlations between stratigraphic groups

and lithologies. These correlations, however, are state specific, i.e., a partic-

ular stratigraphic group is correlated with specific lithologies. If each map

is used as a single multi-state predictor in an augmented naive classifier and

Algorithm-2 estimates a significant likelihood of the map of lithologies being

a parent of the map of stratigraphic groups, then every state (lithology) of

the map of lithologies is indiscriminately included in the set of parents of every

state (stratigraphic group) of the map of stratigraphic groups. This may result

in a large number of erroneous dependencies. More importantly, it results in

manifold increase in the number of parameters, which may lead to over-fitting

because of dimensionality problems (see below). It is therefore preferable to

use 1-of-n encoding (Masters, 1993) for transforming an n-state map into n

binary maps, as described in Chapter 6 (p. 163). This forces the algorithm to

search for dependencies amongst individual states and hence only true depen-

dencies are identified.

Secondly, exploration data sets are highly imbalanced and biased towards

the barren class. If deposit and non-deposit samples are represented in the

training set in the same proportion as they are expected to occur in the general

population, the performance of a Bayesian classifier is optimized for recogniz-

ing non-deposit samples. This may give rise to a large number of type II errors,

which have severe consequences in mineral potential mapping. The problem

can be addressed by one-sided selection (Kubat and Matwin, 1997; Kubat et

al., 1998; see also Chapter 6) to balance the training set.
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Curse of dimensionality

For a robust estimation of the parameters of a Bayesian classifier, the number

of training samples should be several times larger than the number of model

parameters. However, as the dimensionality of input feature vectors rises, the

number of parameters of a Bayesian classifier, i.e., the number of conditional

probabilities to be estimated also increases. The increase is multiplicative in

the case of a naive classifier (= 2n, where n is the number of dimensions of in-

put feature vectors), but may become exponential in the case of an augmented

naive classifier, depending on the number of parent-child dependencies. This

may lead to poor estimations of the parameters, especially if adequately large

number of training samples are not available.

As discussed in Chapter 6, a priori information can help mitigate the curse

of dimensionality. A careful selection and scaling of the input feature vectors

can extenuate the severity of the problem. In an application to mineral po-

tential mapping, this implies that, if an adequately large number of training

samples (i.e., known mineral deposits) are not available, the available predictor

maps should be carefully scrutinized, and on the basis of a priori conceptual-

genetic information on the target mineral deposit-type, only the most relevant

maps should be selected for modeling.

Class variables and feature vectors

In the context of Bayesian classifiers, the target mineral deposit-type is consid-

ered a binary class variable (with the labels ‘mineralized’ and ‘barren’). Pre-

dictor patterns are considered attributes that characterize the class variable

and each unique condition is considered a feature vector containing instances

of attributes (Chapter 6, p. 163).

A set of pre-classified feature vectors (i.e., the unique conditions that are

associated with either a known mineralized or a known barren location) is used

for training a Bayesian classifier. However, the use of n-fold validation proce-

dures obviates the need of a separate set of pre-classified feature vectors for

validating the performance of the Bayesian classifier. The procedure described

in Chapter 6 (p. 163) can be used for selecting training feature vectors.

8.3.2 Training of Bayesian classifiers

The training of a Bayesian classifier involves estimating (a) the DAG that

provides the best approximation of conditional dependencies amongst the input
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predictor patterns and (b) the parameters (conditional probabilities) that are

associated with each node (predictor pattern).

After selecting a suitable global prior precision value and specifying the

search order and forbidden dependencies, a Bayesian classifier is first trained

using Algorithm-2 for estimating the DAG that best simulates the dependencies

amongst the predictor patterns. The Bayesian classifier is then trained using

Algorithm-1 for estimating the parameters associated with each node of the

DAG. The performance of the Bayesian classifier is validated using n-fold cross

validation procedures (Algorithm-3).

8.4 Application to Base-Metal Potential Mapping in

Aravalli Province

8.4.1 Data preprocessing

As discussed above, in order to build robust Bayesian classifiers, sufficiently

large number of training samples, in proportion to the dimensionality of train-

ing samples, should be available. Keeping in mind the inadequate number of

the available training samples (see below), it was decided to reduce the di-

mensionality of input training feature vectors. The available predictor maps

were scrutinized, and on the basis of a priori conceptual-genetic information

(Chapter 2) and the experience of modeling using machine learning algorithms

(Chapters 6 and 7), the following predictor maps were used in the Bayesian clas-

sifiers: the multi-class predictor maps of lithologies and stratigraphic groups

and the binary predictor maps of mafic igneous rocks, buffered distances from

regional lineaments and buffered distances from fold axes.

Data encoding

Using the one-of-n encoding procedure described in Chapter 6 (p. 166), the

multi-class categoric maps of lithologies and stratigraphic groups were trans-

formed into to a series of binary maps. On each binary map, exactly one class

was coded as 1 and the remaining classes were coded as 0. In this way 17 bi-

nary predictor maps were generated from the two multi-class predictor maps.

