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Notation

In general, lowercase and uppercase italic type represent variables or functions.

Lowercase bold type represents vectors. Uppercase bold type represents matrices.

Lowercase roman symbols

at zero-mean white-noise process

c resistance of semi-impervious layer

[T]

fc crop factor [-]

fi interception factor [-]

ft common dynamic factor

ht groundwater level [L]

k number of common dynamic factors

m dimension of the output vector, or

empirical shape factor

n dimension of the state vector, or em-

pirical shape factor

nt stochastic noise process

q dimension of the noise vector

qt flux [LT−1]

r dimension of the input vector

rQ distance between extraction well

and observation well [L]

sG standard deviation of the gain

st specific dynamic factor, or draw-

down [L]

sobs observed drawdown [L]

sr representative drawdown in an

aquifer [L]

t time [T]

ut input vector

vt measurement noise

wt system noise

xt state vector

xt|t−1 projected state estimate

xt|t updated state estimate

xt|T smoothed state estimate

yt output vector

z−i backward shift operator

Uppercase roman symbols

A transition matrix

B system matrix

C system matrix

De effective thickness of root zone [L]

Ea actual evapotranspiration [LT−1]

Ep potential evapotranspiration [LT−1]

Er Makkink reference evaporation

[LT−1]

Ft innovation covariance matrix

G steady-state gain

G system matrix

I identity matrix

K unsaturated hydraulic conductivity

[LT−1]

Ks saturated hydraulic conductivity

[LT−1]

Kt Kalman gain

N number of groundwater level obser-

vations

Pe net precipitation [LT−1]

PG gross precipitation [LT−1]

Pt|t−1 projected state covariance matrix

Pt|t updated state covariance matrix

Pt|T smoothed state covariance matrix

Q groundwater withdrawal [LT−3]

Q system noise covariance matrix

R measurement noise covariance ma-

trix

RC Cramer-Rao lower bound
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Rd drainage flux [LT−1]

Rg flux from percolation zone to satu-

rated zone [LT−1]

Rp percolation flux [LT−1]

R2
T coefficient of determination

Se effective degree of water saturation

[-]

S̃e transformed effective degree of wa-

ter saturation [-]

Sr shape factor of the root water uptake

function [-]

T transmissivity [L2T−1] or number of

time steps

U eigenvectors

Lowercase greek symbols

α empirical shape factor

α parameter vector

β scaling factor

γ drainage resistance [T]

δ autoregressive parameter of deter-

ministic component

ε specific yield [-]

εt common-noise factor

ηt specific-noise factor

θ moving-average parameter of sto-

chastic component

θr residual soil water content [-]

θs saturated soil water content [-]

λ empirical shape factor, or eigenvalue

νt innovation vector

ξt residual component [L]

ϕ storage coefficient [-]

φ autoregressive parameter of stochas-

tic component

ψ soil moisture pressure head [L]

ψo anaerobiosis point [L]

ψr reduction point [L]

ψw wilting point [L]

ω moving-average parameter of deter-

ministic component

Uppercase greek symbols

Γ matrix of dynamic-factor loadings

Λ matrix of eigenvalues

Σ specific-noise covariance matrix

Φ matrix of AR-parameters of specific

factors

Ψ matrix of AR-parameters of common

factors
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AS GROUNDWATER RESOURCES are more intensively used, there is an increas-

ing demand for monitoring of groundwater systems. To gain insight in

the processes influencing the groundwater system, one needs knowledge

of the essential variables and of how they fluctuate over time. One of the most im-

portant hydrological variables is groundwater head, which is therefore monitored

frequently at many locations throughout the world. Groundwater head is easy to

measure. The data contain relatively small measurement errors and are practically

independent of the method of determination. In the Netherlands, groundwater

head has been monitored countrywide since 1948. At present, over 30,000 time

series are available, each containing valuable information on characteristics of the

hydrological system and processes influencing the system. A useful and effective

technique for extracting this information from the data is referred to as time series

modeling.

Time series modeling refers to a statistical approach to analyze and describe

one or more time series. Time series models are stochastic models, which means

that they describe the probability structure of an observed phenomenon. They are

also data-based, empirical models (also referred to as “black-box” models), which

means that their structure is based on data; not on a physical description of the

system.

Time series modeling has been applied in groundwater studies since the 1980s.

However, the framework applied for modeling groundwater time series involves

several practical problems influencing the results of these models; some problems

even limit the applicability of these models to the field of groundwater hydrology

altogether. The main objective of the research presented in this thesis is therefore

to develop a more generic and flexible framework for modeling groundwater time

series, in order to obtain a more accurate description of groundwater fluctuations.

This framework is known as state space modeling and was originally developed

in system theory. Basically, the state space approach described in this thesis, com-

prises the formulation of time series models in state space (with a model structure

that may be deduced from physical concepts), filtering of the model, and estima-

tion of the model parameters. Merits of the state space approach will be discussed

in the course of this thesis.

This chapter gives an introduction to typical problems in groundwater hydrol-
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ogy for which time series models are often applied. This is followed by a definition

of technical problems encountered when applying time series models. A descrip-

tion of the research objectives is given, followed by a section that positions time

series modeling within the field of groundwater modeling. The chapter concludes

with an outline of the thesis.

1.1 Background
In densely populated areas, land use and planning are closely related to demands

on water management of, for example, natural, agricultural and recreational areas.

It is therefore important to base management of groundwater systems on these de-

mands. This requires a thorough analysis and characterization of the groundwater

regime. For this purpose, monitoring systems are needed to describe causes and

effects – structural or otherwise – of groundwater fluctuations.

In the early 1990s, awareness grew that groundwater levels had significantly de-

clined in large parts of the Netherlands [Ministry of VROM, 1989; Rolf , 1989; Gehrels,

1999]. Several studies were carried out to answer the following question: can the

observed decline be accounted for by meteorological causes or by other influences?

Among others, time series models were applied to separate the “natural” part of

the groundwater fluctuations from the “non-natural” part [e.g. Van Geer and Defize,

1987; Van Geer, 1989]. The general conclusion from these studies was that the lower-

ing of groundwater levels cannot be explained by meteorological factors alone. The

groundwater level has lowered due to causes such as an increase in groundwater

withdrawal, intensified artificial drainage of agricultural land, and urbanization.

In reaction to these findings, in several parts of the Netherlands a “standstill pol-

icy” has been pursued with respect to interventions in the groundwater system that

Figure 1.1: A groundwater observation well; the inset shows four piezometers inside the well, each

representing groundwater head at another depth. The groundwater head is measured manually with

a tape measure.
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Figure 1.2: Clusters of residual time series representing part of the groundwater fluctuations that

cannot be accounted for by meteorological causes; the map represents the Veluwe area in the middle of

the Netherlands [from Gehrels, 1999]

may cause further lowering of groundwater levels. At this moment, policy makers

want to know whether this policy has resulted in a rise of the groundwater level or

at least has stopped the decline. If a structural change will be observed, it is impor-

tant to determine whether measures taken within this policy, such as reduction of

groundwater withdrawal, have indeed contributed to this structural change.

A common problem in the detection of structural changes in groundwater levels

is that the estimated structural change has a high level of uncertainty, in particular

when this change has to be estimated from short time series. In many practical

applications, time series are short, since trends – both as a result from changes in

natural conditions and through anthropogenic activity – need to be assessed as

soon as possible. For instance, in the Netherlands, there have been several cases

in which farming communities accused drinking water companies of crop damage

caused by groundwater withdrawal (or stopping of withdrawal). However, part

of the groundwater lowering (or rise) may have been caused by meteorological

factors. As damage claims are high, it is of great importance that techniques are

available which can estimate the influence of groundwater withdrawal with a high

level of certainty.
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Figure 1.3: In dry periods, groundwater is extracted for sprinkler irrigation

Generally, structural changes detected in the groundwater level are not con-

strained to one point in space. Fluctuations in large-scale groundwater withdrawal

has a regional effect, resulting in a spatial pattern of temporal trends. During the

1990s, Gehrels [1999] carried out a study in the Veluwe area, the Netherlands, to

detect structural changes in the groundwater level using time series modeling. Fig-

ure 1.2 gives a regional overview of results from the time series modeling. The

charts denote residual series representing non-natural structural changes. The map

features the spatial distribution of the trends present in the residuals. On the basis

of similarity of trends, several clusters can be identified. This clearly demonstrates

the spatial coherence of time series, and suggests that results of time series model-

ing can be improved by modeling groundwater time series simultaneously.

In many agricultural areas, groundwater is temporarily extracted for irrigation

purposes. The effects of these groundwater withdrawals on the geohydrological

system may be significant. A striking example is found in the southern part of the

Netherlands. In this area, groundwater is extracted from a semi-confined aquifer at

a depth of approximately 50 to 200 m. Although the irrigation has a positive effect

on the phreatic water level, it lowers the groundwater head in the semi-confined

aquifer throughout the region. As a lowering of groundwater head is a threat to

groundwater-dependent valuable vegetation types in exfiltration areas, regional ef-

fects of groundwater withdrawals should be quantified.

The construction of civil engineering works such as roads and tunnels gener-

ally has a significant impact on the groundwater level at local scale. Within the

construction period, dewatering systems are installed, causing a drawdown in the

vicinity of the site. As this may lead to subsidence of the soil and adjacent build-
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ings, it is often necessary to set up a monitoring programme. The major challenge is

to detect and accurately quantify the effect of dewatering as soon as possible. This

requires real-time techniques for processing and modeling of data.

Finally, time series models can be used to extrapolate observed groundwater

time series. Often, monitoring periods are too short for the information on ground-

water dynamics to reflect the prevailing climatic conditions. In that case, time series

models can be applied to extrapolate observed groundwater time series to series of

sufficient length, from which the required geohydrological characteristics can be

calculated.

1.2 Problem definition
The previous section demonstrates the need for models that can accurately model

and decompose time series of groundwater head. Until now, most time series

of groundwater head have been modeled following the “Box-Jenkins approach”

(named after the authors of the seminal textbook Time series analysis: forecasting and

control published in 1970). However, Box-Jenkins models give rise to some practical

difficulties, because they are designed for use with time series that are measured at

equally spaced time intervals. In the Netherlands, equally spaced time series are

the exception rather than the rule since at most locations groundwater head is mea-

sured on the 14th and 28th of each month. Moreover, the observation interval of

input and output data need to be equal, which implies that generally available,

high-frequency measurements of precipitation and evaporation cannot be used in

the case that groundwater measurements are only available bimonthly. This is obvi-

ously a waste of valuable information. Finally, there is a growing use of automatic

data loggers which easily allow for high-frequency measurements. This will re-

sult in a large number of time series with a shift in measurement frequency from

bimonthly to, for instance, daily. Little is known about the influence of these high-

frequency groundwater measurements on the performance of time series models.

A major challenge in time series modeling of groundwater fluctuations is to ac-

curately estimate structural changes in groundwater regimes. However, the previ-

ous section already mentioned that estimated trends often have a high level of un-

certainty. One reason is that the time series model may give an incorrect description

of the system. Conventional time series models generally assume a linear relation

between precipitation excess and groundwater head. As in many groundwater sys-

tems the response of groundwater head to precipitation excess is nonlinear, a linear

model declares part of the natural component as “non-natural”. Consequently, the

non-natural component becomes noisy, increasing the uncertainty of an estimated

trend. This is particularly observed in systems with deep groundwater levels. Al-

though it is often suggested that nonlinear models may give more accurate results

[e.g. Gehrels, 1999], little is actually known about the influence of introducing non-

linearities on the accuracy of groundwater time series models.

Another reason for high uncertainty of estimated trends is lack of data. If the
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length of a time series is limited, it is difficult to accurately decompose a time se-

ries. A solution for this may be to use spatial coherence between groundwater

time series at several other locations to improve model performance at the location

where data is limited. However, a practical problem with such multiple time series

modeling is that the number of time series that can be modeled simultaneously, is

limited. This is because the number of model parameters to be estimated, increases

dramatically with the number of time series.

1.3 Research objectives
The main objective of the research presented in this thesis was to develop a generic

and flexible framework for modeling groundwater time series based on the state

space approach, in order to describe groundwater fluctuations more accurately.

More specifically, the following objectives were defined:

• to quantify the effect of reducing the modeling interval – i.e., using high-

frequency input data – on the performance of groundwater time series mod-

els. Of particular interest is the influence of high-frequency measurements of

groundwater head;

• to develop methods for modeling groundwater fluctuations in nonlinear sys-

tems in order to characterize the groundwater regime, to obtain reliable pre-

dictions of groundwater head, and to obtain accurate estimates of structural

changes in groundwater regimes;

• to develop a computationally efficient multiple time series model of ground-

water fluctuations, in order to utilize spatial coherence between time series.

1.4 Time series modeling in perspective
Time series modeling is just one class of techniques within a whole range of ground-

water modeling approaches. At the moment, the most commonly applied type of

model in geohydrological practice is obviously the physical-mechanistic numerical

groundwater model. This section therefore aims to position time series modeling

in the field of groundwater modeling by showing the strengths and weaknesses of

time series modeling with respect to numerical modeling of groundwater flow.

Time series models only represent the groundwater fluctuations at the loca-

tion of the observation well. In this sense, they can be well compared with one-

dimensional (1D) numerical model codes such as HYDRUS-1D [Šimunek et al., 1998]

and SWAP [Van Dam, 2000]. The main distinction between time series models and 1D

numerical models is that the first describe groundwater fluctuations, while the lat-

ter describe unsaturated groundwater flow. Besides, both model types fundamen-

tally differ in the way their structure is defined. In physical-mechanistic modeling,

the model structure is based on the assumption that the physical system can be de-

scribed well by deterministic mathematical equations. The model structure is thus

based on (and often limited by) the modeler’s knowledge of the physical system. In
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time series modeling, however, the model structure is primarily based on observa-

tion data. As a result, the model characterizes the behavior of the hydrological pro-

cesses without the restriction of physical preconceptions. In addition, time series

models only need data on input and output, whereas physical-mechanistic models

generally need a huge amount of additional information (e.g. soil physical proper-

ties), which is often limited available. As a consequence, it requires a lot of effort to

apply physical-mechanistic models to many locations. A disadvantage of empiri-

cal time series models is their limited applicability for predicting the effect of future

structural changes in the hydrological system (scenario analysis). Although physi-

cal knowledge may be incorporated in the time series model, physical-mechanistic

models are generally more suitable for scenario analysis. Moreover, 1D physical-

mechanistic models have the advantage that they give an estimate of important

physical variables and the soil water profile.

A widely applied groundwater model is the three-dimensional (3D) numerical

model. A well-known computer code is MODFLOW [McDonald and Harbaugh, 1988]

which is based on a finite-difference approximation of groundwater flow. The most

distinct difference between a 3D model and a time series model is that the 3D model

is mainly designed for spatial modeling of groundwater flow, whereas the time se-

ries model is designed for temporal modeling of groundwater fluctuations. Hence,

the 3D model is very well suited for spatial interpolation of groundwater head. This

generally requires an enormous amount of data and modeling detail. If physical

data is scarce, construction of 3D models becomes problematic or even practically

impossible. In that case, regionalized time series models may be more appropriate

[Bierkens et al., 2001; Knotters, 2001]. Computational costs of 3D groundwater mod-

els are generally high. Although recent advances in model reduction give promis-

ing results [Vermeulen et al., 2004], computational costs of time series models are

lower.

An application for which time series models are superior is real-time modeling

of groundwater head. For instance, time series models can be used for real-time

forecasting and control of groundwater levels, and real-time detection of effects of

interventions.

Summarizing, the primary criterion for selecting between time series models

and numerical models is the objective of the study. The availability of physical data,

financial and computational resources, and the time available to build a numerical

model are important constraints.

1.5 Thesis outline
Chapter 2 gives an introduction to the theory of time series analysis. It discusses

the main statistical concepts as well as some basics in time series modeling. The

chapter also presents the most important theory on state space modeling, Kalman

filtering and parameter estimation.

Chapter 3 analyzes the effect of using high-frequency meteorological observa-
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Figure 1.4: Example of a time series of groundwater head observed bimonthly

tions (e.g. daily) as input for modeling groundwater head data containing low-

frequency observations. This means that the modeling interval – which is equal to

the observation interval of meteorological data – is decoupled from the measuring

interval of groundwater head. Groundwater time series are generated using pre-

defined transfer functions to test model performance. Two measures of the model

performance are defined and evaluated for several combinations of modeling and

measuring intervals. A case study illustrates the effect of reducing the modeling

interval as well as that of adding high-frequency measurements to the time series.

In Chapter 4, a nonlinear state space model is developed for modeling fluctu-

ations of deep groundwater levels. Nonlinearity is introduced by modeling the

(unobserved) degree of water saturation of the root zone. The nonlinear relations

are based on physical concepts describing the dependence of both the actual evap-

otranspiration and the percolation rate on the degree of saturation of the root zone.

Two test cases compare the results of the nonlinear model with those of a linear

model.

Chapter 5 develops a nonlinear state space model for describing groundwater

fluctuations in switching groundwater regimes such as drained fields. The drain-

age flux is modeled as a nonlinear function of the groundwater level in the sense

that it switches from no flux if the water table is below drainage level to a flux

that is linearly related to the groundwater level if the water table is above drainage

level. Applications illustrate the applicability of the nonlinear state space model

for estimating the effect of interventions, characterization of groundwater regimes,

simulation, and prediction.

Chapter 6 provides an approach for modeling multiple time series of ground-

water head. The model is based on the vector transfer-function noise (VTFN) model.

Correlation among time series is described by a factor model. Results show that

the model produces a description of the system that is similar to that of less parsi-

monious, conventional VTFN models. Consequently, larger systems, which cannot

be described with a conventional VTFN model, can be efficiently described with the

model developed in this chapter. In addition, the model can be used to describe

regional patterns in groundwater fluctuations.

Chapter 7 concludes the thesis with a summary of the main results, conclusions,

recommendations, and topics for further research.





2
Theory of state space

modeling
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TO FOLLOW THE CONTENT of the next chapters, one needs knowledge of sta-

tistical concepts of and basic theory on time series modeling and Kalman

filtering. Therefore, this chapter outlines the most important theoretical is-

sues concerning state space modeling of time series. First of all, a review of relevant

literature indicates the most important developments in time series analysis, par-

ticularly with application to hydrological problems. Those who are interested in

a comprehensive theoretical discussion are referred to standard textbooks on time

series analysis [Box and Jenkins, 1970; Hipel and McLeod, 1994], state space model-

ing [Harvey, 1989; Aoki, 1990; Koopman and Durbin, 2001], filtering theory [Jazwinsky,

1970; Schweppe, 1973; Anderson and Moore, 1979; Maybeck, 1979], and parameter op-

timization [Bryson and Ho, 1975; Gill et al., 1981; Tarantola, 1987].

2.1 Literature review
There are several ways to classify time series models. One of the most fundamen-

tal ways is classifying them as time-domain models or frequency-domain models.

A disadvantage of frequency-domain models is that they are only suitable for sta-

tionary processes. Besides, they cannot be used for forecasting. For groundwater

studies, it is therefore usually most covenient to carry out time series analysis in the

time domain.

2.1.1 Box-Jenkins models

Although methods for analyzing time series have existed for decades [Wiener, 1949;

Winters, 1960; Hannan, 1970], time series models only became widely accepted for

practical applications after the publication of the textbook of Box and Jenkins called

Time series analysis: forecasting and control in 1970. This book gives a comprehen-

sive description of a variety of useful time series models. Moreover, it discusses

the three stages of model construction: identification (i.e., selection of appropriate

models to fit the data), estimation of model parameters, and diagnostic checking to

ensure that the key modeling assumptions are satisfied. Examples of model con-

struction can be found in, e.g., Granger and Newbold [1977], Salas and Obeysekera

[1982], and in Pandit and Wu [1983].

Time series analysis also became an important tool for modeling hydrological

systems. A special class of time series models called transfer function-noise (TFN)
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models became very popular for describing dynamic causal relationships between

time series. Hydrological applications of TFN models include rainfall-runoff mod-

eling [Young et al., 1997], streamflow modeling and forecasting [Anselmo and Uber-

tini, 1979; Chow et al., 1983; Alley, 1985], urban water-use modeling [Maidment et al.,

1985], and reservoir modeling [Hipel et al., 1977]. In the 1980s, time series analysis

was introduced in groundwater modeling. Adamowski and Hamory [1983] analyzed

groundwater level fluctuations predominantly affected by streamflow. Van Geer and

Defize [1987] and Gehrels et al. [1994] included precipitation excess and an artificial

trend in a TFN model for detection of natural and artificial causes of groundwater

fluctuations. Bidwell et al. [1985] used a TFN model relating recharge to ground-

water level. Tankersley et al. [1993] compared forecast accuracies for groundwater

fluctuations of univariate and TFN models. Tankersley and Graham [1994] applied a

TFN model to generate a control strategy for the purpose of managing groundwater

fluctuations at ecologically vulnerable locations.

An often-heard criticism of black-box models is that they emphasize the statis-

tical explanation of the data instead of giving a physical explanation. In order to

counteract such criticism, in several publications conceptual or physically based

models are used as a basis for model construction. Young [2001] discerns two main

approaches for doing this: the ‘hypothetico-deductive’ approach and the ‘induc-

tive’ approach. In the first approach, the model structure is a priori based on a

conceptual or physical model. Examples are found in Moss and Bryson [1974], Spo-

lia and Chander [1974], and Salas and Smith [1981], who applied physically based

Markovian models for runoff. Parlange et al. [1992] formulated a Markovian model

of soil water content on the basis of the hydrologic budget and a soil water transport

equation. Knotters and Bierkens [2000] used a physically based time series model to

predict the effect of interventions on water table dynamics. In contrast, the second

(inductive) approach avoids preconceptions on the model structure. The model

structure is not prespecified, but it is inferred from the data. However, the es-

timated model is only accepted as a credible representation of the system if, in

addition to explaining the data well, it also provides a description that has direct

relevance to the physical reality of the system. This approach is also referred to as

data-based mechanistic (DBM) modeling and has been applied in many areas, in-

cluding rainfall-flow modeling [Young and Beven, 1994; Young et al., 1997] and solute

transport modeling [Young and Wallis, 1994].

2.1.2 State space models

Although the Box-Jenkins approach to time series modeling dominated the statis-

tical literature in the 1970s and 1980s, in control engineering, the state space ap-

proach was prevalent. This was partly because of the engineers’ familiarity with

the Kalman filter, which has been a fundamental algorithm in control engineering

since its appearance in Kalman [1960] and Kalman and Bucy [1961]. State space mod-

els have been used extensively in many areas, including control theory [Bucy and

Joseph, 1968; Gelb, 1974], economics [Harvey, 1989; Koopman and Durbin, 2001], and
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communication theory [Snyder, 1969].

State space models may be regarded as generalizations of Box-Jenkins models.

The main distinction between both model types is the way they represent time se-

ries. Time series analysis following the Box-Jenkins approach is primarily directed

towards scalar-valued data, and usually represents time series or their differenced

version by (scalar) autoregressive models, moving-average models, or autoregres-

sive moving-average models. State space models treat several variables simulta-

neously as vector-valued or state variables, the values of which are sufficient to

describe the system behavior completely. Although these two ways of representing

dynamic phenomena are theoretically equivalent, their numerical and statistical

properties are different.

State space models have several advantages as compared with Box-Jenkins mod-

els that make them attractive for application in hydrology. For instance, Szollosi-

Nagy et al. [1977] and Todini and Wallis [1978] combined the state space model with

a Kalman filter for real-time forecasting of streamflow from rainfall, real-time flow

routing, and real-time decision-making and control in water resource systems. Van

Geer and Zuur [1997] applied a state space representation of the TFN model for spa-

tial interpolation of groundwater head. They also recognized that the Kalman filter

provides a framework that allows for flexible measurement schemes and varying

measurement frequency. This has been described in more detail by Bierkens et al.

[1999], who showed that the state space representation and Kalman filter are per-

fectly designed for modeling time series consisting of sparsely and irregularly ob-

servations. Finally, Bierkens et al. [2001] and Knotters [2001] combined a regionalized

time series model with a Kalman filter for space-time interpolation of water table

depth.

The state space representation is also very suitable for incorporation of a pri-

ori physical knowledge into the model. Aboitiz et al. [1986], for example, used the

water balance equation and reference evapotranspiration for an irrigated field to

develop a state space model capable of estimating and forecasting soil water de-

pletion and crop evapotranspiration. Skaggs and Mohanty [1998] developed a state

space model for water table depths midway drains, using a deterministic physi-

cally based drainage model. Bierkens [1998] modeled a combined system of soil

water and shallow groundwater with mass balance equations assuming equilib-

rium soil moisture conditions. Wu et al. [2001] developed a state space model that

describes soil water and salinity dynamics based on mass balance principles and

empirical flux laws.

The next sections give an overview of the theory on state space modeling of time

series used in this thesis. In addition, some basic statistical concepts are discussed.

2.2 Linear time series models
A simple but extremely useful stochastic model is the autoregressive (AR) model. In

this model, the current value of the process nt is linearly related to previous values
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Definitions
A time series is a set of observations that are arranged chronologically. A mathematical

expression which describes the probability structure of the time series is referred to

as a stochastic process. When the joint distribution of any possible set of random

variables from the process is time independent, then the process is said to possess strict

stationarity. When only the statistical moments up to order f are time independent,

the process is said to possess weak stationarity of order f . The term white noise refers

to a sequence of uncorrelated random variables having a fixed distribution with mean

zero. When the current value of a process only depends upon the previous value plus a

random shock, the process is called a Markov process.

The general purpose of forecasting or prediction is to provide the best estimate of what

will happen at specific points in time in the future. The objective of simulation is to use

a fitted model to generate possible future values of a time series.

of the process and a random shock at time t, at:

nt = φ1nt−1 + φ2nt−2 + . . .+ φpnt−p + at, (2.1)

where φi is the ith AR parameter and p is the order of the AR(p) process. The at se-

quence is commonly referred to as white-noise terms. This means that at is identi-

cally independently distributed (IID) with a mean of 0 and variance of σ2
a: IID

(

0, σ2
a

)

.

Often it is assumed that the white-noise terms have a Gaussian distribution.

By introducing the backward shift operator z−i, which is defined by z−int =

nt−i, Equation 2.1 can be written in the following operator form:

φ(z−1)nt = at, (2.2)

where the AR(p) operator is defined as

φ(z−1) = 1 − φ1z
−1 − φ2z

−2 − . . .− φpz
−p.

A necessary and sufficient condition for the process nt to have stationarity is that

the roots of the characteristic equation φ(z−1) = 0 must fall outside the unit cir-

cle [Box and Jenkins, 1970]. For an AR(1) process, this means that |φ1| < 1.

