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Chapter 1   
 
Introduction 
 
 

1.1. Context 
 
The exploration of patterns and relationships in large and complex geospatial data 
is a major research area in geovisualization. Traditional forms of geospatial 
analysis can become difficult when dealing with such large and multivariate 
databases. Extracting patterns and understanding the underlying processes may 
be difficult, as certain patterns may remain hidden when using common 
geospatial analysis techniques. New approaches in spatial analysis and 
visualization are needed to represent such data in a visual form that better 
stimulates pattern recognition and hypothesis generation, allows better 
understanding of structures and processes, and supports knowledge construction. 
 
Information visualization techniques are increasingly used in combination with 
other data analysis techniques. Recent efforts in knowledge discovery in 
databases (KDD) have provided a window for geographic knowledge discovery. 
Data mining, knowledge discovery and visualization methods are often combined 
to try to understand structures and patterns in complex geographic data 
(MacEachren et al. 1999; Wachowicz 2000; Gahegan et al. 2001). One way to 
integrate the KDD framework in geospatial data exploration is to combine the 
computational analysis methods with visual analysis in a process that can support 
exploratory and knowledge discovery tasks.  
 
In this research, we explore the integration of computational and visual 
approaches, to contribute to the analysis of complex geospatial data. 
Computational algorithms are used in a framework for data mining, knowledge 
discovery and spatial analysis, as well as for uncovering the structure, patterns, 
relationships and trends in the data. Graphical representations supported by 
information visualization techniques and cartographic methods are then used to 
portray derived structures and patterns in a visual form that allows better 
understanding of the structures and the geographic processes. The use of these 
graphical representations (information spaces) plays a role by offering visual 
representations of data that bring the properties of human perception to bear 
(Card et al. 1999). 
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1.2. Geoinformation and knowledge acquisition 
 
To be of value, data must be organized, transformed and presented in a way that 
gives meaning and makes them useful. From the information science perspective, 
the following seven ways suggested by (Jacobson 1999) are commonly used to 
organize anything in general: alphabet (name), location, time, continuum (value 
scale and order of importance), number, category, or randomly (meaning no 
organization). For communicating the message, each organization of the same set 
of data may express different attributes and information. To enable the transfer of 
knowledge, the patterns and meanings of the information must be assimilated. 
Creative manipulation of data is therefore necessary to assist our understanding 
(Hodge and Janelle 2000). Cognitive research suggests that, by using an 
experimental component such as interaction, inspection, evaluation, 
contemplation or interpretation, meaning and deep understanding can be 
constructed. Rules are often generated from these processes to form intellectual 
skills used in problem solving, and are applied to achieve a solution to a novel 
situation, based on a combination of previously learned rules (Gagné 1977). This 
process of encoding and subsequently entering the encoded information into long-
term memory is a central and critical event in the acquisition of knowledge. 
Information must therefore be organized or transformed into a form that is 
semantic or meaningful. 
 
 
1.2.1. Complexity in geospatial data 
 
Information derived from geospatial data can be considered as a different type of 
information, due to their inherent structure (location, attributes and time), the 
semantics, and the geographic scale used (MacEachren and Kraak 2001). These 
characteristics are meaningful in geographic space. Information in this context 
can be organized in association with geographic positions in a natural and intuitive 
way (maps). Complexity in geospatial data analysis arises from the large volumes 
of data, underlying relationships, and the nature of geographic problems 
(Openshaw 2000; Miller and Han 2001; Gahegan and Brodaric 2002). The process 
of geospatial data handling consists of methods and techniques used to collect 
and analyze data and explore insight related to the dataset in order to solve 
particular problems. Traditionally, maps are the results of this process and are 
used to give a visual representation of an existing phenomenon. This role of maps 
has changed and expanded (Kraak 2000) owing to the technological capacities for 
data acquisition and data processing (e.g. satellite imagery), and the 
sophisticated nature of new visual representation techniques (e.g. 3D 
representation). Today, with the huge volume of data, static non-interactive maps 
do not satisfy the fundamental demands of exploratory data analysis (Andrienko 
et al. 2000). However, the many alternative interactive forms of the map that are 
now available and the use of dynamic links mean it can still play a key role in 
exploring geospatial data (Kraak 2000). 
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1.2.2. Geoinformation and the decision-making process 
 
It is recognized that the use of maps and visual representations derived from 
geospatial analysis operations leads to decisions (Kraak et al. 1995). Decision 
making is one of the main goals of geospatial data analysis. It involves moving 
through a series of steps in order to evaluate a number of possible alternatives 
and decide upon a particular course of action. Malczewski (1999) suggested three 
phases in the geospatial decision-making process:  

- Intelligence (searching for conditions calling for a decision) 
- Design (finding and evaluating decision alternatives) 
- Choice (choosing between decision alternatives). 

 
Decision situations can be related to different levels of tasks such as mapping, 
monitoring, management and specific problem solving. The last two phases of the 
decision-making process (design and choice) may be attributed in certain 
conditions to human intelligence or other support tools helping the decision-
making process. This relies on the first phase of the process (intelligence), in 
which appropriate information must be retrieved. This phase is particularly 
important and requires the transformation of appropriate data into relevant 
information for finding, evaluating and choosing decision alternatives, in a way 
that effectively facilitates knowledge acquisition. Effective extraction of patterns in 
the data is crucial to supporting the geospatial data analysis process. 
 

1.3. Information extraction from complex geospatial 
data 

 
Extracting information from large geospatial data is a major issue in GIScience 
research. Many efforts across such disciplines as statistics, machine learning, and 
database and information visualization have emphasized different aspects of 
exploratory analysis and knowledge discovery (Gahegan 2001) for uncovering 
structure within geospatial data and producing hypotheses with which to explain 
the patterns (Agrawal et al. 1993; Gahegan and Takatsuka 1999; MacEachren et 
al. 1999). Several techniques are used, including artificial intelligence and 
machine learning techniques (Openshaw and Openshaw 1997; Openshaw 2000; 
Gahegan 2000a). 
 
 
1.3.1. Artificial intelligence and geoinformation science 
 
Artificial intelligence is a domain of computer science dealing with the automation 
of intelligent behaviour for solving complex tasks. It is an inclusive term for 
several areas of computing that attempt to mimic processes that humans carry 
out without much conscious thought (Mallach 1994). Major areas covered by 
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artificial intelligence include artificial neural networks, robotics, machine vision, 
speech recognition, interpreting sentences in natural languages, and expert 
systems. In geoinformation science, there are many complex tasks related to data 
processing and manipulation for which a number of applications of artificial 
intelligence have been used. Expert systems or rule-based knowledge engineering 
systems have been used to design geoinformation systems (Openshaw and 
Openshaw 1997) to automate either highly skilled tasks such as map generation 
and name placement on maps in cartography, or rules for selecting good locations 
in complex planning situations. Neural networks are also applied in various areas 
of geoinformation science, including mapping, data classification and prediction. 
 
 
1.3.2. Neural networks 
 
Artificial neural networks, or neural networks, can be defined as a trainable or 
learning program that can be used to induce or extract a pattern of information 
from a structured set of data (Mockler and Dologite 1992). They are designed to 
model the way in which the brain performs a particular task or function of interest 
(Haykin 1994). The network is made up of many simple, highly interconnected 
processing elements that receive input signals and, based on these inputs, either 
generate output signals (fire) or do not. The output signal of an individual 
processing element is sent to many other processing elements via the 
programmed interconnections between processing elements. The network is built 
of a specified number of neurons and a specified number of connections between 
them called weights, which have certain values. What changes during the learning 
process are the values of these weights. Incoming information stimulates certain 
neurons, which pass the information to connected neurons or prevent further 
transportation along the weighted connections. The value of a weight will be 
increased if information should be transported, and decreased if not. While 
learning different inputs, the weight values are changed dynamically until their 
values are balanced, so each input will lead to the desired output. The training of 
a neural network results in a matrix that holds the weight values between the 
neurons. Once the network has been trained correctly, it can be used to find the 
most appropriate output to a given input that has been learned, by using these 
matrix values. 
 
Like many techniques applied to data analysis (statistical methods, rule-based 
systems and decision trees), neural networks are an emerging solution for data 
analysis and pattern recognition. In geographic problems, they are found to be 
suitable because of their freedom from assumptions, their inherent non-linearity, 
and their ability to handle noisy data in difficult non-ideal contexts, even when the 
available knowledge is regarded as sufficient to employ a conventional modelling 
or statistical approach (Openshaw and Openshaw 1997). 
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1.3.3. Kohonen self-organizing map (SOM) 
 
The Kohonen Feature Map or Self-Organizing Map was introduced in 1982 
(Kohonen 1989) as an unsupervised neural network to simulate the learning 
process of the human brain. The basis of the SOM network is the feature map, a 
neuron layer where neurons organize themselves according to certain input 
values. The conceptual basis is the concept of self-organization, a neural process 
that describes the way the brain operates. The neural cells organize themselves 
into groups according to incoming information. This incoming information is not 
only received by a single neural cell, but also influences other cells in its 
neighbourhood. This organization results in some kind of map, where neural cells 
with similar functions are arranged close together. During the learning process, 
the nodes that are close in the array to a certain distance will activate each other 
to learn from the same input. This effect will create an ordering in the 
neighbourhood and a global ordering for a long learning time. 
 
Several information visualization applications of the SOM have been proposed, 
mainly for text document visualization. The ET-MAP (Chen 1999), a hierarchical 
set of category maps that are essentially visual directories, was created with the 
SOM. The ET-MAP uses a land use metaphor (Dodge and Kitchin 2001) to display 
over 110,000 entertainment-related web pages listed by Yahoo. Cyberspace 
geography visualization developed by Girardin (1995) at the Graduate Institute of 
International Studies in Switzerland is another example of information 
visualization using SOM-based analysis for web content. WebSOM (Kohonen 
1997) also uses SOM analysis but, rather than mapping the web, it maps 
thousands of articles posted on the Usenet newsgroup. WebSOM was developed 
by researchers at the Neural Network Research Centre at Helsinki University of 
Technology. 
 
The SOM basically produces a similarity graph of input data, and converts the 
non-linear relationships between high-dimensional data into simple geometric 
relationships of their image points, usually on a 2D grid of nodes, by combining 
clustering and projection operations. One of its main applications has been the 
description of statistical data. The mapping produced by the SOM is expected to 
be explainable in terms of classical concepts of statistics. Other applications have 
been successful in optical character and script reading, speech recognition, image 
analysis, robot learning strategies, and biomedical applications (Behme et al. 
1993; Alhoniemi et al. 1999; Kohonen 2001). In these applications, the SOM was 
found to be helpful in uncovering the relationships in the data, and finding 
patterns and trends based on its unsupervised learning method. It has been 
commonly argued that SOM networks are less sensitive to limitations (speed of 
convergence, local minima, etc.) known from classical neural networks such as 
multi-layer perceptrons and radial-basis function networks (Cottrell et al. 2001).  
 
Application of the SOM for geospatial analysis has been considered mainly for 
classification problems (Weijan and Fraser 1996; Gahegan and Takatsuka 1999; 
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Gahegan 2000a; Luo and Tseng 2000; Tso and Mather 2001). More of the 
potential of this algorithm for geospatial pattern extraction and visualization 
remains to be explored.  
 
Pattern extraction should also be combined with appropriate representation of 
information in order to allow users to understand the underlying relationships in 
the data and build knowledge about the geographic processes. 
 

1.4. Alternative representation and visualization of 
large geospatial data 

 
A new form of visual representation for geographic data is visualization, which 
attempts to give a response to the increasing needs of users. There is a 
continuous search for better visualization tools to allow users to benefit from 
geospatial analysis results, and to support the decision-making process. 
Visualization is the use of computer-supported interactive visual representations 
of data to amplify the cognition (Card et al. 1999), acquisition or use of 
knowledge. The cognitive support underlined in this definition is provided in six 
ways, by: 

- increasing the memory and processing resources available to the users 
- reducing the search for information 
- using visual representations to enhance the detection of patterns 
- enabling perceptual influence operations 
- using perceptual attention mechanisms for monitoring 
- encoding information in a manipulable medium. 

 
Visualization can allow the data and information to be explored graphically, in 
order to gain the understanding, insight or knowledge from complex 
multidimensional datasets (McCormick et al. 1987) that is necessary for decision 
making, problem solving and explanation tasks. Visualization could also enhance 
the understanding of complexity, retaining user participation through 
computational steering to enhance the overall effectiveness of data analysis. 
 
 
1.4.1. Geovisualization 
 
Visualization in scientific computing emerged from the computer science field 
along with fields such as scientific visualization and information visualization. 
Information visualization is recognized as having the potential to enable better 
understanding of complex systems and the discovery of information that might 
otherwise remain unknown, and, by so doing, to facilitate better decisions (Card 
et al. 1999). Cartographic research efforts in visualization have been extended to 
meet other research activities in information science disciplines. This recognition 
was advanced by the creation in 1995 of a Commission on Visualization (later to 
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become the Commission on Visualization and Virtual Environments) within the 
International Cartography Association (ICA) (MacEachren and Kraak 2001). The 
research objective within this commission is to cope with the increasing volume of 
geospatial data by developing theory and practice that facilitate knowledge 
construction through the visual exploration and analysis of geospatial data. In 
addition, emphasis is laid on the visual tools necessary to support knowledge 
retrieval, synthesis and use (MacEachren and Kraak 2001). 
 
Geovisualization (visualization applied to geospatial data) can be considered as 
the core discipline for understanding complex phenomena and processes, and 
structures and relationships in complex geospatial datasets. It integrates 
perspectives on the representation and analysis of geospatial data with recent 
developments in scientific and information visualization, exploratory data analysis 
(EDA), GIS, cartography and image analysis (Kraak 2000). It includes the use of 
a number of techniques for exploring data, answering questions, generating 
hypotheses, developing solutions and constructing knowledge. Such visual 
exploration of geospatial data (Kraak 1998) can be useful for displaying patterns 
with interaction and dynamics in order to achieve better decision making (see 
figure 1.1). 

 
 

 
Figure 1.1. Geovisualization use space, with four dimensions: users, task, interaction and goal 
depicted along the central diagonal. (MacEachren 1994; MacEachren et al. 2004) 
 
 
 
1.4.2. Information visualization and spatialization 
 
Information visualization is a fast-growing research field with considerable 
potential and application in industry. Research in the field is concerned with 
graphically representing complex, abstract data domains in order to facilitate 
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knowledge extraction from very large non-spatial data. Representations used in 
information visualization often apply geographic metaphors to structure human-
computer interaction, and are commonly referred to as spatializations or 
information spaces (Fabrikant 2001b). Most of these are generated outside the 
GIScience and cartography disciplines. Information visualization has two 
fundamentally related aspects: structural modelling and graphical representation 
(Chen 1999). The structural modelling intends to detect, extract and simplify 
underlying relationships, whereas the graphical representation is to transform an 
initial representation of a structure into a graphical one, so that the structure can 
be visually examined and interacted with.  
 
While scientific visualization is applied to scientific data, information visualization 
is often applied to abstract data. Scientific data are often physically based (the 
human body, the earth, molecules, etc.), whereas abstract data are non-physical 
information and may not have obvious spatial mapping (financial data, business 
information, collections of documents, and abstract conceptions). 
 
Information visualization can enable complex systems to be better understood, 
better decisions to be made, and information to be discovered that might 
otherwise remain unknown (Card et al. 1999). Users looking at large amounts of 
complex data can quickly find the information they need; navigate and interact 
with data more easily; recognize patterns and trends; discover errors in the data; 
easily identify minimum and maximum values, and clusters; and obtain a better 
understanding of the underlying structure and processes. This is possible, for 
example, by grouping or visually relating information in order to reduce the 
search for data, or by aggregating data in order that they may be revealed 
through clustering or common visual properties. 
 

1.5. Problem and motivation 
 
The growing volumes of geospatial data presents a difficult challenge in the 
exploration of patterns and relationships. With such large volumes of data, 
common geospatial analysis techniques are often limited in revealing patterns and 
relationships, a process necessary for understanding underlying structure and 
related real world processes. It seems that the geoscientist is dealing more and 
more with unknown data or data where he or she does not have enough 
knowledge of the underlying relationships (Openshaw and Openshaw 1997). In 
order to decide the class to which the pattern belongs, common classification or 
pattern recognition methods are used to compare the unknown pattern with all 
known reference patterns, on the basis of some criterion for the degree of 
similarity. These techniques are difficult to apply in the case of unknown data, as 
it is not obvious what mechanisms or rules are behind the data or classes of 
interest. New approaches in exploratory geospatial data analysis and visualization 
are needed to effectively extract patterns and relationships, and represent such 
data in a visual form that can better stimulate exploration, pattern recognition 
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and hypothesis generation, as well as allow better understanding of structures 
and processes and support knowledge construction. 
 

1.6. Research goals 
 
The objective of the research is to provide methods and techniques for integrating 
effective pattern extraction, based on computational analysis and graphical 
representations that can allow visual exploration of large geospatial data, and 
support knowledge construction. The specific objectives include providing 
appropriate tools that facilitate the development of problem solutions, and 
support hypothesis generation and testing, and the evaluation and interpretation 
of patterns. The ultimate goal is to support visual data mining and exploration, 
and gain insights into appropriate underlying distributions, patterns and trends, 
and therefore contribute to enhancing the understanding of geographic processes 
and knowledge construction. 
 
The main research questions related are: 
 

1. What computational and visual tools can be used to effectively extract 
patterns and represent information from very large geospatial data in order 
to allow understanding and knowledge acquisition? 

 
2. What tools and methods can support visual data mining and knowledge 

discovery in large geospatial datasets? 
 
3. How can visual and computational methods be integrated to support the 

design of exploratory geovisualization and knowledge discovery?  
 
4. How can geographic and non-geographic information spaces be integrated 

to improve visual interaction and exploration of geospatial data? 
 
5. How can the representation and exploration of spatio-temporal patterns in 

large geospatial data be supported? 
 
6. Can a usability evaluation methodology based on an understanding of visual 

exploration and visualization tasks be developed to assess the exploratory 
geovisualization environments? 

 
7. Can visual-computational approaches contribute to the exploratory analysis 

of geospatial data and knowledge construction? 
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1.7. Methodology 
 
To address the research problems presented above, a methodology is proposed. 
It includes a theoretical basis and the subsequent experiments. 
 
 
1.7.1. Theoretical basis 
 
A theoretical basis for combining computational analysis and visual support is first 
proposed in a conceptual framework. This framework relates methods and 
techniques for spatial analysis, data mining, knowledge discovery and information 
visualization, and cartographic methods for guiding the design of exploratory 
geovisualization. This framework is intended to offer alternative and different 
views of the data, and as such stimulate the visual thinking process characteristic 
of visual exploration. 
 
 
1.7.2. Experiments and validation of results 
 
A number of experimental studies are conducted to investigate the potential of 
the proposed approach. These studies involve the exploration of large socio-
demographic and health data in Chapter 3, and spatio-temporal data in Chapter 
4, in order to provide some understanding of the complex relationships between 
socio-economic indicators. The experiments provide the opportunity, by way of a 
usability study, to assess the effectiveness of the proposed method in Chapter 6 
and 7. 
 

1.8. Structure of the thesis 
 
To fulfil the research goals set out above, a research plan was implemented. It 
includes the activities presented in figure 1.2. These activities are reported in the 
different chapters of the thesis. The structure of the thesis is presented in figure 
1.2. 
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Figure 1.2. Structure of the thesis. 

  
 
A brief description of the different chapters is provided below. 
 
Chapter 1: Introduction  
This chapter provides an introduction to the scope of the research, the research 
problem, the relevance of the topic, the context, the objectives, and the research 
questions. 
 
Chapter 2: A visual-computational framework to support exploratory 
visualization and knowledge discovery  
This chapter proposes a conceptual framework for the integration of 
computational and visual analysis methods for the exploratory visualization of 
large geospatial datasets.  
 
Chapter 3: Exploring self-organizing map for geovisualization 
This chapter explores the SOM potential for pattern extraction and investigates its 
application in visual exploration of large geospatial data. Two example cases are 
explored. At the end of this chapter, a preliminary usability feature inspection is 
conducted to gather users’ views on the different representation forms offered. 
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Chapter 4: User interface design for geovisualization: visual interaction for 
knowledge discovery 
This chapter describes the design approach to integrating visual and 
computational analysis for geospatial data exploration.  
 
Chapter 5: Exploring spatio-temporal patterns in large geospatial data 
This chapter presents an application of the proposed method for the 
representation and exploration of spatio-temporal patterns in a large dataset. 
Several representation techniques are proposed, based on the extraction 
capabilities offered by the computational analysis. 
 
Chapter 6: A usability evaluation methodology for exploratory 
geovisualization 
A usability evaluation methodology is proposed for assessing the usability and 
usefulness of the exploratory geovisualization environment. The method is based 
on a taxonomy of visualization tasks and operations.  
 
Chapter 7: Usability testing and results 
An empirical usability test is conducted and reported in this chapter. Some 
usability indicators (effectiveness, usefulness, and user reaction) are examined in 
relation to the use of the different graphical representations proposed, and are 
compared with maps and parallel coordinate plots. 

 
Chapter 8: Findings and conclusions 
This chapter presents the final findings of the research. Answers to the research 
questions posed in the introductory chapter are provided, as well as related future 
research issues. 
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Chapter 2   
 
A visual-computational framework to support 
exploratory geovisualization and knowledge 
discovery  
 
 

2.1. Introduction 
 
A large proportion of geovisualization research (Dykes et al. 2004) is 
concentrated on the exploration of patterns and relationships in large and 
complex geospatial data, in order to provide alternatives representation and 
visualization techniques to improve geospatial data analysis. Information 
visualization and scientific visualization, particularly multidimensional visualization 
techniques (Nielson et al. 1997), are increasingly used in combination with 
exploratory data analysis techniques to explore the structure of large geospatial 
datasets. The integration of information visualization techniques with cartographic 
methods can benefit the geovisualization community. Examples of such 
integration are the dynamic and interactive maps designed in cartography (Kraak 
2000). These interactive visual geospatial displays are used to explore data, 
generate hypotheses, develop problem solutions and construct knowledge 
(MacEachren 1994). This is by definition what geovisualization is all about: an 
active process that uses advanced user interfaces to allow users to highlight, filter 
and sort data as they search for patterns and relationships. To improve pattern 
extraction in large geospatial datasets, geographic data mining and knowledge 
discovery (Miller and Han 2001) have emerged from the application of data 
mining and knowledge discovery in databases (KDD) methods to the geographic 
domain. However, some difficulties remain in the application of data mining and 
KDD in geospatial data analysis. Besides the data volume, problems are often 
related to complexities caused by data gathering and the integration of different 
datasets and local relationships, and, more importantly, to the lack of appropriate 
methods and the difficulty in formulating the geographic domain (Gahegan and 
Brodaric 2002). 
 
We explore a framework to integrate computational algorithms such as the self-
organizing map (SOM) and visual analysis in a process that can support 
exploratory and knowledge discovery tasks. The SOM algorithm is used for data 

                                                 
This chapter is partly based on: 

 
Koua E. L. and Kraak M.J. (2004). Self-organizing maps for exploratory visualization and knowledge 
discovery in large geopatial datasets. In: P. Agarwal and A. Skupin (Eds.) Self-organising maps: 
applications in geographic information sciences. New York: Wiley and Sons. 
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mining, knowledge discovery and spatial analysis, and for uncovering the 
structure, patterns, relationships and trends in the data. Some graphical 
representations are then used to portray extracted information in a visual form 
that can allow better understanding of the structures and the geographic 
processes. The design integrates non-geographic information spaces with maps 
and other graphics that allow patterns and attribute relationships to be explored, 
in order to facilitate knowledge construction. This allows the attribute space to be 
visualized while a link with the geographic space is maintained in multiple views. 
These graphical representations (information spaces) combine information 
visualization techniques and cartographic methods to improve the interaction and 
exploration of extracted patterns, and facilitate human perception and cognitive 
processes (MacEachren 1995; Card et al. 1999), by offering visualizations of the 
general structure of the dataset (clustering), as well as the exploration of 
relationships among attributes. 
 
The chapter describes the framework in which pattern extraction with the SOM is 
combined with graphical representations in order to provide effective exploration 
of the data and support knowledge construction. The ultimate goal is to support 
visual data mining and exploration, and allow users to gain insights into 
appropriate underlying distributions, patterns and trends, and thus contribute to 
enhancing the understanding of geographic processes and support knowledge 
construction. 
 

2.2. Geospatial data exploration and visualization 
 
Continuous effort is put into adapting, improving and developing techniques for 
geospatial data exploration. We provide a description of some of the geospatial 
data exploration techniques in the next subsections, including the use of maps 
(traditional and new forms of map representations) and other visual exploration 
techniques. 
 
To explore and compare the different visualization techniques, we use a dataset 
on geography and economic development (Gallup et al. 1999) to analyze the 
complex relationships between geography and macroeconomic growth. The 
dataset contains 48 variables on the economy, physical geography, population 
and health of 150 countries. This dataset will be further examined in Chapter 3. 
 

2.2.1. Representation of geographic information: use of maps and 
beyond 

 
The representation of geographic data has long been the primary role of 
cartography as a communication-oriented discipline with well-defined messages. A 
common way of representing geographic space is to use maps. Attention to maps 
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as spatial representation has expanded the field of cartography and makes links 
to a number of other disciplines, such as geographic information systems (GIS), 
remote sensing, cognitive science, sociology, cognitive and environmental 
psychology, and semiotics (MacEachren 1995). In the representation of 
geographic space, the map usually has a dual identity (Peuquet 1984): the map 
as a graphical image, which is the natural view we take of maps, and the 
geometric structure view, where the map is viewed as a composition of lines, 
points, polygons, curves, surfaces and volumes. 
 
Although the map is a common way of representing geographic space, some 
geographic representation problems are more productively addressed by using 
other displays, as space to directly signify an attribute (MacEachren 1995). The 
cartogram (spatial transformations that depicts attributes of geographic objects as 
the object's area), a technique that can trade off shape and area adjustments, is 
often used to represent geographic information, as multidimensional scaling 
techniques are also a common alternative used in geographic problem solving. 
The SOM is getting a lot of attention as an alternative for representing and 
visualizing complex geographic data. 
 
These new forms of representation of geospatial data utilize the geometric 
structure view of map representations, such as volumes, surfaces, points and 
lines, which encourages exploration and the subsequent discovery of novel 
insights into geographic databases (Peuquet and Kraak 2002). The geometry 
allows the exploration of relationships between items in the representation. 
Distance (similarity between data items), regions (aggregation of similar data 
items), and scale (level of detail in a database) are examples of spatial metaphors 
used in new representation spaces (Fabrikant 2001b). Coordinate systems allow 
distance and direction to be determined, from which other spatial relationships 
(size, shape, density, arrangement) may be derived. The scale allows exploration 
of the information space at multiple levels of detail, and provides the potential for 
the hierarchical grouping of items, and for revealing categories or classifications. 
 
In geovisualization, all mappings of geospatial information in perceptible forms 
(visual, haptic or audible) are being used. The integration of senses such as 
hearing and touch, immersive display forms (MacEachren et al. 2003), 
interactions and dynamism into representations is raising new cognitive issues, 
important for navigating and exploring geoinformation spaces. The 
representations need to be appropriate to the task, and an examination of the 
semantics within the data is needed to maintain a connection between the real 
world and its iconic representation in map or more schematic forms. For example, 
creating a geographic analogy can help generate an information landscape based 
on experiential properties of the real world (Fabricant and Buttenfield 2001). 
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2.2.2. Multidimensional multivariate visualization and exploratory 
data analysis techniques 

 
Multidimensional multivariate visualization (mdmv) has been an active research 
field for more than three decades, from which scientific visualization is a sub-field 
dealing with the analysis of data with multiple parameters and factors (Nielson et 
al. 1997). These techniques aim at extending the possibilities of multivariate 
correlation in an effort to provide correlation information among many variates 
simultaneously in large datasets, as a solution to limitations of statistical 
visualization techniques. A comprehensive classification of multivariate 
visualization techniques was provided by Nielson et al. (1997) and Keim et al. 
(2001). 
 
Exploratory data analysis (EDA) is a well-established tradition in statistics (Tukey 
1977) applied to a distinctive approach to the exploration of data, including 
pattern recognition and uncovering data structure (Sibley 1988). EDA methods 
are used to explore the data and reveal patterns or structures in the data in order 
to understand the underlying processes, as opposed to confirmatory methods, 
which are conventional statistical techniques based on classical theory and 
designed to test hypotheses. Projections and clustering techniques are used to 
emphasize the entire knowledge discovery process, and the discovery of novel 
patterns. Each variable can be shown either as an independent variable or in 
relation to other variables. However, for a large number of variables, it remains 
difficult to interpret and understand the underlying structure of a dataset, as the 
display of all data components becomes difficult and incomprehensible for large 
multidimensional datasets. Among the many exploratory data analaysis 
techniques applied in geospatial data analysis, parallel coordinates (Inselberg 
1985) are particularly common. While a parallel coordinate is a useful interactive 
exploration technique (interactive brushing), it falls short of providing a useful 
overview of the full dataset (Keim et al. 2001). For example, a parallel coordinate 
plot of the dataset studied (150 samples and 48 variables) would be a rather 
noisy picture despite brushing features. The method appears satisfactory only 
when the number of observations is small. Slocum (1999) suggested that the 
maximum number of variables for interpretable display using a parallel coordinate 
plot should be between 10 and 20, which corresponds to a rather small dataset. 
Other common EDA techniques include scatter plots, scatterplot matrixes, 
multidimensional graphs, linear projection methods such as principal component 
analysis (PCA), and non-linear methods such as multidimensional scaling (MDS). 
Projection methods are meant to reduce the dimensionality of the dataset and 
represent the input data space on a lower-dimensional space, so that certain 
properties of the dataset structure, such as the distances between data items 
(variations presented in the data), are preserved as much as possible. Several 
non-linear projection techniques have been introduced to deal with highly 
asymmetric distributions, where linear projections may not be effective in 
visualizing the structures of the distributions or other structures. The MDS 
technique (Torgerson 1952) is a widely used non-linear projection method. It is a 
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method that represents measurements of similarity or dissimilarity among pairs of 
objects as distances between points of a low-dimensional space. In addition to 
detecting underlying structure and reducing data, MDS provides a spatial 
representation of data that can facilitate interpretation and reveal relationships.  
 
Sammon's mapping (Sammon 1969) is another non-linear projection technique 
that is widely used and very similar to MDS methods. It tries to match the 
distance among pairs of data items of the low-dimensional space with their 
original distances. Figure 2.1 provides a representation of the dataset, using MDS 
(a), PCA (b), K-means clustering (c) and the SOM grid (d). 
 
The major drawback, however, is that Sammon’s mapping algorithm, like MDS 
methods, is a point-to-point mapping, which does not provide an explicit mapping 
function and cannot accommodate new data points. For any additional input data, 
the projection will be re-calculated completely; this makes these techniques 
computationally very intensive. 
 
A number of authors have proposed using artificial neural networks as part of a 
strategy to improve geospatial analysis of large, complex datasets (Schaale and 
Furrer 1995; Openshaw and Turton 1996; Skidmore et al. 1997; Gahegan and 
Takatsuka 1999; Gahegan 2000a). Artificial neural networks have the ability to 
perform pattern recognition and classification. They are especially useful in 
situations where the data volumes are large and the relationships are unclear or 
even hidden; this is because of their ability to handle noisy data in difficult non-
ideal contexts (Openshaw and Openshaw 1997). Particular attention has been 
directed to using the self-organizing map (SOM) neural network model as a 
means of organizing complex information spaces (Girardin 1995; Chen 1999; 
Fabricant and Buttenfield 2001). The SOM is also generally acknowledged to be a 
useful tool for the extraction of patterns and the creation of abstractions where 
conventional methods may be limited because underlying relationships are not 
clear or classes of interest are not obvious. 
 
 
A wide range of SOM applications in geospatial analysis have been explored, 
including geospatial data mining and knowledge discovery (Gahegan and Brodaric 
2002), map projection (Skupin 2003), and classification (Gahegan and Takatsuka 
1999; Gahegan 2000a). This interest in the SOM in geographic data analysis is 
due partly to its multidimensional data reduction and topological mapping 
capabilities.  
 
A more detailed description of the SOM is provided in the next section. 
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Figure 2.1. A representation of the structure of the dataset (geography and economic development) 

using MDS (a), PCA projection (b), and K-means clustering (c), and a basic SOM grid representation 

showing neuron positions and countries to which they were adapted. Nearby locations on the SOM 

grid represent countries with similar characteristics according to the multivariate attributes. 

 
One fundamental difference between the SOM and other projection methods such 
as MDS and Sammon’s mapping is that the SOM tries to preserve not the 
distances between original data items, but the neighbourhood relations on the 
map lattice (see figure 2.1d). Nearby locations on the SOM lattice represent 
similar data items. The second major difference is that the SOM estimates an 
explicit mapping function based on a dataset, which can be used for new 
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observations. Finally, the SOM reduces the input data to a small number of 
vectors, so the burden of computation is reduced. 
 

2.3. SOM and geospatial data exploration: a framework 
to support exploratory visualization and 
knowledge discovery 

 
Like other neural networks in general, the SOM has the ability to perform pattern 
recognition and classification, and to handle noisy data. This SOM property has 
offered an alternative to non-linear projection and multidimensional data 
visualization (Yin 2001) as one of the attempts to improve data analysis in 
general. Based on adaptive mapping methods, this neural network can learn 
complex non-linear relationships, often unclear or hidden, from vast numbers of 
variables in data.  
 
