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On Nash equilibria of a competitive location problem *

M. Elena Sáiz
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Eligius M.T. Hendrix
Wageningen Universiteit and Universidad de Málaga, Eligius.Hendrix@wur.nl
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The location decision of a facility for two competing chains in a new planar market is described by a Hu�-like
attraction model. This means that the market share capture is given by a gravity model. The pro�t that can
be reached depends on the actions of the competitor. The main questions are: what are the possible Nash
equilibria in such a situation, how are they characterised and by which computational methods can they be
determined?

Key words : Competitive location, continuous optimisation, Branch-and-Bound, Nash equilibrium,
bi-matrix game

1. Introduction
Many factors must be taken into account when locating a new facility which provides a new good
or service to the customers of a given area. One of the most important points is the existence of
a competitor that enters the market at the same time. In that case, the new facility will have to
compete for the market.
Many competitive location models are available in the literature, see for instance the survey

papers Eiselt and Laporte (1996), Eiselt et al. (1993), Plastria (2001) and the references therein.
They vary in the ingredients which form the model. For instance, the location space may be the
plane, a network or a discrete set. Demand is usually supposed to be concentrated in a discrete set
of points, called demand points and in our case the demand quantities are assumed to be known.
The patronising behaviour of the customers must also be taken into account, since the market

share captured by the facilities depends on it. In some models customers select among the facilities
in a deterministic way, i.e, the full demand of the customer is served by the facility to which he/she
is attracted most. In other cases, the customer splits his/her demand among more that one facility,
leading to probabilistic patronising behaviour. In the model under study we will consider both
types of behaviour. Usually attraction depends on distance to and quality of the facility. Even the
simplest case of a new facility with �xed quality locating in continuous space, may lead to a hard
to solve multi-extremal problems. Recent research even �nds the global optimum where two �rms
are competing in a leader-follower Stackelberg model, see Sáiz et al. (2009).
Few research has been done on the kind of problems with simultaneous decisions on location and

quality in continuous space. For a single competing facility, the problem has been studied under
deterministic customer behaviour in Drezner (1994), Plastria (1997), using attraction functions of
gravity type, and in Plastria and Carrizosa (2004), using di�erent kinds of attraction functions.
For probabilistic customer behaviour, the problem has been studied in Drezner and Drezner (1994),

*This work has been supported by the Spanish Ministry of Science and Innovation through grants
SEJ2005/06273/ECON and TIN2008-01117 and grant P08-TIC-3518 Junta de Andalucía. Eligius Hendrix is a fellow
of the Spanish "Ramon y Cajal" contract program, co-�nanced by the European Social Fund.
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where the location problem is solved for a wide range of quality values. For the current study we
will focus on the rational behaviour of suppliers with respect to their choice on the quality of the
new facility to be located.
In this paper, we consider a facility location problem on the plane, with given demand. We look

at both cases where behaviour of customers is either probabilistic or deterministic, based on an
attraction function depending on both the location and the quality of the facility to be located. We
study the situation where there are two competitors, �rm 1 and �rm 2 that decide on location and
quality of a new facility in a new market. One can consider the models as a two stage game, where
on the lower level one chooses the quality and on more strategic level suppliers choose the location.
We describe the models in Section 2, where notation is introduced and both the deterministic and
probabilistic model are given.
Our �rst question is under which circumstances the models have Nash equilibria on choice of

quality. We deal with that in Section 3. As co-location (locating at the same place) is a natural way
to compete, our second question is whether if equilibria on the quality level exist, do Nash equilibria
occur apart from co-location? What characterises these equilibria and how can we determine them?
We deal with this question in Section 4 for both models. Conclusions and future work are discussed
in Section 5.