Another type of stochastic model is the moving average (MA) model:

nt = at − θ1at−1 − θ2at−2 − . . .− θqat−q. (2.3)

Similar to Equation 2.2, the MA model may be written as

nt = θ(z−1)at, (2.4)

where the MA(q) operator is defined as

θ(z−1) = 1 − θ1z
−1 − θ2z

−2 − . . .− θqz
−q.
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On the basis of Equations 2.2 and 2.4, one can construct many different model

forms. The most straightforward extension is the autoregressive moving-average

(ARMA) model for linear stationary processes:

φ(z−1)nt = θ(z−1)at,

or

nt =
θ(z−1)

φ(z−1)
at = ψ(z−1)at. (2.5)

Other well-known model forms are the autoregressive integrated moving-aver-

age (ARIMA) model for linear nonstationary processes and the seasonal autoregres-

sive integrated moving-average (SARIMA) model for linear nonstationary seasonal

processes. Box and Jenkins [1970] and Hipel and McLeod [1994] describe these model

forms in detail.

2.3 Transfer function-noise models
Hydrological studies often require a model that describes dynamic relationships

between input and output series. A well-known stochastic type of model that

relates one (physical) phenomenon to another is the transfer function-noise (TFN)

model [Box and Jenkins, 1970]. Basically, a TFN model consists of two components:

a dynamic or deterministic component, and a noise or stochastic component (see

Figure 2.1).

The deterministic component describes the dynamic relationship between the

input variable u and the output variable y as

yt = υ0ut + υ1ut−1 + υ2ut−2 + . . .

= υ(z−1)ut, (2.6)

where υ(z−1) = υ0 + υ1z
−1 + υ2z

−2 + . . . is referred to as the transfer function and

the coefficients υ0, υ1, υ2, . . . are called the impulse response function or impulse

response weights. Similar to the ARMA model in Equation 2.5, the transfer function

υ(z−1) can be written as

υ(z−1) =
ω(z−1)

δ(z−1)
=
ω0 − ω1z

−1 − ω2z
−2 − . . .− ωmz

−m

1 − δ1z−1 − δ2z−2 − . . .− δnz−n
, (2.7)

at

ut
yt

stochastic
model

deterministic
model

Figure 2.1: Components of the transfer function-noise model
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where ω(z−1) is the moving-average operator of order m, ω0, ω1, . . . , ωm are the

moving-average parameters, δ(z−1) is the autoregressive operator of order n, and

δ1, δ2, . . . , δn, are the autoregressive parameters. The denominator of υ(z−1) re-

veals that this is an nth-order system model. The dynamic behavior of the system

can be described by the poles of υ(z−1), i.e. by the roots of this denominator. Sta-

bility requires that the poles lie outside the unit circle [Box and Jenkins, 1970]. For a

stable system, the steady-state gain G is defined as

G =

∞
∑

i=0

υi =
ω0 − ω1 − ω2 − . . .− ωm
1 − δ1 − δ2 − . . .− δn

, (2.8)

and represents the steady-state level of the output obtained when the input is held

at unit value.

For situations where yt and ut have nonzero means µy and µu, and where there

is a delay time d before u affects y, Equation 2.6 can be written as

yt − µy = υ(z−1)z−d (ut − µu) . (2.9)

Two specific classes of transfer functions are particularly useful in hydrological

applications, because they allow for a meaningful physical interpretation. The first

class of transfer functions is written as

υ(z−1) =
ω0

1 − δ1z−1 − δ2z−2 − . . .− δnz−n
. (2.10)

This transfer function can also be expressed as

υ(z−1) = ω0

n
∏

i=1

1

1 − λiz−1

= G

n
∏

i=1

1 − λi
1 − λiz−1

=

n
∏

i=1

υi(z
−1), (2.11)

with |λi| < 1 and G the steady-state gain. Equation 2.11 represents a serial connec-

tion of n first-order processes in series, each with unity gain. For n = 2, this system

may be visualized as

ut
yt

1(z
-1) υ

2(
ut

yt
1( 2 z -1)υ

This model form – also referred to as the linear reservoir model – is often applied

in hydrology to describe, for example, advective-dispersive flow.

The second class of transfer function models is written as

υ(z−1) =
ω0 − ω1z

−1 − ω2z
−2 − . . .− ωn−1z

−n+1

1 − δ1z−1 − δ2z−2 − · · · − δnz−n
. (2.12)
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Figure 2.2: Example of impulse response functions for (a) serial connection (n = 2) and (b) parellel

connection (n = 2)

This function can be expressed as

υ(z−1) =

n
∑

i=1

gi
1 − λiz−1

=

n
∑

i=1

υi(z
−1), (2.13)

representing n reservoirs in a parallel connection. For instance, if n = 2, this can be

visualized as

ut yt

υ
1(z

-1)

υ
2(z

-1)

where ⊕ denotes addition. Parallel connection may represent preferential or lat-

eral flow. By way of illustration, Figure 2.2 shows two impulse response functions

for a serial and parallel connection, respectively. Hydrological applications of these

model forms are found in, e.g. Young and Minchin [1991] and Young [2001], who

decomposed a rainfall-flow transfer-function model into two parallel components

representing surface flow and base flow.

The stochastic component describes the variation in the output that cannot be

described by the deterministic component. Because the stochastic component is

generally autocorrelated and not white, it can be conveniently modeled using the

ARMA model in Equation 2.5. The complete TFN model is then formed by combining

Equations 2.5 and 2.9:

yt − µy =
ω(z−1)

δ(z−1)
z−d (ut − µu) +

θ(z−1)

φ(z−1)
at. (2.14)
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A special case of the TFN model is the autoregressive moving-average exoge-

neous variables (ARMAX) model [Hannan, 1970]:

yt − µy =
ω(z−1)

φ(z−1)
z−d (ut − µu) +

θ(z−1)

φ(z−1)
at. (2.15)

A feature of the ARMAX model is that the response variable is written directly as

an autoregression. However, the TFN model has several theoretical and practical

advantages over the ARMAX model. First, the TFN model is a more general repre-

sentation of a stochastic dynamic system than the ARMAX model. As a result, it is

more flexible in describing the system. Second, the TFN model clearly separates out

the deterministic component from the stochastic component. This is particularly

advantageous in geohydrological applications.

2.4 Linear state space models
The deterministic model given in Equation 2.6 can be generalized to a time-varying

first-order vector difference equation with associated output relation as [Maybeck,

1979]

xt = Atxt−1 + Btut, (2.16a)

yt = Ctxt, (2.16b)

where xt is an unobserved, n-dimensional state vector (the n dimensions corre-

spond to the fact that the system is described by nth-order dynamics), yt is a 1×m

multiple-output vector, ut is a 1 × r multiple-input vector, At is an n × n transi-

tion matrix, Bt is an n × r matrix relating the input vector to the state vector, and

Ct is an m × n matrix relating the state vector to the output vector. Time sub-

scripts on the system matrices A, B and C indicate the possibility that they may

change over time. Unless mentioned explicitly, these matrices are taken to be con-

stant. Equation 2.16 is the state space representation of a linear dynamic system.

Equation 2.16a and 2.16b are referred to as the state equation and the measurement

equation, respectively.

It can be shown that the transfer function model of Equation 2.6 can be written

in terms of Equation 2.16, as

yt = c [zI− A]−1
but, (2.17)

with z defined as zxt = xt+1 and I is the identity matrix. Notice that for a single-

input single-output model the matrices B and C reduce to an n-dimensional col-

umn vector b and row vector c, respectively. Given an nth-order transfer function

model, it is possible to generate an n-dimensional state space representation that

has input-output characteristics that are equivalent to those of the transfer function

model. For this purpose, the transfer function model of Equation 2.6 is written as

yt = δ1yt−1 + . . .+ δnyt−n + ω0ut − ω1ut−1 − . . .− ωn−1ut−n+1. (2.18)
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Definition of state
The state vector is defined as a minimal collection of information which, along with

future input to the system, is sufficient to determine the future evolution of the dynamic

system. Bryson and Ho [1975] define the state property as follows: “At any time t there

exists a finite-dimensional vector x, which, when specified, makes the future of the

process independent of the past and vice versa.” The dependence of the future on the

present is expressed by a difference equation that governs the transition from one instant

to another.

Although here, the order of the MA part is m = n− 1, there is no loss of generality

since terms can always be added with values of zero. An n-dimensional state vector

xt is defined through the following relations:

x1,t = δ1x1,t−1 + x2,t−1 + ω0ut,

x2,t = δ2x1,t−1 + x3,t−1 − ω1ut,

...

xn−1,t = δn−1x1,t−1 + xn,t−1 − ωn−2ut,

xn,t = δnx1,t−1 − ωn−1ut,

with

yt = x1,t.

In the form of a system equation, with given initial condition x0, this becomes

xt = Adxt−1 + bdut, (2.19a)

yt = cdxt, (2.19b)

with

Ad =























δ1 1 0 · · · 0

δ2 0
. . .

. . .
...

...
...

. . .
. . . 0

δn−1

...
. . . 1

δn 0 · · · · · · 0























, bd =



















ω0

−ω1

...

−ωn−2

−ωn−1



















, cT
d =















1

0
...

0















. (2.20)

Equation 2.19 gives a state space representation of the transfer function model and

is known as the observer canonical form [Olsder, 1994]. The state space represen-

tation is not unique. In fact, there is an infinite number of representations. May-

beck [1979] shows that various equivalent state space representations can be related

through similarity transformations.



2.4 Linear state space models 33

The state space model of a stochastic dynamic system is easily obtained by ex-

tending Equation 2.16 with noise terms:

xt = Axt−1 + But + Gwt, (2.21a)

yt = Cxt + vt. (2.21b)

Here, the system noise wt is a q-dimensional column vector, G is an n × q matrix,

and vt is an m-dimensional column vector representing measurement noise. The

disturbances wt and vt are serially and mutually uncorrelated with mean zero and

covariance matrix Q and R, respectively:

E(wt) = 0, E(vt) = 0, (2.22)

and

E(wtw
T
k ) = Qδt,k, E(vtv

T
k ) = Rδt,k, E(wtv

T
k ) = 0, (2.23)

where δt,k is the Kronecker delta defined as

δt,k =

{

1 t = k,

0 t 6= k.

It is further assumed that the initial state vector, x0, has a mean of χ0 and a covari-

ance matrix P0:

E(x0) = χ0 var(x0) = P0. (2.24)

Besides, the disturbances wt and vt are assumed to be uncorrelated with the initial

state:

E(wtx
T
0 ) = 0, E(vtx

T
0 ) = 0 for all t = 1, . . . , T. (2.25)

The TFN model defined in Equation 2.14 can be written in the state space form of

Equation 2.21 as a decoupled system describing a deterministic component and a

stochastic component. The deterministic component was already given in Equa-

tions 2.19 and 2.20. Similarly, the stochastic component can be written as the fol-

lowing state space representation of an ARMA model:

xt = Asxt−1 + gswt, (2.26a)

yt = csxt, (2.26b)

with

As =























φ1 1 0 · · · 0

φ2 0
. . .

. . .
...

...
...

. . .
. . . 0

φp−1

...
. . . 1

φp 0 · · · · · · 0























, gs =



















1

−θ1
...

−θp−2

−θp−1



















, cT
s =















1

0
...

0















. (2.27)
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Combining the deterministic and stochastic component yields the state space

respresentation of the TFN model:

[

xd,t

xs,t

]

=

[

Ad 0

0 As

][

xd,t−1

xs,t−1

]

+

[

bd

0

]

ut +

[

0

gs

]

wt, (2.28a)

yt =
[

cd cs

]

[

xd,t

xs,t

]

+ yr + vt, (2.28b)

with xd and xs representing the deterministic and stochastic component, respec-

tively, Ad, bd, and cd are defined as in Equation 2.20, As, gs, and cs are defined

as in Equation 2.27, yr denotes the reference level of yt, and vt is the measurement

noise.

Missing observations Usually, groundwater head observations are spaced irreg-

ularly. For multiple-output systems this implies that the number of observations

may vary over time. As a result, the dimension of the observation vector, m, be-

comes time variant: mt. The observation matrix C in Equation 2.21 then becomes a

time-varying mt × n matrix, for mt ≥ 1 [Harvey, 1989]:

Ct = WtC, (2.29)

where Wt is a mt×m matrix of fixed weights. For example, if there arem = 5 time

series and at time t only observations of the first and fourth series are available

(mt = 2), then

Wt =

[

1 0 0 0 0

0 0 0 1 0

]

. (2.30)

Similarly, the time-variant mt ×mt covariance matrix of measurement errors Rt is

written as

Rt = WtRWT
t . (2.31)

2.5 Linear Kalman filtering
In general, the elements of the state vector xt are not observed directly. Conse-

quently, the state vector needs to be estimated. On the assumption that the sys-

tem matrices together with the initial conditions x0 and P0 are known, and given

all measurements up to the present time, the most likely values of the state vari-

ables can be determined. The process of determining these most likely values is

called smoothing, filtering, or prediction, depending on whether past, present, or

future values of the state variables are found. In terms of conditional expecta-

tion, the estimation problem consists of computing and estimate of xt based on

YT = {y1, . . . ,yT }, that is x̂t|T = E(xt|YT ). If t < T , the problem is called a
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smoothing problem; if t = T , it is called a filtering problem; and if t > T , it is

called a prediction problem. In this section, the filtering and prediction problems

are treated. The smoothing problem is dealt with in Section 2.8.

A well-known and widely applied filtering algorithm is the Kalman filter, which

was originally developed by Kalman [1960] and Kalman and Bucy [1961]. Roughly

speaking, the Kalman filter combines the measurement data taken from the actual

system with the information provided by the system model and the statistical de-

scription of uncertainties, in order to obtain an “optimal” estimate of the system

state. Generally, the “optimality” of the estimate depends upon what performance

criterion is chosen. A comprehensive discussion on optimality of the Kalman filter

is found in e.g. Jazwinsky [1970, Ch. 7].

For an intuitive derivation of the Kalman filter, consider the linear time-in-

variant multiple-input multiple-output (MIMO) system model of Equation 2.21:

xt = Axt−1 + But + Gwt,

yt = Cxt + vt,

with initial conditions x0 and P0, and where wt and vt are assumed to be mutually

independent Gaussian random vector variables with properties as those defined in

Equations 2.22 and 2.23. Since the expected value of wt is zero, the best estimate of

xt is given by

x̂t|t−1 = Ax̂t−1|t−1 + But. (2.32)

Here, x̂t−1|t−1 denotes the estimate of x at time t − 1, based on the information

available at time t− 1. The estimation error x̃t|t−1 is

x̃t|t−1 = Ax̃t−1|t−1 + Gwt. (2.33)

The accuracy of x̂t|t−1 is given by the covariance matrix of the estimation error:

Pt|t−1 = E(x̃t|t−1x̃
T
t|t−1)

= E
(

Ax̃t−1|t−1x̃
T
t−1|t−1A

T + Gwtw
T
t GT

)

= APt−1|t−1A
T + GQGT. (2.34)

A measurement yt has now been obtained. At this moment, two estimates of xt

are available: x̂t|t−1, which is the best what could be obtained before carrying out

the measurement, and yt, which is the best what can be achieved when considering

only the measurement. A reasonable estimate would combine these two estimates

as follows:

x̂t|t = [I − KtC] x̂t|t−1 + Ktyt, (2.35)

where Kt is a weighting matrix referred to as the filter gain or Kalman gain. Similar

to Equation 2.34, the error covariance matrix of x̂t|t is written as

Pt|t = [I − KtC]Pt|t−1 [I − KtC]
T

+ KtRKT
t . (2.36)
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When choosing Kt, it is necessary to consider how much weight is given to yt and

how much to x̂t|t−1. It makes sense to attribute more weight to the more accurate

of these two estimates. This is what guides the optimal choice of the matrix Kt

provided by the Kalman filter. It can be proven that the optimal choice of Kt, which

ensures that the filter is of minimum variance, is given by [Jazwinsky, 1970]

Kt = Pt|t−1C
T
[

CPt|t−1C
T + R

]−1
. (2.37)

Substituting for Kt in Equation 2.36 results in

Pt|t = [I− KtC]Pt|t−1. (2.38)

which is the covariance matrix of filtering errors obtained by using the value of Kt

given by Equation 2.37.

Equation 2.35 can also be written as

x̂t|t = x̂t|t−1 + Kt

[

yt − Cx̂t|t−1

]

,

= x̂t|t−1 + Ktνt, (2.39)

where

νt = yt − Cx̂t|t−1 (2.40)

is known as the vector of innovations, since the elements of νt represent the new

information contained in yt. The covariance matrix of innovations is written as

follows:

Ft = CPt|t−1C
T + R. (2.41)

Using Equation 2.41, the Kalman gain in Equation 2.37 can be conveniently written

as

Kt = Pt|t−1C
TF−1

t . (2.42)

Given the initial conditions, the Kalman filter delivers the optimal estimator of

the state vector as each new measurement becomes available. When all measure-

ments have been processed, the filter yields the optimal estimator of the current

state vector and contains all the information needed to make optimal predictions of

future values of both the state and the observations. The Kalman filter recursions

are summarized in Equation 2.43. Figure 2.3 illustrates graphically the evolution

of the density function for the update step of the Kalman filter. Finally, note that if

the Gaussian assumptions are dropped, the recursions given in Equation 2.43 are

still optimal in the sense that they provide a linear unbiased minimum variance

estimate.
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The linear Kalman filter
The optimal state estimate is propagated from measurement time t − 1 to measurement

time t by the relations

x̂t|t−1 = Ax̂t−1|t−1 + But, (2.43a)

Pt|t−1 = APt−1|t−1A
T + GQG

T. (2.43b)

At time t, the measurement yt becomes available. The estimate is updated by defining

the Kalman filter gain and employing it in both mean and covariance relations:

νt = yt − Cx̂t|t−1, (2.43c)

Ft = CPt|t−1C
T + R, (2.43d)

Kt = Pt|t−1C
T
F

−1
t , (2.43e)

x̂t|t = x̂t|t−1 + Ktnt, (2.43f)

Pt|t = [I − KtC]Pt|t−1. (2.43g)

If at time t no measurement is available, the Kalman filter updating equations are

skipped:

x̂t|t = x̂t|t−1 and Pt|t = Pt|t−1.

The initial conditions for the recursion are given by x̂0|0 = χ0 and P0|0 = P0.

2.6 Nonlinear modeling and filtering
This section discusses the estimation problem involving systems for which a linear

model does not provide a valid description. In other words, nonlinearities in the

system dynamics are not negligible anymore. For this reason, the dynamics will be

described by the following nonlinear stochastic difference equation:

xt = F [xt−1,ut, t] + Gtwt, (2.44a)

yt = Cxt + vt, (2.44b)

where F [·, ·, ·] is a known n-dimensional vector of functions of state, input and

time, ut is an r-dimensional input vector, and wt is a zero-mean white Gaussian

noise process. Equation 2.44 can be viewed as a generalization of the linear model

of Equation 2.21, replacing [Axt + But] by F [xt−1,ut, t]. From now on, the time

argument t is omitted for convenience of notation.

The theory of nonlinear filtering is much more complex than that of linear fil-

tering. As Maybeck [1982] points out, propagating and updating an entire density

function for the state conditioned on observed measurements is not implementable.

To obtain practically feasible algorithms, one needs expansions truncated to some

low order. This section only presents two first-order filters: the extended Kalman

filter and the truncated first-order filter. Both filters will be given without any fur-
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x̂t|t−1 x̂t|t yt

Ktνt

νt

Figure 2.3: Density functions of propagated state estimate x̂t|t−1 with variance Pt|t−1, measurement

yt with variance R, and updated state estimate x̂t|t = x̂t|t−1 +Ktνt with variance Pt|t

ther proof. The reader is referred to Jazwinsky [1970] and Maybeck [1982] for a com-

prehensive discussion on nonlinear filtering.

Extended Kalman filter If the nonlinear function F [xt−1,ut] of Equation 2.44 is

sufficiently smooth, it can be expanded in Taylor series about the conditional mean,

i.e., x̂t−1|t−1:

F [xt−1,ut] = F
[

x̂t−1|t−1,ut
]

+
∂F [x,ut]

∂x

(

xt−1 − x̂t−1|t−1

)

+ . . . (2.45)

with the derivative evaluated at x = x̂t−1|t−1. Equation 2.45 is a reasonable approx-

imation as long as the deviations from x̂t−1|t−1 are small enough for the higher-

order terms to be negligible. The well-known extended Kalman filter is based on

this first-order approximation. Maybeck [1982, Ch. 9] describes this nonlinear fil-

ter in detail, showing that it differs from the linear Kalman filter only in the time

propagation:

x̂t|t−1 = F
[

x̂t−1|t−1,ut
]

, (2.46a)

Pt|t−1 =
∂F [x,ut]

∂x
Pt−1|t−1

∂FT [x,ut]

∂x
+ GQGT, (2.46b)

with the derivative evaluated at x = x̂t−1|t−1. The update equations are identical

to those of the linear filter (Equations 2.43c – 2.43g).

Truncated first-order filter If Gt is allowed to be a function of state as well, then

Equation 2.44a may be written as

xt = F [xt−1,ut] + G [xt]wt, (2.47)
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with G [·] a function of state. For this model, the time propagation is given by the

truncated first-order filter [Maybeck, 1982, Ch. 12], introducing an additional term

beyond the computations of the extended Kalman filter (Equation 2.46b):

x̂t|t−1 = F
[

x̂t−1|t−1,ut
]

, (2.48a)

Pt|t−1 =
∂F [x,ut]

∂x
Pt−1|t−1

∂FT [x,ut]

∂x
+ G

[

x̂t−1|t−1

]

QGT
[

x̂t−1|t−1

]

+ tr

{

∂G [x]

∂x
Q
∂GT [x]

∂x
Pt−1|t−1

}

. (2.48b)

Evaluation of filter performance First-order linearization of the nonlinear model

is only useful for weakly nonlinear models. When nonlinearities are strong, a trun-

cated second-order filter outperforms a first-order filter. This is primarily due to

the fact that the second-order filter introduces a “bias correction term” in the time

propagation of the state estimate:

x̂t|t−1 = F
[

x̂t−1|t−1,ut
]

+
1

2

∂2F
∂x2

Pt|t. (2.49)

Ignoring this term generally results in a more biased estimate.

In order to quantify the relative importance of the bias, Verlaan and Heemink

[2001] propose the following nondimensional number:

V ≡
√
N−1bTP−1b, (2.50)

where N is the number of observations and b is the bias of the first-order filter. The

time propagation and measurement update for the bias are given by

b̂t|t−1 =
∂F
∂x

b̂t|t +
∂2F
∂x2

Pt|t, (2.51)

b̂t|t = [I− KtC] b̂t|t−1, (2.52)

with initial condition b̂0|0 = 0. It is likely that the bias is insignificant if V ≪ 1. In

that case, the second-order filter will produce similar results as the first-order filter,

and one may expect the first-order filter to perform well.

2.7 Parameter estimation
In order to fit a state space model to a given time series, one needs to estimate the

unknown parameters in the system matrices. The vector of these parameters will

be denoted by the Nα-dimensional vector α and can be estimated by maximum

likelihood. The output of the Kalman filter makes it possible to evaluate the log

likelihood function via the prediction error decomposition for given α.
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The Gaussian log likelihood function for a linear state space model (Equation

2.21) is given by [Schweppe, 1973]

logL = −N
2

log 2π − 1

2

T
∑

t=1

log |Ft| −
1

2

T
∑

t=1

νT
t F−1

t νt, (2.53)

where N is the total number of observations, and νt and Ft are defined in Equa-

tion 2.43c and 2.43d, respectively. Note that the likelihood function is only eval-

uated for time instants t = 1, . . . , T , where measurements are actually available.

Although the likelihood function only provides a maximum likelihood estimate of

the parameters if the state equation is linear, Equation 2.53 can still be used to obtain

approximate maximum likelihood estimates when the state equation is nonlinear

[Bierkens, 1998].

A basic assumption in the derivation of the Kalman filter is that the initial state

vector and associated error covariance matrix are known. However, this is gener-

ally not the case. There are several ways to define the initial conditions [e.g. Gardner

et al., 1980; De Jong, 1988; Koopman and Durbin, 2000]. A simple but effective initial-

ization is to let P0 be a diagonal matrix of relatively large values (relative to x0),

representing a high level of uncertainty in the initial estimate. In this way, the first

few measurements are used to “update” the initial state vector. Janacek and Swift

[1993] show that the first n measurements are needed for this “update”, with n the

dimension of the state vector. Hence, the first n innovations and their associated

covariance matrices must not be included in the likelihood function.

Generally, the dimension of the parameter space can be reduced by exploiting

any linearities in the likelihood function. For instance, Harvey [1989] shows how a

univariate model can be reparameterized so that the number of unknown parame-

ters reduces with one.

Maximization of Equation 2.53 (or minimization of −2 logL) with respect to α

is carried out by an optimization procedure as represented schematically in Fig-

ure 2.4. The model parameters are updated using a quasi-Newton algorithm [Gill

et al., 1981] with finite difference approximations of the gradient of the likelihood

function. Since this method requires Nα + 1 mutually independent runs of the

Kalman filter, the optimization procedure is very suitable for parallel computing,

speeding up the procedure by a factor that is approximately proportional to the

number of computer processors. If parallel computing is not possible and compu-

tational costs are important, other optimization procedures may be more appropri-

ate.

An alternative approach to the quasi-Newton algorithm is the variational or ad-

joint method [Bryson and Ho, 1975; Bennett et al., 1996]. This method calculates the

exact gradient, rather than obtaining the gradient with finite difference approxima-

tions. The adjoint method requires only one forward run and one backward run.

A derivative-free method that does not require evaluation of the likelihood

function is the EM (expectation maximization) algorithm of Dempster et al. [1977].
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Figure 2.4: Flowchart of the optimization procedure; innovations obtained from the Kalman filter are

evaluated using the log likelihood function
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Basically, the procedure consists of two steps: an estimation and a maximization

step, which are iterated to convergence. The maximization step calculates the max-

imum likelihood estimates of all unknown parameters conditional on a full data

set. The estimation step constructs estimates of the statistics of the problem con-

ditional on the observed data and the parameters. More details on this algorithm

and its implementation can be found in Wu et al. [1996] and in Shumway and Stoffer

[1982, 2000].

The accuracy of parameter estimates is expressed by the covariance matrix of

the estimates. For a large amount of measurements, the maximum likelihood es-

timator is asymptotically efficient, in the sense that the bias of the estimate ap-

proaches zero and the covariance of the estimate approaches the Cramer-Rao lower

bound, which equals the inverse of the second-order derivative of the likelihood

function with respect to the parameters [Kendall and Stuart, 1979]:

R−1
C =

∂2 logL
∂α∂αT

, (2.54)

where RC is the Cramer-Rao lower bound. The second-order derivatives are ap-

proximated by finite differences.

