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Summary 
Accurate quantitative estimation of vegetation biochemical and biophysical 

characteristics is necessary for a large variety of agricultural, ecological, and 
meteorological applications. Remote sensing, because of its global coverage, 
repetitiveness, and non-destructive and relatively cheap characterization of land 
surfaces, has been recognized as a reliable method and a practical means of 
estimating various biophysical and biochemical vegetation variables. The advent of 
hyperspectral remote sensing has offered possibilities for measuring specific 
vegetation variables that were difficult to measure using conventional multi-
spectral sensors. 

 
Utilizing hyperspectral measurements, we examined the performance of 

different statistical techniques such as univariate versus multivariate techniques for 
predicting biophysical and biochemical vegetation characteristics such as leaf area 
index (LAI) and chlorophyll content. The study further investigated and compared 
the performance of the statistical approach with that of the physical approach for 
mapping and predicting these vegetation characteristics. From the laboratory up to 
airborne levels, the investigation involved structurally different vegetation canopies 
and heterogeneous fields with different vegetation communities. 

 
It was concluded that the red edge inflection point (REIP) is not an appropriate 

variable to be considered for LAI estimations at canopy level, especially if several 
contrasting species are pooled together or a heterogeneous canopy is being 
investigated. However, it may be appropriate for single species. Throughout this 
study, the bands in the shortwave infrared (SWIR) region have appeared to make a 
sound contribution in terms of the strength of relationships between spectral 
reflectance and LAI. Considering that the SWIR bands were important in all three 
investigated levels and for most vegetation indices in this study, vegetation indices 
that do not include this spectral region may be less satisfactory for LAI estimation. 
The results suggest that, when using remote sensing vegetation indices for LAI 
estimation, not only is the choice of vegetation index of importance but also prior 
knowledge of plant architecture and soil background. Hence, some kind of 
landscape stratification is required before using hyperspectral imagery for large-
scale mapping of biophysical vegetation variables. Furthermore, the study results 
highlight the significance of using multivariate techniques such as partial least 
squares regression rather than univariate methods such as vegetation indices for 
providing enhanced estimates of heterogeneous grass canopy characteristics. The 
newly introduced subset selection algorithm based on average absolute error 
(AAE) indicated that a carefully selected spectral subset contains adequate 
information for a successful model inversion. The results of the study 
demonstrated that, through the inversion of a radiative transfer model, grass 
canopy characteristics such as LAI and canopy chlorophyll content can be 
estimated with accuracies comparable to those of statistical approaches. Given that 



 viii 

the accuracies obtained through the inversion of a radiative transfer model were 
comparable to those of statistical approaches, and considering the lack of 
robustness and transferability of statistical models for varying environmental 
conditions (Asner et al., 2003; Gobron et al., 1997), the radiative transfer models 
may be considered proper alternatives. 

 
In summary, the study contributes to the field of information extraction from 

hyperspectral measurements and enhances our understanding of vegetation 
biophysical and biochemical characteristics estimation. Several achievements have 
been registered in exploiting spectral information for the retrieval of vegetation 
biophysical and biochemical parameters using statistical and physical approaches. 
These involve the derivation of new vegetation indices and the successful 
implementation of a radiative transfer model inversion (with extensive validation), 
which comprised the development of a new method to subset the spectral data 
based on average absolute error. 
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Samenvatting 
Voor vele agrarische, ecologische, en meteorologische toepassingen is een 

nauwkeurige kwantitative meeting van de bio-chemische en bio-fysische 
karakteristieken van vegetatie van belang. Vanwege zijn wereldwijde dekking, 
frequente opnames, niet-destruktieve en relatief goedkope eigenschappen is 
‘Remote Sensing’ erkend als een betrouwbare en praktische methode om diverse 
bio-fysische en bio-chemische variabelen in vegetatie te meten. Door het in 
gebruik nemen van hyper-spectrale Remote Sensing is het nu mogelijk specifieke 
vegetatie variabelen te meten, die voorheen met conventionele multi-spectrale 
sensoren niet waren te meten. 

 
Met behulp van hyper-spectrale metingen hebben we verschillende statistische 

technieken, zoals univariate versus multivariate technieken, onderzocht voor het 
voorspellen van bio-fysische en bio-chemische vegetatie karakteristieken, zoals het 
blad oppervlak index (LAI) en het chlorofiel gehalte. Deze studie heeft verder 
onderzocht en vergeleken, hoe de statistische benadering zich gedroeg ten opzichte 
van de fysische benadering met betrekking tot het karteren en voorspellen van 
deze vegetatie karakteristieken. Het onderzoek betrof, van laboratoria niveau tot in 
het luchtruim, struktureel verschillende vegetatie lagen en heterogene velden met 
verschillende vegetatie groepen. 

 
De conclusie was, dat de ‘rode hoek inflektie punt’ (REIP) geen geschikte 

variabele is voor het meten van het blad oppervlak index (LAI) op vegetatie lagen 
niveau, vooral niet wanneer diverse kontrasterende soorten samen voorkomen of 
wanneer een heterogene laag werd onderzocht. Des al niet te min, voor 
afzonderlijke soorten was het resultaat bevredigend. Gedurende deze studie bleken 
de banden in de korte golflengte infra-rood goede resultaten op te leveren met 
betrekking tot een sterke relatie tussen spectrale reflektie en LAI. In aanmerking 
nemende, dat de SWIR banden belangrijk waren in alle drie onderzochte niveau’s 
en ook voor de meeste vegetatie indexen in deze studie, kan worden geconcludeerd 
dat vegetatie indexen die niet binnen deze spectrale regio vallen minder geschikt 
zijn voor het bepalen van de LAI. De resultaten suggereren dat, wanneer de 
Remote Sensing vegetatie index voor LAI berekeningen worden gebruikt, niet 
alleen de keuze van de vegetatie index belangrijk is, maar ook voorkennis van de 
bouw van de plant en van de bodem achtergrond. Daarom is enige voorkennis van 
de stratifiekatie van het landschap nodig, alvorens hyper-spectrale beelden voor het 
op grote schaal karteren van bio-fysische vegetatie variabelen toe te passen. 
Bovendien laten de onderzoeks resultaten duidelijk het belang zien van ‘multi-
variate’ technieken zoals ‘partial least squares regression’ boven het gebruik van 
‘uni-variate’ methodes zoals vegetatie index voor het gerekenen van heterogene 
gras bedekkings karakteristieken. Daarom is eerstgenoemde techniek aanbevolen 
wanneer gebruik makend van hyper-spectrale gegevens. De nieuw ontwikkelde 
‘subset selektie algoritme’, die gebaseerd is op een gemiddelde absolute fout 



 x 

(AAE), geeft aan dat een zorgvuldig gekozen spectrale subset genoeg informatie 
bevat voor een geslaagd model inversie. De resultaten van deze studie laten ook 
zien, dat via de inversie van een ‘radiative transfer model’, de grass bedekkings 
karakteristieken zoals LAI en chlorofiel gehalte van de bedekking gemeten kan 
worden met een nauwkeurigheid die vergelijkbaar is met die van statistische 
berekeningen. Daarom kunnen de ‘radiative transfer modellen’ als waardige 
alternatieven voor de statistische modellen worden beschouwd. Gezien het feit, dat 
de nauwkeurigheid, verkregen door de inversie van een ‘radiative transfer model’, 
vergelijkbaar waren met die via een statistische benadering, en gezien het gebrek 
aan robuustheid en overdraagbaarheid van statistische modellen voor diverse 
omgevings omstandigheden (Asner et al., 2003; Gobron et al., 1997), kan 
aangenomen worden, dat de ‘radiative transfer model’ een geschikt alternatief is. 

 
Samenvattend, deze studie draagt bij in het veld van informatie vergaren met 

betrekking tot hyper-spectrale metingen en verbeterd onze inzicht in het bepalen 
van de biofysische- en biochemische eigenschappen van vegetatie. Diverse 
vooruitgangen zijn geboekt in het onderzoeken van spectrale informatie voor het 
bepalen van biofysische- en biochemische eigenschappen van vegetatie met behulp 
van statistische en fysische benaderingen. Deze omvatten produkten van nieuwe 
vegetatie indexen en het succesvol implementeren van een inversie van het 
‘radiative transfer model’ (uitgebreid gevalideerd), inclusief de ontwikkeling van 
een nieuw ontwikkelde methode om spectrale data te partioneren, gebaseerd op 
een gemiddelde absolute fout. 

 



 xi 

Acknowledgements 
Gratitude is owed to many individuals who have helped me in one way or 

another over the past four years, often without knowing they were doing so. 
 
My deepest appreciation goes to my first promotor, Prof. Andrew Skidmore, 

for his confidence, advice, encouragement, commitment and unsparing support 
during the period of my study. He taught me how to be an independent scientist 
by letting me make my own choices at decisive points along the way. Further, I 
would like to express my gratitude to my other promotor, Prof. Herbert Prins, for 
the continuous encouragement and generous support I received from him. This 
work would not have been possible without the invaluable contribution and help I 
received from my co-promotor, Dr. Clement Atzberger. He was always ready to 
assist me, promptly answering my emails and questions. I highly appreciate his 
significant support, criticisms, expertise and enthusiasm during the period of this 
work. 

 
I deeply acknowledge the excellent advisory support of Dr. Martin Schlerf, my 

adviser, in many difficult situations, and am grateful for the many inspiring 
scientific discussions we shared. It was easy for me to communicate with him 
because of his friendly and sincere attitude. Special thanks go to Dr. Fabio Corsi, 
who substantially helped me in organizing and conducting the fieldwork and who 
devoted considerable time and support to my work during the phase of proposal 
writing. Many thanks go to Dr. Sip van Wieren for his support during my 
laboratory and field experiments. Whenever I needed to arrange something in 
Wageningen, he was there to assist me. 

 
I would like to thank the whole NRS department for their support. I 

appreciated the friendly atmosphere and especially the pleasant chats over coffee 
on Monday mornings. To Eva Skidmore, I would like to say thank you for the 
hospitality, for the friendship, and for editing my first article, which is now in print 
in the International Journal of Remote Sensing. My sincere thanks go to Dr. Bert 
Toxopeus for his wonderful support and encouragement; it was always a pleasure 
to see his cheerful face. Thank you for translating my abstract into Dutch. 

 
Talking to the PhD community, particularly on Friday afternoons, always 

seemed to lighten the workload. They were each special in their own way and some 
of them have become good friends. I thank you all! Special thanks go to my 
colleagues Dr. Moses Cho, Dr. Md Istiak Sobhan, Dr. Pieter Beck, Dr. Marleen 
Noomen, Dr. Jelle Ferwerda, Dr. Chudamani Joshi, Dr. Uday Bhaskar Nidumolu, 
Dr. Grace Nangendo, Dr. Martin Yemefack, Dr. Peter Minang, Dr. Jamshid 
Farifteh, Mr. Mohammad Abouali, Mr. Farhang Sargordi, Mr. Bahman Farhadi, 
Mrs. Nicky Knox, Mrs. Filiz Bektas, Mr. Wang Tiejun, Mrs. Jane Bemigisha and 
Mrs. Chiara Polce for the support, scientific discussions and sound advice. 



 xii 

Many people at ITC helped and supported me when it came to technical issues. 
I cannot possibly mention everybody, but a few people must be singled out: 
Willem Nieuwenhuis, Gerard Reinink, Boudewijn de Smeth, Jelger Kooistra, Ard 
Kosters, Andries Menning, Wim Bakker, Wan Bakx, Benno Masselink, Job Duim, 
Ronnie Geerdink, Harry Homrighausen, Rob Teekamp and Gerard Leppink. 
Thank you all!  

 
I extend my gratitude to several people at ITC who assisted me in one way or 

another: Loes Colenbrander, David Rossiter, Patrick van Laake, Martin Hale, 
Alfred Stein, Paul van Dijk, Fred Paats, Esther Hondebrink, Eric Mol, Bettine 
Geerdink, Marie Chantal Metz, Theresa van den Boogaard, Marga Koelen, Carla 
Gerritsen, Petry Maas – Prijs, Saskia Tempelman, Saskia Groenendijk, Marion 
Pierik, Kim Velthuis, Bianca Haverkate, Adrie Scheggetman, André Klijnstra and 
former ITC staff: Professor Klaas Jan Beek, Wilma Grotenboer, Anneke Homan 
and Janice Collins. I appreciate all the help and support I received from you during 
the past years.  

 
I am grateful to my former teachers and supervisors in the ITC cartography and 

UPM departments. They were all a great source of encouragement and support for 
me: Richard Sliuzas, Sherif Amer, Ben Gorte, Corné van Elzakker, Connie Blok, 
Sjef van der Steen, Ton Mank and Jeroen van den Worm, to name but a few.  

 
I appreciate all the help and support received from my Iranian colleagues and 

acquaintances in the Netherlands, some of whom have become good friends: the 
Sharif family, the Sharifi family, the Farshad family, the Daftari family, the Farhadi 
family, and many more - I apologize for not mentioning you all by name. I 
appreciated your presence, particularly in difficult times, and wish you all good 
luck. 

 
I extend my gratitude to my father and mother, brothers and sister, who went 

through a lot while I was absent. They have given me tremendous support and 
deserve so much more than a simple ‘thank you’. I owe them a lot and will be 
grateful to them all my life. 

 
Finally, to my daughters, Asal and Aysan, my sincere apologies for not being 

able to be the full-time mom you deserve. Although from time to time I had to 
travel for my work, I always did my best to fulfill your desires, wishes and needs. 
Thank you for being two tolerant angels and bringing so much happiness and joy 
into my life. 

 
Last but not least, to my husband, Ali, I say thank you for your presence, 

support and encouragement. You left your job to join me and support me here in 
the Netherlands. However, I realized that you had so much to do over the past 
two years that I even had to support you! I am sincerely grateful to you for your 
patience, appreciation, trust and most of all for your love.  



 xiii 

 
 
 
 
 
 
 
 
 
 
 

To my family 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xiv 

 
 
 
 
 
 
 
 
 



Chapter One 

General Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 

 2 

1.1. Remote sensing of vegetation biophysical and 
biochemical characteristics 

Vegetation is a fundamental element of the earth’s surface and has a major 
influence on the exchange of energy between the atmosphere and the earth’s 
surface (Bacour et al., 2002). Accurate quantitative estimation of vegetation 
biochemical and biophysical characteristics is necessary for a large variety of 
agricultural, ecological, and meteorological applications (Asner, 1998; Hansen and 
Schjoerring, 2003; Houborg et al., 2007). Likewise, the mapping and monitoring of 
vegetation biochemical and biophysical variables is important for the spatially 
distributed modeling of vegetation productivity, evapotranspiration, and surface 
energy balance (Turner et al., 1999). The direct measurement of these 
characteristics is labor-intensive and costly, and is thus only practical on 
experimental plots of limited size (Pu et al., 2003a). Remote sensing, because of its 
global coverage, repetitiveness, and non-destructive and relatively cheap 
characterization of land surfaces, has been recognized as a reliable method and a 
practical means of estimating various biophysical and biochemical vegetation 
variables (Cohen et al., 2003; Curran et al., 2001; Hansen and Schjoerring, 2003; 
Hinzman et al., 1986; McMurtrey et al., 1994; Weiss and Baret, 1999). However, a 
major drawback of traditional remote sensing products is that they use average 
spectral information over broad-band widths, which results in the loss of crucial 
information available in specific narrow bands (Blackburn, 1998; Thenkabail et al., 
2000). In this regard, the advent of hyperspectral remote sensing (section 1.2) has 
offered possibilities to overcome this limitation.  

 

1.2. Hyperspectral remote sensing and vegetation 
characteristics 

The tools for vegetation remote sensing have developed considerably in the 
past decades (Asner, 1998). Optical remote sensing has expanded from the use of 
multi-spectral sensors to that of imaging spectrometers. Imaging spectrometry or 
hyperspectral remote sensing, with sensors that typically have hundreds of narrow, 
contiguous spectral bands between 400 nm and 2500 nm, has the potential to 
measure specific vegetation variables that are difficult to measure using 
conventional multi-spectral sensors. For example, Zarco-Tejada et al. (2002) 
assessed vegetation stress from a derivative chlorophyll index using CASI 
(Compact Airborne Spectrographic Imager) airborne data; Mutanga and Skidmore 
(2004) overcame the saturation problem in estimating biomass by using narrow-
band vegetation indices; Ferwerda et al. (2005) demonstrated that across multiple 
plant species nitrogen could be detected by using hyperspectral indices; and Cho 
(2007) used hyperspectral indices to discriminate species at leaf and canopy scales. 
Previous studies have shown that hyperspectral data are crucial in providing 
essential information for quantifying the biochemical (Broge and Leblanc, 2001; 
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Ferwerda et al., 2005; Gamon et al., 1992; Gitelson and Merzlyak, 1997; Mutanga 
et al., 2005; Peterson et al., 1988) and the biophysical (Blackburn, 1998; Elvidge 
and Chen, 1995; Gong et al., 1992; Lee et al., 2004; Mutanga and Skidmore, 2004; 
Schlerf et al., 2005) characteristics of vegetation. 

 
In general, current remote sensing approaches to estimating vegetation 

biochemical and biophysical parameters include statistical (also called inductive) 
(section 1.3) and physically based models (also called deductive) (section 1.4) 
(Skidmore, 2002), each having advantages and disadvantages. Both models 
(statistical/physical) have been used widely for estimating biochemical and 
biophysical parameters in agricultural and forestry environments (these are typically 
homogenous areas in terms of species type) with multi-spectral remote sensing 
data (e.g., Atzberger, 1997). Nevertheless, the estimation of vegetation 
characteristics for structurally different vegetation canopies and heterogeneous 
fields with different vegetation communities using either approach has not been 
widely addressed in the literature. Using both statistical and physically based 
models, this research has addressed the estimation of leaf area index (LAI), leaf 
chlorophyll content (LCC) and canopy chlorophyll content (CCC), which are of 
prime importance among the many vegetation biochemical and biophysical 
characteristics. 

 

1.3. Statistical approach 
One of the most common approaches to estimating vegetation parameters 

from remotely sensed data is the statistical approach. It involves univariate 
(computation of spectral vegetation indices) or multivariate (e.g., stepwise linear 
regression/partial least square regression) models. In this approach, statistical 
techniques are used to find a relation between the target parameter (parameter 
measured in situ, such as LAI) and its spectral reflectance or some transformation 
of reflectance (e.g., a vegetation index). Originally, the purpose of spectral 
vegetation indices was to minimize variability due to external factors such as 
illumination and atmosphere conditions and internal factors such as the underlying 
soil and leaf angle distribution. 

 
Developments in the field of hyperspectral remote sensing have promoted a 

new group of vegetation indices that includes narrow-band indices and the red 
edge of the vegetation spectrum. The importance of hyperspectral indices for 
quantifying the biochemical and biophysical characteristics of vegetation have been 
demonstrated by many studies (Blackburn, 1998; Broge and Leblanc, 2001; 
Ferwerda et al., 2005; Gamon et al., 1992; Gitelson and Merzlyak, 1997; Lee et al., 
2004; Mutanga and Skidmore, 2004; Mutanga et al., 2005; Schlerf et al., 2005). In 
this case, a limited number of spectral wavelengths from the massive spectral 
contents of hyperspectral data are used. 
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In contrast, several studies have addressed statistical techniques such as 
stepwise multiple linear regression (SMLR) and partial least square regression 
(PLSR) that integrate spectral information of several spectral wavelengths for 
estimating vegetation biochemical and biophysical properties (Atzberger et al., 
2003b; Cho et al., 2007; Curran, 1989; Curran et al., 2001; De Jong et al., 2003; 
El Masry et al., 2007; Grossman et al., 1996; Hansen and Schjoerring, 2003; Huang 
et al., 2004; Kokaly and Clark, 1999; Lefsky et al., 1999; Lefsky et al., 2001; Naesset 
et al., 2005; Nguyen and Lee, 2006). Statistical approaches lack generalization and 
transferability as the derived statistical relationships are recognized as being sensor-
specific and dependent on site and sampling conditions, and are expected to 
change in space and time (Colombo et al., 2003; Gobron et al., 1997; Meroni et al., 
2004). Much of the present research using statistical models to link vegetation 
parameters such as LAI to spectral data has been conducted on typically 
homogenous vegetation, for example on conifer stands (Running et al., 1986), 
agricultural crops (Colombo et al., 2003; Hansen and Schjoerring, 2003; Walter-
Shea et al., 1997), tropical moist forest (Kalacska et al., 2004), broad-leaf forests 
(Chen et al., 1997; White et al., 1997), and mangrove forest (Kovacs et al., 2004). 
However, to our knowledge, the estimation of canopy characteristics such as LAI 
and canopy/leaf chlorophyll content for structurally different vegetation canopies 
and heterogeneous Mediterranean grassland has not been addressed by researchers, 
and remains to be examined. 

 

1.4. Physically based models  
The second approach (physical approach; here also called deductive, 

biophysical, physical and physically based) to estimating vegetation parameters 
involves radiative transfer models, which describe the spectral variation of canopy 
reflectance as a function of canopy, leaf and soil background characteristics based 
on physical laws (Atzberger, 1995; Goel, 1989; Meroni et al., 2004; Verhoef, 1984). 
As radiative transfer models are able to explain the transfer and interaction of 
radiation inside the canopy based on physical laws, they offer an explicit 
connection between the vegetation biophysical and biochemical variables and the 
canopy reflectance (Houborg et al., 2007). Depending on the canopy structures, 
different models ranging from 1D (Gastellu-Etchegorry et al., 1996a; Verhoef, 
1984) to 3D (Gastellu-Etchegorry et al., 1996b; Kimes and Kirchner, 1982) have 
been developed. In 1D radiative transfer models, the vegetation canopy is 
presumed to be a turbid medium with randomly distributed canopy elements 
(Liang, 2004). While 1D radiative transfer models are used for horizontally 
homogeneous canopies, 3D models are applicable to horizontally heterogeneous 
or discontinuous canopies (such as orchards with isolated tree crowns). 

 
To actually use physically based models for retrieving vegetation characteristics 

from observed reflectance data, they must be inverted (Kimes et al., 1998). 
Different inversion algorithms exist for the inversion of physical models, including 
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numerical optimization methods (e.g., Atzberger, 1997; Bicheron and Leroy, 1999; 
Jacquemoud et al., 2000; Jacquemoud et al., 1995; Meroni et al., 2004), look-up 
table (LUT) approaches (e.g., Combal et al., 2002; Combal et al., 2003; Gastellu-
Etchegorry et al., 2003; Knyazikhin et al., 1998; Weiss et al., 2000), and artificial 
neural network methods (e.g., Fang and Liang, 2005; Gopal and Woodcock, 1996; 
Schlerf and Atzberger, 2006; Walthall et al., 2004; Weiss and Baret, 1999), each 
having advantages and disadvantages (Kimes et al., 2000; Liang, 2004). A drawback 
in using physically based models is the ill-posed nature of model inversion 
(Atzberger, 2004; Combal et al., 2002), meaning that the inverse solution is not 
always unique as various combinations of canopy parameters may yield almost 
similar spectra (Weiss and Baret, 1999) (Figure 1.1). Possible solutions to the ill-
posed inverse problem involve the use of prior knowledge about model parameters 
(Combal et al., 2002), the use of information provided by the temporal course of 
key canopy parameters (CROMA, 2000), and/or the analysis of color textures and 
object signatures (Atzberger, 2004). 

 
Generally, these models are known to be computationally more demanding and 

need a number of leaf and canopy input variables. Significant efforts to estimate 
and quantify vegetation properties using radiative transfer models have been 
carried out in the last two decades. Several studies have been successfully 
conducted covering different vegetation types and remote sensing data: on global 
data sets (Bacour et al., 2006; Baret et al., 2007; Bicheron and Leroy, 1999; Fang 
and Liang, 2005), on agricultural crops (Atzberger, 2004; Atzberger et al., 2003a; 
Danson et al., 2003; Jacquemoud et al., 2000; Jacquemoud et al., 1995; Weiss et al., 
2001; Zarco-Tejada et al., 2004b), in semiarid regions (Qi et al., 2000), and on 
forests (Disney et al., 2006; Eklundh et al., 2001; Fang et al., 2003; Fernandes et al., 
2002; Gemmell et al., 2002; Kötz et al., 2004; Meroni et al., 2004; Schlerf and 
Atzberger, 2006; Zarco-Tejada et al., 2004a; Zarco-Tejada et al., 2004b). Many 
other studies have analyzed simulated data (Gong et al., 1999; Weiss et al., 2000). 
Despite the efforts undertaken, a review of the literature reveals that there is a gap 
in estimating vegetation biophysical and biochemical variables for heterogeneous 
grasslands, such as Mediterranean grasslands with combinations of different grass 
species. Furthermore, studies that use hyperspectral measurements and include 
validation with large numbers of ground truth data for heterogeneous grasslands 
are rare. 
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LAI=2.8764; CAB=31.4343; ALA=45.9989
LAI=3.7091; CAB=24.1439; ALA=51.9648
LAI=3.1858; CAB=30.7311; ALA=42.986

 
Figure 1.1. The ill-posed problem. Simulated reflectances using the PROSAIL model for a subplot in 
Majella National Park, Italy. Various combinations of canopy parameters have yielded almost similar 
spectra. LAI is the leaf area index, CAB is the leaf chlorophyll content and ALA is the mean leaf 
angle. 