Of these, 11 binary predictor maps were used for subsequent processing. Three

binary maps of lithologies, which have no known relationship with base-metal

mineralization in the province, were not used. These maps included the binary

maps of calc-schist, migmatites and other younger intrusive/extrusive rocks.
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Similarly, three binary maps of stratigraphic groups, which have no known rela-

tionship with base-metal mineralization in the province, were not used. These

maps included the binary maps of Sandmata Complex, Managalwar Complex

and other younger stratigraphic groups.

Each of the two classes in the three binary predictor maps of mafic igneous

rocks, buffered regional lineaments and buffered fold axes was coded as either 1

or 0, indicating, respectively, the presence or absence of the predictor pattern.

The resulting 14 binary maps were superposed and unique combinations

of the maps in unit areas of 1 km2 were mapped to generate a feature vector

map constituting 472 feature vectors. As the operation was carried out in a

GIS-environment, an associated database table was automatically generated,

which held the components of the feature vectors. In the table, each feature

vector is described by a unique identification number and 14 components rep-

resenting each evidential map encoded as either present or absent.

The feature vectors associated with known base-metal deposits were ex-

tracted to create a subset of 36 deposit samples. An equal number of feature

vectors, which were considered, on the basis of expert knowledge, least-likely

to be associated with base-metal deposits were extracted to create a subset of

36 non-deposit samples. The two subsets were merged to generate a set con-

taining 72 samples. No separate set of validation vectors was required because

n-fold cross validation procedure was used for validating the performance of

the classifiers.

8.4.2 Training of Bayesian classifiers

Algorithm-2 was used with a global prior precision of 1 to train an augmented

naive classifier on the training set to determine the DAG that best simulates the

dependencies in the data. To limit the search space, (a) dependencies amongst

the binary maps of lithologies and amongst the binary maps of stratigraphic

groups were forbidden, (b) the maximum number of parents for each predictor

was set to 3 and (c) the following search order was specified:

Buffered regional lineaments � Lithologies � Buffered fold axes �Mafic igneous

rocks � Stratigraphic groups.

The above search order is based on the following considerations.

• The regional lineaments represent fundamental tectonic features (crustal-

scale faults) that mark the boundaries of major intracratonic rift se-

quences in the province (Porwal et al., 2003a; see also Chapter 2). There-
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fore there is little possibility of the map of buffered regional lineaments

being dependent on any other predictor.

• A (meta)-sedimentary rock is a product of its (palaeo)-environment,

which, in turn, is tectonically controlled (Pettijohn, 1975). Therefore

there exists a possibility of dependence of the maps of lithologies on the

map of buffered regional lineaments. However, there is little possibility

of the maps of lithologies being dependent on any of the other predictors.

• Folding obviously postdates rifting and sedimentation and therefore there

can be no possibility of the map of buffered fold axes being a parent of

either the map of buffered regional lineaments or the maps of lithologies.

• The regional lineaments mark the crustal-scale faults that could be pos-

sible conduits for the mafic rocks in the province (Porwal et al., 2003a;

see also Chapter 2). Therefore there exists a possibility of the map of

buffered regional lineaments being a parent of the map of mafic igneous

rocks.

• Stratigraphic classification of the province in various groups is largely

based on regional tectonic boundaries, lithological associations and de-

formation patterns (Gupta et al., 1997). Therefore there exists a strong

possibility of the binary maps of stratigraphic groups being dependent

on several of the other predictors.

After determining the DAG of the augmented naive classifier, a selective

naive classifier was constructed by removing the conditionally-dependent pre-

dictors. The DAGs of the trained naive, augmented naive and selective naive

classifiers are shown in Fig. 8.2. Finally, Algorithm-1 was used for estimating

the parameters (conditional probabilities) associated with every node in each

classifier.

Cross validation. A 25-fold cross validation was implemented using Algorithm-

3 to validate each classifier. The results (Table 8.2) show that the augmented

naive classifier gives the best performance, followed by the naive classifier and

then the selective naive classifier.
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Figure 8.2: Trained Bayesian classifiers for base-metal potential mapping in study area: (A) naive classifier, (B) augmented naive
classifier and (C) selective naive classifier. Nodes and directed arcs represent binary predictors and conditional dependencies,
respectively. Parameters associated with Rajpura-Dariba group are shown for illustration.
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Table 8.2: 25-fold cross validation

Classifier Correct classifications
%

Naive 86.8
Augmented naive 88.7
Selective naive 83.0

8.4.3 Favorability maps

The trained classifiers were used for processing all feature vectors. The out-

put posterior probability of d1 (mineralized class) for each feature vector is

interpreted as a measure of favorability of the feature vector with respect to

base-metal mineralization in the province. Figs. 8.3A, 8.3B and 8.3C show the

continuous-scale posterior probability maps derived by mapping the output of

the naive classifier, augmented naive classifier and selective naive classifier, re-

spectively. Figs. 8.4, 8.5 and 8.6 show the binary favorability maps generated

by the reclassification of the continuous-scale posterior probability maps given

in Figs. 8.3A, 8.3B and 8.3C, respectively, using 0.5 as the threshold.