2.8 Smoothing
In the filtering problem, the optimal estimate of the state at time t is based upon

the knowledge of all measurements taken up to time t. However, a more accurate

estimate of the state xt can be produced if at later time steps measurements are also

available. The additional information contained in the measurements taken after

time t can be exploited to provide this improvement in estimation accuracy. An es-

timate of xt based on all available information up to time T (T > t), is referred to as

the smoothed estimated of xt. There are basically three classes of smoothing algo-

rithms: fixed-point smoothing, fixed-lag smoothing and fixed-interval smoothing.

Fixed-point smoothing is concerned with computing smoothed estimates of the

state vector at some fixed point in time. For example, there may be a certain point

in time at which the value of the system state is considered critical. Thus, one

would desire an estimate of xt for fixed t, conditioned on more and more data as

measurements become available: x̂t|s = E(xt|Ys), with s = t, t+ 1, . . . , T .

Fixed-lag smoothing computes smoothed estimates for a fixed delay. Thus, one

is willing to delay the computation of the estimate of xt until t + s, where s is a

fixed integer, to take advantage of additional information in these s measurements:

x̂t|t+s = E(xt|Yt+s), with t = 0, 1, . . . , T − s. Both of these algorithms can be

applied in online situations.

Fixed-interval smoothing is concerned with computing smoothed estimates for

a fixed span of data: x̂t|T = E(xt|YT ), with t = 0, 1, . . . , T . Hence it is an off-line

technique which is used to obtain refined state estimates of better quality than that

provided by online filters.
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In this thesis, the fixed-interval smoother (FIS) is applied for interpolation over

gaps in the data, as well as for extraction of estimated components such as trends.

In addition, smoothed estimates of the initial state vector are obtained here in order

to present model predictions of the calibrated model in a simple forecast mode (i.e.

without Kalman filtering). It must be noticed that smoothing does not lead to better

parameter estimates [Bryson and Frazier, 1962]. Hence, the FIS algorithm is applied

merely as a post-processor of the optimization procedure in Figure 2.4.

There is a variety of FIS algorithms. The one considered here utilizes a back-

ward filter, subsequent to application of the Kalman filter forward recursion of

Equation 2.43 [Fraser and Potter, 1969]. The forward filter produces a state estimate

x̂t|t and error covariance Pt|t. Let x̂b,t|t+1 and Pb,t|t+1 denote the state estimate

and error covariance before incorporating measurement yt into the backward filter,

respectively, and let x̂b,t|t and Pb,t|t be analogous quantities after incorporation.

Because the backward filter is of inverse covariance form [Maybeck, 1979], it actu-

ally incorporates yt to generate P−1
b,t|t and ẑb,t|t = P−1

b,t|tx̂b,t|t, and then propagate

backward in time to form P−1
b,t−1|t and ẑb,t−1|t = P−1

b,t−1|tx̂b,t−1|t.

The smoothed estimate of xt, x̂t|T , is generated by optimally combining the

value of x̂t|t from the forward filter and x̂b,t|t+1 from the backward filter. An op-

timal combination is accomplished by viewing x̂t|t and x̂b,t|t+1 as two separate

“observations” of xt and assigning relative weights according to their accuracy, in-

dicated by Pt|t and Pb,t|t+1, respectively:

x̂t|T = Pt|T

[

P−1
t|t x̂t|t + P−1

b,t|t+1x̂b,t|t+1

]

,

= Pt|T

[

P−1
t|t x̂t|t + ẑb,t|t+1

]

, (2.55)

P−1
t|T = P−1

t|t + P−1
b,t|t+1, (2.56)

where Pt|T is the smoothed error covariance matrix. Equation 2.56 indicates that

Pt|T ≤ Pt|t,

that is, the smoothed estimate is at least as good as the filtered estimate for all time.

Figure 2.5 illustrates the difference between filtered and smoothed estimates.

Algebraic manipulation of Equations 2.55 and 2.56 yields a computationally ef-

ficient form to obtain smoothed estimates of xt and Pt. First, the forward filter of

Equation 2.43 is applied for t = 1, 2, . . . , T to produce x̂t|t and Pt|t. Subsequently,

the inverse-covariance backward filter is applied for t = T, T −1, . . . , 2, with initial

conditions

ẑb,T |T+1 = 0 and P−1
b,T |T+1 = 0. (2.57)

Measurement updates are generated by

ẑb,t|t = ẑb,t|t+1 + CTR−1yt, (2.58a)

P−1
b,t|t = P−1

b,t|t+1 + CTR−1C. (2.58b)
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Figure 2.5: Typical smoothing problem; (a) unequally spaced measurements together with filtered

estimate and smoothed estimate; (b) mean square estimation error of forward filter and backward

filter; (c) mean square estimation error of forward filter and smoother

If no measurement is available, then

ẑb,t|t = ẑb,t+1, (2.58c)

P−1
b,t|t = P−1

b,t|t+1. (2.58d)

The estimate is propagated backward in time to the preceding measurement time

via

Jt = P−1
b,t|tG

[

GTP−1
b,t|tG + Q−1

]−1

, (2.58e)

Lt = I − JtG
T, (2.58f)

ẑb,t−1|t = ATLt

[

ẑb,t|t − P−1
b,t|tBut−1

]

, (2.58g)

P−1
b,t−1|t = AT

[

LtP
−1
b,t|tL

T
t + JtQ

−1JT
t

]

A, (2.58h)
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where Jt and Lt are dummy matrices. At time t, the smoothed estimate is obtained

by combining x̂t|t, Pt|t, ẑb,t|t+1 and P−1
b,t|t+1 through

Xt =
[

I + Pt|tP
−1
b,t|t+1

]−1

, (2.58i)

Wt = Pt|tX
T
t , (2.58j)

Yt = I− WtP
−1
b,t|t+1, (2.58k)

Pt|T = YtPt|tY
T
t + WtP

−1
b,t|t+1W

T
t , (2.58l)

x̂t|T = Xtx̂t|t + Pt|T ẑb,t|t+1, (2.58m)

with Xt, Wt and Yt as dummy matrices.

For the nonlinear model of Equation 2.44, a smoothed estimate can be obtained

by a run of the EKF (Equation 2.46) and a subsequent run of the following backward

filter running from t = T, . . . , 1, with initial conditions of the Lagrange multipliers

λT = 0 and ΛT = 0 [Bryson and Ho, 1975; Krishnamurthy and Johnston, 1999]:

x̂t|T = x̂t|t − Pt|t
∂FT

∂x
λt, (2.59a)

λt−1 =
(

I − Pt|tS
)T
[

∂FT

∂x
λt − CTR−1νt

]

, (2.59b)

Pt|T = Pt|t − Pt|t
∂FT

∂x
Λt
∂F
∂x

Pt|t, (2.59c)

Λt−1 =
(

I − Pt|tS
)T ∂FT

∂x
Λt
∂F
∂x

(

I− Pt|tS
)

+ S
(

I − Pt|tS
)

, (2.59d)

with S = CTR−1C and νt the innovation vector defined in Equation 2.43c.





3
Decoupling of modeling and

measuring interval

Abstract. A state space representation of the transfer function-noise (TFN) model allows

the choice of a modeling (input) interval that is smaller than the measuring interval of the

output variable. Since in geohydrological applications the interval of the available input se-

ries (precipitation excess) is often smaller than the interval of the output series (groundwater

head), the state space model opens the way to a more detailed description of the system. This

chapter evaluates the influence of the reduction of the modeling interval on the performance

of the state space model while keeping the measuring interval fixed. In order to obtain gen-

eral conclusions of the relation between the modeling interval and the model performance,

a large number of groundwater time series are generated and modeled with the state space

model. The results show that a reduction of the modeling interval noticeably improves the

model performance. The degree of improvement depends on aspects like the response time

of the system, the length of the time series and the amount of noise. A case study illus-

trates the effect of reducing the modeling interval as well as that of adding high-frequency

measurements to the time series.

This chapter is adapted from Berendrecht, W.L., A.W. Heemink, F.C. van Geer, and J.C.

Gehrels, Decoupling of modeling and measuring interval in groundwater time series

analysis based on response characteristics, Journal of Hydrology, 278, 1–16, 2003
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THE STATE SPACE APPROACH described in the previous chapter allows for de-

coupling of the modeling interval – being equal to the interval of the input

series – and the measuring interval, i.e, the interval of the output series. As

a consequence, high-frequency input data of precipitation and evaporation, which

are generally widely available, can be used to obtain more accurate estimates of

groundwater fluctuations. In the Netherlands, for example, groundwater head is

measured bimonthly on the 14th and 28th of each month. This means that the

measuring interval varies between 14 and 17 days. Applying a state space model,

the modeling interval can be set to 1 day and the groundwater time series can be

modeled more accurately.

The objective of this chapter is to determine the influence of a reduction of the

modeling interval on the performance of the state space model. In this context, per-

formance is defined as how well the transfer function can be estimated and hence

the fluctuations caused by the input series can be filtered out of the output series.

For this purpose a large number of representative time series are generated, using a

range of predefined transfer functions. Also, a stochastic component is added to the

series to make the time series similar to real groundwater time series. Evaluation

of the calibrated time series models for different measuring and modeling inter-

vals shows that a reduction of the modeling interval generally improves the model.

The rate of improvement depends on several variables, such as the system noise

and the response time of the system. A real-world model of irregularly observed

groundwater head data illustrates and confirms these results.

3.1 Modeling framework
This section briefly describes the modeling framework that is used in the experi-

ments presented in Section 3.2. A state space form of the TFN model is applied to

describe the groundwater system (see also Equation 2.28):

[

xd,t

xs,t

]

=

[

Ad 0

0 As

][

xd,t−1

xs,t−1

]

+

[

bd

0

]

ut +

[

0

gs

]

wt, (3.1a)

yt =
[

cd cs

]

[

xd,t

xs,t

]

+ yr + vt, (3.1b)
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with
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(3.2)
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
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(3.3)

The parameters in the system matrices are unknown and defined as follows: δi
and ωj represent, respectively, the ith autoregressive parameter and the jth mov-

ing average parameter of the transfer model, φk and θl represent, respectively, the

kth autoregressive parameter and the lth moving average parameter of the noise

model. This set of parameters together with the variance of the system noise q, and

the reference level yr, will be referred to as the parameter set α. The variance of the

measurement noise, r, is assumed to be known.

Calibration of the model is achieved by embedding the model in the linear Kal-

man filter of Equation 2.43 on page 37. The log likelihood function is then con-

structed from the innovations and innovation variances calculated by the Kalman

filter. In order to reduce the number of parameters to be estimated, Harvey [1989]

suggests multiplication of the variances in the model by a scaling factor. If the

scaling variance is

σ2
∗ = var(wt), (3.4)

then r is scaled to

r∗ =
var(vt)

σ2
∗

, (3.5)

and

q∗ =
var(wt)

σ2
∗

= 1. (3.6)
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As a result, the dimension of α reduces by 1. Writing down the log likelihood in

terms of these newly defined parameters gives

logL = −N − n

2
log 2π − N − n

2
log σ2

∗ −
1

2

N
∑

t=n+1

logFt −
1

2σ2
∗

N
∑

t=n+1

ν2
t

Ft
, (3.7)

with n the number of time steps needed to initialize the Kalman filter (see Sec-

tion 2.7 on page 40). The advantage of this is that Equation 3.7 can be maximized

with respect to σ2
∗ by setting the derivative to zero, resulting in

σ2
∗ =

1

N − n

N
∑

t=n+1

ν2
t

Ft
. (3.8)

When σ2
∗ is substituted in Equation 3.7, the ‘reduced’ log-likelihood function is ob-

tained:

logLr = −N − n

2
(log 2π + 1) − 1

2

N
∑

t=n+1

logFt −
N − n

2
log σ2

∗ . (3.9)

The simple linear model structure makes it possible to calculate the Jacobian

of the parameter vector α by evaluating the derivatives of Ft and νt analytically

(through differentiating Equation 2.43, running in parallel with the Kalman filter).

Several tests have to ensure that the fitted model adequately describes the time

series under consideration. The main diagnostics are based on the innovations ob-

tained by the Kalman filter. The whiteness of the innovations can be tested using

the autocorrelation function of the innovations. Harvey [1989] gives an estimator of

the autocorrelation function of innovations containing missing values:

r (k) =





N†
∑

t=n+1

ν̃†t ν̃
†
t−k

N (k)









N†
∑

t=n+1

ν̃†2t
(N − n)





−1

, (3.10)

where k is the time lag, N † is the length of the series generated by the underly-

ing model, N(k) is the number of non-zero cross-products of innovations in the

numerator of the statistic, and ν̃†t denotes the standardized innovation defined by

ν̃†t =
νt

F
1
2
t

, t = n+ 1, . . . , N †, (3.11)

if yt is observed and is set to zero for all other values of t for t = n + 1, . . . , N †.

The cross-correlation between input series and innovations as well as the cross-

correlation between input series and residuals (i.e. estimated stochastic compo-

nent) provide useful information on the correctness of the model structure.
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3.2 Description of experiment
The effect of reducing the modeling interval is evaluated using generated time se-

ries. The advantage of a generated series is that the relation (transfer function)

between the input and output is exactly known, enabling an accurate evaluation

of the model performance. This section describes how time series were generated.

Also it describes the criteria that were used to evaluate the model results.

3.2.1 Generation of groundwater time series

Groundwater time series were generated by transferring a daily input series of pre-

cipitation excess, using a predefined transfer function described by the probability

density function of a lognormal distribution:

Ψ(t) =
c

tσ
√

2π
exp

[

−1

2

(

ln t− µ

σ

)2
]

σ > 0, 0 < t <∞, (3.12)

where µ and σ are the geometric mean and standard deviation of the distribution,

respectively, and c is a scaling constant. The main reasons for choosing this func-

tion are its flexibility (continuous in time) and the fact that the response of many

hydrological systems to precipitation can be described by an exponential function.

The deterministic component zt of the generated time series can thus be written as

zt =

t−1
∑

τ=1

ΨτPe,t−τ . (3.13)

Here, Pe is the precipitation excess [LT−1]:

Pe = P − fcEr, (3.14)

whereP is the precipitation [LT−1],Er is the Makkink reference evaporation [LT−1],

and fc is a crop factor [-] which was set to a value of 0.8. Both precipitation and

evaporation were obtained from daily observations at the main meteorological sta-

tion of the Royal Netherlands Meteorological Institute at De Bilt, the Netherlands,

in the period from July 1, 1957 to December 31, 1999.

In addition to the deterministic transfer function, a stochastic component was

added to the system. This component represents the part of the system dynamics

that is not related to the input signal. The stochastic component is assumed to be

described by the following autoregressive model:

ξt = φξt−1 + at, (3.15)

where at is normally distributed with zero mean and variance σ2
a, which was set

to 1 percent of the variance of the deterministic component. A number of 20 in-

dependent realizations of each stochastic component were generated to obtain a

statistically correct experiment.
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Figure 3.1: Examples of transfer functions applied to generate time series; the solid curve is used in

this chapter

Using Equations 3.13 and 3.15 many different time series were generated, vary-

ing from fast responding systems (peak response within a couple of days) to very

slow responding systems (peak response after one year). Figure 3.1 gives some

transfer functions used in this experiment. This chapter only describes the results

of the time series generated with the solid transfer curve in Figure 3.1, having a

time of peak response tp = 43 days. Conclusions from this experiment are similar

to those of the other analyzed transfer functions.

Each deterministic component was combined with two different stochastic com-

ponents. Table 3.1 gives the parameters of this transfer function as well as the pa-

rameters of the stochastic component. Here, the ratio SN is defined as

SN =
var(ξt)

var(zt)
, (3.16)

where var(ξt) is the variance of the stochastic component, and var(zt) is the variance

of the deterministic component. Table 3.1 shows that, as a result of the higher value

of φ, the value of SN of series S2 is higher.

Figure 3.2 shows one realization of time series S2. The time series was finally

split into a calibration period (1957-1989) and a validation period (1990-1999) to

validate the results obtained by the calibration.

Table 3.1: Parameters of predefined transfer function used to generate time series

Deterministic component Stochastic component

Series µ σ c φ SN

S1 4.0 0.5 10 0 0.01

S2 4.0 0.5 10 0.99 0.37
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Figure 3.2: Realization of time series generated with a predefined transfer function (lognormal prob-

ability density function) and an autoregressive stochastic component corresponding to S2 in Table 3.1

3.2.2 Resampling of time series

A thorough analysis of the relation between modeling interval and model perfor-

mance not only requires a range of transfer functions (as described in Section 3.2.1)

but also a number of other variables that influence the relation between model-

ing interval and model performance. Table 3.2 gives an overview of the variables

that were taken into account and the range of variation that was analyzed in this

chapter. Basically, these time series were modeled with two different model forms:

Model 1 has a modeling interval equal to the measuring interval; Model 2 has a

modeling interval of 10 days.

3.2.3 Evaluation criteria

Before comparing models of different time series and with different modeling in-

tervals, the number of parameters of each model needs to be selected. In practical

applications, well-known criteria are the Akaike Information Criterion (AIC), Bayes

Information Criterion (BIC) as well as the innovation variance of the calibrated and

validated time series. In this experiment, with generated time series and a known

deterministic component, the ‘fit’ of the calibrated deterministic component of the

model to the real deterministic component can be calculated. A good measure of

‘fit’ (or ‘error’) is the mean absolute error (MAE) [L] of the deterministic component,

Table 3.2: Variation of variables applied for resampling of the time series

Variable Range of variation

Measuring interval 10, 20, ..., 70 days

Length of time series 10, 20, ..., 100 % of maximum length (1957-1989)

Varying measuring interval first fraction (0, 10, 20, ..., 100%) of time series

has measuring interval of 70 days,

last fraction a measuring interval of 10 days;

modeling interval is 10 days
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described as

MAE =
1

N − n

N
∑

t=n+1

|ẑt − zt|, (3.17)

where ẑt represents the estimated deterministic component. In other words, the

MAE quantifies how well the deterministic component can be separated from the

stochastic component. Based on the MAE, the optimal number of parameters was

selected for each time series model. The MAE-criterion was also applied to com-

pare the models of the time series given in Table 3.2. A second criterion was used

to indicate the accuracy of the estimated transfer function. For this purpose, a

useful parameter is the standard deviation of the gain of the transfer function sG
[L(LT−1)−1], where the gain G [L(LT−1)−1] represents the area under the impulse-

response curve (see Equation 2.8 on page 29).

3.3 Comparison of model results for varying modeling and
measuring interval

This section discusses the results of the experiment. First, the influence of modeling

interval, measuring interval, and length of time series on the fit of the determinis-

tic component is evaluated. Next, the influence of these aspects on the parameter

accuracy is analyzed. Finally, the effect of adding high-frequency measurements to

an existing time series of low-frequency measurements is demonstrated.

3.3.1 Fit of deterministic component

Figure 3.3 shows the fit of the deterministic component expressed in terms of MAE,

for four different cases and seven measuring intervals. For the calculation of the

MAE only the errors at measurement points were used. The four cases are inter-

preted as follows:

1. S1 - Model 1: φ = 0; dtmod = dtmeas
Figure 3.3 shows that the performance of the model improves as the measur-

ing interval decreases: from a mean absolute error of ca. 3.5 cm to an error of

ca. 0.5 cm. A smaller measuring interval (and thus a smaller modeling inter-

val) clearly allows for a finer discretization and hence a better approximation

of the transfer function. The curve of MAE flattens from the moment the mea-

suring interval becomes larger than the time of peak response tp. From this

point, a coarser discretization of the transfer function will hardly influence

the model fit. This is directly related to the gradient of the transfer function.

The rising limb of the transfer function is steep and requires a small interval,

whereas the falling limb of the transfer function has a smaller gradient and

can therefore be well approximated by a model with a large interval.

2. S1 - Model 2: φ = 0; dtmod = 10

In this case, the same time series S1 is modeled, but with the modeling inter-
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Figure 3.3: Fit of deterministic component (mean absolute error, MAE) as a function of measuring

interval, for series S1 using 20 realizations of a white-noise stochastic component (φ = 0) and S2

using 20 realizations of an autoregressive stochastic component (φ = 0.99). Model 1 has a modeling

interval equal to the measuring interval, whereas Model 2 keeps the modeling interval fixed at 10

days.

val fixed at 10 days. Figure 3.3 shows that the performance of this model is

much better and in fact practically insensitive to the measuring interval. This

is easily understood by realizing again that a smaller modeling interval gives

a finer discretization of the transfer function, resulting in a better approxima-

tion.

3. S2 - Model 1: φ = 0.99; dtmod = dtmeas
The difference between series S1 and S2 is that the stochastic component of

series S2 has an autoregressive part, resulting in a larger value of SN . Con-

sequently, the fit of the deterministic component of series S2 is not as good

as for S1. The difference, however, is limited compared to the effect of the

measuring interval.

4. S2 - Model 2: φ = 0.99; dtmod = 10

Again, a reduction of the modeling interval greatly improves the performance

of the model. However, the MAE slowly increases as the measuring interval

increases, whereas the curve of MAE flattens from the moment the measuring

interval becomes larger than tp. It can therefore be concluded that the influ-

ence of the modeling interval on MAE increases as the correlation length (i.e.

the value of φ) of the stochastic component increases.
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Figure 3.4: Fit of deterministic component (mean absolute error, MAE) as a function of measuring

interval and length of the time series (as a percentage of the total length, i.e. 33 years), for series S2

and (a) Model 1 having a modeling interval equal to the measuring interval; and (b) Model 2 having

a modeling interval of 10 days. The results are based on 20 realizations of the stochastic component.

Another important aspect that influences the fit of the deterministic component

is the length of the time series. In Figure 3.3 the length of the time series was fixed at

33 years. In the context of this chapter an important question is whether a reduction

of the modeling interval still improves the fit if the time series is short. Figure 3.4

shows the relation between the MAE and the length of the time series. Only the

results for series S2 are presented, because this series has a large stochastic compo-

nent.

For a length of 100% the curve of the MAE is the same as the curve in Figure 3.3.

If the modeling interval is equal to the measuring interval (Figure 3.4a), the MAE

first hardly increases as the length decreases. Only if the length is reduced to less

than 50% (16.5 years) the increase becomes noticeable. The pattern of the curve

becomes a little irregular for combinations of large measuring interval and short

time series. Much more realizations would be necessary to obtain a smooth curve.

These combinations of measuring interval and length of time series, however, re-

sult in datasets with an unrealistic small number of measurements. For example,

the worst combination (measuring interval is 70 days and length is 10% of the full

length) consists of only 16 measurements. For all other combinations, a reduction

of the modeling interval clearly improves the fit of the deterministic component.

Bierkens et al. [1999] found as well (for a time series with tp = 1 day) that similar

parameter values can be obtained for different measuring intervals as long as the

measuring interval is smaller than the characteristic response time (i.e. time for

which the response is only 5% of the peak response). On the basis of the present

study more general statements can be made, summarized as follows:

1. A reduction of the modeling interval results in a better fit of the deterministic

component, regardless the measuring interval;
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2. The effect of a reduction of the modeling interval increases for larger measur-

ing intervals;

3. For a small stochastic component, the fit is practically insensitive to the mea-

suring interval if a small modeling interval (i.e. small with respect to the time

of peak response) is used;

4. For a large stochastic component, the fit slightly decreases with increasing

measuring interval if a small modeling interval is used.

The presented results are of great practical importance, because the models of ex-

isting groundwater time series can simply be improved by only reducing the mod-

eling interval.

3.3.2 Parameter accuracy

The overall accuracy of the estimated parameters, expressed by the standard de-

viation of the gain (sG), is evaluated in relation to the measuring interval and the

length of the time series. Figure 3.5 shows this relation for the same four cases as

in the previous subsection. In this context, it is important to note that the estimated

gain is ca. 10 cm(mmday−1)−1 (= c in Equation 3.12). The figures are interpreted

as follows:

1. Figure 3.5a. S1 - Model 1: φ = 0; dtmod = dtmeas
The figure shows that the standard deviation of the gain decreases consider-

ably with decreasing measuring interval. This is not surprising because more

measurements result in a more accurate estimation of the parameters. In ad-

dition, the curve of sG has the same pattern as found for the MAE: a rather fast

increase for measuring intervals smaller than tp and a flattening of the curve

for measuring intervals larger than tp. Finally, the influence of the measuring

interval increases with decreasing length of the time series. High standard

deviations occur for short time series with large measuring interval.

2. Figure 3.5b. S1 - Model 2: φ = 0; dtmod = 10

Similar to the results presented for the MAE, a fixed small modeling interval

results in better models for all measuring intervals in the sense that the trans-

fer function is estimated more accurately. However, a small increase of sG can

still be observed as the measuring interval increases. This is directly related to

the fact that the number of measurements reduces as the measuring interval

increases.

3. Figure 3.5c and d. S2 (φ = 0.99) - Model 1 (dtmod = dtmeas) and Model 2

(dtmod = 10)

The pattern of sG is similar to the pattern of series S1. However, the influence

of the measuring interval on sG is small with respect to the influence of the

stochastic component on sG.
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Figure 3.5: Relation between parameter accuracy, measuring interval and length of time series (rela-

tive to the original length of the time series (33 years)) for (a) series S1, Model 1; (b) series S1, Model

2; (c) series S2, Model 1; and (d) series S2, Model 2. The results are based on 20 realizations of the

stochastic component.

Summarizing, a reduction of the modeling interval has a positive effect on the

accuracy of the estimated transfer function. The relative improvement (improve-

ment with respect to its original value) depends on the contribution of the stochas-

tic component.

3.3.3 Adding high-frequency measurements

In practice, a large data set of groundwater measurements is often available. The

previous sections have shown that a reduction of the modeling interval can im-

prove the model performance considerably. Another way to improve the model

performance is to extend the time series with a set of high-frequency measurements

obtained with automatic data loggers. This section evaluates the influence of such

an extension on the model performance. MAE and sG are used again as evaluation
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Figure 3.6: Influence of reducing the measuring interval from 70 days to 10 days in the final t10/ttot

fraction of time series S1 and S2 on (a) the fit of the deterministic component MAE (cm); and (b) the

parameter accuracy sG (cm(mmday−1)−1). The modeling interval is 10 days and the length of the

series is 33 years. The results are based on 20 realizations of the stochastic component.

criteria.

Figure 3.6 shows the effect of adding high-frequency measurements to the time

series S1 and S2 used earlier. The horizontal axis represents the fraction of the

time series that has a measuring interval of 10 days (instead of 70 days). Hence,

if t10/ttot = 0 the whole time series has a measuring interval of 70 days, whereas

t10/ttot = 0.1 means that the first 90% of the time series has a measuring interval of

70 days and the final 10% a measuring interval of 10 days. The MAE is calculated at

each model time step to obtain a valid comparison between the models.