2. Description of the problem
The following notation is used to describe the models under study:

Indices

i index of demand points, i = 1, . . . , n

Variables
x = (x1, x2) location of �rm 1, y = (y1, y2) location of �rm 2
q1 quality facility �rm 1, q2 quality facility �rm 2

Data
pi location of the i-th demand point (customer)
wi demand (or buying power) at pi

S location space where the leader and follower will locate the new facility

Miscellaneous
di(z) distance between pi and z = x or z = y
c1(), c2() cost functions for �rm 1 and �rm 2 with respect to

quality. Usually they are convex.
Mi(x, y, q1, q2) market share of customer i obtained by �rm 1

In Mi we �nd the big di�erence in the probabilistic and deterministic model. In the probabilistic
model Mi takes mostly a value between 0 and 1, as the customer will get part of the demanded
service from �rm 1 and part from �rm 2. In the deterministic or binary model, the customer will
choose between either of them, unless they have exactly the same attraction where they both supply
half of the demand. The Hu� based probabilistic model is described by

Mi(x, y, q1, q2) =
q1di(y)

q1di(y)+ q2di(x)
(1)

and capturing all demand Mi(x, y, q1, q2) = 1 being the only one at the customer front door, i.e.
x = pi and y 6= pi. In the extreme case of co-location at the speci�c customer, x = y = pi, then
Mi(x, y, q1, q2) = q1

q1+q2
.

For the binary (deterministic) model, the customers usually chose one of the facilities; that one
which is most attractive. This can be described as follows.

Mi(x, y, q1, q2) = 1 if q1di(y) > q2di(x) (2)
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and 0 in most other cases. In the exceptional case that q1di(y) = q2di(x) they take an equal share
Mi(x, y, q1, q2) = 1

2
, called the braking tie rule. In the case of co-location at the speci�c customer,

x = y = pi, then we focus on the consequences of two variants. In one variant we stick to equation
(2) and in the other variant we consider a more continuous behaviour with respect to the breaking
tie rule taking Mi(x, y, q1, q2) = q1

q1+q2
.

The pro�t function of �rm 1 is given by

Π1(x, y, q1, q2) =
n∑

i=1

wiMi(x, y, q1, q2)− c1(q1). (3)

As the market share sums to 1 for each customer, the pro�t function of �rm 2 is given by

Π2(x, y, q1, q2) =
n∑

i=1

wi(1−Mi(x, y, q1, q2))− c2(q2). (4)

The maximisation of the pro�t of one �rm, when the decision of the other is given is typically a
global optimisation problem as studied in Fernández et al. (2007). In this paper the research question
is what are the possible Nash equilibria and how can we determine them. For this we �rst have to
de�ne the Nash equilibrium in this context. Decision vector (x∗, y∗, q∗1 , q∗2) is a Nash equilibrium if

x∗, q∗1 ∈ argmaxΠ1(x, y∗, q1, q
∗
2) ; y∗, q∗2 ∈ argmaxΠ2(x∗, y, q∗1 , q2). (5)

In the symmetric case where both �rms have the same cost function to determine the quality, an
obvious equilibrium is to co-locate, such that market share as well as pro�t is equal for the �rms.
The question is what happens if the �rms are not equal. We �rst focus on the question of Nash
equilibria with respect to the choice of the quality of the facilities. Then in Section 4, the next
question is whether equilibria exist on the decision of locating given the equilibria on the level of
quality choice.

3. Optimum quality levels
The optimum values of investment in the quality qj ful�l �rst order conditions. Putting the partial
derivative to zero for �rm 1, ∂Π1

∂q1
= 0 leads for the probabilistic model to the expression

∑
wi

q2di(x)di(y)
(q1di(y)+ q2di(x))2

=
dc1(q1)

dq1

(6)

where the sum only applies for these i where pi 6= x, y. It means that marginal cost in investment of
quality should equal marginal gain in market share. For the deterministic model many discontinuities
are involved when customers switch facility.
For the analysis we will consider two di�erent cost functions: the basic linear case where

cj(qj) = αjqj

and the quadratic case where

cj(qj) = αjq
2
j .