 

1.5. Objectives and scope of the thesis 
The main objectives of this study were to (1) investigate the potential of 

hyperspectral remote sensing for estimating biophysical and biochemical 
vegetation characteristics such as LAI and chlorophyll content at canopy level, (2) 
investigate the performance of different statistical techniques, such as univariate 
versus multivariate techniques, to predict biophysical and biochemical vegetation 
characteristics, and (3) test the performance of the statistical versus the physical 
approach to mapping and prediction of biophysical and biochemical vegetation 
characteristics.  

 
Although two important biochemical characteristics (leaf chlorophyll content 

and canopy chlorophyll content) were investigated at field and airborne levels (i.e., 
HyMap (Hyperspectral Mapping imaging spectrometer)), more emphasis was 
placed on the estimation and prediction of biophysical vegetation characteristics 
(LAI) from laboratory level up to airborne level when utilizing statistical and 
physical models. 

 
The potential of hyperspectral remote sensing to predict vegetation LAI at 

canopy level was investigated (1) under controlled laboratory conditions, (2) at 
field level using a field spectrometer, and (3) at airborne platform level (i.e., 
HyMap). Majella National Park in Italy was used as a test site for both field and 
airborne spectrometry. 

 

1.6. The study area 
Majella National Park, Italy, is located at latitude 41o52' to 42o14'N and 

longitude 13o14' to 13o50'E. The park covers an area of 74.1 ha and extends into 
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the southern part of the Abruzzo region, at a distance of 40 km from the Adriatic 
Sea (Figure 1.2). The region is situated in the mountain massifs of the Apennines. 
The park is characterized by several mountain peaks, the highest being Mount 
Amaro (2794 m). Geologically, the region is made up of calcareous rocks, which 
date back to the Jurassic period. The flora of the park includes more than 1800 
plant species, which approximately constitute one third of the entire flora in Italy 
(Cimini, 2005).  

 
Abandoned agricultural areas and settlements in Majella are returning to oak 

(Quercus pubescens) woodlands at the lower altitude (400 m to 600 m) and beech 
(Fagus sylvatica) forests at higher altitudes (1200 m to 1800 m). Between these two 
formations is a landscape composed of shrubby bushes, patches of grass/herb 
vegetation, and bare rock outcrops. The dominant grass and herb species include 
Brachypodium genuense, Briza media, Bromus erectus, Festuca sp, Helichrysum italicum, 
Galium verum, Trifolium pratense, Plantago lanceolata, Sanguisorba officinalis and Ononis 
spinosa (Cho, 2007).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2. Flight lines of HyMap and the location of Majella National Park in Italy (red box).  
 

 

1.7. Thesis outline 
This thesis comprises five main chapters, which are presented under three 

different levels of investigation.   
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1.7.1. Laboratory level  
Chapters 2 and 3 utilize greenhouse experimental data to estimate LAI, using 

hyperspectral measurements. In brief, chapter 2 investigates the relationship 
between LAI and narrow-band indices, including the red edge inflection point 
(REIP). The investigation involves plant species differing widely in structure and 
with varying leaf chlorophyll contents, which have been measured above 
contrasting soil backgrounds. Chapter 3 examines whether the estimation of LAI 
from hyperspectral reflectance measurements is significantly affected by soil type 
and/or plant architecture (e.g., leaf shape and size). The effects of these factors 
both on the characterization of canopy reflectance behavior in the visible to mid-
infrared bands and on the stability of linear LAI-VI relationships are analyzed. The 
observations in these chapters permitted further development of the next chapters 
at field and airborne imaging spectrometry levels.  

 

1.7.2. Field level 
Chapters 4 and 5 use canopy spectral measurements that were acquired using a 

GER 3700 spectroradiometer (Geophysical and Environmental Research 
Corporation, Buffalo, New York) in the heterogeneous grasslands of Majella 
National Park during fieldwork in Italy. Chapter 4 examines the utility of different 
univariate and multivariate methods in predicting canopy characteristics such as 
LAI and canopy/leaf chlorophyll content. Partial least squares regression and 
stepwise multiple linear regression, two important linear statistical methods known 
to be well suited to dealing with highly multicollinear data sets, are used to 
compare narrow-band vegetation indices, including red edge inflection point. 
Chapter 5 investigates the estimation and prediction of prime canopy 
characteristics such as LAI and chlorophyll content by inverting the canopy 
radiative transfer model PROSAIL (Jacquemoud and Baret, 1990; Verhoef, 1984; 
Verhoef, 1985). A LUT-based inversion algorithm has been used to account for 
available prior information relating to the distribution (probable range) of several 
vegetation characteristics. 

 

1.7.3. Airborne platform level 
Chapter 6 is based on the airborne hyperspectral imagery (i.e., HyMap) data 

acquired at the same time as the field campaign. It uses observations and 
conclusions from previous chapters and evaluates the mapping of LAI and canopy 
chlorophyll content using statistical and physical models. 

 
Finally, in chapter 7 the findings of this study are summarized and the 

contribution of the thesis within the context of vegetation biophysical and 
biochemical parameter estimation is discussed. 

 
 



Chapter Two 

Laboratory level 

Leaf  area index derivation from hyperspectral 
vegetation indices and the red edge position 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This chapter is based on: 

 
Darvishzadeh, R., Atzberger, C. and Skidmore, A.K., 2008. Leaf area index 
derivation from hyperspectral vegetation indices and the red edge position. 
International Journal of Remote Sensing, In Press. 
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Abstract 
The aim of this study was to compare the performance of various narrow band 

vegetation indices in estimating the leaf area index (LAI) of structurally different 
plant species having different soil backgrounds and leaf optical properties. The 
study takes advantage of using a dataset collected during a controlled laboratory 
experiment. Leaf area indices were destructively acquired for four species with 
different leaf size and shape. Six widely used vegetation indices were investigated. 
Narrow band vegetation indices involved all possible two band combinations 
which were used for calculating RVI, NDVI, PVI, TSAVI, and SAVI2. The red 
edge inflection point (REIP) was computed using three different techniques. 
Linear regression models as well as an exponential model were used to establish 
relationships. REIP determined using any of the three methods was generally not 
sensitive to variations in LAI (R2 < 0.1). On the contrary, LAI was estimated with 
reasonable accuracy from red/near infrared based narrow band indices. We 
observed a significant relationship between LAI and SAVI2 (R2cv =0.77, 
RMSEcv=0.59). Our results confirmed that bands from the SWIR region contain 
relevant information for LAI estimation. The study verified that within the range 
of LAI studied (0.3≤LAI≤6.1); linear relationships exist between LAI and the 
selected narrow band indices. 

 

2.1. Introduction 
Leaf area index (LAI) measures one half of the total leaf area of the vegetation 

per unit area of soil (background) surface. It can be used to infer processes such as 
photosynthesis, transpiration and evapotranspiration and is closely related to net 
primary production of terrestrial ecosystems (Running et al. 1989; Bonan 1993). 
Measuring LAI on the ground is difficult and requires a great amount of labor and 
hence cost (Gower et al. 1999). Therefore, many studies have sought to discover 
relationships between LAI and remote sensing data for its cost-effective, rapid, 
reliable and objective estimation. To minimize the variability due to external 
factors such as underlying soil brightness, leaf angle distribution and leaf optical 
properties, remote sensing data have been transformed and combined into various 
vegetation indices (VIs). 

 
Spectral vegetation indices are usually calculated as combinations of near 

infrared and red reflectance. In many studies, these broad-band VIs have shown to 
be well correlated with canopy parameters related to chlorophyll and biomass 
abundance such as green leaf area index and absorbed photosynthetically active 
radiation (e.g., Elvidge and Chen 1995). Two common classes of indices have been 
the subject of considerable research: (1) ratio based indices such as the ratio 
vegetation index (RVI) (Pearson and Miller 1972) and the normalized difference 
vegetation index (NDVI) (Rouse et al. 1974), (2) soil line related indices such as the 
perpendicular vegetation index (PVI) (Richardson and Wiegand 1977) and the 
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transformed soil adjusted vegetation index (TSAVI) (Baret et al. 1989). A large 
number of relationships have been discovered between these vegetation indices 
and canopy variables including LAI (Elvidge and Chen 1995; Rondeaux and Steven 
1995; Broge and Leblanc 2001; Schlerf et al. 2005; Wang et al. 2005). 

 
Developments in the field of hyperspectral remote sensing and imaging 

spectrometry have opened new ways for monitoring plant growth and estimating 
biophysical properties of vegetation. It has promoted a new group of vegetation 
indices based on the shape and relative position of the spectral reflectance curve. 
These include the red edge of the vegetation spectrum, which is the sharp slope 
between the low reflectance in the visible region and the higher reflectance in the 
near infrared region, around 670-780 nm. The red edge inflection point (REIP), 
that is the wavelength which has maximal slope in the red edge, and the shape of 
the red edge have been investigated in several studies and have demonstrated a 
good correlation with biophysical parameters such as LAI, while simultaneously 
being less sensitive to spectral noise due to soil background and/or atmospheric 
effects (Demetriades-Shah et al. 1990; Baret et al. 1992). The blue and red shift of 
the red edge inflection point (REIP) has been related to plant growth conditions in 
many studies (Horler et al. 1983; Gilabert et al. 1996; Blackburn 1998). REIP 
depends on the amount of chlorophyll seen by the sensor and is strongly 
correlated with foliar chlorophyll content and presents a very sensitive indicator of 
vegetation stress (Dawson and Curran 1998; Rossini et al. 2007). The chlorophyll 
amount present in a vegetation canopy is characterized by the chlorophyll 
concentration of the leaves and the leaf area index (Schlerf et al. 2005). 

 
Danson and Plummer (1995) found a strong correlation between LAI and 

REIP in coniferous forests and suggested complementary use of REIP with 
NDVI. Kodani et al. (2002) concluded that the red edge position was strongly 
correlated with LAI in a deciduous beech forest, thus being a good estimator of 
LAI as well as canopy chlorophyll content. In the study of Hansen and Schjoerring 
(2003) using winter wheat, the red edge responded linearly to LAI and chlorophyll 
content. Lee et al. (2004) concluded that spectral channels in the red edge and 
shortwave infrared (SWIR) regions are generally very important for predicting LAI 
in four different biomes of row-crop agriculture, tall grass prairie and mixed 
conifer forest. Pu et al. (2003b) studied the relationship between forest LAI and 
two red edge parameters: red edge position (REP) and red well position (RWP) 
and found good correlations between forest LAI and red edge parameters 
calculated from four point interpolation methods. Clevers (1994) showed that leaf 
area index and leaf chlorophyll concentration of crops are the main parameters 
determining the value of the red edge index. 

 
In contrast, Broge and Leblanc (2001) indicated that REIP measures relate 

poorly to LAI according to a simulation analysis using a combined PROSPECT 
and SAIL (Scattering by Arbitrarily Inclined Leaves) radiative transfer model. Gong et 
al. (1992) used imaging spectrometer data to investigate the relationship between 
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the LAI of ponderosa pine stands and their spectral response. They found that the 
magnitude of the red edge slope was not strongly correlated with LAI. Schlerf et al. 
(2005) used HyMap (Hyperspectral Mapping imaging spectrometer) data for highly 
managed conifer stands and discovered a relatively close linear relationship 
between forest LAI and REIP only for a subset of their data. Imanishi et al. (2004) 
found that REIP was neither a good indicator of drought status nor of LAI for 
two tree species, Quercus glauca and Quercus serrata. Blackburn (2002) found no 
relationship between REIP and LAI using CASI (Compact Airborne 
Spectrographic Imager) data in coniferous forests. 

 
From the above literature it is evident that many of the conclusions drawn for 

similar vegetation types are contradictory. Moreover, many studies focus on single 
plant species and/or structurally similar plant types. Hence, there is a need to 
further investigate the relationship between LAI and narrow band indices including 
the REIP. The investigation should involve structurally widely different plant 
species with varying leaf chlorophyll concentration and should be measured above 
contrasting backgrounds. The objectives of this study were to examine the 
relationship between the LAI of structurally different vegetation canopies and the 
hyperspectral reflectance data, narrow band VI and REIP. The laboratory study 
was designed to test two hypotheses: (i) REIP is controlled primarily by canopy 
LAI and is a good predictor for LAI, and (ii) the narrow band VI is more 
responsive than REIP and broad-band VI for estimation of canopy LAI. The study 
is based on canopy spectral reflectances measured during a laboratory experiment 
using canopy species with different leaf sizes and leaf shapes. 

 

2.2. Materials and methods 

2.2.1. Experimental setup 
Four different plant species with different leaf shapes and sizes were selected 

for sampling: ’Asplenium nidus’: an epiphytic fern which has apple green leaves of 
about 50 cm length and 20 cm width, ’Halimium umbellatum’: a Mediterranean 
procumbent shrub which has crowded leaves at the apex of branchlets, the leaves 
being linear and about 25 mm in length, ’Schefflera arboricola Nora’: a shrub with 
palm shaped leaves, dark green in color and palmately compound with 7-9 leaflets 
each about 5 to 7 cm long, and ’Chrysalidocarpus decipiens’: a single trunked or 
clustering palm with slightly plumose leaves, each about 25 cm long with a width 
of 2 to 3 cm. A total of 24 plants were used for the study, 6 plants per species. The 
plants were maintained in a green house with a day temperature of 25º C and night 
temperature of 21º C. Photos taken from nadir (Figure 2.1) show the four plant 
species and illustrate their variability in leaf size and shape. 
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 (a)  (b) 

 (c)  (d) 

Figure 2.1. The four plant types at maximum coverage. (a) Asplenium nidus, (b) Halimium umbellatum, 
(c) Schefflera arboricola Nora and (d) Chrysalidocarpus decipiens. 

 
 
Canopy spectral reflectance in visible and mid infrared regions, is affected by 

many factors such as LAI, pigment concentration, canopy architecture and soil 
brightness (Jackson and Pinter 1986; Gitelson et al. 2003). In order to artificially 
generate a wide variability within each species, we artificially induced variations in 
LAI and canopy chlorophyll content as well as variations in background 
brightness. To obtain differences in leaf optical properties (e.g. leaf chlorophyll 
concentration), the plants (from each species) were randomly divided into two 
equal groups (3 plants per species in each group) on 8th March 2005. One group 
(12 plants) was placed in a nutrient rich soil (soil enriched with ammonium nitrate) 
and the other group (12 plants) was placed in a very poor soil (soil mainly consist 
of peat) to induce nutrient shortage and thus to reduce the amount of chlorophyll 
in the leaves. After four weeks, a SPAD-502 Leaf Chlorophyll Meter (MINOLTA, 
Inc.) was used to measure relative chlorophyll concentration in the leaves and to 
verify that the goal of creating differences in leaf chlorophyll concentration was 
achieved. 
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2.2.2. Spectral measurements 
Spectra were measured in a remote sensing laboratory with all walls and the 

ceiling coated with black material in order to avoid any ambient light or reflection, 
therefore minimizing the effect of diffuse radiation and lateral flux. A GER 3700 
spectroradiometer (Geophysical and Environmental Research Corporation, 
Buffalo, New York) was used for the spectral measurements. The wavelength 
range is 350 nm to 2500 nm, with a spectral sampling of 1.5 nm in the 350 nm to 
1050 nm range, 6.2 nm in the 1050 nm to 1900 nm range, and 9.5 nm in the 1900 
nm to 2500 nm range. The fiber optic, with a field of view of 25˚, was placed in a 
pistol and mounted on an arm of a tripod and positioned 90 centimeters above a 
50 cm x 50 cm soil bed at nadir position. In the setting, the spectrometer had a 
field of view with a diameter of 40 centimeters on the soil surface with the nadir 
point being the centre of the circle. We prepared two beds with two different soil 
types. One bed was filled with dark soil (peat) and one with light soil (sand silica). 
Three empty pots were fixed in each soil bed such that their centers were 
positioned on the border of the field of view and a line drawn from centre to 
centre would form an equal-distance triangle. Figure 2.2 shows the arrangement of 
the pots in the experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2. Schematic representation of the position of the pots in our field of view (dashed circle). 
 
 
Spectral measurements of bare (and air-dried) soils were acquired each time 

before starting the canopy reflectance measurements of one group of species. 
Mean reflectance spectra associated with the two soil types are shown in Figure 
2.3. Further the spectral measurements continued by placing three plants (with the 
same species and treatment) in their predefined positions in one of the soil beds 
directly under the sensor and the halogen lamp (235W) positioned next to it, while 
the centre of the soil bed was made to coincide with the centers of the light and 
the sensor’s field of view (FOV). We made sure that the FOV of the sensor was 
fully covered by the plants. In this manner we achieved a constant illumination, but 
a variable reflectance as determined by leaf area and differences in leaf shape of the 
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various species. The soil beds were rotated by 45˚ after every spectral measurement 
in order to average out differences in canopy orientation and hence minimize any 
BRDF effect. Next the plants were moved to the other soil bed to repeat the 
measurements in the other soil type. The readings were calibrated by means of a 
white (BaSO4) reference panel (50 cm x 50 cm) of known reflectivity. Reference 
measurements were taken after every eight target measurements. As the halogen 
lamp was relatively close to the plants and was not fully collimated, the incoming 
flux density of the various leaf layers depended on the distance to the light source. 
However, care was given in the selection of the plants, so that the investigated 
plants had more or less the same height (about 45 cm). Our main objective was to 
compare the performance of different VIs in estimating LAI of structurally 
different plant types having different soil backgrounds. Hence, the absolutely 
correct canopy reflectance (with a fully collimated light source) was not of primary 
importance. 
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Figure 2.3. Spectral reflectance characteristics of the light (red) and dark (black) soils. Each curve 
represents the average of 64 bare soil reflectance measurements. 

 
 
To create variations in LAI, the leaves on the inner side of the plants were 

harvested in 6 steps. At each step, approximately 1/6 of the total canopy (total 
leaves) was harvested. The leaves for removal were selected from different layers 
of the canopy. Each time we separated a leaf or a portion of the leaves we 
measured its surface area with a LI-3100 scanning planimeter. The LI-3100 
(LICOR, NE, USA) is a commercial leaf area meter which makes use of a 
fluorescent light source and a solid-state scanning camera to ‘sense’ the area of 
leaves as they move through the instrument. The calibration of the instrument was 
checked each time with a metal circle of known surface. The measured surface area 
of the leaves was then divided by the ground area (r2*π) to calculate the leaf area 
index (LAI, m2 m-2). 
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2.2.3. Method 

2.2.3.1. Pre-processing of spectra 
An average spectrum was calculated from every eight replicated measurements. 

A moving Savitzky-Golay filter (Savitzky and Golay 1964) with a frame size of 15 
(2nd degree polynomial) was applied to the reflectance spectra to eliminate sensor 
noise. 

 

2.2.3.2. Hyperspectral vegetation indices 
Narrow band vegetation indices were computed from the averaged, smoothed 

spectra using all possible two wavelength combinations involving 584 wavelengths 
between 400 nm and 2400 nm. Additionally the red edge inflection point (REIP) 
was calculated using three different methods, i.e. first derivative, linear 
interpolation and inverted gaussian model. 

 

2.2.3.2.1. The narrow band indices 
The most common indices are generally ratio indices and soil based indices 

which are based on discrete red and NIR bands. This is due to the fact that 
vegetation reveals distinctive reflectance properties in these bands. Ratio based 
vegetation indices are often preferred over soil based indices as the required soil 
line parameters are often unavailable or influenced by soil variability (Broge and 
Mortensen 2002). The soil line originally defined by Richardson and Wiegand 
(1977) is a linear relationship between the NIR and red reflectance of bare soils 
and is defined by the slope and intercept of this line. In this study, the soil line 
parameters (slope ‘a’ and intercept ‘b’) were calculated from spectral measurements 
of the two soils. We assumed that the soil line concept, originally defined for the 
red-NIR feature space can be transferred into other spectral domains (Thenkabail 
et al. 2000; Schlerf et al. 2005). The narrow band indices were systematically 
calculated for all possible 584*584 = 341056 wavelength combinations. The 
narrow band RVI, NDVI, PVI, TSAVI and SAVI2 were computed according to 
Table 2.1. 

 

2.2.3.2.2. Red edge inflection point 
In the literature, several techniques are proposed to calculate the REIP. For this 

study, the REIP was calculated using three different approaches which are widely 
used in the literature, namely first derivative (Dawson and Curran 1998), linear 
interpolation (Guyot and Baret 1988) and inverted gaussian model (Bonham-
Carter 1988). 
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Table 2.1. Vegetation indices formulas used in the study. ρ  denotes reflectance, λ1 and λ2 are 
wavelengths and a and b are the soil line coefficients for λ1 and λ2 respectively. 

Acronym Name VI Eq. Reference 

RVI Ratio vegetation 
index 

21 / λλ ρρ=RVI  (1) (Pearson and Miller, 1972) 

NDVI Normalized 
difference 

vegetation index 21

21

λλ

λλ

ρρ
ρρ

+
−

=NDVI  (2) (Rouse et al., 1974) 

TSAVI Transformed 
soil- adjusted 

vegetation index 
aba
baa

TSAVI
−+
−−

=
21

21 )(

λλ

λλ

ρρ
ρρ  (3) (Baret et al., 1989) 

SAVI2 Second soil- 
adjusted 

vegetation index 
)/(

2
2

1

ab
SAVI

+
=

λ

λ

ρ
ρ  (4) (Major et al., 1990) 

PVI Perpendicular 
vegetation index 2

21

1 a

ba
PVI

+

−−
= λλ ρρ

 (5) (Richardson and   
Wiegand, 1977) 

 
 
A first difference transformation of the reflectance spectrum was derived according 

to equation 6 (Eq. 6) (Dawson and Curran 1998): 
 

( ) (( ( ) ) λλλλ Δ−= + /)1 jji RRFDiff          (Eq. 6) 

)max( FDiffFDiffREIP λ=            (Eq. 7) 
 
where FDiff is the first difference transformation at a wavelength i midpoint 

between wavebands j and j+1. Rλ( j ) is the reflectance at the j waveband, Rλ( j + 1) is 
the reflectance at the j+1 waveband and Δλ is the difference in wavelengths 
between j and j+1. The REIP is simply the wavelength where the first difference is 
greatest. 

 
The linear interpolation, as described by Guyot and Baret (1988), assumes that the 

spectral reflectance at the red edge can be simplified to a straight line centered 
around a midpoint between a) the reflectance in the near infrared shoulder at about 
780 nm and b) the reflectance minimum of the chlorophyll absorption feature at 
about 670 nm. The reflectance value is estimated at the inflection point. It applies a 
linear interpolation procedure for the measurements at 700 nm and 740 nm 
estimating the wavelength corresponding to the estimated reflectance value at the 
inflection point. The REP is determined using the following equations:  

 
( ) 2/780670 RRR edgered −=−            (Eq. 8) 

⎥
⎦

⎤
−
−

⎢
⎣

⎡
+= −

700

700

740

40700
R
R

R
R

REIP edgered
linear

        (Eq. 9) 
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where the constants 700 and 40 result from interpolation between the 700 -740 
nm intervals, and R670, R700, R740 and R780 are, respectively, the reflectance values at 
670, 700, 740 and 780 nm. 

 
The inverted gaussian method (Bonham-Carter 1988) fits a gaussian normal function 

to the measured reflectance data points between 670 and 800 nm to determine the 
REIP. The fitting involves iterative techniques to determine the parameters of 
interest:  

 
( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−−= 2

2

2
exp)()(

σ
λλλ o

Ossestimated RRRR       (Eq. 10) 

σλ += OIGMREIP             (Eq. 11) 
 
Where σ is the gaussian shape parameter, measured in nanometers, Rs is the 

(maximum) shoulder reflectance usually between 780-800 nm, Ro is the minimum 
reflectance usually at about 670-690 nm and λo is the wavelength at the point of 
minimum reflectance. The measured reflectance data points are fitted by adjusting 
the values of Rs, Ro, λo and σ in such a way that the RMSE is minimized 
(Mathworks 2007). 

 

2.2.4. Regression models 
We used two approaches for modeling the relationship between LAI and 

predictor variables (i.e., narrow band vegetation indices and REIP): (i) simple linear 
regression models, and (ii) a more flexible exponential model, initially suggested by 
Baret and Guyot (1991). The latter is a modified version of Beer’s law expressing 
the variation in vegetation index as a function of the LAI measurements (Equation 
(12)). 

 
)(exp)( LAIK

g
VIVIVIVIVI −

∞∞ −+=          (Eq. 12) 
 
The exponential model assumes the canopy to be a homogenous body of green 

plant material with an optical thickness given by the LAI. The dynamic range of 
the vegetation index is expressed as the difference between the bulk vegetation 
index (VI∞) and the index value corresponding to bare soil (VIg). The KVI 
parameter is equivalent to the extinction coefficient in Beer’s law and characterizes 
the relative increase in vegetation index due to an increase in LAI. Previous studies 
(Wiegand et al. 1992; Atzberger 1995, 1997; Broge and Mortensen 2002) have 
confirmed the effectiveness of this model to relate vegetation indices to 
biophysical variables particularly to leaf area index. Thus we also used this model 
to evaluate the relationships between narrow band vegetation indices/REIP and 
LAI. 
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2.2.5. Validation 
To validate the regression models, a cross validation procedure (also called the 

leave-one-out method) was used. In cross validation, each sample is estimated by 
the remaining samples. Benefits of the cross validation method are its aptitude to 
detect outliers (Schlerf et al. 2005) and its capability for providing nearly unbiased 
estimations of the prediction error (Efron and Gong 1983). This implied that for 
each regression variant we developed 95 individual models, each time with data 
from 94 observations. The calibration model was then used to predict the 
observation that was left out. As the predicted samples are not the same as the 
samples used to build the models, the cross validated RMSE is a good indicator for 
the accuracy of the model in predicting unknown samples. 