Figure 3.6a shows that the first high-frequency measurements (between 0% and

20% of the total length of the series) are the most effective in terms of an increase in

the model performance, especially for series S2. This is very attractive, because it

means that relatively few extra measurements are needed to reduce the MAE consid-

erably. The curves of sG (Figure 3.6b) are different: instead of a quick drop during

the first 20%, the curves display a steady decrease of sG. One of the reasons is that

sG depends more on the total number of measurements and length of the time se-

ries than on the measuring interval. The same experiment was applied to shorter

time series, showing the same results.

Summarizing, the model performance can be further improved by extending

(low-frequency) time series with high-frequency measurements. The effect of this

extension becomes larger for time series with large stochastic components. This

section only evaluated the influence of high-frequency measurements at the end-

ing of a period, because there are already many time series with low-frequency

measurements available. If one starts monitoring, however, it could be advanta-

geous to start with high-frequency measurements. This topic will not be discussed

in detail, but several calculations have shown that high-frequency measurements

at the beginning of the period have more effect than at the end of the period.
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3.4 Case study
3.4.1 Description of the data set

Groundwater head data (1990-2000) were obtained from an observation well in the

east of the Netherlands. The measuring frequency of this series was 24 observations

per year. In 1999, the measuring frequency has been increased to one observation

per day during a period of three months (which is about 2.5% of the total length

of the time series). This time series is therefore a good example to examine the

practical significance of the results reported in the previous sections. The series

was split into a calibration series (from 1990 until June 1999, which is at the end

of the daily measurements) and a validation series (from July 1999 until October

2000). The daily meteorological input data were obtained from two meteorological

stations: the precipitation from a nearby station at Eerbeek (5 km distance) and the

potential evapotranspiration from a station at De Bilt (65 km distance).

From this time series three different samples were selected:

1. Measuring interval = 14 days, modeling interval = 14 days,

2. Measuring interval = 14 days, modeling interval = 1 day,

3. Measuring interval = 14 days and 1 day, modeling interval = 1 day.

3.4.2 Modeling results

Identification of the system resulted in the following model form for all three sam-

ples:


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t
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with elements as defined in Equation 3.1.

Table 3.3 lists the estimated parameters of the three models. The graphical out-

put is given in Figures 3.7 and 3.8. Since the difference between the estimated de-

terministic parameters (δ1, δ2, ω0, ω1) of series 2 and series 3 is not significant (see

Table 3.3), the result of series 2 is omitted. Note that due to the extra measurements

in series 3 the standard deviations of the parameters (except yr) decrease.

The results in both figures allow for some general statements. A small model-

ing interval enables a much better approximation to the peak response (compare

Figures 3.7d and 3.8d). As a result, the extreme values of the time series are mod-

eled clearly better (compare the peaks in 1994 and 1999 in Figures 3.7a and 3.8a).
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Figure 3.7: Results of series 1; (a) measurements and predictions of the model for the calibration

period; (b) measurements combined with the predictions and 95% prediction interval for the validation

period; (c) measurements and predictions for the period of daily measurements (for comparison with

Figure 3.8); and (d) estimated impulse response function
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Figure 3.8: Results of series 3; (a) measurements and predictions of the model for the calibration

period; (b) measurements combined with the predictions and 95% prediction interval for the validation

period; (c) measurements and predictions for the period of daily measurements; and (d) estimated

impulse response function
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Table 3.3: Estimated parameters of the calibrated models; the standard deviation of the parameter

estimation error is given in parentheses

Series 1 Series 2 Series 3

dtmeas , d 14 14 mixed

dtmod , d 14 1 1

δ1 1.0438 (0.12) 1.8594 (0.015) 1.8729 (0.011)

δ2 -0.1698 (0.092) -0.8609 (0.015) -0.8742 (0.010)

φ1 0.3906 (0.044) 0.9417 (0.0068) 0.9578 (0.0044)

ω0, cm(mm.d−1)−1 7.377 (0.020) 0.8724 (0.035) 0.8264 (0.028)

ω1, cm(mm.d−1)−1 -4.066 (0.056) -0.8317 (0.034) -0.7905 (0.027)

yr , cm -138.6 (1.9) -140.1 (1.6) -139.8 (1.8)

Also, Figure 3.8c shows that the daily fluctuations of groundwater head are mod-

eled rather well. Only a slight local trend is observed. A possible explanation of

this trend is that the assumption of linearity is incorrect.

The difference in model performance has to be quantified by criteria such as

the innovation variance of the calibrated series, var(nc,t), the innovation variance

of the validated series, var(nv,t), and the standard deviation of the gain, sG. As

different modeling intervals are used, comparison of the variance of the system

noise q = var(wt) is not useful. Instead, the variance of the stochastic component is

compared:

var(ξt) =
q

1 − φ2
1

. (3.18)

Table 3.4 evaluates the model performance, using these criteria. Before comparing

the results it is important to remark that the coefficient of determination, R2
T , is

based on all measurements. Hence, the value of R2
T of series 3 is based on more

measurements and thus not directly comparable to R2
T of series 1 and 2. If the

daily measurements of series 3 would be ignored in the calculation of R2
T , then

R2
T = 0.86.

Table 3.4 shows the following:

1. Reducing the modeling interval from 14 days to 1 day results in a reduction

of var(ξt) of about 21%. The variance reduces another 3% if the daily mea-

surements are added to the time series.

2. The gain G increases slightly if the modeling interval is reduced to 1 day,

which means that the area under the impulse response function increases.

This is also expressed by an increase of the coefficient of determination.

3. The accuracy of the estimated transfer function improves from series 1 to 2:

sG reduces by 22%. Adding daily measurements, however, does not result in

a reduction of sG. The reason for this is the relatively large stochastic compo-

nent and short series of high-frequency measurements.

This case study confirms that adjusting the modeling interval to the response

time of the system, improves the model significantly. The model especially de-
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Table 3.4: Comparison of criteria for the evaluation of the performance of the three different models

Series 1 Series 2 Series 3

dtmeas, d 14 14 mixed

dtmod , d 14 1 1

var(nc,t), cm2 152.7 120.7 89.2

var(nv,t), cm2 118.2 116.7 114.8

var(ξt), cm2 180.5 142.0 136.7

G, cm(mm.d−1)−1 26.3 26.7 26.5

sG, cm(mm.d−1)−1 1.8 1.4 1.4

R2
T

0.83 0.87 0.84

scribes the extremes in the time series much better. As a result, the system noise

reduces considerably. The noise could be reduced even further by adding high-

frequency measurements. The improvements due to the relatively short series of

high-frequency measurements is, however, small. A longer high-frequency time

series will probably lead to a further improvement.

3.5 Discussion and conclusions
The objective of this chapter was to determine the influence of a reduction of the

modeling interval on the performance (i.e. ’fit’ and accuracy of estimated transfer

function) of the state space model. The fit can only be measured if the real transfer

function is known. For this reason a large range of groundwater time series were

generated. Calculations on several samples (with varying measuring and modeling

intervals) of different time series show that the performance of transfer models

can be increased by simply reducing the modeling interval. The degree of model

improvement depends on several aspects.

First, the modeling interval itself relative to the time of peak response of the

system is important. If the modeling interval is large with respect to the time of

peak response, a reduction of the interval will greatly improve the performance.

On the other hand, if the modeling interval is already small with respect to the time

of peak response, a further reduction will not be very effective.

Second, the relative effect of a reduction of the modeling interval will be less if

the stochastic component of the system (the part of the system dynamics that is not

related to the input signal) is large.

Third, the effect of reducing the modeling interval becomes larger as the length

of the time series increases. This reduction is especially observed for the fit of the

deterministic component.

In addition to reducing the modeling interval, one could extend a time series

with easily obtainable high-frequency measurements (i.e. a reduction of the measur-

ing interval). The effect of such an extra set of high-frequency measurements again

strongly depends on the stochastic component: high-frequency measurements are

much more effective if the stochastic component is large. Moreover, the first high-

frequency measurements have the greatest influence on the model performance. It

is therefore attractive to add a small time period of high-frequency measurements
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to the existing time series of low-frequency measurements.

The state space model has been used to model a real-world test case of which the

measuring interval was reduced to one day for the last three months. The results of

this case study support the results of the generated time series: a reduction of the

modeling interval significantly improves the performance of the time series model.

Due to the short period of high-frequency measurements in the test case (only three

months), the improvement resulting from these high-frequency measurements was

relatively moderate.

Further improvement of groundwater time series models can be achieved by

including physical knowledge. The state space approach allows for extension of

the model with unobserved states, such as unsaturated processes. This is the topic

of the next chapter.





4
Incorporation of a nonlinear

root zone model

Abstract. A nonlinear state space model is developed for describing fluctuations of

groundwater levels. Nonlinearity is introduced by modeling the (unobserved) degree of

water saturation of the root zone. The nonlinear relations are based on physical concepts de-

scribing the dependence of the actual evapotranspiration and of the percolation rate on the

degree of saturation of the root zone. Precipitation and reference evaporation are the input

variables. Assuming gravity-driven flow, the recharge from the root zone is transferred to

the water table by means of a linear reservoir model. Errors due to model assumptions and

parameter uncertainties are modeled as a noise process. The parameters of the resulting sto-

chastic model are calibrated on time series by combining an extended Kalman filter with a

maximum likelihood criterion. The model was tested at two locations and compared with a

linear time series model. It is shown that the nonlinear model estimated extreme groundwa-

ter levels better than the linear time series model. The variance of the stochastic component

reduced significantly and, hence, the uncertainty of estimated trends reduced. Another ad-

vantage of the nonlinear model is that it also gives an indication of fluctuations in the degree

of saturation in the root zone.

This chapter is adapted from Berendrecht, W.L., F.C. van Geer, J.C. Gehrels, and A.W.

Heemink, A nonlinear state space approach to model groundwater level fluctuations,

submitted to Advances in Water Resources



68 Chapter 4: Incorporation of a nonlinear root zone model

LINEAR TRANSFER FUNCTION-NOISE MODELS have been widely applied in hy-

drological and geohydrological applications. Many time series of ground-

water level fluctuations have been successfully modeled with TFN models.

However, there has always been a class of deep groundwater time series that could

not be modeled satisfactorily with this linear type of model [Gehrels et al., 1994].

The main problem encountered was that trends cannot be detected accurately. Al-

though the residual variance (part that cannot be explained by the model input) is

often small relative to the total variance of groundwater fluctuations, it is generally

large relative to estimated trends. As a consequence, the estimated trend has a high

level of uncertainty, hampering accurate evaluation of interventions.

One of the most important reasons that the TFN model fails to accurately de-

scribe the groundwater level fluctuations is that it assumes a linear relation between

input (precipitation and evapotranspiration) and output (groundwater level). Phys-

ical knowledge shows that the response of a groundwater system to precipitation

and evapotranspiration can be strongly nonlinear [e.g. Feddes et al., 1988]. It is well

known that the degree of water saturation of the root zone determines in a nonlin-

ear way the hydraulic conductivity, and as a result, the percolation to the ground-

water table. Also, the degree of saturation influences the water uptake by roots and

thus the actual evapotranspiration.

A well-known type of model that incorporate these nonlinear relations is the

physical-mechanistic model [Neuman et al., 1974; Belmans et al., 1983; Van Dam,

2000]. A disadvantage of this type of models, however, is that they generally re-

quire a lot of parameters. In practical applications, there is often insufficient data

to estimate these parameters. Stochastic models such as TFN models are generally

more parsimonious. Moreover, the stochastic form of the model makes it possible

to model unknown disturbances, errors due to model assumptions, errors due to

parameter uncertainty and errors in model inputs. Besides, the stochastic model

can be easily used for online processing if it is written in state space form. Several

stochastic models were already applied for estimating soil water content [e.g. Or

and Hanks, 1992; Parlange et al., 1992, 1993; Wu et al., 1997; Hoeben and Troch, 2000; Wu

et al., 2001]. Furthermore, Bierkens [1998] developed a nonlinear stochastic model

for describing shallow groundwater level fluctuations. This model, however, can-

not be applied for modeling deep groundwater level fluctuations.
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The aim of this chapter is to develop a parsimonious state space model cap-

turing the most relevant physical processes needed to describe groundwater level

fluctuations. The model incorporates the saturation of the root zone as a separate

variable (which may be unobserved). In this way, the model can estimate the tem-

poral variation of actual evapotranspiration and percolation, and thus groundwa-

ter recharge, more accurately. The model is based on well-known physical concepts

like Richards’ equation and Darcy’s law. The intention is to use these physical re-

lations in a simple, conceptual way rather than to include a detailed description of

unsaturated processes in the subsoil. The state equation is combined with an ex-

tended Kalman filter algorithm to calibrate its parameters to observed time series

of groundwater levels. Although this chapter only describes a single time series

model, it is straightforward to extend the state space model for modeling multiple

time series simultaneously.

The presented model is tested on two time series of groundwater level data

observed in the center of the Netherlands. For comparison, a linear TFN model is

calibrated to both time series. Results show that the nonlinear model performs bet-

ter than the linear TFN model in the sense that it further reduces the noise variance.

Hence, the uncertainty of estimated trends reduces. Reduction of the noise vari-

ance also enables a more accurate prediction of groundwater level fluctuations. In

addition, the nonlinear model gives a reasonably good estimate of the degree of

water saturation in the root zone.

The chapter is organized as follows. Section 4.1 presents the conceptual back-

ground of the nonlinear model. Subsequently, Section 4.2 rewrites the model into

state space form and describes how the system state and model parameters are es-

timated. Section 4.3 uses two real-world examples to test the model. The results

are compared with a linear TFN model. Finally, Section 4.4 gives some concluding

remarks.

4.1 A nonlinear reservoir model
A widely applied schematization of a groundwater system is the reservoir model as

illustrated in Figure 4.1. The first (upper) reservoir is the root zone. Here, the input

variables enter the system. The second reservoir is the percolation zone, describing

the downward flux from the root zone to the third reservoir, the saturated zone.

This last reservoir is the lower boundary of the model and represents the observed

groundwater level.

4.1.1 Root zone

The main parameter of the root zone is the effective degree of water saturation Se
[-], 0 < Se ≤ 1, described by the following differential equation:

dSe
dt

=
1

De
(Pe − Ea −Rp) . (4.1)
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Figure 4.1: Schematization of groundwater system

Here, De = D (θs − θr) is the effective thickness of the root zone [L], with D the

root zone depth [L], θs the saturated soil water content [-], and θr the residual soil

water content [-]. Pe is the net precipitation [LT−1], which is assumed to be related

to the observed gross precipitation PG [LT−1] as

Pe = fiPG, (4.2)

where fi is an interception factor [-]. Ea is the actual evapotranspiration [LT−1] and

depends on the degree of water saturation and the potential evapotranspiration Ep
[LT−1], which is a linear function of the observed Makkink reference evaporation

Er [LT−1]:

Ep = fcEr, (4.3)

where fc is an empirical crop factor [-] relating the rate of evapotranspiration to the

type of vegetation. The relation between Ea, Ep and the degree of water saturation

Se is derived from the relation between Ea/Ep and the soil moisture pressure head

ψ described by Feddes et al. [1978] and given in Figure 4.2a. Here, ψo is the ‘anaero-

biosis point’, at which deficient aeration conditions exist, ψr is the ‘reduction point’,

at which water uptake by the roots starts to reduce, and ψw is the ‘wilting point’, at

which water uptake is zero. The relation between Ea/Ep and ψ can be transformed

into a relation between Ea/Ep and the degree of saturation Se following [Van Ge-

nuchten, 1980]

Se(ψ) =

[

1

1 + |αψ|n
]m

, (4.4)
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Figure 4.2: (a) Actual evapotranspiration rate as a function of the absolute value of the soil moisture

pressure head |ψ| after Feddes et al. [1978]; and (b) actual evapotranspiration rate as a function of

the degree of water saturation using the “Feddes function” and Equation 4.4 with ψo = 0, and an

approximation using the “Exponential model” (Sr = 0.2)

where α, n and m = 1 − 1
n are empirical factors. A typical example of this rela-

tion is shown in Figure 4.2b (solid line). Here, ψo is assumed to be equal to zero.

Since this relation is rather complex to evaluate in state space form, a more simple

but effective approximation is used (Figure 4.2b, dashed line). This approximation

has been adopted from geostatistics and is generally referred to as the Exponential

model [Isaaks and Srivastava, 1989]:

Ea(Se) =

[

1 − exp

(

−3Se
Sr

)]

Ep, (4.5)

with Sr a shape factor defined as the degree of saturation where Ea(Sr) ≈ 0.95Ep.

The downward flux after passage through the root zone,Rp [LT−1], is described

by Darcy’s law [Feddes et al., 1988]:

Rp(Se) = K(Se)

(

dψ

dz
+ 1

)

, (4.6)

where K(Se) denotes the unsaturated hydraulic conductivity [LT−1] as a function

of the degree of water saturation, and dψ/dz is the hydraulic head gradient, taken

positive downward. For large unsaturated zones, the movement of soil water be-

low the root zone is mainly governed by gravity. Therefore it can be assumed that

the pressure head remains constant with depth, so that Equation 4.6 reduces to

Rp(Se) = K(Se). (4.7)

The unsaturated hydraulic conductivity and thus Rp is described according to Van

Genuchten [1982]:

Rp(Se) = KsS
λ
e

[

1 −
(

1 − S1/m
e

)m]2

, (4.8)



72 Chapter 4: Incorporation of a nonlinear root zone model

where the constant Ks denotes the saturated hydraulic conductivity [LT−1] and λ

and m are empirical shape factors [-], with λm ≥ −2 ensuring dRp/dSe ≥ 0 for

0 < Se ≤ 1.

4.1.2 Percolation zone

Basically, the percolation zone redistributes the incoming flux Rp into an outgoing

flux Rg [LT−1]. This redistribution is calculated using a transfer function that is

based on the general form of a convolution integral [e.g. Gehrels, 1999]:

Rg(t) =

∫ ∞

0

Rp(t− τ)F (τ)dτ , (4.9)

where F (·) is a transfer function representing the percolation zone. Gehrels [1999]

shows that linearization of the well-known Richards’ equation gives an expression

for F (·) that is analogous to the linear convection-dispersion Equation [Maas, 1994].

4.1.3 Saturated zone

Drainage The saturated zone is fed from the percolation zone with a flux Rg. The

lower boundary consists of a drainage flux Rd [LT−1], which is assumed to have a

linear relation with the groundwater level:

Rd =
hd
γ
, (4.10)

where hd is the groundwater level above some reference level [L], and γ is the drain-

age resistance [T]. The groundwater fluctuation is then described by the following

reservoir function [Knotters and Bierkens, 2000]:

ϕ
dhd
dt

= Rg −Rd, (4.11)

where ϕ is a storage coefficient [-].

Large-scale groundwater withdrawal In many situations, large-scale withdrawal

of groundwater has a significant influence on the groundwater level. If a large num-

ber of spatially distributed extraction wells are present, it is virtually impossible to

estimate a transfer function for each individual well. Therefore the individual wells

are lumped into one representative drawdown. For a groundwater withdrawal Q

[LT−3] in a semi-confined aquifer i at distance rQ [L] from the observation point,

the drawdown s [L] after a time lag t [T] is calculated as [Huisman, 1972]

si,t = − Q

4πT
W

(

u2
i ,

rQ√
Tici

)

, (4.12)

with

u2
i =

ε

4Ti

r2Q
t
, (4.13)
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ε is the specific yield [-], Ti [L2T−1] is the transmissivity and ci [T] is the resistance

of the semi-impervious layer for aquifer i. The functionW is a logarithmic integral:

W

(

u2,
rQ√
Tc

)

=

∫ ∞

u2

1

ν
exp

(

−ν −
r2Q

4Tcν

)

dν. (4.14)

For each well, the drawdown at the observation point is calculated with Equa-

tion 4.12. The representative drawdown in aquifer i is then written as

sr,i =
∑

k

sk,i, (4.15)

where sk,i is the drawdown caused by the kth well. Finally, the estimated draw-

down at the observation well is calculated as a summation of the drawdown in

each aquifer i, scaled by a factor βi [-]:

sobs =
∑

i

βisr,i. (4.16)

The factor βi is introduced for two reasons. First, the contribution of each aquifer

to the drawdown may be not the same. Second, the representative drawdown in

aquifer i is only an approximation of the drawdown. A correction factor enables

one to improve this approximation during calibration.

Groundwater level The observed groundwater level can now be written as a su-

perposition of the reference level zr, hd from Equation 4.11, and sobs from Equa-

tion 4.16:

z = zr + hd + sobs, (4.17)

with z the observed groundwater level [L].

4.2 State space representation of the nonlinear reservoir
model

In order to calibrate the described model to a groundwater time series, it is written

as the nonlinear discrete state space representation given in Equation 2.44:

xt = F [xt−1,ut] + gwt, (4.18)

with F [·, ·] a function of state and input. The terms of Equation 4.18 will be dis-

cussed below.

The vector ut represents the system input and is written as

uT
t =

[

PG,t Er,t

]

. (4.19)
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The nonlinear function F [·, ·] relates the state at the previous time step, xt−1,

and the input at the current time step, ut, to the state at the current time step, xt.

Basically, the vector xt consists of the three components described in the previous

section: the root zone, percolation zone, and saturated zone.

The discretization of Equation 4.1 describing the root zone is rather straightfor-

ward. Only one provision is required to bound the degree of saturation between 0

and 1. This is because Equation 4.8 only has a solution for 0 < Se ≤ 1. Therefore

the function S̃e is introduced, which is continuous and differentiable in R:

S̃e =















0.05 exp (20Se − 1) , Se < 0.05

1 − 0.05 exp (19 − 20Se) , Se > 0.95

Se, otherwise.

(4.20)

The first element of the state equation is then written as

Se,t = Se,t−1 +
∆t

De

(

fiPG,t − Ea(S̃e,t−1) −Rt−1
p

)

, (4.21)

with

Rt−1
p = KsS̃

λ
e,t−1

[

1 −
(

1 − S̃
1/m
e,t−1

)m]2

, (4.22)

and Ea(·) as defined in Equation 4.5.

Equation 4.9 describing the percolation zone is written as the following dis-

crete form of the linear reservoir model, which is a well-known discretization of

the convection-dispersion equation:








R1,t

R2,t

Rg,t









=









δp,1R1,t−1 + (1 − δp,1)R
t−1
p

δp,2R2,t−1 + (1 − δp,2)R1,t−1

δp,3Rg,t−1 + (1 − δp,3)R2,t−1









, (4.23)

where δp,i is the autoregressive parameter of the ith state of the percolation zone [-]:

0 ≤ δp,i < 1. At every time step, an impulse of the flux from the root zoneRp enters

at R1 and is damped while passing through the states. Note that the gain of each

equation is equal to 1. Obviously, the number of states can be reduced or extended

depending on the length of the percolation zone, but in most practical applications

satisfactory results have been obtained with the use of three states.

Equation 4.11, describing the saturated zone, is rewritten as

hd,t = δshd,t−1 + ωRg,t−1, (4.24)

with δs = exp (−1/ϕγ), and ω = γ (1 − δs).

Fluctuations of the groundwater level that cannot be described by the previ-

ous states are described by a stochastic or ‘residual’ component ξ, written as the

following autoregressive model:

ξt = φξt−1 + wt, (4.25)
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where φ is an autoregressive parameter [-]: 0 ≤ φ < 1, andwt is a zero-mean white-

noise process with covariance q. The vector g relates wt to the state ξ (residual

component):

gT =
[

0 0 0 0 0 1
]

. (4.26)

In addition to the noise term in the residual component, noise may enter the model

in the root zone as well. However, tests (using Equation 2.50 on page 39) have

shown that this additional noise term leads to a poor filter performance. Hence, we

describe the system noise only by the residual component of Equation 4.25. This

component thus accounts for all model errors and unknown disturbances.

The elements of the state vector

xT
t =

[

Se,t R1,t R2,t Rg,t hd,t ξt

]

(4.27)

are not observed directly. Instead, the measurement zt is observed, which is a func-

tion of xt (Equation 4.17), the reference level zr, the drawdown sobs,t, and the mea-

surement noise vt:

zt = cxt + zr + sobs,t + vt, (4.28)

where c = [0 0 0 0 1 1], and vt is a zero-mean white-noise process with variance r

representing the measurement error. Extension of the measurement equation with

other observations (e.g. soil moisture data) is straightforward.

The unknown parameters in the equations given above need to be estimated

and will be referred to as the vector α = [fi, fc, Sr,m,De,Ks, λ, δp, ϕ, γ, β, zr,

φ, q, r]. Usually, the variance of the measurement error r is assumed to be known.

In addition, the parameters fi, fc, Sr, and m can be obtained from field data.

Maximum-likelihood estimates of α are calculated by embedding the extended

Kalman filter of Equation 2.46 on page 38 in the optimization procedure described

in Section 2.7.

4.3 Example applications
The nonlinear state space model was applied at two locations in the center of the

Netherlands. At the first location (“Ermelo”), the groundwater level was moder-

ately deep (ca. 10-13 m below surface level). The second location (“Kootwijk”) had

a deeper groundwater level (16-20 m below surface level). Both depths were large

enough to justify the assumption of gravity-driven flow in the percolation zone.

Since at both locations the available amount of data was too small for creating a

validation set, this section evaluates the prediction performances using the data

that were also used for model calibration (generally referred to as verification).

4.3.1 Description of the data sets

Location Ermelo The first test case is a groundwater time series (period 1960-

1999, N = 819) with a frequency of observation of twice a month. The water table
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fluctuated between 10 - 13 m below surface level. The dominating vegetation was

forest. Corresponding values for the interception factor and the crop factor are

fi = 0.8 and fc = 0.7, respectively [Feddes, 1987]. Descriptions of the soil profile

showed that this location consists of a sand soil.

Location Kootwijk The second groundwater time series (period 1957-1999, N =

1002) also had a frequency of observation of twice a month. The water table was

deeper than that at location Ermelo: 16 - 20 m below surface level. At this location

the dominating vegetation was purple moor grass. Gehrels [1999] reports a value of

fc = 1.0 for this type of vegetation. The interception factor was set to fi = 1.0. The

soil mainly consists of sand.

Meteorological data Since accurate modeling of the root zone requires a small

modeling interval, daily observations of the input variables were used. Gross pre-

cipitation was obtained by spatial interpolation of observations from surrounding

meteorological stations, whereas the reference evapotranspiration was obtained

from the main meteorological station of the Royal Netherlands Meteorological In-

stitute at De Bilt.