We analyse 4 di�erent cases. First we condsider what are optimum quality investments if the two
�rms do not co-locate for the two models in Sections 3.1 and 3.2. This is followed by studying
optimum choices in case of co-location for the two models in Sections 3.3 and 3.4.
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3.1. No co-location, probabilistic model
The �rst order conditions (6) for the quality choice are usually not easy to solve analytically, but
for the linear and quadratic cost models, expressions can be found. The linear cost functions gives
as �rst order conditions

q2

∑
pi 6=x,y

wi

di(x)di(y)
(q1di(y)+ q2di(x))2

= α1 ; (7)

from which can be derived that q∗1α1 = q∗2α2, i.e. the cost of investment in quality is the same in the
optimum. Elaboration of this equality in (7) gives as optimum levels.

q∗1 = α2

∑
wi

di(x)di(y)
(α2di(y)+α1di(x))2

q∗2 = α1

∑
wi

di(x)di(y)
(α2di(y)+α1di(x))2

. (8)

Similarly, for quadratic costs, c1(q1) = α1q
2
1, c2(q2) = α2q

2
2 one can derive again from (6) that the

optimum cost levels equal; α1q
2
1 = α2q

2
2. From this we have the explicit expressions

q2
1 =

1
2

√
α2

α1

∑
wi

di(x)di(y)
(
√

α2di(y)+
√

α1di(x))2

q2
2 =

1
2

√
α1

α2

∑
wi

di(x)di(y)
(
√

α2di(y)+
√

α1di(x))2
(9)

.

Example 1. Demand is concentrated in four points with w1 = 4,w2 = 7,w3 = 6,w4 = 10, de-
mand points are p1 = (1,1), p2 = (3,2), p3 = (1,2), p4 = (3,1). The �rms are located at the high
demand points, x = p4 and y = p3. The resulting optimum quality levels are q1 = 2.12, q2 = 1.06 with
corresponding market capture M = (0.5,0.8,0,1). The resulting pro�t Π1 = 15.5 and Π2 = 7.3.
If we now change the cost functions to quadratic ones, c1(q1) = q2

1, c2(q2) = 2q2
2, the optimum

quality levels are q1 = 1.08, q2 = 0.76. The resulting pro�t Π1 = 15.67 and Π2 = 9.01.
The consequence of explicit expressions is that we now also have expressions for the resulting

market share. Substituting (8) for the linear model into (1) gives

Mi(x, y, q∗1 , q
∗
2) =

α2di(y)
α2di(y)+α1di(x)

(10)

and for the quadratic cost substituting (9) gives

Mi(x, y, q∗1 , q
∗
2) =

√
α2di(y)√

α2di(y)+
√

α1di(x)
. (11)

The most important is that this leads to explicit expressions for the pro�t functions. Substitution
of (10) and (8) or (9) in (3) gives for the linear case

Π1(x, y, q∗1 , q
∗
2) = α2

2

∑
wi

di(y)2

(α2di(y)+α1di(x))2
if x 6= y. (12)

and for the quadratic cost function

Π1(x, y, q∗1 , q
∗
2) =

∑
wi

α2di(y)2 + 1
2

√
α1α2di(x)di(y)

(
√

α2di(y)+
√

α1di(x))2
if x 6= y. (13)

Given the optimum levels of quality, the next question is what are the Nash equilibria in terms of
location. We can use the pro�t functions, where Π2 is symmetric to Π1. We are dealing with a kind
of bi-level program where given locations the optimum quality levels are generated and substituted.
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3.2. No co-location, deterministic model
The analysis is not simple for the binary model due to discontinuities in Mi with respect to the
location vectors x, y and quality level. Intuitively, one invests in quality up to the moment the
market share gain is smaller than the marginal cost of investment. It is convenient now to de�ne
index sets with respect to the captured customers. Let I1(x, y, q1, q2) be the index set of captured
demand points by 1, I2(x, y, q1, q2) the index set of demand points captured by 2 and II(x, y, q1, q2)
the inde�nite one, where they break tie and do �fty-�fty.

