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1. INTRODUCTION

The convective boundary layer (CBL) is in hori-
zontally homogeneous and quasi-stationary conditions
characterized by the velocity scale w, and the CBL
height h. Turbulent processes are assumed to be gov-
erned by the CBL turn-over timescale h/w., and in-
tegral length scales of turbulent statistics are of the
order h. In a real atmosphere mesoscale phenomena
are assumed to be irrelevant for a timespan of a few
hours only, and moreover, separated by a 'spectral
gap' from the CBL turbulence. Though this general
view of turbulent structure of the ABL is widespread,
it is difficult to find experimental evidence for it. In
fact, aircraft measurements of the CBL (e.g., GATE
and ASTEX, see Jonker et al. (1999)) did not confirm
the existence of the spectral gap.

Jonker et al. (1999) performed a Large Eddy Sim-
ulation of the CBL and evaluated statistics of vertical
velocity, potential temperature and a passive scalar.
One turn-over time after the start of the simulation
the length scale associated with the vertical velocity
became stationary (approximately equal to h), con-
firming the general view that h is the only relevant
length scale in the CBL. However, length scales as-
sociated with potential temperature and the passive
scalar were considerably larger than h, and appeared
to be steadily increasing, flattening off slightly only to-
wards the end of the simulation. Contrary to vertical
velocity, temperature and passive scalar variance kept
growing during the simulation, suggesting that these
turbulence variables are governed by larger timescales
than the turn-over time h/ws,.

In their numerical experiment the turbulence was
driven by buoyancy only. The boundary-layer height
increased slightly from 700 to 800 m. Passive tracers
were introduced at the top (top-down diffusion) and
at the surface (bottom-up diffusion). Typical runs
lasted 40 turn-over times. Arbitrary concentration
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fields were inferred from linear superpositions of top-
down and bottom-up simulations. The magnitude of
the length-scale appeared to be dependent on the ra-
tio between the the entrainment flux and the surface
flux.

The findings of Jonker et al. (1999) initiated an
experimental verification in a laboratory environment
and a subsequent analysis based on the Reynolds
equations which will be reported here.

2. LENGTH SCALES

The general definition of an integral length scale

is given by
L :/ p(r)dr.
0

where p () is the normalized one dimensional spatial
autocorrelation function of, for example, the concen-
tration field defined as
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The autocorrelation function is a measure of the corre-
lation between the values of the variable ¢ at location
z and z+r and is, due to the horizontal homogeneity
and anisotropy, a function of the distance r only. The
associated power spectrum F/(k) is given by
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The determination of length scales from (peaks in)
power spectra or from the shape or integral of correla-
tion functions is an art in itself. Often the location of
the spectral peak is uncertain, or the correlation func-
tion does not converge properly. Jonker et al. (1999)



uses for example
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and the length-scale follows from L = kl—c This
method tends to average out fluctuations that nat-
urally occur in the spectra. Here, we shall use the
shape of the correlation function between r» = 0 and
the first zero-crossing, as explained by Durand et al.

(1974).
3. OBSERVATIONS

3.1 The convection tank

The experiments were carried out in a 3.2 m long,
1.6 m wide and 0.7 m deep saline convection tank
(Hibberd (1996)). The aspect ratio of the tank is
considered sufficient to distinguish the horizontal di-
mension from the boundary layer depth (typically ~
20 cm). The four sides and the bottom of the tank are
constructed of 15 mm thick glass to permit visualiza-
tion of the convection experiments. The tank can be
filled with a variable salt water mixture which ‘'mim-
icks' the CBL upside down. The top side of the tank
is covered with a ‘source tray' containing salt water
which leaks into the boundary layer through a porous
membrane at prescribed rates, simulating the convec-
tion process. Salinity probes can be towed through
the tank in horizontal and vertical directions.