Groundwater withdrawal The number of wells was ca. 500, with a maximum

total withdrawal of ca. 300×106 m3.y−1. Figure 4.3 shows the representative draw-

Table 4.1: Parameters for location Ermelo and Kootwijk that are not estimated

Parameter Ermelo Kootwijk

fi 0.8 1.0

fc 0.7 1.0

Sr 0.2 0.2

m 0.4 0.4

r, cm2 1.0 1.0
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Table 4.2: Maximum likelihood estimates of the parameters for location Ermelo of nonlinear model

and linear model with associated first-order estimates of error standard deviation

Nonlinear model Linear model

Parameter Estimate Standard deviation Estimate Standard deviation

De, cm 29.4 2.18

Ks, cm.day−1 0.532 0.0414

λ -3.74 0.206

δr 0.990 0.000623

δp 0.661 0.0297 0.292 0.173

ϕ 0.263 0.00561 0.284 0.0115

γ, day 2882 109 2688 109

β 0.659 0.0655 0.627 0.0737

zr , cm 620 10.4 636 10.3

φ 0.9978 0.000405 0.9975 0.000440

q, cm2 0.312 0.0146 0.492 0.0207

var(ξt), cm2 69.4 13.1 100.1 17.9

down at both locations. At Ermelo only one aquifer was influenced by groundwater

abstractions, whereas at Kootwijk two aquifers were influenced.

4.3.2 Calibration and evaluation

A number of model parameters was not calibrated, but a priori set at a fixed value.

Table 4.1 gives these parameters with their associated fixed values. The interception

factor fi, the crop factor fc and the shape factor m were taken directly from the

field data (Section 4.3.1). The shape factor Sr was set to a value of 0.2. In this

way, the exponential model describing Ea/Ep as a function of Se (Equation 4.5)

approximates the water uptake curve for a sand soil (Figure 4.4). Furthermore, the

variance of the measurement error was assumed to be equal to 1 cm2.

In order to determine the influence of the introduced nonlinearities, the time

series were also modeled with a linear state space model. The only difference with

the nonlinear model is that the linear model replaces the nonlinear Equation 4.21

with a linear equation that is equivalent to a state equation in the percolation zone

(Equation 4.23). The autoregressive parameter in the linear root zone is referred to

as δr.

Location Ermelo

Table 4.2 shows the calibrated parameters with error standard deviations for both

the nonlinear model and the linear model. Estimation of the parameters of the

percolation zone (δp,1, δp,2 and δp,3) showed that these parameters were highly cor-

related. The same results were obtained when all three parameters were set to the

same value, i.e., only one parameter was estimated (δp in Table 4.2). Note that the

calibrated parameters for the saturated zone (ϕ and γ), the parameter for the draw-

down (β), the reference level zr, and the autoregressive parameter of the residual

component (φ) of both models are not significantly different (given the estimated

standard deviation of estimation errors). On the other hand, the system noise vari-

ance q shows a reduction of 37% with respect to the variance q of the linear model.
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Figure 4.5: (a) Prediction of nonlinear model and that of linear model, effect of groundwater with-

drawal (effects of both models do not differ significantly), together with the observations at location

Ermelo; and (b) prediction error (residual component) of nonlinear model and linear model for location

Ermelo

This means that the prediction uncertainty of the nonlinear model is much smaller.

Figure 4.5a shows the prediction z̆ (i.e. the deterministic component) of the

calibrated nonlinear model and of the calibrated linear model together with the

measurements z. Since the estimated effect of groundwater withdrawal is almost

equal for both models, the figure only plots the effect as estimated by the nonlinear

model. Figure 4.5b shows the prediction error of the deterministic component, i.e.

the predicted groundwater level minus the measured one. Overall, both models

perform well. The nonlinear model, however, generally predicts local extremes

better than the linear model. This is best observed in Figure 4.5b. Especially for

the very dry year of 1976, the linear model predicted a groundwater level that is

ca. 30 cm lower than the observed one. The nonlinear model, on the other hand,

predicted the observed decline well.

In addition to the parameter estimates, Table 4.2 gives the variance of the resid-
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nonlinear relation between Ea and Se; (b) degree of water saturation in nonlinear root zone; (c) ratio

between actual and potential evapotranspiration for the nonlinear model; and (d) percolation flux for

the nonlinear and linear model for the period 1970-1980

ual component for both the nonlinear and linear model, calculated as

var(ξt) =
q

1 − φ2
. (4.29)

In addition, standard deviations of the estimated residual variances are given. These

standard deviations are based on the standard deviations of q and φ. The figures

show that by incorporating the nonlinear root zone, we have reduced the residual

variance by approximately 31%.

Since the nonlinear root zone is the only difference between the nonlinear and

the linear model, it is interesting to determine what part of the nonlinearity – ac-

tual evapotranspiration or the percolation flux – is responsible for the increase in

model accuracy. For this purpose, Figure 4.6 plots for the period 1970-1980 the pre-

dicted groundwater level together with the following quantities of the root zone:

the degree of water saturation Se (i.e. the first state of the state vector xt), the

ratio between the actual and potential evapotranspiration (derived from Se using

Equation 4.5), and the percolation flux for both the nonlinear model (derived from

Se using Equation 4.22) and the linear model (first state of the state vector). As

can be seen from the figure, most of the time, actual evapotranspiration Ea equals



80 Chapter 4: Incorporation of a nonlinear root zone model

Table 4.3: Maximum likelihood estimates of the parameters for location Kootwijk of nonlinear model

and linear model with associated first-order estimates of error standard deviation

Nonlinear model Linear model

Parameter Estimate Standard deviation Estimate Standard deviation

De, cm 41.2 6.54

Ks, cm.day−1 0.671 0.0904

λ -3.54 0.578

δr 0.992 0.00300

δp,1 0.990 0.000943 0.992 0.00299

δp,2 0.840 0.111

δp,3 0.834 0.117

ϕ 0.267 0.0101 0.274 0.0109

γ, day 7986 1103 5672 672

β1 0.399 0.586 1.51 0.461

β2 1.34 0.268 0.532 0.367

zr, cm 2062 125 2315 68.3

φ 0.9989 0.000390 0.9990 0.000288

q, cm2 0.682 0.0260 0.803 0.0290

var(ξt), cm2 310.2 34.5 401.7 53.7

potential evapotranspiration Ep. In 1976, Ea/Ep dropped to a value of 0.4. For

that period, the cumulative difference between Ea and Ep is ca. 9 cm. The ef-

fect of the reduced evapotranspiration on the groundwater level is denoted by the

shaded area in Figure 4.6a. The area represents the difference between the ground-

water level predicted with the calibrated nonlinear model and that predicted with

the nonlinear model assuming full evapotranspiration (Ea = Ep). First, the figure

shows that the reduction of the evapotranspiration rate affects the groundwater

level considerably: the maximum difference between both predictions is almost

20 cm, and, due to the slow response time of the system, the effect is still present

after a couple of years. Second, the figure shows that the underestimation of the

groundwater level for 1976 by the linear model mainly results from neglecting the

other nonlinear relation, namely the relation between percolation flux Rp and the

degree of water saturation Se. This is further illustrated in Figure 4.6d. Here the

percolation flux is plotted as a function of time for both the linear and nonlinear

model. The figure clearly demonstrates why the groundwater level decline was

overestimated: during a half-year period, the percolation flux in the linear model is

negative, i.e. an upward flux of at most 0.1 mm.day−1. This is quite unrealistic for

a groundwater level that is ca. 10 m below surface level. The same phenomenon is

observed for 1971: the linear estimate of the percolation flux becomes negative, so

that the groundwater level decline is overestimated.

Summarizing, the nonlinear model predicts extremes in groundwater level fluc-

tuations better than the linear model. As a result, it has a much lower noise variance

q and residual variance var(ξt). The example showed that most of the improvement

is caused by the nonlinear relation between the percolation flux Rp and the degree

of water saturation Se, producing a more realistic estimate of the percolation flux.
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Figure 4.7: Prediction of nonlinear model and that of linear model compared with observations at

location Kootwijk

Location Kootwijk

Table 4.3 gives the calibrated parameters with associated error standard deviations

of the nonlinear model. Like the table for location Ermelo, it compares the results

with those of a linear model. Note that the groundwater time series is short relative

to the response time of the system. Based on the parameters of the percolation

zone and saturated zone, the characteristic response time of the system is 17 years,

which is ca. 40% of the length of the time series. Consequently, the error standard

deviations of the estimated parameters are relatively high (e.g., β1 and β2). Also,

the linear model could estimate only one significant parameter for describing the

percolation zone.

Figure 4.7 shows the prediction of the models together with observations. The

difference between the nonlinear predictions and the linear ones is less distinct than

for location Ermelo. The reason for this is that, due to the slower response of the

groundwater level to the percolation flux, the influence of the root zone at location

Kootwijk is less than that for location Ermelo. Nevertheless, the variance of the

system noise q and the residual variance var(ξt) of the nonlinear model are still

significantly smaller than those of the linear model, indicating that the nonlinear

model predicts the groundwater level fluctuations more accurately than the linear

model.

The applicability of the state space model would be extended if it could not

only be used to predict groundwater fluctuations, but also to estimate the average

soil water content in the root zone (by using the first element of the state vector

in Equation 4.27). From the soil water content, actual evapotranspiration and the

percolation rate can be derived. Below, the results of the nonlinear model are com-

pared with the results of field experiments.

During the 1990s, Gehrels [1999] investigated groundwater fluctuations in the
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Figure 4.8: Prediction of the degree of water saturation compared with the degree of water saturation

derived from soil water content measurements averaged over the top 60 cm for the period July 1992

until January 1995 (measurements adapted from Gehrels [1999]).

area around Kootwijk. Part of his study consisted of modeling of soil water move-

ment, estimation of percolation rates, and estimation of groundwater recharge. For

this purpose, several field investigations were carried out, such as tracer methods

for recharge estimation and capacitance probe soil water measurements. A detailed

description of these methods, the way they were used, and the results are given in

Gehrels [1999].

The soil water content predictions of the nonlinear model were compared with

the soil water measurements described in Gehrels [1999]. Soil water content was

monitored at several depths ranging from 4 cm to 300 cm below surface. Mea-

surements were available for September 1992 to December 1994. The measuring

interval varied from daily to weekly. In order to compare the measurements with

model predictions, the actual degree of saturation was derived from the measure-

ments and averaged over the top 60 cm. Figure 4.8 shows the measured degree of

saturation averaged over the depth interval, together with the predicted degree of

water saturation. From the figure it follows that the nonlinear model predicts the

average degree of saturation reasonably well.

Other quantities that can be derived from the model are actual evapotranspi-

ration and the percolation rate. Figure 4.9 shows the annual actual evapotranspi-

ration and the annual percolation rate. Actual evapotranspiration is remarkably

constant through time, with an average of 528 mm.y−1. In contrast, the percolation

rate has a high temporal variability, which is the result of the temporal variabil-

ity of precipitation. The average annual percolation rate is 352 mm.y−1. From a

chloride mass balance, Gehrels [1999] calculated an average percolation rate of 360

mm.y−1. Furthermore, he calculated the average annual percolation rate from a

chloride mass balance and an oxygen-18 tracer test for the period 1993-1995. The

methods provided an estimate of the annual percolation rate of 510 mm.y−1 and

459 mm.y−1, respectively. For the same period, the state space model gives an av-

erage annual percolation rate of 523 mm.y−1.
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Figure 4.9: Annual values as calculated with the nonlinear model of (a) actual evapotranspiration

and (b) percolation rate

4.4 Summary and conclusions
This chapter presented a nonlinear time series model for analyzing time series of

groundwater level data. The model incorporates the unobserved degree of water

saturation of the root zone to model actual evapotranspiration and groundwater

recharge. Model parameters were calibrated by applying an extended Kalman filter

together with a maximum likelihood criterion. On the basis of two test cases and

comparison of results with those of a linear transfer function-noise model, some

general conclusions are drawn.

The main conclusion is that the nonlinear model predicts groundwater level

fluctuations more accurately than the linear TFN model. In particular, extremes

in the time series (very wet or dry periods) are described better by the nonlinear

model. As a result, temporal trends can be estimated with higher certainty. Another

interpretation is that, given a requested level of certainty, trends can be detected

within a shorter space of time.

The first test case showed that the increase in model accuracy mainly results

from the improved description of the percolation flux. As a consequence of the

introduced nonlinearity, the variance of the residual component was 31% lower. In

the second test case the unsaturated zone was larger, resulting in a smaller influence

of the root zone on the water table. The variance of the residual component was

23% lower for the nonlinear model.

The nonlinear model does not only incorporate nonlinear conceptual relations

in the root zone (our primary goal), it also predicts the degree of water saturation

in the root zone fairly well. The model could predict the degree of saturation even

more accurately if it were calibrated using measurements of the degree of satura-

tion. Finally, actual evapotranspiration and the percolation rate were derived from

the model. It was shown that these quantities were close to water balance results

obtained from field experiments.





5
State space modeling in

switching regimes

Abstract. A nonlinear state space model is developed for describing groundwater fluc-

tuations in systems that are influenced by drains. As drains are only active if the water

table is above drainage level, the regime of the system switches at the drainage level. The

groundwater level is related to observations on precipitation and evapotranspiration, re-

gional groundwater flow, and drainage flux. The drainage flux is a nonlinear function of the

groundwater level in the sense that it switches from a constant (zero) flux if the water table is

below drainage level to a flux that is linearly related to the groundwater level if the water ta-

ble is above drainage level. The system noise is also nonlinearly related to the groundwater

level. The model is calibrated on a time series of groundwater level data using a maximum

likelihood criterion. For this purpose the model is processed through a truncated first-order

filter. To increase filter performance, the strong nonlinear relation between the groundwater

level and the drainage flux is smoothed. The state space model was tested at two locations. It

is shown that the model performs well. Moreover, it is superior to commonly applied linear

transfer function-noise models. The applications illustrate the suitability of the state space

model for estimating the effects of interventions, for characterizing the groundwater system,

and for simulation and prediction.

This chapter is adapted from Berendrecht, W.L., A.W. Heemink, F.C. van Geer, and J.C.

Gehrels, State space modeling of water table fluctuations in switching regimes, Journal of

Hydrology, 292, 249–261, 2004
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SWITCHING REGIMES are regularly found in hydrology. Well-known examples

are stream flow in rivers with a weir and groundwater fluctuations in sys-

tems with different drainage levels. Knotters and De Gooijer [1999] already ap-

plied a threshold autoregressive self-exciting open-loop (TARSO) model [Tong, 1990]

to describe this type of system. The previous chapters, however, showed that the

state space approach is more attractive for several reasons. The state space model

can incorporate physical knowledge easily, giving more insight into the hydrolog-

ical processes. This is advantageous when the model is applied to support water

management and decision making.

The aim of this chapter is therefore to develop a state space threshold model

for hydrological applications. Although the model concept is general, this chapter

focuses on nonlinearity in groundwater systems due to drainage. Such systems can

be found in lowland areas with shallow water tables (less than 2 m below ground

surface). Changes in the regime are caused by temporary activation of drains in

periods of high water levels. The state space model describes the observed ground-

water level using precipitation and evapotranspiration as input. Due to the physi-

cal basis, effects of interventions can easily be incorporated into the model. Model

parameters, including the threshold value (drainage level), are estimated using a

maximum likelihood criterion combined with a truncated first-order filter.

The model is tested on two time series of groundwater level data. Results show

that the state space model describes the groundwater fluctuations very well. More-

over, the performance of the model is superior to that of common linear transfer

function-noise models. This chapter also demonstrates that the state space model

can be used for characterization of the groundwater system.

5.1 Water balance of a nonlinear phreatic groundwater
system

Figure 5.1 shows a typical schematization of a groundwater system that is domi-

nated by drainage. A water balance for this system is given by

ϕ
dht
dt

= fiPt − fcEr,t − qb,t − qv,t − ql,t, (5.1)
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Figure 5.1: Schematization of the groundwater system; the dashed line represents a typical water

table during winter, the solid line represents a typical water table during summer.

where ht is the groundwater level at the observation well [L], Pt is the precipitation

[LT−1],Er,t is the Makkink reference evapotranspiration [LT−1] [Winter et al., 1995],

fi is an interception factor [-], fc is a crop factor [-] [Feddes, 1987], ϕ is a storage

coefficient [-], qb,t is the flux to the main drainage system [LT−1], qv,t is the vertical

flux representing downward seepage [LT−1], and ql,t is the flux to the local drainage

system [LT−1]. The vertical flux, qv,t is assumed to be related to the groundwater

level as

qv,t =
ht − haq,t

γv
, (5.2)

where haq,t is the head in the underlying semi-confined aquifer [L], and γv is the

resistance of the semi-confining layer [T]. Similarly, the flux to the main drainage

system is written as

qb,t =
ht − hb,t

γb
, (5.3)

where hb,t represents the drainage base level [L], and γb represents the resistance

between the observation well and the main drainage system [T]. The drainage base

level is assumed to be exogenous (i.e., independent of system variables). As a re-

sult, water exfiltrates if the groundwater level is higher than the drainage base level,

and infiltrates if it is lower.

Since both qv,t and qb,t are linearly related to the groundwater level ht, they are
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added together in a variable qr,t, representing the “regional” flow [LT−1]:

qr,t =
ht − hr,t

γr
, (5.4)

where hr,t [L] and γr [T] can be defined in terms of Equations 5.2 and 5.3, depending

on the boundary conditions. For example, one of the following sets of boundary

conditions can be applied:

1. a prescribed head (Dirichlet condition) for both hb,t and haq,t:

γr =
γbγv
γb + γv

and hr,t =
γbhaq,t + γvhb,t

γb + γv
, (5.5)

2. a prescribed head (Dirichlet condition) for hb,t and a constant flux (Neumann

condition) for qv:

γr = γb and hr,t = hb,t − γbqv. (5.6)

The essential part of the groundwater system depicted in Figure 5.1 is the local

drainage system represented by the trenches. In the situation of Figure 5.1, where

the water table is lower than the local drainage level hl [L], the drainage system is

not active. However, as the water table rises and becomes higher than the threshold

hl (dashed line), groundwater is discharged through the trenches. The drainage

flux ql,t [LT−1] is therefore described by the following equations:

ql,t =

{

0 ht ≤ hl,
ht−hl

γl
ht > hl,

(5.7)

where γl is the local drainage resistance [T].

Equation 5.1 can now be written as the following ordinary differential equation:

dht
dt

=
1

ϕ

[

fiPt − fcEr,t −
ht − hr,t

γr
− ql,t

]

. (5.8)

5.2 State space model of the phreatic system
The model described by Equation 5.8 is calibrated to a groundwater time series by

combining a maximum likelihood criterion with a nonlinear filter. For this purpose,

Equation 5.8 is written as (see Equation 2.47):

ht = F [ht−1,ut] + G [ht−1]wt, (5.9a)

zt = ht + vt, (5.9b)

where ht is the system state at time t representing the groundwater level at the

observation well, zt is the observation at time t allowing for an observation error
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vt ≃ N(0, σ2
v), wt ≃ N(0, σ2

w) represents system noise containing errors in model

inputs and errors due to model assumptions, and ut is a vector containing the input

data at time t written as

ut =

[

Pt

Er,t

]

. (5.10)

The vector ut can easily be extended with more input data, such as data describing

interventions. For instance, if the reference level hr changes over time, the input

vector can be augmented with an input series of fluctuations ∆hr,t, so that hr,t is

written as

hr,t = hr + β∆hr,t, (5.11)

where β is a scaling factor [-] depending on the source of fluctuations (e.g., hb or

haq) and the type of boundary condition (see Equations 5.5 and 5.6).

For ht ≤ hl (ql,t = 0), Equation 5.8 is approximated by the following discrete

form:

ht = ht−∆te
−∆t/ϕγr +

∫ t

t−∆t

e−(t−τ)/ϕγr
1

ϕ

(

fiPt − fcEr,t +
hr,t
γr

)

dτ . (5.12)

Assuming that Pt andEr,t are constant between t−∆t and t, the following equation

is obtained:

ht = ht−∆te
−∆t/ϕγr + γr

(

1 − e−∆t/ϕγr

)

(

fiPt − fcEr,t +
hr,t
γr

)

, (5.13)

or

ht = δrht−∆t + ωr (fiPt − fcEr,t) + µr,t, (5.14)

with

δr = e−∆t/ϕγr [−], (5.15)

ωr = γr (1 − δr) [T], (5.16)

µr,t = hr,t (1 − δr) [L]. (5.17)

Similarly, Equation 5.8 for ht > hl is written as

ht = δsht−∆t + ωs (fiPt − fcEr,t) + µs,t, (5.18)

with

δs = e−∆t/ϕΓ [−], (5.19)

ωs = Γ (1 − δs) [T], (5.20)

µs,t = Ht (1 − δs) [L], (5.21)
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and (similar to Equation 5.5) lumping hl, hr,t, γl and γr into

Γ =
γlγr
γl + γr

[T] and Ht =
γrhl + γlhr,t
γl + γr

[L]. (5.22)

Equations 5.14 and 5.18 can also be written in terms of the local drainage flux

ql,t:

ht = δrht−∆t + ωr (fiPt − fcEr,t − ql,t) + µr,t. (5.23)

For ht ≤ hl, ql,t = 0, while for ht > hl, ql,t can be calculated by substituting Equa-

tion 5.18 into Equation 5.23 and isolating ql,t:

ql,t =
1

ωr
[(δr − δs)ht−∆t + (ωr − ωs) (fiPt − fcEr,t) + µr,t − µs,t] . (5.24)

Since ql,t and thus ht is non-differentiable at ht = hl, Equation 5.24 needs to be

smoothed. For this purpose, ql,t is transformed into the function q∗l,t, which is dif-

ferentiable in R up to the second order:

q∗l,t =

{

2λe2(ql,t−λ)/λ

1+e2(ql,t−λ)/λ for ql,t < λ,

ql,t for ql,t ≥ λ,
(5.25)

with λ (λ > 0) a small value (e.g. λ = 0.01) and ql,t as defined in Equation 5.24.

At ql,t = λ the function q∗l,t switches from a linear function to an exponential func-

tion that is positive definite. In this way, ql,t asymptotically approaches zero if

the water table is lower than the local drainage level hl. A larger value of λ gives a

smoother function but one that approximates the original function less well. Hence,

the choice of λ is a trade-off between filter performance and model correctness.

The influence of the system noise wt (see Equation 5.9a) may change as the

regime switches. For this reason, we write the stochastic part of Equation 5.9a,

ξt = G [ht−1]wt, as the following smooth function:

ξt =

[

1 + (g − 1)
eκ(hl−ht−∆t)

1 + eκ(hl−ht−∆t)

]

wt, (5.26)

where κ is a scaling factor determining the smoothness of Equation 5.26, and g

determines the influence of the system noise below the local drainage level. Above

the drainage level, ξt is asymptotically equal to wt, and below the drainage level, ξt
is asymptotically equal to gwt.

The complete state space model can now be written by combining Equations

5.23, 5.25 and 5.26, with ∆t = 1:

ht = δrht−1 + ωr
(

fiPt − fcEr,t − q∗l,t
)

+ µr,t + ξt, (5.27a)

zt = ht + vt. (5.27b)
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Figure 5.2: Schematization of the “Mortelen” site (well 1)

The unknown parameters in Equation 5.27 need to be estimated and will be

referred to as the vector α =
[

fi, fc, γl, hl, ϕ, γr, hr, β, g, σ
2
w

]

. The variance of the

measurement error σ2
v is assumed to be known. Besides, the parameters fi and fc

are obtained from field data. Maximum-likelihood estimates of α are calculated

by embedding the truncated filter-order filter of Equation 2.48 in the optimization

procedure described in Section 2.7.

5.3 Application and evaluation of the nonlinear model
The model was tested on two time series. At both locations, the groundwater level

was influenced by local drainage. The calibration results will be discussed sepa-

rately. The end of the section compares the performance of the state space model

with that of a linear transfer function-noise (TFN) model.

5.3.1 Observation well 1

The first time series was obtained from a well at the site “Mortelen” in the south-

ern part of the Netherlands. Observations on groundwater levels were available

for September 1967 with an average observation frequency of twice a month. The

variance of the measurement noise was assumed to be σ2
v = 0.5 cm2. Data on daily

precipitation were obtained from the meteorological station of Dinther at 14 km dis-

tance from the well site. Data on daily reference evapotranspiration were estimated

as an average of daily observations at two main meteorological stations in De Bilt

and Beek. The dominant land use was pasture. Corresponding values for the inter-

ception factor and crop factor are, respectively, fi = 1.0 and fc = 1.0 [Feddes, 1987].

Figure 5.2 gives a schematization of the site. During winter, the groundwater level

rises above the local drainage level, whereas during summer, the trenches run dry

as a result of a low groundwater level. In 1988, the bottom of the left ditch of the

main drainage system was lowered by ca. 75 cm. Since the exact date of this inter-

vention was unknown, it was assumed that the reference level decreased linearly

from hr in 1988 to hr − β∆hr in 1989, with ∆hr is 1 cm. The parameter β [-] was

estimated.

In order to be able to validate the calibrated model, the time series was split into

a calibration set (1975-2000) and a validation set (1967-1975). The first period was
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Figure 5.3: Impulse response functions for (a) observation well 1, and (b) observation well 2. The

solid lines represent the response function for h > hl; the dashed lines represent the response function

for h ≤ hl. Note the different scales.

used for validation instead of the last to estimate the effect of the intervention more

accurately.

Table 5.1 gives the calibrated model parameters together with standard devia-

tions. Both the level and the resistance of the local drainage system were estimated

reasonably certain (standard deviations are 0.4 cm and 4 days, respectively). The

lowering of the reference level, estimated at β∆hr = 40 cm, was significantly less

than 75 cm. Finally, note that the weighting of the system noise for ht > hl (repre-

sented by g in Equation 5.26) does not significantly differ from the influence of the

system noise for ht ≤ hl: g is not significantly larger than 1.

From the model parameters, impulse-response functions could be derived. Fig-

ure 5.3a shows these functions for the two regimes (that above and that below the

local drainage level). The figure clearly demonstrates the influence of the local

drainage system on the response time.

Figure 5.4 depicts the prediction (wt = 0) of groundwater levels for the cali-

bration period (1975-2000). The model predicted the groundwater level very well.