I1(x, y, q1, q2) := {i|q1di(y) > q2di(x)} (14)
II(x, y, q1, q2) := {i|q1di(y) = q2di(x)}

The concept of the index sets is illustrated in Figure 1 and Figure 2. One can observe the patronising
behaviour where customers choose for one of the facilities. By increasing the quality, a company
can attract customers that are relatively far away. Whether this is pro�table depends on the cost
functions c.

Figure 1 Patronising behaviour. Left �gure: q1 = 1 (facility x, blue); q2 = 2 (facility y, red); Right �gure: q1 = 2; q2 = 1

Figure 2 Patronising behaviour. Left �gure: q1 = 1 (facility x, blue); q2 = 2 (facility y, red); Right �gure: q1 = 2; q2 = 1

First of all, more clear than in the probabilistic model is that the maximum market capture is∑
wi. Therefore, the values of the quality qj should be situated in the range 0≤ qj ≤ c−1

j (
∑

wi).
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If no co-location takes place, locating at a demand point leads to capturing its full demand. Let
us focus on one (last) demand point pi which �rm 1 and 2 want to concur. The other demand points
are already divided and for that �rm 1 has reached q′1 and �rm 2 q′2. Firm 1 wants to set q1 > di(x)

di(y)
q2

and is prepared to invest additionally at most wi and �rm 2 wants to set q2 > di(y)

di(x)
q1. No Nash

equilibrium is reached. Both �rms will set their quality ε more up to the increase in investment
costs cj(qj)−cj(q′j) = wi. At that moment the relatively cheaper �rm (or being closer to the demand
point) let say again �rm 1, is going to a higher level capturing all demand wi. This is not optimal for
the more expensive �rm 2 setting again q2 = q′2. This makesd �rm 1 decrease the necessary quality,
where �rm 1 starts to invest again. This means no stable Nash equilibrium exists.

3.3. Co-location, probabilistic model
In the case of co-location, both competitors locate at the same point x = y. For the attraction this
means that di(x) = di(y). This gives in the probabilistic model Mi = q1

q1+q2
. An interesting question

is what this means for the optimum quality level in case c1 6= c2. Let us consider the basic linear
case where Exercising with the �rst order conditions (6) gives optimum quality levels

q∗1 =
α2

∑
i wi

(α1 +α2)2
; q∗2 =

α1

∑
i wi

(α1 +α2)2
. (15)

For the quadratic cost function cj(qj) = αjq
2
j , �rst order conditions give

q2
1 =

√
α2

α1

×
∑

i wi

2(
√

α1 +
√

α2)2
; q2

2 =
√

α1

α2

×
∑

i wi

2(
√

α1 +
√

α2)2
. (16)

The optimum costs are the same for both �rms. In the linear case c1(q∗1) = c2(q∗2) = α1α2
(α1+α2)2

∑
i wi

and for the quadratic cost function c1(q∗1) = c2(q∗2) =
√

α1α2

2(α1+α2)

∑
i wi. the market share di�ers for

both �rms. In the linear case, Mi = α2
α1+α2

. This means that if �rm 1 is the cheapest, it obtains more
pro�t. To be exact for the linear cost function

Π1 =
α2

2

(α1 +α2)2

∑
i

wi if x = y. (17)

and for the quadratic cost function

Π1 =
∑

wi

α2 + 1
2

√
α1

(
√

α2 +
√

α1)2
if x = y. (18)

Is it rational to co-locate? For instance if we have one demand point, or all demand is concentrated
around it, this seems natural. Moreover, notice that after deciding to co-locate, the set of optimum
solutions x∗, y∗ is the complete plane. Let us consider the case of two demand points p1, p2 with
corresponding demand w1,w2.
Example 2. Let w1 = 10 and w2 = 17. Consider the linear cost model with α1 = 1 and α2 = 2.