The proposed framework explores ways to effectively extract patterns in the data 
by using data mining techniques, and represents the results by using graphical 
representations for visual exploration. This framework is based on current 
understanding of the effective application of visual variables (MacEachren 1995; 
Wilkinson 1999) for cartographic and information design, on developing theories 
on interface metaphors for geospatial information displays, and on previous 
empirical studies of map and information visualization effectiveness. In the next 
subsection, we outline the main components of the approach, including a detailed 
description of the algorithm; computational analysis steps, including data mining 
and knowledge discovery issues; and the representational and exploratory 
visualization framework. 

 

2.3.1. The self-organizing map (SOM) algorithm 

 
The SOM (Kohonen 1989) is an artificial neural network used to map 
multidimensional data onto a low-dimensional space, usually a 2D representation 
space (see figure 2.2). The network consists of a number of neural processing 
elements (units or neurons) usually arranged on a rectangular or hexagonal grid, 
where each neuron is connected to the input. Each of the units i  is assigned an n-
dimensional weight vector im  that has the same dimensionality as the input 

patterns. 
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Figure 2.2. Structure of a SOM network (a) with the selection of a node and adaptation of 

neighbouring nodes to the input data. The SOM grid can be hexagonal (b) or rectangular (c). The 

black object indicates the node that was selected as the best match for the input pattern. 

Neighbouring nodes adapt themselves according to the similarity with input pattern. The degree of 

shading of neighbouring nodes corresponds to the strength of the adaptation. 

 
What changes during the network training process are the values of these 
weights. Each training iteration t starts with the random selection of one input 
pattern ( )tx . Using Euclidean distance between weight vector and input pattern, 

the activation of the units is calculated. The unit with the lowest activation is 
referred to as the winner, c , of the training iteration: 
  

{ })()(min)( tmtxtm iic −=  (1) 

 
Finally the weight vector of the winner as well as the weight vectors of selected 
units in the neighbourhood of the winner are adapted to represent the input 
pattern. At each step t  of the random sequence of the given )(tx  values, the 

values of im  are gradually and adaptively changed in the following adaptation 

process: 
  

[ ])()()()()1( tmtxthtmtm iciii −+=+  (2) 

Input data vectors X in the 
multidimensional space 

 X1 

 Xn 

Output space (SOM) in 2D space 

Output space (SOM)  Input space Input space Output space (SOM)  
 

○○○○○○
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The degree of adaptation in the neighbourhood is characterized by a 
neighbourhood function h , which is a decreasing function of the units from the 

winning unit on the map lattice until no noticeable changes are observed. As a 
result of a general adaptation process, a number of units in the neighbourhood of 
the winner lead to a spatial clustering of similar input patterns in neighbouring 
parts of the SOM.  
 
The resultant maps (SOMs) are organized in such a way that similar data are 
mapped onto the same node or onto neighbouring nodes in the map. This 
arrangement of the clusters in the map reflects the attribute relationships of the 
clusters in the input space. For example, the size of the clusters (the number of 
nodes allotted to each cluster) is reflective of the frequency distribution of the 
patterns in the input set. Actually, the SOM uses a distribution-preserving 
property, which has the ability to allocate more nodes to input patterns that 
appear more frequently during the training phase of the network configuration. In 
other words, the topology of the dataset in its n-dimensional space is captured by 
the SOM and reflected in the ordering of its nodes. This is an important feature of 
the SOM and allows the data to be projected onto the lower-dimension space 
while roughly preserving the order of the data in its original space. Another 
important feature of the SOM for knowledge discovery in complex datasets is the 
fact that it is an unsupervised learning network, meaning that the training 
patterns have no category information that accompanies them. Unlike supervised 
methods that learn to associate a set of inputs with a set of outputs by using a 
training dataset for which both input and output are known, the SOM adopts a 
learning strategy where the similarity relationships between the data and the 
clusters are used to classify and categorize the data. 
 
The SOM can be useful for knowledge discovery in database methodology as it 
follows the probability density function of underlying data. It also offers visual 
representations that enable easy data exploration.  
 
We have integrated the SOM in a knowledge discovery framework (figure 2.5) for 
the exploration of complex geospatial data. The use of the SOM is intended to 
provide additional exploratory data analysis techniques for complex geospatial 
data. The strategy is to integrate the computational analysis (extraction of 
patterns and relationships) using the SOM algorithm with graphical 
representations that can stimulate pattern recognition and hypothesis generation. 
For the user, the main goal is the acquisition of knowledge through exploration 
and discovery for decision making, problem solving and explanation. These goals 
are targeted in the framework, using interaction and exploratory tasks for 
understanding the structures and processes and the knowledge construction 
process. 
 
Self-organizing map quality 
After the SOM has been trained, it is important to know whether it has properly 
adapted itself to the training data. Because it is obvious that one optimal map for 
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the given input data must exist, several map quality measures have been 
proposed (Kohonen 1995; Kohenen 2001). The maps have two primary quality 
properties: data representation accuracy (mapping precision or resolution) and 
dataset topology (attributes relationships) representation accuracy (topology 
preservation). A common measure that calculates the precision of the mapping is 
the average quantization error over the entire dataset. This mapping precision 
measure describes how accurately the neurons respond to the given dataset. 
Since the responses of the network neurons to the data samples are based on 
Euclidean distance, the nearest vector is the best match unit for that sample. The 
average quantization error measures the precision of the mapping, using the 

average of the Euclidean distances of each input vector ix and its best matching 

reference vector cm in the SOM, using: 

 

∑
=

−=
N

i
ci

N
q mxE

1

1  (3) 

 
where N  is the number of data vectors in the input data space. For example, if 

the reference vector of the best matching unit calculated for a given testing vector 
x  is exactly the same x , the error in precision is then 0. Normally, the number 

of data vectors exceeds the number of neurons and the precision error is thus 
always different from 0.  
 
For the topology representation accuracy (topology preservation), an error 
measure (percentage of data vectors for which the first and second best matching 
units are not adjacent units) is used. The topology preserving property comes 
from the fact that similar data are mapped onto the same node, or to 
neighbouring nodes in the map.  This is described as: 
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where )( kxu  is 1 if the first and second best matching unit of kx  are not next to 

each other (not adjacent units), otherwise )( kxu is 0. 

An illustration of the training process is presented in figure 2.3. 
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Figure 2.3. Illustration of the SOM training process with a 10 x 10 network of neurons. The black 

dots show the positions of the map units or neurons, and the red crosses represent 300 randomly 

sampled data points. The SOM grid is a 2-dimensional grid of 10 x 10 neurons (a) that show the 

connections between neighbouring map units in the output SOM space. The positions of the map 

units are disorganized together with the training data in the input space after a random initialization 

of the network (b). During training, the map self-organizes and folds to the training data at each 

learning step (c),and (d), so that the map units represent the data vectors as similar as possible. 

 
After training, the distances between neighbouring map units can be represented 
in a distance map, to show the overall clustering of the data. For a given map of 
[ ]pn, size, the distance map is  a [ ]lk,  vector [ ]p,...u,uuijU 121= . 

 
(b) Map in input space 

(d) After 300 training steps 

 

      

 
(c) After 200 training steps 
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For example, in the case of a [ ]51x size map, [ ]5,4,3,2,1 mmmmm where im denotes 

one map unit. The distance map is a [ ]91x vector [ ]5,45,4,34,3,23,2,12,1 uuuuuuuuu  

where jmimiju −= is the distance between map units im and jm , and bu is the 

mean (or minimum, maximum or median) of the surrounding values, for example 
( ) 234233 /uuu += . 

 

2.3.2. Visual data mining and knowledge discovery for 
understanding geographic processes 

 
One approach to analyzing large amounts of data is to use data mining and 
knowledge discovery methods. In geospatial analysis, data mining tools are 
applied to extract patterns from large datasets and help uncover structures in 
complex data (Openshaw et al. 1990). The main goal of data mining is to identify 
valid, novel, potentially useful patterns in data, and ultimately to understand 
them (Fayyad et al. 1996). Generally, three general categories of data mining 
goals can be identified (Weldon 1996): explanatory (to explain some observed 
events), confirmatory (to confirm a hypothesis), and exploratory (to analyze data 
for new or unexpected relationships). Typical tasks for which data mining 
techniques are often used include clustering, classification, generalization and 
prediction. These techniques vary from traditional statistics to artificial intelligence 
and machine learning. The most popular methods include decision trees (tree 
induction), value prediction, and association rules often used for classification 
(Miller and Han 2001). Artificial neural networks are used particularly for 
exploratory analysis as non-linear clustering and classification techniques. For 
example, unsupervised neural networks such as the SOM are a type of neural 
clustering technique, and neural architectures using backpropagation and 
feedforward are neural induction methods used for classification (supervised 
learning). The algorithms used in data mining are often integrated into KDD, a 
larger framework that aims at finding new knowledge from large databases. While 
data mining deals with transforming data into information or facts, KDD is a 
higher-level process using information derived from the data mining process to 
turn it into knowledge or integrate it into prior knowledge (see figure 2.4). 
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Figure 2.4. Data mining and knowledge discovery frameworks. Data mining is part of the knowledge 

discovery process. Data is first processed and transformed into information at the data mining 

stage. Information derived from the data mining process is turned into knowledge or integrated into 

prior knowledge through interpretation and evaluation. Visualization can support any stage in this 

process to enhance exploration (visual data mining). 

 
In general, KDD stands for discovering and visualizing the regularities, structures 
and rules from data (Miller and Han 2001), discovering useful knowledge from 
data (Fayyad et al. 1996), and finding new knowledge. It consists of several 
generic steps, namely data pre-processing, transformation (dimension reduction, 
projection), data mining (structure mining) and interpretation/evaluation. 
 
Applications of data mining and KDD methods have advanced geographic data 
mining and knowledge discovery, which has become an established field in 
geographic visualization (Sibley 1988; Weijan and Fraser 1996; MacEachren et al. 
1999; Gahegan et al. 2001; Liu et al. 2001; Miller and Han 2001; Roddick and 
Lees 2001). This framework has been used in geospatial data exploration 
(Openshaw et al. 1990; MacEachren et al. 1999; Wachowicz 2000; Gahegan et al. 
2001; Miller and Han 2001) to discover unexpected correlation and causal 
relationships, and understand structures and patterns in complex geographic 
data. The promises inherent in the development of data mining and knowledge 
discovery processes for geospatial analysis include the ability to yield unexpected 
correlation and causal relationships. A large proportion of these applications are 
directed towards spatio-temporal data mining (Roddick and Lees 2001).  
 
The dimensionality of the dataset is very high, and searching for patterns in such 
high-dimensional space is often ineffective. We use the SOM algorithm as a data 
mining tool to project input data into an alternative measurement space, based 
on similarities and relationships in the input data, which can aid the search for 
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patterns. It becomes possible to achieve better results in this similarity space 
than in the original attribute space (Strehl and Ghosh 2002). As described in the 
previous section, the SOM adapts its internal structures to the structural 
properties of the multidimensional input, such as regularities, similarities and 
frequencies. These SOM properties can be used to search for structures in the 
multidimensional input. Graphical representations are then used to enable visual 
data exploration, allowing the user to gain insight into the data, evaluate, filter, 
and map outputs. This is intended to support visual data mining (Keim 2002) by 
allowing several variables and their interactions to be inspected simultaneously, 
and by receiving feedback from the knowledge discovery process by means of 
interaction techniques that support the process (Cabena et al. 1998). 
 

2.3.3. Computational analysis and visualization framework 

 
One of the advantages of the SOM is that the outcome of the computational 
process can easily be portrayed through visual representation. The first level of 
the computation provides a mechanism for extracting patterns from the data. The 
output of this computational process is depicted using graphical representations 
(information spaces) to facilitate human perception and cognitive processes 
(MacEachren 1995; Card et al. 1999), by offering visualizations of the general 
structure of the dataset (clustering), as well as the exploration of relationships 
among attributes. Users can perform a number of exploratory tasks not only to 
understand the structure of the dataset as a whole, and also to explore detailed 
information on individual or selected attributes of the dataset. 
 

 

Figure 2.5. Computational analysis and exploratory visualization framework. 

 
Like other artificial neural networks, the SOM is used as a non-linear clustering 
and classification technique that provides ground for extracting patterns from the 
data at the data mining level in the exploratory framework for visualization and 
knowledge discovery described below (figure 2.5).  

 Visualization and Knowledge Discovery 

 
 
 
 
 
 
 
 
 

      Data mining 
 

SOM computational 
analysis 

 

Knowledge area Information 

Structure mining 

Clustering and 
projection 

Interaction 
techniques 

Graphical 
representations 

Visualization 
techniques 

 

Monitoring 

Problem 
solving 

 

Exploitation 

Planning 

Decision-
making 

Pre-processing 

Problem 
specification 

Hypothesis 
generation 

(Structuring Knowledge) 

Categorize and 
classify 

Integration 
(extend, 

generalize) 

Evaluation 
/interpretation 

(reflect) 

User Geospatial 
data 

Compare, review 
relationships, 
classifications 



 27

 
To enhance the exploration of the graphical representations, visualization and 
interaction techniques such as brushing, focusing, filtering, browsing, querying, 
selecting and linking are used. Projection techniques such as Sammon’s mapping 
and PCA are also used to support the representations of SOM results. As with 
maps, these representations use visual variables in addition to the position 
property of the map elements. Multiple views are used to offer alternative and 
different views of the data in order to stimulate the visual thinking process that is 
characteristic of visual exploration.  
 
The extraction results in maps (SOMs) can then be visualized using graphical 
representations. We propose two levels of visualization and knowledge discovery 
processes closely related to the concept of abduction (Gahegan and Brodaric 
2002). These are supported by a number of activities, including selection, 
analysis, comparison, and the relation of spatial locations or attributes, starting 
from the general patterns extracted and moving on to more user selection and 
refinement, which allow the exploration of relationships and the structure of a 
particular area of interest. 
 
The first level of this framework consists of the visualization of the general 
structure (Shneiderman 1997) of the dataset (clustering); the second level 
focuses on the exploration for knowledge discovery and hypothesis generation. 
These two levels of the visualization process are provided with different SOM 
representations that can be combined with other visualization techniques. The 
fundamental idea is centred around four basic visualization goals, the basis for the 
exploratory visualization and knowledge discovery process (Weldon 1996): 

- discovering patterns (through similarity representations) 
- exploring correlations and relationships for hypothesis generation 
- exploring the distribution of the dataset on the map 
- detecting irregularities in the data. 

 
 

2.4. Conclusion 
 
The framework presented in this chapter was based on an approach to combine 
visual and computational analysis for the development of a visualization 
environment intended to contribute to the analysis of large volumes of geospatial 
data. This approach focuses on the effective application of computational 
algorithms to extract patterns and relationships in geospatial data, and the visual 
representation of derived information, which involves the effective use of visual 
variables used in such complex information spaces to facilitate knowledge 
construction. The main components of the approach were outlined, including a 
detailed description of the algorithm used; the computational analysis steps, 
including data mining and knowledge discovery issues; and the representational 
and exploratory visualization framework. The first level of the framework consists 
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of the visualization of the general structure of the dataset (clustering); the second 
level focuses on the exploration for knowledge discovery and hypothesis 
generation. A number of activities are supported in this framework, including 
selection, analysis, comparison, and the relation of spatial locations or attributes, 
starting from the general patterns extracted and moving on to more user 
selection and refinement, which allow the exploration of relationships and the 
structure of a particular area of interest. 
 
Several multidimensional multivariate visualization and exploratory data analysis 
techniques were explored. The spatial representation of the SOM (grid) provides 
opportunities for exploring the attribute space in relation to the spatial locations. 
It can be used to search for structures in the multidimensional input as a data 
mining tool based on similarities and relationships in the input data. One of the 
advantages of the SOM is that the outcome of the computational process can 
easily be portrayed through visual representation. The first level of the 
computation provides a mechanism for extracting patterns from the data at the 
data mining stage in the framework. The output of this computational process is 
depicted using graphical representations that offer visualizations of the general 
structure of the dataset (clustering), as well as the exploration of relationships 
among attributes. These graphical representations are used to enable visual data 
exploration, allowing the user to gain insight into the data, evaluate, filter, map 
outputs, in order to understand structures and patterns in data. 
 
The overall objective of the proposed framework is to explore ways of supporting 
visual exploration and knowledge construction in large geospatial data. In this 
respect, the SOM computational analysis can support exploratory visualization and 
the knowledge discovery process when integrated with appropriate visual 
exploration tools. The goal is to integrate the computational process and the 
graphical representations so that users can perform a number of exploratory 
tasks not only to understand the structure of the dataset as a whole, and also to 
explore detailed information on individual or selected attributes of the dataset. 
Multiple views can be used to offer alternative and different views of the data in 
order to stimulate the visual thinking process that is characteristic of visual 
exploration. Interactive manipulation (zooming, rotation, panning, filtering and 
brushing) of the graphical representations can enhance both user goal-specific 
querying and selection from the general patterns extracted, and more specific 
user querying and selection of attributes and spatial locations for exploration, 
hypothesis generation, explanation and knowledge construction. The link between 
the attribute space visualization based on the SOM, the geographic space with 
maps representing the SOM results, and other graphics such as parallel 
coordinate plots in multiple views can provide alternative perspectives for the 
better exploration, evaluation and interpretation of patterns, and ultimately 
supports knowledge construction. These aspects will be the focus of a subsequent 
design in Chapter 4 and usability test in Chapter 6 and 7. One goal will be to 
characterize the overall effectiveness of the representations used and how they 
can support exploratory geovisualization. 
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Chapter 3   
 
Exploring self-organizing map for 
geovisualization 
 

3.1. Introduction 
 
With volumes of data becoming larger and data structures more complex, 
designing an effective visualization environment for analyzing large geospatial 
datasets has become one of the major concerns in the geovisualization 
community. In these large and rich databases, uncovering and understanding 
patterns or processes presents a difficult challenge as they easily overwhelm 
mainstream geospatial analysis techniques oriented towards the extraction of 
information from small and homogeneous datasets (Gahegan et al. 2001; Miller 
and Han 2001).  
  
As described in the previous chapter, SOMs (and other artificial neural network 
methods) can be used to extract features in complex data. To interpret these 
(often abstract) features, appropriate visualization techniques are needed to 
represent extracted information in a way that allows better understanding of 
underlying structures and processes. The goal is to represent the data in a visual 
form in order to stimulate pattern recognition and hypothesis generation. The use 
of information spaces can play a role by offering visual representations of data 
that bring the properties of human perception to bear (Card et al. 1999). Spatial 
metaphors such as distances, regions and scale are used to facilitate the 
representation and understanding of information in such spaces (Fabrikant et al. 
2002). An important step in the design of effective visualization tools will rely on 
understanding the way users interpret and build a mental model of these 
information spaces. 
 
The relative effectiveness of integrating the SOM with visualization methods for 
exploration and knowledge discovery in complex geospatial datasets remains to 
be explored. In particular, we believe that the visual design of SOM graphical 
representations will significantly affect how successful they are for exploratory 
analysis purposes. This chapter discusses the potential of the SOM in an 
integrated visual-computational environment, presents four alternative visual 
renderings of the SOM that can be used to highlight different characteristics of the 
computational solution it produces, and proposes an evaluation strategy for 

                                                 
This chapter is partly based on: 
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assessing their relative effectiveness in terms of three common visualization 
tasks: (1) identifying clusters, (2) relating distances (similarity), (3) relating 
values. Two datasets are explored. The first, a simple case on socio-economic 
data in a region of the Netherlands, is a known dataset used to explain the 
different graphical representations. The second, is a case related to geography 
and economy development, in which complex attributes relationships and 
hypotheses can be explored. The chapter concludes by discussing some next 
steps. 
 

3.2. Usability framework for the design of the 
visualization environment 

 
The design of the visualization environment is based on a usability framework 
structured to develop a tool that is useful and appropriate for the user needs and 
tasks. This framework not only includes the techniques, processes, methods and 
procedures for designing usable products and systems, it also focuses on the 
user’s goals, needs and tasks in the design process (Rubin 1994). User 
characteristics, visualization tasks and operations are examined to improve user 
interaction and to support activities involved in the use of the visualization 
environment, and in related information spaces. Figure 3.1 shows the underlying 
design concept and usability framework. This framework is informed by current 
understanding of effective application of visual variables for cartographic and 
information design, developing theories of interface metaphors for geospatial 
information displays, and previous empirical studies of map and information 
visualization effectiveness. The framework guided the initial design decisions 
presented here and will be used to structure subsequent user studies (the 
strategy for which is introduced in section 3.5). 
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Figure 3.1. Usability framework for the design of the SOM-based visualization environment. Stage 

(1) describes the general geospatial data handling process; (2) represents the proposed 

computational analysis and visualization method based on the SOM algorithm for complex 

geospatial data; (3) is the design framework for the human computer interface for the visualization 

of the SOMs and includes the representations to evaluate; (4) shows the usability measures used to 

test the outcome of interaction and use of the visualization tool. 

 
The objective of developing a SOM-based visualization environment is to 
contribute to the analysis and visualization of large amounts of data, as an 
extension of the many geospatial analysis functions available in most GIS 
software. The design of the tool is intended to help uncover structure and 
patterns that may be hidden in complex geospatial datasets, and to provide 
graphical representations that can support understanding and knowledge 
construction. The framework includes spatial analysis, data mining and knowledge 
discovery methods integrated into an interactive visualization system. Users can 
perform a number of exploratory tasks, not only to understand the structure of 
the dataset as a whole but also to explore detailed information on individual or 
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selected attributes of the dataset. In order to examine how users understand 
these representations, and to improve the overall effectiveness of the design, a 
usability assessment plan is proposed at the end of this chapter for evaluating the 
graphical representation forms accessible through the tool, as well as the visual 
variables used to depict data within each form of representation. 

 
For the user, the main goal is the acquisition of knowledge through discovery for 
purposes of decision making, problem solving and explanation. The first level of 
the computation provides a mechanism for extracting patterns from the data. 
Resultant maps (SOMs) are then visualized using graphical representations. We 
use different visualization techniques to enhance data exploration, including 
brushing, multiple views and 3D views. Projection methods such as Sammon’s 
mapping (Sammon 1969) and principal component analysis (PCA) are also used 
to depict the output from the SOM. Spatial metaphors are used to guide user 
exploration and interpretation of the resulting non-geographic representation; this 
is an example of spatialization, an approach discussed more generally by 
Fabrikant and Buttenfield (2001) and by Fabrikant and Skupin (2004). These 
metaphors are combined with alternative 2D and 3D forms of representation and 
user interaction in the information spaces. 
 
The resulting information spaces suggest and take advantage of natural 
environment metaphor characteristics such as ‘near=similar, far=different’ 
(MacEachren et al. 1999), which is epitomized by Tobler’s first law of geography 
(Tobler 1970). Various types of map representations are used, including volumes, 
surfaces, points and lines. This allows exploration of multiple kinds of 
relationships between items. A coordinate system allows the user to determine 
distance and direction, from which other spatial relationships (size, shape, 
density, arrangement, etc.) may be derived. Multiple levels of detail allow 
exploration at various scales, creating the potential for hierarchical grouping of 
items, regionalization and other types of generalization. 

 

3.3. The SOM graphical representations 
 
The design of the visualization environment incorporates several graphical 
representations of SOM output. These include a distance matrix representation, 
2D and 3D projections, 2D and 3D surfaces, and component plane visualization 
(in a multiple view). These representation forms are introduced briefly using the 
dataset described below. 
 

3.3.1. Map 

 
The first dataset explored to illustrate the SOM-based representations is a 
collection of socio-economic indicators related to municipalities in a region in the 
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Netherlands. It consists of 29 variables, including population and habitat 
distributions, urbanization indicators, income of inhabitants, family and land data, 
as well as industrial, commercial and non-commercial services data. The idea is to 
find multivariate patterns and relationships among the municipalities. This dataset 
was selected for the study because it is a known dataset in which we can test 
different hypotheses about both the geographic patterns and the 
representation/analysis methods investigated. The maps assist in understanding 
SOM representations. Unusual SOM patterns can be verified with reality. At the 
end, the use of SOM is applied to far larger datasets than the one used in this 
experiment. 
 

 

Figure 3.2. Examples of attributes of the test dataset: average family size (a), average income per 

inhabitant in the municipalities (b), average value of dwellings (c). (d) shows the names of 

municipalities. 

 
Three attributes of the dataset (family size, income per inhabitant, and average 
value of dwellings), as well as a reference map with the names of the 
municipalities, are presented in figure 3.2. The maps show, for example, that 

(a) (b) 

(c) (d) 
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there are four municipalities where the average family size is four, compared with 
the rest of the region where the average family size is three.  
 
With the SOM, such relationships can be easily examined in a single visual 
representation using the component planes. Component planes show the values 
of the map elements for different attributes. They show how each input vector 
varies over the space of the SOM units. Unlike standard choropleth maps, the 
position of the map units (which is the same for all displays) is determined during 
the training of the network, according to the characteristics of the data samples. 
A cell or hexagon here can represent one or several political units (municipalities), 
according to the similarity in the data. Two variables that are correlated will be 
represented by similar displays. 
 
In the example described above, the SOM shows that there is a cluster of 
municipalities that have a family size of more than three (see figure 3.3a). It also 
shows the relationships between the municipalities for the different attributes. The 
two other attributes (income per inhabitant and average value of dwellings) are 
presented as component planes extracted from the SOM (figure 3.3b and 3c) for 
exploratory analysis purposes. By relating component displays we can explore the 
dataset, interpret patterns as indications of structure, and examine relationships 
that exist. For example, figures 3b and 3c indicate that the highest dwelling 
values correspond to municipalities (StadDelden, Bathmen, Diepenheim) where 
the average income per inhabitant is highest. The representations of the SOM 
make it possible to easily find correlations in a large volume of multivariate data. 
New knowledge can be unearthed through this process of exploration; this is 
followed by the identification of associations between attributes through using the 
various representations, and finally by the formulation and ultimate testing of 
hypotheses. 
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Figure 3.3. SOM component planes depicting a univariate space for selected attributes of the 

dataset: (a) the average family size, (b) the income per inhabitant, (c) the average value of 

dwellings. (d) shows the labels corresponding to the position of the map units (municipalities). 

 

3.3.2. Unified distance matrix representation 

 
The unified distance matrix or U-matrix (Ultsch and Siemon 1990) is a 
representation of the SOM that visualizes the distances between the network 
neurons or units. It contains the distances from each unit centre to all of its 
neighbours. The neurons of the SOM network are represented here by hexagonal 
cells (see figure 3.4). The distance between the adjacent neurons is calculated 
and presented with different colourings. A dark colouring between the neurons 
corresponds to a large distance and thus represents a gap between the values in 
the input space. A light colouring between the neurons signifies that the vectors 
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are close to each other in the input space. Light areas represent clusters and dark 
areas cluster separators. This representation can be used to visualize the 
structure of the input space and to get an impression of otherwise invisible 
structures in a multidimensional data space.  
 
The U-matrix representation (figure 3.4) reveals the clustering structure of the 
dataset used in this experiment. Municipalities having similar characteristics are 
arranged close to each other and the distance between them represents the 
degree of similarity or dissimilarity. For example, the municipality of Enschede is 
well separated from the rest by the dark cells showing a long distance from the 
rest of the municipalities. This is expected, since Enschede is the largest and the 
most developed and urbanized municipality in the region. At the top left corner of 
the map, the municipalities Genemuiden, Rijssen, Staphorst and IJsselmuiden are 
clustered together. These are small localities that have common characteristics 
according to the data. This kind of similarity can be composed of a number of 
variables provided by the dataset. The U-matrix shows more hexagons than the 
component planes (discussed below) because it shows not only the values at map 
units but also the distances between map units. 

Figure 3.4. The unified distance matrix showing clustering and distances between positions on the 

map. Municipalities having similar characteristics are arranged close to each other and the distance 

between them represents the degree of similarity or dissimilarity. Light areas represent clusters and 

dark areas cluster separators (a gap between the values in the input space). 
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In contrast to other projection methods in general, the SOM does not try to 
preserve the distances directly but rather the relations or local structure of the 
input data. While the U-matrix is a good method for visualizing clusters, it does 
not provide a very clear picture of the overall shape of the data space because the 
visualization is tied to the SOM grid. 
 
Alternative representations to the U-matrix can be used to visualize the shape of 
the SOM in the original input data space. Three are discussed below: 2D and 3D 
projections (using projection methods such as Sammon's mapping and PCA), 2D 
and 3D surface plots, and component planes. 

 

3.3.3. 2D and 3D projections 

 

The projection of the SOM offers a view of the clustering of the data with data 
items depicted as coloured nodes (figure 3.5). Similar data items (municipalities 
in this dataset) are grouped together with the same type or colour of markers. 
Size, position and colour of markers can be used to depict the relationships 
between the data items. This gives an informative picture of the global shape and 
the overall smoothness of the SOM in 2D or 3D space. 
 
In 3D space, the weight of the data items according to the multivariate attributes 
can be represented using the third dimension to show a hierarchical order or tree 
structure. Exploration can be enhanced by rotation, zooming and selection in the 
3D representation and by interactive manipulation of features such colour, size, 
and type of marker. Connecting these markers with lines can reveal the shape of 
clusters and the relationships among them. 
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 Figure 3.5. Projection of the SOM results in 2D space (a) and 3D space (b). Municipalities having 

similar characteristics according to the multivariate attributes in the dataset are represented using 

points (markers) with colour coding and connecting lines to depict relationships between them. 

  

3.3.4. 2D and 3D surface plots 

 
The 2D surface plot of the distance matrix (figure 3.6a) uses colour value to 
indicate the average distance to neighbouring map units. It is a spatialization  
that uses a landscape metaphor to represent the density, shape, and size or 
volume of clusters, and can be used for further cluster investigation in relation 
with the similarity representation. Unlike the projection in figure 3.5 that shows 
only the position and clustering of map units, areas with uniform colour are used 
in the surface plots to show the clustering structure and relationships among map 
units.  
 
In the 3D surface (figure 3.6b), colour value and height are used to represent the 
regionalization of map units according to the multidimensional attributes. 
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Figure 3.6. Surface plots: the density, shape, and size or volume of clusters are shown in 2D 

surface (a) and 3D surface (b) to depict a multivariate space. Darker colour indicates greater 

distance and light colour small distance. 

 

3.3.5. Component planes 

 
Component planes (figure 3.7) represent a multivariate visualization of the 
attributes of the dataset, allowing easy detection of relationships among the 
attributes, as described in the previous section. Each component plane shows the 
values of one variable for all map units, using colour coding that follows colour 
scheme guidelines presented by Brewer (1994). This makes it possible to visually 
examine every cell corresponding to each map unit or data item. By using the 
position and colouring, all relationships between different map units 
(municipalities in this dataset) can be easily explored in a single visual 
representation. For example, the average income per inhabitant is correlated 
somewhat with the number of inhabitants between the ages of 45 and 64 
(INH_45-64Y) and the number of inhabitants older than 64 (INH_65_p) in 
municipalities such as StadDelden, Bathmen, Diepenheim, Ootmarsum, Holten 
and Markelo (see figure 3.3d for corresponding names of municipalities). These 
municipalities have the highest income of the region. 
 
These displays can be arranged in any order (alphabetical, geographic pattern, or 
any order that makes it easy to see the relationships among them), in a way 
similar to the collection maps of Bertin (1981). 
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Figure 3.7. SOM component planes depicting the different attributes of the dataset and the 

relationships among them for all the municipalities. Relationships between different municipalities in 

the dataset are explored in a single visual representation. 

 

3.4. A case of the exploration of complex relationships in 
geospatial data 

 
An application of the different techniques explored in the previous section is 
presented for the exploration of a larger dataset with complex attributes 
relationships, as an example case of geospatial data exploration. Here, the four 
goals of the visualization described in Chapter 2 (discovering patterns through 
similarity representation, exploring correlations and relationships for hypothesis 
generation, exploring the distribution of the dataset, detecting irregularities in the 
data) are explored in the representation of the data described below. Similarity 
(patterns) is represented in the distance matrix representation and in the 
projections. Relationships, distribution and irregularities are viewed in fine detail 
with the component plane visualization.   
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3.4.1. The data 

 
The example exploration uses a complex dataset on geography and economic 
development (Gallup et al. 1999), compiled to support analysis of the complex 
relationships between geography and macroeconomic growth (e.g. the ways in 
which geography may directly affect growth, and the effect of location and climate 
on income levels, income growth, transport costs, disease burdens and 
agricultural productivity). Additionally, the relationships between geographic 
regions, whether located far from the coast, and population density, population 
growth, economic growth and the economic policy itself are other aspects the 
study of this dataset intends to explore. The dataset contains 48 variables on the 
economy, physical geography, population and health of 150 countries. This 
dataset will be used in the usability test in Chapter 7. 
 
Table 3.1 describes the variables of the dataset. Table 3.2 gives a list of the 
countries included in the study with their codes used in the SOM representations. 
 