Also, the influence of the intervention on the system can be seen. Before the inter-

vention, the water table exceeded the local drainage level (hl = −66.4 cm) every

year. After the intervention the frequency of exceedance was less. In 1996, the

Table 5.1: Calibrated parameters with associated error standard deviation of the state space model

fitted to the time series of observation well 1

Parameter Estimate Standard deviation

γl, d 62.4 4.10

hl, cm -66.4 0.366

ϕ 0.131 0.00158

γr , d 724. 44.5

hr , cm -95.2 1.93

β 39.6 2.55

g 1.07 0.0562

σ2
w , cm2 10.4 0.967
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Figure 5.4: Predicted (wt = 0) and observed groundwater levels for observation well 1 for the

calibration period 1975-2000; the step in the reference level represents the estimated effect of the

intervention in 1988

water table even remained below the local drainage level. Also, the intervention

increased the amplitude of water table fluctuations.

Figure 5.5 shows the prediction of groundwater levels for the validation period

(1967-1975). The 2.5% and 97.5% prediction intervals were estimated from a set of

1000 series of simulated groundwater levels. These samples were simulated using

daily input data, the calibrated model parameters, and 1000 samples of a zero-

mean white-noise process with variance σ2
w = 10.4 cm2. The figure demonstrates

that the prediction interval is smaller for water tables above the local drainage level

than for water tables below local drainage level. The fraction of observations out-

side the prediction interval equals 0.063 (which is close to the theoretical value of

0.05). Summarizing, the verification results (comparison of predictions and mea-

surements for the calibration period) and validation results for observation well 1

are satisfactory, indicating that the state space model gives a good representation

of the groundwater system.

5.3.2 Observation well 2

Well 2 was situated in “De Meetkerkse Moeren”, a location near the border be-

tween Belgium and the Netherlands. The dominant land use was pasture. The

interception factor and crop factor were fi = 1.0 and fc = 1.0 [Feddes, 1987]. Daily

observations on groundwater level were available for December 2000 and onwards.

Since the time series was short, all data were used for calibration. Hence, the cali-

brated model could not be validated. Similar to well 1, for well 2 the variance of the

measurement noise was assumed to be σ2
v = 0.5 cm2. The reference level hr was

assumed to be constant over time. Daily input data were obtained from the nearby

meteorological station of Vlissingen. Figure 5.6 gives a schematic representation of

the site. Several ditches and trenches were present in the neighborhood of the well.
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Figure 5.5: Predicted groundwater levels, observed groundwater levels, and 95% prediction inter-

val (dashed lines) for observation well 1. The prediction interval was estimated from a set of 1000

simulated groundwater levels. The model was calibrated for 1975-2000

During wet periods, water was discharged through these trenches.

The results of the calibration are presented in Table 5.2. The estimated local

drainage level was 1.2 cm below surface. As a result, the local drainage resistance

was very small: ca. 3 days. This is illustrated in Figure 5.3b. An impulse of input is

almost instantaneously discharged through the local drainage system. Also notice

that, in contrast to well 1, the parameter g significantly differs from 1: g = 1.8. This

means that the influence of the system noise for ht ≤ hl is 1.8 times larger than for

ht > hl.

Figure 5.7 shows the prediction of groundwater levels together with the obser-

vations. The model predictions follow the seasonal pattern remarkably well. From

late autumn to early spring, the water level is controlled by the local drainage sys-

tem. By way of illustration, Figure 5.8a shows the daily drainage flux together with

daily precipitation excess (=fiPt−fcEr,t). The trenches immediately discharge most

of the peaks of precipitation excess. On average, ca. 50% of the precipitation excess

observation well

summer

winter

“regional flow”

Figure 5.6: Schematization of the site “De Meetkerkse Moeren” (well 2)
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Figure 5.7: Predicted (wt = 0) and observed groundwater levels for observation well 2

is discharged through the trenches in this period. From mid spring until late sum-

mer, the trenches are dry. In May, the groundwater level sharply declines with

almost 1 m. During summer, the groundwater level remains low. The reference

level hr = −34.7 cm is then higher than the water table, resulting in a considerable

infiltration of water into the system of ca. 1.5 mm.d−1 (Figure 5.8b). At the end of

the summer, the direction of the regional flux switches and groundwater is being

discharged with ca. 1 mm.d−1.

Since a validation set was not available, other criteria were needed to check

model correctness. A useful check is the whiteness of the innovations. Figure 5.9a

shows the innovations with 2.5 and 97.5 percentiles calculated with the truncated

first-order filter as ±1.96
√
ft. The fraction innovations outside these limits equals

0.052, which is close to the theoretical value of 0.05. The variation of the percentiles

demonstrates the influence of the parameter g: the 2.5 and 97.5 percentiles become

smaller when the water table level becomes higher than the local drainage level.

Figure 5.9b shows the autocorrelations of the innovations with the 2.5 and 97.5

percentiles. As there is no significant autocorrelation, it is likely that the calibrated

model gives a statistically correct description of the system.

Table 5.2: Calibrated parameters with associated error standard deviation of the state space model

fitted to the time series of observation well 2

Parameter Estimate Standard deviation

γl, d 2.96 0.403

hl, cm -1.20 0.130

ϕ 0.0957 0.00317

γr , d 337. 39.1

hr , cm -34.7 4.03

g 1.80 0.160

σ2
w , cm2 3.94 0.644
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Figure 5.8: (a) local drainage flux with precipitation excess and (b) regional drainage flux as estimated

for observation well 2

A useful application of the model is to characterize the groundwater system

on the basis of some univariate statistics such as mean, standard deviation, and

percentiles. Since the length of the observed time series was too short for calcu-

lating these statistics, 1000 samples were simulated for the period 1957-2003 using

the calibrated model parameters and daily input data (precipitation and evapora-

tion). From these samples univariate statistics were calculated as an average over

time and realizations. Table 5.3 gives an overview of the statistics. The cumulative

probability of the groundwater level is represented by a graph of the frequency of

exceedance (Figure 5.10a). This graph can be used for the purpose of risk analysis.

For example, one can derive from the graph that 24 days per year, the water table is

expected to be above surface level. Figure 5.10b shows the frequency of exceedance

as a function of time. The bold line (median) represents the groundwater level that

is exceeded once per 2 years. Similarly, only once every 10 years the water table is

higher than the upper line (90 percentile), and only once in that period it is lower

than the lowest line (10 percentile). The figure demonstrates that for summer, the

uncertainty (bandwidth) is larger than for winter.

5.3.3 Comparison with linear model

Table 5.4 presents statistics that evaluate the predictive performance of the state

space model both for well 1 and well 2. The verification (prediction for same pe-
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riod as that used for calibration) and validation (prediction for another period than

that used for calibration) results of the nonlinear model are compared with the cal-

ibration and validation results of a linear transfer function-noise (TFN) model of the

form

ht = δht−1 + ω (fiPt − fcEr,t) + µ+ wt, (5.28)

where δ is an autoregressive parameter [-], ω is a moving-average parameter [T], µ

is a reference level [L], and wt is a zero-mean white-noise process. The TFN model

predicts the groundwater level through a linear relation between input (precipi-

tation and evapotranspiration) and output (groundwater level). Consequently, it

does not take the local drainage system into account.

The statistics given in Table 5.4 are defined as follows. The mean prediction

Table 5.3: Univariate statistics of groundwater levels (cm) at well 2 for the period 1957-2003 on the

basis of the calibrated model (calibration period from December 2001 until February 2003)

Statistic Value

Mean -32.0

Standard deviation 34.0

25 percentile -59.1

50 percentile -28.4

75 percentile -8.6
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Figure 5.10: (a) Frequency of exceedance of groundwater level at well 2; and (b) for every day of the

year the median and 10, 25, 75, and 90 percentiles. The curves are based on 1000 simulations for

1957-2000, using the calibrated model

error (ME) measures the systematic error of the prediction:

ME =
1

N

N
∑

i=1

(zi − z̆i), (5.29)

with z̆i the predicted (wt = 0) groundwater level [L]. The mean absolute error (MAE)

and the root mean square error (RMSE) measure the accuracy:

MAE =
1

N

N
∑

i=1

|zi − z̆i|, (5.30)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(zi − z̆i)
2
. (5.31)

The percentage of observations outside the 95% prediction interval (p) measures

how well the prediction errors are modeled. Ideally, p should be equal to 0.05.

The verification results for both well 1 and well 2 show that the nonlinear state

space model gives a better fit than the linear TFN model. When the nonlinearity

is incorporated, the MAE is 21% smaller for well 1 and even 42% for well 2. Vali-

dation of the nonlinear state space model gives satisfactory results. The MAE and

RMSE of the predictions for the validation period are even smaller than those for the

Table 5.4: Verification and validation results for nonlinear state space (SS) model and linear transfer

function-noise (TFN) model for well 1 and 2.

Verification Validation

Well Model ME MAE RMSE ME MAE RMSE p

1 SS -2.69 11.33 15.46 -1.32 10.11 12.83 0.063

1 TFN 0.44 15.17 19.59 10.97 15.64 17.99 0.011

2 SS 0.14 5.06 7.37

2 TFN 0.30 9.99 12.60

ME, MAE and RMSE are in centimeters, p is dimensionless.
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calibration period. Also, the value of p is close to the theoretical value of 0.05 (see

also Section 5.3.1). The linear TFN model clearly performs worse in the validation

period. First, the mean error ME is 11 cm, indicating that the calibrated TFN model

overfits the data in the calibration period. The TFN model is not able to determine

the reference level and the effect of the intervention correctly. Second, the percent-

age of observations outside the prediction interval, p, is much smaller than 0.05.

This results from the fact that the TFN model overestimates the noise variance for

periods where the water table level is higher than the local drainage level.

5.4 Summary and conclusions
This chapter developed a nonlinear state space model for describing water table

fluctuations in a nonlinear groundwater system. Nonlinearity was introduced to

model a local drainage system that is only active when the water table is above

the drainage level. Although this chapter only discussed systems with one local

drainage level, the state space model can easily be extended with more drainage

levels (more regimes).

The model was tested on two time series of groundwater levels. The length

of the first time series was ca. 33 years with bimonthly observations. During the

observation period an intervention took place, resulting in a change of the regional

flow component. Calibration and validation of the state space model showed that

the model described the water table fluctuations accurately. Also the effect of the

intervention was estimated accurately. The second time series had a length of only

1.5 years with an observation interval of 1 day. Since all data were needed for

calibration, the model could not be validated. Nevertheless, checks on whiteness

of the innovations indicated that the model was statistically correct.

Comparison of the results with those of a commonly used linear transfer func-

tion-noise model demonstrated that the nonlinear state space model performs bet-

ter. Particularly the validation results showed that predictions of the TFN model

were biased and less accurate. Furthermore, the TFN model could not describe the

prediction errors well.

The main conclusion therefore is that for systems with switching regimes, the

state space model is a powerful tool for accurately describing water table fluctua-

tions in shallow groundwater systems with various drainage levels. The approach

may be of great support for water management in the sense that it helps to iden-

tify the system, describes the effect of interventions, and can be used for online

processing and forecasting of groundwater levels.





6
Multiple time series modeling

Abstract. This chapter provides an approach for large-scale modeling of multiple time

series of groundwater head data. The model is based on the vector transfer-function noise

(VTFN) model. Correlation among time series is described by the noise component. A com-

mon problem with multiple time series models is that the dimension of the parameter space

increases exponentially with the number of time series. This chapter applies reduction tech-

niques so that larger data sets can be analyzed. Reduction is carried out by describing the

correlation among time series with common factors. The reduced VTFN model is embed-

ded in a Kalman filter. Unknown parameters are estimated with a likelihood criterion. The

technique is illustrated using two data sets. Results show that the reduced model produces

a description of the system that is similar to that of the full (i.e., less parsimonious) model.

Consequently, larger systems, which cannot be modeled with a full model, can be efficiently

modeled with the reduced model. In addition, the factor model makes it possible to split the

stochastic component into specific (“local”) noise and common (“regional”) noise. Also, it

can be used to estimate common trends in time series.

This chapter is adapted from Berendrecht, W.L., A.W. Heemink, J.C. Gehrels, and F.C. van

Geer, Multiple time series modeling of groundwater head fluctuations, submitted to Water

Resources Research
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THE STATISTICAL ANALYSIS of multiple time series has been, and still is, an im-

portant topic in many research areas. Generally, multivariate analysis fo-

cuses on interaction analysis, forecasting, interpolation, and intervention or

trend analysis. Well-known multiple time series models are vector autoregressive

(VAR) models [Shea, 1987; Aoki, 1990; Lütkepohl, 1991], contemporaneous autoregres-

sive moving-average (CARMA) models [Camacho et al., 1985, 1987; Hipel and McLeod,

1994], and space-time autoregressive moving-average models [Pfeifer and Deutsch,

1980; Deutsch and Pfeifer, 1981]. In geohydrology, multiple time series modeling

has been applied mainly for the purpose of interpolation. Van Geer and Zuur [1997]

spatially interpolate the Box-Jenkins transfer function-noise (TFN) model to estimate

groundwater head between observation wells. Basically, they construct a multiple-

output model using the correlation among noise series obtained by single-output

transfer function-noise models. In Bierkens et al. [2001] and Knotters and Bierkens

[2001] a regionalized autoregressive exogenous variable (RARX) model is applied

for space-time prediction of water table depths. Here the temporal variation is

modeled with an ARX model whose parameters are a continuous function of loca-

tion and whose noise components are spatially colored. Besides for interpolation

of groundwater head, multiple time series models are also very useful for optimiz-

ing monitoring networks. For instance, the model can be used for online predic-

tion of groundwater head, making it possible to reduce the observation frequency.

Furthermore, multiple time series models are, more than single-output time series

models, effective in detecting interventions and outliers.

A major problem of multiple time series models is that the number of model

parameters dramatically increases with the number of output series. System iden-

tification and estimation may then become difficult and reduction techniques need

to be applied to overcome this problem. An effective method for reducing the di-

mension of the parameter space focuses on the correlation structure among the

multiple time series and is referred to as dynamic factor analysis. Dynamic factor

models have been used in statistics, psychometrics, and econometrics for a long

time [Watson and Engle, 1983; Molenaar, 1985; Heij et al., 1997; Forni et al., 2000; De-

brand and Patrat, 2001; Molenaar and Nesselroade, 2001]. More recently, Zuur et al.

[2003] introduced dynamic factor analysis in environmental science for modeling

common trends in multiple time series. The purpose of factor analysis is to de-
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scribe the variation among many variables in terms of a few underlying but un-

observed random variables called factors. Together these factors account for all

correlations among the original variables. In this sense, the method differs from

another reduction technique called principal component analysis, where the prin-

cipal components are assumed to describe the entire variance-covariance matrix

[see e.g. Basilevsky, 1994]. From a physical point of view, factors may be viewed as

estimates of physical influences which have given rise to the observed correlations.

However, factors may also contain common noise due to model assumptions or to

errors in input data.

This chapter proposes a reduced vector transfer-function noise (VTFN) model for

modeling multiple time series of groundwater head data. The VTFN model is a well-

known and straightforward extension of the single-output TFN model described in

many textbooks [Box and Jenkins, 1970; Hipel and McLeod, 1994]. Although many

forms of the VTFN model exist, this chapter assumes that all correlation among

the time series can be described within the noise model. Reduction of the VTFN

model is carried out by writing the noise component of the VTFN model as a factor

model. Two different noise models are discussed: the first-order vector autoregres-

sive model, which describes the correlation among time series within the matrix

of autoregressive parameters, and the first-order contemporaneous autoregressive

model, which describes the correlation among time series within the white-noise

vector. In the first case, the reduced autoregressive model is written as a dynamic

factor model. In the latter, reduction is achieved by writing the white-noise vector

as a static factor model. The most important result of using a factor model is that

the number of parameters increases linearly with the number of time series, while

the number of parameters of a full model increases quadratically.

In Section 6.1, the reduced VTFN model is developed. In Section 6.2, this model

is tested on a set of five time series of groundwater head data and compared with

a full model. In addition, the various components of the reduced model are ana-

lyzed. Section 6.3 presents a case study with 10 time series. Some of the time series

have a temporal trend. Using reduction techniques, the number of model parame-

ters can be reduced. The study also shows that spatial correlation in the stochastic

component can be used to accurately estimate common trends. Finally, Section 6.4

discusses of the reduced model and gives some conclusions.

6.1 Development of multiple-output state space model
The general state space representation of a multi-input multi-output (MIMO) time

series model is described by the following set of equations (see Equation 2.21):

xt = Axt−1 + But + Gwt, (6.1a)

yt = Cxt + vt, (6.1b)

where xt is an n× 1 vector of unobserved system states, ut is a r × 1 vector repre-

senting the input of the system (e.g., precipitation and evapotranspiration), yt is a
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m× 1 vector of groundwater head observations at time t, wt is a q × 1 disturbance

vector (system noise) and vt is a m × 1 disturbance vector (measurement noise),

with wt and vt serially and mutually uncorrelated with noise processes with mean

zero and covariance matrix Q (q × q) and R (m×m), respectively. The system ma-

trices are A (n × n), B (n × r), G (n × q) and C (m × n). As groundwater head is

generally observed with respect to some reference level, the observation vector yt

is decomposed into

yt = y′
t + yr, (6.2)

with yr a m× 1 vector of (unknown) reference levels.

Following the theory of Chapter 2, the state space model is assumed to be a

linear combination of two components: a deterministic component xdt describing

the part of the system that is related to the input series, and a stochastic (noise)

component xst describing the residual part of the system:

[

xdt

xst

]

=

[

Ad 0

0 As

][

xdt−1

xst−1

]

+

[

Bd

0

]

ut +

[

0

Gs

]

wt, (6.3a)

yt =
[

Cd Cs
]

[

xdt

xst

]

+ vt. (6.3b)

6.1.1 Deterministic component

Since it is assumed that all correlation among time series is described by the sto-

chastic component, the deterministic component of the transition matrix A is block

diagonal:

Ad =









Ad
1 0

. . .

0 Ad
p









. (6.4)

The dynamic relation between input (precipitation and evapotranspiration) and

output (groundwater head) is described by a linear reservoir model, written as

x1,t = δ1x1,t−1 + ω (Pt − fcEt) ,

x2,t = δ2x2,t−1 + (1 − δ2)x1,t,
...

xp,t = δpxp,t−1 + (1 − δp)xp−1,t,

(6.5)

where Pt is precipitation, Et is evapotranspiration, δi is the ith autoregressive (AR)

parameter, ω and fc are a scaling factor and a crop factor, respectively. In most

applications the number of reservoirs p is smaller than 4.
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Equation 6.5 can be written in the following vector notation, for l = 1, . . . ,m:

xdl,t = Ad
l x

d
l,t−1 + Bd

l ut, (6.6)

with

Ad
l =















al,11 0 · · · 0
...

. . .
. . .

...
...

. . . 0

al,p1 · · · · · · al,pp















, Bd
l =















bl,11 bl,12

bl,21 bl,22
...

...

bl,p1 bl,p2















, (6.7)

where, for i = 1, . . . , p and j = 1, . . . , i,

al,ij = δl,j

i
∏

s=j+1

(1 − δl,s), (6.8)

bl,i1 = ωl

i
∏

s=2

(1 − δl,s), bl,i2 = −fc,lbl,i1. (6.9)

The associated observation matrix Cd is written as the following m×mp matrix:

Cd = Im ⊗
[

0 · · · 0 1
]

, (6.10)

where ⊗ is the Kronecker product.

Identification of the reservoir model is straightforward. First, a number of states

(reservoirs) is assumed. Subsequently, the model parameters are estimated. Based

on the calculated variances of the estimated AR-parameters, the significance of the

estimated AR-parameters is evaluated. The number of states needed to describe the

transfer function is then equal to the number of significant AR-parameters.

6.1.2 Stochastic component

Generally, the stochastic component of a single groundwater time series model can

be described by a first-order autoregressive model. Two important subsets of the

multiple autoregressive model are discussed here: a model that describes the corre-

lation among time series within the transition matrix As, and a model that describes

the correlation within the noise covariance matrix Q. The first model is referred to

as a vector autoregressive (VAR) model; the latter one as a contemporaneous autore-

gressive (CAR) model.

Reduction of the VAR model is carried out by rewriting the VAR model into a

dynamic factor model. Basically, dynamic factor models [Geweke, 1977; Engle and

Watson, 1981] incorporate an a priori structure of the off-diagonal elements of the

transition matrix As. This is done by assuming that a set of m variables depends

on k < m unobserved common dynamic factors (CDFs) and on m specific dynamic
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factors (SDFs). In this way, the stochastic component of Equation 6.3 is written as

xst =

[

Φ 0

0 Ψ

]

xst−1 +

[

ηt

εt

]

, (6.11a)

yst =
[

Ip Γ
]

xst + vt, (6.11b)

with

(xst )
T

=
[

s1,t · · · sm,t f1,t · · · fk,t

]

, (6.12)

where s1,t, . . . , sm,t are the specific dynamic factors (SDFs), f1,t, . . . , fk,t are the com-

mon dynamic factors (CDFs), Φ is a m × m diagonal matrix with φ1, . . . , φm the AR-

parameters of the specific part of xs, Ψ is an k × k diagonal matrix with ψ1, . . . , ψk
the AR-parameters of the common part of xs, Γ is a m× k matrix of dynamic-factor

loadings, which are coefficients relating the dynamic factors to each time series.

Both ηt (m× 1) and εt (k × 1) are white-noise processes with var(ηt) = Σ (m×m)

and var(εt) = Ik:

Q =

[

Σ 0

0 Ik

]

, (6.13)

i.e., all common dynamic factors are mutually uncorrelated and have unit variance.

Since the elements of ηt are uncorrelated, the covariance matrix Σ is diagonal. Fi-

nally, the specific dynamic factors and common dynamic factors are assumed to be

mutually uncorrelated.

The reduction of the CAR model is very similar to that of the VAR model. The

difference is that the factors are now white-noise processes instead of dynamic AR-

processes. Consequently, the stochastic component of Equation 6.3 is written as

xst = Φxst−1 +
[

Iq Υ
]

[

ηt

εt

]

, (6.14a)

yst = xst + vt, (6.14b)

where Υ denotes a q × s matrix of noise-factor loadings, ηt contains the specific

noise terms, and εt contains the common noise terms. The noise covariance matrix

of ηt and εt is defined as in Equation 6.13, with the subscript k replaced by s,

referring to the number of specific noise factors. Note that in Equation 6.14b, the

observation matrix Cs is an identity matrix: Cs = Im. Equations 6.11 – 6.14 show

that the main difference between both reduced models is the matrix Ψ, containing

the autoregressive parameters of the common dynamic factors. Due to this matrix,

the CDFs may have an autocorrelation that differs from that of the SDFs.
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Table 6.1: Overview of the different model forms of the stochastic component

As
diag As

full As
fac

Qdiag univariate VAR DF

Qfull CAR - -

Qfac SF - -

Table 6.1 gives an overview of the model forms discussed in this section. Since

models with correlation in both As and Q are not suitable for use in practical ap-

plications [Hipel and McLeod, 1994], they are not given in Table 6.1. The univariate

model (no correlation among time series) is given in order to complete the table.

The reduced VTFN with factorized matrix As, i.e. the reduced VAR model (Equa-

tion 6.11), will be referred to as a vector transfer-function noise with dynamic-factor

(VTFN-DF) model. The VTFN with factorized matrix Q, i.e. the reduced CAR model

(Equation 6.14), will be referred to as a vector transfer-function noise with static-

factor (VTFN-SF) model.

The unknown elements of the matrices Ad, Bd, As, Q, and, depending on

whether CDFs or SDFs are used, Γ or Υ, need to be estimated and will be referred

to as the parameter vector α. Maximum-likelihood estimates of α are calculated

by embedding the Kalman filter of Equation 2.43 in the optimization procedure

described in Section 2.7.

An attractive feature of the VTFN-DF model is that the common dynamic factors

appear as separate states in the state equation. As a result, the stochastic compo-

nent can be decomposed into two parts: the regional noise, represented by the CDFs,

and the local noise, represented by the SDFs (see Equation 6.11). The Kalman filter

provides the best estimate of xt based on all observations through time t in a recur-

sive manner. However, the additional information contained in the observations

after time t can be exploited to provide an improvement in estimation accuracy.

An estimate of xt that is based on all observations (t = 1, . . . , T ) is referred to as a

smoothed estimate of xt. The smoothed estimate of xt is generated by applying the

fixed-interval smoothing algorithm described in Section 2.8.

6.2 Evaluation of the reduced VTFN model: two case studies
6.2.1 Description of data set and definition of the models

The reduced VTFN model was tested on a set of five time series of groundwater

head data obtained from observation wells in the southern part of the Netherlands.

Since the number of time series is rather small, results of the reduced model could

be compared with results of a full model. All observation screens were situated in

the same aquifer consisting of very fine sands covered by a clay layer with a resis-

tance of ca. 5000 days. The time series (see Figure 6.1) had an average observation

interval of 14 days. Monitoring of the groundwater head started in 1980. Daily

observations of precipitation and evapotranspiration were obtained from a nearby

meteorological station.

Table 6.2 gives an overview of the models that were applied to analyze the set
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Figure 6.1: Time series of groundwater head observations; the average observation interval is 14 days;

the vertical scale has a range of 500 cm. In the background, main surface water and contours of the

average groundwater head are given.

of time series. The three models only differ in the way in which they describe the

correlation in the stochastic component. The form of the deterministic component

is the same for all models. The first noise model is a CAR model. Correlation among

the time series enters the model via the system noise covariance matrix Q. The ma-

trix Q is a full symmetric 5×5 matrix. Hence, it contains 15 unknown parameters.

The stochastic component of the system matrix, As, is diagonal, containing 5 un-

known parameters. The second model is a VTFN-SF model approximating Model 1

by assuming that the correlation structure in the system noise can be described by

a common noise factor (see Equation 6.14). In this way the number of unknown

parameters in the stochastic component is reduced from 20 to 15. The last model,

the VTFN-DF model, assumes that the system noise is uncorrelated. Instead, the cor-

relation among the time series is described by the transition matrix A using one

Table 6.2: Form of system matrices As and Qs of the tested models; the factorized matrices contain

one common factor

Model As Qs dim α
s(1)

1 diagonal full 20

2 diagonal factorized 15

3 factorized diagonal 16

(1)number of unknown parameters in the stochastic component
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Table 6.3: Calibrated parameters of the deterministic component and reference level for Model 1 (full

covariance matrix), Model 2 (factorized noise covariance matrix) and Model 3 (factorized transition

matrix)

Model 1 Model 2 Model 3

ω δ1 δ2 yr ω δ1 δ2 yr ω δ1 δ2 yr

P233 .901 .986 .764 610.3 .896 .986 .762 610.1 .860 .987 .768 609.8

P234 .932 .983 .687 403.7 .927 .983 .683 403.6 .864 .984 .696 403.4

P235 .873 .988 .537 219.6 .868 .988 .536 219.2 .837 .989 .530 219.4

P238 .818 .981 .777 368.6 .808 .982 .772 368.4 .762 .983 .770 368.5

P149 .952 .984 .805 485.5 .948 .984 .804 485.3 .889 .985 .810 485.6

common dynamic factor (see Equation 6.11). This model has 16 unknown parame-

ters in the stochastic component. Attempts to calibrate a VTFN model with a VAR(1)

model for the stochastic component (i.e, a full system matrix As) failed. Although

As was reparameterized to enforce stationarity [Ansley and Kohn, 1986], the op-

timization routine did not converge. Obviously, too many correlated parameters

needed to be estimated.