If both �rms co-locate they both have a quality cost of c1(q∗1) = c2(q∗2) = 2
9
27 = 6 and the pro�t is

Π1 = 4
9
27 = 12 and Π2 = 1

9
27 = 3.

For this data, the Nash equilibrium is (x, q1) = (p2,0) and (y, q2) = (p1,0) giving Π1 = 17 and
Π2 = 10, because this is the best for both; none of the �rms has any gain to deviate from that.
Moreover, in this two point case, the exact locations p1, p2 do not matter. The decision to co-locate
depends heavily on the cost and demand data of the instance; if we double demand at both points,
it is better for �rm 1 to co-locate; its pro�t becomes Π1 = 24. Similarly, if �rm 1 could decrease cost
to α1 = 0.5, it also becomes better for it to co-locate giving Π1 = 17.24
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3.4. Co-location, deterministic model
Let us now consider the case of co-location, not at a demand point pi. This means that market
capture is either 0, 1 or 1

2
. In the non-symmetric case where c1 6= c2 (let �rm 1 again be the cheaper),

this leads to a situation where we don't have a Nash equilibrium. Having the same level q1 = q2 is
not an equilibrium, as both �rms can gain half the market share by increasing the quality by a very
small amount ε. Having q1 > q2 > 0 neither is, as the loosing �rm 2 will prefer not to make any costs
and goes for q2 = 0. That leads to a nonoptimal strategy for �rm 1, etc. One can observe now that
a model where co-location at a demand point gives deterministic patronising according to equation
(2), does lead to a model without any Nash equilibrium in terms of quality choice following the
same reasoning.
The last case where a Nash equilibrium might exist is in the smoothed variant where the market

share of the point x = y = pi where both facilities are located is divided proportionally. Consider
again q1 > q2 with a "small" value for q1. Now �rm 2 gets a sales of wi

q2
q1+q2

with a small investment
q2. The linear model gives an optimum close to the earlier result of (15)

q∗1 =
α2wi

(α1 +α2)2
; q∗2 =

α1wi

(α1 +α2)2
. (19)

Notice that an equilibrium does not exist here for α1 = α2, due to the discontinuity of reaching half
of the rest of the market by increasing the level a bit. So, the deterministic model has only a quality
equilibrium for the nonsymmetric case, co-locating at one of the demand points. Notice that this
is most attractive for the more expensive �rm at a highest demand point. Keeping the situation
α1 < α2 gives payo�

Π1 =
α2

2

(α1 +α2)2
wi +

∑
j 6=i

wj,Π2 =
α2

1

(α1 +α2)2
wi if x = y = pi. (20)

Concluding, the deterministic model has a di�erent nature than the probabilistic model from the
point of view of Nash equilibria. Only in the second variant when both �rms locate at a point with
highest demand, a Nash equilibrium exists, where the payo� is given by (20).

4. Location equilibria
In Section 3 we found expressions for the optimum level of quality investment q∗1(x, y), q∗2(x, y). For
the probabilistic model using a linear and quadratic cost function these are explicit like in (12) and
(13). For the deterministic model, we found that only co-location at a demand point may give a
stable result. As the more expensive �rm wants to reach the highest pro�t, it locates at a point with
highest demand. The next question is to �nd the Nash equilibria given the resulting pro�t functions
for the probabilistic model.

4.1. Nash locations probabilistic model
A usual procedure is to iterate in a local search fashion; given location of y we optimise over x, then
we optimise over y again etc. In our case, the pro�t (payo�) to be optimised is a global optimisation
problem. We focus on the two cases we derived in Section 3. The speci�c subproblems to be solved
are the following. Given total demand

∑
wi, cost coe�cient vector a, and location of competitor v

max
u

π(u) =

{
a2

2

∑
wi

di(v)2

(a2di(v)+a1di(u))2
if u 6= v

a2
2

(a1+a2)2

∑
wi if u = v

(21)

for the linear cost function and

max
u

π(u) =


∑

wi
α2di(v)2+ 1

2

√
α1di(u)di(v)