Validation of favorability maps

The binary favorability maps (Figs. 8.4, 8.5 and 8.6) were validated by overlay-

ing the known base-metal deposits on the maps and by plotting the position of

these deposits on the predictive classification value versus percent cumulative

percent area curves (Fig. 8.3D). Table 8.3 shows that (a) the naive classifier

demarcates favorable zones that occupy 7% of the study area and contain 89%

of the known deposits, (b) the augmented naive classifier demarcates favor-

able zones that occupy 11% of the study area and contain 93% of the known

deposits and (c) the selective naive classifier demarcates favorable zones that

occupy 11% of the study area and contain 83% of the known deposits.

8.5 Discussion

The formation and localization of mineral deposits are the end-results of a

complex interplay of several metallogenetic processes that exhibit signatures

in the form of geologic features associated with the mineral deposits. These

geological features (or recognition criteria) are characterized by their responses

in one or more geodata sets that are used as predictors in mineral potential
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Figure 8.3: Continuous-scale posterior probability maps [posterior probability varies
from 0 (white) to 1 (black)] generated using (A) naive classifier, (B) augmented naive
classifier and (C) selective naive classifier. (D) Variation of posterior probability with
cumulative percent area.
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mapping. It is unrealistic to assume independence of the predictors because

(a) a particular geologic feature can partially respond in two or more geodata

sets, (b) a particular metallogenetic process can be partially responsible for

two or more geologic features or (c) two or more metallogenetic processes can

be genetically related. In addition, the response of a geologic feature in one

geodata set may be conditioned by the response of another geologic feature in

a different geodata set.

Considering that the violation of the conditional independence assumption

is generally unavoidable in mineral potential mapping, the results of the appli-

cations described above are examined in the following paragraphs in order to

understand the implications of this violation for Bayesian approaches to min-

eral potential mapping.

In general, the naive classifier performs well in the predictive mapping of

base-metal potential in the study area (Tables 8.2 and 8.3), which suggests

that a naive classifier can tolerate significant violations of the conditional inde-

pendence assumption (see also Domingos and Pazzani, 1996; 1997). This also

implies that a weights-of-evidence model, which can be considered a logarith-

mic naive classifier (although with some significant differences∗), may not be

seriously hampered by the violation of the conditional independence assump-

tion provided that its output is interpreted as a measure of relative favorability

rather than absolute posterior probability (see below). This also explains the

wide spread and generally successful application of weights-of-evidence models

to mineral potential mapping.

However, the results (Tables 8.3 and 8.4) indicate that the performance

of the naive classifier is improved if the conditional independence assumption

is relaxed by recognizing and accounting for some of the dependencies in the

training data. The augmented naive classifier identifies several zones of high

favorability in the Jharol belt that are missed by the naive classifier (Figs. 8.4

and 8.5). Moreover, the high favorability zones tend to cluster around known

deposits in Fig. 8.4, while they show a wider spatial distribution in Fig. 8.5,

which suggests that the augmented naive classifier has better generalization ca-

pability compared to the naive classifier. This is further evidenced by compar-

ing the outputs of the three classifiers for the misclassified deposits (Table 8.4),

which shows that the augmented naive classifier returns a higher value for all

∗In a weights-of-evidence model, all feature vectors that are associated with the unit areas
that do not contain a known mineral deposit are indiscriminately used as non-deposit samples.
In a naive classifier, on the other hand, only the feature vectors that are associated with the
unit areas that are reasonably well known to be barren are used as non-deposit samples.
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Table 8.3: Favorability maps

Classifier Zone Percent of Percent of
study area Deposits

Naive High favorability 7.1 88.9
Low favorability 92.9 11.1

Augmented naive High favorability 11.3 92.6
Low favorability 88.7 7.4

Selective naive High favorability 11.2 83.3
Low favorability 88.8 16.7

Table 8.4: Outputs for misclassified∗ deposits

Deposit Domain Naive Augmented naive Selective naive
Padar-Ki-Pal Jharol 0.002 0.534 0.009
Rampura-Agucha - 0.056 0.091 0.102
Baroi Aravalli 0.067 0.910 0.374
Anjani Aravalli 0.076 0.206 0.196
Basantgarh South Delhi 0.406 0.482 0.352
Bara Aravalli 0.429 0.637 0.615
Wari Lunera Bhilwara 0.946 0.931 0.200
Dariba Bhilwara 0.985 0.973 0.470
Dariba Extn. Bhilwara 0.985 0.973 0.470
Rajpura A Bhilwara 0.985 0.973 0.470
*Threshold of 0.500 is applied to make a classification

deposits misclassified by the naive classifier. Because the geological settings

of the misclassified deposits are different in many respects from the geolog-

ical settings of majority of deposits in the study area, it indicates that the

generalization capability of a naive classifier is improved by recognizing and

accounting for dependencies amongst predictors.