Finally, two assumptions were made. First, the measurement errors were as-

sumed to be mutually uncorrelated, having a variance equal to 1 cm2. Second, the

crop factors fc in the deterministic component were all set equal to 1.

6.2.2 Calibration and evaluation

Identification of the models pointed out that only two states (for each time se-

ries) were needed to describe the transfer function of the deterministic component.

Hence, for each time series only three parameters were needed (15 parameters in

total). Table 6.3 presents for the three models the calibrated parameters of the de-

terministic component and the reference levels. The table shows that the parameter

estimates of Model 1 and 2 do not differ significantly. Model 3, however, gives

lower values for the parameter ω. The variance of the time series explained by the

deterministic component is lower for Model 3 than for Model 1 and 2.

Table 6.4 gives an overview of the calibration results for the stochastic compo-

nent. The prediction error covariance matrix

F∞ = lim
t→∞

Ft (6.15)

and the prediction error correlation matrix Ξ can be used to compare the variance-

covariance structure and the correlation structure described by the three different

models. Note that the autoregressive parameters (As) of Model 1 and Model 2 are

practically the same. Since the deterministic component of Model 1 and 2 are also

equal, the noise covariance structures of both models have to be the same. This is

confirmed by the prediction error covariance matrices of Model 1 and 2, which are

almost identical. Hence, the parsimonious Model 2 (having 5 parameters less than

Model 1) gives practically the same description of the system as Model 1. In other

words: the fact that only one common noise factor can describe most of the corre-

lation in the noise vector suggests that there is redundancy in the full covariance
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Table 6.4: Calibrated parameters of the stochastic component for Model 1 (full covariance matrix),

Model 2 (factorized noise covariance matrix) and Model 3 (factorized transition matrix), and the

prediction error covariance matrix F∞

Model 1 Model 2 Model 3

As

.956 0 0 0 0

0 .932 0 0 0

0 0 .963 0 0

0 0 0 .947 0

0 0 0 0 .945

.957 0 0 0 0

0 .934 0 0 0

0 0 .963 0 0

0 0 0 .949 0

0 0 0 0 .946

.967 0 0 0 0 0

0 .000 0 0 0 0

0 0 .975 0 0 0

0 0 0 .919 0 0

0 0 0 0 .000 0

0 0 0 0 0 .978

ΥT 7.67 8.52 7.62 6.26 8.77

Q

75.0

65.7 113.

60.9 67.2 96.5

48.1 59.1 47.8 53.5

69.0 76.1 67.3 56.2 85.4

14.6

0 37.5

0 0 37.2

0 0 0 12.9

0 0 0 0 7.24

0 0 0 0 0 1

12.5

0 205.

0 0 30.7

0 0 0 17.7

0 0 0 0 65.3

0 0 0 0 0 1

ΓT 6.26 5.96 6.40 4.86 6.29

F∞

865.8

599.6 858.0

761.9 652.4 1317.

506.6 501.8 541.6 518.7

712.8 637.1 746.0 535.0 799.8

867.3

615.5 866.0

746.0 649.3 1323.

523.3 471.5 558.1 527.2

710.7 644.5 756.0 540.0 805.0

1085.

853.7 1019.

916.7 873.2 1549.1

696.2 663.1 712.1 653.9

900.5 857.8 921.1 699.5 970.1

Ξ

1.000

.6966 1.000

.7135 .6137 1.000

.7559 .7522 .6553 1.000

.8565 .7691 .7268 .8306 1.000

1.000

.7102 1.000

.6965 .6067 1.000

.7739 .6978 .6684 1.000

.8506 .7719 .7327 .8289 1.000

1.000

.8120 1.000

.7070 .6952 1.000

.8264 .8125 .7075 1.000

.8776 .8630 .7514 .8783 1.000

matrix of Model 1. This will be discussed in more detail below.

Model 3 uses a common dynamic factor (CDF) instead of a common noise factor

to represent the covariance structure of the stochastic component. The model gives

larger prediction error variances than Model 1 and 2, which is in agreement with the

smaller variance of the deterministic component of Model 3. Nevertheless, it shows

that a part of the deterministic component may also be represented by the stochastic

component or the other way round. A more detailed evaluation of the correlation

structure is required to determine which model best represents the system. For this

purpose, we analyze the eigenvalues of the prediction error correlation matrix Ξ:

Ξ = UΛUT. (6.16)

The eigenvalues λi (i = 1, . . . ,m) are placed as the elements of a diagonal matrix Λ

and the eigenvectors are collected as columns into the matrix U. Figure 6.2 shows

these eigenvalues for Model 1 through 3. Furthermore, Table 6.5 gives the total
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Table 6.5: Parameters for evaluating the calibration results of Model 1, 2 and 3

Model 1 Model 2 Model 3

Total variance tr(F∞) 4359.3 4388.1 5277.0

Variance described by λ1 3417.5 3430.7 4354.9

Remaining variance 941.8 957.4 922.1

logL -49373 -49406 -48789

noise variance, which is the trace of F∞ (i.e., the sum of the diagonal elements),

the variance of the first eigenvalue λ1, and the log-likelihood value logL (see Equa-

tion 2.53).

Several criteria exist for choosing the number of factors based on the eigenval-

ues of the correlation matrix. Jobson [1992] discusses some important criteria and

tests in detail. The most simple criterion is the ‘eigenvalue 1 criterion’, which says

that the number of factors is at least as large as the number of eigenvalues that ex-

ceed one. Another test, known as the ‘scree test’, determines the number of factors

by evaluating the pattern of the eigenvalues. The typical shape of a scree graph con-

sists of two parts: a rapidly downward sloping first part with an exponential shape

followed by a second part which is almost a horizontal line. The almost horizontal

part is viewed as random variation around a constant. These small eigenvalues cor-

respond to specific factors, which are not required to explain the correlations among

the variables. The large eigenvalues represent variation explained by the common

factors. The correct number of factors corresponds to the eigenvalue number to the

immediate left of the beginning of the scree.

Figure 6.2 clearly explains why Model 2 can describe the same correlation struc-

ture as Model 1 (even though Model 2 has 5 unknown parameters less). The reason

is that the stochastic component of Model 1 has only one dominant eigenvalue that

accounts for most of the correlation. As a result, the correlation among the noise

processes can be well described by a common noise factor. A physical interpreta-

tion is that there is a driving force other than precipitation and evapotranspiration

that influences the groundwater head simultaneously at all observation points. The

common noise factor may also represent errors in model input and model concept.
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Figure 6.2: Eigenvalues of the prediction error correlation matrix Ξ of Model 1, 2 and 3
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The first eigenvalue of Model 3 is 4.18, which is larger than the first eigenvalue

of Model 1 and 2. Hence, the CDF of Model 3 produces a higher correlation in

the stochastic component than Model 1 and 2. Although the total prediction error

variance of Model 3 is higher (Table 6.5), the total variance of the remaining eigen-

values is lower than for Model 1 and 2. This shows that the correlation structure

of Model 3 better fits the system than the correlation structure of Model 1 and 2,

and that Model 1 and 2 overfit the deterministic component. This is also reflected

in the absolute value of logL, which is smallest for Model 3. Further, notice that

the eigenvalue decomposition of Model 3 justifies the use of one CDF for reducing

the VAR model. Also, it shows that a full VAR model is highly overparameterized,

which explains its estimation problems.

6.2.3 Decomposition of time series

As described in Section 6.1.2, the VTFN-DF model can easily be decomposed into

several components: the deterministic component describing groundwater fluctu-

ations resulting from the model input (precipitation and evapotranspiration), the

common dynamic factors representing the regional noise components, and the spe-

cific dynamic factors representing the unique, local noise. As an example, Fig-

ure 6.3 shows smoothed estimates of these components for observation well P149.

Figure 6.3a shows the observed groundwater head time series. The deterministic

component is plotted in Figure 6.3b using the calibrated parameters of Table 6.3.

The variance described by the deterministic component is 69.3%. Figure 6.3c and

6.3d show the stochastic component decomposed into the regional noise (common

dynamic factor) and the local noise (specific factor). The results show that most

of the stochastic component can be described by the common dynamic factor. The

variance explained by the common dynamic factor (usually referred to as the com-

munality) is 96.7% of the total variance of the stochastic component. Only a small

amount of the stochastic component (3.3%) is specific for location P149. The corre-

lation among the deterministic component and the CDF is 0.08 (with an asymptotic

95% significance level of 0.07). This is low, but subscribes the conclusions in the

previous section that a small part of the noise can be described by the deterministic

component as well (as was done by Model 1 and 2).

6.2.4 Interpretation of the common dynamic factor

The common dynamic factor as shown in Figure 6.3 represents a regional fluctu-

ation of the groundwater level that is not explained by the deterministic compo-

nent. Nevertheless, the CDF contains natural fluctuations caused by precipitation

and evapotranspiration. Since all time series were modeled with the same input,

errors in the input and errors in the transfer function (e.g., neglecting nonlineari-

ties) result in common errors in the deterministic component, which are accounted

for by the CDF.

The CDF does not only describe the regional noise due to input errors; it also

has a distinct pattern of short, strong lowerings of the groundwater level. It is
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Figure 6.3: Decomposition of one of the five time series of groundwater head (P149) using the cal-

ibrated VTFN-DF model (Model 3) with (a) observations; (b) deterministic component; (c) common

dynamic factor; and (d) specific dynamic factor
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Table 6.6: Correlation among specific dynamic factors

P233 P234 P235 P238 P149

P233 1.000

P234 -.367(1) 1.000

P235 .079 -.205(1) 1.000

P238 -.287(1) .123 -.124 1.000

P149 -.092 -.254(1) -.052 -.317(1) 1.000

(1)Significant at 95% confidence level

known that these short-time fluctuations in this area are caused by small, tempo-

rary groundwater abstractions for irrigation purposes during summertime. The

abstraction wells are scattered all over the area resulting in regional fluctuations of

the groundwater level. Since in a short period a large amount of groundwater is

abstracted, the drawdown is short-term but large (ca. 1 m).

6.2.5 Analysis of the specific dynamic factors

The specific dynamic factors represent local fluctuations of the groundwater level

that have no relation with fluctuations observed at other observation wells. Fig-

ure 6.4 shows smoothed estimates of the specific factors. The vertical scale of the

charts is the same as that applied in Figure 6.1. At all locations, the specific noise

is small. Peaks in the specific noise may be interpreted as local deviations from the

regional noise pattern or observation errors. The specific factor of location P235 has

a small low-frequency fluctuation which may be the result of nearby abstraction

from a well for drinking water.

The dynamic factor model assumes that all correlation is described by the CDF.

Table 6.6 therefore evaluates the correlation among the SDFs. Only among some

factors there is a significant but small correlation. No spatial pattern is observed

in the correlation matrix, in the sense that there is no higher correlation among

locations close to each other.

6.2.6 Cross validation of the VTFN-DF model

Once the VTFN-DF model is calibrated, it can be used to extrapolate one or more time

series. For instance, short time series can be extended, or gaps in time series can

be filled. Also, monitoring networks can be optimized, which means that at some

Table 6.7: Cross validation statistics of the VTFN-DF Model

p ME MAE RMSE

P233 0.039 -2.47 11.59 15.00

P234 0.035 0.22 7.31 13.34

P235 0.022 0.31 18.68 22.94

P238 0.025 1.26 6.40 10.27

P149 0.018 -0.30 3.93 7.21

Average 0.028 -0.20 9.58 13.75

ME, MAE and RMSE are in cm, p is dimensionless
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Figure 6.4: Spatial representation of the specific dynamic factors; vertical scale of the charts is between

-250 cm and 250 cm. In the background main surface water and contours of the average groundwater

head are given.

locations, the observation frequency is reduced. At other locations, groundwater

head is predicted using the time series of the frequent observation locations.

In order to test the applicability of the calibrated VTFN-DF for this purpose, we

needed to validate the correlation structure. Therefore, the following cross valida-

tion test was carried out. The time series were cut off at 1991 one at a time. The

sequence from 1991 until 2002 was then estimated by one run of the Kalman fil-

ter using the calibrated VTFN-DF model. This was repeated for all five time series.

Comparison of the predictions with the observations gave the prediction error. The

following statistics were calculated: the mean error (ME) measuring the bias of the

prediction error, the mean absolute error (MAE) measuring the prediction accuracy,

the root mean square error (RMSE) which also measures the prediction accuracy but

is more sensitive to outlying values, and the fraction of observations outside the

95% prediction interval, p. Statistics of the prediction error are given in Table 6.7.

On average, the bias of the prediction error is small. The largest bias occurs at P233,

where ME = -2.47 cm. The accuracy of the prediction error also varied among the lo-

cations. The largest error found is ca. 19 cm for the well that showed low-frequency

fluctuations in Figure 6.4 (P235). The average fraction of observations outside the

95% prediction interval is 0.028, which is close to the expected value of 0.05.

Obviously, the prediction error is closely related to the specific factor at a lo-

cation. The larger the specific variance, the larger the expected prediction error.
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Figure 6.5: Locations of five additional observation wells, together with the time series of groundwater

head data; average observation interval is 14 days. At P101, P207 and P199, data for a period of ca.

1 year are missing. In the background, main surface water and contours of the average groundwater

head are given.

Hence, in the context of optimization of existing monitoring networks, it can be

concluded that locations with the smallest specific variance are least sensitive to

reduction of the observation frequency (or even removal of the observation well).

6.3 Estimation of common trends
Groundwater monitoring networks are often designed for detection of temporal

trends in groundwater head. Very often, trends are caused by groundwater with-

drawal. If only one abstraction well is present, the drawdown can be simply esti-

mated with a TFN model, using abstraction rates as input. Generally there is more

than one abstraction well and detailed data on abstraction rates are not always

available. Trends may also be caused by structural changes in the hydrological sys-

tem. In those situations, trends need to be modeled by the stochastic component.

The spatial correlation in trends in groundwater levels is generally high. Using the

spatial correlation structure will therefore improve the estimation of trends. The

VTFN-DF model is very well suited for this purpose as it allows the frequency of the

common factors to be different from the frequency of the specific factors (see Sec-

tion 6.1.2). This section briefly discusses a case study where trends in groundwater

time series were estimated with a VTFN-DF model.

The data set of the previous section was extended with five more time series of
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Table 6.8: Calibrated parameters of the stochastic component for the VTFN-DF model using two

CDFs. Γ1 and Γ2 represent the vectors of factor loadings of CDF1 and CDF2, respectively.

diag(As) diag(Q) Γ1 Γ2

P233 .954 14.5 -.066 6.25

P234 .001 206. .187 5.87

P235 .972 32.3 .054 6.37

P238 .906 19.6 .234 4.74

P149 .007 62.7 .116 6.27

P056 .972 5.76 .914 2.71

P101 .934 8.96 1.34 2.81

P199 .018 203. 1.43 4.41

P207 .957 45.0 1.48 3.43

P214 .896 22.1 .528 3.27

CDF1 .9994 1(1)

CDF2 .980 1(1)

(1)The noise variances of the CDFs were fixed

groundwater head data. In all five time series a temporal trend was observed. The

location of the observation wells and the time series are shown in Figure 6.5. The

form of the VTFN-DF model is similar to the VTFN-DF model of the first case study.

The only difference is that the current model has two common dynamic factors. The

total number of unknown parameters (deterministic and stochastic component) is

82. The calibrated parameters are given in Table 6.8. For convenience, only the

parameters of the stochastic component are given. The smoothed estimates of the

CDFs are presented in Figure 6.6. The upper figure shows the first CDF (CDF1 in
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Figure 6.6: Smoothed estimates with 95% confidence interval of (a) CDF1 and (b) CDF2
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Figure 6.7: Eigenvalues of the prediction error correlation matrix Ξ

Table 6.8), the lower figure shows the second CDF. The 95% confidence intervals

were derived from the smoothed estimate of the state covariance matrix. The first

CDF clearly shows the common trend in the time series. The low-frequency behavior

of the CDF is reflected in the autoregressive parameter of CDF1, which is close to 1.

The second CDF looks similar to that in Figure 6.3. The 95% confidence intervals of

the CDFs are rather small (conditional on the calibrated parameters). For the first

CDF, the average 95% confidence interval is 15 cm.

The number of CDFs were tested by evaluating the eigenvalues of the prediction

error correlation matrix. For this test, the criteria discussed in Section 6.2.2 were

used. Figure 6.7 shows the eigenvalues of the prediction error correlation matrix.

Only the first and second eigenvalues are greater than one. Also, after the second

eigenvalue, the graph flattens out. Since both tests suggest the use of two CDFs, the

current number of CDFs is sufficient. An extra CDF will not improve the correlation

structure much.
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Figure 6.8: Spatial representation of smoothed estimates of the common trend (first CDF); the vertical

scale of the charts has a range of 150 cm. In the background, main surface water and contours of the

average groundwater head are given.
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A spatial representation of the temporal trends in the groundwater time series

is given in Figure 6.8. For each time series, the first CDF has been multiplied with

the associated factor loading (i.e., Γ1 from Table 6.8). The figure clearly shows the

spatial pattern of the estimated temporal trend. In the western region, the trend

is insignificant. Going from west to east, the lowering of the groundwater head

increases. The maximum lowering is found in the north-east.

6.4 Summary and conclusions
This chapter proposed a vector transfer-function noise (VTFN) model for multiple

time series of groundwater head. In this model, correlation among time series is

modeled by the stochastic (noise) component. Since the number of parameters in-

creases quadratically with the number of time series, the VTFN model is not suit-

able for handling large data sets. Therefore, the stochastic component of the VTFN

model was written as a factor model. With this model, the number of parameters

increases linearly with the number of time series. This opens the way to modeling a

larger amount of time series simultaneously. Two different factor models were an-

alyzed: a dynamic factor model, which can be seen as a reduced vector autoregres-

sive (VAR) model, and an autoregressive model with factorized innovations (static

factor model), which can be seen as a reduced contemporaneous autoregressive

(CAR) model. The reduced models, referred to as the VTFN-DF model and VTFN-SF

model respectively, were tested in two case studies.

The first case study consisted of five time series of groundwater head data. Since

the number of time series was small, the calibration results of the reduced models

could be compared with the results of a full model. From this, some important

conclusions are drawn. First, it was not possible to calibrate the full VAR model. Al-

though only five time series were used, the number of autoregressive parameters

was too large. The full CAR model, on the other hand, was calibrated satisfactorily.

Second, the VTFN-SF only needed one common factor to describe the same corre-

lation structure as the full CAR model, implying a reduction of 5 parameters. The

similarity between both models was further illustrated by performing an eigen-

value decomposition, showing that the CAR model indeed had only one dominant

eigenvalue. Third, the VTFN-DF model (also with one common factor) produced the

best representation of the correlation structure. The VTFN-SF model and CAR model

slightly overfitted the deterministic component to compensate for lower correla-

tions among the time series. Forth, decomposition of the VTFN-DF showed that

most of the stochastic component was described by the common factor. Only a

small amount of the variance was specific. A plot of the specific factors provided

useful information on local deviations from the regional pattern as well as observa-

tion errors. Finally, it was shown that knowledge of specific variances can be used

for optimizing monitoring networks.

In the second case study 10 time series were analyzed to detect a common trend.

For this purpose, the VTFN-DF model was calibrated. Only two common dynamic
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factors were needed to describe most of the correlation among the time series. One

of the common dynamic factors represented the trend in the time series. In addition

to the trend itself, the associated confidence interval was estimated. Multiplication

of the common trend with the factor loadings gave the trend at each location. Visu-

alization of the trends in a map showed the spatial pattern of the temporal trends.

The case studies showed that the reduced VTFN model can be used in many

applications. The model can be applied as a tool for characterizating hydrological

systems. Once in possession of a calibrated model, one can use the Kalman filter

to predict groundwater head online. In addition, the Kalman filter enables online

detection of interventions and observation errors.



7
Summary and conclusions
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State space modeling of
groundwater fluctuations

GROUNDWATER PLAYS AN IMPORTANT ROLE in both urban and rural areas. For

instance, high groundwater levels may cause crop damage. On the other

hand, low groundwater levels may be a threat to nature. It is therefore

essential to monitor groundwater fluctuations. The measuring data can be used

for characterizing the groundwater regime or for evaluating effects of interven-

tions. However, to determine, for example, structural changes in groundwater

regimes with a high level of certainty, one needs models that can accurately de-

scribe groundwater fluctuations.

The main objective of the research presented in this thesis, therefore, was to

develop a generic and flexible framework for modeling groundwater time series

based on the state space approach, in order to describe groundwater fluctuations

more accurately. The modeling approach as presented here combines the state

space model with Kalman filtering of the system state, and maximum-likelihood

estimation of unknown model parameters. Following this approach, one can model

a wide variety of groundwater time series.

A practical advantage of the state space approach is that the interval of input

series may be smaller than the interval of output series. As a result, high-frequency

input data – which are in general widely available – can be used to estimate ground-

water fluctuations more accurately. This is discussed in Section 7.1. Nonlinear

extensions of the state space model are discussed in Sections 7.2 and 7.3. Sec-

tion 7.4 shows that spatial coherence between time series can be utilized to gain

more insight into the dynamics of the system and to improve model predictions.

This chapter concludes with a general discussion in Section 7.5, highlighting the

most important contributions of this thesis to the practice of geohydrological time

series modeling, and giving a glimpse of potential directions for future research.

7.1 Decoupling of modeling and measuring interval
The effects of reducing the modeling interval – and thus of using high-frequency

input data – on the performance of time series models have been investigated using

generated time series. The performance is measured by the ‘fit’ of the determinis-

tic component and the accuracy of the estimated transfer function. Calculations

on several samples (with varying measuring and modeling interval) of different

time series show that the performance of groundwater time series models can be
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improved simply by reducing the modeling interval. Conditions are that high-

frequency input data is available and that the measuring interval remains a multi-

ple of the modeling interval.

The degree of model improvement depends on several aspects. First, the mod-

eling interval relative to the time of peak response of the system is important. If

the modeling interval is large with respect to the time of peak response, a reduction

of the interval will greatly improve the performance. In contrast, if the modeling

interval is already small with respect to the time of peak response, a further reduc-

tion will not result in further improvement. Second, if the stochastic component of

the system (part of the system dynamics that cannot be related to the input signal)

is large, the relative effect of reducing the modeling interval will be less. A third

aspect is the length of the time series: the effect of reducing the modeling inter-

val increases with the length of the time series. This reduction effect is especially

observed for the fit of the deterministic component.

In addition to reducing the modeling interval, one could extend a time series

with easily obtainable high-frequency measurements (i.e. a reduction of the measur-

ing interval). The effect of such an extra set of high-frequency measurements again

strongly depends on the stochastic component: high-frequency measurements are

much more effective if the stochastic component is large. Moreover, the first high-

frequency measurements have the greatest influence on the model performance. It

is therefore attractive to add a small time period of high-frequency measurements

to an existing time series of low-frequency measurements.

A small modeling interval requires high-frequency observations of spatially dis-

tributed input data, i.e., of precipitation and evaporation. It must be noted, how-

ever, that input and output data are generally observed at different locations. Errors

in input data resulting from spatial heterogeneity of precipitation and evaporation

increase as the observation interval of input data decreases. Hence, as the modeling

interval decreases, it becomes more and more important that input data is observed

close to the location of the observation well.

The relevance of the presented results for hydrological practice is significant. In

the Netherlands, for instance, daily observations on precipitation and evaporation

are widely available. Time series models with daily modeling intervals can be con-

structed and hence, existing historical time series with bimonthly observations can

be modeled more accurately. Combining the model with a Kalman filter gives a

tool that can predict the groundwater level online on a daily basis without requir-

ing daily observations of groundwater level. In addition, the prediction uncertainty

calculated by the Kalman filter can be used to adjust the measuring interval. Wa-

ter managers often allow for a certain level of uncertainty. When the prediction

uncertainty exceeds this level, a new measurement need to be carried out.
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7.2 Incorporation of a nonlinear root zone model
In time series modeling, groundwater fluctuations are commonly assumed to be

linearly related to precipitation and evapotranspiration. However, physical knowl-

edge shows that the response of the groundwater level to precipitation and evapo-

transpiration can be strongly nonlinear. An important source of nonlinearity is the

root zone, where the degree of water saturation determines in a nonlinear way the

hydraulic conductivity and the water uptake by roots (and thus the actual evap-

otranspiration). Therefore, we developed a nonlinear model that incorporates the

degree of water saturation of the root zone (which may be unobserved) to model

actual evapotranspiration and groundwater recharge for the purpose of predicting

groundwater fluctuations.

The results of two case studies showed that the nonlinear time series model

predicted groundwater level fluctuations better than a linear time series model.

More specifically, extremes in the time series (very wet or dry periods) were han-

dled much better by the nonlinear model. Since the variance of the system noise

is reduced, structural changes in the groundwater regime can be estimated more

accurately and in a shorter period of time.

Of practical interest is that the nonlinear model also predicts the degree of wa-

ter saturation in the root zone fairly well. Although the degree of water saturation

is only calculated as an average over depth, the model can be used to predict, for

example, soil water deficits without actually needing soil water content measure-

ments. Predictions of soil water content and groundwater level may be improved

further by calibrating the model using measurements of soil water content.

The model also calculates actual evapotranspiration and percolation rates. It is

shown that these quantities are close to water balance results obtained from field

experiments. Estimates of groundwater recharge can be derived from the model as

well.

In the developed state space model, noise is modeled as a separate state. One

may improve the performance of the model even further by introducing additive

noise entering the system in the root zone. In this way, system noise is processed

through the nonlinear system. Several calculations have shown that this may lead

to problems during parameter estimation. This is probably the result of using the

(first-order) extended Kalman filter. More accurate filters such as an ensemble Kal-

man filter may produce better results.

A potential nonlinear extension of the developed model is to allow the transfer

function in the percolation zone to depend on the actual groundwater level. This is

prompted by the knowledge that the response of groundwater level to precipitation

excess depends on the thickness of the percolation zone.

7.3 State space modeling in switching regimes
A class of nonlinearity that is often found in groundwater systems is threshold non-

linearity. Well-known examples are systems where the water table is controlled by
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drains. Drains are only active when the water table is above drainage level. Con-

sequently, the groundwater regime switches as the water table passes the drainage

level.