 

2.3. Results and discussion 

2.3.1. Variation in LAI and spectral reflectance 
The experimental protocol ensured a wide range of variation in LAI (Table 2.2). 

LAI (m2 m-2) varied between 0.3 and 6.1 with an average of 1.69. Due to the 
different leaf sizes and shapes, and different canopy architectures, as well as 
variations caused by nutrient stress and differences in soil brightness, canopy 
reflectance measurements showed a large variability (Figure 2.4). 

 
 

Table 2.2. Description of the data acquired during the experiment (n=95). * indicates the samples 
placed in poor soils to reduce the leaf chlorophyll content. SPAD is the average SPAD (relative 
chlorophyll measure) reading for 30 randomly selected leaves in each canopy species. 

Canopy species Min LAI
m2 m-2

Mean 
LAI 

m2 m-2

Max LAI
m2 m-2

StDev 
LAI 

SPAD StDev 
SPAD 

No. of 
Obs. 

Asplenium nidus 0.87 3.28 6.11 1.93 34.7 4.6 11 

Asplenium nidus* 0.34 2.02 3.70 1.26 31.7 6.3 12 

Halimium umbellatum 0.49 1.11 1.63 0.43 44.2 3.6 12 

Halimium umbellatum* 0.42 1.09 1.73 0.48 40.0 4.6 12 

Schefflera arboricola Nora 0.41 1.15 1.78 0.53 59.1 2.8 12 

Schefflera arboricola Nora* 0.54 1.75 2.92 0.92 49.2 6.7 12 

Chrysalidocarpus decipiens 0.30 0.85 1.64 0.50 41.5 5.9 12 

Chrysalidocarpus decipiens* 0.62 2.27 3.66 1.11 33.5 8.8 12 

All combined 0.30 1.69 6.11 1.19 41.7 10.2 95 

 
Canopy reflectances of all plant types with an approximate LAI of 1.5 are 

shown in Figure 2.4(a) to illustrate the influence of canopy architecture and leaf 
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optical properties; like any other green vegetation spectrum, they all have a high 
reflectance in the near infrared and low reflectance in the visible regions. However, 
their red and near infrared reflectance values vary significantly. This variability can 
be attributed to variations in optical properties of the foliage (i.e. canopy 
chlorophyll contents) and differences in canopy architecture (Jackson and Pinter 
1986; Gitelson et al. 2003). The canopy reflectance of Asplenium nidus with an 
approximate LAI of 1.5 is shown in Figures 2.4(b) and 2.4(c). Spectral reflectance 
of canopy with nutrient stress shows lower absorption peaks in the visible region 
but along the red edge (~700 nm) it stayed relatively stable (Figure 2.4(b)). 

 
(a) 

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

10

20

30

40

50

60

70

Wavelength  nm

R
ef

le
ct

an
ce

 (%
)

 

 
Asplenium nidus
Chrysalidocarpus decipiens
Halimium umbellatum
Schefflera arboricola Nora

(b) 

(c) 

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

10

20

30

40

50

60

70

Wavelength  nm

R
ef

le
ct

an
ce

 (%
)

Light soil
Dark soil

(d) 

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

10

20

30

40

50

60

70

Wavelength  nm

R
ef

le
ct

an
ce

 (%
)

LAI=6.11
LAI=4.84
LAI=3.37
LAI=2.54
LAI=1.95
LAI=0.87

Figure 2.4. (a) Spectral reflectance of different canopy species with an LAI of 1.5. (b) Spectral 
reflectance of Asplenium nidus, with an LAI of 1.5, stressed and unstressed. (c) Spectral reflectance of 
Asplenium nidus, with an LAI of 1.5, in dark and light soil. (d) Spectral reflectance of Asplenium nidus 
corresponding to LAI between 0.87 and 6.11. 

 
 
Our two investigated soils mainly differed in overall albedo. Consequently, for a 

given LAI and plant species (Figure 2.4(c)), soil background variations translated 
into simple reflectance offsets in the measured canopy reflectance spectra. As 
expected, canopy LAI variation had a strong influence on the reflectance spectra 
(Figure 2.4(d)). The most distinct effects were found in the NIR and the smallest 
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effects in the VIS region. As LAI increased within a canopy, a clear deepening of 
the two water absorption features within the NIR (~1000 nm and 1200 nm) were 
observed in the reflectance spectra (Asner 1998). 

 

2.3.2. REIP and LAI  
Figure 2.5 shows box plots of the red edge positions calculated using the three 

methods. The red edge positions calculated using the inverted gaussian model and 
the first derivative show a (too) wide dynamic range and have a tendency toward 
shorter wavelengths while the REIP calculated using the linear interpolation varies 
only between 715 nm and 726 nm. It is apparent from Figure 2.5 that the result of 
REIP calculations from the three methods yield very dissimilar results and are 
highly dependent on the choice of methodology (Broge and Leblanc 2001; Cho 
and Skidmore 2006). In the case of the first derivative method, part of the outliers 
is probably due to the remaining noise in reflectance measurements (Broge and 
Leblanc 2001). In a recent study, Cho and Skidmore (2006) have demonstrated 
that double peaks in the first derivative reflectance could cause discontinuities in 
the data and hence lead to poor relationships between LAI and REIP. 

 
REIP calculated via any of the three methods did not show a close relation to 

variations in LAI. The coefficient of determination (R2) calculated between LAI 
and REIP was very low (R2 < 0.1) when measurements of the different plant 
species were pooled together. 
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Figure 2.5. Box plots showing the median, lower and upper quartile values, and extent of the rest of 
the red edge position (REIP) calculated using three different methods (first derivative, linear 
interpolation, and an inverted gaussian model). 

 
 
Examples of these confusing relationships are shown in Figure 2.6 for REIP 

determined using the first derivative. As is evident from Figure 2.6, REIP was not 
sensitive to variations in LAI. 
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Figure 2.6. The relationship between LAI of different canopies and REIP calculated using first 
derivative. Different symbols indicate different plant species and different colors show different soil 
backgrounds (left) and different nutrient status (right). 

 
 
We also evaluated the correlation between REIP derived from different 

methods and LAI of each individual canopy (not shown). The results varied 
somewhat, but confirmed that REIP is not a good variable to estimate LAI. 
Consequently, we had to reject our first hypothesis that ‘REIP is controlled 
primarily by canopy LAI and is a good predictor of LAI’. 

 
Our findings are supported by results obtained from other studies. Blackburn 

(2002) found no relation between REIP and LAI for coniferous stands using CASI 
data, while Broge and Leblanc (2001) indicated a poor relationship between REIP 
and LAI. Attempts by Schlerf et al. (2005), to relate LAI to REIP for Norway 
spruce forest stands, were only successful for a subset of their data. Further, our 
results are confirmed by the findings of Imanishi et al. (2004), who verified that 
there is no significant relationship between REIP and LAI for two deciduous and 
evergreen tree species. However, our results contradict the results of Broge et al. 
(1997) as well as Hansen and Schjoerring (2003) and Kodani et al. (2002), who 
showed REIP to be better than NDVI for estimation of LAI for a single species. 
Also, Danson and Plummer (1995) found a strong, non linear correlation between 
LAI and REIP for Sitka spruce using a helicopter borne spectroradiometer. We 
conclude that at canopy level, REIP is not an appropriate variable to be considered 
for LAI estimations if several contrasting species are pooled together, though it 
may be appropriate for single species. Note that successful studies with REIP did 
not use destructive sampling for LAI retrieval, as was the case in this study. Many 
studies have found relationships between REIP and vegetation characteristics at 
leaf level. As such, REIP has been used as a means to estimate changes in foliar 
chlorophyll concentration and also as an indicator of vegetation stress (Horler et al. 
1983; Curran et al. 1995; Lamb et al. 2002; Rossini et al. 2007). 
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2.3.3. Narrow band indices 
For both types of indices (ratio and soil based indices), the optimal narrow 

band vegetation index was determined using two approaches. First, the coefficients 
of determination (R2) of all possible two band combinations of vegetation index 
and LAI were computed. An illustration of these results is shown in the 2-D 
correlation plot in Figure 2.7 (Left). The meeting point of each pair of wavelengths 
corresponds to the R2 value of LAI and the vegetation index calculated from the 
reflectance values in those two wavelengths. In the second approach (Figure 2.7 
(Right)), all possible two band combinations of vegetation indices were calculated 
and used to estimate the LAI using an exponential model. The 2-D plot shows the 
coefficients of determination (R2) between measured and estimated LAI. 

 

Figure 2.7. (Left): 2-D correlation plot representing the coefficient of determination (R2) of narrow 
band RVI values and LAI. (Right): 2-D correlation plot that illustrates the coefficient of 
determination (R2) of estimated LAI (using an exponential model) and measured LAI for narrow 
band RVI. Please note that the plots are not symmetrical. Y axis is the nominator and X axis is the 
denominator, respectively. 

 
 
For both approaches, band combinations that formed the best indices for 

estimating LAI were recognized based on the R2 values in the 2-D correlation 
plots. The coefficient of determination (R2) and the band positions of the best 
performing indices are tabulated in Table 2.3 ((a) and (b)). In Figure 2.8, 'hot spot’ 
regions with relatively high R2 values (R2>0.7), are highlighted for all vegetation 
indices. 

 
Although the near infrared region has been the keystone of the omnipresent 

vegetation indices (NDVI, RVI), our results show that for most indices, bands 
from the SWIR region contain most information relevant to canopy LAI (Figure 
2.8). As it is clear from Figure 2.8 the “hot spots” with high R2 values mostly occur 
in this region. These results support findings from studies by Brown et al. (2000), 
Cohen and Goward (2004), Lee et al. (2004), Nemani et al. (1993) and Schlerf et al. 
(2005), that suggest a strong contribution by SWIR bands to the strength of 
relationships between spectral reflectance and LAI. Considering that the SWIR 
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bands were important for most vegetation indices in this study, vegetation indices 
that do not include this spectral region may be less satisfactory for LAI estimation 
(Lee et al. 2004). A number of other studies have recognized this region of the 
reflectance spectrum as potentially important for tracking vegetation properties 
(Asner 1998; Eklundh et al. 2001; Cohen et al. 2003). 

 
 

Table 2.3(a). The wavelength positions and the coefficient of determination (R2) of the best 
performing narrow band indices and LAI (linear model). 

VI λ 1 (nm) λ2 (nm) R2 

RVI 718 1943 0.749 

NDVI 651 653 0.745 

PVI 1132 1238 0.741 

TSAVI 700 1966 0.707 

SAVI2 718 1966 0.775 

 
 

Table 2.3(b). The wavelength positions and the coefficient of determination (R2) of the best 
estimated LAI and measured LAI (exponential model). 

VI λ 1 (nm) λ2 (nm) R2 

RVI 651 653 0.765 

NDVI 650 658 0.755 

PVI 731 1717 0.768 

TSAVI 703 1955 0.751 

SAVI2 719 1966 0.775 

 
 
In the next step of the analysis, for the best performing narrow band index of 

all vegetation indices, cross validated R2 and RMSE were computed using linear 
regression and the exponential model of Baret and Guyot (1991). The results are 
reported in Table 2.4. As can be observed from the table, the linear model gave 
relatively lower RMSE values for all indices compared to the exponential model. 
This is probably due to the fact that in the exponential model, at high LAI values, 
small reflectance variations cause (too) large variations in the estimated LAI and 
hence lead to increased RMSE. 
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Figure 2.8. ‘Hot spot’ regions with relatively high values of the coefficient of determination (R2 > 0.7) 
between narrow band vegetation index (VI) and LAI. Note that for TSAVI, black regions correspond 
to R2 values greater than 0.6 (R2 > 0.6). 

 
 
The best narrow band indices for predicting LAI were identified from their 

RMSE values (Table 2.4). Comparison between different narrow band vegetation 
indices revealed that the narrow band SAVI2 (Major et al. 1990) followed by the 
narrow band RVI (Pearson and Miller 1972) were the best overall choices as 
estimator of LAI based on R2 and RMSE values if the reflectance measurements of 
the plant species were pooled together. This result is in agreement with those of 
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Broge and Mortensen (2002), who defined SAVI2 as the best estimator for green 
canopy area index. Further, SAVI2 has been proven to be relatively insensitive to 
external factors such as background reflectance and atmospheric effects (Broge 
and Leblanc 2001). 

 
 

Table 2.4. Cross validated R2 & RMSE for estimation of LAI using a linear and an exponential 
model. NDVItypical is the typical NDVI (680 nm, 833 nm) vegetation index. 

Narrow band VI R2CV & 
RMSECV Linear model Exponential model 

RVI 
R2 

RMSE 
 

0.729 
0.625 

(718 nm , 1943 nm) 

0.754 
0.686 

(651 nm , 653 nm) 

NDVI 
R2 

RMSE 
 

0.728 
0.628 

(651 nm , 653 nm) 

0.71 
0.74 

(650 nm , 658 nm) 

PVI 
R2 

RMSE 
 

0.725 
0.629 

(1132 nm ,1238 nm) 

0.714 
0.757 

(731 nm , 1717 nm) 

TSAVI 
R2 

RMSE 
 

0.686 
0.672 

(700 nm , 1966 nm) 

0.684 
0.806 

(703 nm , 1955 nm) 

SAVI2 R2 

RMSE 

0.768 
0.590 

(718 nm , 1966 nm) 

0.766 
0.672 

(719 nm , 1966 nm) 

NDVItypical 
R2 

RMSE 
 

0.354 
0.965 

0.586 
0.988 

 
 
Vegetation indices have been frequently correlated with LAI through linear or 

exponential models, depending on the existence of the saturation effect. VIs 
exhibit decreasing sensitivity to LAI at increasing greenness measurements (LAI 
values). To overcome the saturation problem, previous studies have confirmed the 
effectiveness of the exponential model developed by Baret and Guyot (1991) to 
relate vegetation indices to biophysical variables particularly to leaf area index 
(Wiegand et al. 1992; Atzberger 1995; Broge and Mortensen 2002). However, in 
some studies vegetation indices tend to be almost linearly related to canopy 
greenness without saturation (Hinzman et al. 1986; Goel 1989; Broge and 
Mortensen 2002; Chen et al. 2002; Schlerf et al. 2005). The scatter plots between 
best band combinations of SAVI2 and LAI illustrate a linear relationship (Figure 
2.9). Also evident from the scatter plot is that even at relatively high values of LAI 
(LAI=6) saturation did not yet occur. 

 
In the next step of the analysis, the best narrow band NDVI (651 nm, 653 nm, 

R2= 0.745) was compared to a typical NDVI (680 nm, 833 nm) (Hurcom and 
Harrison 1998; Mutanga and Skidmore 2004), to see if narrow band vegetation 
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indices would improve the prediction accuracy of LAI. The analysis of the LAI-
NDVI in linear and exponential relationships showed that the best selected narrow 
band NDVI more accurately predicted LAI (Table 2.4). 
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Figure 2.9. Relationships between best narrow band SAVI2 and LAI. (Left) using a simple linear 
model, (Right) using an exponential relationship (Baret and Guyot, 1991). 

 
 
Cross validated RMSE and R2 values revealed that best narrow band NDVI 

(651 nm, 653 nm) is a better predictor for LAI than typical NDVI (680 nm, 833 
nm). Figure 2.10 illustrates the relationship between measured and estimated LAI 
for typical NDVI and best narrow band NDVI using the linear regression model. 
It can be observed that LAI saturates very early (around 4) for the typical NDVI. 
Using the best narrow band NDVI, saturation occurs later (around a LAI of 6). 
This confirms previous findings by Lee et al. (2004) and Schlerf et al. (2005), who 
showed that narrow band vegetation indices are better predictors of vegetation 
biophysical variables, such as LAI, compared to broad band vegetation indices. 
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Figure 2.10. The relationship between measured and estimated LAI for best narrow band NDVI 
(left) and typical NDVI (right) using a linear regression model. Note that the values of R2 and RMSE 
are cross validated. 
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2.4. Conclusions 
This chapter has investigated the relationship between LAI and narrow band 
spectral indices, based on a laboratory experiment. Three types of narrow band 
vegetation indices, namely ratio based, soil based and REIP, were compared for 
their effectiveness in estimating LAI. The following conclusions were drawn 
from this study: 
 
− REIP determined using any of the three investigated methods, had a very 

poor relationship with LAI, in particular when the plant species were pooled 
together. 

− LAI of vegetation canopies was estimated with reasonable accuracy from 
red/near infrared based narrow band indices. 

− Narrow band SAVI2 based on wavelengths in the near infrared and SWIR 
proved to be the best index, in both exponential and linear models, for 
estimating LAI. 

− Spectral channels in the SWIR region (and those in the near infrared) were 
important for predicting LAI.  

− Linear model gave a better estimation of LAI than the exponential model. 
− Narrow band vegetation indices were better predictors of LAI, than broad 

band typical vegetation indices. 
 
Although in our pooled dataset we used a relatively wide range of canopy 

spectral reflectances, we recommend that further studies should investigate on data 
sets covering more species to show the relationships between biophysical variables 
and narrow band vegetation indices more clearly. Furthermore the number of 
plants within the scene should be increased to ensure that the reflected flux is 
representative of an infinitely extended canopy. Likewise, more care should be 
taken to uniformly illuminate the target by using fully collimated light sources. The 
latter two points will be particularly important, if physically based canopy 
reflectance models are investigated in similar laboratory settings. 

 
This study investigated laboratory measured reflectance data. Of course, in case 

that finding should be applicable to real-world measurements, representative band 
widths and band settings of existing airborne or satellite based hyperspectral 
sensors should be used. 
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Abstract 
The retrieval of canopy biophysical variables is known to be affected by 

confounding factors such as plant type and background reflectance. The effects of 
soil type and plant architecture on the retrieval of vegetation leaf area index (LAI) 
from hyperspectral data were assessed in this study. In situ measurements of LAI 
were related to reflectances in the red and near-infrared and also to five widely 
used spectral vegetation indices (VIs). The study confirmed that the spectral 
contrast between leaves and soil background determines the strength of the LAI-
reflectance relationship. It was shown that within a given vegetation species, the 
optimum spectral regions for LAI estimation were similar across the investigated 
VIs, indicating that the various VIs are basically summarizing the same spectral 
information for a given vegetation species. Cross-validated results revealed that, 
narrow-band PVI was less influenced by soil background effects 
(0.15≤RMSEcv≤0.56). The results suggest that, when using remote sensing VIs for 
LAI estimation, not only is the choice of VI of importance but also prior 
knowledge of plant architecture and soil background. Hence, some kind of 
landscape stratification is required before using hyperspectral imagery for large-
scale mapping of vegetation biophysical variables. 

 

3.1. Introduction 
Over the past decades, the tools for vegetation remote sensing have evolved 

significantly. Optical remote sensing has expanded from the use of multispectral 
sensors to the use of imaging spectrometers. Imaging spectrometry is a unique type 
of optical remote sensing, because the surface radiance is sampled in many 
contiguous narrow spectral bands with bandwidths of a few nanometers (nm). 
Imaging spectrometers typically acquire radiance information between 400 nm and 
2500 nm, ideal for monitoring plant growth and estimating the biophysical 
properties of vegetation. 

 
A large number of relationships have been discovered between remote sensing 

data and the biophysical properties of vegetation (e.g. Baret et al., 1987; Broge and 
Leblanc, 2001; Elvidge and Chen, 1995; Gilabert et al., 1996; Jackson and Pinter, 
1986; Rondeaux and Steven, 1995; Schlerf et al., 2005; Wang et al., 2005). To 
minimize the variability due to external factors such as underlying soil, leaf angle 
distribution and leaf optical properties, remote sensing data have been transformed 
and combined into various spectral vegetation indices (VIs). Broadband VIs 
calculated as combinations of near-infrared and red reflectance have been found to 
be well correlated with biophysical properties of vegetation such as canopy cover, 
leaf area index (LAI), and absorbed photosynthetically active radiation (Baret and 
Guyot, 1991; Elvidge and Chen, 1995; Turner et al., 1999). However, it has been 
suggested that most VIs are sensitive to soil background, particularly when the LAI 
is low (Huete, 1989; Huete et al., 1985).  
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Here LAI is defined as the one sided surface area of leaves per unit ground 
area, and it is the key biophysical variable influencing land surface photosynthesis, 
transpiration, and energy balance (Bonan, 1995; Running et al., 1989). Previous 
studies have shown that VIs have considerable sensitivity to LAI, but more so at 
relatively low LAI values (Asrar et al., 1984; Chen and Cihlar, 1996; Fassnacht et 
al., 1997; Friedl et al., 1994; Turner et al., 1999). VIs typically increase over an LAI 
range from 0 to about 3 to 5 before an asymptote is reached. The upper limit of 
this sensitivity apparently differs among vegetation types (Turner et al., 1999). 
Simulation studies involving radiative transfer models suggest that saturation is 
more pronounced for planophile canopies (Atzberger, 2004; Baret and Guyot, 
1991). On the other hand, compared with erectophile canopies of the same LAI, 
planophile canopies are less influenced by soil brightness variations. 

 
Although VIs resulting from remote sensing data have been successfully used 

for estimating vegetation LAI, previous studies have demonstrated that variations 
in biophysical and biochemical features affecting plant canopy reflectance, such as 
vegetation type and related optical properties, background soil reflectance, and 
atmospheric quality, are bounding the generality and significance of their 
relationships with LAI (Baret and Guyot, 1991; Colombo et al., 2003; Huete, 1989; 
Nagler et al., 2004; Ridao et al., 1998; Turner et al., 1999; Wang et al., 2005).  

 
Researchers have shown that, in comparison with broad-band VIs, narrow-

band VIs may be crucial for providing additional information for quantifying the 
biophysical characteristics of vegetation (Blackburn, 1998; Elvidge and Chen, 1995; 
Gong et al., 1992; Lee et al., 2004; Mutanga and Skidmore, 2004). However, only a 
few studies deal with the effect of exterior features on the estimation and 
prediction of vegetation LAI using hyperspectral reflectance data. The study of 
Broge and Leblanc (2001) relied exclusively on simulated data from reflectance 
models rather than on actual imagery and field data. Using AVIRIS (Airborne 
Visible Infrared Imaging Spectrometer) data, Lee et al. (2004) studied LAI 
estimation for four different biomes. However, their main objective was to 
compare hyperspectral data with multispectral data. Hence, considering 
confounding effects such as plant architecture and soil types, it is difficult to infer 
from existing studies whether, compared with broad-band indices, narrow-band 
VIs (combination of wavelengths that are not available with a limited number of 
broad bands) offer an improved sensitivity to LAI.   

 
Our study aims to address this knowledge gap by investigating whether the 

estimation of LAI from hyperspectral reflectance measurements is significantly 
affected by soil type and/or plant architecture (e.g., leaf shape and size). We 
analyzed the effects of these factors (i) on the characterization of canopy 
reflectance behavior in visible to near-infrared bands, and (ii) on the stability of 
linear LAI-VI relationships. The study is based on canopy spectral reflectances 
measured during a controlled laboratory experiment using four types of plants, 



Effects of soil type and plant architecture 

 32 

with two different soil backgrounds and destructive LAI measurements. The plants 
differed widely in leaf size and shape. 

 

3.2. Materials and methods 

3.2.1. Experimental setup 
Four different plant species with different leaf shapes and sizes were selected 

for sampling: Asplenium nidus, an epiphytic fern that has apple-green leaves about 
50 cm in length and 20 cm in width; Halimium umbellatum, a Mediterranean 
procumbent shrub that has crowded leaves at the apex of branchlets, the leaves 
being linear and about 25 mm in length; Schefflera arboricola Nora, a shrub with palm-
shaped leaves, dark green in color, and palmately compound, with seven to nine 
leaflets, each about 5 cm to 7 cm in length; and Chrysalidocarpus decipiens, a single 
trunked or clustering palm with slightly plumose leaves, each about 25 cm in length 
and 2 cm to 3 cm in width. A total of 24 plants were used for the study, six plants 
per species. The plants were kept in a greenhouse. Photos taken from nadir (Figure 
3.1) show the four plant species and illustrate their variability in leaf size and shape. 

 
Canopy spectral reflectance in visible to mid-infrared regions has been revealed 

to be affected by many factors, such as LAI, pigment concentration, canopy 
architecture and soil brightness (Gitelson et al., 2003; Jackson and Pinter, 1986). In 
order to generate a wide variability within each species, we artificially induced 
variations in LAI and canopy chlorophyll content, as well as in background 
brightness. To obtain differences in leaf optical properties (e.g., leaf chlorophyll 
content), the plants (from each species) were randomly divided into two equal 
groups (three plants per species in each group) on 8th March 2005. One group (12 
plants) was placed in a nutrient-rich soil, and the other group (12 plants) was 
placed in a very poor soil to induce nutrient shortage and thereby reduce the 
amount of chlorophyll in the leaves. After four weeks, a SPAD-502 Leaf 
Chlorophyll Meter (MINOLTA, Inc.) was used to measure the relative chlorophyll 
content in the leaves and to verify that the goal of creating differences in leaf 
chlorophyll content had been achieved. 