(
√

α2di(v)+
√

α1di(u))2
if u 6= v

a2+ 1
2

√
a1

(
√

a2+
√

a1)2

∑
wi if u = v

(22)
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for the quadratic cost function.
Problem (21) is a Global Optimisation problem as illustrated in Figure 4.1. We developed a speci�c

Branch-and-Bound procedure where upper bounds are based on interval considerations like in Sáiz
et al. (2009). Such an algorithm guarantees that we reach the global optimum wiht a prede�ned
accuracy. However, the results for all instances show that the optimum is attained in demand points.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
2

4

6

8

10

12

Figure 3 Level of payo� of �rm 1 of an instance with 100 random demand points and �rm 2 is already located

The consequence of this result is that it is feasible to enumerate all demand points as candidates.
One can take the value or co-location if the oponent is met as given in (21). This operation re-
quires k ∗n function evaluations, where k is the number of iterations needed to converge to a Nash
equilibrium.
Alternatively, one can also do a full enumeration. In a similar recent study, Sáiz and Hendrix

(2008), a 2 level game required all possible con�gurations to be enumerated and compared to detect
Nash equilibria. Alternatively, also a local search approach was proposed which always converged
to a Nash equilibrium, where due to symmetry, several may exist.
In our case, the result of the calculation is a bi-matrix game, where �rm 1 is maximising over the

columns of a payo� matrix V 1 and �rm 2 is maximising over the rows of a payo� matrix V 2. First of
all, we de�ne matrix V 1 with entrances V 1ij = Π1(pi, pj, q

∗
1 , q

∗
2) and its equivalent V 2. This requires

the generation of 2n× (n−1) evaluations. The diagonal elements are given by the co-location result
and all have the same value. An algorithm to �nd all Nash equilibria is given by Algorithm 1.
Example 3. Consider again the instance of Example 2. The resulting payo� matrices are

V 1 =
(

12 10
17 12

)
and V 2 =

(
3 17
10 3

)
.
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Algorithm 1 Nashloc(V 1, V 2, p)

for (i := 1 to n) do
for all j ∈ argmaxl V 2il

if (i∈ argmaxk V 1kj)
store x = pi, y = pj as Nash equilibrium

endfor

The Nash equilibrium is x = p1 giving the maximum for �rm 1 over the �rst column of V 1 and
y = p2 giving the maximum for �rm 2 over the second row of v2. To illustrate a situation with
co-locating equilibrium we change the demand data into w = (1,17). The resulting payo� is

V 1 =
(

8 1
17 8

)
and V 2 =

(
2 17
1 2

)
,

where the equilibrium is x = y = p2; only co-locating at p2 gives an equilibrium. The most interesting
case is when there is no Nash equilibrium. This happens if the costs di�er substantially. Consider
w = (10,15) and α = (1,4). The payo� matrices are

V 1 =
(

16 15
10 16

)
and V 2 =

(
1 10
15 1

)
,

The result is that the strong (low cost) �rm wants to co-locate and the expensive �rm prefers to be
alone.
From the formulas, the linear cost model teaches us that the cheapest �rm (say 1) is only not
interested to co-locate, if it can get more than Π1 = ( α2

α1+α2
)2

∑
wi. This is less likely to happen if

the di�erence between α1 and α2 is bigger. As the more expensive �rm wants to be alone, there is
less tendency of having a Nash equilibrium. If both �rms have equal costs, α1 = α2, each instance
where the demand weight can be split in (nearly) equal weighted sets

∑
I1 wi ≈

∑
I2 wi seperated by

a line, it is better for the �rms to separate such that di(x) < di(y), i∈ I1. This results into a higher
pro�t than Π1 = 1

4

∑
wi which can be reached by co-location, as can be directly observed from (21).