An Argon-ion laser points at a rotating mirror
which generates a thin horizontal sheet of laser light
at arbitrary levels in the CBL. Fluorescent dye patterns
visualize actual horizontal concentration fields, which
are recorded (at 25 Hz) by a video camera underneath
the tank and stored on tape.

3.2 The experiments

The experiment begins by putting the source tray
on top of the fresh water boundary layer and draining
the tank at a very low rate. This releases the salty
source tray mixture and initiates the convection.

Dye can be added to the tray solution (bottom-up
diffusion) and, during the tank filling process, in the
stable entrainment layer, to simulate top-down diffu-
sion. 11 experiments of ~ one hour were carried out
with varying (dye) entrainment ratios. From the salt
concentration measurements mean (vertical) profiles
were determined which revealed a realistic CBL struc-
ture consisting of a steadily growing (from 18 to 26
cm) well-mixed layer, capped by an inversion. Also the
vertical profiles of salt concentration variance were de-
termined and were found to be in agreement with sim-
ilar atmospheric data. Dye concentration fields were

collected at 6 levels (from .2h to 1.2h) with a res-
olution of 600 x 350 pixels which covers an area of
approximately 90 x 60 cm.

3.3 Preliminary results

Mean vertical variance profiles of the passive scalar
fields were determined. We found that the vari-
ance of the scalar generally increased with time,
whereas the variance of the salinity (‘potential tem-
perature') quickly reached steady state, in accordance
with Jonker et al. (1999). We noted further that
there is a significant difference in magnitude of the
(dimensionless) variance among the different experi-
ments. While the variance ranges to approximately 5
for the bottom-up experiments, the variance for the
top-down runs typically reaches a value of 50. This is
only in qualitative agreement with the LES results of
Jonker et al. (1999), who showed that the variance of
the top-down scalar was roughly only 5 times bigger
than that of the bottom-up scalar.

The variance profiles for the bottom-up experi-
ments are quite similar in shape and magnitude to
aircraft measurement of humidity during the AM-
TEX, Limagne and Beauce experiments (Lenschow
and Agee (1976), Tuzet et al. (1983)).

There are some indications that for scalar flux-
ratios of ~ -0.25 to -0.5 the variance increases at a
slower rate. The slower progress appears more clearly
at lower heights in the boundary layer suggesting that
the increase in length scale is also height-dependent.
More specifically, for the bottom-up experiments there
is no apparent height dependence in the length scale.
It is almost constant throughout the boundary layer
with a typical value of 2.3h. The length scale for
the top-down experiment on the other hand shows a
stronger height dependence. The maximum value of
the average length scale is attained close to the sur-
face, with a value of approximately 3.4h.

Also Jonker et al. (1999) found lower values in
mid-boundary-layer, at a ratio of approximately -0.5.
They also observed that the length scale is height-
dependent. For a bottom-up scalar, the length scale
should increase with height, whereas for the top-down
scalar the opposite was found.

The difference in behaviour between the scalar and
the salinity variance is quite convincing: as soon as
the tank reaches a quasi-steady state after a couple
of turn-over times, the variance of the salinity does not
change significantly anymore, whereas the variance of
the passive scalar keeps increasing.

Spectra of the passive scalar have a significant dif-
ferent shape than those from the salinity data. Large-
scale fluctuations in the scalar fields dominate the



spectrum, while the salinity spectra tend to have their
maximum energy at smaller wavelengths. Another ob-
servation is that when time passes, the gradual in-
crease in variance can mostly be attributed to an in-
crease of the low-wavelength part of the scalar spectra

4. THEORY

The evidence that the concentration variance is
ever increasing suggests that the timescale associated
with concentration variance dynamics is appreciably
larger than that of velocity. (the turn-over time in the
CBL, = h/w,). This requires a more detailed study
of the associated governing dynamical equations.

4.1 The Reynolds averaged equations for scalar
length scales and variances

In an incompressible flow (V.@ = 0), the conser-
vation equation of a passive scalar is

% +uVe = kAc, (5)
where k is the molecular diffusivity.