 

3.2.2. LAI  
To vary LAI and the corresponding canopy reflectance measurements, the 

leaves on the inner side of the plants were harvested in six steps. At each step, 
approximately one-sixth of the total canopy (total leaves) was harvested. Each time 
we separated a leaf (or a portion of the leaves); we measured its surface area with 
an LI-3100 scanning planimeter. The LI-3100 (LICOR, NE, USA) is a commercial 
leaf area meter that makes use of a fluorescent light source and a solid-state 
scanning camera to ‘sense’ the area of leaves as they move through the instrument. 
The calibration of the instrument was checked each time with a metal circle of 
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known surface. By tracking the respective areas of the clipped leaf surfaces, the 
canopy LAI (m2 m-2) at each stage (i.e., from full canopy to bare soil) was 
calculated. 

 
We were able to artificially create large variations in LAI. LAI (m2 m-2) varied 

between 0.3 and a maximum of 6.11 (Table 3.1). Among the four vegetation 
species, Halimium umbellatum (with tiny linear leaves) had the lowest (1.73) and 
Asplenium nidus (with leaves of about 50 cm by 20 cm) had the highest (6.11) 
maximum LAI values. 

 
 

Table 3.1. Summary statistics of the measured plants during the experiment (n=95). SPAD is the 
average SPAD reading for 30 randomly selected leaves in each canopy species. 

Canopy species No. of 
Obs. 

Min LAI
m2 m-2

Mean 
LAI 

m2 m-2

Max LAI
m2 m-2

StDev 
LAI

SPAD 
(unstressed 
/stressed) 

StDev 
SPAD 

Asplenium nidus 23 0.34 2.62 6.11 1.68 34.7/31.7 5.7 

Halimium umbellatum 24 0.42 1.10 1.73 0.43 44.2/40.0 4.58 

Schefflera arboricola 
Nora 24 0.41 1.44 2.92 0.76 59.1/49.2 7.09 

Chrysalidocarpus 
decipiens 24 0.30 1.63 3.66 1.03 41.5/33.5 8.47 

All combined 95 0.30 1.69 6.11 1.19 41.7 10.2 

 
 

3.2.3. Spectral measurements 

3.2.3.1. Canopy 
Canopy spectra corresponding to the different LAI levels were measured in a 

remote sensing laboratory where the walls and ceiling were coated with black 
material in order to avoid any ambient light or reflection, thereby minimizing the 
effect of diffuse radiation and lateral flux. A GER 3700 spectroradiometer 
(Geophysical and Environmental Research Corporation, Buffalo, New York) was 
used for the spectral measurements. The wavelength range is 350 nm to 2500 nm, 
with a spectral sampling of 1.5 nm in the 350 nm to 1050 nm range, 6.2 nm in the 
1050 nm to 1900 nm range, and 9.5 nm in the 1900 nm to 2500 nm range.  

 
The fiber optic, with a field of view (FOV) of 25°, was placed in a pistol and 

mounted on an arm of a tripod and positioned 90 cm above a 50 cm x 50 cm soil 
bed at nadir position. In the setting, the spectrometer had a FOV with a diameter 
of 40 cm on the soil surface, with the nadir point being the center of the circle. We 
prepared two beds with two different real soil types. One bed was filled with dark 
soil (peat; which is lighter, softer, and more crumbly than ordinary garden soil) and 
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one with light soil (sand silica). Three empty pots were fixed in each soil bed such 
that their centers were positioned on the border of the FOV and a line drawn from 
center to center would form an equal-distance triangle (Figure 3.1).  

 

(a) (b) 

(c) (d) 
 
 
 
 
 
 
 
 
 
 
 

(e) 

 

Figure 3.1. The four plant types at maximum coverage: (a) Asplenium nidus, (b) Halimium umbellatum, 
(c) Schefflera arboricola Nora and (d) Chrysalidocarpus decipiens. Black circles indicate approximate FOV at 
soil level. (e) Schematic representation of the position of the pots in our FOV (dashed circle). 

 
 
For each LAI level, the spectral measurement began by placing three plants 

(with the same species and treatment) in their predefined positions in one of the 
soil beds directly under the sensor and the halogen lamp (235W) positioned at a 
distance of 90 cm (zenith angle of 30°). The center of the soil bed was made to 
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coincide with the centers of the light and the sensor’s FOV. We made sure that the 
sensor’s FOV was fully covered by the plants. In this manner, we achieved a 
constant illumination but a variable reflectance as determined by leaf area and 
differences in leaf shape of the various species. The soil beds were rotated 45° 
after every spectral measurement in order to average out differences in canopy 
orientation (BRDF). Next, the plants were moved to the other soil bed to repeat 
the measurements in the other soil type. The readings were calibrated by means of 
a white (BaSO4) reference panel (50 cm x 50 cm) of known reflectivity. Reference 
measurements were taken after every eight target measurements. As the halogen 
lamp was relatively close to the plants and was not fully collimated, the incoming 
flux density of the various leaf layers depended on the distance to the light source. 
Care was given to plant selection, however, so that the investigated plants had 
more or less the same height (about 45 cm). 

 

3.2.3.2. Leaf 
Leaf reflectance spectra were measured on freshly harvested leaves (10 samples 

from each species having the same chlorophyll treatment). Leaf samples were 
placed in a non-reflective, black-coated surface (20 cm x 20 cm). The fiber optic, 
with a FOV of 25°, was placed in a pistol and mounted on an arm of a tripod and 
placed above the leaf sample at nadir position so that only leaf material was visible. 
For Halimium umbellatum (with tiny linear leaves), the spectral measurements were 
taken from a thick stacked layer (>8 leaf layers). The spectral measurements were 
repeated four times and were calibrated against a spectralon reflectance target of 
known reflectivity. The individual measurements were averaged, resulting in 10 
averaged spectra per species with the same chlorophyll treatment. The leaf 
reflectance measurements were used mainly for illustration purposes. 

 

3.2.3.3. Soil 
Spectral measurements of bare (and air-dried) soils were acquired each time 

before starting the canopy reflectance measurements of one group of species. 
Mean reflectance spectra associated with the two soil types are shown in Figure 
3.2. Soil spectral reflectance varies owing to differences in brightness as well as 
differences in the absorption features of minerals and organic soil constituents 
(Baumgardner et al., 1985; Huete, 1989). Figure 3.2 reveals the contrasting overall 
shapes and brightness levels of the two soils. The two contrasting soils were 
therefore used as background when measuring each canopy species in order to 
examine the relative importance of soil background. At the same time, the bare soil 
reflectance measurements were used to derive the soil line coefficients required for 
SAVI2, TSAVI and PVI. 

 



Effects of soil type and plant architecture 

 36 

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

10

20

30

40

50

60

Wavelength  nm

R
ef

le
ct

an
ce

  %

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Wavelength  nm

1s
t d

er
iv

at
iv

e

 
Figure 3.2. Spectral reflectance characteristics of the light (red) and dark (black) soils (left: soil 
reflectance spectra; right: first derivative of soil reflectance). Each curve represents the average of 64 
bare soil reflectance measurements. 

 

3.2.4. Methods 

3.2.4.1. Preprocessing of spectra 
For each canopy realization (plant type x LAI x leaf chlorophyll content x soil 

type), eight replicate measurements were acquired. These eight replicate 
measurements were averaged. A moving Savitzky-Golay filter (Savitzky and Golay, 
1964) with a frame size of 15 (2nd degree polynomial) was applied to the averaged 
reflectance spectra to eliminate sensor noise. In total, 95 canopy reflectance 
measurements were obtained (one outlier had to be removed), of which 48 were 
made in dark soil and 47 in light soil. For each of the four species, 24 spectral 
measurements were available (23 for Asplenium nidus). 

 

3.2.4.2. The narrow-band indices 
Narrow-band VIs were computed from the canopy spectra, using all possible 

two-band wavelength combinations, involving 584 wavelengths between 400 nm 
and 2400 nm. The most common indices are generally ratio- and soil-based indices 
that are based on discrete red and near-infrared bands. This is because vegetation 
reveals distinctive reflectance properties in these bands. Ratio-based VIs are often 
preferred to soil-based indices as the soil spectral characteristics needed to 
establish the soil line are often unavailable or are influenced by soil variability 
(Broge and Mortensen, 2002). The soil line originally defined by Richardson and 
Wiegand (1977) is a linear relationship between the near-infrared and red 
reflectance of bare soils and is defined by the slope and intercept of this line. 
Consequently, the soil line parameters (slope ‘a’ and intercept ‘b’) were calculated 
from the pooled soil spectral measurements. We assumed that the soil line concept 
originally defined for the red and near-infrared feature space could be transferred 
into other spectral domains (Atzberger, 1997; Schlerf et al., 2005; Thenkabail et al., 
2000). The narrow-band indices were systematically calculated for all possible 



Laboratory level               Chapter 3 

 37 

584x584=341056 wavelength combinations between 400 nm and 2400 nm. 
Formulas for the various narrow-band vegetation indices (e.g., RVI, NDVI, PVI, 
TSAVI and SAVI2) are reported in Table 3.2.  

 
 

Table 3.2. VI formulas used in the study, where ρ  denotes reflectance, λ1 and λ2 are wavelengths, 
and a and b are the soil line coefficients between λ1 and λ2 respectively. 

Acronym Name VI Eq. Reference 

RVI Ratio vegetation 
index 

21 / λλ ρρ=RVI  (1) (Pearson and Miller, 1972) 

NDVI Normalized 
difference 

vegetation index 21

21

λλ

λλ

ρρ
ρρ

+
−

=NDVI  (2) (Rouse et al., 1974) 

TSAVI Transformed 
soil- adjusted 

vegetation index 
aba
baa

TSAVI
−+
−−

=
21

21 )(

λλ

λλ

ρρ
ρρ  (3) (Baret et al., 1989) 

SAVI2 Second soil- 
adjusted 

vegetation index 
)/(

2
2

1

ab
SAVI

+
=

λ

λ

ρ
ρ  (4) (Major et al., 1990) 

PVI Perpendicular 
vegetation index 2

21

1 a

ba
PVI

+

−−
= λλ ρρ

 (5) (Richardson and   
Wiegand, 1977) 

 
 

3.2.5. Regression models 
Regression analysis has been a popular empirical method of linking biophysical 

variables (such as LAI) to remote sensing data to provide continuous estimates for 
these variables (Cohen et al., 2003). In most studies, VIs are related to LAI 
through linear or exponential regression models. Under favorable conditions (i.e., 
relatively low LAI), VIs can be related to LAI by using linear regression models 
(Broge and Mortensen, 2002; Chen et al., 2002; Darvishzadeh et al., 2008a; Goel, 
1989; Schlerf et al., 2005). At increasing greenness (e.g., higher LAI), however, VIs 
exhibit decreasing sensitivity to LAI. Studies have shown that this decrease in 
sensitivity (saturation) may happen at different LAI values, even for the same 
species (Chen and Cihlar, 1996; Chen et al., 2002; Peterson et al., 1987; Turner et 
al., 1999). This may indicate that the saturation of VIs by increasing LAI values 
depends not only on the VI but also on the vegetation species and their associated 
canopy structures, leaf sizes, etc.  

 
Since in a recent study by Darvishzadeh et al., (2008a), linear regression and 

exponential relationships have shown to give the same accuracy for LAI estimation 
(see chapter 2), we chose linear regression to model the relationships between LAI 
and narrow-band VIs for this study. 
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3.2.6. Validation 
To validate the regression models, a cross-validation procedure (also called the 

leave-one-out method) was used. In cross-validation, each sample is estimated by 
the remaining samples. The benefits of the cross-validation method are its aptitude 
to detect outliers and its ability to provide nearly unbiased estimations of the 
prediction error (Efron and Gong, 1983; Schlerf et al., 2005). This meant that for 
each regression variant we developed 48 (analysis based on soil type) and 24 
(analysis based on vegetation type) individual models, each time with data from 47 
and 23 observations, respectively. The calibration model was then used to predict 
the observation that was left out. As the predicted samples are not the same as the 
samples used to build the models, the cross-validated RMSE (RMSEcv) was 
selected as the accuracy indicator of the model in predicting unknown samples. 

 

3.3. Results and discussion 

3.3.1. Variation in spectral reflectance 
Thanks to the experimental setup (i.e., four different plant types, 

stressed/unstressed plants, dark/light soil and six LAI levels), a wide range of 
spectral measurements were collected. 

 
At leaf level, reflectance variability at a given wavelength is mainly a function of 

leaf structure, concentration of biochemicals, and water content (Curran et al., 
1992; Fourty et al., 1996; Gates et al., 1965). The measured leaf reflectance spectra 
and the first derivative of leaf reflectance of the four species are shown in Figures 
3.3(a) and 3.3(b) respectively. Their contrasting spectra suppose large differences in 
their internal leaf structure, concentration of biochemicals, and water content. 
While their variability in the visible results mainly from differences in absorbing 
leaf pigments, their variability in the near-infrared results mainly from differences 
in internal leaf structure (Running et al., 1986). 
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Figure 3.3. Leaf spectral reflectance characteristics of the four species: (a) average spectral reflectance, 
(b) first derivative of reflectance. 
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At the canopy level, reflectance variability is due to additional factors such as 
LAI, canopy architecture and background soil (Gitelson et al., 2003; Jackson and 
Pinter, 1986). Even with identical soil backgrounds and similar LAI, the four plant 
species show highly variable reflectance characteristics (Figure 3.4). Plant-specific 
differences can be seen throughout the investigated spectral range (400 nm to 2400 
nm). The observed differences highlight the importance of leaf optical properties, 
leaf size/shape and leaf angle distribution. 

 
First derivative reflectances of all plant types with an approximate LAI of 1.5 

are shown in Figure 3.4(b). The figure clearly shows the variations in the strength 
and position of major absorption features. As measurements were performed at 
similar LAI levels and with identical soil backgrounds, the observed variability can 
be attributed to variations in the optical properties of the foliage (i.e., canopy 
chlorophyll contents) and differences in canopy architecture (Gitelson et al., 2003). 

 
Comparing Figure 3.3(a) with Figure 3.4(a) reveals that at a low LAI value 

(LAI=1.5) the leaf properties only partly explain differences in the observed 
canopy reflectances and are hence underrepresented at a canopy scale (Asner, 
1998). The variation that is observed in canopy reflectances in Figure 3.4(a), 
especially in near-infrared and short wavelength infrared regions, may be explained 
by differences in canopy architecture (leaf angle distribution and foliage clumping) 
and their resulting impacts on soil reflectance contribution.  
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Figure 3.4. Canopy spectral reflectance characteristics of the four plant species over dark soil with an 
LAI of 1.5: (a) canopy reflectance, (b) the first derivative. 

 
 
This can be more clearly shown by plotting leaf reflectance against canopy 

reflectance (Figure 3.5). The scatter plot shows that canopy reflectance is not a 
simple linear translation of its leaf spectra, but that the relation between leaf and 
canopy reflectance is modulated by differences in plant architecture/leaf size and 
leaf transmittance. 
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Figure 3.5. Leaf reflectance versus canopy reflectance (LAI=1.5) measured over dark soil. Different 
(line) colors represent different species. 

 
 
Figures 3.6(a) and 3.6(b) show the spectral reflectance and the first derivative 

reflectance of Asplenium nidus with an approximate LAI of 1.5 in dark and light 
soils. In these figures, the observed variation can be explained only by the effect of 
soil brightness, as all other variables were kept constant. It can be observed from 
the figure that the highest variations occur in the near-infrared (around 700 nm) 
and in water-absorption bands (around 1400 nm). Comparison of the first 
derivatives shows how the difference in reflectance between light and dark soils 
changes with wavelength. However, soil brightness variations lead essentially to 
reflectance offsets. 
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Figure 3.6. Spectral reflectance (a) and first derivative reflectance (b) of Asplenium nidus with an LAI 
of 1.5 in dark and light soils. 

 
 

3.3.2. Relation between LAI and red/near-infrared reflectances 
The influence of LAI of different species on red (680 nm) and near-infrared 

reflectances (833 nm) (Hurcom and Harrison, 1998; Mutanga and Skidmore, 2004) 



Laboratory level               Chapter 3 

 41 

is shown in Figures 3.7(a) and 3.7(b) for the four species. Black and red colors are 
used to distinguish between dark and light soils. In these figures, the sampled 
species were further separated according to their background soil to evaluate if 
they behave in the same manner. For the light soil (Figure 3.7(a), red symbols), red 
reflectance of all species decreases exponentially with LAI. The correlation 
coefficients are highly significant (-0.73<r<-0.86) (p<0.006 with a 95% confidence 
interval), but the predictive ability of these relations is limited to LAI values ≤4 
because of the signal saturation for higher LAI values. For the dark soil, canopy 
reflectance in the red band shows more scattering, and there are no significant 
relationships between reflectance in this wavelength and LAI for the four species (-
0.11<r<-0.65) (p>0.05). These findings confirm that the spectral contrast between 
leaves and soil background determines the strength of the LAI-reflectance 
relationship. The higher the contrast between soil and leaves, the stronger the 
relationship between LAI and canopy reflectance (Atzberger, 1997). 

 
In the near-infrared band (Figure 3.7(b)), the species show inconsistent 

behavior. Reflectance is more scattered in light soil than in dark soil. We found a 
significant correlation between LAI and reflectance for all species (0.7<r<0.94) 
(p<0.009), except for Chrysalidocarpus decipiens, with correlation coefficients of 0.2 
and -0.4 for dark and light soil, respectively. 

 
It is well known that red reflectance decreases with increasing LAI, whereas 

near-infrared reflectance increases (Huete, 1989). Our findings (Figure 3.7) show 
that soil brightness strongly affects these relations. 
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Figure 3.7. Scatter plots showing canopy reflectance and LAI of four plant species measured over 
two contrasting soil backgrounds: (a) in the red (680 nm) spectral band and (b) in the near-infrared 
(833 nm) spectral band. The two colors (black and red) correspond to dark and light soil, respectively. 
Four symbols are used to distinguish between the plant species. 
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3.3.3. LAI versus narrow-band indices 
Narrow-band indices were calculated for the measured canopy reflectance 

spectra with data sets stratified according to (1) soil type and (2) vegetation species. 
For all indices (ratio- and soil-based), the optimal narrow-band VI was determined. 
First, the coefficient of determination (R2) was computed for all possible two-band 
combinations of VI and LAI. An illustration of these results is shown in the 2-D 
correlation plots in Figure 3.8. The meeting point of each pair of wavelengths in 
the 2-D plots corresponds to the R2 value of LAI and the VI calculated from the 
reflectance values in those two wavelengths. 

 
(a) 

 

(b) 

 
Figure 3.8. 2-D correlation plots illustrating the coefficient of determination (R2) between LAI and 
narrow-band NDVI in (a) dark soil (n=48) and (b) light soil (n=47). The data for the four plant 
species have been pooled. The straight (white) lines correspond to wavelengths that have not been 
measured. 

 
Based on the R2 values in the 2-D correlation plots, the band combinations that 

formed the best indices for determining LAI were identified. The coefficient of 
determination (R2) and the band positions of the best performing indices based on 
the soil types and vegetation species are indicated in Tables 3.3 and 3.4, 
respectively.  

 
 

Table 3.3. Band positions and R² values between LAI and the best narrow-band VI in dark and light 
soils, with data for the four plant species being pooled. 

VI Dark soil (n=48) Light soil (n=47) 
 R2 λ1 λ2 R2 λ1 λ2 
RVI 0.77 721 674 0.87 741 492 

NDVI 0.75 2225 2135 0.84 1955 699 

TSAVI 0.72 1955 1966 0.89 1977 1955 

SAVI2 0.77 728 1966 0.89 1955 1977 

PVI 0.76 1238 1041 0.73 1246 1132 
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For the two soil types, all of the five best performing VIs revealed strong 
correlations (R2>0.7) with LAI (Table 3.3). In general, the correlations were 
deemed to be stronger for vegetation over light soil than over dark soil. As light 
soils, compared to dark soils, reflect more radiation attenuated by the leaf layers, 
the asymptotic reflectance is reached at higher LAI. This may explain the higher 
sensitivity of light soils compared with that of dark soils, and hence the higher R2 
values observed in Table 3.3. As an example, Figure 3.9 shows the relation 
between narrow-band SAVI2 and LAI for dark and light soils. 

 
Although other studies, such as those of Chen and Cihlar (1996) and Myneni et 

al. (1997) have shown the nonlinearity of the relationship between VIs and LAI, 
the relation between SAVI2 and LAI plotted in Figure 3.9 illustrates an almost 
linear relationship. Even at relatively high LAI values (LAI~6), saturation had not 
yet occurred. Hence, it appears that by carefully selecting appropriate wavelengths, 
a relatively high sensitivity of VIs to LAI variations can be maintained, even for 
high LAI values. 
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Figure 3.9. Relationships between LAI and best narrow-band SAVI2: (a) in dark soil, (b) in light soil. 
For the analysis, measurements of the four plant species have been pooled. 

 
 
The optimal narrow bands forming the best VIs for each soil type are located in 

different spectral regions. This indicates that the most relevant information for 
LAI estimation varies with soil type. We also observed that for all VIs (except PVI) 
larger spectral regions of high correlation between LAI and VI exist in light soil. 
As the soil surface contributes to the radiation scattered back to the sensor, a 
higher soil brightness increases VI sensitivity to LAI variations. 

 
In the dark soil, among the five VIs investigated, the narrow-band RVI and 

SAVI2 showed the highest correlation with LAI, followed by PVI, NDVI and 
TSAVI. Although many studies have demonstrated that ratio indices such as RVI 
and NDVI have close relationships with LAI (Broge and Leblanc, 2001; Ridao et 
al., 1998; Wang et al., 2005), they are known to be sensitive to soil background 
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effects (Baret and Guyot, 1991; Huete et al., 1985). In the dark soil, however, the 
effect of the soil is minimized (and its variability reduced), resulting in the ratio 
indices performing better than the soil line indices under these conditions. 
However, it also has to be noted that the R2 of all VIs were very close to one 
another. In the light soil, the narrow-band SAVI2 and TSAVI were the indices 
with the highest correlation. High correlations were also observed for NDVI and 
RVI, whereas the PVI performance was much lower. The low PVI performance 
can be attributed to the small variability that exists in the background reflectance. 

 
 

Table 3.4. Band positions and maximum R² values between LAI and narrow-band VIs for different 
vegetation species. The data for the two contrasting soils have been pooled. 

VI Asplenium nidus 
(n=23) 

Chrysalidocarpus 
decipiens (n=24) 

Halimium 
umbellatum (n=24)

Schefflera arboricola 
Nora (n=24) 

 R2 λ1 λ2 R2 λ1 λ2 R2 λ1 λ2 R2 λ1 λ2 

RVI 0.90 846 1410 0.77 1314 1322 0.76 2205 1885 0.89 727 1410 

NDVI 0.89 1487 1410 0.77 1322 1314 0.74 2205 1885 0.85 1114 1105 

TSAVI 0.88 1487 1410 0.78 1322 1314 0.75 2196 1885 0.87 1955 709 

SAVI2 0.91 875 1418 0.78 1314 1322 0.75 1885 2196 0.89 719 2020 

PVI 0.91 1280 1255 0.89 716 1723 0.90 2205 1875 0.96 713 1723 

 
 
With data stratified according to plant species, R2 values between narrow-band 

VI and LAI show high variability (Table 3.4). In general, the highest correlations 
were observed for Asplenium nidus and Schefflera arboricola (R2~0.9), whereas 
Chrysalidocarpus decipiens and Halimium umbellatum gave poorer correlations (R2~0.8). 
The leaf orientation of the first two species is more planophile than that of the last 
two species, which would explain the observed differences. Under otherwise 
identical conditions, a more planophile leaf displacement reduces soil background 
influences. However, it should also be noted that the range in LAI (between 
minimum and maximum LAI; see Table 3.1) differs among plant species. Under 
such circumstances, the R2 may be biased by the larger range of Asplenium nidus and 
Schefflera arboricola compared with that of Chrysalidocarpus decipiens and Halimium 
umbellatum. 

 
For most plant species, the selected optimum narrow bands are identical or 

very close to one another. This was further investigated by studying the 2-D 
correlation plots. For each species, regions with high correlations (R2≥0.7) 
between narrow-band VI and LAI are highlighted (Figure 3.10). We found that for 
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each plant species the optimum spectral region (band combinations) were similar 
across the investigated VIs. This confirms that the different VIs are closely related 
to one another (Lawrence and Ripple, 1998; Perry and Lautenschlager, 1984) and 
do not really provide independent information. Only PVI shows a distinctly 
different behavior, with generally higher R2 values and wavelengths different from 
those of the four other VIs (Table 3.4 and Figure 3.10). As the data have been 
pooled across the two soil backgrounds, PVI seems best adapted to minimize soil 
background influences. 

 

3.3.4. Cross-validated LAI estimates from narrow-band VI 
The accuracy with which the LAI can be estimated from the various VIs (see 

Tables 3.3 and 3.4) was assessed in a cross-validation procedure. The results are 
recorded in Tables 3.5 and 3.6.  

 
 

Table 3.5. Cross-validated R2 and RMSE for estimating LAI in dark and light soils. The RMSEcv is in 
units of LAI [m2 m-2]. For each soil background, the data for the four plant species have been pooled. 
Refer to Table 3.3 for the wavelengths of the so-called optimum bands. 