For further investigation of the SOM visualizations in the exploration of the 
dataset, some maps are represented in figure 3.8 for selected attributes: coastal 
population density, percentage population within 100 km of coast or river, GDP 
per capita, distance (km) to closest major port in Europe, percentage of land area 
in the subtropics, and percentage of land in the geographic tropics. 
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Table 3.1. Description of the variables of the dataset 

Variable Description Variable Description Variable Description 

gdp50 gdp per capita in 

1950 

ciffob95 shipping cost, 1995 pop95 population in 1995 

gdp90 gdp per capita in 

1990 

tropicar % land in geographic 

tropics 

zpolar % land area in polar 

non-desert 

gdp95 gdp per capita in 

1995  

troppop %population in geographic 

tropics, 1994 

zboreal % land area in boreal 

regions 

gdp65 gdp per capita in 

1965 

malfal66 malaria index, 1966 zdestmp temperature desert 

gdpg6590 gdp per capita growth 

from 1965 to 1990 

maffal94 malaria index 1994 zdestrp tropical + subtropical 

desert 

lnd100km % land within 100 km 

coast 

lhcpc log hydrocarbons per capita 

1993 

zdrytemp % land area within dry 

temperature 

pop100km % population within 

100km coast 

south southern hemisphere 

countries 

zwettemp % land area wet 

temperate 

lnd100cr % land within 100 km 

coast or river 

landarea land area (sq km) zsubtrop % land area in the 

subtropics 

pop100cr % population within 

100km coast or river 

open6590 openness, 19965-1990 ztropics % land area in the 

tropics 

dens65c coastal population 

density, 1965 

icrg82 quality of public institution,   zwater water (lakes and ocean) 

dens65i inland population 

density, 1965 

newstate timing of independance eu western europe 

dens95c coastal population 

density, 1995 

socialist socialist country, 1950-

1995 

safri sub-saharan africa 

dens95i inland population 

density, 1995 

lifex65 life expectancy 1965 (UN) sasia south asia 

landlock landlocked syr15651 log years secondary 

schooling, 1965 

transit transition countries 

lnadlneu landlocked, not west 

and central europe 

urbpop95 % population urban, 1995 

(world bank) 

latam latin america and 

caribbean 

airdist km to closest major 

port 

wardum had external war, 1960-

1985 

eseasia east and southeast asia 
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Table 3.2. The country codes used in the training of the neural network 

code country code country code country code country 

AFG Afghanistan ERI Eritrea LBR Liberia RUS Russian Federation 

AGO Angola ESP Spain LBY Libya  RWA Rwanda 

ALB Albania EST Estonia LKA Sri Lanka SAU Saudi Arabia 

ARE United Arab Emirates ETH Ethiopia LSO Lesotho SDN Sudan 

ARG Argentina FIN Finland LTU Lithuania SEN Senegal 

ARM Armenia FRA France LVA Latvia SGP Singapore 

AUS Australia GAB Gabon MAR Morocco SLE Sierra Leone 

AUT Austria GBR United Kingdom MDA Moldova SLV El Salvador 

AZE Azerbaijan GEO Georgia MDG Madagascar SOM Somalia 

BDI Burundi GHA Ghana MEX Mexico SVK Slovak Republic 

BEL Belgium GIN Guinea MKD Macedonia SVN Slovenia 

BEN Benin GMB Gambia MLI Mali SWE Sweden 

BFA Burkina Faso GNB Guinea Bissau MMR Myanmar SYR Syrian Arab Rep. 

BGD Bangladesh GRC Greece MNG Mongolia TCD Chad 

BGR Bulgaria GTM Guatemala MOZ Mozambique TGO Togo 

BIH Bosnia and Herzegovina HKG Hong Kong MRT Mauritania THA Thailand 

BLR Belarus HND Honduras MUS Mauritius TJK Tajikistan 

BOL Bolivia HRV Croatia MWI Malawi TKM Turkmenistan 

BRA Brazil HTI Haiti MYS Malaysia TTO Trinidad & Tobago 

BWA Botswana HUN Hungary NAM Namibia TUN Tunisia 

CAF Central African Rep. IDN Indonesia NER Niger TUR Turkey 

CAN Canada IND India NGA Nigeria TWN Taiwan 

CHE Switzerland IRL Ireland NIC Nicaragua TZA Tanzania 

CHL Chile IRN Iran NLD Netherlands UGA Uganda 

CHN China IRQ Iraq NOR Norway UKR Ukraine 

CIV Côte d'Ivoire ISR Israel NPL Nepal URY Uruguay 

CMR Cameroon ITA Italy NZL New Zealand USA United States 

COG Congo JAM Jamaica OMN Oman UZB Uzbekistan 

COL Colombia JOR Jordan PAK Pakistan VEN Venezuela 

CRI Costa Rica JPN Japan PAN Panama VNM Vietnam 

CUB Cuba KAZ Kazakhstan PER Peru YEM Yemen 

CZE Czech Republic KEN Kenya PHL Philippines YUG Yugoslavia 

DEU Germany KGZ Kyrgyz Republic PNG Papua New Guinea ZAF South Africa 

DNK Denmark KHM Cambodia POL Poland ZAR Zaire 

DOM Dominican Republic KOR Korea PRK Korea Dem.People's Rep. ZMB Zambia 

DZA Algeria KWT Kuwait PRT Portugal ZWE Zimbabwe 

ECU Ecuador LAO Lao PDR PRY Paraguay 

EGY Egypt LBN Lebanon ROM Romania 
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Figure 3.8. Some attributes of the dataset explored: GDP per capita, distance (km) to closest major 

port in Europe, percentage population within 100 km of coast or river, coastal population density, 

total population,  and percentage of land in the geographic tropics. 

 

3.4.2. General patterns visualization  
 
The general patterns are represented by the unified distance matrix. The unified 
distance matrix is used to reveal the commonalities between the countries, based 
on the multivariate attributes (figure 3.9a). At the top of the map, we have the 
poor economies, mostly the African countries, and at the bottom the rich 
economies. 
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Figure 3.9. Similarity matrix representation of the dataset (a), PCA projection of SOM results (b), 

2D surface plot of distance matrix (c) and 3D surface plot of distance matrix (d).The circles in (a) 

and (b) show the clusters also revealed in (c) and (d), and discussed in the text. 

 
From this clustering structure, differences can be observed between countries in 
different parts of the world. A very striking observation is that the clustering 
somehow reflects the geography of the countries. This confirms the general 
hypothesis suggesting that there is a relationship between the geography of the 
countries and economic growth (Gallup et al. 1999). Even further clustering that 
reflects the distinct geographic regions is obtained with the similarity matrix 
representation: West Africa, Southern Africa, the Middle East, Europe, South 
America, North America (USA and Canada), and Asia. The European countries are 
in three different clusters next to each other; USA and Canada are clearly the 
richest economies.  
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A few cases do not reflect this geographic relationship. Laos is found in a cluster 
with some poor African economies (Central Republic of Africa, Ethiopia, Uganda, 
Chad, Burkina Faso, Mali, Niger). This may be because Laos’s economic 
characteristics are low compared with those of the other Asian countries and it 
falls closer to Africa than Asia in this respect. Other countries that have no 
obvious characteristics in common with the others in the same geographic region 
include Mauritania, Yemen, Pakistan, Iran and Mauritius. South Africa has 
particular characteristics that position the country far away from other African 
countries and closer to the Middle East, Iran and Pakistan, on the one hand, and 
close to Bolivia and Paraguay on the other. 
 
The same information provided in the distance matrix can be viewed using a 
projection (figure 3.9b), and 2D or 3D surfaces (figure 3.9c and 3.9d) in different 
perspectives. 
 

3.4.3. Exploration of correlations and relationships 

 
The exploration of correlations and relationships can be done using the 
component plane visualization (figure 3.10). The component planes show the 
values of the different attributes at different locations on the SOM grid. 
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Figure 3.10. The component plane visualization: all the components at the top and selected 

components related to economic development and examined in the chapter are shown at the 

bottom. Labels of the components (countries) are shown at the bottom right.
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A summary of the geographic patterns was made based on the average GDP per 
capita, total population and land area, and several key variables that can be 
related to economic development: the extent of land in the geographic tropics, 
the proportion of the population within 100 km of the coastline or within 100 km 
of the coastline or ocean-navigable river, the percentage of population that lives 
in landlocked countries, the average distance by air (weighted by country 
populations) to the closest core economic areas, the density of human settlement 
(population per square km) in the coastal region (within 100 km of the coastline) 
and the interior (beyond 100 km from the coastline). These variables are 
presented in the component plane visualization in figure 3.10 (bottom left). The 
tropical countries were defined as being those that have half or more of the land 
area in the geographic tropics. 

 
From these patterns the following question can be raised: How great a role has 
geography played in economic growth, assuming that economic policies and 
institutions are well established? 
 
The exploration here is limited to the dataset examined. Other environmental and 
political factors that are not included in the dataset might have some influence on 
economic development. 
 
This complex linkage between geography, demography, health and economic 
performance requires closer examination. Using the SOM visualization, we 
examine two geographic correlates of economic development that were outlined 
by Gallup et al. (1999) and generate other possible hypotheses that the SOM 
technique allows in such a complex dataset.  The countries in the geographic 
tropics are nearly all poor. Almost all high-income countries are in the mid and 
high latitudes. Coastal economies are generally higher-income than the 
landlocked economies. 
 
From the component plane visualization in figure 3.10, a simple view of the 
displays allows the attributes to be visually related to the spatial locations and 
hypotheses to be generated based on observed correlations and relationships. The 
SOM component planes can be ordered so that the displays that seem to have 
high correlation are placed next to each other, in a way similar to the collection 
maps of Bertin (1981). From these displays in figure 3.10, it can be easily 
observed in one single view that the poorest economies (reference to the 1995 
GDP from the dataset) have characteristics such as large proportion of land and 
population in the geographic tropics, population highly concentrated in the 
interior, often landlocked, small proportion of land within 100 km coast or river, 
located in the southern hemisphere, small proportion of land in wet temperature, 
and often with tropical or subtropical deserts. Most of these characteristics were 
identified as closely associated with low income in general (Gallup et al. 1999). 
Other common characteristics of these countries that can be seen as a 
consequence of the low income are also visualized in the component planes. The 
poor countries have low life expectancy, high shipping costs, and heavy disease 
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burdens of malaria; they are very far from the closest core markets in Europe, 
and many have external wars. From these observations, it can be hypothesized 
that various aspects of tropical geography and public health are vitally important 
and affect economic growth (Bloom and Sachs 1998). South Asia, Latin America, 
the eastern European countries and the former Soviet Union are like Sub-Saharan 
Africa, with more concentrated in the interior rather than at the coast. Landlocked 
countries may be particularly disadvantaged by their lack of access to the sea. 
They all have low income except those in western and central Europe (integrated 
into regional European market and associated low-cost trade). High population 
density seems to be favourable for economic development in coastal regions with 
good access to internal, regional and international trade. The poorest economies 
have low urban population density. The urban areas seem to develop more in the 
coastal regions. 

 

3.5. Usability evaluation plan 
 
After introducing the potential of the SOM and its graphical representations for 
visual exploration of geospatial data, the question of its effectiveness and 
efficiency remains to answer. This section presents a general strategy for 
assessing the proposed visual-computational approach (Chapter 2) and related 
graphical representations (Chapter 3) for exploring multivariate geospatial data. 
The evaluation is conducted at a later stage in Chapter 6 and 7. Here a 
preliminary involvement of the users is made to guide the design process in the 
next chapter. 
 

3.5.1. Overview of the evaluation plan 

 
We present a general approach useful for the empirical assessment of the 
intended exploratory visual-computational environment. The strategy is 
developed for examining the effectiveness of alternative representation forms (the 
SOM-based visualization environment presented above), and visual variable 
choices within those forms. A user-centred approach to developing integrated 
computational-visual analysis tools (whether based on the SOM or other inductive 
learning methods) should include attention to the user’s understanding of the 
representation forms of multivariate relationships in the data. This strategy 
focuses on gathering information about how users interpret and understand the 
basic visualization features and representation forms, in order to improve their 
design. Specifically, we are interested in knowing whether users can actually 
comprehend the meaning of the proposed representations, how the different 
representation forms influence the effectiveness of the visualization tool in terms 
of analysis and exploration of data, and what type of representation is suitable for 
exploratory tasks.  
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To this end, the general evaluation strategy is to conduct a usability test 
comparing different options for map-based visualization of the output of SOM 
multivariate analysis. Since the design of the visualization environment is based 
on a user-centred approach (see Chapter 4), early involvement of users was 
necessary and took the form of a preliminary interface feature inspection in which 
several aspects of the representation forms, graphics and colour schemes were 
presented to users for analysis. 

 

3.5.2. Usability inspection 

 
Feature inspection is a usability inspection method (see Chapter 6 for more detail 
on usability evaluation methods) that involves the evaluation of functions 
delivered in a software tool. As part of the iterative design process (see Chapter 
4), a preliminary feature inspection was conducted at this stage in the 
development of the visualization environment, in order to gather users’ views and 
preferences about features of the different SOM-based graphical representations 
described above. An empirical user test was conducted at a later stage in the 
development of the prototype in Chapters 6 and 7. 
 
The initial inspection of the prototype graphical representations described in the 
previous section helped identify a number of usability problems. The use of colour 
hue was a general problem observed by the participants with cartographic design 
background. They generally suggested the use of one colour scaled from light to 
dark. Grey scale was found to be generally difficult to use for investigating the 
clusters in the graphical representations. A general problem concerned the 
difficulty in relating different representation forms (the unified distance matrix, 2D 
and 3D projections, 2D and 3D surfaces). Another general observation concerned 
the need for interaction to support visual exploration of the patterns and 
relationships.  
 
The suggestions and opinions of the participants in the inspection of the graphical 
representations provided a guideline for improving the design of the graphical 
representations. As a result a different colour scheme based on (Brewer 1994) 
was used in the current version of the graphical representations. The design has 
incorporated multiple views that relate the different representations and combine 
with maps to provide a geographic reference for the users during exploration 
activities (see the next Chapter). All graphical representations now use colour and 
not grey scale to represent clusters and distances. The graphical representations 
are provided with interaction tools for rotation, zooming, selection, and free form 
flying for the 3D views. 
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3.6. Conclusion 
 
In this chapter we have explored some graphical representations based on the 
SOM, in relation to a usability framework for the design of an exploratory 
geovisualization environment based on the visual-computational approach 
presented in Chapter 2. The SOM graphical representations were examined 
together with maps in two example cases. The first example was basically used to 
illustrate the SOM graphical representations. The second example was a case of 
the exploration of more complex attribute relationships in a larger dataset. 
 
With the map, and without any prior hypothesis, some individual attributes were 
presented. Although the patterns in the data were visible, all the attributes 
needed to be mapped to allow a complete visual comparison, and draw 
conclusions. This can be difficult for visual comparison and analysis. 
 
The SOM offers a summary of the patterns in the data with the distance matrix 
representation and projections. Commonalities between the map units based on 
the multivariate attributes were easily viewed. From the clustering structure 
offered by the distance matrix representation and the projection, the different 
categories of the map units could be observed. The exploration of correlations and 
relationships was possible with the SOM component plane display, which presents 
in a single visual representation, the relationships between the attributes of the 
dataset. Two variables that are correlated are represented by similar displays, so 
correlations and relationships are easily detected visually. This provides ground 
for generating or further exploring hypotheses. 
 
As a general strategy to assess how users understand the representations, and to 
improve the overall effectiveness of the design of the exploratory visual-
computational environment, an assessment plan was proposed. The plan is based 
on a usability test involving a representation of intended users and a number of 
selected tasks performed in visualization environments. This assessment plan will 
be applied in the specific case of the design of the proposed visualization 
environment, in Chapter 6 and 7, in order to assess the design concepts and 
aspects of the implementation of the computational-visual analysis environment. 
This includes an assessment of the appropriateness of the representation 
metaphors applied to, as well as of the visual variables used in, the design of 
specific representations. The assessment can provide some insight into the 
effectiveness and usefulness of, and user reactions (users’ preferences and views) 
to, the representations for exploratory visual analysis, interpretation and 
understanding of the structure in the dataset. Here a preliminary involvement of 
the users is made to guide the design process in the next chapter. 
 
The next steps in developing the visualization environment discussed in this 
chapter will focus on the extension and improvement of the graphical 
representations presented, following the usability framework. One part of this 
work will be to integrate the representation approaches into a multiple-view 
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approach to visualization. By combining user interactions with these forms of 
representation, the visualization environment will be extended and improved to 
focus on the interactive manipulation of the representations to support the 
cognitive activities involved in the use of the visualization environment, and to 
provide the querying and exploration of features in a user-friendly interface. Such 
advances are likely to have additional impacts upon the user’s preferences and 
responses. 
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Chapter 4  
 
User interface design for geovisualization: 
visual interaction for knowledge discovery 
 
 

4.1. Introduction 
 
More integrated visualization tools are needed for the extraction of patterns and 
relationships in data. The integration of feature extraction tools with appropriate 
user interfaces is important to support the user’s understanding of underlying 
structures and processes in geodata. Designing such tools is one of the major 
research areas in geovisualization. 
 
An interesting development in the design of geovisualization environments is the 
integration of information visualization and cartographic methods for the 
exploration of geospatial data. Design methods for applying information 
visualization and scientific visualization techniques in geovisualization are, 
however, not clearly defined. In particular, the design of interactive 
representation forms still lacks a delineation of fundamental operations that users 
might apply to an interactive map or related graphics, as well as guidelines for 
their appropriate application (MacEachren 2000). Some authors have proposed a 
set of visualization operations (Keller and Keller 1992; Qian et al. 1997), but no 
comprehensive description of the operations and guidelines for design is available. 
 
On a more conceptual level, Bertin’s (1983) concept of graphical constructions 
can be a guide to establishing guidelines for the manipulation of graphics in 
today’s graphical interfaces. Cartographic methods serve as the basis for most 
representation methods used in information visualization (Fabrikant 2001b). On 
the other hand, information visualization techniques are applied in cartography for 
the design of dynamic and interactive displays. This integration of cartographic 

                                                 

 This chapter is based on: 

Koua E. L. and Kraak, M. J. (2004). Geovisualization to support the exploration of large health and 
demographic survey data. International Journal of Health Geographics 2004, 3:12. 

Koua E. L. and Kraak M. J. (2004). Integrating computational and visual analysis for the exploration 
of health statistics. In: SDH 2004: Proceedings of the 11th international symposium on spatial data 
handling : advances in spatial data handling II. : 23-25 August 2004, University of Leichester. / ed. 
by P.F. Fisher. - Berlin etc.: Springer, 2004. pp. 653-664. 
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methods with information visualization techniques can help provide ways of 
exploring large geospatial data, and support knowledge construction. 
This chapter presents key design issues and a prototype geovisualization 
environment in which these design concepts are used to integrate representation 
forms with visualization and interaction techniques for the exploration of patterns 
and relationships in large geospatial datasets. An example of exploration of a 
dataset on health statistics on Africa is used to demonstrate the integration of the 
different graphical representations and the different options of the user interface. 
 

4.2.  Visual exploration support for large geospatial 
data 
 
The basic idea of visual data exploration is to present the data in some visual 
form, allowing the human to gain insight into the data and draw conclusions 
(Keim 2002). Visual data mining is the use of visualization techniques to allow 
users to evaluate, monitor and guide the inputs and the process of data mining. 
Two main concepts are integrated into the visual data mining framework: 
feedback based on the knowledge discovery process and visualization (including 
mapping, filtering capabilities). Although direct manipulation techniques can 
facilitate interaction (Eick 1997), they can be difficult to apply to the process of 
data visualization in very large multidimensional datasets. The data must be 
processed in some way before they can be manipulated. The proposed framework 
explores ways of effectively extracting patterns, using data mining based on the 
self-organizing map (SOM), and of representing the results, using graphical 
representations for visual exploration. As presented in figure 4.1, the data mining 
stage allows a clustering (similarity matrix) of the multidimensional input space to 
be constructed, using the SOM training algorithm tool (SOM toolbox) and graphics 
processing with Matlab software. From this computational process, the global 
structure and patterns can be represented with graphical representations and 
maps (geographical view) of similarity results. Further exploration can be carried 
out on the relationships and correlations among the attributes. The framework 
includes spatial analysis, data mining and knowledge discovery methods, 
supported by interactive tools that allow users to perform a number of exploratory 
tasks in order to understand the structure of the dataset as a whole, as well as to 
explore detailed information on individual or selected attributes of the dataset. 
Different representation forms are integrated and support user interaction for 
exploratory tasks to facilitate the knowledge discovery process. They include 
some graphical representations based on the SOM, maps, and other graphics such 
as parallel coordinate plots. Cartographic methods support this design for the 
effective use of visual variables with which the visualizations are depicted. The 
graphical representations can be interactively manipulated in the Matlab graphical 
interface, using rotation, zooming, panning, and brushing.  
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Figure 4.1. Data exploration framework: from the computational process, global structure and 

patterns can be visualized with graphical representations and maps of similarity results. 

Relationships and correlations among the attributes are presented with interactive graphical 

representations, maps, and other graphics such as parallel coordinate plots. 

 

4.3. Conceptual design 
 
Most design models focus on the available technologies for improving interactions 
and providing expert design guidelines on the way a user interface can be useful. 
To meet the goals of the geovisualization tool, we developed a user-centred 
approach in order to emphasis the central value of user tasks and visualization 
operations in the design of such environments. A focus on users can provide 
useful guidelines for designing an environment that better corresponds to users’ 
analysis needs.  
 
In the next subsections, we examine some of the design issues, including a 
usability specification, a conceptual approach to examining basic visualization 
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tasks and operations, and a model for integrating information, visualization and 
cartographic methods for geovisualization. 

4.3.1. User-centred design 

 
User-centred design (UCD) is an approach that views knowledge about users and 
their involvement in the design as a central concern. It aims at identifying the 
prospective users, studying their activities and how they perform them, and 
identifying what they need in order to perform the tasks better. Taking into 
account these user characteristics implies including them to some extent in the 
design process. UCD involves tests and evaluations with users in an interactive 
design process. The traditional approach for developing software advocates a 
number of processes that are produced in an essentially linear fashion (design, 
development, implementation, test). In UCD, however, a star model is used (see 
figure 4.2). 

 
Figure 4.2. The star model (Source: Hix and Hartson 1993) 

 
In this model, task analysis is a fundamental activity in usability specification. It 
allows user interaction with the system to be structured according to: 

- Goals 
- Methods: sequences of operators, or procedures for accomplishing a goal 
- Operators: the basic actions available to the user for performing a task. 

 
A number of these concepts, including goals, tasks, operations, plans and 
hierarchies, were introduced in the literature on task analysis. Task analysis is 
useful to the extent that it helps improve the design or implementation of the 
system by gathering information, representing it in an appropriate manner, and 
then utilizing this representation to establish the system improvement (Sheperd 
1989). Task analysis models assume that a task can be broken down into a series 
of tasks. One of the most popular approaches is hierarchical task analysis, which 
can yield many practical benefits in complex situations by establishing a task 
description hierarchy that complies with a particular set of rules, allowing the 
user’s goal to be described as a hierarchy of operations and plans. Based on the 
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task analysis, a model of user/system interaction can then be constructed, usually 
hierarchically composed and emphasizing the sequence of operations. 
 

4.3.2. Usability specification for geovisualization design 

 
The design of the visualization environment is based on a usability framework 
structured to develop a tool that is useful and appropriate for the user needs and 
tasks (see Chapter 3). This framework not only includes the techniques, 
processes, methods and procedures for designing usable products and systems, it 
also focuses on the user’s goals, needs and tasks in the design process (Rubin 
1994). User characteristics, visualization tasks and operations are examined in 
order to improve user interaction and support activities involved in the use of the 
visualization environment and in related information spaces. 
 
One of the objectives of human-computer interaction (HCI) research is to achieve 
two goals: usefulness and usability. Usefulness refers to the achievement of the 
user’s goals, and addresses the way in which the tool supports the user’s tasks. 
Usability refers to the extent to which users can use the visualization environment 
to achieve specific goals effectively, efficiently and to their satisfaction. The 
usability specification is drawn up by gathering knowledge on the context of use 
(the characteristics of potential users, their environment, their tasks, and the 
main objectives) and determining user requirements for such tools, system 
requirements, a definition of the functionality of the system, and ultimately the 
design of the human-computer interface. 

Specifying general user requirements for geovisualization 

Specifying user requirements in software system development for general 
purposes and a wide target group is a difficult task. A classical study of user 
requirements is conducted by gathering information on potential users’ 
preferences, objectives and views. Ideally, the system should be designed with a 
complete knowledge of the intended application domain and task structure. This 
is, however, constrained by the complex and changing nature of users’ tasks, and 
because software typically needs to be designed to suit a wide range of users. 
User modelling and user profiles help achieve this goal. In spatial data analysis 
and geovisualization environments, it becomes even more difficult to derive user 
requirements as these may depend on several factors: individual user needs, 
tasks, knowledge domain, type of data, etc. Since the analysis needs for each 
dataset are often unique, some of the best visualizations are task-oriented. 
Nevertheless, some general requirements in spatial data analysis can be 
identified. We propose some requirements that can be appropriate for 
geovisualization, based on the analytical aspect of spatial analysis: 

- Accuracy in results 
- Effective extraction of patterns and relationships 
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- Flexibility in use (scaling, rotation, panning, brushing, browsing, focusing) 
- Adaptability (appropriate to the task and applicable for different situations) 
- Exploration-oriented 
- Multiple (alternative) views to consolidate knowledge construction. 

Other issues include the detection of irregularities (unusual and predictable 
behaviour), and knowledge discovery support. 

Specification for the human-computer interface 

Besides these analytical aspects, which are more focused on the quality of data 
analysis, a number of human-computer interface design issues can be added. 
Some key aspects of the usability of the human-computer interface, based on 
those proposed by Ravden and Johnson (1989), can be useful for the design of 
geovisualization tools. They include visual clarity, consistency, compatibility, 
informative feedback, explicitness, appropriate functionality, flexibility and 
control, error prevention and correction, and user guidance and support. These 
design guidelines can also serve as indicators for evaluating the human-computer 
interface. Cartographic visualization methods (Kraak 1998) provide other 
guidelines for navigation and the exploration of the data. They include controlling 
the user’s viewpoint, a clear description of the environment, querying, browsing 
the database, and providing different views (maps and other graphics). 

Examining visualization tasks and operations 

The main goal of geospatial data analysis is to find patterns and relationships in 
the data that can help solve a particular geo-problem. The analysis process can 
be viewed as a set of tasks and operations. To understand visualization operations 
needed in geospatial data exploration, we can examine the actual tasks users are 
likely to perform in relation to finding patterns and relationships. We first look at 
how analysis tasks are generally performed from a cognitive perspective. In this 
respect, Norman and Draper (1986) provided a summary of analysis tasks in 
seven stages (see figure 4.3). These include establishing the goal, forming the 
intention, specifying the action sequence, executing the action, perceiving the 
system state, interpreting the state, and evaluating the system state with respect 
to the goals and intentions. 
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Figure 4.3. Seven stages of user activities involved in the performance of a task. 

Adapted from Norman and Draper (1986) 

 
Fundamentally, two main categories of tasks are identified in figure 4.3: the 
mental activity and the physical activity. In general, the mental activity 
represents the user’s psychologically expressed goals, which demands physical 
controls and task variables. The user starts with goals and intentions, which are 
psychological variables that exist in the mind of the user and are related to his or 
her needs and concerns. The task is performed on the physical system with 
physical mechanisms, resulting in changes to the physical variables and system 
state, which are then interpreted and evaluated in relation to the set goals. 
 
Although in the real world, these stages may appear to be out of order (some 
may be skipped, some repeated), they can be a basis for examining basic 
visualization tasks. In exploratory data analysis, the user might not have specific 
goals other than the general purpose of finding patterns and relationships in the 
dataset. However, each step of the seven stages described above can help define 
specific analysis and visualization tasks. One of the few attempts to provide a 
description of visualization operations, and based on visualization goals, was 
proposed by (Keller and Keller 1992) in seven broad categories: 

- Comparing: positions, datasets, subsets of data, images 
- Distinguishing: importance, objects, activities, range of value 
- Indicating directions: orientation, order, direction of flow 
- Locating: position relative to axis, object, map 
- Relating: concepts (e.g. value and direction, position and shape, temperature 

and velocity, object type and value) 
- Representing values: numerical value of data 
- Revealing objects: exposing, highlighting, bringing to the front, making 

visible, enhancing visibility. 
We emphasize three main operations, part of which are included in the list 
provided above. 

- Categorize and classify: identify the different categories and classifications 
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- Compare: review relationships, commonalties and differences, the different 
classifications, etc. 

- Evaluate: analyze relevance of information, interpret. 
 

4.3.3.  Integrating information visualization and cartographic 
methods 

 
An important issue in the design of geovisualization environments is to provide 
ways of representing similarity (patterns) and relationships in a way that 
facilitates the perceptual and cognitive processes involved (MacEachren 1995). To 
achieve this goal, cartographic design principles are needed to provide an 
effective integration of visual variables used in the representation forms, while 
information visualization techniques provide alternatives for the user interaction 
necessary to complete the tasks. Bertin’s fundamental six visual variables (Bertin 
1983) for graphical information processing can serve as the basis for this 
integration. These variables (size, value, texture/grain, colour, orientation and 
shape) can be used, either alone or in combination, to depict different 
arrangements of objects in the graphical representations. For example, size is an 
effective perceptual data-encoding variable and shape is useful for visual 
segmentation. Although direct manipulation techniques can facilitate interaction, 
they can be difficult to apply to the process of data visualization in very large 
multidimensional datasets. The data must be processed in some way before it can 
be manipulated. We use a SOM neural network for extracting patterns and 
relationships in the data, a first step in the visual-computational analysis 
environment. We base the design of the geovisualization environment on a model 
of the user’s visualization tasks and operations (described above), a user 
perception model that contains generic interpretation capabilities of the human 
visual system, a user profile for the specific user preferences derived from the 
early involvement of the user in an inspection exercise (Chapter 3), and a model 
of the user’s visualization goals. 
 

4.4.  Prototype exploratory geovisualization system 
design 
 
Based on the conceptual design approach described above, we implemented a 
prototype geovisualization environment. The visualization environment is intended 
to contribute to the analysis and visualization of large amounts of data, as an 
extension of the many geospatial analysis functions available in most GIS 
software. The objective of the tool is to help uncover structure and patterns that 
may be hidden in complex geospatial datasets, and to provide graphical 
representations that can support understanding and knowledge construction. The 
design of the visualization environment incorporates several graphical 
representations of SOM output, including a distance matrix representation, 2D 
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and 3D projections, 2D and 3D surfaces, and component plane displays 
(described in Chapter 2). 
 
The subsections that follow provide a description of the computational analysis 
and system architecture, the user interface, the functionality of the visualization 
environment, and some interaction design issues. 
 

4.4.1.  Structure of the integrated visual-computational analysis and 
visualization environment 

 
We have extended the graphical representations of the SOM results (described in 
Chapter 3), to highlight different characteristics of the computational solution and 
integrate them with other graphics into multiple views to allow brushing and 
linking for exploratory analysis and knowledge discovery purposes. There are a 
number of researches reflecting the interest in dynamic displays on the part of 
experts in cartographic data presentation (Egbert and Slocum 1992; Monmonier 
1992; Cook et al. 1996; Dykes 1997). Most often they suggest that brushing be 
applied to a map linked with one or more non-geographical presentations, 
showing individual values and statistics, and the visualization of neighbourhood 
relationships. We use multiple views to offer alternative and different views of the 
data in order to stimulate the visual thinking process that is characteristic of 
visual exploration. Cartographic methods support the design for the effective use 
of visual variables with which the visualization is depicted. This makes the 
exploratory geovisualization environment appropriate for relating the position of 
the map units and the value at the map units represented by colour coding, and 
for exploring correlations and relationships. The design incorporates several 
graphical representations that provide ways of representing similarity (patterns) 
and relationships. They are illustrated in figure 4.5, and include a distance matrix 
representation, 2D and 3D projections, 2D and 3D surfaces, and component plane 
visualization.  
 
The tool was developed based on the integration of Matlab, the SOM toolbox and 
spatial analysis (Martinez and Martinez 2002). The main functionality of the 
visualization system includes pre-processing, the initialization and training of a 
SOM network, and visualization. Figure 4.4 describes the structure of the 
geovisualization system. The pre-processing consists of transforming primary data 
and converting them into an appropriate format. At this stage, input data are 
transformed and all components and variables of the dataset are normalized. 
After training the network, the visualization component provides features for 
visualizing the data, using different techniques. 
 
 

 



 62

 
Figure 4.4. Structure of the geovisualization system. 

 
The SOM network was trained using the SOM toolbox. In the SOM toolbox, the 
dataset is first put in a Matlab “struct”, a data structure that contains all 
information related to the dataset in different fields for the numerical data (a 
matrix in which each row is a data sample and each column a component), 
strings, as well as other related information. Since the SOM algorithm uses 
Euclidean metric distance to measure distances between vectors, scaling of 
variables is needed to give equal importance to the variables. Linear scaling of all 
variables is used so that the variance of each is equal to 1. Other normalization 
methods such as logarithmic scaling and histogram equalization are offered. The 
original scale values can easily be returned when needed. Missing data are also 
handled in the SOM toolbox. The input vectors x  are compared with the 
reference vectors im , using those components that are available in x . 
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4.4.2.  User interface and interaction design 

 
Some of the efforts to develop and apply usability engineering methods for the 
design and evaluation of computer interfaces have been directed towards 
interfaces for geospatial information representation (Cartwright et al. 2001).  

Figure 4.5. The user interface for the exploratory geovisualization environment in multiple views. 

The main view shows the representation of the general patterns and clustering in the input data: a 

map of the similarity coding (a), the unified distance matrix shows clustering and distances 

between positions on the map (b), the projection of the SOM results in 3D space (c), and parallel 

coordinate plot (d). The other windows show the alternative representations of the SOM general 

clustering of the data as options of the interface: 3D surface plot (e), 2D surface plot (f), and the 

visualization of component planes for the exploration of relationships and correlations among the 

attributes (g). An example of individual component is shown in (h) and the map unit labels are 

shown in (g). 