We developed a state space threshold model for simulating and predicting the

groundwater level in switching regimes. The model is based on physical concepts

and is therefore suitable for intervention analysis. Drainage flux is modeled as a

nonlinear function of water table depth in the sense that it switches from a constant

(zero) flux when the water table is below drainage level to a flux that is linearly

related to the water table depth when the water table is above drainage level. The

system noise is also nonlinearly related to water table depth.

The model was tested on two time series of groundwater data. One of them

showed a structural change in the groundwater regime. Calibration of the state

space model showed that the drainage level (threshold) can be estimated accurately.

Furthermore, verification and validation of the model showed that the model de-

scribed the system well. Comparison with a linear model demonstrated that the

performance of the nonlinear state space model is superior. In particular, valida-

tion results show that predictions of the linear model are biased and less accurate.

In addition, the linear model can not describe the prediction errors well.

The development of this nonlinear state space model allows us to accurately

model fluctuations of shallow water tables in, for example, wetlands and urban

areas. Although the model used here has a single threshold, it is easy to extend

the model with more thresholds. Model results can be used to characterize the

groundwater system. The physical basis of the model makes it possible to quantify

useful variables, such as groundwater recharge and seepage, or lateral flow.

In many lowland areas, water tables are influenced by surface water. If there

are significant fluctuations in the surface water level – in particular artificially con-

trolled fluctuations – the model performance can be improved by incorporating

these fluctuations into the model. This can be done by modeling surface water

levels as an exogenous input variable (driving force), or as an endogenous output

variable. In the latter case, groundwater and surface water can be modeled as a

coupled system influencing each other. Treating surface water level as an output

variable also allows for the use of irregular observations of surface water levels.

7.4 Multiple time series modeling
Time series of groundwater level often show high spatial correlations. Utilizing

these correlations improves the descriptive and predictive performance of time

series models substantially. A common problem with multiple time series mod-

els, however, is that the dimension of the parameter space increases quadratically

with the number of time series. Therefore, in this study a reduced vector transfer-

function noise model has been developed. This model describes correlation among

time series within the stochastic component using a factor model. Basically, factor

models aim to describe correlation with only a few common factors. Part of the sto-
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chastic component that is not described by the common factors is referred to as the

specific factor. In this way, each time series is only indirectly related to other time

series by means of one or more common factors. The result of using a factor model

is that the number of parameters only increases linearly – instead of quadratically

– with the number of time series. This opens the way to modeling a larger cluster

of time series simultaneously.

The reduced model was tested in two case studies. The first case study consisted

of five time series of groundwater level data. Results show that correlation among

the time series could be described with only one common factor. Decomposition of

the stochastic component shows that most of the noise is described by the common

factor. Only a small amount of the noise is specific. A plot of the specific factors

provides useful information on local deviations from the regional pattern (common

factor) including observation errors.

The second case study modeled ten time series simultaneously in order to es-

timate a common trend. Only two common factors were needed to describe cor-

relation among the time series. One of the common factors represented a trend.

Multiplication of the common trend with estimated factor loadings gives the trend

at each location. A spatial representation of the temporal trends is very useful in

studies on structural changes in groundwater level.

The multiple time series model as developed here, describes correlation only

within the stochastic component. This implies that the deterministic components

of the time series are mutually uncorrelated. An advantage of this is that the nonlin-

earities described in the previous sections can be incorporated very easily. Hence,

the multiple time series model is applicable in many different hydrological regimes.

Decomposition of the stochastic component into common factors and specific

factors enables accurate detection of observation errors. This is a major advantage

of the multiple time series model with respect to single time series models, where

observation errors are often buried in noise.

In addition to reducing the modeling interval (Section 7.1), one can reduce the

uncertainty in predicting groundwater fluctuations further by using a multiple time

series model. Moreover, monitoring schemes may be adapted such that at some

locations observations are carried out frequently (e.g. daily), while at others they

are done less often. In this way, measurements of locations where observations are

done frequently are used to increase the reliability of groundwater level predictions

for the other locations.

7.5 Epilogue
The state space modeling approach as presented in this thesis provides scientists,

engineers and water managers a comprehensive tool for carrying out systematic

studies on groundwater fluctuations. The various models developed within this

research make it possible to describe a broad range of groundwater time series.

Moreover, models can easily be adapted to better describe specific (nonlinear) hy-
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drological processes.

The state space models we developed for describing groundwater fluctuations

has led to an increase in accuracy of the model results. The main practical con-

sequence of this is that, given a requested level of accuracy, structural changes in

groundwater regimes can be detected within a shorter space of time. This means

that water managers can evaluate the effects of interventions sooner. Any adjust-

ments or countermeasures can then be taken in an earlier stage.

The increase in model accuracy also helps in detecting outliers in groundwater

data. In particular, the multiple time series model developed in this thesis filters

out deviations from the regional pattern very well. Furthermore, the recursive op-

eration of the Kalman filter provides a means to verify new data. This is done

by testing a new observation against the model’s prediction. The observation is

considered to be an outlier if it falls outside a predefined confidence interval. The

advantage of this “real-time” approach is that, when an outlier is detected, it can

immediately be investigated whether this outlier is the result of an incorrect obser-

vation or of an identifiable event.

Considering future developments of state space modeling of groundwater fluc-

tuations, two main topics are expected to predominate. Firstly, further research

is needed on how time series models can be used in combination with numerical

groundwater models. For instance, estimates of groundwater recharge produced

by a time series model may be used as input for numerical models. Another way to

combine time series models with numerical models is to apply time series models

as “post-processors” of the numerical model results. Residual series of a calibrated

numerical model can be further scrutinized with time series models to detect, for

example, remaining natural fluctuations.

Secondly, so far, research on time series modeling of groundwater fluctuations

has been mainly concerned with supporting decision making in long-term water

policy. However, nowadays, groundwater systems must be operated efficiently

in the short term as well. With the state space approach described in this thesis,

the way is open for real-time control of groundwater levels. Knowledge of the re-

sponse of groundwater to, for example, surface water fluctuations can be used for

the design of operational control systems. In addition, current research on accu-

rate forecasting of local precipitation and evaporation rates will eventually makes

it possible to control groundwater fluctuations in an adaptive way. With the avail-

ability of automatic data loggers, a fully automatic control system may well become

available for practical applications. Water management in agricultural and ecolog-

ically vulnerable areas may greatly improve with the application of such systems.

Wilbert Berendrecht





Samenvatting en conclusies
State space modelleren van

grondwaterstandsfluctuaties

GRONDWATER SPEELT IN ZOWEL stedelijk als landelijke gebied een belangrijke

rol. Zo kunnen gewassen veel schade oplopen door te hoge grondwater-

standen. Anderzijds kan een lage grondwaterstand schadelijk zijn voor

bijvoorbeeld natuurgebieden. Het is daarom essentieel om grondwaterstandsfluc-

tuaties te monitoren. Deze meetgegevens kunnen gebruikt worden voor het karak-

teriseren van het grondwaterregime of voor het evalueren van effecten van in-

grepen. Om echter met een grote mate van zekerheid uitspraken te kunnen doen

over bijvoorbeeld structurele veranderingen in het grondwaterregime, zijn er mo-

dellen nodig die in staat zijn de gemeten grondwaterstandsfluctuaties nauwkeurig

te beschrijven.

De hoofddoelstelling van het in dit proefschrift gepresenteerde onderzoek was

dan ook het ontwikkelen van een generiek en flexibel instrumentarium voor het

modelleren van grondwatertijdreeksen gebaseerd op de state space benadering,

ten einde grondwaterstandsfluctuaties nauwkeuriger te kunnen beschrijven. De

in dit proefschrift beschreven modelaanpak combineert een state space model met

een Kalman filter en een maximum-likelihood criterium voor het schatten van, res-

pectievelijk, de systeemtoestand en onbekende modelparameters. Met behulp van

deze aanpak is het mogelijk om een grote verscheidenheid aan grondwatertijdreek-

sen te modelleren.

Een praktisch voordeel van de state space benadering is dat het interval van

de invoerreeks kleiner mag zijn dan het interval van de uitvoerreeks. Dit betekent

dat hoogfrequente invoerdata – welke op veel plekken beschikbaar zijn – gebruikt

kunnen worden voor het nauwkeuriger schatten van de grondwaterstandsfluctu-

aties. Dit wordt beschreven in de eerste paragraaf. Niet-lineaire uitbreidingen van

het state space model worden beschreven in de twee daarop volgende paragrafen.

De paragraaf daarna toont vervolgens aan dat ruimtelijke samenhang tussen tijd-

reeksen benut kan worden om inzicht in de systeemdynamiek te verhogen en om

modelvoorspellingen te verbeteren. Dit hoofdstuk sluit af met een algemene dis-

cussie, waarin de belangrijkste bijdragen van dit proefschrift aan de praktijk van

geohydrologische tijdreeksmodellering wordt beschreven. Tevens worden enkele

potentiële richtingen voor toekomstig onderzoek aangestipt.
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Ontkoppelen van model- en meetinterval
Met behulp van gegenereerde tijdreeksen is onderzocht wat de effecten zijn van het

reduceren van het modelinterval – en dus van het gebruik van hoogfrequente in-

voerdata – op de prestaties van tijdreeksmodellen. De prestatie is gemeten aan de

hand van de ‘fit’ van de deterministische component en de nauwkeurigheid van de

geschatte transferfunctie. Berekeningen aan de hand van verschillende tijdreeksen

met variërend meet- en modelinterval tonen aan dat de prestatie van grondwa-

ter tijdreeksmodellen kunnen worden verbeterd door eenvoudigweg het modelin-

terval te reduceren. Randvoorwaarden hierbij zijn dat hoogfrequente invoerdata

beschikbaar zijn en dat het meetinterval een veelvoud blijft van het modelinterval.

De mate waarin het model verbetert hangt af van verschillende aspecten. Aller-

eerst is de grootte van het modelinterval ten opzichte van het moment van de

piekrespons belangrijk. Als het modelinterval groot is ten opzichte van deze piekre-

sponstijd, dan zal een reductie van het modelinterval de modelprestaties aanzien-

lijk verbeteren. Is het modelinterval daarentegen al klein ten opzichte van de piekre-

sponstijd, dan zal een verdere reductie weinig verbetering opleveren. Ten tweede,

als de stochastische component van het systeem (het deel van het systeem dat niet

kan worden gerelateerd aan het invoersignaal) groot is, dan zal het relatieve effect

van een reductie van het modelinterval geringer zijn. Een derde aspect is de lengte

van de tijdreeks: het effect van een reductie van het modelinterval neemt toe met

de lengte van de tijdreeks. Dit effect is het sterkst bij de fit van de deterministische

component.

Naast een reductie van het modelinterval is het mogelijk om de waarnemings-

frequentie te verhogen (een reductie van het meetinterval). Het effect hiervan hangt

wederom sterk af van de stochastische component: het verhogen van de waar-

nemingsfrequentie wordt effectiever naarmate de stochastische component groter

wordt. Daarnaast blijken de eerste hoogfrequent waargenomen grondwaterstanden

de grootste invloed te hebben op de modelprestaties. Het is dan ook de moeite

waard om een bestaande reeks van laagfrequent waargenomen grondwaterstanden

uit te breiden met een kleine periode met hoogfrequente waarnemingen.

Een klein modelinterval vereist hoogfrequent waarnemingen van ruimtelijk ver-

deelde data zoals neerslag en verdamping. Hierbij dient echter te worden opge-

merkt dat de invoer- en uitvoerdata meestal op verschillende locaties worden waar-

genomen. Fouten in de invoerdata ten gevolge van de ruimtelijke heterogeniteit

van neerslag en verdamping worden groter naarmate het meetinterval van de in-

voerdata kleiner wordt. Indien het modelinterval dus verder wordt gereduceerd,

wordt het belangrijker om over invoerdata te beschikken, die dichtbij de locatie van

de peilbuis zijn waargenomen.

De relevantie van de gepresenteerde resultaten voor de hydrologische praktijk

is significant. Zo zijn in Nederland dagelijkse waarnemingen van neerslag en ver-

damping in ruime mate beschikbaar. Tijdreeksen kunnen hiermee dus op dagbasis

gemodelleerd worden, met als gevolg dat bestaande historische reeksen van 14-
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daagse waarnemingen nauwkeuriger gemodelleerd kunnen worden. Indien het

model in combinatie met een Kalman filter wordt gebruikt is het tevens mogelijk

om grondwaterstanden online op dagbasis te voorspellen zonder dat er daadwerke-

lijk dagelijk gemeten wordt. Daarnaast kan het meetinterval aangepast worden aan

de hand van de door het Kalman filter berekende voorspellingsonzekerheid. Wa-

terbeheerders staan meestal een bepaald onzekerheidsniveau toe. Pas als de voor-

spellingsonzekerheid dit niveau overstijgt, hoeft er een nieuwe meting uitgevoerd

te worden.

Inbouwen van een niet-lineair wortelzone model
Bij het modelleren van grondwatertijdreeksen wordt over het algemeen aangeno-

men dat grondwaterstandsfluctuaties lineair afhangen van neerslag en verdam-

ping. Vanuit de fysica is het echter bekend dat de respons van de grondwaterstand

op neerslag en verdamping sterk niet-lineair kan zijn. Een belangrijke bron van

niet-lineairiteit is de wortelzone, waar de verzadigingsgraad een niet-lineaire in-

vloed heeft op de doorlatendheid en de wateropname van de wortels (en dus op de

actuele verdamping). We hebben daarom een niet-lineair model ontwikkeld waarin

de verzadigingsgraad in de wortelzone is meegenomen (deze hoeft overigens niet

te zijn gemeten) om zodoende de actuele verdamping en de grondwateraanvulling

te modelleren, met als uiteindelijk doel het voorspellen van grondwaterstandsfluc-

tuaties.

Resultaten van twee case studies tonen aan dat het niet-lineaire tijdreeksmodel

een betere voorspelling van de grondwaterstand geeft dan een lineair tijdreeks-

model. Vooral extremen in de tijdreeks (zeer natte of droge jaren) konden beter

worden beschreven met het niet-lineaire model. Aangezien de variantie van de sy-

steemruis is afgenomen, is het mogelijk om structurele veranderingen in het grond-

waterregime sneller en nauwkeuriger vast te stellen.

Een ander voor de praktijk interessant resultaat is dat het niet-lineaire model

een redelijk goede voorspelling geeft van de verzadigingsgraad in de wortelzone.

Alhoewel de verzadigingsgraad slechts wordt berekend als een gemiddelde over

de dikte van de wortelzone, kan het model gebruikt worden om bijvoorbeeld vocht-

tekorten te voorspellen zonder daadwerkelijk het bodemvocht te meten. Overigens

kunnen voorspellingen van het bodemvocht mogelijk nog verder verbeterd wor-

den, door bodemvochtmetingen mee te nemen in de modelkalibratie.

Het model berekent ook de actuele verdamping en percolatie. Het blijkt dat de

waarden zoals geschat door het model dichtbij de waarden liggen die zijn bepaald

aan de hand van veldwaarnemingen. Tevens kan de grondwateraanvulling van de

modelresultaten worden afgeleid.

In het ontwikkelde state space model is de ruis gemodelleerd als een aparte toe-

stand. De modelresultaten zouden nog verder verbeterd kunnen worden door ruis

aan te laten grijpen in de wortelzone. Op deze manier werkt de ruis door het gehele

niet-lineaire systeem heen. Diverse berekeningen hebben echter aangetoond dat dit
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leidt tot problemen tijdens de parameterschatting. Waarschijnlijk is dit het gevolg

van het feit dat er gebruik wordt gemaakt van een (eerste orde) extended Kalman

filter. Nauwkeurigere filters, zoals een ensemble Kalman filter, zullen waarschijn-

lijk betere resultaten geven.

Een mogelijke niet-lineaire uitbreiding van het ontwikkelde model is om de

transferfunctie in de percolatie zone afhankelijk te maken van de grondwaterstand.

Dit is gebaseerd op het feit dat de respons van het grondwater op neerslagoverschot

afhangt van de dikte van de percolatie zone.

State space modelleren in wisselende regimes
Een klasse niet-lineariteiten die vaak voorkomt in grondwatersystemen is drempel

niet-lineariteit. Bekende voorbeelden zijn systemen waarin de grondwaterspiegel

wordt gecontroleerd door drains. De drains zijn alleen actief als de grondwater-

spiegel boven het drainageniveau uitkomt. Dit betekent dat het grondwaterregime

verandert als de grondwaterspiegel het drainageniveau passeert.

Om de grondwaterstand in wisselende regimes te simuleren en te voorspellen

hebben we een state space model met drempel niet-lineariteit ontwikkeld. Het

model is gebaseerd op fysische concepten en is daardoor geschikt voor bijvoor-

beeld interventie analyse. De drainage flux is gemodelleerd als een niet-lineaire

functie van de grondwaterstand, in de zin dat de flux verandert van een constante

(nul) flux als de grondwaterspiegel beneden het drainageniveau is, naar een flux

die lineair afhangt van de grondwaterstand als de grondwaterspiegel boven het

drainageniveau is. De systeemruis wordt ook niet-lineair gerelateerd aan de grond-

waterstand.

Het model is getest op twee grondwatertijdreeksen. Een van deze reeksen ver-

toont een structurele verandering in het grondwaterregime. Uit de kalibratie van

het state space model blijkt dat het drainageniveau (drempelniveau) nauwkeurig

kan worden geschat. Verder tonen verificatie en validatie aan dat het model een

goede beschrijving van het systeem geeft. In vergelijking met een lineair model

blijkt het niet-lineaire model superieur. Vooral de validatie wijst uit dat het lineaire

model biased en minder nauwkeurig is. Tevens is het lineaire model niet goed in

staat om de voorspellingsfouten goed te beschrijven.

Met de ontwikkeling van dit niet-lineaire state space model is het mogelijk

geworden om fluctuaties van ondiepe grondwaterspiegels in bijvoorbeeld wetlands

en stedelijk gebied nauwkeurig te modelleren. De modelresultaten kunnen bijvoor-

beeld worden gebruikt om het grondwaterregime te karakteriseren. De fysische

basis van het model maakt het mogelijk om nuttige variabelen te kwantificeren,

zoals grondwateraanvulling, kwel of laterale stroming. En hoewel het hier gepre-

senteerde model één drempelniveau bevatte, is het eenvoudig om het model uit te

breiden met meerdere drempelniveaus.

In veel laaggelegen gebieden wordt de grondwaterstand direct beı̈nvloed door

oppervlaktewater. Indien het oppervlaktewaterpeil significant fluctueert – en dan
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hoofdzakelijk als gevolg van artificiële invloeden – kan het model aanmerkelijk ver-

beterd worden door deze fluctuaties mee te nemen. Dit kan worden gedaan door

oppervlaktewater te modelleren als exogene invoervariabele (drijvende kracht), of

als endogene uitvoervariabele. In het laatste geval worden grondwater en opper-

vlaktewater als een gekoppeld systeem gemodelleerd waarin ze elkaar onderling

beı̈nvloeden. Door oppervlaktewater als uitvoervariabele mee te nemen is het ook

mogelijk om onregelmatig waargenomen oppervlaktewaterpeilen mee te nemen.

Meervoudige tijdreeksmodellering
Tijdreeksen van grondwaterstanden vertonen vaak een hoge ruimtelijke correlatie.

Door gebruik te maken van deze correlatie neemt het beschrijvend en voorspel-

lende vermogen van tijdreeksmodellen aanzienlijk toe. Een algemeen probleem bij

meervoudige tijdreeksmodellen is echter dat de dimensie van de parameterruimte

kwadratisch toeneemt met het aantal tijdreeksen. Daarom is in dit onderzoek een

gereduceerd vector tranferfunctie-ruis model ontwikkeld. Dit model beschrijft de

correlatie tussen de tijdreeksen in de stochastische component met behulp van een

factor model. Kort gezegd beschrijft een factor model de correlatie met slechts een

paar gemeenschappelijke factoren. Het deel van de stochastische component dat

niet kan worden beschreven door de gemeenschappelijke factor, wordt de speci-

fieke factor genoemd. Op deze manier is elke tijdreeks dus alleen indirect gerela-

teerd aan andere tijdreeksen door middel van een of meerdere gemeenschappelijke

factoren. Dit heeft tot gevolg dat bij een factor model het aantal parameters slechts

lineair – in plaats van kwadratisch – toeneemt met het aantal tijdreeksen. Dit maakt

het mogelijk om een groter cluster tijdreeksen simultaan te modelleren.

Het gereduceerde model is getest in twee case studies. De eerste studie bestaat

uit vijf grondwatertijdreeksen. Het blijkt dat de correlatie tussen deze tijdreek-

sen beschreven kan worden met slecht één gemeenschappelijke factor. Decomposi-

tie van de stochastische component laat zien dat deze gemeenschappelijke factor

tevens het grootste deel van de ruis beschrijft. Slechts een klein deel van de ruis is

specifiek. Een grafiek van de specifieke factoren biedt nuttige informatie over de

lokale afwijkingen – inclusief meetfouten – ten opzichte van het regionale patroon

(gemeenschappelijke factor).

In een tweede studie werden tien tijdreeksen simultaan gemodelleerd, met als

doel het detecteren van een gemeenschappelijk trend. Slechts twee gemeenschap-

pelijke factoren waren nodig om de correlatie te beschrijven. Eén van deze factoren

representeert een trend. Vermenigvuldiging van deze gemeenschappelijke trend

met de geschatte factorgewichten geeft de trend op elke lokatie. Een ruimtelijke

weergave van deze temporele trends is zeer nuttig in studies naar structurele ver-

anderingen in het grondwaterniveau.

Het in deze studie ontwikkelde meervoudige tijdreeksmodel, beschrijft de cor-

relatie alleen met de stochastische component. Dit impliceert dat de determinis-

tische componenten van de tijdreeksen onderling onafhankelijk zijn. Dit heeft als
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voordeel dat de niet-lineariteiten zoals beschreven in de vorige paragrafen, een-

voudig ingebouwd kunnen worden. Het meervoudige tijdreeksmodel is dus in

veel verschillende hydrologische regimes toepasbaar.

Decompositie van de stochastische component in gemeenschappelijke factoren

en specifieke factoren maakt het ook mogelijk om nauwkeurig meetfouten te de-

tecteren. Dit is een groot voordeel ten opzichte van enkelvoudige modellen, waar

meetfouten vaak nog verborgen zitten in de ruis.

Door, naast een reductie van het modelinterval, gebruik te maken van een meer-

voudig tijdreeksmodel, kan de onzekerheid in het voorspellen van grondwater-

standsfluctuaties verder worden verlaagd. Tevens is het mogelijk om meetfrequen-

ties zodanig aan te passen, dat op enkele lokaties frequent wordt waargenomen

(bijvoorbeeld dagelijks), terwijl op andere lokaties minder vaak wordt gemeten. Op

deze manier wordt de informatie van hoogfrequent waargenomen lokaties gebruikt

om de betrouwbaarheid van de voorspellingen op de overige lokaties te verhogen.

Epiloog
De in dit proefschrift gepresenteerde state space modelbenadering biedt weten-

schappers, modelleurs en waterbeheerders een uitgebreid instrumentarium voor

het uitvoeren van systematische studies naar grondwaterstandsfluctuaties. De di-

verse modellen die binnen dit onderzoek zijn ontwikkeld bieden de mogelijkheid

om een grote verscheidenheid aan grondwatertijdreeksen te modelleren. Boven-

dien kunnen de modellen eenvoudig aangepast worden om meer specifieke (bij-

voorbeeld niet-lineaire) hydrologische processen te beschrijven.

De ontwikkeling van de state space modellen heeft geleid tot nauwkeurigere

modelresultaten. De belangrijkste praktische consequentie hiervan is, dat struc-

turele veranderingen in grondwaterregimes in een kortere periode waargenomen

kunnen worden. Dit betekent dat waterbeheerders de effecten van ingrepen eerder

kunnen vaststellen. Eventuele aanpassingen of tegenmaatregelen kunnen dan in

vroeger stadium gedaan c.q. genomen worden.

De verhoging van de nauwkeurigheid maakt het ook eenvoudiger om uitschie-

ters in grondwaterstandsdata te detecteren. Vooral het in dit proefschrift ontwik-

kelde meervoudige tijdreeksmodel is zeer geschikt voor het filteren van afwijkin-

gen op het regionale patroon. Verder biedt de recursieve werking van het Kalman

filter een middel om nieuwe data te verifiëren. Deze verificatie kan uitgevoerd wor-

den door een nieuwe waarneming te vergelijken met de modelvoorspelling. Zo-

dra de waarneming buiten een vooraf vastgesteld betrouwbaarheidsinterval valt,

wordt het als een uitschieter beschouwd. Het voordeel van een dergelijke real-time

aanpak is dat, wanneer er een uitschiet wordt gedetecteerd, er onmiddelijk kan

worden nagegaan of deze uitschieter het gevolg is van een meetfout of van een

identificeerbare gebeurtenis.

Wat betreft toekomstige ontwikkelingen in state space modelleren van grond-

waterstandsfluctuaties, zullen naar verwachting twee belangrijke onderwerpen de
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boventoon voeren. Allereerst is er meer onderzoek nodig naar de wijze waarop

tijdreeksmodellen gecombineerd kunnen worden met numerieke grondwatermo-

dellen. Zo zouden de met behulp van tijdreeksmodellen geschatte grondwater-

aanvullingen gebruikt kunnen worden als invoer voor numerieke modellen. Een

andere mogelijkheid is om tijdreeksmodellen te gebruiken om resultaten van nu-

merieke modellen na te bewerken. Residureeksen van gekalibreerde numerieke

modellen kunnen zo verder uitgeknepen worden om bijvoorbeeld overgebleven

natuurlijke fluctuaties te detecteren.

Ten tweede is onderzoek op het gebied van tijdreeksmodellering van grondwa-

terstandsfluctuaties tot voorkort vooral gericht geweest op beslissingsondersteu-

ning in het waterbeheer op lange termijn. Tegenwoordig dienen grondwatersy-

steem echter ook op korte termijn efficient beheerd te kunnen worden. Met behulp

van de state space benadering zoals is beschreven in dit proefschrift, ontstaat de

mogelijkheid tot real-time grondwaterpeilbeheer. Zo kan kennis van de respons van

het grondwaterpeil op bijvoorbeeld oppervlaktewaterpeil gebruikt worden voor

het ontwerpen van een operationeel beheerssysteem. Bovendien is het door huidig

onderzoek naar het nauwkeurig voorspellen van lokale neerslag- en verdampings-

cijfers, misschien mogelijk om de grondwaterstandsfluctuaties adaptief te sturen.

Door de beschikbaarheid van automatische data loggers zou dan uiteindelijk zelfs

een volledig automatisch systeem geı̈mplementeerd kunnen worden.

Wilbert Berendrecht
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