VI Dark soil (n=48) Light soil (n=47) 
 R2cv RMSEcv R2cv RMSEcv 

 
RVI 0.73 0.63 0.86 0.45 
 
NDVI 0.71 0.65 0.81 0.52 
 
SAVI2 0.74 0.62 0.88 0.42 
 
TSAVI 0.68 0.69 0.88 0.42 
 
PVI 0.73 0.63 0.69 0.67 

 
 
Compared with canopy reflectance measurements over dark soil, LAI over light 

soil was generally estimated with higher accuracy (Table 3.5). For light soil, the 
cross-validated RMSE varies around 0.45 (m2 m-2) (except PVI), whereas the same 
indicator is around 0.60 for dark soil. This confirms the findings of §3.3.3, where 
VIs showed a better correlation with LAI over light soil than over dark soil (e.g., 
Table 3.3). Within each soil type, differences among the five VIs are generally quite 
small, except for PVI measured over light soil. This clearly confirms the findings 
of Baret et al. (1989), Huete (1989) and Roujean and Breon (1995), who noticed 
that not only ratio-based indices but also soil-based VIs are sensitive to soil 
brightness effects. It also confirms previous studies by Baret and Guyot (1991) and 
Broge and Leblanc (2001), who showed that these indices are sensitive to soil 
brightness effects. 
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Figure 3.10. Regions with high correlation (R2≥0.7) between narrow-band vegetation indices (VIs) 
and LAI for each vegetation species. 

 
 
For this reason, it seems difficult to define the most appropriate VI for 

estimating LAI in each soil type. Given the cross-validated results reported in 
Table 3.5, we conclude that for data analyzed by soil type, the narrow-band RVI 
(Pearson and Miller, 1972) and SAVI2 (Major et al., 1990) are the best overall 
choices as LAI estimators. This result is in agreement with those of Broge and 
Leblanc (2001), who used simulated data and found that SAVI2 is relatively 
insensitive to external factors such as background effects, and RVI is marginally 
the best VI at low LAI values. 
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For data stratified according to plant species, Table 3.6 demonstrates relatively 
accurate estimations of LAI. Cross-validated RMSE were in the range 0.15 to 0.60 
m2 m-2. These relationships were observed to be dependent on plant species and 
their associated architectures. This is in agreement with other studies by Colombo 
et al. (2003), Lee et al. (2004) and Turner et al. (1999), who found that the strength 
of the relationships between VI and LAI differs for different vegetation species. 

 
The highest accuracies are found for Halimium umbellatum and Schefflera arboricola 

(RMSEcv~0.25), whereas Asplenium nidus and Chrysalidocarpus decipiens showed lower 
accuracies (RMSEcv~0.55). This indicates that LAI estimates of plants with small 
and more randomly distributed leaves produce higher estimation accuracies, 
probably an effect of reduced mutual shading of leaf elements. 

 
Analysis of Table 3.6 reveals that the variation among the narrow-band VIs, 

except narrow-band PVI, is only small. Among the five narrow-band VIs studied 
here, PVI (Richardson and Wiegand, 1977) shows the most significant relationship 
with LAI for all vegetation species (0.15≤RMSEcv≤0.56). PVI appears to be 
adaptable to different plant species with different plant architectures, leaf sizes, 
etc., while effectively reducing soil brightness effects. According to Table 3.6, we 
rank narrow-band PVI as the most appropriate VI for LAI estimation. However 
this result contradict with the result of  a study by Wu et al., (2007), who found 
that PVI is not as effective as other indices such as SAVI (soil adjusted vegetation 
index) and MSAVI (modified soil adjusted vegetation index) in estimating leaf area 
index of corn and potato canopies because of its narrow dynamic range. In our 
study, however, the SAVI and MSAVI returned a similar results as SAVI2 with 
LAI (e.g. for SAVI, R2= 0.73 and 0.87 for dark and light soil, respectively) (not 
shown). 

 
 

Table 3.6. Cross-validated R2 and RMSE for estimating LAI of different vegetation species. The 
RMSEcv are in units of LAI [m2 m-2]. For each plant species, data for the two soil backgrounds have 
been pooled. Refer to Table 3.4 for the corresponding wavelengths. 

VI Asplenium nidus 
(n=23) 

Chrysalidocarpus 
decipiens (n=24)

Halimium 
umbellatum (n=24)

Schefflera 
arboricola Nora 

(n=24) 
 R2cv RMSEcv R2cv RMSEcv R2cv RMSEcv R2cv RMSEcv 

RVI 0.88 0.60 0.74 0.53 0.72 0.23 0.87 0.28 

NDVI 0.87 0.62 0.74 0.54 0.70 0.24 0.82 0.33 

SAVI2 0.89 0.57 0.76 0.51 0.70 0.24 0.87 0.29 

TSAVI 0.86 0.65 0.76 0.51 0.70 0.24 0.85 0.30 

PVI 0.89 0.56 0.88 0.35 0.88 0.15 0.95 0.17 
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Figure 3.11 illustrates the relationship between estimated and measured LAI for 
the four plant species when using PVI. The relations seem highly linear, except in 
the case of Chrysalidocarpus decipiens, where we observe a slight saturation tendency. 
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Figure 3.11. Cross-validated estimated LAI versus measured LAI using narrow-band PVI: (a) 
Asplenium nidus, (b) Chrysalidocarpus decipiens, (c) Halimium umbellatum, and (d) Schefflera arboricola Nora. 
For the analysis, measurements performed over dark and light soils have been pooled. The optimum 
wavebands are reported in Table 3.4. 

 
The results reported in this paper are derived from measurements in a 

controlled laboratory experiment. Usually, the methods developed in the 
laboratory for the estimation of vegetation parameters from remote sensing have 
had limited success when applied under outside or field conditions. This is mainly 
caused by scale effects and by additional difficulties for example related to the 
presence of atmospheric absorption and scattering effects. Despite our efforts, 
however, the measured data are not completely free of noise (e.g., related to the 
sensor and illumination system). Likewise, we are aware that the not fully 
collimated light source limits the applicability of our data set as the different leaf 
layers received different amounts of energy. However, care was taken to ensure 
identical plant heights and hence to provide a certain comparability among species. 
The laboratory experiment did not allow us to create extended canopies. Hence, 
lateral fluxes can not be ignored, although measurements have been performed in a 
completely dark (and black-painted) environment. In future work, the number of 
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plants in the scenario should be increased to ensure that the reflected flux fully 
represents an infinitely extended canopy. Likewise, a more extensive range of 
vegetation species and soil types should be studied in order to further confirm the 
effects of these factors on the relationship between biophysical variables and 
narrow-band VIs. Replicate measurements may be required to generalize the 
obtained relationships.  

 

3.4. Conclusions 
Based on a laboratory experiment, this paper examined whether the estimation 

of LAI from hyperspectral (narrow-band) VIs is significantly affected by soil type 
and/or plant species with different leaf sizes and architectures.  

 
The LAI data were compared with red and near-infrared reflectance in dark and 

light soils, and this confirmed that the spectral contrast between leaves and soil 
background determines the strength of the LAI-reflectance relationship. In 
general, the relationship between LAI and VIs was deemed to be stronger in light 
soil than in dark. It seemed difficult to define the most appropriate VI for 
estimating LAI in each soil type. However, the cross-validated results revealed that 
for data analyzed by soil type the narrow-band RVI and SAVI2 were the best 
overall choices as LAI estimators. In other words, these two indices were the least 
affected by differences related to the four plant species. The study confirmed that 
the strength of the relationships between VIs and LAI differs for different 
vegetation species. PVI appears to be less sensitive to brightness variations in the 
soil background and adapts well to different plant species with different plant 
architectures, leaf sizes, etc. This index was thus recognized as the most 
appropriate VI for LAI estimation under conditions of unknown soil reflectance. 
Furthermore, the study verified that, for all plant species and the soil types studied, 
linear relationships exist between LAI and the selected narrow-band indices; 
however, this should be understood as valid only within the LAI range and 
conditions measured in the present study. 

 
Our results suggest that, when using remote sensing VIs for estimating 

vegetation LAI, not only the choice of VIs but also prior knowledge of plant 
architecture and the background soil of the investigated vegetation is of particular 
importance.  
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Abstract 
The study shows that leaf area index (LAI), leaf chlorophyll content and canopy 

chlorophyll content can be mapped in a heterogeneous Mediterranean grassland 
from canopy spectral reflectance measurements. Canopy spectral measurements 
were made in the field using a GER 3700 spectroradiometer, along with 
concomitant in situ measurements of LAI and leaf chlorophyll content. We tested 
the utility of univariate techniques, involving narrow band vegetation indices and 
the red edge inflection point, as well as multivariate calibration techniques, 
including stepwise multiple linear regression and partial least squares regression. 
Among the various investigated models, canopy chlorophyll content was estimated 
with the highest accuracy (R2cv = 0.74, relative RMSEcv = 0.35). All methods failed 
to estimate leaf chlorophyll content (R2cv <= 0.40), while LAI was estimated with 
intermediate accuracy (R2cv = 0.67). Compared with narrow band indices and red 
edge inflection point, stepwise multiple linear regression generally improved the 
estimation of LAI. The estimations were further improved when partial least 
squares regression was used. When a subset of wavelengths was analyzed, it was 
found that partial least squares regression had reduced the error in the retrieved 
parameters. The results of the study highlight the significance of using multivariate 
techniques such as partial least squares regression rather than univariate methods 
such as vegetation indices for providing enhanced estimates of heterogeneous 
grass canopy characteristics. To date, partial least squares regression has seldom 
been applied for studying heterogeneous grassland canopies. However, it can 
provide a useful exploratory and predictive tool for mapping and monitoring 
heterogeneous grasslands. 

 

4.1. Introduction 
Owing to its fast, non-destructive and relatively cheap characterization of land 

surfaces, remote sensing has been recognized as a reliable method for estimating 
various biophysical and biochemical vegetation variables (Cohen et al., 2003; 
Curran et al., 2001; Hansen and Schjoerring, 2003; Hinzman et al., 1986; 
McMurtrey et al., 1994; Weiss and Baret, 1999). Hyperspectral remote sensing with 
narrow and continuous spectral bands that provide an almost continuous spectrum 
is considered more sensitive to specific vegetation variables such as leaf area index 
(LAI) (Hansen and Schjoerring, 2003). Because of the role of green leaves in 
controlling many biological and physical processes of plant canopies, LAI (the total 
one-sided leaf area per ground surface area) is a key structural characteristic of 
vegetation and thus widely used as an indicator of vegetation status. 

 
LAI has been estimated in numerous studies by using remote sensing in either 

statistical approaches or physically based (canopy reflectance) models. Many of the 
previous studies, however, are based on simulated data (Atzberger, 2004; Broge 
and Leblanc, 2001; Chaurasia and Dadhwal, 2004; Haboudane et al., 2004; 
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Udelhoven et al., 2000), on agricultural crops (Atzberger, 1995; Atzberger, 1997; 
Baret et al., 1987; Broge and Mortensen, 2002; Colombo et al., 2003; Danson et al., 
2003; Jacquemoud et al., 2000; Walter-Shea et al., 1997; Weiss et al., 2001) or on 
forest (Chen et al., 1997; Fang et al., 2003; Gemmell et al., 2002; Kalacska et al., 
2004; Kovacs et al., 2004; Running et al., 1986; Schlerf and Atzberger, 2006; White 
et al., 1997), where single species was investigated. Therefore, investigation is 
required to assess the capability of remote sensing models when it comes to natural 
heterogeneous canopies with a combination of different plant species in varying 
proportions. Mediterranean grasslands are characterized by highly heterogeneous 
canopies, and present a challenge for remote sensing applications because the 
reflectance is often a mixture of different surface materials (Fisher, 1997; Roder et 
al., 2007). 

 
On the other hand, researchers have shown that narrow band vegetation 

indices can be crucial in providing essential information for quantifying the 
biochemical (Broge and Leblanc, 2001; Ferwerda et al., 2005; Gamon et al., 1992; 
Gitelson and Merzlyak, 1997; Mutanga et al., 2005) and biophysical characteristics 
of vegetation (Blackburn, 1998; Elvidge and Chen, 1995; Gong et al., 1992; Lee et 
al., 2004; Mutanga and Skidmore, 2004; Schlerf et al., 2005). In this case, a limited 
number of spectral wavelengths from the massive spectral contents of 
hyperspectral data are used. On the contrary, several studies have focused on 
statistical techniques such as stepwise multiple linear regression (SMLR), which 
make use of the spectral information of several spectral wavelengths to estimate 
vegetation biochemical properties (e.g. Curran, 1989; Curran et al., 2001; 
Grossman et al., 1996; Huang et al., 2004; Kokaly and Clark, 1999) and biophysical 
properties (e.g. Atzberger et al., 2003b; De Jong et al., 2003; Lefsky et al., 1999; 
Lefsky et al., 2001). In either case, the use of hyperspectral data sets is influenced 
by multicollinearity (De Jong et al., 2003), which mostly occurs when the number 
of observations is smaller than the number of wavelengths studied and when input 
(reflectance) data show high correlation (Curran, 1989; Curran et al., 2001; Nguyen 
and Lee, 2006). Partial least squares regression (PLSR) is widely used in 
chemometrics (Feudale and Brown, 2005; Geladi and Kowalski, 1986). The 
method is known to be suitable for analyzing multicollinear spectral data sets 
(Atzberger et al., 2003b). PLSR is a “full spectrum” method and, unlike SMLR, it 
uses all available spectral wavelengths simultaneously. There are a few studies that 
have investigated the potential of PLSR for estimating vegetation biochemical 
properties (El Masry et al., 2007; Hansen and Schjoerring, 2003; Huang et al., 2004; 
Nguyen and Lee, 2006) and biophysical properties (Atzberger et al., 2003b; Cho et 
al., 2007; Hansen and Schjoerring, 2003; Naesset et al., 2005). However, the 
estimation of canopy characteristics such as LAI and canopy/leaf chlorophyll 
content for heterogeneous grass canopies has not to our knowledge been 
addressed by researchers, and still remains to be examined. 

 
For the above noted reasons, the aim of this study was to examine the utility of 

hyperspectral remote sensing in predicting canopy characteristics such as LAI and 
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canopy/leaf chlorophyll content in a heterogeneous Mediterranean grassland by 
means of different univariate and multivariate methods. We compared narrow 
band vegetation indices, including red edge inflection point (REIP), with two 
important linear statistical methods known to be well suited for dealing with highly 
multicollinear data sets: partial least squares regression and stepwise multiple linear 
regression. The suitability of these different methods will be analyzed in terms of 
their prediction accuracy. Naturally, the significance of the results is valid only for 
Mediterranean grasslands and the biophysical variables considered. The study is 
based on canopy spectral reflectance measured in a heterogeneous grassland during 
a field campaign in the summer of 2005 in Majella National Park, Italy. 

 

4.2. Methods 

4.2.1. Study area and sampling  
The study site is located in Majella National Park, Italy (latitude 41°52' to 42°14' 

N, longitude 13°14' to 13° 50'E). The park covers an area of 74,095 ha and extends 
into the southern part of Abruzzo, at a distance of 40 km from the Adriatic Sea 
(Figure 4.1). The region is situated in the massifs of the Apennines. The park is 
characterized by several mountain peaks, the highest being Mount Amaro (2794 
m). 

 
Abandoned settlement and agricultural areas in Majella are returning to oak 

(Quercus pubescens) woodlands at the lower altitudes (400 m to 600 m) and beech 
(Fagus sylvatica) forests at the higher altitudes (1200 m to 1800 m). Between these 
two formations is a landscape composed of shrubby bushes, patches of grass/herb 
vegetation, and bare rock outcrops. The dominant grass and herb species include 
Brachypodium genuense, Briza media, Bromus erectus, Festuca sp, Helichrysum italicum, 
Galium verum, Trifolium pratense, Plantago lanceolata, Sanguisorba officinalis and Ononis 
spinosa (Cho, 2007). 

 
Stratified random sampling with clustering was adopted in this study. For this 

purpose, the area was stratified into grassland, forest, shrubland and bare rock 
outcrops, using the land cover map provided by the management of Majella 
National Park. We can distinguish four main phytosociological classes of varying 
area within the grasslands: semi-natural/farmlands, grazed/periodically flooded 
areas, open garrigues and abandoned farmlands. Coordinates (x y) were randomly 
generated in a grassland stratum to select plots. A total of 45 plots (30 m x 30 m) 
were generated and a GPS (Global Positioning System) was used to locate them in 
the field. To increase the number of samples in the time available, four to five 
randomly selected subplots were clustered within each plot. This resulted in a total 
of 191 subplots being sampled. The 1 m x 1 m subplots differed in species 
composition and relative abundance while the within-subplot variability was small. 
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Figure 4.1. The study area, Majella National Park, Italy. 

 

4.2.2. Canopy spectral measurements  
Fifteen replicates of canopy spectral measurements were taken from each 

subplot, using a GER 3700 spectroradiometer (Geophysical and Environmental 
Research Corporation, Buffalo, New York). The wavelength range is 350 nm to 
2500 nm, with a spectral sampling of 1.5 nm in the 350 nm to 1050 nm range, 6.2 
nm in the 1050 nm to 1900 nm range, and 9.5 nm in the 1900 nm to 2500 nm 
range. 

 
The fiber optic, with a field view of 25°, was handheld approximately 1 m 

above the ground at nadir position. The ground area observed by the sensor of 
GER had a diameter of 45 cm and was large enough to cover the center of the 
subplots without being influenced by the surroundings. The 15 replicate spectral 
measurements taken from each subplot enabled to suppress much of the 
measurement noise by averaging the replicate measurements. Prior to each 
reflectance measurement, the radiance of a white standard panel coated with 
BaSO4 and of known reflectivity was recorded for normalization of the target 
measurements. The fieldwork was conducted between June 15 and July 15 in 2005. 
To minimize atmospheric perturbations and BRDF effects, spectral measurements 
were made on clear sunny days between 11:30 a.m. and 2:00 p.m. The 
measurement set-up ensured that the ratio of direct to diffuse incoming solar 
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radiation was approximately constant. Hence, no correction for this possibly 
perturbing factor has been applied. 

 

4.2.3. LAI measurements  
In each subplot, LAI was non-destructively measured using a widely used 

optical instrument, the Plant Canopy Analyzer LAI-2000 (LICOR Inc., Lincoln, 
NE, USA). A detailed description of this instrument is given by LI-COR (1992) 
and Welles and Norman (1991). The LAI-2000 measures the gap fraction in five 
zenith angles (0° to 13°, 16° to 28°, 32° to 43°, 47° to 58° and 61° to 74°), using 
measurements of incoming (diffuse) solar radiation above and below the canopy. 
The measured gap fraction data are inverted to obtain the effective LAI, under the 
assumption of a random spatial distribution of leaves (Chen et al., 2002). Effective 
LAI signifies the equivalent leaf area of a canopy with a random leaf distribution to 
generate the same light interception as the true LAI (Fernandes et al., 2002). 
However, some factors such as foliage clumping, sky conditions and plant 
phenology affect LAI estimates (Fournier et al., 2003). In this study, measurements 
were taken either under clear skies with low solar elevation (i.e., within the two 
hours following sunrise or preceding sunset) or under overcast conditions. The 
LAI measurements were taken on the same day that the canopy spectral 
measurements were made. To prevent direct sunlight on the sensor of LAI-2000, 
samples of below- and above-canopy radiation were made in the direction facing 
away from the sun (i.e., with the sun behind the operator), using a view restrictor 
of 45°. For each subplot, reference samples of above-canopy radiation were 
determined by measuring incoming radiation above the grass subplot (in an open 
area). Next, five below-canopy samples were collected and used to calculate the 
average LAI (Table 4.1).  

 
LAI measured using the LAI-2000 corresponds to plant area index (PAI), 

including the photosynthetic and non-photosynthetic components (Chen et al., 
1997). In our study, non-photosynthetic components were almost non-existent. 
Despite the non-random distribution of grass leaves, no corrections for clumping 
were applied. Therefore, the LAI used here corresponds to the effective PAI, and 
in the following sections these measurements are abbreviated as LAI. 

 

4.2.4. Chlorophyll measurements  
A SPAD-502 Leaf Chlorophyll Meter (Minolta, Inc.) was used to assess the leaf 

chlorophyll content (LCC) in each 1 m x 1 m subplot. The chlorophyll meter 
(SPAD) provides a simple, quick, non-destructive method for estimating leaf 
chlorophyll content (Watanabe et al., 1980). SPAD values express relative amounts 
of chlorophyll in leaves by measuring transmittance in the red (650 nm) and NIR 
(920 nm) wavelength regions (Minolta, 2003). The ability to predict chlorophyll 
content from SPAD readings has been demonstrated in several studies (Dwyer et 



Field level                Chapter 4 

 57 

al., 1991; Markwell et al., 1995; Takebe et al., 1990; Vos and Bom, 1993; Yang et 
al., 2003). SPAD measurements give a unit-less but highly reproducible measure 
that is well correlated with leaf chlorophyll concentration and is commonly used to 
characterize chlorophyll concentration in many plant species (Atzberger et al., 
2003a; Atzberger et al., 2003b; Campbell et al., 1990; Dingkuhn et al., 1998; 
Haboudane et al., 2002; Jongschaap and Booij, 2004; Nakano et al., 2006). A total 
of 30 leaves representing the dominant species were randomly selected in each 
subplot, and their SPAD readings were recorded. From the 30 individual SPAD 
measurements, the average was calculated (Table 4.1). These averaged SPAD 
readings were converted into leaf chlorophyll content (units: µg cm-2) by means of 
an empirical calibration function provided by Markwell et al. (1995). The total 
canopy chlorophyll content (CCC; units: g m-2) for each subplot was obtained by 
multiplying the leaf chlorophyll content by the corresponding LAI (CCC = LAI * 
LCC). 

 
 

Table 4.1. Summary statistics of the measured biophysical and biochemical variables of grassland 
sample subplots (n=191). SPAD is the average SPAD reading for 30 randomly selected leaves in each 
subplot; LCC is the leaf chlorophyll content; and CCC is the canopy chlorophyll content. 

Measured variables No. of 
Obs. 

Min Mean Max  StDev Range Variation 
coefficient 

 
LAI (m2 m-2) 191 0.39 2.76 7.34 1.50 6.95 0.54 

SPAD (unit-less) 185* 22.4 32.70 45 4.35 22.6 0.13 

LCC (µg cm-2) 185 17.1 30.07 49.66 6.12 32.55 0.20 

CCC (g m-2) 185 0.1 0.87 2.7 0.55 2.56 0.63 
* Six measurements were recognized as outliers and were excluded. 

 

4.2.5. Data analysis 

4.2.5.1. Preprocessing of spectra 
To minimize noise in the measured reflectance spectra, the 15 spectra of each 

sample subplot were averaged. Bands below 400 nm and above 2400 nm displayed 
very high levels of noise and were excluded. The resulting 584 wavebands were 
used for analysis. A moving Savitzky-Golay filter (Savitzky and Golay, 1964) with a 
frame size of 15 data points (2nd degree polynomial) was applied to the averaged 
reflectance spectra to further smooth the spectra. The analysis and processing were 
carried out using MATLAB 7.1 (Mathwork, Inc). In total, 191 canopy reflectance 
measurements were obtained. The average reflectance spectra of all grass subplots 
and the spectral variability of the measurements are shown in Figure 4.2. 
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Figure 4.2. The averaged canopy reflectance spectra of all sample subplots (n=191) (left), and their 
spectral variability (n=191) (right) in Majella National Park, Italy. 

 

4.2.5.2. The narrow band indices 
Narrow band vegetation indices were computed from the canopy spectra using 

all possible two-band combinations, involving 584 wavelengths between 400 nm 
and 2400 nm. The most common indices are ratio indices and soil-based indices 
based on discrete red and NIR bands where vegetation reveals distinctive 
reflectance properties. Ratio-based vegetation indices are often preferred to soil-
based indices as the soil spectral characteristics needed to establish the soil line are 
often unavailable or are influenced by soil variability (Broge and Mortensen, 2002). 
The soil line originally defined by Richardson and Wiegand (1977) is a linear 
relationship between the NIR and red reflectance of bare soils, and is defined by 
the slope and intercept of this line. 

 
We selected the normalized difference vegetation index (NDVI) (Rouse et al., 

1974) as a representative of ratio indices, and the second soil-adjusted vegetation 
index (SAVI2) (Major et al., 1990) as a representative of soil-based indices, for the 
analysis in this study. The narrow band NDVI and SAVI2 indices were 
systematically calculated for all possible (584 x 584 = 341,056) band combinations 
between 400 nm and 2400 nm. The NDVI was computed according to: 
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Where 1λρ  is the reflectance at wavelength λ1 and 2λρ  is the reflectance at 

wavelength λ2 with λ1 ≠ λ2.  
 
The narrow band SAVI2 was calculated according to the following formula:  
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Where 1λρ  is the reflectance at wavelength λ1, 2λρ  is the reflectance at 
wavelength λ2 with λ1 ≠ λ2; a. is the slope and b is the intercept of the soil line. 

 
The soil line parameters were calculated from soil spectral measurement of bare 

soils which were acquired from few subplots with no vegetation. We assumed that 
the measured soil optical properties were representative for the study area. 
Consequently, the soil line parameters were considered constant for all 191 
subplots. Implicitly, we assumed that the soil line concept, originally defined for 
the red-NIR feature space, could be transferred to other spectral domains (Schlerf 
et al., 2005; Thenkabail et al., 2000). Hence the soil line parameters (a and b) were 
systematically calculated for all possible band combinations (584 * 584) between 
400 nm and 2400 nm. 