 
The proposed geovisualization environment offers a similarity-based exploration 
that allows a distance matrix representation to be visualized in the SOM space 
(abstract information space). The similarity coding extracted from the SOM is 
used in a number of representations, including projection, surface plots, 

(a) 
(b) 

(c) (d) 
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 (i) 
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component plane displays, and a geographical view (maps). A link between the 
different views is provided for the exploration of relationships (see figure 4.5).  
 
The interface design focuses on three important aspects: 

- Representation forms (map, grid, surface, projection). 
- Visualization techniques (distance matrix, component planes display, 2D/3D 

views of surface plots and projections). 
- Interaction techniques (brushing, panning, rotation, zooming). 

 

The interface integrates the different representations into multiple views, which 
are used to simultaneously present interactions between several variables over 
the space of the SOM, maps and parallel coordinate plots, and to emphasize 
visual change detection and the monitoring of the variability through the attribute 
space. These alternative and different views of the data can help stimulate the 
visual thinking process that is characteristic of visual exploration. These 
alternative views are supported by user interaction for exploratory tasks to 
facilitate the knowledge discovery process. Users can perform a number of 
exploratory tasks to understand the structure of the dataset as a whole and to 
explore detailed information such as correlations and the relationships for selected 
attributes of the dataset. This is intended to guide them in hypothesis testing, 
evaluation, and the interpretation of pattern, from general patterns extracted to 
specific selection of attributes and spatial locations. Other supportive views are 
provided for further exploration of the displays, including zooming, panning, 
rotation and 3D views. In this integrated visual-computational environment, 
effective exploration of the data can be performed to support knowledge 
construction through user interactions. 
 
Because the user develops a mental model of the system, it is important that the 
design helps construct a clear image of the system. For perceptual effectiveness 
(Eick 1997), the interface attempts to provide displays in a way that seems 
natural for interpretation: in a grid, on a map, on a surface, in a 3D space, with 
position showing internal relationships. Users have the possibility of visually 
relating information or aggregations of data to reveal the clustering structure or 
common visual properties. From the HCI perspective, a number of interaction 
strategies can help achieve the goals of visual exploration. The interface offers 
interactive filters for changing the relative positions of elements of the display, 
changing by rotation the perspective from which it is seen, and displaying detailed 
information to have access to actual data values on a specific data item of 
interest. Such transformations of views can interactively modify and augment 
visual structures, and support the likelihood of emergence (Peuquet and Kraak 
2002). We use different interaction techniques to enhance data exploration, 
including brushing and linking, panning, zooming, and rotation. 
 
Representational variables 
We identified key elements of representation that may be necessary for the 
design of the graphical representations (see table 4.1). 
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Table 4.1. Representation variables. 
 

Visuals Representation 

Representation form (metaphors) 

 

Volume 

Cells 

Landscape 

Network or mesh 

Surface 

Visual properties Colour 

Objects identifiers (icons, markers,. etc.) 

Shape 

Lighting 

Position 

Surface reflectance 

Transparency 

Scale 

Legend 

Colour coding 

Spatial arrangement Geometry 

Topology 

Relationships 

Clustering structures 

Spatial distribution 

Object characteristics 

Similarity and dispersion 

Groups 

Organization (hierarchy, semantic generalization) 

Spatial relationships (taxonomic, thematic membership) 

Interpretation of geographical primitives (features, regions, boundaries) 

Formalized space structure (space type, scale) 

 
 

4.5.  Example exploration of geographical patterns in 
health statistics using the graphical user interface 
 
The prototype is used in an example for exploring a large dataset containing 
heath statistics on Africa. In this section, the dataset is explored, and different 
visualization techniques are used to illustrate the exploration of (potential) 
patterns within the different options of the interface. This example is used to 
examine the integration of the different graphical representations in the user 
interface. 
 
 
4.5.1. The dataset explored 
 
The dataset consists of 74 variables, including health, demography and other 
socio-economic indicators, for 50 African countries. The idea is to find multivariate 
patterns and relationships among different attributes and countries. Maps of a few 
attributes of the dataset are provided in figure 4.6. 
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Figure 4.6. Example of attributes of the test dataset: HIV prevalence rate end of 2001, HIV rate 

among commercial sex workers, total literacy rate, percentage of married women, birth rate, total 

death rate, life expectancy at birth, average age at first marriage, and GNI per capita 2001. 

 
 
4.5.2. Visual exploration support for general patterns and clustering 
 
The default view in the interface offers after the data has been loaded and the 
SOM network trained is the general clustering structure of the data in different 
perspectives (maps, projections, unified distance matrix and parallel coordinate 
plot). This general view implements a number of distance matrix visualizations to 
explore the SOM results and show the cluster structure and similarity (patterns). 
An example is the unified distance matrix representation discussed in Chapter 3. 
In figure 4.7, the different views of the general structure of the dataset provided 
in the user interface are presented. In the distance matrix (figure 4.7a), countries 
having similar characteristics based on the multivariate attributes are positioned 
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close to each other and the distance between them represents the degree of 
similarity or dissimilarity. These common characteristics representations can be 
regarded as the health standard for the countries. In figure 4.7c, the projection of 
the SOM offers a view of the clustering of the data with data items depicted as 
coloured nodes (as described in Chapter 3). The clustering structure can also be 
viewed in the interface, as 2D or 3D surfaces representing the distance matrix 
(figure 4.7d), using colour value to indicate the average distance to neighbouring 
map units. This is a spatialization (Fabrikant and Skupin 2003) that uses a 
landscape metaphor to represent the density, shape, and size or volume of 
clusters. The landscape metaphor is a geographical analogy commonly used to 
facilitate the representation of information by creating an information landscape 
that can be easily assimilated by the viewer based on his or her experience of the 
real world. Such a geographical metaphor is found in most information 
visualization systems and has even become a design model for virtual 
environments (Chen 1999). The intention behind using a spatial metaphor is to 
create a graphical representation that is accessible to human cognition (Skupin 
and Buttenfield 1997) and to allow the viewer’s intrinsic comfort with everyday 
concepts of human spatial orientation and way finding to guide their exploration 
and interpretation of the representation (Fabrikant 2001b).  

 
Figure 4.7. Representation of the general patterns and clustering in the input data from the 

interface: the unified distance matrix showing clustering and distances between positions on the 

map (a). Other representations of the SOM general clustering of the data are offered: a map of the 

similarity coding extracted from the SOM computational analysis (b), a projection of the SOM 

results in 3D space (c), and a 3D surface plot (d). 

 
 
4.5.3. Exploration of correlations and relationships 
 
As a second stage of the visualization process, the interface offers options to 
explore correlations and relationships in the input data. This is implemented by 
the component plane display (figure 4.8). As discussed in Chapter 3, here the 
component planes show the values of different attributes for the different 
countries. They are used to support exploratory tasks, facilitate the knowledge 
discovery process, and improve geospatial analysis. 

(a) (b) (c) (d) 
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Figure 4.8. Detailed exploration of the dataset using the SOM component visualization: all the 

components can be displayed to reveal the relationships between the variables and the spatial 

locations (countries) (a). Selected components related to a specific hypothesis can be further 

explored (b). All the component planes can be ordered based on correlations among the variables 

(c). Selected components for a particular investigation (here the relationships between the HIV 

prevalence rate and socio-demographic variables) can be ordered to facilitate visual recognition of 

relationships among selected variables (d). Position of the countries on the SOM map (e). 

 
Compared with the maps in figure 4.6, patterns and relationships among all the 
attributes can be easily examined in a single visual representation, using the SOM 
component plane visualization. Since the SOM represents the similarity clustering 
among the multivariate attributes, the visual representation becomes more 
accessible and easy to explore for exploratory analysis and knowledge discovery. 
The component planes can be displayed for selected attributes of the dataset. 
When overlaid with environmental, social, transportation and facilities data, this 
kind of spatial clustering makes it possible to conduct exploratory analyses to help 
identify the causes and correlates of health problems (Cromley and McLafferty 

(a) 

(b) 

(c) (d) (e) 
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2002). These map overlays have been important hypothesis-generating tools in 
public health research and policy making (Croner et al. 1992). In figure 4.8a, all 
the components are displayed and a selected few are made more visible for the 
analysis in figure 4.8b. The kind of visual representation (imagery cues) provided 
in the SOM component plane visualization can facilitate visual detection, and has 
an impact on knowledge construction (Keller and Keller 1992). As such, the SOM 
can be used as an effective tool to visually detect correlations among operating 
variables in a large volume of multivariate data. From the exploration of global 
patterns, correlations and relationships in figure 4.8a, hypotheses can be made 
and further investigation can follow in the process of understanding the patterns. 
To enhance visual detection of the relationships and correlations, the components 
can be ordered so that variables that are correlated are displayed next to each 
other (see figure 4.8c and 4.8d) in a way similar to the collection maps of Bertin 
(1981). It becomes easy to see, for example, that the HIV prevalence rate in 
Africa is related to a number of other variables, including literacy rate and 
behaviour (characterized in the dataset as high-risk sexual behaviour and limited 
knowledge of risk factors), and other factors such as the high prevalence rate 
among prostitutes, and the high rate of infection for other sexually transmitted 
diseases. This exploration of the attributes of the dataset allows distinguishing 
clearly that as a consequence of the high prevalence rate in regions such as 
Southern Africa, there seem to be a low birth rate and life expectancy at birth, 
and a high death rate, highly impacted by the HIV infection. The birth rate in the 
most infected regions seems to be a consequence of the prevention measures. 
The increased use of condoms among a large proportion of single females, 
although for contraception purposes, seems to safeguard them against HIV. It is 
also observed through the component plane visualization that factors such as the 
percentage of married women, the percentage of sexually active single females, 
and the average age at first marriage in these countries are highly related to the 
prevalence rate. No significant differences are found between the prevalence rate 
in rural and urban areas. This may be due to the fact that over the last decades 
the infection, originally not known in rural areas, has gained ground in all parts of 
the countries. Actually the spread of HIV/AIDS follows a mixed pattern of diffusion 
through space and time (Gould 1995). No relationships are found between the 
poverty of the countries and the prevalence rate. 
 

4.6. Conclusion 
 
In this chapter we have presented the implementation of the proposed approach 
to integrate computational and visual analysis into the design of a prototype 
visualization environment. A user interface was developed to integrate the 
different graphical representations and support the exploration process by 
supporting a number of user activities. The interface is structured to provide 
global view and summary of the data as well as tools for detail exploration of 
relationships and correlations for exploratory analysis purposes.  Interaction was 
needed to enhance user goal-specific querying and selection from the general 
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patterns extracted to more specific user selection of attributes and spatial 
locations for exploration, hypothesis generation, and knowledge construction. 
Interactive manipulation (zooming, rotation, panning, filtering and brushing) of 
the graphical representations was used provided to enhance user interaction, the 
objective being to explore ways of supporting visual exploration and knowledge 
construction. The link between the attribute space visualization based on the 
SOM, the geographical space with maps representing the SOM results, and other 
graphics such as parallel coordinate plots in multiple views offers alternative 
perspectives for better exploration, evaluation and interpretation of patterns, 
which ultimately supports knowledge construction. 
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Chapter 5  
 

Exploring spatio-temporal patterns using self-
organizing maps and cartographic animation 
 
 

5.1. Introduction 
 
Advances in data acquisition (e.g. satellite imagery, GPS) are creating new 
applications as well as challenges in information extraction from the large 
amounts of time-series data captured. The study of geographical processes has 
an important component about time since events or processes happen in time. 
 
Geovisualization has been particularly addressing issues related to the analysis 
and exploration of patterns in spatio-temporal datasets. Visualizing the time 
dimension in geospatial data has long been in the centre of research in 
cartography. Maps are often used to depict events in snapshot views.  However 
using maps to represent events that happen over time result in complex designs, 
with too many maps. Usually maps will only focus on part of such process. 
Animation is often used to integrate many maps and to add dynamics and 
interaction to the representation of time. Animation can be very useful to clarify 
trends and processes, as well as to provide insight into spatial relations (Kraak 
2000b).  
 
Some authors have proposed spatio-temporal modelling (Wachowicz 2000; 
Roddick and Lees 2001) for understanding space-time dynamics, based on 
modelling abstractions and concepts such as states, events and episodes as used 
in a specific knowledge domain. In this case, understanding the spatial, temporal 
and thematic aspects of the knowledge domain is crucial for the representation of 
variations and structure in the spatio-temporal phenomena. Much effort is needed 
on the representational issues of space-time dynamics. Some recent work has 
been based on the space-time cube concept (Hägerstrand 1970; 1982) for 
representing geospatial processes (Andrienko et al. 2003; Kraak 2003). However, 
pattern extraction issues remain limited and more exploration of techniques is 
needed to support visual exploration and understanding of space-time dynamics 
related to complex geographical phenomena. 

                                                 
 This chapter is based on: 
 
Koua E. L. and Kraak M. J. (2004). Alternative visualization of large geospatial data. Cartographic 
Journal vol 41 (3). 
 
Koua E. L. and Kraak M. J. (In review). Exploring spatio-temporal patterns in large geospatial data 
using self-organizing maps and cartographic animation. Cartography and Geographic Information 
Science.  
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In this chapter, we use the SOM to process and extract patterns, relationships and 
trends from a large spatio-temporal dataset related to the production of food in 
Africa over the last 40 years. The issue of food production in relation to continued 
population growth, rapid urbanization, loss of forestland, land productivity, 
national unrest and resultant high refugee populations, droughts and floods, and 
more recently the HIV/AIDS pandemic has emerged as a critical development 
challenge (Turner and Schwarz 1980; Turner et al. 1993). Some of these 
conditions have resulted in recurrent food shortages in parts of Africa. The 
objective of exploring this dataset is to provide some understanding of the 
interrelationships between some of factors mentioned above, specifically changes 
in socio-economic factors such as population and their relation to food shortages 
and famine situations in parts of the continent. For representation of the space-
time variations, we investigate ways of visualizing underlying dynamics in the 
dataset, using multiple views that simultaneously present interactions between 
several variables over the attribute space and time for different locations. The use 
of these techniques intends to allow visual change detection, support the 
exploration of time-related geographical trends and patterns, improve data 
analysis, and ultimately provide better understanding of the interrelationships 
between the different factors in space and time. The SOM-based representations 
are combined into animations using cartographic design. 
 

5.2. Space-time representation 
 
The proposed approach integrating computational and visual analysis for 
exploratory geovisualization (described in the previous chapters) is applied here 
for extracting and visualizing spatio-temporal patterns. Spatial analysis, data 
mining and knowledge discovery methods are combined for the extraction of 
patterns, as well as to enhance visual change detection and hypothesis 
generation, and therefore contribute to the understanding of spatio-temporal 
geographical processes. A number of representation techniques are explored. In 
the next subsection, we examine the different spatio-temporal representation 
techniques based on the SOM, including component plane displays in multiple 
views and the visualization of trajectories. The SOM-based techniques are then 
combined with cartographic animation to further explore interactions between 
several attributes, space and time, and to emphasize visual change detection and 
the monitoring of the variability through the attribute space. The goal is to 
provide alternative and different views on the data that can help stimulate the 
visual thinking process. 
 
Spatio-temporal representations are an important aspect of research in 
geographical information science. Traditionally, maps have been used to 
represent spatio-temporal dynamics. A large part of the research effort in this 
area has been directed at data models and focused on two main representation 
models: models based on space representation and models focusing on time 
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representation of data. The traditional approach in GIS focuses on the spatial 
representation of entities based on the geometric and thematic properties. In 
such models, the main concept is the absolute view of space, and time is implicitly 
represented by changes that occur over the space. Time-based models focus on 
time representation as a fourth dimension or a parameter in the data in which 
events that occur can be located. This time structure of the representation has 
often been organized according to intervals between events, points of occurrence 
of events, or both intervals and key points (Wachowicz 2000). In temporal GIS 
research, data models for the representation of space-time have been proposed. 
A representative of this approach is Peuquet’s work (1994), which proposed 
TEMPEST (temporal geographical information system) to integrate space and time 
data models in GIS. In this approach, the primary organization is based on time, 
representing processes by time line to show changes that occur. This approach 
suggests the key notions of location, time and object (where, when and what), 
the basic characteristics of geospatial data. On the representational level, two 
main models exist: models based on space representation and models focusing on 
time representation of data. The greater promise of spatio-temporal GIS resides 
ultimately in the capacity to examine causal relationships and their effects for 
exploration, explanation, prediction and planning (Peuquet 1994). Animation is 
particularly used for representing spatio-temporal patterns, to reveal the 
dynamics, represent processes, track changes, and attract the attention of the 
user (Edsall et al. 1997; Andrienko et al. 2000; Blok 2001; Harrover 2002). In 
general, computer-based animation (Dorling and Openshaw 1992) and 
visualization techniques rely on three strategies for depicting change: sequence of 
discrete displays or snapshots at various times, dynamically and interactively 
modifying display elements as time goes along, and depicting change in specific 
locations or over the entire region. This was explored in the triad framework 
(Peuquet 1994), in which information is stored relating to where (location-based 
view), what (object-based view) and when (time-based view). 
 
How to design effective spatio-temporal representations will relate to the ability to 
handle locations, times, objects and events as primary entities, to assign 
attributes to any of these, and to keep track of the interdependencies among the 
various attributes (Galton 2001). The main views can be summarized in two 
ways:  

- Comparing a sequence of temporal overlays to determine how factors at a set 
of locations change over time  

- Comparing layers representing the spatial distribution of a single variable at 
different times instead of different variables at a single time. 

In practice, the choice between the two types of temporal representation will 
depend on the type of data. In large spatio-temporal data, the effective 
representation of underlying processes will also rely on the ability to extract 
patterns, relationships and trends in the data.  
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In the next section, an application of the SOM for a large spatio-temporal dataset 
is explored, and the visualization techniques are used to illustrate the exploration 
of (potential) patterns. 
 

5.3. Exploration of space-time patterns in a dataset on 
food production in Africa 
 
An application of the method described in the previous section is applied to the 
annual food and agriculture statistics in Africa collected from 1961 to 2002. This 
dataset is provided by FAO for all African countries and consists of the production 
in metric tons of three main cereals (rice, maize and millet) for the last 42 years. 
It also includes socio-economic indicators such as the populations (total 
population, male and female populations, rural population, urban population, 
agricultural population, non-agricultural population) of 48 African countries. Data 
on rainfall and the vegetation index (NDVI) for the same period of time are also 
used for the analysis. Finding patterns and understanding the variations in the 
food production in such a large dataset can be very complex. For example, 
understanding how aspects of population growth, climate or other factors have 
impacted the production of cereals, or how these factors relate to famine 
situations in parts of the region, requires a clear depiction of the processes. The 
exploration of this dataset using the proposed approach and techniques intends to 
allow the analyst to formulate hypotheses in the process of understanding the 
geographical patterns of shortages, famine and socio-economic changes. Further 
exploration and explanation of the results might need domain expertise in an 
agriculture-related discipline. Additionally, factors related to governmental policies 
and political instability, and other environmental factors such as droughts, should 
be closely analyzed in relation to the patterns found in the exploration of the 
dataset. Some maps of the African rice, maize and millet production for selected 
years are presented in figure 5.1. 
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 Figure 5.1. Some maps of the production of the three cereals (rice, maize and millet) for selected 

years (1961, 1991 and 2002). The entire period is 42 years (1961 to 2002). 

5.3.1. SOM-based exploration and visualization of space-time 
patterns 

 
Based on the SOM computational process, a number of visualization techniques 
can be explored. Non-linear dependencies between variables can be presented 
using three main categories of visualization and exploration technique: 

- Visualization of the overall structure of the dataset introduced in Chapter 3. 
This refers to clustering, patterns (similarities) and irregularities (such as 
important gaps), and includes a similarity representation, projections in 2D or 
3D space, and 2D and 3D surfaces. 

- Exploration of correlations and relationships introduced in Chapter 3. This is 
primarily based on component plane displays in multiple views and allows the 
visualization of very detailed information that can support hypothesis 
generation.  
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- Visualization of temporal patterns. Examples are ordered component displays, 
trajectories, as well as the representation of time-related vectors in 2D or 3D 
projections. Examples of techniques for the representation of spatio-temporal 
dynamics are given in the next paragraphs. 

 
Different graphical representations can support the exploration of space-time 
dynamics, offering the possibility of visually relating several variables 
simultaneously and thus helping in the knowledge discovery process. The SOM 
output provides ways of visualizing the general structure of the dataset 
(clustering), as well as exploring relationships among attributes. The different 
stages of the process of mapping the data on the SOM can be visualized as a 
trajectory on the SOM grid, with the display of component planes and projections, 
as well as animations. These can be used for each of the different representations 
mentioned, and combined with maps, which makes it possible to track the process 
dynamics and enable interpretation of the temporal relations among patterns at 
distinct levels (Guimaraes 2000). 
 

5.3.2.  Exploration of spatio-temporal patterns and relationships with 
component plane displays 

 
The main representational technique for spatio-temporal patterns using the SOM 
is the visualization of component planes (see figure 5.2). The spatial and temporal 
attributes can be explored using the component plane visualization. The 
component plane display (figure 5.2) shows the values of the map elements for 
different attributes, and time. As with a collection of maps or processing maps 
(Bertin 1983) representing one attribute at the overall level, defining regions and 
geographical correlations, the component plane display answers the elementary 
question: At a given location, what is there in a given state? This results in the 
perception of similarity, and helps determine geographical correlations or define 
regions of a particular characteristic. The component planes are easy to read, 
provide an immediate answer to questions, and are useful for relationships 
involving the entire dataset. This is an exploratory process that does not need an 
initial hypothesis to represent patterns and facilitate visual comparison and 
perception, since visual recognition of the elements of the graphics and the 
relationships among them can be easily compared with colour over the attributes 
for different locations (see figure 5.2 for illustration of the reading of the 
component plane).  
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Since the component planes can be displayed and ordered in sequence to 
represent time-related attributes, they can be used to relate attributes to 
locations, times and events, which are the primary entities in spatio-temporal 
representation (Galton 2001). This can allow exploration of the interdependencies 
among the various attributes over time for different locations.  

 Figure 5.2. Component display and time. Detailed exploration of the dataset using the SOM 

component visualization: all the components can be displayed to reveal the relationships between 

the variables and the spatial locations (countries) (b). The variations in value (colour) indicate the 

relationship between the countries for the attribute represented in the plane. Selected components 

related to a specific hypothesis can be further explored to facilitate visual recognition of 

relationships among selected variables. Geographical maps of components corresponding to the 

hypothesis found in the exploration can be displayed (c). A description of the different axes used in 

the component plane display is described in (d), as well as indications for their reading in a text box 

(e). 

In figure 5.2b, all the components are displayed and a selection of one sample 
attribute is made more visible for the analysis, with the name and position of the 
map units (countries). From the view in figure 5.2b, correlations and relationships 
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can be explored, and hypotheses can be made. Individual component planes are 
shown in subplots linked together through similar position. In each component 
plane, a particular map unit (hexagon) in the SOM is always in the same place 
and the value of one variable is shown using colour coding (see notes in figure 
5.2e on how to read the component plane visualization). By using the position and 
colour (value), relationships between different map units can be easily explored. 
This can be used to visualize the variations among the attributes of the input data 
(figures 5.3, 5.4 and 5.5). Further analysis can be conducted by searching for 
correlations and interactions between different variables. This visualization reveals 
very detailed information. The actual values can be returned for every component 
(see the selected component display for agricultural population in 2001 in figure 
5.5), which allows comparison between correlated attributes and places 
(countries). For example, if we consider attributes such as total population, rural 
population, urban population, agricultural population and non-agricultural 
population, we can easily view relationships between them (see figure 5.5). Figure 
5.5 shows important changes in population patterns for Nigeria over the years. It 
shows the urbanization trend. Relatively more growth is observed in the urban 
population from the ‘80s (see green circles around Nigeria in figure 5.5). This can 
be partly due to a rural exodus, a persistent phenomenon in the ‘80s and ‘90s in 
most African countries. The agricultural population follows the reverse effect, 
dropping dramatically in 2001 (see figure 5.5). This may be one of the reasons for 
the decline in the production of rice in this country during recent years (see figure 
5.5). Geographical maps can be made to represent the result of this reasoning 
process for better geographical exploration and comparison (figure 5.2c).  
 



Figure 5.3. SOM component plane displays and maps for comparison. Changes are easier to detect 
in the component plane displays for the production of rice (a) and maize (b). 

 
The SOM grid can be adjusted to a set of variables of interest. In figure 5.5, only 
the demographic variables were used to represent population patterns. The 
position of the map units is relative to these particular variables. Different spaces 
(SOM grids) can be used to explore sets of variables in each individual space. For 
example, the analysis of population patterns in figure 5.5 can easily be related to 
t
m
d
o
 

he production of the cereals in figure 5.4, by relating the value attached to the 
ap units (countries) in each grid. For purposes of comparison between the 

ifferent years, the normalized valu values 
f the vectors can be returned when
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representing the spatial distribution at different times can be compared in multiple 
views. For example, in figure 5.4 the urban population growth and agricultural 
population changes between 1961 and 2001 can be explored to observe 
population dynamics for Ethiopia. There has been more growth in Ethiopia’s rural 
population over the years than in the urban population (see figure 5.5 and black 
circles for Ethiopia for the selected years displayed). The agricultural population 
for this country has experienced important growth, showing greater concentration 
of the agricultural population in rural areas. People in rural areas are generally 
poorer, and tend to be more strongly affected by crop failures and consequently 
more vulnerable to famine. This is a contrast to the frequent food shortages and 
famine in this country. This kind of exploratory analysis can be performed to 
include other factors that may play a role in the geographical process under 
study. Weather conditions, for example, are one of the factors to consider in the 
production of cereals. This situation in Ethiopia can be due to other environmental 
factors, such as droughts, rainfall and land degradation. In the next section we 
explore vegetation changes over the years relative to the production of cereals. 
 
The component plane visualization is shown in figure 5.4 for the production of 
rice, maize and millet over the years. Information on the variations in the 
production of these cereals over the years can be revealed, as well as other 
interactions between the different attributes. For example, it is very easy to see 
that Nigeria started to increase its production of rice in the ‘80s and has suffered 
a significant decrease in production in recent years. Zimbabwe was one of the 
largest producers of maize in the ‘70s and ‘80s, but has seen a dramatic decrease 
in production over the last few years. In figure 5.3 the SOM component planes are 
displayed next to maps for selected years for comparison purposes. 
 
This kind of visual exploration offered with the component planes can facilitate 
visual detection, and have an impact on knowledge construction (Keller and Keller 
1992). Modelling and prediction can be made possible by using the SOM as a non-
linear regression (Alhoniemi et al. 1999).  
 
 
 
 
 
 
 
 
 
 
 
 
 

The idea is to compare  a sequence of patterns for  a set of  locations over time in 
order to determine  how factors affect changes.  The different component displays 

80
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Figure 5.4. SOM component plane visualization for the production of rice (a), maize (b) and millet 

(c). The values of the production for the different years were normalized between 0 and 1. A 

detailed component showing the production of rice is provided in 2002 and a geographical index in 

(d). 
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Figure 5.5. Population changes from 1961 to 2001. The figure shows a few selected years (1961, 

1971, 1981, 1991, 2001) for rural, urban, agricultural and non-agricultural populations. The values 

were normalized between 0 and 1 for comparison. Information of the individual components can be 

retrieved with the legend corresponding to the actual value in the input data space (see example of 

display on right side for the agricultural population in 2001). The black circles show Ethiopia and 

the green circles Nigeria. 
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5.3.3.  Visualization of trajectories 

 
The different stages of the process of mapping the data on the SOM can be 
visualized as a trajectory on the SOM grid, which makes it possible to track the 
process dynamics and enable interpretation of the temporal relations among 
patterns at distinct levels (Guimaraes 2000). A display of the process as a 
trajectory linking the different moments in time can help visualize the process 
dynamics in the data. This visualization can be used to study the behaviour of a 
phenomenon over time. To illustrate the use of trajectories in analyzing the 
behaviour of a process, a time series extracted from the dataset explored in the 
experiment and related to the production of rice in Nigeria and maize in 
Zimbabwe over the last 40 years is considered. For clarity, a simple view of the 
data samples selected using scatter plots is provided (see figure 5.6a and 5.6c). A 
trajectory of these productions in the two countries is presented in figure 5.6b 
and 5.6d. 

Figure 5.6. Scatter plots and trajectories of the selected data samples. Production of rice in Nigeria 

in scatter plot (a) and in trajectories (b). Production of maize in Zimbabwe in scatter plot (c) and in 

trajectories (d). 

The visualization of the trajectory in figure 5.6b and 5.6d relates the different 
time states (years of production) on top of a SOM component display representing 
a clustering of the years of production. This reveals the different states of the 
production, and relates values and similarities between the different years of rice 
production in Nigeria (figure 5.6b) and maize production in Zimbabwe (figure 
5.6d). In this SOM component plane, a clustering of the years of production is 
shown and one can easily see similarities and differences between the different 
years of production. This provides an easy way of visualizing the production 
process: gaps between years of production, changes in production levels, 
similarity among the years of production, and patterns of production for different 
countries. For example, the years where the production of rice in Nigeria was 
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highest can be easily seen (1989, 1991, 1992, 1993, 1996, 1997, 1998, 1999, 
2000, 2002), and compared with other years in between when there was a drop 
(in 1990, 1994, 1995 and 2001). This can prompt the analyst to search for more 
patterns for these years in order to understand these changes. The production of 
maize in Zimbabwe has apparently had a few bad years every decade. This 
explains why the trajectory constantly shows a back-and-forth process from high 
values to low values. The path linking the years reveals the variability in the 
production over the years. Trajectories can be projected on top of all component 
planes to compare patterns in the productions for the different countries.  
 
A number of spatio-temporal representation techniques have been based on such 
visualizations of paths or trajectories in recent years. Some recent work has been 
based on the space-time cube concept (Hägerstrand 1970; Hägerstrand 1982) for 
the representation of geospatial processes (Andrienko et al. 2003; Kraak 2003). 
 
 

5.3.4.  Projections 

 
Projecting the SOM results offers a view of the clustering of the data and depicts 
the process dynamics at different times. The projection can reveal the 
relationships between different states. The general structure and tendency can be 
depicted in 2D or 3D space. The projection reveals not only the situation at each 
point in time, but also the similarity found between them. This gives an 
informative picture of the global shape and the overall smoothness of the SOM 
projection of the data. Exploration can be enhanced by interactive manipulation of 
the projection in 3D space, for example by rotating, zooming and panning. An 
example of a projection is shown in figure 5.7. This projection depicts the trends 
in the production of cereals (rice, maize and millet) in Nigeria over the years. 
Similarity between the years of production is shown, using colour and size of 
objects to further differentiate between clusters and cluster members that appear 
to have important gaps in the data value range. For example, the productions in 
the ‘60s and ‘70s are clustered together with the same colour and the same size 
of object. However, the productions in 1973, 1974 and 1975 have a slightly 
bigger size of object, showing an increase in production during these years.  
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Figure 5.7. Example of projection for Nigeria’s production of the three cereals together. 

 

5.4. Integrating the SOM and cartographic animation 
for spatio-temporal patterns exploration 
 
To enhance visual detection and exploration of temporal patterns, the results of 
the SOM computational process are integrated in a cartographic animation that 
provides different views, in maps and in the SOM space. 
 
Animation as a visualization technique has been used in cartographic and 
geovisualization research (Monmonier 1990; Slocum and Egbert 1993; Edsall et 
al. 1997; Blok et al. 1999) to depict change in geographical processes and the 
representation of dynamic geographical phenomena. Animation can help support 
the understanding of geographical changes over space and time. Based on the 
SOM results, the animation was subsequently built using Macromedia Director 8 
software, with Lingo scripting language (see figure 5.8 for the production of maize 
from 1961 to 2002) to relate the component plane display and the visualization of 
trajectories to maps. 
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Figure 5.8. Animation of maps and component plane display (a). Scatter plots and trajectories of 

the selected data samples (b) for the production of maize in Zimbabwe. 

 
The maps in figure 5.8a and scatter plot in figure 5.8b were used for comparing 
the animation with component planes and trajectory respectively. Changes in the 
production of the cereals are better revealed in the animation than in the 

(b) 
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component planes and trajectory. Interactive features allow the user to have 
control over the animation (start, stop, and temporal navigation controls). The 
potential power of animation lies in its ability to represent change over time and 
thus facilitate an understanding of process rather than state (Harrover 2002). 
 
 

5.5. Conclusion 
 
In this chapter we have explored a number of computation and visual 
representation techniques for a large spatio-temporal dataset. The SOM algorithm 
was used for the extraction of patterns, relationships and trends and as the basis 
for visual representation of spatio-temporal processes. The techniques explored 
for spatio-temporal representation (component planes, trajectories and 
projection) provide a way of improving geospatial data analysis. Some techniques 
to specifically address temporal representations were explored. 
 
We used ordered component planes to simultaneously present interactions 
between time vectors over the space of the SOM. This was to emphasize visual 
change detection and the monitoring of the variability through the attribute space. 
A visualization of trajectories was used to understand space-time dynamics in the 
data. One of the advantages of the SOM is that the algorithm is fast and effective 
for extracting patterns and relationships in very large datasets. Based on a 
similarity analysis, the algorithm was found to be effective in searching for 
correlations among operating variables. This can be achieved using the SOM 
component plane visualization, which allows the understanding of processes 
through visual representation and enables several variables and their interactions 
to be inspected simultaneously. Patterns, relationships, irregularities and 
distributions can be effectively visualized. This method provides opportunities to 
improve geographical analysis and to support exploration and knowledge 
discovery in the context of large geospatial datasets. 
 