On the other hand, the naive classifier returns higher values for the deposits

of the Bhilwara belt (where there are strong dependencies amongst favorable

predictors), which suggests a significant influence of dependencies amongst

predictors on the output of a naive classifier. Given the functional similarity

between naive classifiers and weights-of-evidence models, it implies that the

output of a weights of evidence model may be similarly biased by dependen-

cies amongst predictors (Singer and Kouda, 1999), and therefore it is preferable

to interpret the output of a weights of evidence model as a measure of rela-

tive favorability rather than an absolute probability, as suggested by Pan and

Harris (2000).

The selective naive classifier misclassifies all but one deposit that are mis-

classified by the naive classifier (Table 8.4; Fig. 8.6). In addition, it also mis-

classifies several deposits of the Bhilwara belt, which is clearly a result of the
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rejection of conditionally-dependent maps of stratigraphic groups. Evidently,

dependent predictors make a significant independent contribution to the infor-

mation content of a naive classifier (except when there is a perfect correlation)

and therefore the rejection of a dependent predictor affects its performance

adversely, as discussed by Friedman et al. (1997). It is also possible that a

dependent predictor makes only a minor independent contribution to the in-

formation content, yet that contribution is crucial for making a correct classifi-

cation. Therefore, in order to minimize the bias due to dependencies amongst

predictors, it is preferable to augment a naive classifier by relaxing the in-

dependence assumption and accounting for the dependencies than to abridge

it by rejecting dependent predictors. Similarly, in the case of a weights of

evidence model, it is preferable to preserve dependent predictors by making

logical combinations of correlated predictors rather than to eliminate them by

applying Boolean operators.

8.6 Conclusions

In the study area, the augmented naive classifier successfully demarcates fa-

vorable zones that occupy 11% of the area and contain 93% of the known

base-metal deposits; the naive classifier demarcates favorable zones that oc-

cupy 7 % of the area and contain 89% of the known base-metal deposits; and

the selective naive demarcates favorable zones that occupy 11 % of the area

and contain 83% of the known base-metal deposits. From the three application

studies described in this chapter, the following conclusions can be drawn.

• A naive classifier provides an efficient tool for mineral potential mapping.

It is easy to construct, train and implement. Although it is based on the

strong assumption of conditional independence of input predictor pat-

terns, it shows significant tolerance for the violations of the assumption.

• The performance of a naive classifier is significantly improved if the con-

ditional dependence assumption is relaxed by recognizing and accounting

for dependencies amongst the predictor patterns in an augmented naive

classifier.

• Rejection of conditionally-dependent predictor patterns in a selective

naive classifier degrades the performance of a naive classifier.
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Conclusions

9.1 Introduction

This research sought to identify mathematical function(s) that can be effec-

tively used in the framework of mathematical geological models to approximate

the relationship between a set of recognition criteria and the target mineral de-

posits for mineral potential mapping. Because there is no a priori definition

of the nature of this relationship, it was alternatively hypothesized to be ei-

ther linear or non-linear and, accordingly, several linear and non-linear models

were investigated in this research by applying them to base-metal potential

mapping of a study area in the Aravalli metallogenic province of India. The

performance of these models is analytically compared in this chapter in order

to draw conclusions regarding their (a) efficacy in approximating the relation-

ship between recognition criteria and mineral deposits and (b) strengths and

limitations as tools for mineral potential mapping. The chapter also evaluates

the base-metal potential of the study area and outlines some recommendations

for future research.

9.2 Recognition Criteria for Base-Metal Deposits

Conjunctive interpretations of geological and geophysical datasets and a com-

prehensive review of published tectono-stratigraphic studies of the study area

were used to define a conceptual model of base-metal metallogenesis in the

framework of overall tectono-stratigraphic evolution of the study area. Using

the conceptual model and the generalized geological setting of SEDEX de-

posits, a number of regional-scale recognition criteria for base-metal deposits
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in the study area were identified. Empirical modeling of spatial associations

between known base-metal deposits and the recognition criteria (represented

as predictor maps) was performed to validate the identified recognition criteria.

The following conclusions are drawn from this phase of the research.

• Host rock lithology, stratigraphic position, (palaeo-)sedimentary envi-

ronment, association of mafic volcanic rocks and proximity to favorable

structures are the most important recognition criteria for base-metal de-

posits in the study area.

• Empirical models of positive spatial associations between known base-

metal deposits and identified recognition criteria validate the latter.

• Important recognition criteria can be identified effectively through con-

ceptual modeling of mineralogenesis.

The identified recognition criteria (represented as predictor maps) were

used as independent predictor variables in applications of various mathematical

geological models to base-metal potential mapping in the study area.