 

4.2.5.3. Red edge inflection point 
In many studies (Blackburn, 1998; Gilabert et al., 1996; Horler et al., 1983), the 

blue and red shift of the red edge inflection point (REIP) has been related to plant 
growth conditions. The REIP depends on the amount of chlorophyll seen by the 
sensor. It is strongly correlated with foliar chlorophyll content and presents a very 
sensitive indicator of vegetation stress (Dawson and Curran, 1998). The 
chlorophyll amount present in a vegetation canopy can be a product of the 
chlorophyll content of the leaves and the LAI. For this study, we used three 
methods to calculate the REIP. 

 
The inverted Gaussian method (IGM) (Bonham-Carter, 1988) explains the variations 

in reflectance Restimated as a function of wavelength (λ) at the REIP as follows:  
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σλ += OIGMREIP             (Eq. 4) 

 
where σ is the Gaussian shape parameter measured in nanometers; Rs is the 

(maximum) shoulder reflectance, usually between 780 nm and 800 nm; R0 is the 
minimum reflectance, usually around 670 nm to 690 nm; and λ0 is the wavelength 
at the point of minimum reflectance. The IGM method fits a Gaussian normal 
function to the reflectance at the red edge, and the estimated REIP is then the 
midpoint on the ascending part of the modeled curve. The function is fitted 
through the measured reflectance data points (Rmeasured (λ)) by adjusting the values of 
Rs, R0, λ0 and σ in such a way that the root mean square error (RMSE) is minimized 
(Mathworks, 2007). 
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The linear interpolation method (Guyot and Baret, 1988) assumes that the spectral 
reflectance at the red edge can be simplified to a straight line centered around a 
midpoint between (i) the reflectance in the NIR shoulder at about 780 nm, and (ii) 
the reflectance minimum of the chlorophyll absorption feature at about 670 nm. 
First, the reflectance value is estimated at the inflection point. Then, a linear 
interpolation procedure for the measurements at 700 nm and 740 nm is applied to 
estimate the wavelength corresponding to the estimated reflectance value at the 
inflection point:  

 
( ) 2/780670 RRR edgered −=−            (Eq. 5) 
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       (Eq. 6) 

 
where the constants 700 and 40 result from interpolation between the 700 nm 

to 740 nm intervals, and R670, R700, R740 and R780 are, respectively, the reflectance 
values at 670 nm, 700 nm, 740 nm and 780 nm. 

 
The linear extrapolation method (LEM) (Cho and Skidmore, 2006) is based on the 

linear extrapolation of two straight lines (Eqs. 7 and 8) through two points on the 
far-red (680 nm to 700 nm) and two points on the NIR (725 nm to 760 nm) flanks 
of the first derivative reflectance spectrum (D) of the red edge region. The REIP is 
then defined by the wavelength value at the intersection of the straight lines (Eq. 
9). 

 
Far-red line: D= m1.λ+c1          (Eq. 7) 
 
NIR line: D= m2.λ+c2          (Eq. 8) 
 
where m and c represent the slope and intercept of the straight lines, 

respectively. At the intersection, the two lines have equal wavelengths and D 
values. Therefore, the REIP, which is the wavelength at the intersection, is given 
by: 

 

)(
)(

21

21

mm
ccRIEP LEM −

−−
=           (Eq. 9) 

 

4.2.5.4. Stepwise multiple linear regression 
In stepwise multiple linear regression (SMLR), a primary hypothesis is that only 

a subset of all available predictor wavelengths have a significant explanatory effect 
on the studied response variable (Mathworks, 2007). Stepwise multiple regression 
was used to relate spectral reflectance with grass canopy biophysical and 
biochemical characteristics. SMLR starts with no predictors (wavelengths) in the 
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regression equation, and at each step it adds the most statistically significant 
wavelength (highest F-value or lowest p-value). At the same time, the procedure 
computes the removal statistic for each wavelength, and removes it (lowest F-value 
or highest p-value) if possible, until no further entry or removal of wavelengths can 
be carried out. Stepwise multiple regression was run on reflectance spectra (584 
wavelengths between 400 nm and 2400 nm). P-values to enter and remove 
wavelengths were set at 0.01 and 0.02, respectively, in order to have simple 
calibration models. 

 
The high number of narrow spectral bands results in a high inter-correlation 

between them and introduces redundancy into the regression equation (Dunagan 
et al., 2007). This is a common problem in multiple regression analysis and is called 
multicollinearity. It is often reflected by high R2 values in the calibration analysis 
which substantially degrade in the validation analysis (Giacomelli et al., 1998; 
Hamilton, 1993). We used the variance inflation factor (VIF) to assess the 
magnitude of multicollinearity (Olyvia, 2000). The variance inflation factor is a 
measure that can identify the multicollinearity between one independent variable 
and other independent variables and is given by: 

 
VIFi=(1-R2i)-1            (Eq. 10) 
 
where R2i is the coefficient of determination of the multiple regression 

produced by regressing the ith narrow spectral predictor band against the other 
predictor bands. However, there is no universally acceptable level considered to be 
a “large” variance inflation factor. Some authors have suggested that a variance 
inflation factor in excess of 10 is an indication that multicollinearity may be causing 
problems in estimation (Chatterjee and Price, 1977; Myers, 1986). Other authors 
consider 7 as the maximum value (Sergent et al., 1995), while yet others even 
consider VIF≥3 as the benchmark for their values (Olyvia, 2000). 

 

4.2.5.5. Partial least squares regression 
Partial least squares regression (PLSR) is a technique that reduces the large 

number of measured collinear spectral variables to a few non-correlated latent 
variables or factors while maximizing co-variability to the variable(s) of interest 
(Atzberger et al., 2003b; Cho et al., 2007; Geladi and Kowalski, 1986; Hansen and 
Schjoerring, 2003; Williams and Norris, 1987). The latent variables represent the 
relevant information present in the measured reflectance spectra and are used to 
predict the dependent variables (here, biophysical and biochemical grass 
characteristics). As with other linear calibration methods, the aim is to build a 
linear model: 

 
Y=Xβ+ε             (Eq. 11) 
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where Y is the mean-centered vector of the response variable (grass 
characteristics), X is the mean-centered matrix of the predictor (spectral 
reflectance), β is the matrix of coefficients, and ε is the matrix of residuals.  

 
PLSR is closely related to principal component regression (Geladi and 

Kowalski, 1986). Whereas principal component regression performs the 
decomposition on the spectral data alone, PLSR uses the response variable 
information during the decomposition process and performs the decomposition 
on both the spectral and the response simultaneously (Schlerf et al., 2003). The 
basic PLSR algorithm will not be described in this paper. The interested reader can 
refer to Ehsani et al. (1999), Geladi and Kowalski (1986), and Williams and Norris 
(1987). 

 
In conditions where highly correlated input variables (wavelengths) are included 

in the model, an appropriate variable selection is known to improve PLSR models 
(Cho et al., 2007; Davies, 2001; Kubinyi, 1996; Martens and Martens, 2000; 
Schmidtlein and Sassin, 2004). In our study, before running the PLSR, the data 
were mean-centered. The PLSR was performed using the entire reflectance spectra 
(400 nm to 2400 nm), first derivative spectra, and a subset of wavelengths (Cho et 
al., 2007) specifically related to vegetation parameters (Table 4.2). The optimum 
number of factors was estimated by leave-one-out cross-validation. A common 
way of using cross-validation for this estimation is to select the number of factors 
that minimizes the RMSE (Geladi and Kowalski, 1986). To prevent collinearity and 
to preserve model parsimony, the condition for adding an extra factor to the 
model was that it had to reduce the root mean square error of cross-validation 
(RMSECV) by >2% (Cho et al., 2007; Kooistra et al., 2004). In addition, 
coefficients of determination (R2) between measured and predicted values in the 
cross-validation were used to evaluate the relationships found. The PLSR analysis 
was performed using the TOMCAT toolbox 1.01 within MATLAB (Daszykowski 
et al., 2007). 

 

4.2.6. Validation 
Two types of validation were used for the studied models: (i) validation based 

on an independent test data set, and (ii) a cross-validation procedure (also called 
the leave-one-out method). The common way of assessing statistical indicators 
such as R2 and RMSE  is to divide the data set into training and test sets and 
predict the response variable from the test data set (in this study n=64), using 
models developed from the training data set (in this study n=127). Using a 
completely different and independent test data set to test the model’s performance 
is important in determining a model’s long-term stability (Duckworth, 1998). 
However, it should also be noted that an arbitrary division of data sets into 
calibration and validation samples may possibly lead to strongly biased results 
(Atzberger et al., 2003b). In contrast, cross-validation indicates the overall accuracy 
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of the different methods. In cross-validation, each sample is estimated by the 
remaining samples. This meant that for each variant we developed 191 individual 
models, each time with data from 190 observations. The calibration model was 
then used to predict the observation that was left out. As the predicted samples 
were not the same as the samples used to build the models, the cross-validated 
RMSE (RMSEcv) was selected as the accuracy indicator of the model in predicting 
unknown samples. Benefits of the cross-validation method are its aptitude to 
detect outliers and its capability of providing nearly unbiased estimations of the 
prediction error (Efron and Gong, 1983; Schlerf et al., 2005).  

 
 

Table 4.2. Selected wavelengths for estimating grass characteristics using partial least squares 
regression. 

Wavelength 
(nm) 

Vegetation parameters Reference 

466 Chlorophyll b Curran (1989) 
695 Total chlorophyll  Gitelson and Merzlyak (1997), Carter (1994) 
725 Total chlorophyll, leaf mass  Horler et al. (1983) 
740 Leaf mass, LAI Horler et al. (1983) 
786 Leaf mass Guyot and Baret (1988) 
845 Leaf mass, total chlorophyll Thenkabail et al. (2004) 
895 Leaf mass, LAI Schlerf et al. (2005), Thenkabail et al. (2004) 
1114 Leaf mass, LAI Thenkabail et al. (2004) 
1215 Plant moisture, cellulose, starch Curran (1989), Thenkabail et al. (2004) 
1659 Lignin, leaf mass, starch Thenkabail et al. (2004) 
2173 Protein, nitrogen Curran (1989) 
2359 Cellulose, protein, nitrogen Curran (1989) 

 
 

4.3. Results  

4.3.1. Grass characteristics 
The spectral reflectance measurements showed considerable variability (Figure 

4.2). Table 4.3 lists the linear correlation coefficients between the canopy 
characteristics. A low correlation was observed between leaf chlorophyll content 
and LAI. LAI and canopy chlorophyll content were highly correlated. The reason 
that canopy chlorophyll content is more correlated to LAI than leaf chlorophyll 
content, for this particular case, is because LAI has a much larger coefficient of 
variation than leaf chlorophyll content (Table 4.1). 
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Table 4.3. Linear correlation between grass canopy characteristics (n=185). LCC is the leaf 
chlorophyll content; and CCC is the canopy chlorophyll content. 

Grass canopy characteristic LAI LCC CCC 

LAI (m2 m-2) 1.00   

LCC (µg cm-2) 0.24* 1.00  

CCC (g m-2) 0.94* 0.50* 1.00 
* Correlation coefficient significant at P≤0.001 

 

4.3.2. Hyperspectral vegetation indices 
NDVI and SAVI2 narrow band vegetation indices were calculated from the 

measured canopy reflectance spectra, using all possible two-band combinations. 
The coefficients of determination (R2) between these narrow band vegetation 
indices and the grass canopy characteristics were computed. An illustration of 
these results is shown for LAI in the 2-D correlation plot in Figure 4.3. The 
meeting point of each pair of wavelengths in a 2-D plot corresponds to the R2 
value of LAI and the vegetation index calculated from the reflectance values in 
those two wavelengths. Similar correlation plots were computed for all other 
variables (not shown). Based on the R2 values in the 2-D correlation plots, band 
combinations that formed the best indices were determined for LAI, leaf 
chlorophyll content and canopy chlorophyll content. The best performing indices 
and the band positions are tabulated in Table 4.4. 
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Figure 4.3. 2-D correlation plots illustrating the coefficient of determination (R2) between narrow 
band SAVI2 and LAI. The data of the 191 sample subplots have been pooled together. Note that the 
2-D correlation plot is not symmetrical. The Y axis is the nominator and the X axis is the 
denominator. 

 
 
It can be observed from Table 4.4 that narrow band SAVI2 had somewhat 

higher correlations than narrow band NDVI with the studied variables. However, 
the coefficients of determination between the grass characteristics and the indices 
were relatively low, in particular for leaf chlorophyll content. Figure 4.4 highlights 
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regions where R2≥0.6 for LAI and canopy chlorophyll content (CCC). As can be 
seen in the figure, LAI had a strong influence on the selection of suitable bands for 
estimating canopy chlorophyll content. The similarity in the observed patterns is 
obviously due to the high correlation between the two variables (Table 4.3).  

 
 

Table 4.4. Band positions and R² values between the best narrow band NDVI and SAVI2 (derived 
from 2-D correlation plots of different data sets) and grass variables. LCC is the leaf chlorophyll 
content; and CCC is the canopy chlorophyll content. 

 Narrow band VI Pooled data set (n=191)* Training set (n=127)** 
  λ[nm] R2 λ[nm] R2 

LAI NDVI 1105/1229 0.61 728/745 0.61 

 SAVI2 1998/1402 0.64 1987/1402 0.64 

CCC NDVI 1141/1150 0.68 1123/1132 0.67 

 SAVI2 1211/1086 0.69 1987/1410 0.69 

LCC NDVI 547/554 0.25 547/554 0.26 

 SAVI2 547/554 0.29 547/554 0.28 

Except for CCC and LCC (n=185); ** Except for CCC and LCC (n=125)  
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Figure 4.4. Regions with high correlation (R2≥0.6) between narrow band vegetation indices (left: 
SAVI2, right: NDVI) and LAI and canopy chlorophyll content. 
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For the best performing narrow band index, cross-validated R2 and relative 
RMSE (RRMSE = RMSE/mean) were computed from linear regression models 
(Table 4.5). Further, the best band combinations for the training data set (see Table 
4.4) were assessed using the test data set. A comparative analysis of the predictive 
performance of the narrow band vegetation indices is presented in Table 4.5. As 
can be observed from this table, compared with narrow band NDVI, narrow band 
SAVI2 gave slightly higher R2 and lower RMSE values for LAI and canopy 
chlorophyll content. The better performance of SAVI2 compared with NDVI is 
probably due to the fact that SAVI2 is less sensitive to external factors such as soil 
background effects. 

 
 

Table 4.5. Performance of narrow band vegetation indices for predicting grass variables in Majella 
National Park, Italy. R2cv is the cross-validated coefficient of determination between estimated and 
predicted variables; RRMSEcv is the relative cross-validated root mean square error; RRMSEt is the 
relative root mean square error for training data; and RRMSEp is the relative root mean square error 
for the test data set. LCC is the leaf chlorophyll content; and CCC is the canopy chlorophyll content. 

 Narrow 
band VI 

Cross-validation for 
pooled data sets 

(n=191)* 

Training data set 
(n=127)** 

Independent test set 
(n=64)*** 

 
  R2cv RRMSEcv R2t RRMSEt R2p RRMSEp 

LAI NDVI 0.60 0.34 0.61 0.34 0.58 0.36 
 SAVI2 0.63 0.33 0.64 0.33 0.64 0.33 
CCC NDVI 0.67 0.36 0.67 0.35 0.70 0.36 
 SAVI2 0.68 0.35 0.68 0.35 0.60 0.41 
LCC NDVI 0.22 0.18 0.26 0.18 0.19 0.18 
 SAVI2 0.26 0.17 0.27 0.17 0.29 0.17 

* Except for CCC and LCC (n=185); ** Except for CCC and LCC (n=125); *** Except for CCC and 
LCC (n=60)  

 
 
Figure 4.5 shows the relationships between the estimated and measured LAI 

and canopy chlorophyll content using narrow band SAVI2 and narrow band 
NDVI. From the figure, it seems that saturation starts to occur for canopy 
chlorophyll content greater than 2 (g m-2) and for LAI greater than 7(m2 m-2). 

 

4.3.3. Red edge inflection point 
The red edge inflection point (REIP) was calculated using three methods. As 

can be observed from the results reported in Table 4.6, the relationships between 
measured and estimated grass variables were not reliable using any of the methods. 
The R2 and relative RMSE of the grass variables obtained from the three methods 
were relatively similar. 
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Among the studied variables, estimation of canopy chlorophyll content again 
yielded the highest R2 values (cross-validated R2cv = 0.58) and the lowest relative 
RMSE (RRMSEcv = 0.40) (values for the Gaussian approach). Very low R2 were 
again observed for the leaf chlorophyll content. Compared with regression models 
developed using the optimum narrow band indices, the REIP methods produced 
somewhat lower accuracies. 
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Figure 4.5. Cross-validated prediction of grass variables in Majella National Park, Italy, using narrow 
band NDVI and SAVI2. Lefts: estimated LAI versus measured LAI; rights: canopy chlorophyll 
content. The optimum wavebands are those reported in Table 4.4. 

 
 

4.3.4. Stepwise multiple linear regression 
Stepwise multiple linear regression (SMLR) was evaluated for estimating grass 

biophysical and biochemical variables from measured reflectance spectra. First, 
stepwise regression was run with the entire data sets to select the wavelengths to 
be included in the linear model. Next, the selected bands were used to calculate the 
cross-validated statistics. Cross-validated predictions are shown in Figure 4.6. 
Compared with narrow band vegetation indices and REIP, the prediction of grass 
variables was generally improved using SMLR, as indicated by higher R2 and lower 
relative root mean square values (Table 4.7). The number of narrow spectral bands 
selected for grass variables ranges from two (for leaf chlorophyll content) to five 
(canopy chlorophyll content). When the variance inflation factor (VIF) was used to 
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assess the magnitude of multicollinearity, we observed that even where VIF≥10 
none of the bands could be considered collinear, as eliminating any of the selected 
predictor bands caused considerably higher RMSE and lower R2 values when 
multiple regression analysis was conducted for either training or test data sets. 

 
 

Table 4.6. Performance of red edge inflection point calculated using different methods for predicting 
grass variables in Majella National Park, Italy. R2cv is the cross-validated coefficient of determination 
between estimated and predicted variables; RRMSEcv is the relative cross-validated root mean square 
error; RRMSEt is the relative root mean square error for training data; and RRMSEp is the relative 
root mean square error for the test data sets. LCC is the leaf chlorophyll content; and CCC is the 
canopy chlorophyll content. 

  
Cross-validation 

for pooled data sets 
(n=191)* 

Training data set 
(n=127)** 

Independent test 
set (n=64)*** 

 
REIP method  R2cv RRMSEcv R2t RRMSEt R2p RRMSEp 
 LAI 0.49 0.39 0.52 0.37 0.45 0.41 
Linear 
interpolation CCC 0.56 0.41 0.6 0.39 0.51 0.46 

 LCC 0.21 0.18 0.20 0.18 0.30 0.17 
        
 LAI 0.52 0.38 0.54 0.36 0.49 0.39 
Gaussian CCC 0.58 0.40 0.61 0.39 0.54 0.44 
 LCC 0.19 0.18 0.19 0.19 0.26 0.17 
        
 LAI 0.51 0.38 0.55 0.36 0.44 0.41 
Linear 
extrapolation CCC 0.57 0.41 0.63 0.37 0.45 0.49 

 LCC 0.17 0.19 0.19 0.19 0.19 0.18 
* Except for CCC and LCC (n=185); ** Except for CCC and LCC (n=125); *** Except for CCC and 
LCC (n=60)  
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Figure 4.6. Cross-validated prediction of grass variables in Majella National Park, Italy, using stepwise 
multiple linear regression. Left: estimated LAI versus measured LAI; right: for canopy chlorophyll 
content. The optimum wavebands are reported in Table 4.7. 
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Table 4.7. Performance of stepwise multiple linear regression for predicting grass variables in Majella 
National Park, Italy. R2cv is the cross-validated coefficient of determination between estimated and 
predicted variables; RRMSEcv is the relative cross-validated root mean square error; RRMSEt is the 
relative root mean square error for training data; and RRMSEp is the relative root mean square error 
for the test data sets. º P-values to enter and remove wavelengths were set at 0.001 and 0.002. LCC is 
the leaf chlorophyll content; and CCC is the canopy chlorophyll content. 

 
Cross-validation for pooled data 

sets (n=191)* 
Training data set 

(n=127)** 
Independent test 

set (n=64)*** 
 

 Wavelengths 
(nm) 

R2cv RRMSEcv Wavelengths 
(nm) 

R2t RRMSEt R2p RRMSEp 

LAI 
440, 738, 1394, 

1402, 1607 
 

0.66 0.33 728, 761, 
1394, 1660 0.68 0.31 0.64 0.34 

CCC º 
747, 749, 1425, 

1660, 2391 
 

0.72 0.33 657, 690, 707, 
902 0.69 0.35 0.59 0.43 

LCC 529, 564 0.25 0.18 523, 570 0.24 0.18 0.29 0.17 
 

* Except for CCC and LCC (n=185); ** Except for CCC and LCC (n=125); *** Except for CCC and 
LCC (n=60)  

 

4.3.5. Partial least squares regression  
The relationships between grass variables and reflectance spectra were modeled 

using PLSR. Cross-validated results using the entire reflectance spectra as inputs 
are shown in Figure 4.7. 
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Figure 4.7. Cross-validated prediction of grass variables in Majella National Park, Italy, using the 
entire reflectance spectra in partial least squares regression models. Left: estimated LAI versus 
measured LAI; right: for canopy chlorophyll content.  

 
 
The optimal number of PLSR factors preventing over-fitting was selected in 

two ways: (i) through visual inspection of cross-validated RMSE versus the 
number of factors plots (not shown), and (ii) by setting the condition that adding 



LAI and chlorophyll estimated for a heterogeneous grassland 

 70 

an extra factor must reduce the RMSE (RMSECV) by >2%. The number of factors 
in the final model ranged from two in LAI to six in leaf chlorophyll content 
models (Table 4.8). Compared with other methods (Table 4.7), PLSR using entire 
reflectance spectra increased all R2 values in the independent test data set by 0.01 
to 0.14, whereas the transformation of the reflectance spectra in derivative spectra 
did not improve the results. 

 
We simplified the full-spectrum PLSR models by selecting a subset of 

wavelengths closely related to vegetation parameters (Cho et al., 2007) (see Table 
4.2). Selection of spectral subsets further improved the prediction of all grass 
variables. The most significant improvement was observed for leaf chlorophyll 
content, where R2 increased from 0.39 to 0.45 when testing the models with the 
independent test data set. Assessed on the basis of the RMSE of the independent 
data set (RMSEp), and compared with narrow band vegetation indices, REIP and 
stepwise multiple regression, selection of spectral subsets in PLSR improved the 
models related to LAI by 0.01, 0.07 and 0.02, to canopy chlorophyll content by 
0.03, 0.11 and 0.10, and to leaf chlorophyll content by 0.02, 0.02 and 0.02, 
respectively. 

 
 

Table 4.8. Performance of partial least squares regression for predicting grass variables in Majella 
National Park, Italy. R2cv is the cross-validated coefficient of determination between estimated and 
predicted variables; RRMSEcv is the relative cross-validated root mean square error; RRMSEt is the 
relative root mean square error for training data; and RRMSEp is the relative root mean square error 
for the test data sets. LCC is the leaf chlorophyll content; and CCC is the canopy chlorophyll content. 

  Cross-validation for pooled 
data sets (191)* 

Training data set (127)**
 

Independent test 
set(64)*** 

 
  No. of 

factors 
R2cv RRMSEcv No. of 

factors
R2t RRMSEt R2p RRMSEp 

LAI 4 0.69 0.32 4 0.69 0.30 0.65 0.32 

CCC 5 0.74 0.34 5 0.74 0.31 0.73 0.34 Original 
reflectance 

LCC 4 0.38 0.17 6 0.47 0.15 0.39 0.17 

LAI 2 0.64 0.33 2 0.66 0.31 0.59 0.35 

CCC 2 0.66 0.37 2 0.68 0.34 0.61 0.40 
First 
derivative 
reflectance 

LCC 3 0.31 0.18 3 0.27 0.18 0.35 0.16 

LAI 4 0.67 0.32 4 0.66 0.31 0.66 0.32 

CCC 6 0.74 0.35 4 0.70 0.33 0.74 0.33 Selected 
bands 

LCC 6 0.40 0.17 6 0.35 0.16 0.45 0.15 

* Except for CCC and LCC (n=185); ** Except for CCC and LCC (n=125); *** Except for CCC and 
LCC (n=60)  



Field level                Chapter 4 

 71 

4.4. Discussion 
The field experiment led to a large number of sample subplots (191) with high 

variations in LAI and low variations in leaf chlorophyll content (Table 4.1). The 
two variables were only slightly related to each other (r = 0.2; Table 4.3), allowing 
an assessment of the utility of different mapping techniques to predict these 
variables. The canopy integrated chlorophyll content (LAI x leaf chlorophyll 
content) strongly reflects the variability of LAI and (to a lesser extent) leaf 
chlorophyll content, expressed by the high inter-correlation between LAI and 
canopy chlorophyll content (Table 4.3). Among the grass characteristics studied, 
canopy chlorophyll content was most accurately estimated by nearly all of the 
applied methods. The canopy chlorophyll content contains both the structure and 
chlorophyll information of vegetation and can be accurately estimated by canopy 
spectral reflectance. 

 
In general, the relationships between measured and estimated leaf chlorophyll 

content were poor for all methods. This indicates poor relationship between the 
canopy spectra and leaf chlorophyll content. This is in line with previous studies 
that have demonstrated poor signal propagation from leaf to canopy scale (Asner, 
1998; Jacquemoud et al., 1996; Verhoef, 1984; Yoder and Pettigrew-Crosby, 1995). 