To enhance exploration and provide more flexibility and control for spatial analysis 
purposes, a user interface is being developed to integrate the SOM 
representations into a multiple-view environment linking other views, such as 
parallel coordinate plots, and the maps. Interaction is central to this design. A 
number of interaction techniques (rotation, panning, brushing, zooming and 
motion-related interactions) are provided in the graphics and allow different 
viewpoints. 
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Chapter 6  
 
A usability evaluation methodology for 
assessing exploratory analysis and knowledge 
discovery tasks in geovisualization 
 
 
 

6.1. Introduction 
 
Usability of GIS products and specifically geovisualization tools has received 
considerable attention in recent years and is increasingly the focus of a number of 
research activities in the GIScience field. This is due partly to the fact that 
usability and human-computer interaction (HCI) in general are becoming 
important in new designs in geovisualization that integrate techniques and 
methods from other disciplines such as information science and computer science. 
There is, however, a lack of evaluation methodologies and particularly task 
specifications for user-based testing in exploratory geovisualization tools (Slocum 
et al. 2001). The need to assess the usefulness and usability of geovisualization 
tools is increasing as new types of interactions emerge (Muntz et al. 2003). 
 
New developments in the design of geovisualization tools in recent years have 
amplified the need for usability evaluation of both these tools and the 
effectiveness of user interfaces. Increasing research interest in the usability of 
geoinformation systems has recently linked the HCI field, cognitive science and 
information science in a number of studies (MacEachren and Kraak 2001; Haklay 
and Tobon 2003; Fuhrmann et al. 2004; Koua and Kraak 2004a). There is, 
however, a lack of evaluation methodologies for formally assessing 
geovisualization tools. The map use studies (MacEachren 1995) usually conducted 
in the field of cartography are not necessarily fully applicable in new interactive 
visualizations that involve new representational spaces and advanced user 
interfaces. 
 
Based on an approach to combine visual and computational methods for 
knowledge discovery in large geospatial data, a visualization environment has 
been developed. This environment integrates non-geographic information spaces 
with maps and other graphics that allow patterns and attribute relationships to be 

                                                 
This chapter is based on: 

 
Koua E. L. and Kraak M.J. (2004). A Usability framework for the design and evaluation of an 
exploratory geovisualization environment. In: Proceedings 8th International Conference on 
Information Visualization. 14-16 July 2004 London. IEEE Computer Society Press, 2004. pp 153- 
158. 
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explored. The tool intends to facilitate knowledge construction, using a number of 
steps provided in data mining and knowledge discovery methodology. The 
development of the tool is based on the self-organizing map (SOM) neural 
network algorithm, and relates to data mining and knowledge discovery methods 
for the extraction of patterns. Some graphical representations are used to portray 
extracted patterns in a visual form in order to support the understanding of the 
structures and the geographic processes. In order to investigate the effectiveness 
of the design concept, an empirical usability test is planned to assess the tool’s 
ability to meet user performance and satisfaction. In the test, different options of 
map-based and interactive visualizations of the SOM output are used to explore a 
socio-demographic dataset. The study emphasizes the knowledge discovery 
process based on exploratory tasks and visualization operations. 
 
In this chapter, we propose the usability assessment methodology for evaluating 
a number of issues related to the user interface, as well as examining the support 
for exploratory tasks and knowledge discovery in the geovisualization 
environment. The methodology is based on an understanding of several 
knowledge discovery activities, visualization operations, and a number of steps in 
computational analysis used to visualize patterns in the data. 
 
 

6.2. Exploration and knowledge discovery tasks in the 
visualization environment 

 
One way to examine exploration and knowledge discovery support in the 
visualization environment is by assessing user performance for a number of 
defined tasks and steps. The model described in figure 6.1 emphasizes the 
exploratory nature of the visualization environment and the support for 
knowledge construction, from hypothesis formulation to the interpretation of 
results. This figure is an extension to figure 2.5 and focuses on the exploration 
steps undertaken by users in the knowledge discovery process. Some of these 
steps may be repeated. The next subsections provide an outline of these steps for 
this evaluation. 
 

6.2.1. Defining user tasks for usability evaluation 

 
The main goal of geospatial data analysis is to find patterns and relationships in 
the data that can help answer questions about a geographic phenomenon or 
process. The geographic analysis process can be viewed as a set of tasks and 
operations needed to meet the goals of the data exploration. The primary tasks in 
this process involve checking the spatial positioning of elements of interest in 
order to verify spatial proximity among different elements; verifying their spatial 
density; and obtaining an overview of how a target value measured at one 
particular spatial location, or at various neighbouring locations, varies for different 
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attributes. These tasks involve a number of activities and operations that users 
will perform: 

- identification of the different clusters in the data, attributes, and relationships 
between elements (within clusters and between different clusters)  

- comparison of values at different spatial locations, distinguishing the range of 
value and the order of importance of objects accordingly 

- relation of value, position and shape of object type 
- reflection on relevance of information extracted.  

 
At interface level, some of the basic actions of users include selection, scaling, 
rotation, panning, brushing, browsing, filtering, and querying the database. For 
evaluation, the task of the test subjects can start with the visual exploration 
(Keim 2002) of the dataset, with the aim of finding patterns, correlations and 
relationships, by manipulating the representation forms provided, in order to gain 
insight into the data and draw conclusions. 
 
 

Figure 6.1. Data mining, exploratory visualization and knowledge discovery processes. The first part 

of this process consists of the general data mining and knowledge discovery steps (computational 

analysis). Each of the steps of the computational analysis can allow visualization. Patterns extracted 

as a result of the computational process can be explored using graphical representations 

(geographic and non-geographic information spaces). This exploration is guided by a number of 

steps to support knowledge construction. 

 
One of the most important issues in the design of the visualization environment 
has been how to support the user in the different steps or in a way that best 
supports knowledge construction. The design provides an initial guide to take the 
user through the first critical steps of the exploration process. The first step 
(default view) of the exploration process provides the general patterns in the data 
in different representational spaces. The next steps of the discovery process 
include selecting a problem, formulating the problem, selecting data, and the 
relevant tasks (Michalski and Kaufman 1997). Our view of exploration is based on 
the fact that users primarily have access to the global views or results from the 
data mining process at the starting point of the visualization process. The tasks of 
exploration are then based on the selection of objectives, data, views and tools 
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for completing the required tasks for knowledge discovery. In general, the 
following goals will guide the exploration and knowledge discovery process in the 
evaluation: 

- selecting data to explore 
- specifying the problem or question to answer 
- preparing data (selecting appropriate components of the data) 
- using appropriate representations (how to find patterns) 
- interpretation/evaluation (comparing views, validating patterns) 
- application (how to use the knowledge). 

 
Independent of the tool’s support, users will have to go through a set of steps 
necessary to complete the tasks. The starting point of this process is the 
identification of a need or a problem. To support the exploration and knowledge 
discovery scenario described in figure 6.1, we provide an example of application 
with the exploration of a dataset to be used in the evaluation. It is a dataset on 
geography and economic development for 150 countries and contains 48 variables 
on socio-demography, economy, geography, health and other development-
related indicators, explored in Chapter 2. The example problem definition and 
hypothesis for the exploration of this dataset can be summarized by the question: 
“Is economic growth related to the location of the countries?” 
 
We propose three phases in the reasoning related to the exploration steps 
provided above and related to figure 6.1. This is an iterative process in which 
users can make new selections depending on the results of the exploration (step 
3) or at the evaluation and validation step (step 4).  
 
Phase 1: Global patterns exploration (with reference to the exploration tasks 
in figure 6.1) 

1. Define problem (specify needs and questions to answer) 
2. Formulate hypothesis 
3. Explore general patterns from the data mining process (investigate clusters in 

different views and representational spaces as well as the relationships and 
correlations among attributes) 

4. Evaluate and validate results or patterns (compare views). 
 
Example of application for phase 1 
From the general structure extracted in the data, the user is offered the possibility 
of investigating the patterns and relationships in the data (see figures 6.3 and 
6.4). The user can view the clustering structure, the similarities based on the 
multivariate attributes (distance matrix, point projection, surface plots) and the 
relationships among the attributes by using the component plane visualization. 
Maps are also available to relate the position of the data items displayed on the 
grids to their geographic location. 
 
Phase 2: Detailed exploration based on user selections (with reference to the 
exploration steps in figure 6.1) 
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In addition to the steps undertaken in phase 1 (steps 1, 2, 3 and 5) for the 
general patterns, users can initiate actions for more detailed exploration based on 
a selection of attributes and/or spatial locations: 

4. Select the most relevant attributes for the hypothesis or problem, or find 
more attributes or data items satisfying given constraints/rules 

3. Explore patterns for the selection by constructing new relevant derived 
visualizations of selected attributes (examine relationships and correlations 
among attributes)  

5. Evaluate and validate results (patterns, compare views). 
 
Example of application for phase 2 
For the socio-demographic dataset explored, users can, for example, identify 
variables to be looked at. In this example, factors such as landlocked countries, 
access to ports, characteristics of countries that are in the tropics and those that 
are not, population density in coastal areas and population inland can be 
considered. From the general pattern structure, the user is offered the possibility 
of selecting the most relevant attributes for representation. A number of 
representational spaces are used for visual exploration of the data: SOM-based 
representations, maps, and other graphical representations such as parallel 
coordinate plots (PCP) and scatter plots. From these representations of selected 
attributes, correlations and relationships can be explored. Some answers may be 
found or other hypotheses generated. This iterative process can lead to the 
construction of necessary knowledge for the problem at hand. 
 
Phase 3: Interpretation and evaluation of extracted knowledge (with 
reference to the exploration tasks in figure 6.1) 
Verify relevance of classified data items. The user reflects on the results of the 
exploration process, makes interpretations, and evaluates the extracted 
knowledge for use. 
 
The exploration steps described above with the example to illustrate the different 
phases of the knowledge discovery process are supported by basic visualization 
tasks and operators, as users manipulate the graphical representations and 
initiate actions at the different steps. These visualization tasks are the basis for 
the success of the exploration process. 
 

6.2.2. Exploration tasks and visualization operators 

To complete the tasks described above, the user will have to execute a number of 
visualization operations during the exploration process described in figure 6.1. 
Several authors have suggested taxonomies for visualization operations (Keller 
and Keller 1992; Qian et al. 1997; Zhou and Feiner 1998; Ogao and Kraak 2002). 
The most comprehensive list (Keller and Keller 1992; Wehrend and Lewis 2000) 
includes: identify, locate, distinguish, categorize, cluster, distribution, rank, 
compare, associate, and correlate.  
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- Identify: to establish the collective characteristics by which an object is 
distinctly recognizable 

- Locate: to determine the absolute or relative position 
- Distinguish: to recognize as different or distinct 
- Categorize: to place in specifically defined divisions in a classification; this can 

be done by colour, position, type of object (shape) 
- Cluster: to join into groups of the same, similar or related type 
- Distribution: to describe the overall pattern. This is closely related to cluster 

in the same way that locate and identify are related. The cluster operation 
asks that the groups be detected, whereas the distribution operation requires 
a description of the overall clustering.  

- Rank: to give an order or position with respect to other objects of like type 
- Compare: to examine so as to notice similarities, differences, order 
- Associate: to link or join in a relationship  
- Correlate: to establish a direct connection (correlation). 

 
A delineation of some of these operations for the visualization and analysis of 
spatial data was provided by (Qian et al. 1997), and includes selection, 
association, and grouping. 
 
From these taxonomies of visualization goals described above, three key 
exploratory tasks for knowledge construction can be identified: 
1. Categorize and classify: users must be aware of the different clusters that 

were found in the data. The different clusters can be viewed in different 
perspectives, 2D and 3D space, rotation, etc. 

2. Compare: users can categorize and review relationships, and perceive 
commonalities and distinctions. 

3. Reflect (evaluate, integrate, extend, generalize): after completing most 
activities, users can reflect on the patterns they observe. What general rules 
can be constructed? 

 
For the dataset selected for the evaluation and described above, a first task is to 
analyze similarities and differences between the countries, their geography and 
their economic situations; and investigate correlations between economic growth 
and, for example, access to the sea, the relationships between geographic 
regions, whether located far from the coast, and population density, population 
growth, and economic growth. These factors are considered to be related to 
economic development (Gallup et al. 1999). 
 
The model of the exploratory visualization and knowledge discovery provided in 
figure 6.1 is used to examine the exploration process. The steps provided in this 
model lead to the exploration of the global patterns (first level of clustering of all 
variables together) and to the examination of detailed information on individual 
attributes. The exploration tasks consist of finding correlations and relationships 
and exploring cause-and-effect scenarios in the dataset. 
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A set of representative tasks derived from the exploration scenarios described in 
figure 6.1 and key visualization operations described above are identified in 
visualization task scenarios for the evaluation study. This results from a 
decomposition of the basic visualization tasks and is presented in the next 
section. The rationale behind the use of evaluation scenarios is that they can 
represent how the system is intended to be used by end users. Task scenarios 
provide a task-oriented perspective on the interface and represent a structure and 
flow of goals and actions that participants are supposed to evaluate. Such 
scenarios ensure that certain interface features are evaluated. 
 

6.3. Usability and human-computer interaction 
 
Human-computer interaction (HCI) is a discipline concerned with improving the 
quality of interaction between users and the computer in information systems. In 
general HCI studies focus on how characteristics of machines and systems affect 
user performance (Shneiderman 1997). This involves the cognitive as well as the 
physical, and theoretical issues. HCI has a strong emphasis on user-centred 
design, a design approach that views knowledge about users and their 
involvement in the design as a central concern, and includes users in testing and 
evaluations in an interactive design process. The HCI approach is supported by 
cognitive theory to provide insights into how better to design interfaces that 
better correspond to the perception of users. In new designs of interfaces for 
geovisualization, this link between usability testing and user-centred design is 
becoming more prominent (Haklay and Tobon 2003; Fuhrmann et al. 2004; Koua 
and Kraak 2004e). 
 
In the next subsections, we briefly describe some important issues of usability 
and HCI in general in the design of information systems, and outline some of the 
major approaches in usability evaluation. 
 

6.3.1. Usability evaluation 

 
Usability evaluation is central to HCI, to ensure that the design of a user interface 
meets the user requirements. It is a technique for ensuring that the intended 
users of a system can carry out the intended tasks efficiently, effectively and 
satisfactorily, and must be conducted at different stages in the design process. 
There are basically two types of usability evaluation technique: usability testing 
and usability inspection methods (Nielsen and Mack 1994). Usability testing 
involves assessing the tool’s ability to meet user performance and satisfaction 
objectives, and is conducted based on a number of representative user tasks, for 
which a certain number of usability factors are measured. Usability inspection is a 
generic term for a range of usability engineering methods that look at problems in 
the design, and are generally used for evaluating early HCI design concepts. 
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Usability engineering is a larger usability context that helps identify usability 
problems either in testing or through inspections during the design process. 
 
Both user testing and inspection methods can address different usability 
objectives.  
Usability inspection methods include:  

- Heuristic evaluation (usability specialists judge whether each dialogue 
element conforms to established usability principles or heuristics) 

- Guideline reviews (inspections of the interface for conformance with a 
comprehensive list of usability guidelines) 

- Pluralistic walkthroughs (users, developers and human factors experts discuss 
usability issues in a scenario associated with dialogue elements involved in 
the scenario steps) 

- Consistency inspections (evaluate consistency across the family of products 
that has been evaluated by an inspection team) 

- Standards inspection (experts on some interface standard inspect the 
interface for compliance) 

- Cognitive walkthrough (use of a more explicit detailed procedure to simulate 
a user problem-solving process at each step in the human-computer 
dialogue) 

- Formal usability inspections (participants have well-defined responsibilities in 
an inspection meeting where design problems can be identified) 

- Feature inspections (involves the evaluation of functions delivered in the 
software tool).  

 
In early design stages, inspection techniques such as cognitive walkthrough 
(Polson et al. 1992), and usability review or heuristic evaluation (Nielsen and 
Molich 1990; Nielsen 1994a) are often used for identifying usability issues, for 
validating design decisions, and for getting feedback on key aspects of the 
functionality, interface, and overall navigation. In a cognitive walkthrough, expert 
evaluators construct task scenarios from a specification or early prototype and 
then role-play as a user working with that interface. Heuristic evaluation involves 
a small set of expert evaluators examining the interface and judging its 
compliance with recognized usability principles (the "heuristics") so that they can 
be attended to as part of an iterative design process. 
 
Choosing a usability evaluation method requires consideration of methodology 
issues and the objectives of the evaluation. For evaluating user interfaces, 
empirical methods are the main methods used and user testing is the most 
commonly used method (Nielsen and Mack 1994). 
 

6.3.2. Approaches to usability evaluation 

 
Based on the evaluation methods described above, usability evaluation can take 
several forms: user-based, expert-based or theory-based (Sweeney et al. 1993). 
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User-based evaluation (user testing) involves having selected users complete 
tasks with the system. Expert-based evaluation (inspection) involves having the 
evaluator(s) (e.g. human factors experts) use the system in a more or less 
structured way in order to determine whether the system matches the predefined 
design criteria. A scenario that characterizes a theory-based approach involves a 
designer or evaluator calculating the match between the task or user model and 
the system specification, using inspection methods.  
 
Depending on the objectives of the assessment, a number of usability indicators 
can be examined. They generally include functionality, ease of use, learnability, 
effectiveness, efficiency and user satisfaction. These indicators are defined in 
slightly different ways in the literature. One of the most comprehensive 
taxonomies of usability indicators is provided by (Sweeney et al. 1993); it is 
described in table 6.1 below. In figure 6.2, we provide a description of the 
proposed usability evaluation framework. This framework shows the three stages 
in the development of the tool (design, development, evaluation). The proposed 
usability evaluation involves user-based testing on selected tasks to assess the 
tool’s usability (effectiveness, efficiency, user satisfaction) and usefulness 
(compatibility, flexibility, appropriateness), as well as attitude and user reactions. 

 

Table 6.1. Usability approaches, indicators, and measures (Sweeney et al. 1993). 

Approach Usability indicators Data gathered Objective/ 

subjective 

Performance (user): speed 

(time), accuracy scores 

(error) 

Task time, % completed, error rate, duration of 

time in HELP, continuance of usage, range of 

function used 

Objective 

Non-verbal behavior Eye movement, orientation duration and 

frequency of documents access 

Subjective 

Attitude (user’s attitude 

and opinions, satisfaction 

and preferences) 

Questionnaire and survey responses, comments 

from interviews and ratings, answers to 

comprehension questions 

Subjective 

Cognition (user’s 

understanding and 

knowledge of system) 

 Verbal protocols, post-hoc comments Objective 

Stress Galvanic skin response, heart rate 

Event-related brain potentials 

Electro-encephalograms 

Ratings or comments 

Objective and 

subjective 

User-based 

evaluation 

Motivation Enthusiasm, willingness and effort Subjective 

Theory-based Performance (idealized) 

(prediction of usage) 

Predictions of: 

- Task performance times 

- Learning times 

- Likely ease of understanding 

Objective 

Conformance (level of 

conformance with 

standards, guidelines and 

design criteria) 

Level of adherence or conformance with  

- Guidelines, principles and standards 

- Design criteria 

Objective Expert-based 

Attitude (expert) 

(professional opinion) 

Comments 

Rating of usability properties 

Subjective 
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From the taxonomy described in table 6.1, usability evaluation can have main 
orientations depending on the objectives. Usually a combination of techniques is 
used. 
 
 

 

Figure 6.2. Usability evaluation framework: the framework shows the general usability and design 

framework, as well as the specific usability evaluation approach applied in the proposed 

methodology. The grey boxes indicate the applied method, and the white boxes the general 

usability framework. Selected user tasks are measured according to performance indicators, 

attitude and reactions. In this framework, the outcome of the usability evaluation is used to 

improve the design. 
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6.4. A user-based and task-based usability evaluation 
of exploratory geovisualization 
 

Given the exploratory nature of geovisualization environments, particularly the 
visual-computational environment for which this assessment methodology is 
developed, a user-based evaluation (user testing) is certainly the most suitable 
approach to assess usability. Usability testing is more effective for evaluating the 
overall usability of the interface and can address a wider range of evaluation 
objectives than inspection methods (Nielsen and Mack 1994). Since the design of 
the tool is based on a user-centred approach, early involvement of users was 
employed in a preliminary interface feature inspection (Koua and Kraak 2004a), in 
which several aspects of the representation forms, graphics and colour schemes 
were presented to users for analysis (see Chapter 3).  
 
Screen shots of the overall user interface and different representations are 
provided in figures 6.3 and 6.4 below. 
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Figure 6.3. Screen shots of the different representations and the overall user interface and tools 
used in the evaluation. 
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Figure 6.4. The different representations used in the evaluation: 2D surface, 3D surface, distance 

matrix representation, component plane visualization, 2D/3D projection, parallel coordinate plot 

(PCP) and maps. 

 
The usability evaluation proposed here is goal-oriented and a number of specific 
test variables are defined. Appropriate usability indicators are drawn from the 
goals and corresponding measurements are set. The usability evaluation is 
designed to assess the user interactions, the functionality of the tool, the 
flexibility of the interface for exploratory tasks, and most importantly the ability to 
support the knowledge construction process. Test participants are involved in the 
evaluation of the different graphical representations in terms of specific end-user 
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tasks related to the general goal of finding patterns and relationships in the data. 
Participants are encouraged to interact with the interface. 

6.4.1. Study design 

 
To be able to answer the questions set for the evaluation, a clear design of the 
study is needed, in which each indicator is tested by multiple conditions. The 
objectives of the usability evaluation need to be clearly defined, as well as 
methods that are best suited for capturing the necessary data. There are several 
objectives for the proposed usability evaluation. The evaluation intends to assess 
the visualization tool’s ability to meet user performance and satisfaction with 
regard to the general goal of exploring patterns and relationships in data. 
Examples would be the percentage of users that will be able to complete 
representative tasks within a certain time or without requiring assistance, or the 
percentage of users that will be satisfied with the usability of the tool. The 
assessment is based on a user test through which different options for map-based 
and interactive visualization of the output of SOM multivariate analysis are 
compared. Variants of the design (representation and display options) are 
presented to test subjects, and their performance scores are compared for the 
different representations. Interactive maps and PCP are used for comparison with 
the SOM-based representations (figure 6.4).  
 
Users are asked to visually examine the representations, respond to questions, 
and report their preferences and viewpoints about the representation forms and 
the effect of the visual variables used, while completing a number of tasks defined 
for the evaluation (see previous section). The objective is to measure and 
compare task performance and the user’s level of understanding for the different 
representation forms and tasks. The kind of evidence the evaluation intends to 
provide includes responses to specific questions focused on the use of features 
and representations to perform specific tasks, and how users interpret and 
understand and use the basic visualization features and representation forms. The 
evaluation examines the effectiveness of the particular displays. The idea is to 
investigate the use of SOM-based representations or a combination of them with 
other graphics and maps. Different performances offered by the different 
representations can then be compared according to the measures described in 
table 6.2. The evaluation study design is presented in figure 6.5 below. 
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Figure 6.5. Evaluation study design: the different representations and display options are used by 

users to perform a number of exploratory tasks. The usability indicators examined include 

effectiveness/performance, usefulness and attitude/reactions. Performance/effectiveness measures 

used include task performance score, time to complete tasks, accuracy of user results, and 

correctness of user responses. Usefulness and attitude provide user opinions on the functionality, 

compatibility, and flexibility of the tool for user tasks. 
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completing tasks, the percentage of completed tasks (Sweeney et al. 1993; 
Rubin 1994; Fabricant 2001), the correctness of outcome of task performance 
and response, the success and accuracy (error rate and error types), the 
duration of time spent for help and questions, the range of function used and 
the level of success, the ease of use or level of difficulty, the frequency of 
documents access or request for help, and the level of user guidance and 
support.  

 
2. Usefulness refers to the appropriateness of the tool’s functionality and 

assesses whether the tool meets the needs and requirements of users when 
carrying out tasks, the extent to which users view the tools as supportive for 
their goals and tasks, and the individual user’s level of understanding and 
interpretation of the tool’s results and processes. It includes, flexibility, 
compatibility in relation to the user’s expectations: finding patterns in data, 
relating different attributes, comparing values of attributes for different 
spatial locations. This is gathered through task performance, verbal protocols, 
post-hoc comments and responses on questionnaire.  

 
3. User reactions refer to the user’s attitude, opinions, subjective views, and 

preferences about the flexibility, compatibility (between the way the tool 
looks and works and the user’s conventions and expectations). It can be 
measured using questionnaires and survey responses, and comments from 
interviews and ratings. 

 
The specific usability measures and measuring methods used for the different 
tasks is described in table 6.2 below. 
 

Table 6.2. Usability indicators used in the assessment. 

 Usability indicators used 

 Effectiveness / user 

performance 

Usefulness User reactions (attitude) 

Specific 

usability 

measures 

- Correctness of outcome of 

task performance and 

response (success, 

percentage of completed 

tasks, accuracy or error rate) 

- Time to complete tasks 

- Time spent for help, 

documents access, guidance 

and support 

- Compatibility and appropriateness 

in relation to user’s expectations 

and goals 

- User’s level of understanding and 

interpretation of the tool’s results 

and processes 

- Opinions, subjective 

views on the flexibility, 

compatibility (between 

the way the tool looks 

and works and the user’s 

expectations), 

functionality, and 

appropriateness of the 

tool for the tasks  

- User preferences 

Measuring 

method 

- Examines tool functionality 

and the user’s performance of 

the tasks and response to 

specific questions 

 

- Task performance 

- Verbal protocols 

- Post-hoc comments 

- Responses on questionnaire 

- Answers to comprehension 

questions 

- Questionnaires, 

interviews and survey 

responses,  

- Ratings 
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6.4.3. Evaluation tasks model 

 
The evaluation of the graphical representations and interfaces needs to be 
grounded in a task model that can focus more on the user’s goals and the tasks 
he or she needs to perform than on the interface side. The task model intends to 
support the development of the experimental set-up for the evaluation to cover 
the different levels of analysis included in the use of visualization tools. A task can 
be seen as a sequence of necessary steps and is comprised of objectives, the 
definition of the problem, and the methods necessary for the resolution of the 
problem, as described earlier in section 2. The conceptual goals and the different 
steps of the exploration and knowledge discovery process described in section 2 
are used as the basis for defining low-level (operational) tasks that users need to 
perform to meet the conceptual goals.  
 
Based on the three key visualization tasks and operators identified in section 2 
(categorize and classify, compare, and reflect), we provide a low-level taxonomy 
of tasks (by decomposition of the basic visualization operators) that users might 
perform in a visual environment (see table 6.3). This decomposition of the basic 
visualization operators was obtained by analyzing task structures of real world 
visualization problems, representing the collection of subtasks, corresponding 
taxonomy or classification as well as a set of semantic relationships among these 
concepts, and other entities necessary to perform the task. 
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Table 6.3. Operational tasks derived from the visualization taxonomy. 

 
Conceptual goals / 
visualization 
operators 

Operational visualization task Task 
number 

Indicate data items of a certain range of value 1.1  
Locate 

Indicate spatial positioning of elements of interest and spatial proximity among the 
different elements 

1.2 

Identify the different clusters or regions in the data 2.1 

Identify relationships between attributes 2.2 

Identify 

Identify relationships between data items (within clusters and between different 
clusters) 

2.3 

Distinguish Distinguish how a target value measured at one particular spatial location, or at 
various neighboring locations, varies for different attributes (e.g. different values of 
the same attribute at different spatial locations, and the value of different attributes 
at a specific spatial location) 

3 

Categorize Define all the regions on the display, and draw boundaries 4 

Cluster Find gaps in the data on the display  5 

Distribution Describe the overall pattern (overview) 6 

Rank Indicate the best and worst cases in the display for an attribute  7 

Compare Compare values at different spatial locations, and the order of importance of objects 
(data items) accordingly  

8 

Associate Form relationships between data items in the display 9 

Correlate Discern which data items share similar attributes  10 

 
The full taxonomy mapped on the different representation methods used to 
represent each task contains a total of 49 tasks. Since each task is executed with 
3, 4, 5 or 6 different representations, much time is needed to complete the test. 
In order to create a test that could be administered within a target duration of 1 
hour and half, it was necessary to review the task structure. The process of 
grouping tasks was based on the conditions that the sampling of the experimental 
tasks is as broad as possible, and that the operational description of the selected 
tasks varies significantly. This was realized based on visual tasks taxonomy (Zhou 
and Feiner 1998) that include a set of dimensions by which the tasks can be 
grouped. The major dimensions of this taxonomy include visual accomplishments 
and visual implications. Visual accomplishments refers to the type of presentation 
intents that a visual might help to achieve while visual implications specify a 
particular type of visual action that a visual task may carry out. Three types of 
visual implications are proposed by (Zhou and Feiner 1998). They include: (1) 
visual organization, visual signaling, and visual transformations. The structure of 
the implication dimension of the visual taxonomy is described in table 6.4. 
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Table 6.4. Visual implications and related elemental tasks (Source: Zhou and Feiner 1998). 

Implication Type Subtype Elemental taks 

Visual grouping Proximity Associate, cluster, locate 

 Similarity Categorize, cluster, distinguish 

 Continuity Associate, locate, reveal 

 Closure Cluster, locate, outline 

   

Visual attention  Cluster, distinguish, emphasize, locate 

Visual sequence  Emphasize, identify, rank 

Organization 

Visual composition  Associate, correlate, identify, reveal 

Structuring  Tabulate, plot, structure, trace, map Signaling 

Encoding  Label, symbolize, portray, quantify 

Modification  Emphasize, generalize, reveal Transformation 

Transition  Switch 

 
Based on the visual implications and related elemental tasks described in table 
6.3, task 1.2 has been combined with task 4, task 2.1 with task 5, and task 2.3 
with task 9. 
 
The following experimental tasks are derived for the test (table 6.5). 
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Table 6.5. List of operational tasks derived from the taxonomy, and specific example tasks for the 
evaluation.  

Conceptual 
goals / 
visualization 
operators 

Operational visualization task Specific task explored in the study Task 
number 

 
Locate 

Indicate data items of a certain range 
of value 

Indicate the poorest countries (reference to the 
1995 GDP lower than 750) 

1 

Identify Identify relationships between 
attributes 

Identify possible relationships between the 
following attributes: population density in the 
coastal region and in the interior, and GDP per 
capita 95 

2 

Distinguish Distinguish how a target value 
measured at one particular spatial 
location, or at various neighboring 
locations, varies for different attributes 
(e.g. different values of the same 
attribute at different spatial locations, 
and the value of different attributes at 
a specific spatial location) 

How does income (GDP 1995) of the countries 
vary across space? Define differences and 
similarities between the countries 

3 

Categorize Define all the regions on the display, 
and draw boundaries. Indicate spatial 
positioning of elements of interest and 
spatial proximity among the different 
elements 

Define all the regions on the display, and draw 
boundaries. Define categories of countries such 
as rich, and poor countries on the display, and 
indicate the to which category South Africa 
belong. Are there African countries in this 
category? List the countries 

4 

Cluster Find gaps in the data on the display 
 

Find gaps in the data and indicate the different 
clusters 
 

5 

Distribution Describe the overall pattern (overview) What are the common characteristics of low-
income countries (GDP lower than 750)?   

6 

Rank Indicate the best and worst cases in 
the display for an attribute  

Indicate the 5 lowest GDP countries and the 5 
highest GDP 

7 

Compare Compare values at different spatial 
locations, and the order of importance 
of objects (data items) accordingly  

Compare population density on coastal regions 
(within 100 km of the coastline) and inland 
regions (beyond 100 km from the coastline) 

8 

Associate Form relationships between data items 
in the display; Identify relationships 
between data items (within clusters 
and between different clusters) 

Form relationships between the countries in the 
geographic tropics and their economic 
development (GDP 1995) as compared with the 
other countries 

9 

Correlate Discern which data items share similar 
attributes  

Examine economy development (GDP 95) across 
the countries: landlocked countries and 
countries that have access to the sea 

10 

 
 
The operational tasks described in table 6.5 are tested against all three usability 
indicators and corresponding measures described in table 6.2. Specific domain 
exploration tasks related to the dataset explored are used to illustrate each 
operational tasks (see table 6.6). 
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Table 6.6. Specification of user tasks and representation method used to represent task. 