9.3 Performance of mathematical geological Models

An evaluation of the linear models and the non-linear models based only on

their performance in classifying training and validation deposits in high favor-

ability zones is not appropriate for three reasons. First, the knowledge-driven

fuzzy model did not require separate sets of validation and training deposits

and, hence, all deposits were used to validate it. Second, a different set of

validation and training deposits was used in the data-driven fuzzy model and

the fuzzy weights-of-evidence model in order to test the ability of these hybrid

models to function with smaller numbers of training points. Third, an n-fold

cross validation method was used for validating the augmented Bayesian clas-

sifier model, while all other models were validated using a hold-back validation

method.

The models are evaluated based on a number of criteria, which include

percentage of correctly-classified known deposits, theoretical requirement of

conditional independence, interpretability of model parameters, ease of imple-

mentation, susceptibility to the curse of dimensionality and ability to quantify

uncertainties (Table 9.1). The ability of a model to conjunctively use both con-

ceptual and empirical components of available geoscientific information of an
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area is also used as an evaluation criterion, because it allows the model to com-

pensate the deficiencies of one component with the other component. A correct

classification of the Rampura-Agucha deposit is also included as an evaluation

criterion. Rampura-Agucha, the only world-class Zn-Pb deposit of India, is

a difficult deposit to predict, not least because of its unusual regional geolog-

ical setting (see Chapter 3, p. 94). The correct classification of the deposit

can therefore be interpreted as an indication of the ability of a mathemati-

cal geological model to predict mineral deposits in unusual geological settings.

Table 9.1 summarizes the performance of the linear and the non-linear math-

ematical geological models with respect to the above evaluation criteria.

Table 9.1 indicates that both linear and non-linear models demarcate high

favorability zones that occupy less than 10% of the search area and predict

more than 80% of the known base-metal deposits. This indicates that both

categories of models can efficiently narrow down search areas for mineral ex-

ploration. However, the non-linear models generally perform better in predict-

ing the known base-metal deposits (Table 9.1). This suggests that, given the

complexity of earth systems that result in the formation of mineral deposits,

non-linear functions more adequately approximate the relation between pre-

dictor patterns and target mineral deposits and therefore fit the data more

efficiently. This interpretation is reinforced by a comparison of the predictive

classification results of the linear and the non-linear models with respect to the

Rampura-Agucha deposit. The deposit is incorrectly classified in low favora-

bility zones by all linear models, whereas two of the non-linear models, namely,

the neural network model and the hybrid neuro-fuzzy model, correctly classify

the deposit. The correct classification of the Rampura-Agucha deposit by two

of the non-linear models may be attributed to the ability of the non-linear

functions used in the two models to recognize the critical predictor pattern(s)

and respond in a highly non-linear way to maximize the contribution of such

component(s) to the output.

The linear models, which are based on simplified and modified Bayesian

equations, require conditional independence of input predictor maps (Table 9.1)

and by assuming it, they ignore the effects of possible interactions amongst in-

put predictor patterns. The assumption is often difficult to validate, although

several statistical tests have been proposed by different workers to test condi-

tional independence (Singer and Kouda, 1999; Porwal et al., 2003b). Given

the peculiar nature and interdependency of geological processes that result in
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Evaluation Linear models Non-linear models
criterion Weight-

of-
evidence

Hybrid
fuzzy
weights-
of-
evidence

Knowledge-
driven
fuzzy

Data-
driven
fuzzy

Neural
network

Hybrid
neuro-
fuzzy

Augmented
naive
Bayesian
classifier

% of known deposits

classified in high

favorability zones

83.3 87.0 87.0 85.2 94.4 96.3 88.9

% of study area

classified in high

favorability zones

3.1 5.9 8.9 5.4 6.0 9.5 11.3

Whether

Rampura-Agucha

deposit classified in high

favorability zones

No No No No Yes Yes No

Assumption of

conditional

independence

Required Required Not
required

Not
required

Not
required

Not
required

Not
required

Whether parameters

easily interpretable

Yes Yes No No No No Yes
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Table 9.1 contd.

Evaluation Linear models Non-linear models
criterion Weight-

of-
evidence

Hybrid
fuzzy
weights-
of-
evidence

Knowledge-
driven
fuzzy

Data-
driven
fuzzy

Neural
network

Hybrid
neuro-
fuzzy

Augmented
naive
Bayesian
classifier

Whether parameter

learning easily

implemented in GIS

Yes Yes Yes Yes No No No

Whether affected by the

curse of dimensionality

Not signifi-
cantly

No No Not signifi-
cantly

Yes Yes Yes

Whether uncertainty

quantified

Stochastic
uncertain-
ties
quantified

Yes No No No No No

Basis of parameter

estimation

Data Both data
and
knowledge

Knowledge Both data
and
knowledge

Data Both data
and
knowledge

Data
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mineral deposits, the possibility of conditional dependencies amongst predictor

patterns is often hard to rule out. The moot question, however is: how seriously

is the performance of these Bayesian models affected by conditional dependen-

cies in input data? The question was explored in this research (see Chapter 8,

pp. 228-235) and there appears to be some evidence that their performance is

not seriously degraded, especially if the output posterior probabilities are inter-

preted as relative favorability values. Nevertheless, as shown in Chapter 8, the

performance of a Bayesian model improves if it is implemented in a non-linear

mode without assuming conditional independence of input predictor patterns.