This is more likely to happen, if the number of demand points is bigger, or the demand is more
similar.
The same tendency can be obtained by analysing the quadratic cost case. If costs are similar,

co-location is less interesting if demand can be split more or less equally, i.e. having more similar
demand points. Equal costs give a co-location result of Π1 = ( 1

4
+ 1

8
√

α
)
∑

wi. Higher costs makes
co-location less attractive and splitting demand is better. Compared to the linear case, the eagerness
to want to co-locate for the cheaper �rm is less with di�ering cost parameters α1, α2. This means,
there is less tendency not to reach a Nash equilibrium than the linear case.

4.2. Numerical experiments
To observe the tendency of existence of Nash equilibria and appearance of co-location we did a
numerical experiment generating 1000 instances with n = 5 and n = 50 demand points, where
weights are uniformly randomly generated from [0,10]. We took α1 = 1 and systematically varied
α2 = 1,2,4,16. Running Algorithm 1, we obtained the corresponding Nash equilibria which are
classi�ed in Tables 1 and 2.
The results show that co-location does not take place, unless the costs of the two �rms are similar,

where the quadratic cost give more tendency to lead to Nash equilibria with co-located �rms. At
most one Nash equilibrium exists in case of co-location. One can observe that for randomly generated
cases, as soon as costs di�er substantially, no Nash equilibrium exists, due to the e�ect we described
before; �rm 1 prefers to co-locate and �rm 2 is running away to be alone. Notice that as soon as
cost equal completely, at least two symmetric Nash equilibria exist if the �rms do not co-locate.
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Table 1 Tendency of Nash equilibria, linear cost model, 1000 randomly generated instances. nonash: number of instances
without Nash equilibrium, col: co-location, nc: no co-location, avn: average number of nc equilibria

n = 5 n = 50
α2 nonash col nc avn nonash col nc avn
1 2 6 992 2 19 0 981 2.05
2 1 0 999 1.4 9 0 991 1.16
4 825 0 175 1 666 0 334 1.003
16 999 0 1 1 998 0 2 1

Table 2 Tendency of Nash equilibria, quadratic cost, 1000 randomly generated instances. nonash: number of instances
without Nash equilibrium, col: co-location, nc: no co-location, avn: average number of nc equilibria

n = 5 n = 50
α2 nonash col nc avn nonash col nc avn
1 3 148 849 2 42 26 932 2.01
2 1 28 971 1.6 3 0 997 1.54
4 31 11 958 1.002 152 0 848 1.03
16 919 0 81 1 882 0 118 1

5. Conclusions
A location-quality model with a Hu� like market capture has been described where two competing
supplier �rms locate in a planar market and decide on the investment of quality. The question is
what characterises the Nash equilibria in such a model and how can they be determined. Another
question is whether co-location is a natural Nash equilibrium in such models. Two variants are
described; one where demand capture is probabilistic taking a value typically between 0 and 1, and
a deterministic model, where customers mainly choose for the most attractive supplier.
We found the following results.
• �rst order conditions on optimum quality level are relatively easy for the probabilistic model.

Given location decisions, they lead to a set of equalities with two variables.
• for the probabilistic model with a linear and quadratic cost function explicit expressions are

derived for the payo� given the location decisions.
• in the deterministic model optimality conditions are not that easy due to disconituities.
• a Nash equilibrium on quality decisions in the deterministic model usually does not exist. Only

if the breaking tie for co-locating at a demand point is described proportionally and their cost
function is di�erent, the competing �rms decide to co-locate at one of the demand points.
• only in the latter case, both �rms co-locate at a demand point with highest demand.
• for the probabilistic model with linear and quadratic cost functions the �rms decide to locate

at demand points.
• Nash equilibria can be found by solving a bi-matrix game for the probabilistic model.
• if cost structures di�er more, there are more randomly generated instances that do not have a

Nash equilibrium.
• co-location in the probabilistic model appears more in randomly generated instances if the

number of demand points is low and the cost functions of the competing �rms are more alike.
�����
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