 
Although the “optimum” bands for leaf chlorophyll content were found in the 

visible region, surprisingly this was not the case for the canopy chlorophyll content 
(NIR and SWIR regions). This artifact is explained by the fact that most of the 
variation in canopy chlorophyll content stems from the LAI variability; the 
variability of leaf chlorophyll content was too low to have a noticeable influence 
on canopy chlorophyll content. 

 
The relationship between measured and estimated LAI was better explained by 

multivariate calibration methods such as SMLR and PLSR than by univariate 
methods such as narrow band vegetation indices and REIP. This is because a two-
wavelength index utilizes only a limited amount of the total spectral information 
available in hyperspectral data (Lee et al., 2004). 

 
The bands selected as the best combination of the vegetation indices for LAI 

were found in the NIR to SWIR regions. This confirmed previous studies by 
researchers who suggested a strong contribution by SWIR bands to the strength of 
relationships between spectral reflectance and LAI (Brown et al., 2000; Cohen and 
Goward, 2004; Lee et al., 2004; Nemani et al., 1993; Schlerf et al., 2005). 
Compared with the narrow band NDVI, the narrow band SAVI2 gave somewhat 
higher R2 and lower relative RMSE values for LAI. This result is in agreement with 
that of Broge and Leblanc (2001), who used simulated data and found SAVI2 to be 
the best vegetation index for LAI estimation. Moreover, the narrow band SAVI2 
performed relatively well for canopy chlorophyll content. This is due to the major 
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influence of LAI in canopy chlorophyll content and also to the fact that SAVI2 is 
relatively insensitive to external factors such as soil background effects. 

 
Although red edge has proved to respond more linearly to LAI and chlorophyll 

when compared with the classical NDVI, which often suffers from saturation 
problems (Danson and Plummer, 1995), in our study wavelengths within the red 
edge region were almost absent for leaf chlorophyll content. The “optimum” 
bands for this variable were found mostly in the visible spectral range, mainly in 
the green and blue regions characterized by a strong light absorption due to 
chlorophylls a and b (Hansen and Schjoerring, 2003). Likewise, when the 
relationships between grass variables and reflectance spectra were examined using 
SMLR, at least one wavelength was selected from the visible regions for all grass 
variables. This highlights the importance of visible wavelengths for indices related 
to leaf pigments. 

 
The PLSR model appears to be a powerful alternative to univariate statistical 

methods. Compared to the other investigated methods, it achieved relatively better 
results (Table 4.8). In the present work, the highest number of (latent) factors was 
six for canopy and leaf chlorophyll contents. At the same time, these two variables 
were those for which the highest improvement was found. Therefore, important 
information will be lost by selecting only two wavelengths for narrow band 
vegetation indices. By selecting a subset of wavelengths related to vegetation 
parameters and removing unrelated wavelengths, the results of PLSR were further 
improved when testing the independent data set (Cho et al., 2007; Davies, 2001; 
Kubinyi, 1996; Martens and Martens, 2000; Schmidtlein and Sassin, 2004). 
Although our variable selection method was somewhat simplistic, it worked well, 
because we considered wavelengths related to both biophysical and biochemical 
properties of vegetation, thus maximizing the information content in the input 
variables. 

 
When the predicted grass variables were validated using the two validation 

procedures (i.e., using independent test data sets and cross-validation, respectively), 
the results concerning the coefficients of determination and the relative RMSE 
were almost similar. The very small differences confirmed the general applicability 
of both validation techniques (Selige et al., 2006). 

 
Estimation of biochemical and biophysical characteristics of heterogonous 

grassland with mixtures of different grass species is challenging in remote sensing 
(Roder et al., 2007), as the measured signal correspond to different grass species. 
In our study, an indicator of this was the observed high variations in the SPAD 
readings within a given subplot (not shown). Nevertheless, by using hyperspectral 
remote sensing with a large number of narrow spectral bands and powerful 
multivariate regression techniques, the biophysical and (to a less extent) 
biochemical grass characteristics could be retrieved with acceptable accuracy. 
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4.5. Conclusion 
This study has applied several statistical methods to predict canopy 

characteristics in heterogeneous Mediterranean grasslands. Narrow band 
vegetation indices, red edge inflection point (REIP) and two multivariate 
regression techniques, namely stepwise regression and partial least squares 
regression, were used in the analysis. Validation of the models was done by 
comparing differences in the coefficient of determination (R2) and relative root 
mean square error (RRMSE) of the independent test data sets, as well as through 
cross-validation. The most important conclusions that can be drawn from this 
study are as follows: 

 
− Compared with LAI and leaf chlorophyll content, canopy chlorophyll 

content was estimated with higher accuracy in all models. 
− The relationship between estimated and measured leaf chlorophyll content 

was poor (R2≤0.45). 
− LAI was best estimated by stepwise multiple linear regression and partial 

least square regression. Both methods utilize more than two wavelengths 
from the entire spectral region (400 nm to 2500 nm) to estimate the variable 
of interest. 

− SAVI2 is a potentially useful vegetation index for extracting canopy variables 
such as LAI. However, the selection of appropriate wavelengths and 
bandwidths is important. 

− Compared with univariate techniques, multivariate regressions improved the 
estimation of different grass characteristics. 

− Partial least squares regression provided the most useful explorative tool for 
unraveling the relationship between canopy spectral reflectance and grass 
characteristics at canopy scale. 

− The validation of data based on the independent data sets generally gave 
results similar to those of the leave-one-out cross-validation as regards to the 
coefficient of determination (R2) and relative root mean square error. The 
small differences confirm the general applicability of the two validation 
techniques. 

 
In summary, multivariate calibration methods, which until now have only been 

used in a few cases concerning the remote sensing of grasslands, can enhance 
estimates of different grass variables, and thus present new prospects for mapping 
and monitoring heterogeneous grass canopies from air- and space-borne 
platforms. 
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Abstract 
Radiative transfer models have seldom been applied for studying heterogeneous 

grassland canopies. Here, the potential of radiative transfer modeling to predict 
LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean 
grassland is investigated. The widely used PROSAIL model was inverted with 
canopy spectral reflectance measurements by means of a look-up table (LUT). 
Canopy spectral measurements were acquired in the field using a GER 3700 
spectroradiometer, along with simultaneous in situ measurements of LAI and leaf 
chlorophyll content. We tested the impact of using multiple solutions, stratification 
(according to species richness), and spectral subsetting on parameter retrieval. To 
assess the performance of the model inversion, the normalized RMSE and R2 
between independent in situ measurements and estimated parameters were used. 
Of the three investigated plant characteristics, canopy chlorophyll content was 
estimated with the highest accuracy (R2 = 0.70, normalized RMSE = 0.18). Leaf 
chlorophyll content, on the other hand, could not be estimated with acceptable 
accuracy, while LAI was estimated with intermediate accuracy (R2 = 0.59, 
normalized RMSE = 0.18). When only sample plots with up to two species were 
considered (n=107), the estimation accuracy for all investigated variables (LAI, 
canopy chlorophyll content and leaf chlorophyll content) increased (normalized 
RMSE = 0.14, 0.16, 0.19, respectively). This shows the limits of the PROSAIL 
radiative transfer model in the case of very heterogeneous conditions. We also 
found that a carefully selected spectral subset contains sufficient information for a 
successful model inversion. Our results confirm the potential of model inversion 
for estimating vegetation biophysical parameters at the canopy scale in 
(moderately) heterogeneous grasslands using hyperspectral measurements. 

 

5.1. Introduction 
Accurate quantitative estimation of vegetation biochemical and biophysical 

variables is useful for a large variety of agricultural, ecological, and meteorological 
applications (Asner, 1998; Houborg et al., 2007). The spatial and temporal 
distribution of vegetation biochemical and biophysical variables are important 
inputs into models quantifying the exchange of energy and matter between the 
land surface and the atmosphere. Among the many vegetation characteristics, leaf 
area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content 
(CCC) are of prime importance (Bacour et al., 2006; Houborg et al., 2007). LAI, 
defined here as one-sided leaf area divided by unit of horizontal surface area, is a 
key structural characteristic of vegetation because of the role of green leaves in 
controlling many biological and physical processes in plant canopies. Leaf 
chlorophyll content and canopy chlorophyll content (the latter defined here as the 
product of LAI and leaf chlorophyll content) contribute to verifying vegetation 
physiological status and health, and have been found useful for detecting 
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vegetation stress, photosynthetic capacity, and productivity (Boegh et al., 2002; 
Carter, 1994). 

 
There are two common approaches to estimating vegetation parameters 

(including LAI and chlorophyll) from remotely sensed data. In the statistical 
approach, statistical techniques are used to obtain a correlation between the target 
variable (e.g., LAI measured in situ) and its spectral reflectance or some vegetation 
indices. The derived statistical relationships are recognized as being sensor-specific 
and dependent on site and sampling condition, and are expected to change in 
space and time (Colombo et al., 2003; Meroni et al., 2004). The physical approach, 
on the other hand, involves using radiative transfer models. This approach assumes 
that the radiative transfer model accurately describes the spectral variation of 
canopy reflectance, as a function of canopy, leaf and soil background 
characteristics, using physical laws (Goel, 1989; Meroni et al., 2004). As radiative 
transfer models are able to explain the transfer and interaction of radiation inside 
the canopy based on physical laws, they offer an explicit connection between the 
vegetation biophysical and biochemical variables and the canopy reflectance 
(Houborg et al., 2007).  

 
To actually use physically based models for retrieving vegetation characteristics 

from observed reflectance data, they must be inverted (Kimes et al., 1998). 
Different inversion techniques have been proposed for physical models, including 
numerical optimization methods (Jacquemoud et al., 2000; Jacquemoud et al., 
1995; Meroni et al., 2004), look-up table (LUT) approaches (Combal et al., 2002; 
Combal et al., 2003; Gastellu-Etchegorry et al., 2003; Weiss et al., 2000), artificial 
neural networks (Schlerf and Atzberger, 2006; Walthall et al., 2004; Weiss and 
Baret, 1999) and, very recently, support vector machines regression (Durbha et al., 
2007). In the iterative optimization approach, a stable and optimum inversion is 
not guaranteed, as the search algorithm may get trapped in local minima before 
reaching the global minimum. Moreover, the technique is computationally 
intensive, in particular when using complex radiative transfer models. This makes 
the retrieval of biophysical variables unfeasible for large geographic areas 
(Houborg et al., 2007). LUT and neural network approaches reduce the huge 
computational demand of the traditional optimization approach (Kimes et al., 
2000; Liang, 2004). However, for proper training (artificial neural networks) and 
representation (LUT), they rely on a large database of simulated canopy reflectance 
spectra to achieve a high degree of accuracy. This increases the computational time 
for identifying the most appropriate LUT entry (Liang, 2004) and the time required 
for training the artificial neural network. The interested reader may refer to Kimes 
et al. (2000) and Liang (2004) for more detailed discussions regarding the 
advantages and disadvantages of the three inversion methods. 

 
A drawback in using physically based models is the ill-posed nature of model 

inversion (Atzberger, 2004; Combal et al., 2002), meaning that the inverse solution 
is not always unique as various combinations of canopy parameters may yield 
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almost similar spectra (Weiss and Baret, 1999). To overcome this problem, some 
restriction of the inverse problem may be required to constrain the inversion 
process. This involves the use of prior knowledge about model parameters 
(Combal et al., 2002; Lavergne et al., 2007), the use of information provided by the 
temporal course of key canopy parameters (CROMA, 2000), and/or the analysis of 
color textures and object signatures (Atzberger, 2004).  

 
Significant efforts to estimate and quantify vegetation properties using radiative 

transfer models have been carried out in the last two decades. Several studies have 
been successfully conducted covering different vegetation types and remote 
sensing data: on global data sets (Bacour et al., 2006; Baret et al., 2007), on 
agricultural crops (Atzberger, 2004; Jacquemoud et al., 2000; Jacquemoud et al., 
1995;), on semiarid regions (Qi et al., 2000), and on forests (Gemmell et al., 2002; 
Kötz et al., 2004; Meroni et al., 2004; Schlerf and Atzberger, 2006; Zarco-Tejada et 
al., 2004a; Zarco-Tejada et al., 2004b). Many other studies have analyzed simulated 
data (Gong et al., 1999; Weiss et al., 2000). Despite these efforts, the review of the 
literature reveals that there is a gap in estimating vegetation biophysical and 
biochemical variables for heterogeneous areas such as heterogeneous grasslands 
with combinations of different grass species. Furthermore, studies that use 
hyperspectral measurements and that include validation with large numbers of 
ground truth data for heterogeneous grasslands are extremely rare. 

 
The main objective of this study was to estimate and predict canopy 

characteristics such as LAI and chlorophyll content in a heterogeneous 
Mediterranean grassland by inverting the canopy radiative transfer model 
PROSAIL (Jacquemoud and Baret, 1990; Verhoef, 1984; Verhoef, 1985). The 
study is based on canopy spectral reflectance measured during a field campaign in 
the summer of 2005 in Majella National Park in Italy. A LUT-based inversion 
algorithm has been used, accounting for available prior information relating to the 
distribution (probable range) of several vegetation characteristics. The suitability of 
the methods is analyzed in terms of prediction accuracy for estimating LAI, leaf 
chlorophyll content and canopy chlorophyll content.  

 

5.2. Material and methods 

5.2.1. Study area and sampling  
The study site is located in Majella National Park, Italy (latitude 41°52' to 

42°14'N, longitude 13°14' to 13°50'E). The park covers an area of 74,095 ha and 
extends into the southern part of Abruzzo, at a distance of 40 km from the 
Adriatic Sea. The region is situated in the massifs of the Apennines. The park is 
characterized by several mountain peaks, the highest being Mount Amaro (2794 
m). Geologically, the region is made up of calcareous rocks, which date back to the 
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Jurassic period. The flora of the park include more than 1800 plant species, which 
constitute approximately one third of the entire flora of Italy (Cimini, 2005).  

 
Abandoned agricultural areas and settlements in Majella are returning to oak 

(Quercus pubescens) woodlands at the lower altitude (400 m to 600 m) and beech 
(Fagus sylvatica) forests at higher altitudes (1200 m to 1800 m). Between these two 
formations is a landscape composed of shrubby bushes, patches of grass/herb 
vegetation, and bare rock outcrops. The dominant grass and herb species include 
Brachypodium genuense, Briza media, Bromus erectus, Festuca sp, Helichrysum italicum, 
Galium verum, Trifolium pratense, Plantago lanceolata, Sanguisorba officinalis and Ononis 
spinosa (Cho, 2007).  

 
Stratified random sampling was adopted in this study. For this purpose, the 

area was stratified into grassland, forest, shrubland and bare rock outcrops, using a 
land cover map provided by the management of Majella National Park. We 
distinguished four main phytosociological classes of varying areas within the 
grasslands: semi-natural/farmlands, grazed/periodically flooded areas, open 
garrigues and abandoned farmlands. Coordinates (x y) were randomly generated in 
the grassland stratum to select plots. A total of 45 quadratic plots of 30 m side 
length were generated and a GPS (Global Positioning System) was used to locate 
their position in the field. To increase the number of samples in the time available, 
within each plot four to five randomly selected subplots were identified. This 
resulted in a total of 185 subplots being sampled (from the original 191 subplots, 
six subplots showed poor quality and had to be discarded). Each subplot covered 1 
m x 1 m (average vegetation height, 28 cm), with different species compositions 
and relative abundances while the within-subplot variability was small. The species 
varied in terms of leaf shape, leaf size, the amount of leaves and their typical angle 
distribution. The within-subplot variability of SPAD measurements also indicated 
some variation in chlorophyll contents, albeit this has not been quantified within 
the present study.  

 

5.2.2. Canopy spectral measurements  
Fifteen replicates of canopy spectral measurements were taken from each 

subplot, using a GER 3700 (Geophysical and Environmental Research 
Corporation, Buffalo, New York) spectroradiometer. The wavelength range is 350 
nm to 2500 nm, with a spectral sampling of 1.5 nm in the 350 nm to 1050 nm 
range, 6.2 nm in the 1050 nm to 1900 nm range, and 9.5 nm in the 1900 nm to 
2500 nm range. The spectral resolution (band pass) is 3 nm, 11 nm and 16 nm in 
the 350 nm to 1050 nm range, 1050 nm to 1900 nm range, and 1900 nm to 2500 
nm range, respectively. 

 
The fiber optic, with a field of view of 25°, was handheld approximately 1 m 

above the ground at nadir position. The ground area observed by the sensor had a 
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diameter of 45 cm and was large enough to cover the center of the subplots 
without being influenced by the surroundings. The 15 replicate spectral 
measurements taken from each subplot enabled the measurement noise to be 
averaged out. Prior to each reflectance measurement, the radiance of a white 
standard panel coated with BaSO4 and of known reflectivity was recorded for 
normalization of the target measurements. The fieldwork was conducted between 
June 15 and July 15 in 2005. To minimize atmospheric perturbations and BRDF 
effects, spectral measurements were made on clear sunny days between 11:30 a.m. 
and 2:00 p.m. The measurement set-up ensured that the ratio of direct to diffuse 
incoming solar radiation was approximately constant. Hence, no correction for this 
possibly perturbing factor has been applied. 

 
The spectral reflectance of bare soils were acquired from a few subplots with 

no vegetation and their average was calculated. Mean reflectance spectra are shown 
in Figure 5.1. We assumed that the measured soil optical properties were 
representative for the study area. 

 

5.2.3. LAI measurements  
In each subplot, LAI was non-destructively measured using a widely used 

optical instrument, the Plant Canopy Analyzer LAI-2000 (LICOR Inc., Lincoln, 
NE, USA). A detailed description of this instrument is given by LI-COR (1992) 
and Welles and Norman (1991). Measurements were taken either under clear skies 
with low solar elevation (i.e., within the two hours following sunrise or preceding 
sunset) or under overcast conditions. Care was taken to measure LAI on the same 
day as the canopy spectral measurements were made. To prevent direct sunlight on 
the sensor, samples of below- and above-canopy radiation were made with the sun 
behind the operator and using a view restrictor of 45°. For each subplot, reference 
sample of above-canopy radiation was taken by measuring incoming radiation 
above the grass subplot. Next, five below-canopy samples were collected and used 
to calculate the average LAI.  

 
LAI measured using the LAI-2000 corresponds to plant area index (PAI), 

including photosynthetic and non-photosynthetic components (Chen et al., 1997). 
In our study, non-photosynthetic components were almost non-existent. Despite 
the non-random distribution of grass leaves, no corrections for clumping were 
applied. Therefore, the LAI used here corresponds to effective PAI, and in the 
following sections these measurements are abbreviated as LAI. 

 
The statistics of the 185 samples comprising different grass species are 

summarized in Table 5.1. The table reveals a large range of LAI values, which 
enables the approach to be validated under contrasting conditions. 
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5.2.4. Chlorophyll measurements  
In each 1 m x 1 m subplot, a SPAD-502 Leaf Chlorophyll Meter (MINOLTA, 

Inc.) was used to assess leaf chlorophyll content. SPAD values express relative 
amounts of chlorophyll in leaves by measuring transmittance in the red (650 nm) 
and near-infrared (920 nm) wavelength regions (Minolta, 2003). SPAD 
measurements give a unitless but highly reproducible measure, which is well 
correlated with leaf chlorophyll concentration, and is commonly used to 
characterize chlorophyll concentration in many plant species (Campbell et al., 
1990; Haboudane et al., 2002; Jongschaap and Booij, 2004; Nakano et al., 2006). A 
total of 30 leaves representing the dominant species were randomly selected in 
each subplot, and their SPAD readings were recorded. From the 30 individual 
SPAD measurements, the average was calculated. These averaged SPAD readings 
(unitless) were converted into leaf chlorophyll content (µg cm-2) by means of an 
empirical calibration function provided by Markwell et al. (1995). Although the 
Markwell function refers to soybean and corn leaves, the same authors have 
demonstrated that they can also be applied to other plant species. Hence, we 
renounced to establish specific calibration functions for the grass species since 
each sample plot consist of several species. The total canopy chlorophyll content (g 
m-2) for each subplot was obtained by multiplying the leaf chlorophyll content by 
the corresponding LAI (Table 5.1). 

 
 

Table 5.1. Summary statistics of the measured biophysical and biochemical variables of grassland 
sample plots (n=185). SPAD is the average SPAD reading for 30 randomly selected leaves in each 
subplot; LCC is the leaf chlorophyll content; CCC is the canopy chlorophyll content. 

Measured variables Min Mean Max StDev Range Variation 
coefficient 

LAI (m2 m-2) 0.39 2.81 7.34 1.50 6.95 0.53 

SPAD (unitless) 22.4 32.70 45 4.35 22.6 0.13 

LCC (µg cm-2) 17.1 30.07 49.66 6.12 32.55 0.20 

CCC (g m-2) 0.1 0.87 2.7 0.55 2.56 0.63 

Dominant species 
number 

1 2.34 4 0.87 3 0.37 

 
 

5.2.5. Pre-processing of spectra 
To minimize noise in the measured reflectance spectra, the 15 spectra of each 

sample plot were averaged. Bands with a wavelength less than 400 nm and more 
than 2400 nm displayed very high levels of noise and were excluded. The resulting 
584 wavebands were used for the analysis. A moving Savitzky-Golay filter 
(Savitzky and Golay, 1964) with a frame size of 15 data points (2nd degree 



Inversion of a radiative transfer model 

 82 

polynomial) was applied to the averaged reflectance measurements to further 
smooth the spectra. The analysis and processing was carried out using MATLAB 
7.1 (Mathwork, 2007). In total, 185 canopy reflectance spectra were obtained. The 
average reflectance spectra of all grass subplots and the spectral variability of the 
measurements are shown in Figure 5.1. 
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Figure 5.1. Mean and the spectral variability of the canopy reflectance spectra of sample plots 
(n=185) in Majella National Park, Italy. Also shown is the averaged reflectance spectrum of the bare 
soil that has been used in the radiative transfer modeling (in bold dashed line). 

 

5.2.6. The PROSAIL radiative transfer model 
The widely used PROSAIL radiative transfer model, which is a combination of 

the SAILH canopy reflectance model (Verhoef, 1984; Verhoef, 1985; Kuusk, 1991) 
and the PROSPECT leaf optical properties model (Jacquemoud and Baret, 1990), 
was used to retrieve the LAI and leaf and canopy chlorophyll contents. Both 
submodels are relatively simple and need only a limited number of input 
parameters, with reasonable computation time. By inverting the coupled models, 
both the leaf and canopy parameters can be estimated.  

 
The PROSPECT model (Fourty et al., 1996; Jacquemoud and Baret, 1990; 

Jacquemoud et al., 1996) calculates the leaf hemispherical transmittance and 
reflectance as a function of four input parameters, i.e., the leaf structural 
parameter, N (unitless); the leaf chlorophyll a + b concentration, LCC (µg cm-2); 
the dry matter content, Cm (g cm-2); and the equivalent water thickness, Cw (g cm-2) 
(Jacquemoud et al., 2000). The spectral leaf optical properties (reflectance and 
transmittance) calculated by PROSPECT are inputs into the SAILH canopy 
reflectance model. This model (Verhoef, 1984; Verhoef, 1985) is a one-
dimensional bidirectional turbid medium radiative transfer model that has been 
later modified to take into account the hot spot effect in plant canopy reflectance 
(Kuusk, 1991). Turbid medium defines the canopy as a horizontally homogenous 
and semi-infinite layer that consists of small vegetation elements that act as 
absorbing and scattering particles of a given geometry and density. Consequently, 
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the model is best adopted for use in homogeneous vegetation canopies (Meroni et 
al., 2004; Schlerf and Atzberger, 2006; Verhoef, 1984). Apart from the leaf 
reflectance and transmittance, the SAILH model requires eight input parameters to 
produce the top-of-canopy bidirectional reflectance. These are sun zenith angle, ts 
(deg); sensor viewing angle, to (deg); azimuth angle, phi (deg); fraction of diffuse 
incoming solar radiation, skyl; background reflectance (soil reflectance) for each 
wavelength, rsl; LAI (m2 m-2); mean leaf inclination angle, ALA (deg); and hot 
spot size parameter, hot (m m-1), defined as the ratio between the average size of 
the leaves and the canopy height (Verhoef, 1985). To account for the changes 
induced by moisture and roughness in soil brightness, we used a soil brightness 
parameter, scale (Atzberger et al., 2003). Therefore, when the two models are 
coupled, 12 input parameters considering the leaf, the canopy and the soil have to 
be specified. Of the 12 input parameters, four parameters, (sun zenith angle, sensor 
viewing angle, azimuth angle and fraction of diffuse incoming solar radiation) were 
fixed. For the eight remaining input parameters (LAI, mean leaf inclination angle, 
hot spot size parameter, soil brightness parameter, leaf structural parameter, leaf 
chlorophyll a + b concentration, dry matter content and the equivalent water 
thickness), 100,000 sets were generated randomly (Table 5.2). 

 

5.2.7. The look-up table (LUT) inversion  
Perhaps the simplest method of solving the inversion of a radiative transfer 

model is by using a LUT. LUTs offer an interesting alternative to numerical 
optimization and neural network methods because they permit a global search 
(avoiding local minima) while showing less unexpected behavior when the spectral 
characteristics of the targets are not well represented by the modeled spectra 
(Schlerf and Atzberger, 2006). A LUT is built in advance of the actual inversion 
through forward calculations using a radiative transfer model. For the inversion, 
only search operations are needed to identify the parameter combinations that 
yield the best fit between measured and LUT spectra. However, to achieve high 
accuracy for the estimated parameters, the dimension of the LUT must be 
sufficiently large (Combal et al., 2002; Tang et al., 2006; Weiss et al., 2000).  