The better performance of the non-linear models as compared to the linear

models may therefore be partially attributed to their ability to recognize and

compensate for conditional dependencies amongst input predictor patterns.

However, although the simplified and modified Bayesian equations used in

the linear models may not fit the data perfectly, they allow significant insights

into the data. The parameters of the linear models can be interpreted easily

(Table 9.1) to gain insights into the relative contributions of various predictor

patterns (or recognition criteria) and, hence, into genetic processes that formed

target mineral deposits (Bonham-Carter, 1994). The non-linear functions, on

the other hand, may fit the data more efficiently, but their parameters are

generally not amenable to direct geoscientific interpretations.

The linear models also have an advantage over the non-linear models in

that they are easily implemented in a GIS environment (Table 9.1). The non-

linear models, on the other hand, require specialized computer programs for

parameter estimations and, therefore, are generally implemented outside the

GIS∗ and the output values are imported back into the GIS in order to generate

favorability maps.

The linear models are, in general, not seriously affected by high dimen-

sionality of input data (Table 9.1). On the other hand, the non-linear models

(again, with the exceptions of the fuzzy models) are more susceptible to the

curse of dimensionality and, if implemented without caution, may over-fit the

training data. Although over-fitting can be controlled by following efficient

training procedures (Chapter 6, p. 165), it is often necessary to reduce dimen-

sionality of the input data in order to avoid it.

Quantification of uncertainty in the output of a model is important because

it facilitates effective decision making. The linear models used in this research

∗The fuzzy models are exceptions in this respect, but that is because their parameters are
estimated heuristically from knowledge and, therefore, do not require algorithmic estimations.
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quantify uncertainties in their outputs (Table 9.1). The non-linear models, on

the other hand, do not quantify the uncertainties in their outputs.

Most mathematical geological models, both linear and non-linear, are im-

plemented either in a data-driven mode or in a knowledge-driven mode, which

entails that a significant proportion of the geoscientific information remains

under-utilized. Moreover, these models cannot ‘cross-compensate’ possible

deficiencies in either the knowledge-base or in the database. This research

attempted to address this problem by applying ‘hybrid’ models that can con-

junctively use both data and knowledge for parameter estimation. Table 9.1

shows that, in both linear and non-linear categories, the hybrid models perform

better than the purely knowledge-driven or purely data-driven models.

Based on the above discussions, the following conclusions can be drawn

about various mathematical geological models described in this thesis.

• Both linear and non-linear models can be effectively used for narrowing

down search areas for mineral exploration.

• The non-linear models perform better, as compared to the linear mod-

els, in predicting base-metal deposits in the study area, which indicates

that, as compared to the linear functions, the non-linear functions more

adequately approximate the relationship between predictor patterns and

target mineral deposits.

• The non-linear models, especially the neural network and the hybrid

neuro-fuzzy models, can perform better than the linear models in pre-

dicting deposits in unusual geological settings.

• The non-linear functions have the ability to take into account the possible

conditional dependencies amongst predictor pattern and therefore the

response of the non-linear models is conditioned in such a way that the

contribution of conditionally-dependent patterns is minimized.

• The parameters of the linear models are amenable to direct geoscientific

interpretations. On the other hand, the parameters of the non-linear

models can not always be interpreted to gain insights into the data and

genetic processes.

• The linear models are conveniently implemented in a GIS-environment,

where as the non-linear models require specialized computer software for

implementation.
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• A susceptibility to the curse of dimensionality and an inability to quan-

tify uncertainties in the outputs are major limitations of the non-linear

models.

• Hybrid mathematical geological models perform better than purely knowledge-

driven and purely data-driven models.

Amongst the mathematical geological models described in this thesis, there

is no ‘best’ model that can be effectively used for mineral potential mapping

in all situations. The selection of the best model depends mainly on (a) geo-

scientific information available for the modeling, (b) computer hardware and

software resources available for the modeling and (c) whether gaining insights

into the data is also an objective of the modeling. The above conclusions pro-

vide rough guidelines for selecting the best model in a given modeling situation.

9.4 Base-Metal Potential of the Study Area

Table 9.1 shows that, on an average, about 10% of the study area has potential

for base-metal deposits. The predicted high-favorability zones show a broadly

similar spatial distribution pattern on the favorability maps generated by var-

ious spatial models (compare Figs. 3.6, 3.9, ??, 5.4, ??, 7.6 and 8.4).

The high-favorability zones are generally confined to specific lithologies and

stratigraphic groups of the Bhilwara, Aravalli and Sendra-Ambaji domains,

which reflect a strong lithostratigraphic control on base-metal mineralization

in the province. The predicted high-favorability zones are also closely associ-

ated with regional magnetic lineaments (Fig.2.5B), which indicate that crustal-

scale faults played an important role in the spatial localization of base-metal

mineralizations in the study area.