 
Conceptual 
goals 
/visualization 
operators 

Operational visualization task Task 
n° 

Method used in the 
prototype to represent 
task 

Representation 
number 

Maps 1 

Parallel coordinate plot 2 

Locate Indicate data items of a certain 
range of value 

1 

Component planes 3 

Maps 1 

Parallel coordinate plot 2 

Identify Identify relationships between 
attributes 

2 

Component planes 3 

Maps 1 

Parallel coordinate plot 2 

Distinguish Distinguish how a target value 
measured at one particular spatial 
location, or at various neighboring 
locations, varies for different 
attributes (e.g. different values of 
the same attribute at different 
spatial locations, and the value of 
different attributes at a specific 
spatial location) 

3 

Component planes 3 

Unified distance matrix 4 

2D/3D projection 5 

Categorize Define all the regions on the display, 
and draw boundaries. Indicate 
spatial positioning of elements of 
interest and spatial proximity among 
the different elements 

4 

2D/3D surface 6 

Unified distance matrix 4 

2D/3D projection 5 

2D/3D surface 6 

Cluster Find gaps in the data on the display 5 

Parallel coordinate plot 2 

Map 1 

Parallel coordinate plot 2 

Component planes 3 

Unified distance matrix 4 

2D/3D projection 5 

Distribution Describe the overall pattern 
(overview) 

6 

2D/3D surface 6 

Map 1 

Parallel coordinate plot 2 

Rank Indicate the best and worst cases in 
the display for an attribute 

7 

Component planes 3 

Maps 1 

Parallel coordinate plot 2 

Compare  Compare values at different spatial 
locations, and the order of 
importance of objects (data items) 
accordingly 

8 

Component planes 3 

Maps 1 

Parallel coordinate plot 2 

Component planes 3 

Unified distance matrix 4 

2D/3D projection 5 

Associate Form relationships between data 
items in the display; Identify 
relationships between data items 
(within clusters and between 
different clusters) 

9 

2D/3D surface 6 

Maps 1 

Parallel coordinate plot 2 

Correlate Discern which data items share 
similar attributes 

10 

Component planes 3 

 
Each task is separately evaluated for the different test measures described in 
table 6.2 in a random order (see Appendices A1 and A2 for random numbers used 
in the test). The procedure for reporting task performance and the user’s answers 
to questions is described below: 
 
For effective/user performance, user performance is reported by the test 
administrator at the end of each task: 

- completed/not completed  



 110

- time spent on completing the task 
- time spent on help, documents access, guidance and support. 

 
For usefulness, the participants are asked at the end of each task to indicate on a 
form if and how the different representations were supportive for the task, in 
terms of compatibility, flexibility, and appropriateness in relation to the user’s 
expectations and goals and the user’s level of understanding and interpretation of 
the tool’s results and the processes. 
 
For user reactions, participants are asked to provide their opinions and 
comments on the tools used for each task, as well as their preferences for the 
representations used for the specific task by rating them. 
 
The forms used to record the measurements and answers are presented in 
Appendixes B1 and B2. 
 

6.4.4. Test subjects 

  
Participants are selected to represent the target population of people who are the 
likely users. The user group can include geographers, demographers, 
environmental scientists, epidemiologists, and others. For the present test, 
selected participants are geographers and environmental scientists who have 
experience in data analysis and the use of GIS. They are domain specialists who 
have knowledge about the data and have both the motivation and the 
qualifications to do a proper interpretation of the analysis. 
 
Test subject domain knowledge 
The dataset explored is a complex dataset on geography and economic 
development (Gallup et al. 1999), compiled to support analysis of the complex 
relationships between geography and macroeconomic growth. The dataset 
contains 48 variables on economy, physical geography, population and health for 
150 countries. This dataset was explored in Chapter 2 and the results are used to 
validate the test participant’s results. 
 
 

6.4.5. Experimental procedure 

 
The operational tasks described in table 6.3 are used in the experiment with 
sample cases from the dataset explored in the test. Target results are constructed 
for comparison with the participant’s results. The participant’s task will be 
completed if his or her result matches the test target results developed. The list of 
tasks, together with criteria for measuring whether they have been successfully 
completed, is available. 
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A test schedule is prepared to ease the planning and execution of the different 
test sessions. The schedule describes the location, time of each session, and the 
participant’s name. The test environment consists of a computer installed with 
ArcGIS, Matlab software, and the prototype visualization tool. The test 
environment has been selected so that noise levels are minimum, in order to 
avoid disrupting the test. The test sessions are individual sessions in which the 
participant works in the presence of only the test administrator. Twenty 
participants, including geographers, cartographers and environmental scientists, 
with experience in data analysis and the use of GIS are invited to take part in the 
test. The dataset used is related to a general geographic problem, for which all 
the participants have the knowledge to conduct the analyses. Participants are 
allowed to ask questions during the test. 
 
A script is made so that all participants are treated in the same way during the 
test session. The script describes the steps of the test in detail, and is read to 
each participant at the beginning of the session in order to ensure that all 
participants receive the same information. To allow the participants to refer back 
to the list of tasks as they attempt a task, a written description of the task is 
handed to each participant.  
 
A logging sheet for each participant (at each session) is used to record timing, 
events, participant actions, concerns and comments. At the end of the session, a 
brief questionnaire is given to the participants to collect other comments they 
need to communicate.  
 
An introduction is given at the beginning of each session. The introduction 
explains the purpose of the test, and introduces the test environment and the 
tools to be used. Participants are informed that the test consists of testing the 
design and tools, not their abilities. At the end of the introduction, participants’ 
questions are answered. In the introduction, the participants are informed about 
the total number of tasks, but the tasks are given one at a time according to the 
random numbers assigned. To ensure that participants are at ease, are fully 
informed of any steps, and inquiries are answered, an introduction to each 
session is given. Participants are assured that they have the option to abandon 
any tasks that they are unable to complete. They are left to work quietly, without 
any interruption unless necessary. Participants are asked to report, as they work, 
any problems they find or things they don’t understand. 
 
The order of the task presentation is randomized. Individual test sessions are 
conducted using random numbers for randomizing the order of task presentation 
of the graphical representations for the 10 tasks, 3 to 6 graphical representations 
used for each task. For this final testing, that involves actual use of the different 
tools (graphical representation) and logging time for the tasks, we involve 20 
participants as recommended by usability methods (Nielsen 1994b).  
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A pilot test is first run to test any anomalies, solve any timing problems, and tune 
the experimental set-up. The average time required to complete all the tasks is 
90 minutes. 
 

6.5. Conclusion 
 
In this chapter we have presented an evaluation strategy for assessing the 
usability and usefulness of the visual-computational analysis environment 
designed in the previous chapters. The evaluation method emphasizes exploratory 
tasks and knowledge discovery support. Its is based on the examination of a 
taxonomy of conceptual visualization goal and tasks. These tasks were 
decomposed into operational visualization tasks and experimental tasks related a 
the particular dataset to be used in the evaluation. The test in the next Chapter 
will involve the experimental tasks derived here and relate them to the conceptual 
visualization goals. New representation forms used to visualize geospatial data 
such as the SOM use new alternative techniques to represent the attribute 
spaces. An important step in the design of such visualization tools will rely on 
understanding the way users make interpretations of the information spaces. The 
choice of a proper representation metaphor is crucial to the successful use of the 
tools. The methodology presented here will be used examine the effectiveness of 
the proposed representations for exploratory tasks, and for knowledge discovery 
support as compared to maps and parallel coordinate plots. 
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Chapter 7  
 
Usability testing and results 
 
 

7.1. Introduction 
 
Usability testing or user testing is a fundamental usability method of assessing 
the effectiveness, usefulness and performance of a tool. In geovisualization 
particularly, user testing can provide insight into how a visual interface can 
support data exploration tasks. The use of new representation forms and 
interactive means to visualize geospatial data requires an understanding of the 
impact of the visual tools used for data exploration and knowledge construction. 
Thus user testing is becoming an important step in the improvement of the design 
of geovisualization environments. The lack of appropriate evaluation methodology 
in the geovisualization domain has, however, limited the number of user testing 
experiments so far. 
 
Since the design of effective visualization tools will rely on understanding the way 
users make interpretations of the information spaces used to represent patterns 
and relationships in data, the choice of a representation method is crucial to the 
success of a visualization environment. One of the dominant approaches in 
geovisualization is the integration of several representation methods that provide 
different perspectives of the data in multiple linked views. Such an integration of 
views can be more effective if focused on the potential of the individual 
representations for specific conceptual visualization goals that can better support 
the exploration, evaluation and interpretation of patterns and ultimately support 
knowledge construction. Empirical testing of the visualization tools can provide 
such insights into the potential of particular visual displays. 
 
Based on an evaluation strategy explored in Chapter 3 and the subsequent 
evaluation methodology developed in Chapter 6, which emphasizes the use of a 
taxonomy of visualization tasks, we have designed a user testing experiment in 
which the representation methods described in the previous chapters are 
compared with maps and parallel coordinate plots. 
 
In this chapter we present the experimental procedures applied during the 
usability testing, and an analysis and discussion of the results. These results are 

                                                 
This chapter is based on: 
 
Koua E. L., MacEachren, A. and Kraak M.J. (Submitted). Evaluating the usability of an exploratory 
geovisualization environment. Submitted to International Journal of Geographical Information 
Science. 
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organized according the visual tasks derived from the taxonomy of visualization 
conceptual goals and operations described in Chapter 6. The results are compared 
for the different representations: maps, parallel coordinate plots, and the SOM-
based representations. 
 
 
7.2. A brief summary of the methodology 
 
The methodology used for the test was developed in the previous chapter. Here 
we provide a summary of its application during the test. The evaluation is based 
on a user-based and task-based usability method intended to address the 
exploratory nature of geovisualization. Based on a taxonomy of visualization 
tasks, experimental tasks were developed and related to the conceptual 
visualization and data analysis goals. The test participants are involved in 
evaluating the different graphical representations in terms of the derived specific 
experimental tasks, which are end-user tasks related to the general goal of 
finding patterns and relationships in the data. 
 
Each representation method used to represent the tasks is assessed according to 
defined test measures. These measures include effectiveness/performance, 
usefulness, and user reactions (attitude). For effectiveness we examine the 
correctness of response and the time taken to complete each task. Usefulness is 
examined by user rating of the representations in terms of compatibility with the 
user’s expectations of the tool for the given task, flexibility and ease of use, and 
the user’s reported understanding of the tool. User reactions (attitude) are 
examined by user rating of the representations in terms of satisfaction and 
preference for a given task. The objective is to measure and compare 
performance scores (effectiveness), the user’s level of understanding, and the 
different ratings related to usefulness and user reactions for the different 
representation forms and conceptual visualization tasks. Maps and parallel 
coordinate plots are used for comparison with the SOM-based representations. 
While completing the tasks, users are asked to report their preferences and 
viewpoints about the representation forms. Since the evaluation focuses on 
individual tasks, which take an average of three minutes each, we did not include 
the time taken for questions or the level of guidance needed by participant for 
each task as measures.   
 

7.3.  Experiment 

7.3.1.  Test environment 
 
The test environment consists of a computer installed with ArcGIS, Matlab 
software, and the prototype visualization tool. The environment was selected so 
that noise levels were minimum, in order to avoid disrupting the test. The 
prototype graphical user interface of the visualization environment was used to 
load the dataset and the different representations. The interface integrates the 
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use of maps, a parallel coordinate plot and SOM-based clustering representations 
such as the unified distance matrix representation, 2D/3D projection, 2D/3D 
surface, as well as component plane displays for the exploration of relationships 
among attributes of the dataset. 
 
The test was organized in individual sessions in which the participant works in the 
presence of the test administrator. The individual SOM-based graphical 
representations were programmed to be used separately in a window with 
interactive features provided in the Matlab interface (zooming, panning, rotation 
and 3D view). ArcGIS was used for tasks involving maps, and a free and fully 
functional Java-based interactive parallel coordinate plot was used, with the basic 
features needed for the test (brushing, automatic display of names of countries 
and values of variables as the mouse moves over the data records, adding and 
removing attributes from the display). 
 
Two forms were used to record user task performance and the different ratings 
(see Appendices B1 and B2). Task performance was reported by the test 
administrator on Appendix B1. User ratings on usefulness (compatibility, ease of 
use, understanding) and user reactions (satisfaction and preferences) were 
reported by the participants on Appendix B2 for the different tasks and 
representations used. 
 

7.3.2.  Pilot testing 

 
The first two candidate users were used as pilot test subjects to ascertain any 
deficiencies in the test procedures, such as tasks descriptions, timing of each test 
session, the rating system, and instructions for test tasks. A revision was made 
based on the problems detected during pilot testing, particularly of the task 
description and timing. 
 

7.3.3.  The data explored 
 
The test involves a complex dataset on geography and economic development 
(Gallup et al. 1999), compiled to support analysis of the complex relationships 
between geography and macroeconomic growth. The dataset contains 48 
variables on economy, physical geography, population and health for 150 
countries (see figure 3.8). This dataset was explored in Chapter 3 and the 
conclusions of the exploration are used to validate the test participant’s results. 
 

7.3.4. Participants 

 
Twenty participants from an initial list of 25 who met the profile set for the test 
agreed to make time for the test. The profile of test participants was a target 
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population that included geographers, demographers, environmental scientists, 
and epidemiologists − likely users of such a geovisualization environment. The 
selected participants were GIScience domain specialists, with knowledge of such a 
dataset that involves geography and economic development. They also had both 
the motivation and the qualifications to do a proper interpretation of the analysis. 
They included geographers, cartographers, geologists, and environmental 
scientists, and all had had experience in data analysis and the use of GIS. Most of 
them are pursuing a PhD research. The selection of the sample size (20 
participants) was based on recommendations from usability engineering literature 
(Nielsen 1994b) regarding final testing that involves actual use and logging time.  
 

7.3.5. Experimental procedure 

 
An introduction to the test was presented to each participant at the beginning of 
each session. The introduction explained the purpose of the test, the 
geovisualization environment, the tools to use, the dataset, the forms for 
reporting, and the different rating levels. Participants were informed about the 
total number of tasks, and assured that the test did not assess their abilities, but 
rather the tools used. At the end of the introduction, participants’ questions were 
answered. Each tool was explained to the participants, their questions were 
answered, and they were asked to confirm that they understood how the tool 
works or to ask more questions. Participants were assured that they had the 
option to abandon any task that they were unable to complete, and were asked to 
report, as they worked, any problems they found or things they didn’t 
understand. The introduction and all the steps of the test were contained in a 
script so that all the participants were treated in the same way during the session 
and received the same information.  
 
During the test, participants were involved in the evaluation of the different 
graphical representations in terms of specific end-user tasks related to the 
operational visualization tasks described in Chapter 6, with sample cases from the 
dataset explored in the test. They were encouraged to interact with the interface. 
While completing the tasks, they were asked to report their preferences and 
viewpoints about the representation forms. Target results were constructed for 
comparison with the participant’s results. The participant’s task was judged 
completed if his or her result matched the test target results developed. The list 
of tasks, together with criteria for measuring whether they had been successfully 
completed, was available. The tasks were written on separate sheets and were 
given one at a time according to the random numbers assigned (see Appendices 
A1 and A2). The rationale behind the use of random numbers for the order of task 
presentation and the graphical representations for each of the 10 tasks (three to 
four graphical representations were used for each task) was to reduce the 
learning effect for the sample size. 
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The average time required to complete all the tasks was 90 minutes. On a logging 
sheet, the time for user task performance for each representation was recorded, 
as well as participants’ opinions and comments. Participants were allowed to ask 
questions during the test. 
 

7.4.  Test results 
 
The analysis of the test results is organized according to the usability measures 
described in Chapter 6: effectiveness/performance, usefulness, and user reactions 
(see figure 6.2). The results are also presented by experimental tasks and 
corresponding conceptual visualization goals. The tasks are grouped into 
clustering (cluster and categorize) and exploration (locate, identify, distinguish, 
compare, rank, distribution, associate, correlate).  
 

7.4.1. Analysis of effectiveness and performance  
 
1. Correctness of response 
 
Correctness of response was used as a measure of performance. A task 
completed with the correct response is given 1 and a task not completed or 
completed with the wrong response is assigned 0. The analysis of the correctness 
of response shows that the parallel coordinate performed poorly compared with 
maps and SOM component planes (see figure 7.1). The SOM component plane 
display performed well for all tasks. The map performed well generally, except for 
task 6 (distribution), task 2 (identify) and task 8 (compare). 
 
The component plane display performed better than maps and the parallel 
coordinate plot for visualization tasks such as ‘identify’, ‘distribution’, ‘correlate’, 
‘compare’ and ‘associate’. The maps were as good as component planes for tasks 
such as ‘locate’, ‘distinguish’ and ‘rank’. For these tasks the parallel coordinate 
plot performed poorly, especially for ‘rank’, ‘associate’ and ‘distinguish’.  
 
For the tasks ‘cluster’ and ‘categorize’ (see figure 7.2), the SOM-based 
representations (unified distance matrix, 2D/3D surface and 2D/3D projection) 
performed equally well and far better than the parallel coordinate plot. For 
revealing the categories, the unified distance matrix was found less effective than 
the 2D/3D projection and 2D/3D surface. The 2D/3D projection was found to be 
more effective for finding the categories. 
 
The percentage of completed tasks with correct response and the corresponding 
time taken is presented in table 7.1. The tasks were described in table 6.5 and 
6.6. 
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Table 7.1 Percentage of completed task with correct response. 

Task number Conceptual 
visualization 
goal 

Representation method Percentage of completed 
task with correct response

Average time taken to 
complete task  
(in seconds) 

Maps 100 41.40 

Parallel coordinate plot 75 86.33 

Task 1 
 
Indicate the poorest countries 
(reference to the 1995 GDP lower 
than 750) 

Locate 
  
  Component planes 100 41.10 

Maps 60 177.00 

Parallel coordinate plot 55 99.50 

Task 2 
 
Identify possible relationships 
between the following attributes: 
population density in the coastal 
region and in the interior, and 
GDP per capita 95 

Identify 
  
  Component planes 90 104.37 

Maps 100 69.80 

Parallel coordinate plot 35 126.63 

Task 3 
 
How does income (GDP 1995) of 
the countries vary across space? 
Define differences and similarities
between the countries Distinguish 

  
  Component planes 95 107.00 

Unified distance matrix 80 86.71 

2D/3D Projection 95 93.45 

Task 4 
 
Define all the regions on the 
display, and draw boundaries. 
Define categories of countries 
such as rich, and poor countries 
on the display, and indicate the 
to which category South Africa 
belong. Are there African 
countries in this category? List 
the countries 

Categorize 
 
 

2D/3D Surface 90 98.06 

Unified distance matrix 100 47.45 

2D/3D Projection 100 48.80 

2D/3D Surface 100 35.35 

Task 5 
 
Find gaps in the data and indicate
the different clusters 

Cluster 
  
  Parallel coordinate plot 55 37.17 

Maps 35 38.20 

Parallel coordinate plot 40 179.56 

Task 6 
 
What are the common 
characteristics of low-income 
countries (GDP lower than 750)?  

  
Distribution 
  
  Component planes 100 106.05 

Maps 100 120.85 

Parallel coordinate plot 90 138.06 

Task 7 
 
Indicate the 5 lowest GDP 
countries and the 5 highest GDP Rank 

  
  Component planes 100 90.40 

Maps 65 245.69 

Parallel coordinate plot 50 116.40 

Task 8 
 
Compare population density on 
coastal regions (within 100 km of 
the coastline) and inland regions 
(beyond 100 km from the 
coastline) 

Compare 
  
  Component planes 95 98.10 

Maps 80 129.13 

Parallel coordinate plot 55 91.83 

Task 9 
 
Form relationships between the 
countries in the geographic 
tropics and their economic 
development (GDP 1995) as 
compared with the other 
countries 

Associate 
  
  

Component planes 100 60.90 

Maps 85 114.39 

Parallel coordinate plot 50 57.45 

Task 10 
 
Examine economy development 
(GDP 95) across the countries: 
landlocked countries and 
countries that have access to the 
sea 

Correlate 
  
  Component planes 100 64.25 
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Figure 7.1. Percentage of completed task with correct response for the different visualization tasks. 

PCP= Parallel coordinate plot, Comp=SOM component plane display. The tasks have been organized 

in two groups: clustering tasks (tasks number 4 and 5), and detail exploration tasks (tasks number 

1, 2, 3, 6, 7, 8, 9, 10). In this figure only the detail exploration tasks are presented. 
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Figure 7.2. Percentage of completed task with correct response for the different visualization tasks. 

UDM=Unified distance matrix, PCP= Parallel coordinate plot. The tasks have been organized in two 

groups: visual grouping tasks (tasks number 4 and 5), and detail exploration tasks (tasks number 

1, 2, 3, 6, 7, 8, 9, 10). In this figure only the visual grouping tasks are presented. 

 
Further analysis of the correctness of response measure was conducted using a 
pair-wise comparison of the mean scores for the different representations for each 
conceptual visualization goal examined. Statistics of the paired sample tests are 
presented in table 7.2. The paired sample tests show significant differences 
(p<0.05) in the mean scores for the different tasks. For the task ‘locate’, the map 
and the component plane display performed equally well (with 100% successful 
task completion by users), compared with the parallel coordinate plot (75% 
successful task completion by users). For this task, a significant difference was 
found between the map and the parallel coordinate plot (P=0.021), and between 
the component plane display and the parallel coordinate plot (P=0.021).  
 
For the task ‘identify’, the map and parallel coordinate plot performed relatively 
poorly (60% and 55% successful task completion by users respectively), 
compared with the component plane display (90%). The component plane display 
shows a significant difference to the map (p=0.030) and to the parallel coordinate 
plot (p=0.005).  
 
The map and the component plane display performed well for the task 
‘distinguish’ (100% and 95% successful task completion by users respectively), 
with no significant difference. Both show a significant difference (p=0.000) to the 
parallel coordinate plot, which performed poorly for this task (35% successful task 
completion by users). 
 
The component plane display performed far better than the map and the parallel 
coordinate plot for the task ‘distribution’. The difference in the mean scores of the 
component plane display is significant with the map (P=0.000) and the parallel 
coordinate plot (p=0.000). The map and parallel coordinate plot performed poorly 
(35% and 40% successful task completion by users respectively). 
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The three representations (map, parallel coordinate plot and component plane 
display) performed equally well for the task ‘rank’. 
 
For the tasks ‘compare’, ‘associate’ and ‘correlate’, the component plane display 
performed better (100% successful task completion by users for ‘correlate’ and 
‘associate’, and 95% for ‘compare’) than the map and the parallel coordinate plot. 
The map performed relatively well (85% and 80% successful task completion by 
users respectively) for ‘correlate’ and ‘associate’ but relatively poorly for the task 
‘compare’ (65% successful task completion by users). The results show significant 
differences between the component plane display and the map (p=0.010 for 
‘compare’, p=0.042 for ‘associate’) and no significant difference for ‘correlate’. 
The difference is significant between the component plane display and the parallel 
coordinate plot for ‘compare’ (p=0.001), ‘associate’ (p=0.001), and for ‘correlate’ 
(p=0.000). The map and the parallel coordinate plot show no difference for the 
tasks ‘compare’ and ‘associate’, but a significant difference for ‘correlate’ 
(p=0.031), with 85% successful task completion by users for the map and 50% 
for the parallel coordinate plot. 
 
No significant difference was found for the task ‘categorize’, one of the visual 
grouping tasks (cluster and categorize), for which the representation methods 
explored included the unified distance matrix, the 2D/3D projection, the 2D/3D 
surface, and the parallel coordinate plot (only examined for the task cluster). 
Since labelling data items is not appropriate in the parallel coordinate plot, it was 
not applied for the task ‘categorize’. All SOM-based representation methods for 
these two tasks performed well (100% successful task completion by users) 
compared with the parallel coordinate plot (55%). These representations show a 
significant difference (p=0.001) compared with the parallel coordinate plot for the 
task ‘cluster’. 
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Table 7.2. Paired samples test for correctness of response. (*) indicates that the difference is 

significant (P<0.05). Udm = unified distance matrix, Pcp =  parallel coordinate plot, Comp = SOM 

component plane display, Proj = 2D/3D projection, Surf = 2D/3D surface plot. 

Paired differences t df P-value 
Sig. (2-tailed) 

95% confidence 
interval of the 

difference 

Conceptual 
visualization 

goal 

Representation 
method 

 
Mean Std. 

deviation 
Std. error 

mean 

Lower Upper 
   

Map - Pcp 0.25 0.444 0.099 0.042 0.458 2.517 19 0.021* 
Locate 

Pcp - Comp -0.25 0.444 0.099 -0.458 -0.042 -2.517 19 0.021* 

Map - Pcp 0.05 0.510 0.114 -0.189 0.289 0.438 19 0.666 

Map - Comp -0.3 0.571 0.128 -0.567 -0.033 -2.349 19 0.030* 

Identify 

Pcp - Comp -0.35 0.489 0.109 -0.579 -0.121 -3.199 19 0.005* 

Map - Pcp 0.65 0.489 0.109 0.421 0.879 5.940 19 0.000* 

Map - Comp 0.05 0.224 0.050 -0.055 0.155 1.000 19 0.330 

Distinguish 

Pcp - Comp -0.6 0.598 0.134 -0.880 -0.320 -4.485 19 0.000* 

Udm - Proj -0.15 0.489 0.109 -0.379 0.079 -1.371 19 0.186 

Udm - Surf -0.1 0.308 0.069 -0.244 0.044 -1.453 19 0.163 

Categorize 

Proj - Surf 0.05 0.394 0.088 -0.134 0.234 0.567 19 0.577 

Udm - Pcp 0.45 0.510 0.114 0.211 0.689 3.943 19 0.001* 

Proj - Pcp 0.45 0.510 0.114 0.211 0.689 3.943 19 0.001* 

Cluster 

Surf - Pcp 0.45 0.510 0.114 0.211 0.689 3.943 19 0.001* 

Map - Pcp -0.05 0.759 0.170 -0.405 0.305 -0.295 19 0.772 

Map - Comp -0.65 0.489 0.109 -0.879 -0.421 -5.940 19 0.000* 

Distribution 

Pcp - Comp -0.6 0.503 0.112 -0.835 -0.365 -5.339 19 0.000* 

Map - Pcp 0.1 0.308 0.069 -0.044 0.244 1.453 19 0.163 
Rank 

Pcp - Comp -0.1 0.308 0.069 -0.244 0.044 -1.453 19 0.163 

Map - Pcp 0.15 0.671 0.150 -0.164 0.464 1.000 19 0.330 

Map - Comp -0.3 0.470 0.105 -0.520 -0.080 -2.854 19 0.010* 

Compare 

Pcp - Comp -0.45 0.510 0.114 -0.689 -0.211 -3.943 19 0.001* 

Map - Pcp 0.25 0.716 0.160 -0.085 0.585 1.561 19 0.135 

Map - Comp -0.2 0.410 0.092 -0.392 -0.008 -2.179 19 0.042* 

Associate 

Pcp - Comp -0.45 0.510 0.114 -0.689 -0.211 -3.943 19 0.001* 

Map - Pcp 0.35 0.671 0.150 0.036 0.664 2.333 19 0.031* 

Map - Comp -0.15 0.366 0.082 -0.321 0.021 -1.831 19 0.083 

Correlate 

Pcp - Comp -0.5 0.513 0.115 -0.740 -0.260 -4.359 19 0.000* 
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2. Time to complete tasks 
 
Time to complete the tasks was used as a second variable for the performance 
measure. The analysis of the time taken to complete the tasks reveals some 
important differences between the different representations used (see figure 7.3). 
Table 7.3 shows detailed statistics of the time spent on the different tasks and 
representations. 
 

Table 7.3. Descriptive statistics for the time spent on completing the tasks. 

Task 
number 

Conceptual 
visualization 
goal 

Representation method 

N Minimum Maximum Mean Std. deviation

Maps 20 11 117 41.40 30.275 

Parallel coordinate plot 15 20 260 86.33 65.976 

Task 1 

Locate 
  
  Component planes 20 4 191 41.10 45.588 

Maps 13 61 476 190.62 119.362 

Parallel coordinate plot 11 62 290 180.91 76.470 

Task 2 

Identify 
  
  Component planes 18 24 251 110.17 59.848 

Maps 20 16 208 69.80 50.671 

Parallel coordinate plot 7 48 286 144.71 93.660 

Task 3 

Distinguish 
  
  Component planes 20 4 519 107.00 124.980 

Unified distance matrix 16 17 211 92.13 62.049 

2D/3D projection 19 16 233 98.37 63.949 

Task 4 

Categorize 
  
  2D/3D surface 18 19 243 98.06 55.943 

Unified distance matrix 20 4 114 47.45 34.705 

2D/3D projection 20 6 373 48.80 78.648 

2D/3D surface 20 5 110 35.35 30.901 

Task 5 

Cluster 
  
  Parallel coordinate plot 11 4 102 40.55 28.500 

Maps 7 6 260 109.14 99.607 

Parallel coordinate plot 9 62 621 179.56 177.256 

Task 6 

Distribution 
  
  Component planes 20 5 319 106.05 78.451 

Maps 20 25 336 120.85 72.836 

Parallel coordinate plot 18 78 254 138.06 60.910 

Task 7 

Rank 
  
  Component planes 20 38 179 90.40 36.787 

Maps 13 94 711 245.69 161.916 

Parallel coordinate plot 9 48 272 129.33 78.187 

Task 8 

Compare 
  
  Component planes 19 4 196 103.26 54.690 

Maps 16 23 246 129.13 62.976 

Parallel coordinate plot 12 10 199 91.83 57.588 

Task 9 

Associate 
  
  Component planes 20 9 250 60.90 61.053 

Maps 18 23 284 114.39 73.989 

Parallel coordinate plot 10 44 225 114.90 57.047 

Task 10 

Correlate 
  
  Component planes 20 5 143 64.25 36.009 
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 Figure 7.3. Time to complete tasks for three exploratory tools: map, parallel coordinate plot (PCP), 

and component plane display. 

 
In general the component plane display required less time than the maps and the 
parallel coordinate plot for the different tasks. The map was faster for 
‘distinguish’, but a far slower medium for comparison tasks (see figure 7.3). For 
the tasks of clustering, all the representation methods used (unified distance 
matrix representation, 2D/3D projection, 2D/3D surface plot and parallel 
coordinate plot) required less time to perform the tasks (between 35 seconds and 
50 seconds). In figure 7.4 the time spent using the different representations is 
presented for each task. 
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Figure 7.4. Time taken to successfully complete the tasks. The tasks have been organized in two 

groups: detail exploration tasks (tasks number 1, 2, 3, 6, 7, 8, 9, 10), and visual grouping tasks 

(tasks number 4 and 5). PCP= Parallel coordinate plot, Comp=SOM component plane display, 

UDM=Unified distance matrix. 

 
Further analysis was conducted using a paired-wise t-test with the different 
representations to compare the mean scores for the time taken to complete the 
tasks. Detailed statistics of the paired-wise sample test are presented in table 7.4. 
 
The paired sample test shows no significant differences between the 
representations for the tasks ‘distribution’, ‘cluster’ and ‘categorize’.  
 

2 
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For the task ‘locate’, no significant difference was found between the map and the 
component plane display. Both representations required just 41 seconds to 
complete the task. The parallel coordinate plot required double the time needed 
by the map and the component plane display for the same task. Thus a significant 
difference was found between the parallel coordinate plot and the map (p=0.005) 
and the component plane display (p=0.002). 
 
The ‘identify’ task took relatively longer with all the representations (an average 
of 190 seconds with the map, 180 seconds with the parallel coordinate plot, and 
110 seconds with the component plane display). For this task, no significant 
difference was found between the map and the parallel coordinate plot, or 
between the map and the component plane display. The difference is significant 
between the component plane display and the parallel coordinate plot (p=0.020). 
 
For the task ‘distinguish’, a significant difference in the mean score for the time 
spent on the tasks was found between the map and parallel coordinate plot 
(p=0.028). While the map requires a little more than one minute (69 seconds) to 
complete the task, the parallel coordinate plot requires more than two minutes 
(144 seconds). The difference in time spent using the component plane display 
(107 seconds) and the map (69 seconds) was not found significant.  
 
For the task ‘rank’, the participants spent on average 90 seconds for the 
component plane display, 120 seconds for the map, and 138 seconds for the 
parallel coordinate plot. The mean scores for the time spent were only 
significantly different between the component plane display and the parallel 
coordinate plot (p=0.003). No significant difference was found between the map 
and component plane display.  
 
The map required a lot more time (245 seconds) than the component plane 
display (103 seconds) and the parallel coordinate plot (129 seconds) for the task 
‘compare’. A significant difference was found between the map and the 
component plane display (p=0.012). 
 
The task ‘associate’ required on average 60 seconds for the component plane 
display, 91 seconds for the parallel coordinate plot, and 129 seconds for the map. 
The results show a significant difference between the map and the component 
plane display (p=0.020). 
 
For the task ‘correlate’, the map and parallel coordinate plot required on average 
the same amount of time (114 seconds). The component plane display required 
64 seconds, roughly half the time needed with the map and parallel coordinate 
plot. This shows a significant difference between the component plane display and 
the map (p=0.016) and the parallel coordinate plot (p=0.006). 
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Table 7.4. Paired samples test for the time taken to complete the tasks. (*) indicates that the 

difference is significant (P<0.05). Udm = unified distance matrix, Pcp = parallel coordinate plot, 

Comp = SOM component plane display, Proj = 2D/3D projection, Sur f= 2D/3D surface plot. 