We denote the actual concentration and velocity
field by ¢ and u, respectively, and make a decomposi-
tion into mean (capitals) and fluctuating (lower case)
quantities, ¢ = C' 4+ ¢, # = U + u. The equation for
the fluctuating concentration, ¢, is then

Oc

% +UNVe=—-uNVe—uVC+Vauc+ ckAc. (6)
From this equation we may construct a rate equation
for c(z,t)c(2’,t), where 2’ is an arbitrary other loca-
tion in a horizontal plane at level z, thus z = z(z, y, 2)
and 2’ =2'(2',y/, 2):
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Primed variables depend on primed independent vari-
ables (z' and y'). In equation 7, all variables (apart
from 9C'/0z which depends on z and ¢ only) depend
on r,z and t, where r is the magnitude of the vector
which connects z and z’. The derivation is analogous
to the one for the velocity correlation tensor, as is for
instance discussed in Batchelor (1953), leading to the
Von Karman-Howarth equation. From equation 7 it
is now possible to construct a governing equation for
the length-scale, using its definition (1):

dLc? oC 2

ke —2a¢ P L - 3 € L. (8)

The flux term is shortly written as ¢ = we.
In the derivation of (8) it is further assumed that

foww dr ~ ¢Ly), and that (%%czl) = % € Peet

where pcci(r) is a correlation function with integral
scale @« L. The dissipation rate is defined as ¢, =

K (6—9)2 and « is defined by
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and is assumed to be approximately constant. LES re-
sults indicate that « varies between 0.7 and 0.8. Using
the same approximations, we can also formulate the
(well-known) expression for the variance as:

oz _ 00 .

This set of equations (equation 8 and 10) is the start-
ing point of the analysis of the dynamics of a passive

scalar in the CBL.

First we note that the equation for the variance
(10) co.ntains a product?on term_(—2¢%) which_is
absent in the corresponding equations for the velocity

variance, since all terms gg%, are zero. This allows,
3

contrary to the velocity variances, the passive scalar
variance to grow.

It should be emphasized that the passive scalar
production term is positive when the flux is down-
gradient. However, in a region where the flux is
counter-gradient, the production term is negative,
which, according to (10), inhibits the increase of the
variance (the variance may still grow, however, due to
turbulent transport terms, which are neglected here).

Further, in a quasi steady situation the production
term is approximately constant (in time), since it is
the product of the (approximately stationary) flux and
mean vertical gradient. As a consequence the dissipa-
tion timescale is the governing timescale in equation
10, and in view of the experimental and numerical ev-
idence, it must be considerably larger than h/w, in
most conditions. The standard parameterization for
the dissipation is

€ = kec? /1, (11)

where 7 is the turn-over time scale h/w, and k. a
constant of order one. This would imply that accord-
ing to (10) the scalar variance reaches steady state
after a couple of turn-over times, clearly in contradic-
tion with the observations and LES results. Therefore,



guided by the above set of equations, we propose to
parameterize the scalar dissipation as

e = kec?L/w., (12)

with k. a constant of order unity. With this modified
parameterization, we have solved for ¢2 and L from
equation 8 and 10. For the production term we have
adopted an expression originating from countergradi-
ent theory (van Dop and Verver (2001)). We were
able to obtain preliminary results which are very sim-
ilar to those in Jonker et al. (1999) and also to the
experimental results presented here. The top-down
variance is overestimated by a factor of 2 compared to
the results of Jonker et al. (1999), but is in good agree-
ment with the experimental results of the bottom-up
variance. However, in order to produce these results
we had to put a equal to 0.45, a value which is ap-
preciably lower than estimates based on the LES con-
centration fields. We have to look more closely both
into the LES simulations and the approximations used
in the derivation of equation 8 and 10 to resolve this
issue.
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