However, the predicted high-favorability zones do not show strong affinity

with the NE-trending lineaments (Fig. 2.18B), NW-trending lineaments (Fig.

2.19A) and regional fold axes (Fig. 2.19B). This suggests that, although seem-

ingly important controls on a deposit-scale (see Chapter 2), these structures

played less important roles in localizing mineralization on a regional-scale as

compared to crustal scale faults.

The spatial distributions of predicted high favorability zones are, in gen-

eral, consistent with conceptual models of metallogenesis in the study area.

The three episodes of base-metal mineralizations in the study area at ca. 2000

Ma, ca. 1800 Ma and ca. 1000 Ma, which were identified on the basis of
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conceptual-genetic studies, are generally well-represented by high-favorability

zones in the Aravalli, Bhilwara and Sendra-Ambaji domains, respectively. In

addition, several zones of high favorability are demarcated in the Jharol do-

main, in which only one small deposit has been located so far. These zones are

potential target areas for base-metal exploration in the Jharol domain.

9.5 Recommendations for Future Research

• In this research mathematical geological models were applied to demar-

cate potentially-mineralized zones based on regional-scale (1:250,000)

predictor maps. The same models need further testing by modeling

larger-scale predictor maps to demarcate specific prospects within the

predicted potentially-mineralized zones.

• This research indicates that neural network, hybrid neuro-fuzzy and aug-

mented Bayesian network classifier models have high performance levels,

but, at the same time, they are sensitive to the curse of dimensionality

if there is a paucity of known mineral deposits. In such cases, predictor

maps may require significant preprocessing before they can be used in

these models, which may result in loss of information. Future research

aimed at finding methods to address this problem can help in further

improving the performance levels of these models. In this context, the

work of Brown et al. (2003), who introduced random noise to augment

the training data, can be a useful starting point.

• Further research aimed at developing mathematical methods for quan-

tifying both systemic and stochastic uncertainties in the outputs of the

non-linear mathematical geological models described here can increase

the utility of their output favorability maps for decision-making.

• The mathematical geological models in this research were tested by regional-

scale mapping of SEDEX-type base-metal deposits. The models require

further testing on other deposit types; if found unsatisfactory, problems

should be identified and techniques to solve them should be developed.
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Models. Ph.D. Thesis, University of Utrecht, The Netherlands, 289 pp.

Mathematical geological models are being increasingly used by natural resources de-

lineation and planning agencies for mapping areas of mineral potential in order to

optimize land use in accordance with socio-economic needs of the society. However,

a key problem in spatial-mathematical-model-based mineral potential mapping is the

selection of appropriate functions that can effectively approximate the complex rela-

tionship between target mineral deposits and recognition criteria. This research evalu-

ates a series of mathematical geological models based on different linear and non-linear

functions by applying them to base-metal potential mapping of the Aravalli province,

western India, where several significant base-metal deposits are already known.

Linear models applied in this research are an extended weights-of-evidence model

and a hybrid fuzzy weights-of-evidence model, while non-linear models are knowledge

and data-driven fuzzy models, a neural network model, a hybrid neuro-fuzzy model

and an augmented naive Bayesian classifier model. From a conceptual model of base-

metal metallogenesis in the study area, host rock lithology, stratigraphic position,

(palaeo-)sedimentary environment, association of mafic volcanic rocks and proximity

to favorable structures are identified as recognition criteria for base-metal mineraliza-

tion and, in the form of predictor maps, constitute the input for the models. The

parameters of the knowledge-driven fuzzy model are estimated from the expert knowl-

edge, while those of the neural network and Bayesian classifier model are estimated

from the data. The two hybrid models use both expert knowledge and data for pa-

rameter estimation.

As compared to the linear models, the non-linear models generally perform better

in predicting the known base-metal deposits in the study area, including the known

deposits that are characterized by unusual geological settings. This is attributed to the

ability of non-linear functions to (a) better approximate the relation between mineral
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deposits and recognition criteria and (b) recognize and account for possible depen-

dencies amongst recognition criteria. Although the linear models do not fit the data

as efficiently as the non-linear models, they are easier to implement using basic GIS

functionalities and their parameters are more amenable to geoscientific interpretation.

In addition, the linear models are less susceptible to the curse of dimensionality as

compared to non-linear models, which makes them more suitable for applications to

mineral potential mapping of the areas where there is a paucity of training mineral

deposits. The hybrid models that conjunctively use both knowledge and data for pa-

rameter estimation generally perform better than purely knowledge-driven or purely

data-driven models. This is attributed to the capability of the hybrid models to cross-

compensate the deficiencies in either the knowledge-base or in the database.