Paired differences 
 t df 

P-value 
Sig. (2-tailed) 

Mean Std. 
deviation 

Std. error 
mean 

95% confidence 
interval of the 

difference    

 
Task 

 
 
    Lower Upper    

Map - Pcp -46.267 53.526 13.820 -75.909 -16.625 -3.348 14 0.005* 

Map - Comp 0.300 52.374 11.711 -24.212 24.812 0.026 19 0.980 

 
Locate 

Pcp - Comp 50.200 52.757 13.622 20.984 79.416 3.685 14 0.002* 

Map - Pcp 22.000 132.990 42.055 -73.136 117.136 0.523 9 0.614 

Map - Comp 83.167 140.597 40.587 -6.164 172.498 2.049 11 0.065 

 
Identify 

Pcp - Comp 75.273 90.459 27.274 14.502 136.044 2.760 10 0.020* 

Map - Pcp -90.000 82.595 31.218 -166.388 -13.612 -2.883 6 0.028* 

Map - Comp -37.200 118.804 26.565 -92.802 18.402 -1.400 19 0.178 

 
Distinguish 

Pcp - Comp 3.143 151.201 57.149 -136.695 142.981 0.055 6 0.958 

Udm - Proj -1.133 58.481 15.100 -33.519 31.252 -0.075 14 0.941 

Udm - Surf -5.313 83.028 20.757 -49.555 38.930 -0.256 15 0.801 

 
Categorize 

Proj - Surf 2.882 82.722 20.063 -39.649 45.414 0.144 16 0.888 

Udm - Proj -1.350 74.025 16.553 -35.995 33.295 -0.082 19 0.936 

Udm - Surf 12.100 43.086 9.634 -8.065 32.265 1.256 19 0.224 

Udm - Pcp 11.273 42.626 12.852 -17.364 39.910 0.877 10 0.401 

Proj - Surf 13.450 64.779 14.485 -16.868 43.768 0.929 19 0.365 

Proj - Pcp 25.273 106.432 32.091 -46.229 96.775 0.788 10 0.449 

 
Cluster 

Surf - Pcp -6.636 35.870 10.815 -30.734 17.461 -0.614 10 0.553 

Map - Pcp 13.000 107.480 76.000 -952.672 978.672 0.171 1 0.892 

Map - Comp -1.571 142.078 53.701 -132.972 129.829 -0.029 6 0.978 

 
Distribution 

Pcp - Comp 67.667 193.987 64.662 -81.445 216.778 1.046 8 0.326 

Map - Pcp -14.889 84.948 20.023 -57.133 27.355 -0.744 17 0.467 

Map - Comp 30.450 75.701 16.927 -4.979 65.879 1.799 19 0.088 

 
Rank 

Pcp - Comp 55.944 67.753 15.969 22.252 89.637 3.503 17 0.003* 

Map - Pcp 126.333 245.452 100.205 -131.253 383.919 1.261 5 0.263 

Map - Comp 132.077 160.423 44.493 35.134 229.020 2.968 12 0.012* 

 
Compare 

Pcp - Comp 30.444 110.263 36.754 -54.312 115.200 0.828 8 0.432 

Map - Pcp 40.444 83.539 27.846 -23.769 104.658 1.452 8 0.184 

Map - Comp 66.250 101.841 25.460 11.983 120.517 2.602 15 0.020* 

 
Associate 

Pcp - Comp 32.833 83.512 24.108 -20.228 85.895 1.362 11 0.200 

Map - Pcp 25.222 98.776 32.925 -50.704 101.148 0.766 8 0.466 

Map - Comp 54.500 86.186 20.314 11.641 97.359 2.683 17 0.016* 

 
Correlate 

Pcp - Comp 54.000 48.360 15.293 19.406 88.594 3.531 9 0.006* 

 



 128

 To better view the range, highest and lowest values, extreme values, outliers and 
the median, box plots are shown in figures 7.5 and 7.6. 

Figure 7.5. Box plots for the time spent on completing the tasks using the exploration tools. The 

box plots reveal the range of values, outliers (*), extreme values (0), as well as the median. 
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Figure 7.6. Box plots for clustering and categorization tools. UDM=Unified distance matrix, Proj= 

2D/3D Projection, Surf= 2D/3D surface, PCP= Parallel coordinate plot. 

 

7.4.2.  Usefulness and user reactions 

 
Usefulness and user reactions were reported using a five-point scale on the form 
presented in Appendix B2 (5 = very good, 4 = good, 3 = fairly good, 2 = poor, 1 
= very poor). Usefulness includes compatibility, ease of use/flexibility, and 
perceived user understanding, and user reactions include user satisfaction and 
preferences. 
 
A combined view of the different measures of usefulness and user reactions is 
presented in figure 7.7 for the tasks. 
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 Figure 7.7. Overall ratings of the representations for all the different tasks combined: (a) shows all 

the representations for all the tasks; (b) shows tools used for detailed exploration tasks; and (c) 

shows tools used for visual grouping (clustering) tasks. The vertical axis represents the rating scale 

(5 = very good, 4 = good, 3 = fairly good, 2 = poor, 1 = very poor). 

(a) 

(c) 

(b) 
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Figure 7.7b shows clear separation between the lines representing the parallel 
coordinate plot and those representing the map and the component planes. The 
parallel coordinate plot scored lower for all the usefulness and user reaction 
variables (compatibility, ease of use, perceived understanding, user satisfaction), 
and was rated much lower than the other representations. Figure 7.7b shows that 
the parallel coordinate plot scored poorly for user satisfaction (less than 3), ease 
of use (3), and was difficult to understand. The component plane display and the 
map were rated equally for ease of use and in the overall preference rating. As 
one could expect, the map was better rated for compatibility with users’ 
expectations of the tasks. However, the users were more satisfied with the 
component plane display for their exploration results. Both the map and the 
component plane display were easily understood (4.2 and 4.4 on average on the 
five-point scale respectively). 
 
For the clustering and visual grouping (categorization) tasks, the SOM-based 
representation tools (unified distance matrix representation, 2D/3D projection, 
2D/3D surface) were better rated (between 3.5 and 4) for the different variables 
(compatibility, ease of use, perceived understanding, user satisfaction, and 
preference) than the parallel coordinate plot. The parallel coordinate plot scored 
much lower for these visual grouping tasks.  
 
Detailed statistics on the compatibility, ease of use, user understanding, user 
satisfaction and user preference are presented in table 7.5. 
 
To further analyze the differences in user rating for the representations, a paired 
sample test was conducted. Tables 7.6 and 7.7 show the significant differences 
between the representations for all the variables. T1 to T10 represent the task 
numbers corresponding the conceptual visualization goals (see table 7.1). 
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Table 7.6. Statistical significant differences between the representations for compatibility, ease of 

use measure, and perceived user understanding. 

Compatibility 
Paired differences t df P-value 

95% confidence interval of the difference 
  

Mean 
  

Std.  
  

Std. error mean 
Lower Upper 

      

MAP - PCP 1.1 1.210 0.270 0.534 1.666 4.067 19 0.001 
T1 

MAP - COMP 0.55 0.605 0.135 0.267 0.833 4.067 19 0.001 
T2 PCP - COMP -0.8 1.361 0.304 -1.437 -0.163 -2.629 19 0.017 

MAP - PCP 2 0.858 0.192 1.598 2.402 10.420 19 0.000 
MAP - COMP 0.7 1.218 0.272 0.130 1.270 2.570 19 0.019 T3 
PCP - COMP -1.3 1.658 0.371 -2.076 -0.524 -3.508 19 0.002 
UDM - SURF -0.4 0.754 0.169 -0.753 -0.047 -2.373 19 0.028 
UDM - PCP 0.75 1.209 0.270 0.184 1.316 2.775 19 0.012 
PROJ - PCP 0.85 1.531 0.342 0.133 1.567 2.482 19 0.023 

T5 

SURF - PCP 1.15 1.137 0.254 0.618 1.682 4.524 19 0.000 
MAP - COMP -1.15 1.631 0.365 -1.913 -0.387 -3.153 19 0.005 

T6 
PCP - COMP -1.4 1.392 0.311 -2.051 -0.749 -4.499 19 0.000 
MAP - PCP 0.65 1.309 0.293 0.037 1.263 2.221 19 0.039 

T7 
MAP - COMP 0.55 1.099 0.246 0.036 1.064 2.238 19 0.037 
MAP - COMP -0.45 0.887 0.198 -0.865 -0.035 -2.269 19 0.035 

T8 
PCP - COMP -1.2 1.436 0.321 -1.872 -0.528 -3.736 19 0.001 
MAP - PCP 0.95 1.572 0.352 0.214 1.686 2.703 19 0.014 

T9 
PCP - COMP -1.35 1.348 0.302 -1.981 -0.719 -4.477 19 0.000 
MAP - PCP 1.1 1.586 0.355 0.358 1.842 3.101 19 0.006 

T10 
PCP -COMP -1.25 1.482 0.331 -1.944 -0.556 -3.771 19 0.001 

Ease of use 
Paired differences t df P-value 

95% confidence interval of the difference 
 

Mean Std. Std. error mean 

Lower Upper 

   

MAP - PCP 1.05 0.999 0.223 0.583 1.517 4.702 19 0.000 
T1 

MAP - COMP 0.7 0.801 0.179 0.325 1.075 3.907 19 0.001 
T2 PCP - COMP -0.9 1.553 0.347 -1.627 -0.173 -2.592 19 0.018 

MAP - PCP 1.95 1.050 0.235 1.459 2.441 8.305 19 0.000 
MAP - COMP 0.6 1.188 0.266 0.044 1.156 2.259 19 0.036 T3 
PCP - COMP -1.35 1.182 0.264 -1.903 -0.797 -5.107 19 0.000 
UDM - SURF -0.6 0.754 0.169 -0.953 -0.247 -3.559 19 0.002 
UDM - PCP 0.9 1.410 0.315 0.240 1.560 2.854 19 0.010 
PROJ - PCP 1.2 1.673 0.374 0.417 1.983 3.207 19 0.005 

T5 

SURF - PCP 1.5 1.277 0.286 0.902 2.098 5.252 19 0.000 
MAP - COMP -1.35 1.663 0.372 -2.128 -0.572 -3.630 19 0.002 

T6 
PCP - COMP -1.4 1.818 0.407 -2.251 -0.549 -3.444 19 0.003 

T7 MAP - PCP 0.75 1.446 0.323 0.073 1.427 2.319 19 0.032 
MAP - PCP 1.05 1.605 0.359 0.299 1.801 2.926 19 0.009 

T8 
PCP - COMP -1.15 1.348 0.302 -1.781 -0.519 -3.814 19 0.001 
MAP - PCP 1.15 1.599 0.357 0.402 1.898 3.217 19 0.005 

T9 
PCP - COMP -1.35 1.387 0.310 -1.999 -0.701 -4.353 19 0.000 
MAP - PCP 0.789 1.548 0.355 0.043 1.536 2.222 18 0.039 

T10 
PCP - COMP -0.84 1.675 0.384 -1.650 -0.035 -2.191 18 0.042 

Perceived user understanding 
Paired differences t df P-value 

95% confidence interval of the difference 
  
  
  

Mean 
  

Std. 
  

Std. error mean 
Lower Upper 

   

MAP - PCP 1.05 1.234 0.276 0.472 1.628 3.804 19 0.001 
T1 

MAP - COMP 0.45 0.510 0.114 0.211 0.689 3.943 19 0.001 
MAP - PCP 1.65 1.089 0.244 1.140 2.160 6.773 19 0.000 
MAP - COMP 0.8 1.281 0.287 0.200 1.400 2.792 19 0.012 T3 
PCP - COMP -0.85 1.387 0.310 -1.499 -0.201 -2.741 19 0.013 
UDM - SURF -0.35 0.587 0.131 -0.625 -0.075 -2.666 19 0.015 
PROJ - PCP 0.95 1.761 0.394 0.126 1.774 2.412 19 0.026 T5 
SURF - PCP 1.05 1.395 0.312 0.397 1.703 3.367 19 0.003 

T6 PCP - COMP -1.05 1.791 0.400 -1.888 -0.212 -2.622 19 0.017 
MAP - PCP 0.65 1.226 0.274 0.076 1.224 2.371 19 0.028 

T7 
MAP - COMP 0.6 1.231 0.275 0.024 1.176 2.179 19 0.042 
MAP - PCP 0.75 1.410 0.315 0.090 1.410 2.380 19 0.028 

T8 
PCP - COMP -0.9 1.252 0.280 -1.486 -0.314 -3.214 19 0.005 
MAP - PCP 1.1 1.071 0.240 0.599 1.601 4.593 19 0.000 

T9 
PCP - COMP -1.4 1.231 0.275 -1.976 -0.824 -5.085 19 0.000 
MAP - 0PCP 0.9 1.447 0.324 0.223 1.577 2.781 19 0.012 

T10 
PCP - COMP -0.8 1.322 0.296 -1.419 -0.181 -2.707 19 0.014 
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Table 7.7. Statistical significant differences between the representations for user satisfaction and 
overall preference rating. 

User satisfaction 
 

Paired differences t df P-value 

95% confidence interval 
of the difference 

 

Mean Std.  Std. error 
mean 

Lower Upper 

   

MAP - PCP 1.15 1.089 0.244 0.640 1.660 4.721 19 0.000
MAP - COMP 0.55 0.605 0.135 0.267 0.833 4.067 19 0.001T1 
PCP - COMP -0.6 1.231 0.275 -1.176 -0.024 -2.179 19 0.042
MAP - PCP 2.25 1.118 0.250 1.727 2.773 9.000 19 0.000

T3 
PCP - COMP -1.65 1.694 0.379 -2.443 -0.857 -4.355 19 0.000
UDM - SURF -0.5 0.761 0.170 -0.856 -0.144 -2.939 19 0.008
UDM - PCP 1.1 1.410 0.315 0.440 1.760 3.488 19 0.002
PROJ - PCP 1.2 1.609 0.360 0.447 1.953 3.335 19 0.003

T5 

SURF - PCP 1.6 1.314 0.294 0.985 2.215 5.446 19 0.000
MAP - COMP -1.35 1.843 0.412 -2.213 -0.487 -3.275 19 0.004

T6 
PCP - COMP -1.75 1.482 0.331 -2.444 -1.056 -5.280 19 0.000

T8 PCP - COMP -1.2 1.473 0.329 -1.889 -0.511 -3.644 19 0.002
MAP - PCP 1.1 1.744 0.390 0.284 1.916 2.820 19 0.011

T9 
PCP - COMP -1.3 1.380 0.309 -1.946 -0.654 -4.212 19 0.000
MAP - PCP 1.15 1.599 0.357 0.402 1.898 3.217 19 0.005

T10 
PCP - COMP -1.25 1.517 0.339 -1.960 -0.540 -3.684 19 0.002

 
 
Overall user preference rating 

Paired differences t df P-value 

95% confidence interval 
of the difference 

 

Mean Std.  Std. error 
mean 

Lower Upper 

   

MAP - PCP 1.4 1.314 0.294 0.785 2.015 4.765 19 0.000
T1 

MAP - COMP 1 0.725 0.162 0.660 1.340 6.164 19 0.000
MAP - PCP 2.45 0.759 0.170 2.095 2.805 14.433 19 0.000
MAP - COMP 1 1.414 0.316 0.338 1.662 3.162 19 0.005T3 
PCP - COMP -1.45 1.538 0.344 -2.170 -0.730 -4.216 19 0.000
UDM - PCP 0.895 1.560 0.358 0.143 1.647 2.500 18 0.022
PROJ - PCP 1.421 1.539 0.353 0.679 2.163 4.025 18 0.001T5 
SURF - PCP 1.421 1.261 0.289 0.813 2.029 4.911 18 0.000
MAP - COMP -1.368 1.707 0.392 -2.191 -0.546 -3.495 18 0.003

T6 
PCP - COMP -1.421 1.677 0.385 -2.229 -0.613 -3.693 18 0.002
MAP - PCP 0.9 1.483 0.332 0.206 1.594 2.714 19 0.014

T7 
MAP - COMP 0.842 1.463 0.336 0.137 1.547 2.509 18 0.022

T8 PCP - COMP -1.15 1.663 0.372 -1.928 -0.372 -3.092 19 0.006
MAP - PCP 1.3 1.949 0.436 0.388 2.212 2.982 19 0.008

T9 
PCP - COMP -1.3 1.218 0.272 -1.870 -0.730 -4.772 19 0.000
MAP - PCP 1.15 1.755 0.393 0.328 1.972 2.930 19 0.009

T10 
PCP - COMP -1.55 1.468 0.328 -2.237 -0.863 -4.722 19 0.000

 
The analysis of the statistics in tables 7.5, 7.6 and 7.7 shows some significant 
differences between the representations for the different tasks with regard to the 
measures of usefulness (compatibility with the user’s expectations for the task, 
ease of use, the user’s understanding of the tool for the task), and user reactions 
(user satisfaction, and the overall preference rating of the tools). 
 
1. Compatibility with the user’s expectations for the different tasks 
 
For compatibility with the user’s expectations of the tool for the tasks, the map 
was found more suitable (mean = 4.85 and median = 5 on the five-point scale) 
for the tasks ‘locate’, ‘’distinguish’ and ‘rank’. The component plane display was 
found more appropriate for the tasks ‘identify’, ‘distribution’, ‘compare’, ‘associate’ 
and ‘correlate’. The parallel coordinate plot was rated generally poor (2 on the 
five-point scale) or fairly good (3 on the five-point scale) for all the tasks. The 
best ratings of the parallel coordinate plot were for the tasks ‘rank’ and ‘locate’, 
where the mean score = 3.75 and the median = 4 (same result for both tasks). 
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These results for compatibility confirm the performance analysis presented in 
section 7.4.1. for correctness of response and time taken. Some graphs of the 
compatibility rating for all the tasks are presented in figure 7.8. 
 

   

   

  

 

  

 

Figure 7.8. Compatibility rating of the representations for the each visualization task. Scale: 5 = 

very good, 4 = good, 3 = fairly good, 2 = poor, 1 = very poor. The tasks have been organized in 

two groups: detail exploration tasks (tasks number 1, 2, 3, 6, 7, 8, 9, 10), and visual grouping 

tasks (tasks number 4 and 5). PCP= Parallel coordinate plot, Comp=SOM component plane display, 

UDM=Unified distance matrix. 
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For the task ‘locate’, the results show a significant advantage for the map 
compared with the parallel coordinate plot (p=0.001) and the component plane 
display (p=0.001).  
 
For the task ‘identify’, no significant difference was found between the map and 
the component plane display. Both were rated above fairly good on average 
(mean = 3.25 and median = 3.5 for the map, and mean = 3.75 and median = 4 
for the component plane display) and better than the parallel coordinate plot. For 
this task, a significant difference was found between the parallel coordinate plot 
and the component planes (p=0.017). The map and the parallel coordinate plot 
did not show any significant difference. 
 
For the task ‘distinguish’, the map was rated best suitable representation 
(mean = 4.55, median = 5) with a significant difference compared with the 
component plane display (p=0.019) and the parallel coordinate plot (p=0.000). 
The component plane display was also found more compatible for this task than 
the parallel coordinate plot (p=0.002).  
 
For the task ‘distribution’, the component plane display was rated best suitable 
representation (mean = 4.3, median = 4) with a significant difference compared 
with the map (p=0.005) and parallel coordinate plot (p=0.000). The map and the 
parallel coordinate plot were rated fairly good (mean = 3.15, median = 3.5 for 
the map, and mean = 2.9, median = 3 for the parallel coordinate plot). 
 
For the task ‘rank’, the map was found very suitable (mean = 4.4, median = 5) 
with a significant difference compared with the component plane display 
(p=0.037) and the parallel coordinate plot (p=0.039). Both the component plane 
display and the parallel coordinate plot were also rated good (mean = 3.85, 
median = 4 for the component plane display, and mean = 3.75, median = 4 for 
the parallel coordinate plot). 
 
The component plane display was found more suitable for the task ‘compare’ 
(mean = 4.1, median = 4), with a significant difference compared with the map 
(p=0.035) and the parallel coordinate plot (p=0.001). The parallel coordinate plot 
was found poor for this task (mean = 2.9, median = 3). The map was not found 
particularly good for comparing several attributes (mean = 3.65, median = 4). 
 
The map and the component plane display were found equally good (no 
significant difference) for the tasks ‘associate’ and ‘correlate’, with the component 
plane display slightly better (4.35 and 4.3 of mean score for the component plane 
display, and 3.95 and 4.15 mean score for ‘associate’ and ‘correlate’ respectively). 
The parallel coordinate plot was found fairly good for these two tasks. The map 
was significantly more suitable than the parallel coordinate plot for the task 
‘associate’ (p=0.014) and the task ‘correlate’ (p=0.006). The component plane 
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display was significantly more suitable than the parallel coordinate plot for the 
task ‘associate’ (p=0.000) and for the task ‘correlate’ (p=0.001).  
 
For the task ‘cluster’ and ‘categorize’, the tools used (unified distance matrix, 
2D/3D projection, 2D/3D surface and parallel coordinate plot) were generally 
suitable for the tasks. No difference was found between the SOM-based clustering 
tools for the task ‘categorize’. A significant difference was found between each of 
the SOM-based tools and the parallel coordinate plot for the task ‘cluster’ 
(p=0.012 with the unified distance matrix; p=0.023 with the 2D/3D projection; 
p=0.000 with the 2D/3D surface). No significant difference was found between 
the unified distance matrix and the 2D/3D projection. However, a significant 
difference was found between the unified distance matrix and the 2D/3D surface 
plot (p=0.028), with the 2D/3D surface more compatible for the users 
(mean = 4.1, median = 4). 
 
2. Flexibility/ease of use 
 
As with compatibility, the map was found easier for the tasks ‘locate’, ‘distinguish’ 
and ‘rank’. The component plane display was found easier to use for the tasks 
‘identify’ and ‘distribution’. The parallel coordinate plot was generally found 
difficult to use, especially for the tasks ‘distinguish’, ‘associate’, and ‘compare’, 
but less difficult to use for the tasks ‘rank’ and ‘locate’ (see figure 7.9).  
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Figure 7.9. Rating of ease of use for the representations for the each visualization task. Scale: 5 = 

very good, 4 = good, 3 = fairly good, 2 = poor, 1 = very poor. The tasks have been organized in 

two groups: detail exploration tasks (tasks number 1, 2, 3, 6, 7, 8, 9, 10), and visual grouping 

tasks (tasks number 4 and 5). PCP= Parallel coordinate plot, Comp=SOM component plane display, 

UDM=Unified distance matrix. 

For the task ‘locate’, the map was found very easy to use (mean = 4.8, 
median = 5), with a significant difference compared with the component plane 
display (p=0.001) and the parallel coordinate plot (p=0.000). The component 
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plane display was also found easy to use (mean = 4.1, median = 4), and 
significantly easier than the parallel coordinate plot (p=0.018). 
 
All the tools were found relatively easy to use for the task ‘identify’. The 
component plane display was found easier for the task, with a significant 
difference compared with the parallel coordinate plot (p=0.018). No significant 
difference was found between the map and the parallel coordinate plot, or 
between the map and the component plane display (see figure 7.9). 
 
The map was easier for the task ‘distinguish’ (mean = 4.35, median = 5) 
compared with the component plane display (mean = 3.75, median = 4), and the 
parallel coordinate plot (mean = 2.4, median = 2). The parallel coordinate plot 
was found difficult to use for this task. The analysis of the mean scores shows a 
significant difference between the map and the component plane display 
(p=0.036), between the map and the parallel coordinate plot (p=0.000), and 
between the component plane display and the parallel coordinate plot (p=0.000). 
 
The component plane display was found easier for the task ‘distribution’ 
(mean = 4.3, median = 5), compared with the map (mean = 2.93, median = 3) 
and the parallel coordinate plot (mean = 2.9, median = 3). This result shows a 
significant difference between the component plane display and the map 
(p=0.002) and the parallel coordinate plot (p=0.003). The parallel coordinate plot 
was found relatively difficult. 
 
For the task ‘rank’, the map was found much easier (mean = 4.4, median = 5), 
with a significant difference compared with the parallel coordinate plot (p=0.032). 
No significant difference was found between the map and the component plane 
display, which was also found easy to use (mean = 3.95, median = 4). 
 
Both the map and the component plane display were found easy to use for the 
task ‘compare’ (mean = 3.9, median = 4, and mean = 4 and median = 4 for the 
map and component plane display respectively). The parallel coordinate plot was 
found difficult (mean = 2.85, median = 3) and shows a significant difference with 
the map (p=0.009) and with the component plane display (p=0.001). 
 
The tasks ‘associate’ and ‘correlate’ were rated similarly for the representations 
(with no statistical difference). The component plane display and the map were 
found easy for both tasks (median = 4 for both the map and the component plane 
display). The parallel coordinate plot was found fairly difficult (median = 3 for 
both tasks). Significant difference was found between the map and the parallel 
coordinate plot (p=0.005 and p=0.039 for the tasks ‘associate’ and ‘correlate’ 
respectively). The component plane display also shows a significant difference to 
the parallel coordinate plot (p=0.000 and p=0.042 respectively) for the tasks 
‘associate’ and ‘correlate’. 
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For the tasks ‘cluster’ and ‘categorize’, the tools used (unified distance matrix, 
2D/3D projection, 2D/3D surface and parallel coordinate plot) were generally 
fairly easy to use. No difference was found between the SOM-based clustering 
tools for the task ‘categorize’ with regard to ease of use. A significant difference 
was found between each of the SOM-based tools and the parallel coordinate plot 
for the task ‘cluster’ (p=0.010 with the unified distance matrix, p=0.005 with the 
2D/3D projection, p=0.000 with the 2D/3D surface). No significant difference was 
found between the unified distance matrix and the 2D/3D projection. However, a 
significant difference was found between the unified distance matrix and the 
2D/3D surface plot (p=0.002), with the 2D/3D surface easier (mean = 4.24, 
median = 4). 
 
3. Perceived user understanding of the representations used 
 
The map and the component plane display were generally well understood for all 
the tasks (see figure 7.10). The parallel coordinate plot was not well understood 
for some of tasks such as ‘compare’, ‘associate’, ‘distinguish’, ‘distribution’ and 
‘correlate’, but relatively well understood for the task ‘rank’. 
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Figure 7.10. Rating of perceived user understanding of the representations for the different 

visualization tasks. Scale: 5 = very good, 4 = good, 3 = fairly good, 2 = poor, 1 = very poor. The 

tasks have been organized in two groups: detail exploration tasks (tasks number 1, 2, 3, 6, 7, 8, 9, 

10), and visual grouping tasks (tasks number 4 and 5). PCP= Parallel coordinate plot, Comp=SOM 

component plane display, UDM=Unified distance matrix. 
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For the task ‘locate’, the map was better understood (mean = 4.9, median = 5) 
with a significant difference compared with the component plane display 
(p=0.001) and the parallel coordinate plot (p=0.001). The component plane 
display and the parallel coordinate plot were also well understood for this task 
(median = 4 and 5 respectively for parallel coordinate plot and the component 
plane display). 
 
For the task ‘identify’, all the tools (map, parallel coordinate plot, component 
plane display) were well understood. No significant difference was found between 
them. 
 
The map was found much easier for the task ‘distinguish’ (mean = 4.8, 
median = 5), with a significant difference to the component plane display 
(p=0.012) and the parallel coordinate plot (p=0.000). The component plane 
display was also well understood (mean = 4, median = 4) compared with the 
parallel coordinate plot (median = 3), with a significant difference (p=0.013). 
 
For the task ‘distribution’, the map and the component plane display were 
similarly well understood (with no statistical difference) compared with the 
parallel coordinate plot. A significant difference was found between the 
component plane display and the parallel coordinate plot (p=0.017). 
 
All the tools were well understood for the task ‘rank’, with the map significantly 
better than the component plane display (p=0.017) and the parallel coordinate 
plot (p=0.028). 
 
For the tasks ‘compare’, ‘associate’ and ‘correlate’, the component planes and the 
map were equally well understood and better than the parallel coordinate plot. 
The result shows a significant difference between both the map and the 
component plane display compared with the parallel coordinate plot for each of 
the three tasks. The map shows a significant difference to the parallel coordinate 
plot (p=0.028 for the task ‘compare’, p=0.000 for the task ‘associate’, and 
p=0.012 for the task ‘correlate’). The component plane display shows a significant 
difference to the parallel coordinate plot (p=0.005 for the task ‘compare’, 
p=0.000 for the task ‘associate’, and p=0.014 for the task ‘correlate’). 
 
For the tasks ‘cluster’ and ‘categorize’, the tools used (unified distance matrix, 
2D/3D projection, 2D/3D surface and parallel coordinate plot) were generally 
understood. No difference was found between the SOM-based clustering tools for 
the task ‘categorize’ with regard to perceived user understanding. A significant 
difference was found comparing the 2D/3D projection with the parallel coordinate 
plot (p=0.026), and comapring the 2D/3D surface with the parallel coordinate plot 
(p=0.003). No significant difference was found between the unified distance 
matrix and the 2D/3D projection. A significant difference was found between the 
unified distance matrix and the 2D/3D surface plot (p=0.015), with the 2D/3D 
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surface better understood for the task ‘cluster’ (mean = 4.3, median = 4) than 
the unified distance matrix. 
 
 
4. User satisfaction 
 
Figure 7.11 shows the rating of user satisfaction for the different tasks and 
representations used. In general users were satisfied with the component plane 
display and the map. The parallel coordinate plot was not satisfactory for the 
tasks ‘distinguish’, ‘associate’, ‘correlate’ and ‘distribution’. 
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Figure 7.11. Rating of user satisfaction for the representations for the different visualization tasks. 

Scale: 5 = very good, 4 = good, 3 = fairly good, 2 = poor, 1 = very poor. The tasks have been 

organized in two groups: detail exploration tasks (tasks number 1, 2, 3, 6, 7, 8, 9, 10), and visual 

grouping tasks (tasks number 4 and 5). PCP= Parallel coordinate plot, Comp=SOM component 

plane display, UDM=Unified distance matrix. 

For the task ‘locate’, users were generally satisfied with the map (mean = 4.8, 
median = 5), the component plane display (mean = 4.25, median = 4), and 
parallel coordinate plot (mean = 3.65, median = 4). These results show some 
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significant differences between the map and the parallel coordinate plot 
(p=0.000), the map and the component plane display (p=0.001), and between 
the component plane display and the parallel coordinate plot (p=0.042). 
 
No significant difference between the tools was found for the task ‘identify’. All the 
representations were fairly satisfactory for this task.  
 
The map and the component plane display were fairly satisfactory for the task 
‘distinguish’ (mean = 3.3 and 3.6 respectively for the map and the component 
plane display), with no significant difference in the mean score values. The 
parallel coordinate plot was found not satisfactory (mean = 2.8). This result 
shows a significant difference between the map and the parallel coordinate plot 
(p=0.000), and between the component plane display and the parallel coordinate 
plot (p=0.000). 
 
For the task ‘distribution’, the component plane display was found very 
satisfactory (mean = 4.35), with a significant difference compared with the map 
(p=0.004) and the parallel coordinate plot (p=0.000). The map and the parallel 
coordinate plot were found not satisfactory (mean = 3 and 2.6 respectively). 
 
No difference was found between the tools for the task ‘rank’. They were all found 
satisfactory. 
 
For the task ‘compare’, the map and the component plane display were found 
satisfactory (mean = 3.95 for the component plane display and 3.55 for the 
map). The parallel coordinate plot was rated not satisfactory (mean = 2.75). A 
significant difference was found between the component plane display and the 
parallel coordinate plot (p=0.002).  
 
The representations were rated similarly for the two tasks ‘associate’ and 
‘correlate’ with regard to user satisfaction (see figure 7.11). The component 
planes and the map were equally rated for user satisfaction for these two tasks as 
satisfactory (mean = 3.9 and 4 for the map, and 4.1 and 4.1 for the component 
plane display respectively for ‘associate’ and ‘correlate’). The mean scores for the 
parallel coordinate plot are low (2.8 and 2.85 for ‘associate’ and ‘correlate’ 
respectively). This shows a significant difference between the map and the 
parallel coordinate plot (p=0.011 and 0.005 respectively for ‘associate’ and 
‘correlate’), and between the component plane display and the parallel coordinate 
plot (p=0.000 and 0.002 respectively for ‘associate’ and ‘correlate’). 
 
For the tasks ‘cluster’ and ‘categorize’, the tools used (unified distance matrix, 
2D/3D projection, 2D/3D surface and parallel coordinate plot) were generally 
more satisfactory compared with the parallel coordinate plot for the task ‘cluster’. 
No difference was found between the SOM-based clustering tools for the task 
‘categorize’ with regard to user satisfaction. A significant difference was found 
between the SOM-based clustering tools and the parallel coordinate plot: with the 
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2D/3D projection (p=0.003), the 2D/3D surface (p=0.000), and the unified 
distance matrix (p=0.002). A significant difference was found between the unified 
distance matrix and the 2D/3D surface plot (p=0.008), with the 2D/3D surface 
being found more satisfactory for the task ‘cluster’ (mean = 4.2, median = 4) 
than the unified distance matrix. 
 
5. User preference rating 
 
The overall preference rating of the tools for the different tasks revealed that the 
map was preferred for the tasks ‘locate’, ‘distinguish’ and ‘rank’. The component 
plane display was preferred for the tasks ‘identify’, ‘distribution’, ‘compare’ and 
‘correlate’. The map and the component plane display were generally equally 
rated with regard to preference for the task ‘associate’. The parallel coordinate 
plot was generally not preferred for the different tasks (see figure 7.12). 
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Figure 7.12. User preference rating of the representations for the different visualization tasks. 

Scale: 5 = very good, 4 = good, 3 = fairly good, 2 = poor, 1 = very poor. The tasks have been 

organized in two groups: detail exploration tasks (tasks number 1, 2, 3, 6, 7, 8, 9, 10), and visual 

grouping tasks (tasks number 4 and 5). PCP= Parallel coordinate plot, Comp=SOM component 

plane display, UDM=Unified distance matrix. 
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For the task ‘locate’, the map was preferred (mean = 4.8, median = 5) with a 
significant difference compared with the component plane display (mean = 3.8, 
median = 4) and the parallel coordinate plot (mean = 3.4, median = 3). The 
difference between the mean scores for the map compared with both the 
component plane display and the parallel coordinate plot is significant (p=0.000). 
 
All the three tools (map, component plane display and the parallel coordinate 
plot) show no difference for the task ‘identify’. 
 
The map was also preferred for the task ‘distinguish’ (mean = 4.65, median = 5) 
compared with the component plane display (mean = 3.65, median = 4) and the 
parallel coordinate plot (mean = 2.2, median = 2). A significant difference was 
found between the map and the component plane display (p=0.005), and the 
parallel coordinate plot (p=0.000). The component plane display also shows a 
significant difference to the parallel coordinate plot in terms of preference 
(p=0.000). 
 