The output of various mathematical geological models indicate that about 10% of

the study area has potential for base-metal deposits. The high-favorability zones tend

to reflect a strong lithostratigraphic control on base-metal mineralization in the study

area and the importance of crustal-scale faults in spatial localization of base-metal

mineralizations in the study area. The low proportion of base-metal potential area

delineated and the high prediction rates, which vary from 83% to 96% depending on

the model applied, indicate not only (a) the efficiency of the mathematical geological

models in capturing the complex relationship between the target mineral deposits and

the deposit recognition criteria, but also (b) usefulness of the favorability maps as

inputs to natural resources planning for optimizing land use in the study area.
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Porwal, A., 2006, Mineral Potential Mapping with Mathematical Geological

Models. Ph.D. Thesis, University of Utrecht, The Netherlands, 289 pp.

Ruimtelijke wiskundige modellen worden in toenemende mate gebruikt voor het in

kaart brengen van het mogelijk voorkomen van erts. Met name instanties die zich

bezig houden met het managen en plannen van het gebruik van natuurlijke hulpbron-

nen vinden daar baat bij. Het uiteindelijke doel hiervan is om het landgebruik te

optimaliseren en in overeenstemming te brengen met de socio-economische behoefte

van de samenleving. Een belangrijk onderdeel van deze vorm van modelleren is de

selectie van passende functies om de complexe relatie tussen het voorkomen van erts

en de herkenningscriteria daarvoor te benaderen. In dit onderzoek wordt een aan-

tal ruimtelijke wiskundige modellen gevalueerd. Al deze modellen zijn gebaseerd op

verschillende lineaire en niet-lineaire functies. Ze worden toegepast op het in kaart

brengen van het mogelijke voorkomen van base-metal in de Aravalli provincie in West

India.

Lineaire modellen die in dit onderzoek worden gebruikt zijn een uitgebreide weights-

of-evidence model en een hybride fuzzy weights-of-evidence model. Niet-lineaire mod-

ellen zijn zowel op kennis als op data gebaseerde modellen, te weten een neuraal

netwerk model, een hybride neuro-fuzzy model en een augmented naive Bayesiaans

classificatie model. Met behulp van een conceptueel model voor metalogenese van

base-metal in het studie gebied is een aantal herkenningscriteria voor base-metal min-

eralisatie aangeduid. In de vorm van voorspellingskaarten zijn deze ingevoerd worden

in de verschillende modellen. We onderscheiden het type nevengesteente, de strati-

grafische positie, het (paleo-) sedimentaire milieu, de samenhang met mafische vulka-

nische gesteentes en de nabijheid van gunstige structuren. De parameters van het

fuzzy model dat op kennis is gebaseerd zijn geschat op basis van expert kennis, terwijl

die van het neurale netwerk en het Bayesiaanse classificatie model geschat zijn met

behulp van gegevens. Voor het schatten van parameters van de twee hybride modellen

zijn zowel expert kennis als data gebruikt.

Vergeleken met de lineaire modellen voorspellen de niet-lineaire modellen het reeds
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bekende voorkomen base-metal in het studie gebied beter, inclusief dat in ongewone

geologische formaties. Dit komt omdat niet-lineaire functies (a) de relatie tussen het

voorkomen van erts en de herkenningscriteria beter benaderen en (b) rekening houden

met mogelijke onderlinge afhankelijkheid tussen de criteria.

Hoewel de lineaire modellen niet zo goed passen bij de gegevens, zijn ze wel een-

voudiger te implementeren met behulp van basale GIS functionaliteit. Hun parameters

zijn ook beter op een geowetenschappelijke manier te interpreteren. Verder zijn lin-

eaire modellen minder vatbaar voor problemen ten gevolge van dimensionaliteit. Dit

maakt ze beter toepasbaar om het mogelijke voorkomen van erts in gebieden met on-

voldoende trainingsvoorkomens in kaart te brengen. De hybride modellen die zowel

kennis als gegevens gebruiken voor het schatten van de parameters werken over het

algemeen beter dan modellen die enkel op kennis of op gegevens zijn gebaseerd. De

reden hiervoor is dat hybride modellen de tekortkomingen compenseren met gegevens

uit de kennis- of de database.

De resultaten, gegenereerd met de verschillende ruimtelijke wiskundige modellen,

laten zien dat ongeveer 10% van het studiegebied mogelijk base-metals bevat. Er is

een sterke lithostratigrafische en een regionaal-structurele invloed op het voorkomen

van base-metal in het studiegebied. Het relatief kleine gebied met grote waarschijn-

lijkheid op het voorkomen van erts en met een groot aantal correcte voorspellingen

hiervoor, afhankelijk van het gekozen model varirend van 83% tot 96%, laat twee zaken

zien. In de eerste plaats toont het de effectiviteit van de wiskundige modellen in het

bepalen van de complexe relaties tussen ertsvoorkomens en hun herkenningscriteria.

In de tweede plaats toont het de bruikbaarheid van voorspellingskaarten van mogelijk

voorkomen van erts bij het plannen en optimaliseren van landgebruik en het beheren

van natuurlijke hulpbronnen in het studiegebied.
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