The component plane display was preferred for the task ‘distribution’ 
(mean = 4.37, median = 4), compared with the map (mean = 3.1, median = 3) 
and the parallel coordinate plot (mean = 2.85, median = 3). This result shows a 
significant difference between the component plane display, the map (p=0.003) 
and the parallel coordinate plot (p=0.002). 
 
The map was preferred for the task ‘rank’ (mean = 4.45, median = 5) compared 
with the component plane display (mean = 3.58, median = 4) and the parallel 
coordinate plot (mean = 3.55, median = 3.5). This shows a significant difference 
between the map and the component plane display (p=0.022), and the parallel 
coordinate plot (p=0.014).  
 
The component plane display was generally preferred for the task ‘compare’ 
(mean = 4.15, median = 4), compared with the map (mean = 3.7, median = 4), 
and the parallel coordinate plot (mean = 3, median = 3). A significant difference 
was found between the component plane display and the parallel coordinate plot 
(p=0.006). The difference between the map and the component plane display is 
not significant. 
 
No difference in preference was found between the map and the component plane 
display for the task ‘associate’ (mean = 4 for both). Both were preferred to the 
parallel coordinate plot, which shows a mean score of 2.7 and a median of 2.5. 
This result shows a significant difference between the map and the parallel 
coordinate plot (p=0.008) and between the component plane display and the 
parallel coordinate plot (p=0.009). 
 
For the task ‘correlate’, the component plane display shows a mean score higher 
than the map (4.25 for the component plane display and 3.85 for the map). This 
result shows no significant difference. A significant difference was found between 
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the map and the parallel coordinate plot (p=0.009) and between the component 
plane display and the parallel coordinate plot (p=0.000). 
 

7.5.  Discussions 
 
The analysis of the test results presented in the previous section reveal some 
important differences between the SOM-based representations, the map and the 
parallel coordinate plot according to the taxonomy of visualization tasks used for 
the evaluation. Each representation method by its inherent structure seems to 
emphasize particular attributes and support a particular set of visual tasks or 
inferences (Wehrend and Lewis 2000). 
 
Maps were more effective for certain visual tasks such as locate and distinguish, 
but less effective for the tasks of comparison, correlation, and for relating many 
attributes (see figure 7.3). Although easy to use in general for all the test 
participants (it provides a good visual representation of the real world that the 
participants are used to), a major problem with the map was that it uses a single 
view for limited attributes, which is not appropriate for investigating many 
attributes for the dataset in a reasonable time. Many maps were needed to map 
more variables in order to complete some of the tasks. For visual comparison, the 
map was not as effective as the component plane display. It required more time 
for tasks that involve viewing relationships, since differences between classes 
geographically are not noticeable despite the colour scheme used for 
classification. One of the most important comments from the test participants was 
that tasks are difficult to complete with the maps if no prior hypothesis has been 
given. 
 
Component plane displays were found to offer fast visual perception and were 
also found easier for finding relationships and understanding the patterns. This 
representation was especially effective and suitable for tasks involving visual 
composition (Zhou and Feiner 1998), such as associate, correlate, identify, and 
compare. Participants reported that the component plane display did not require 
much effort to view the patterns and to relate different attributes in a single view. 
Relationships between the attributes were found to be very apparent in 
component planes. This ability to permit immediate information extraction at a 
single glance with less attention is one of the measures of the quality of a 
visualization (Bertin 1983). The component plane display was less effective for 
the task of ranking among similar data items because of the clustering. More 
selection is needed for such tasks. Participants needed some guidance in using 
the component planes, but generally found the tool easier to use after a short 
introduction. 
 
Parallel coordinate plots required the participants to keep track of a lot of 
information before they could summarize answers for the tasks. This is an 
important issue in visual encoding and perception (Cleveland and McGill 1984; 
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Cleveland and McGill 1986), key elements in knowledge construction using visual 
representations. This difficultly in keeping track of the information perceived 
makes the parallel coordinate plot difficult for the test participants to understand 
(see figure 7.10). Some participants reported they found the parallel coordinate 
plots confusing: too many lines were used and thus the picture provided was not 
clear. Much effort was needed, patterns were difficult to see, and it required more 
time to examine a particular variable. This was critical for its effectiveness, and 
this may explain the poor results in the user rating (compatibility, ease of use, 
understanding, satisfaction and preference rating). The visual processing of 
graphical displays by users (visual recognition and visual grouping) is an 
important factor in graphical perception (Cleveland 1993). The display of the 
parallel coordinate plot was found difficult to understand, although good for 
relating multiple variables, with its dynamic, interactive features. It was 
particularly inappropriate for tasks such as cluster, distinguish, and locate for 
patterns that are found at different locations, tasks that are related to visual 
attention (Zhou and Feiner 1998). 
 
Among the clustering tools, the 2D/3D surface was found to be more 
comprehensible for visual grouping (proximity, similarity), and helpful for finding 
small differences within clusters, although it was reported that the use of fuzzy 
boundary made it a bit difficult to see cluster borders. The 2D/3D surface is 
generally better viewed than the unified distance matrix. The 2D/3D projection 
was much better viewed for representing proximity among data items. The unified 
distance matrix was found clear and helpful with the use of the hexagonal grid. 
These SOM-based tools for visual clustering were found better than the parallel 
coordinate plot. 
 

7.6.  Conclusion 
 
The usability testing reported in this chapter has provided some insight into the 
performance, usefulness and usability of the SOM-based representations (unified 
distance matrix, 2D/3D projection, 2D/3D surface, and component plane display) 
compared with the map and the parallel coordinate plot for specific visual tasks.  
 
To investigate the usability of the different representations, a test is needed to 
examine the subject’s ability to perform visual tasks such as identifying clusters 
and relating the visual features to problems in the data exploration domain. This 
was realized by applying the visual taxonomy-based evaluation methodology 
developed in Chapter 6 in order to compare the use of SOM-based 
representations with that of maps and parallel coordinate plots. 
 
For visual grouping and clustering, the SOM-based representations performed 
better than the parallel coordinate plot. For detailed exploration of attributes of 
the dataset, correlations and relationships, the SOM component plane display was 
found more effective than the map for visual analysis of the patterns in the data 
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and for revealing relationships. The map was generally a better representation for 
tasks that involve visual attention and sequencing (locate, distinguish, identify, 
rank). 
 
The results of this test can serve as a guideline for designing geovisualization 
tools that integrate different representations such as maps, parallel coordinate 
plots and other information visualization techniques. 
 
The integration of visual tools can for example use tools such as the SOM 
component plane display for visual processing of relationships and correlations in 
the data. Results of user’ exploration can be presented in maps as the final output 
of the exploration process.  
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Chapter 8 
 
Conclusions and recommentations 
 
 

8.1. Conclusions of the research 
 
The approach presented in this thesis focuses on the effective application of 
computational algorithms to extract patterns and relationships in large geospatial 
data, and the visual representation of the derived information, in order to 
facilitate knowledge construction. Based on this approach to combine visual and 
computational analysis, a prototype visualization environment was developed to 
implement the different methods proposed and contribute to the analysis of large 
volumes of geospatial data. The development of the prototype involved a number 
of design issues, including a usability framework that involved users in usability 
inspection and testing at different stages of the development process. The design 
emphasized the effective use of visual variables used in the graphical 
representations to represent basic visualization tasks that were derived from a 
taxonomy of visual exploration operations. The self-organizing map (SOM) 
demonstrates interesting capabilities in features extraction, clustering, and the 
projection of the dataset. The representation of the SOM (grid) provides 
opportunities for exploring the attribute space and, when integrated with 
appropriate visual exploration tools, for supporting exploratory visualization and 
the knowledge discovery process. An important issue was to integrate the 
different representational approaches into a user interface structured to enhance 
exploration and provide more flexibility and control for spatial analysis purposes. 
This was realized with the link between the attribute space visualization based on 
the SOM graphical representations, the geographical space with maps 
representing the SOM results, and other graphics such as parallel coordinate 
plots, in multiple views. This provides alternative perspectives for the better 
exploration, evaluation and interpretation of patterns and ultimately for 
supporting knowledge construction. Effective use of visual variables used in the 
design of the graphical representations was important for facilitating knowledge 
construction. Cartographic methods were used to improve the use of colour 
(colour scheme) and representation issues. Interactive manipulation (zooming, 
rotating, panning, filtering and brushing) of the graphical representations was an 
important factor in enhancing user goal-specific querying and selection from the 
general patterns extracted to more specific user selection of attributes and spatial 
locations for exploration, hypothesis generation, explanation and knowledge 
construction, and to support the cognitive activities involved.  
 
An application with a large spatio-temporal dataset was explored. The SOM 
algorithm was used to uncover the structure, patterns, relationships and trends, 
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and to portray spatio-temporal patterns in a visual form that can allow better 
understanding of the derived structures and the geographical processes. Some 
techniques to specifically address temporal representations were explored. 
 
A goal of the research was to characterize the overall effectiveness of the 
proposed representational approaches used in the exploratory geovisualization 
environment. An empirical usability test was conducted to assess the usability and 
usefulness of the different representations as compared with the use of maps and 
parallel coordinate plots. The study assessed how users understand the 
representations, the design concepts, the ability to support specific tasks, as well 
as the extent to which they support particular user goals, and finally the overall 
effectiveness of the design of such an exploratory visual-computational 
environment. The evaluation method emphasizes exploratory tasks and 
knowledge discovery support. The test involved a representation of intended 
users and a number of basic visualization tasks derived from a taxonomy 
developed in Chapter 6. The assessment provided some insight into, and 
understanding of, the effectiveness and usefulness of the representations for 
exploratory visual analysis, interpretation and understanding of the structure in 
the dataset. The usability study conducted in Chapter 7 found that the SOM 
computational analysis, with the appropriate visual exploration tools, could 
support exploratory visualization and the knowledge discovery process. 
 
The SOM-based representation techniques for clustering (unified distance matrix, 
2D/3D projection, 2D/3D surface) were found to be appropriate for visual 
grouping and for revealing summaries and the global patterns in the data. The 
SOM component plane display was found to offer fast visual perception and was 
easy for finding relationships and understanding the patterns in the data. This 
representation was especially effective and suitable for tasks involving visual 
composition, such as associate, correlate, identify and compare. It does not 
require much effort to view the patterns or to relate different attributes in a single 
view. In the component plane display, relationships between the attributes of a 
large dataset become very apparent to users. For design purposes, this study has 
shown that information visualization techniques can be effectively integrated with 
maps and other graphics such as parallel coordinate plots in order to enhance 
visual exploration. The general strategy derived from the evaluation of the 
proposed approach is that general clustering tools are needed in geovisualization. 
From the general patterns extracted, more detailed exploration can be carried out 
using maps and other information spaces such as the SOM-based component 
plane visualization. Since the map was found more effective for visual attention 
and sequencing (for tasks such as locate, distinguish and rank), it can better be 
used to represent the results of the information extraction process. For the 
exploration of relationships and correlations, other tools such as the SOM 
component plane display can be used to effectively support visual exploration. 
 
The approach presented here provides opportunities to improve geographical 
analysis and support visual exploration and knowledge discovery in the context of 
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large geospatial datasets. One of the advantages of the SOM is that the algorithm 
is fast and effective for extracting patterns and relationships in very large 
datasets. Based on a similarity analysis, the algorithm was found to be effective in 
searching for correlations among operating variables. This can be achieved using 
the SOM component plane visualization, which enables the understanding of 
processes through visual representation, allowing several variables and their 
interactions to be inspected simultaneously. Patterns, relationships, irregularities 
and distributions can be effectively visualized.  
 
New representation forms used to visualize geospatial data such as the SOM use 
new alternative techniques to represent the attribute spaces. An important step in 
the design of such visualization tools will rely on understanding the way users 
make interpretations of the information spaces. The choice of a proper 
representation metaphor is crucial to the successful use of the tools. The link 
between the attribute space using visualization tools and maps in multiple views 
can provide multiple perspectives for exploration, evaluation and interpretation of 
patterns, and ultimately support knowledge construction. 
 
The results of the research have provided some answers to some of the questions 
put forward in geovisualization research, related to the increasing problems posed 
by the exploration of large volumes of geospatial data. Specifically, the research 
has offered insights on the specific objectives and questions presented in chapter 
1 of this thesis: 
 

1. The integration of computational and visual tools was proved to be useful 
and effective for visual exploration of patterns and relationships in large 
geospatial data. Tools for the attribute space visualization such as the SOM 
can well be integrated with the maps. 

 
2. The SOM can support visual data mining by offering effective patterns 

extraction and visualization features. 
 

3. The usability test results presented in Chapter 7 revealed that the SOM was 
generally found significantly better tool for analyzing and understanding 
patterns and relationships in data. Furthermore, each of the visual tools 
examined (map, SOM representations or parallel coordinate plot) was found 
to emphasize particular visual tasks. The SOM was found particularly useful 
for visual comparison and visual composition tasks such as associate, 
correlate, identify and compare. The map was found to be better for tasks 
involving visual attention such as locate, distinguish. These results offer 
opportunity for design of integrated visual tools in multiple views that can 
support exploratory tasks. The SOM can be used as a processing tool with 
which users can interact, visually detect patterns and relationships. The 
output of this process can better be presented using maps. 
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4. The research has also shown that non-geographic information spaces such 
as the SOM representations can be combined with geographic maps to 
improve visual interaction where the volumes of geospatial data are larges. 

 
5. An application to time related representation problems in geospatial data 

was explored. The approach examined in the thesis offers several 
representational methods (component plane display, the visualization of 
trajectories, and projections) that facilitate the detection of changes in 
spatio-temporal data. These representations were combined with maps in a 
cartographic animation design to enhance change detection. 

 
6. A task-based usability evaluation method was developed based on a 

taxonomy of visualization goals and tasks. The taxonomy was used to 
develop low-level tasks that were used to evaluate and compare the 
different representations. This evaluation method can serve in the 
assessment of any time of geovisualization environment. 

 
7. Overall the approach of combining computational and visual approaches 

was found appropriate and effective to contribute to exploratory analysis 
of large geospatial data, and to support knowledge construction, as 
proposed in figure 3.1.  

 
 

These results and answers to the research questions described above provide 
some guidelines for geovisualization design. The research shows that visual 
exploration can be enhanced by combining the attribute space and the geographic 
space visualizations. To be effective, this integration of visual tools needs to be 
done appropriately since these tools support different visual tasks. 
 
Based on the usability test results, the integration of map and other 
representations techniques such as parallel coordinate plot and the SOM-based 
visualization of the attributes space should reflect the potential of each visual tool. 
This was found in the taxonomy-based test performed in Chapter 7. The attribute 
space visualization is effective as a visual data mining data allowing the user to 
select, filter, and output results. The results of this process can be viewed in 
maps. 
 
A number of related issues were not covered within this research, and could be 
interesting for further research in the field. Some of these issues are outlined in 
the next section. 
 

8.2. Recommendations 
  
A number of further research issues related to the work presented in this thesis 
can be identified. More in depth research on the perceptual issues in the design of 
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geovisualization not examined in this research will be required since perceptual 
issues are important for the success of the geovisualization design.  
Other applications of the method can be suggested for remote sensing image 
classification, combining unsupervised learning (SOM) and supervised learning 
(learning vector quantization) to understand processes and patterns during the 
classification tasks for complex image data. 
 
We suggest a number of research goals that need to be further explored. 
 

8.2.1. Issues related to visual perception and visual information 
processing 

 
For new geovisualization designs, it is necessary to assess this capability of the 
graphical representations, since they use new representation forms, metaphors 
and representational spaces. Most geovisualization tools, however, are not 
grounded on perceptual theory in the design, and no framework for assessing 
different aspects of perception of the graphical representations exists for 
geovisualization design. 
 
The most dominant research into understanding visualizations is Bertin’s work 
(1967).A wide range of research work has been conducted on encoding, 
perception and the representation of graphs (Cleveland and McGill 1984; 
Cleveland and McGill 1986; MacEachren 1995). In cartographic visualization, a 
model of how insight is provided to geographers and earth scientists was 
presented (MacEachren and Ganter 1990). 
 
To study the effectiveness of visualization environments, it is useful to understand 
the process of human perception. Understanding the perception of certain visual 
properties can lead to their effective use in visualization design. Some 
visualization tasks or functionalities may require more time or more human 
cognitive processing effort than others. A framework is needed that can guide the 
design of visualization, taking into consideration the perceptual theories. The use 
of visual variables for the perception of categories or clusters, including the effect 
of colour and size in a number of forms and combinations, is an important aspect 
to investigate in geovisualization research. 
 

8.2.2. Issues on remote sensing image classification 

 
In remote sensing, new data acquisition techniques offer tremendous 
opportunities that result in more and more geospatial data. New high-resolution 
sensing systems (e.g., IKONOS), synthetic aperture radar (SAR) and laser-based 
LIDAR systems can achieve spatial resolution down to 1 m and to the sub-metre 
level. In addition to spatial resolution, remote sensing systems are also improving 
with respect to spectral resolution. New hyperpectral sensor systems such as the 
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airborne visible infrared imaging spectrometer (AVIRIS) capture over 200 
electromagnetic bands, generating a very detailed spectral signature for each 
pixel. These advances are creating new applications of remote sensing as well as 
challenges in information extraction from such large amounts of data and imagery 
files. New approaches are needed for uncovering and understanding the 
geographical patterns or processes. 
 
Artificial neural networks have been applied in a number of studies on remote 
sensing image classification. These studies have mostly revealed that the neural 
network is superior to conventional classifiers, often recording overall accuracy 
improvements in the range of 10 to 20 percent (Liu et al. 2001). Liu et al. (2001) 
provide three main reasons why increasing application of neural networks in 
remote sensing classification can produce more accurate results than conventional 
approaches: 

1. Neural network classifiers, which make no a priori assumption about the 
data distributions, are able to learn non-linear and discontinuous patterns in 
the distribution classes. 

2. Neural networks can readily accommodate collateral data such as textural 
information, slope, aspect and elevation. 

3. Neural networks are quite flexible and can be adapted to improve 
performance for particular problems. 

 
In particular, experiments on the SOM in remote sensing image classification 
demonstrated rapid convergence, and showed good results compared with other 
methods (Gahegan and Takatsuka 1999; Luo and Tseng 2000; Evangelou et al. 
2001). This is due to its ability to capture the probability distribution of the inputs. 
The SOM has been implemented for classification, including hyperspectral image 
analysis, in a number of image processing software packages. 
 
Although the use of artificial neural networks and particularly SOM in remote 
sensing image classification has been successful, there are still a number of 
important issues in their applications. A better understanding of the training 
parameters (number of iterations, training time, neighbourhood selection, etc.) 
can support the understanding of the classification process and improve results.  
 
The approach proposed in this thesis for combining computational and visual 
support for the exploration of large geospatial data, can be used to develop 
techniques to support the understanding and the manipulation of training 
parameters used to achieve results in remote sensing image classification. 
Visualization can provide insight into the workings of a network by transforming 
these parameters into more easily understood visual representations (Craven and 
Shavlik 1991). Some of the most recent work in this area is that of using a family 
of artificial neural networks (Gopal et al. 2001), known as fuzzy adaptive 
resonance theory (ART) networks. 
 



 159

The importance of spatial data mining is growing with the increasing incidence 
and importance of large geospatial datasets, including remote sensing images. 
The SOM (unsupervised learning) can be combined with learning vector 
quantization (LVQ), a supervised learning algorithm that can be seen as the 
supervised version of the SOM, in a framework for spatial data mining and 
visualization in order to improve geospatial analysis of complex remote sensing 
image data. The unsupervised SOM can first be used to cluster regions, and 
constructs a topology-preserving representation of the statistical distribution of all 
input data; then the LVQ (supervised) can be used to combine the outputs 
generated by the SOM training to tune this representation and better discriminate 
between pattern classes. 
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Appendix A1. Random numbers of task 
presentation  
(20 participants and 10 tasks) 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
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Appendix A2. Random numbers for the task 
presentation and the graphical representations 
used for each task 
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Appendix B1. Logging sheet and effectiveness / 
user performance form (used by the test 
administrator) 
 
Date: ____________  Logged by: _________________ Participant number: _______ 

Start time: ________  End time: ________________ 
 

Task  Representation 
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Correctness of 
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Time 
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Abbreviations 
 
 
ANN Artificial Neural Network 

ART Adaptive Resonance Theory 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

CDC Centers for Disease Control and Prevention 

EDA Exploratory Data Analysis 

ENVI Environment for Visualizing Images, from RSI (Research 
Systems Inc.) 

FAO Food and Agriculture Organization of the United Nations 

FEWS Famine Early Warning System 

GDP Gross Domestic Product 

GIS Geographic Information Systems 

GIScience Geographic Information Science 

GPS Global Positioning System 

HCI Human-Computer Interaction 

ICA International Cartographic Association 

ITC International Institute for Geo-information Science and Earth 
Observation 

KDD Knowledge Discovery in Databases 

LIDAR LIght Detection And Ranging 

LVQ Learning vector Quantization 

MDMV Multidimensional multivariate visualization 

MDS Multidimensional Scaling 

NDVI Normalized Difference Vegetation Index 

PCA Principal component analysis 

PCP Parallel Coordinate Plot 
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SAR Synthetic Aperture Radar 

SOM Self-Organizing Map 

UCD User-Centered Design 

U-matrix Unified Distance Matrix 

USAID United State Agency for International Development 
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Summary 
 
Due to the advances in data acquisition techniques, volumes of geospatial data 
are rapidly increasing and the structure of datasets is becoming more complex. 
These large volumes of data are difficult to process with common geospatial 
analysis techniques. The extraction of patterns and the discovery of new 
knowledge may be difficult with such large and complex datasets, as certain 
patterns may remain hidden. One of the major research areas in geovisualization 
is the exploration of such complex geospatial data for the purpose of uncovering 
and understanding patterns or processes. New approaches in spatial analysis and 
visualization are needed to represent such data in a visual form that better 
stimulates pattern recognition and hypothesis generation, allows better 
understanding of structures and processes, and supports knowledge construction. 
 
Information visualization and abstract information spaces are increasingly used as 
a means to visualizing such complex data. One attempt has been the use of 
artificial neural networks as a technology that is especially useful in situations 
where the numbers are vast and the relationships are often unclear or even 
hidden. In particular, the self-organizing map (SOM) neural network is often used 
as a means of organizing complex information spaces, and for the extraction of 
patterns and the creation of abstractions where conventional methods may be 
limited.  
 
In this research, we explore the integration of computational and visual 
approaches, to contribute to the analysis of complex geospatial data. 
Computational analysis based on the SOM is used in a framework for data mining, 
knowledge discovery and spatial analysis, for uncovering the structure, patterns, 
relationships and trends in the data. Graphical representations supported by 
information visualization techniques and cartographic methods are then used to 
portray derived structures and patterns in a visual form that allows better 
understanding of the structures and the geographic processes. Different 
techniques for representation, visualization and interaction are combined for the 
better exploration of patterns and relationships in the data. The framework is 
informed by current understanding of the effective application of visual variables 
for cartographic and information design, by developing theories on interface 
metaphors for geospatial information displays, and by previous empirical studies 
of map and information visualization effectiveness. It is used to facilitate the 
knowledge construction process by supporting user’s exploratory tasks in a 
number of ways, including a scenario for better use of the representational 
spaces. The ultimate goal is to support visual data mining and exploration, and 
gain insights into underlying distributions, patterns and trends, and thus 
contribute to enhancing the understanding of geographic processes and support 
knowledge construction. 
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The framework guided the initial design decisions of a prototype exploratory 
geovisualization environment. This design is based on a user-centred approach to 
structure an interface that integrates several representation forms, and 
visualization and interaction techniques, along with cartographic methods for the 
effective use of visual variables with which the visualization is depicted. The 
visualization environment incorporates several graphical representations of SOM 
output. These include a distance matrix representation, 2D and 3D projections, 
2D and 3D surfaces, and component plane visualization with which correlations 
and relationships can be easily explored. Multiple views are used to 
simultaneously present interactions between several variables over the space of 
the SOM, maps, and other graphics such as parallel coordinate plots. 
 
Some applications of the method are explored with different datasets. First a 
simple case of the exploration of a known dataset related to socio-economic data 
in a region of the Netherlands (the Overijssel) is used to describe the basic 
graphical representations. An example case of the exploration of complex 
attributes relationships is examined with a dataset containing complex 
relationships between geography and economy development, and with which a 
number of hypotheses are tested. With the user interface development, a specific 
case of the exploration of a large database on health statistics on Africa is 
explored to investigate the options of the interface, and the integration of the 
different graphical representations. In addition, a particular case of the 
exploration and representation of spatio-temporal patterns is examined with a 
dataset related to the production of food (cereals) in Africa over the last 40 years. 
The objective with the later case is to represent and visualize underlying space-
time dynamics, and interactions between several variables. Some spatio-temporal 
representation techniques are proposed to support the exploration of the time-
related geographic trends and patterns, and allow visual change detection in such 
processes. They include the use of component plane visualization, the 
visualization of trajectories, and projections using the time dimension. 
 
A usability evaluation methodology based on a taxonomy of exploratory tasks and 
visualization operations is developed to assess the effectiveness of the proposed 
exploratory geovisualization environment. A subsequent empirical usability testing 
is conducted and involves different options of map-based and interactive 
visualizations of a SOM output with the exploration of a socio-demographic 
dataset. The study emphasizes the visual exploration and knowledge discovery 
processes.  
 
The usability test results and answers to the research questions provide some 
guidelines for geovisualization design that integrate different representations such 
as maps, parallel coordinate plots and other information visualization techniques. 
The research shows that visual exploration can be enhanced by combining the 
attribute space and the geographic space visualizations. To be effective, this 
integration of visual tools needs to be done appropriately since these tools are 
found to support different visual tasks. For visual grouping and clustering, visual 
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analysis and comparison of the patterns in the data, and for revealing 
relationships, the SOM was found more effective than the map.  
 
The usability test results suggest that the integration of map and other 
representations techniques such as parallel coordinate plot and the SOM-based 
visualization of the attributes space should reflect the potential of each visual tool. 
The attribute space visualization is effective as a visual data mining tool allowing 
the user to select, filter, and output results. The results of this process can be 
viewed in maps, since the map was generally a better representation for tasks 
that involve visual attention and sequencing (locate, distinguish, rank). 
 
Keywords: Geovisualization, Information visualization, Self-organizing map, 
Spatial analysis, Data mining, Knowledge discovery, Exploratory visualization, 
Visual exploration, Knowledge construction. 



 



 191

Samenvatting (Summary in Ducth) 
 
Door vooruitgang op het gebied van gegevensinwinningstechnieken neemt de 
hoeveelheid en complexiteit van de beschikbare ruimtelijke gegevens enorm toe. 
Deze grote hoeveelheden zijn moeilijk te verwerken met behulp van de huidige 
ruimtelijke analyse technieken. Doordat sommige patronen verborgen zullen 
blijven is de extractie van nieuwe kennis uit dergelijke datasets lastig. Een van de 
belangrijkste onderzoeksdoelen van de geovisualisatie is de exploratie van 
dergelijke complexe ruimtelijke gegevenssets met als doel het ontdekken en 
begrijpen van aanwezige patronen of processen. Een nieuwe aanpak in de analyse 
en visualisatie is nodig om de gegevens zo visueel te representeren dat dit leidt 
tot patronenherkenningen, het formuleren van hypothesen stimuleert, het beter 
begrijpen van structuren en processen bevordert, en de kennis doet toenemen. 
  
Informatie visualisatie en abstracte informatieruimtes worden steeds meer 
toegepast om dergelijke complexe gegevens te visualiseren. Een van de 
mogelijkheden is het gebruik van kunstmatige neurale netwerken als een 
technologie die met name nuttig is in situaties waarin de gegevenshoeveelheid 
enorm  is en de relaties in de dataset  onduidelijk of zelfs verborgen zijn. In het 
bijzonder wordt de zelforganiserende kaart (self-organizing map = SOM) gebruikt 
om complexe informatieruimtes te organiseren, om patronen te extraheren en 
voor de aanmaak van (visuele) abstracties, waar conventionele methodes te 
beperkt zijn.  
 
In dit onderzoek staat de integratie van de computationele en visuele benadering 
centraal om zo bij te dragen aan de analyse van complexe grote hoeveelheden 
ruimtelijke gegevens. De computationele benadering is hier gebaseerd op de 
SOM. Deze wordt gebruikt voor data mining, ruimtelijk analyse, het ontrafelen 
van structuren, patronen, relaties en trends in de data, en de ontdekking van 
kennis en. Grafische representaties vervolgens gebruikt om afgeleide structuren 
en patronen weer te geven in een visuele vorm die het beter begrijpen van de 
structuren en geografische processen toelaat. Hierbij spelen informatie 
visualisatietechnieken en cartografische methodes een belangrijke rol. 
Verschillende technieken voor representatie, visualisatie en interactie zijn in een 
prototype gecombineerd voor een betere toegankelijkheid van (verborgen) 
patronen en relaties in de data. De bovenstaande benadering is gefundeerd op de 
huidige kennis op het gebied van de toepassing van de cartografische 
regelgeving, informatie ontwerp, interface metaforen en op empirische studies 
naar het gebruik van de effectiviteit van de diverse weergave methoden zodat 
exploratieve taken worden ondersteund. Het uiteindelijke doel is de ondersteuning 
van een beter begrip van geografische processen en de verrijking van kennis door 
het interactieve aanbieden van gereedschappen ter exploratie van de gegevens.  
 
De eerder genoemde aspecten vormde de basis voor het initiële ontwerp van het 
prototype van een exploratieve geovisualisatie omgeving. Dit ontwerp is 
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gefundeerd op een zogenaamde gebruikergeoriënteerde benadering zodat er een 
geschikte interface gemaakt kon worden. Deze interface omvat verschillende 
visuele representatie vormen en interactie technieken die een effectief gebruik 
van cartografische methoden en technieken mogelijk maakt. Onder de visuele 
representaties bevinden zich verschillende grafische representaties van SOM 
uitvoer. Dit zijn een afstandsmatrix, 2D en 3D projecties en 2D en 3D surfaces, 
een componenten vlak. Daarnaast zijn ook standaard kaarten en diagrammen 
zoals de parallelle coördinaten plot beschikbaar zodat correlaties en relaties snel 
bekeken kunnen worden. Hiertoe zijn meerdere aan elkaar gekoppelde vensters 
gebruikt, waarbij interactie in een venster onmiddellijk leidt tot reactie in de 
grafische representaties in de andere vensters 
 
Het functioneren van het prototype is getoetst aan de hand van verschillende in 
complexiteit toenemende datasets. Als eerste is gewerkt met een eenvoudige en 
bekende dataset met socio-economische gegevens van de provincie Overijssel om 
de grafische SOM representaties te beschrijven. Een meer complexe dataset met 
gegevens per land over de economische ontwikkeling en de geografie is gebruikt 
om een aantal werk hypotheses te toetsen. Ten behoeve van een verdere 
ontwikkeling van de interface van het prototype en de verdere integratie van 
verschillende grafische representaties is gebruik gemaakt van een grote database 
met gezondheidsstatistieken van Afrika. Tenslotte is er nog een dataset van de 
voedselproductie over de laatste veertig jaar in Afrika gebruikt om de toepassing 
van het systeem voor de exploratie van ruimte-tijd gegevens te beoordelen. Hier 
worden tevens nieuwe representatie methoden voorgesteld die de exploratie van 
dergelijke tijdsreeksen kunnen vereenvoudigen en zijn toegespitst op het 
herkennen van veranderingen. Naast de componenten vlakken zijn hiertoe ook 
tijdspaden gebruikt. 
 
Een bruikbaarheidsonderzoek gebaseerd op een taxonomie van exploratieve taken 
en visualisatie operaties is ontwikkeld om de effectiviteit van de voorgestelde 
geovisualisatie omgeving te toetsten. Hiertoe is een empirische gebruikerstest 
uitgevoerd op basis van exploratieve taken waarbij verschillende kaart en SOM 
gebaseerde visualisaties zijn gebruikt.  
 
De testresultaten en antwoorden op de onderzoeksvragen geven nieuwe 
richtlijnen voor het ontwerp van een geovisualisatie omgeving waarbij 
verschillende representaties zoals kaarten, parallel coördinaten plots en informatie 
visualisatie vormen geïntegreerd moeten worden. Het onderzoek toont aan dat de 
visuele exploratie verbeterd kan worden door de combinatie van de attribuut 
ruimte met de geografische ruimte. Om effectief te zijn moet deze integratie wel 
volgens bepaalde richtlijnen worden uitgevoerd omdat ieder van de representaties 
in de verschillende ruimtes geschikt blijken te zijn voor bepaalde taken. Zo bleek 
voor clustering en visuele analyse, het vergelijken van patronen in de gegevens 
en voor het tonen van relaties de SOM representatie beter te functioneren dan de 
kaart. De test resultaten suggereren dat de integratie van de verschillende 
representaties overeen moeten komen met de potentie van ieder van de 
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gereedschappen. De visualisatie van de attribuutruimte is effectief als een visuele 
data mining gereedschap die de gebruiker laat selecteren, filteren. Dit resultaat 
kan vervolgens bekeken worden in kaarten omdat deze uitblinkt in visueel 
overzicht en taken als lokaliseren, onderscheiden en ordenen. 
 
Trefwoorden: geovisualisatie, informatie visualisatie, zelf-organiserende kaart, 
ruimtelijke analyse, data mining, exploratieve visualisatie, kennis constructie. 
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