 
To build the LUT, 100,000 parameter combinations were randomly generated 

(uniform distributions) and used in the forward calculation of the PROSAIL 
model. We also tested normally distributed random parameters and found no 
significant differences (not shown). The ranges (minimum and maximum) for each 
of the eight “free” model parameters are reported in Table 5.2. To prevent too-
wide parameter spaces and to reduce the size of the parameter spacing, the 
maximum and minimum values of LAI, LCC, and ALA (recorded along with LAI 
using LAI-2000 instrument) were fixed based on the prior knowledge from the 
field data collection (Combal et al., 2003). Parameters difficult to measure (e.g., N, 
Cm, Cw) are often fixed to nominal values (e.g. Chaurasia and Dadhwal, 2004; 
Haboudane et al., 2004; Houborg et al., 2007; le Maire et al., 2004). For the leaf 
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structural parameter N of PROSPECT, Haboudane et al. (2004) and Houborg et 
al. (2007) have used a fixed value of 1.55 for various crops, including corn, 
soybean, wheat and spring barley. Jacquemoud et al. (2000) have used a fixed value 
of N = 1.7 for soybean. Atzberger et al. (2003) have used a range of N = 2 ± 0.34 
for wheat crop. Since grasses have relatively thin leaves, we used for the N 
parameter a range from 1.5 to 1.9. The ranges of other input parameters (Cw, Cm, hot 
and scale) were selected similarly in agreement with the existing literature 
(Atzberger, 2004; Cho, 2007; Combal et al., 2003; Haboudane et al., 2004; le Maire 
et al., 2004; Schlerf and Atzberger, 2006). 

 
We used the average bare soil reflectance spectrum that was measured in the 

study area to represent soil optical properties (Figure 5.1). Since the spectral 
measurements were done around noon with the sensor looking at nadir position, 
the sensor viewing angle (to), the relative azimuth angle (phi) and the average sun 
zenith angle (ts) were fixed at 0º, 0º and 30º, respectively, representing the geometry 
of the measurement setup. With respect to the fraction of diffuse incoming solar 
radiation, skyl, a fixed value of 0.1 across all wavelengths has been used, as in many 
similar studies (Cho, 2007; Schlerf and Atzberger, 2006). Hence, we neglect that 
the amount of diffuse sky light depends on atmospheric conditions, solar zenith 
angle and furthermore is wavelength dependent. This simplification seems 
justified, however, by the fact that skyl has only a very small influence on canopy 
reflectance (Clevers and Verhoef, 1991) and by the lack of on-site measurements 
of skyl.  

 
 

Table 5.2. Specific ranges for eight input parameters used for generating the LUT, using forward 
calculation, of the PROSAIL model. Within the specified ranges, parameter values were drawn 
randomly (uniform distributions). 

Parameter Abbreviation 
in model 

Unit Minimum 
value 

Maximum 
value 

 
Leaf area index* LAI m2 m-2 0.3 7.5 

Mean leaf inclination angle* ALA Deg 40 70 

Leaf chlorophyll content* LCC µg cm-2 15 55 

Leaf structural parameter N No dimension 1.5 1.9 

Dry matter content Cm g cm-2 0.005 0.01 

Equivalent water thickness Cw g cm-2 0.01 0.02 

Hot spot size parameter hot m m-1 0.05 0.1 

Soil brightness parameter scale No dimension 0.5 1.5 

* The minimum and maximum values are selected based on the prior knowledge from the field.  
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To find the solution to the inverse problem for a given canopy spectrum for 
each modeled reflectance spectrum of the LUT, the RMSE between measured and 
modeled spectra (RMSEr) is calculated according to: 

 

n
RR

RMSE
n

i lutmeasured
r

∑ =
−

= 1
2)(

λλ          (Eq. 1) 

 
where Rmeasured is a measured reflectance at wavelength λ and Rlut is a modeled 

reflectance at wavelength λ in the LUT, and n is the number of wavelengths. 
Traditionally, the solution is regarded as the set of input parameters corresponding 
to the reflectance in the LUT that provides the smallest RMSEr. However, this 
solution is not always the optimal solution since it may not be unique (ill-posed 
problem). To overcome this problem and to enhance the consistency of the 
estimated variables, we also investigated the use of some other statistical indicators, 
such as the mean and median from the best 10, 20, 40 and 100 simulations. 

 
An appropriate band selection – or alternatively, the weighting of different 

spectral bands – is known to improve radiative transfer model inversion and 
prevents bias in the estimation of the variables of interest (Bacour et al., 2001; 
Meroni et al., 2004; Schlerf and Atzberger, 2006; Lavergne et al., 2007). This is 
particularly the case if hyperspectral data with wavelengths that are either noisy or 
not well modeled by the radiative transfer model being inverted. Nevertheless, the 
selection of an optimal spectral subset/weighting of spectral bands is not a trivial 
problem and is still an open issue within the remote sensing community (Meroni et 
al., 2004; Lavergne et al., 2007). 

 
To investigate the role of heterogeneity (number of dominant plant species 

within a subplot) in the estimation of grass variables, we also stratified the data 
based on dominant species composition.  

 

5.3. Results 

5.3.1. Grass characteristics 
Each subplot varied in species composition and biophysical/biochemical 

characteristics (Table 5.1). Consequently, spectral reflectance measurements 
showed considerable variability (Figure 5.1). Linear correlation between the canopy 
characteristics confirmed independence between leaf chlorophyll content and LAI, 
while LAI and canopy chlorophyll content were highly correlated (Table 5.3). This 
is explained by larger coefficient of variation of LAI compared to leaf chlorophyll 
content (Table 5.1).  
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Table 5.3. Linear correlation between grass canopy characteristics (n=185). LCC is the leaf 
chlorophyll content; and CCC is the canopy chlorophyll content. 

Grass canopy characteristic LAI (m2 m-2) LCC (µg cm-2) 

LCC (µg cm-2) 0.24 - 

CCC (g m-2) 0.94 0.50 

Correlation coefficients significant at P≤0.001 
 

5.3.2. Inversion results based on the smallest RMSE criterion 
To find the solution to the inverse problem, the LUT is sorted according to the 

cost function (RMSEr) and the set of variables providing the minimum RMSE is 
considered as the solution. Figure 5.2 illustrates measured and simulated canopy 
reflectance spectra found in this way for three subplots with contrasting LAI 
values. 
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Figure 5.2. Measured and simulated grass canopy reflectance spectra of three sample plots with LAI 
equal to 0.9 (top left), 2.82 (top right), and 6.16 (bottom), respectively. 
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In the examples, the simulated reflectances were in relatively good agreement 
with the measured reflectances for canopies with different LAI values. From 
analysis of 185 canopy reflectance spectra, we found that medium range LAI 
sample plots were best modeled by PROSAIL (lowest RMSEr between measured 
and modeled spectra). In general, differences between measured and modeled 
spectral reflectances were inconsistent, even among canopies with a single species. 
Figure 5.3 demonstrates the average absolute error (AAE) between measured and 
best-fit spectra as a function of wavelengths. The figure shows that the AAE in 
some regions is relatively high, especially for the water vapor absorption regions 
(1135 nm to 1400 nm, and 1820 nm to 1940 nm). The canopy reflectance in these 
regions is either not well measured or not well modeled by PROSAIL (see section 
5.3.5 for spectral subsetting). 
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Figure 5.3. The average absolute error (AAE) between measured and best-fit reflectance spectra as a 
function of wavelengths. The AAE has been calculated from the 185 measured canopy spectra 
against the best fitting look-up table (LUT) spectra. 

 
 
The relation between the measured and estimated grass variables based on the 

smallest RMSE criterion is demonstrated in Figure 5.4. The R2 and the normalized 
RMSE (NRMSE = RMSE/range) (Atzberger, 1997; Combal et al., 2003) between 
measured and estimated leaf chlorophyll content indicate poor relationships. LAI 
and canopy chlorophyll content were estimated with much higher accuracy. As the 
canopy reflectance is modulated mostly by LAI and the integrated chlorophyll 
content of the canopy (hence canopy chlorophyll content), which both showed 
considerable variability (Table 5.1), the poor retrieval of the leaf chlorophyll 
content was expected (lower variability).  

 
Studying the histograms of the other 6 retrieved parameters (Cm, Cw, scale, ALA, 

hot and N) revealed that several (160 out of 185) samples plots reached the 
upper/lower boundary of at least one model parameter. As the parameter ranges 
were relatively large and consistent with available field observations (Table 5.2), we 
believe that some wavelengths are either badly measured or not well modeled by 
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the combined SAILH and PROSPECT canopy reflectance model (Schlerf & 
Atzberger 2006). 
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Figure 5.4. Estimated versus measured grass variables in Majella National Park, Italy, using the 
minimum RMSE criterion (n=185). Top left: LAI; Top right: leaf chlorophyll content (LCC); and 
bottom: canopy chlorophyll content (CCC). 

 

5.3.3. Inversion results based on multiple solutions 
For each measured canopy spectra, the LUT was sorted from minimum to 

maximum RMSEr (Eq. 1). Instead of taking simply the PROSAIL parameter 
corresponding to the lowest RMSEr (section 5.3.2), we alternatively tested to 
consider the best 10, 20, 40 and 100 LUT entries as final solution. The importance 
of considering multiple solutions rather than the single LUT solution with 
minimum RMSE is seen from Table 5.4. It demonstrates how different solutions 
affect the accuracy of the estimated variables. We used one-way ANOVA (analysis 
of variance) to evaluate the existence of significant differences in the mean R2 
between the median/mean for the three biophysical grass variables. The test was 
conducted for the four multiple solutions (i.e., the first 10, the first 20, the first 40 
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and the first 100 best fits). The results show that, generally, there are no significant 
differences between the statistical parameters used for any number of solutions 
(p>0.05). Nevertheless, throughout the rest of this study we considered the first 
100 solutions as the best measures for estimating the grass variables.  

 
 

Table 5.4. R2, RMSE and normalized RMSE between measured and estimated grass characteristics 
(n=185). The standard LUT solution is indicated as “best fitting spectra”. The grass characteristics 
were also retrieved considering the first 10, 20, 40 and 100 solutions. In these cases, the median and 
mean were investigated. LCC is the leaf chlorophyll content and CCC is the canopy chlorophyll 
content. 

LAI (m2 m-2) LCC (µg cm-2) CCC (g m-2) No. of 
Solution 

Statistical 
parameter 

R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE 

Best 
fitting 
spectra 

/ 0.59 1.28 0.18 0.27 6.8 0.21 0.70 0.45 0.18 

First 10 Median 
Mean 

0.61 
0.62 

1.21 
1.18 

0.17 
0.17 

0.31
0.30

5.7 
6.0 

0.18 
0.18 

0.71
0.71

0.43 
0.43 

0.17 
0.17 

First 20 Median 
Mean 

0.61 
0.62 

1.18 
1.15 

0.17 
0.17 

0.34
0.33

5.7 
5.7 

0.18 
0.18 

0.71
0.72

0.44 
0.43 

0.17 
0.17 

First 40 Median 
Mean 

0.60 
0.61 

1.21 
1.18 

0.17 
0.17 

0.24
0.27

7.5 
6.6 

0.23 
0.20 

0.70
0.70

0.45 
0.44 

0.18 
0.17 

First 100 Median 
Mean 

0.64 
0.63 

1.1 
1.1 

0.16 
0.16 

0.35
0.35

5.3 
5.4 

0.16 
0.17 

0.72
0.72

0.42 
0.42 

0.16 
0.16 

 
 

5.3.4. Inversion results based on stratification of heterogeneity 
According to the number of dominant species, the subplots were divided into 

seven data sets (Table 5.5). The statistical analysis was done separately for each of 
the seven data sets. We considered the “best fitting spectra” and the first 100 
solutions for estimating the grass variables (see section 5.3.3). Table 5.5 shows the 
results of this stratification. 
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Table 5.5. R2, RMSE and normalized RMSE between measured and estimated grass canopy variables 
considering stratification based on subplot heterogeneity. LCC is the leaf chlorophyll content and 
CCC is the canopy chlorophyll content. 

LAI (m2 m-2) LCC (µg cm-2) CCC (g m-2) Strat. 
/Domin
. species 

Statistical 
parameter R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE 

One 
species 
(n=32) 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.81 
 

0.85 
 

0.85 

0.76 
 

0.68 
 

0.67 

0.11 
 

0.10 
 

0.10 

0.21 
 

0.19 
0.17 

6.3 
 

6.4 
 

6.6 

0.34 
 

0.34 
 

0.35 

0.78 
 

0.84 
 

0.83 

0.31 
 

0.30 
 

0.31 

0.16 
 

0.16 
 

0.16 

Two 
species 
(n=75) 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.69 
 

0.69 
 

0.69 

1.1 
 

1.1 
 

1.1 

0.17 
 

0.17 
 

0.17 

0.37 
 

0.41 
 

0.40 

6.2 
 

5.3 
 

5.4 

0.20 
 

0.17 
 

0.18 

0.79 
 

0.78 
 

0.78 

0.43 
 

0.45 
 

0.44 

0.17 
 

0.18 
 

0.18 

Three 
species 
(n=59) 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.55 
 

0.56 
 

0.56 

1.6 
 

1.2 
 

1.2 

0.33 
 

0.25 
 

0.25 

0.13 
 

0.32 
 

0.33 

6.9 
 

5.0 
 

4.8 

0.28 
 

0.20 
 

0.20 

0.58 
 

0.60 
 

0.61 

0.51 
 

0.41 
 

0.41 

0.24 
 

0.19 
 

0.19 

Four 
species 
(n=19) 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.37 
 

0.38 
 

0.38 

1.49 
 

1.3 
 

1.3 

0.37 
 

0.32 
 

0.32 

0.26 
 

0.45 
 

0.45 

7.03 
 

4.4 
 

4.6 

0.37 
 

0.23 
 

0.24 

0.50 
 

0.53 
 

0.54 

0.56 
 

0.48 
 

0.48 

0.36 
 

0.31 
 

0.31 

Up to 
two 
species 
(n=107) 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.71 
 

0.72 
 

0.71 

0.99 
 

0.97 
 

0.97 

0.14 
 

0.14 
 

0.14 

0.40 
 

0.41 
 

0.40 

6.2 
 

5.6 
 

5.8 

0.19 
 

0.17 
 

0.18 

0.80 
 

0.80 
 

0.80 

0.40 
 

0.41 
 

0.41 

0.16 
 

0.16 
 

0.16 

Up to 
three 
species 
(n=166) 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.62 
 

0.66 
 

0.66 

1.26 
 

1.1 
 

1.1 

0.18 
 

0.16 
 

0.16 

0.26 
 

0.34 
 

0.33 

6.5 
 

5.4 
 

5.4 

0.20 
 

0.17 
 

0.17 

0.72 
 

0.74 
 

0.74 

0.44 
 

0.41 
 

0.41 

0.17 
 

0.16 
 

0.16 

Up to 
four 
species 
(n=185) 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.59 
 

0.64 
 

0.63 

1.28 
 

1.1 
 

1.1 

0.18 
 

0.16 
 

0.16 

0.27 
 

0.35 
 

0.35 

6.8 
 

5.3 
 

5.4 

0.21 
 

0.16 
 

0.17 

0.70 
 

0.72 
 

0.72 

0.45 
 

0.42 
 

0.42 

0.18 
 

0.16 
 

0.16 

 
 
It can be seen from Table 5.5 that stratification based on the number of species 

has a strong influence on the estimation accuracy for the grass variables, in 
particular for LAI and canopy chlorophyll content. For leaf chlorophyll content, 
on the other hand, no trend could be observed. The estimation accuracy for LAI 
increased considerably, from R2 = 0.59, NRMSE = 0.18 for up to four species (i.e., 
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all subplots) to R2 = 0.81, NRMSE = 0.11 for one species. As regards canopy 
chlorophyll content, the effect of species reduction was weaker (up to four species: 
R2 = 0.70, NRMSE = 0.18; one species R2 = 0.78, NRMSE = 0.16). The table also 
indicates that the inversion of the PROSAIL model enables grass variables to be 
estimated with relatively good accuracy if only canopies with up to two species are 
considered (LAI: R2 = 0.71, NRMSE = 0.14; CCC: R2 = 0.80, NRMSE = 0.16). 
Measured and estimated grass variables of subplots with up to two species are 
shown in Figure 5.5. The result suggests that the PROSAIL model is not well 
adapted to multi-species grasslands. 
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Figure 5.5. Measured versus estimated grass variables based on subplots with up to two species in 
Majella National Park, Italy (n=107). Top left: LAI, Top right: leaf chlorophyll content, and bottom: 
canopy chlorophyll content. 

 
 
Figure 5.5 shows that LAI values up to 4 were better estimated than higher LAI 

values. It seems that canopies with LAI values greater than 4 were somehow 
overestimated, whereas canopies with LAI values less than 4 were slightly 
underestimated. This is seen in the linear relation between measured and retrieved 
LAI that gave a slope of 0.96 and an intercept of 0.28, and can be considered both 
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as model error and bias in the reference measurements. Comparison of Figures 4 
and 5 reveals that larger scatter was introduced in the estimated grass variables by 
increasing the number of species. This again confirms that the PROSAIL model is 
best adapted to canopies with few species (for which it was conceived). No 
relationships were observed between RMSEr (best fit) and the residuals of the 
variables (R2 = 0.008, 0.057 and 0.007 for LAI, leaf chlorophyll content and 
canopy chlorophyll content, respectively), indicating that the model was properly 
fitted.  

5.3.5. Inversion results based on spectral sampling  
In this study, three spectral subsets have been used. Two subsets were prepared 

based on the results of a previous study by Darvishzadeh et al. (2008c) that 
included the selection of wavelengths through stepwise multiple linear regression 
(Table 5.6), as well as the use of a subset of wavelengths closely related to 
vegetation parameters identified from literature (Cho et al., 2007; Darvishzadeh et 
al., 2008c) (Table 5.7). The third subset was constructed based on the average 
absolute error (AAE) between the measured and best-fit reflectance spectra 
(Figure 5.3). We considered the bands with an AAE greater or equal to 0.02 as 
wavelengths with high errors. These bands were systematically excluded (one by 
one) in the inversion process, and each time the AAE between the measured and 
best-fit reflectance spectra was calculated until the remaining wavelengths were left 
with an AAE smaller than 0.02. Figure 5.6 shows the distribution of the spectral 
regions with an AAE greater or equal to 0.02 that were removed from the existing 
wavelengths. The remaining wavebands (384) were considered as our third spectral 
subset. Spectral subsets were prepared for the entire field data set (n=185).  

 
The role of the spectral subsets in the estimation of grass variables was again 

evaluated on the basis of the R2 and the (normalized) RMSE between the 
measured and estimated grass variables. The results showed that, compared with 
using all wavebands, employing spectral subset I (Table 5.6) gave significantly 
larger errors for LAI and leaf chlorophyll content     (Table 5.8). In contrast, by 
employing subset II (Table 5.7) and subset III (Figure 5.6) instead of the full 
spectral resolution (Table 5.8), the relationships between measured and estimated 
LAI (and leaf chlorophyll content) were almost similar.  

 
 

Table 5.6. Selected spectral sampling set (Darvishzadeh et al., 2008c) based on stepwise multiple 
linear regressions. The 12 wavelengths have been pooled together and are called subset I. 

Wavelength (nm) Vegetation parameters 

440, 738, 1394, 1402, 1607 LAI 

747, 748, 1425, 1660, 2391 Canopy chlorophyll content 

529, 564 Leaf chlorophyll content 
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Table 5.7. Selected spectral sampling set (Cho et al., 2007; Darvishzadeh et al., 2008c) based on 
literature. This set of wavelengths is called subset II. 

Wavelength 
(nm) 

Vegetation parameters Reference 

466 Chlorophyll b Curran (1989) 
695 Total chlorophyll  Gitelson and Merzlyak (1997), Carter (1994) 
725 Total chlorophyll, leaf mass  Horler et al. (1983) 
740 Leaf mass, LAI Horler et al. (1983) 
786 Leaf mass Guyot and Baret (1988) 
845 Leaf mass, total chlorophyll Thenkabail et al. (2004) 
895 Leaf mass, LAI Schlerf et al. (2005), Thenkabail et al. (2004) 
1114 Leaf mass, LAI Thenkabail et al. (2004) 
1215 Plant moisture, cellulose, starch Curran (1989), Thenkabail et al. (2004) 
1659 Lignin, leaf mass, starch Thenkabail et al. (2004) 
2173 Protein, nitrogen Curran (1989) 
2359 Cellulose, protein, nitrogen Curran (1989) 

 
 
However, it seemed that the estimation accuracies between measured and 

estimated canopy chlorophyll content improved using all three subsets (Table 5.8). 
This shows that the full hyperspectral resolution is not automatically more 
advantageous than a carefully designed multi-spectral sensor (e.g., Fourty and 
Baret, 1997). For example, some bands may contain (excessively) high noise levels 
and therefore damage the results. The same holds for bands that, for various 
reasons, are not well modeled by the radiative transfer model (see Figure 5.3, the 
water absorption regions). 
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Figure 5.6. The distribution of the spectral regions with average absolute error (AAE) greater or equal 
to 0.02 that were removed from the existing wavelengths. The remaining 384 wavebands are called 
subset III. 
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Table 5.8. R2, RMSE and normalized RMSE between measured and estimated grass canopy variables 
(n=185) relating to the spectral subsets. LCC is the leaf chlorophyll content, and CCC is the canopy 
chlorophyll content. 

LAI (m2 m-2) LCC (µg cm-2) CCC (g m-2) Spectral 
sampling set 

Statistical 
parameter R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE 

 

Using all 
wavelengths 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.59 
 

0.64 
 

0.63 

1.28 
 

1.1 
 

1.1 

0.18 
 

0.16 
 

0.16 

0.27
 

0.35
 

0.35

6.8 
 

5.3 
 

5.4 

0.21 
 

0.16 
 

0.17 

0.70 
 

0.72 
 

0.72 

0.45 
 

0.42 
 

0.42 

0.18 
 

0.16 
 

0.16 

Subset I 
(Table 5.6) 
 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.45 
 

0.50 
 

0.50 

1.6 
 

1.35 
 

1.37 

0.23 
 

0.19 
 

0.20 

0.07
 

0.25
 

0.28

12.2 
 

9.1 
 

8.5 

0.37 
 

0.28 
 

0.26 

0.53 
 

0.64 
 

0.64 

0.40 
 

0.34 
 

0.34 

0.16 
 

0.13 
 

0.13 

Subset II 
(Table 5. 7) 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.53 
 

0.61 
 

0.61 

1.28 
 

1.1 
 

1.1 

0.18 
 

0.16 
 

0.16 

0.24
 

0.33
 

0.32

6.2 
 

5.2 
 

5.11 

0.19 
 

0.16 
 

0.16 

0.62 
 

0.70 
 

0.70 

0.42 
 

0.34 
 

0.35 

0.16 
 

0.13 
 

0.14 

Subset III 
(Figure 5.6) 
 

Best fitting 
spectra 

Median of 
100 

Mean of 100 

0.56 
 

0.63 
 

0.63 

1.29 
 

1.05 
 

1.05 

0.19 
 

0.15 
 

0.15 

0.24
 

0.35
 

0.34

6.6 
 

5.3 
 

5.4 

0.20 
 

0.16 
 

0.17 

0.68 
 

0.71 
 

0.71 

0.44 
 

0.40 
 

0.40 

0.17 
 

0.16 
 

0.16 

 
 

5.4. Discussion 
The canopy-integrated chlorophyll content (LAI x leaf chlorophyll content) 

strongly reflects the variability of LAI as the leaf chlorophyll content was relatively 
stable (Table 5.1). The inclusion of canopy chlorophyll content allows us to assess 
whether canopy reflectance is a better predictor of leaf or canopy chlorophyll 
content. Among the grass characteristics studied, canopy chlorophyll content was 
best retrieved by the inversion algorithm. This is probably due to the information 
content that exists in this variable (information regarding LAI and leaf chlorophyll 
content, which are known to conjointly modulate canopy reflectance). The finding 
is in agreement with the results of a previous study by Darvishzadeh et al. (2008c), 
who also found that canopy chlorophyll content was estimated with the highest 
accuracy among all investigated grass variables when empirical regression 
techniques were used. 
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According to Meroni et al. (2004), Schlerf and Atzberger (2006) and Verstraete 
et al. (1996), simple homogeneous targets may require only one-dimensional 
models for an accurate description of their radiation field, whereas more complex 
heterogeneous targets require complex three-dimensional models. This may 
explain the fact that the estimation accuracy in this study increased (heterogeneous 
grassland) when data were stratified based on the number of species. This is 
confirmed by the estimation accuracy for LAI in subplots with only one type of 
species (R2 = 0.81, NRMSE = 0.14). The accuracy systematically decreased each 
time measurements with more (up to four) species were included in the inversion 
process, although this was less pronounced for canopy chlorophyll content. From 
a practical point of view, however, this will be difficult to implement in an 
operational monitoring program as this would require a mapping/knowledge of 
species number. The result indicates that the PROSAIL model is not well adapted 
to multi-species canopies. The inversion of PROSAIL under such conditions leads 
to a bias in the retrieved biophysical parameters. The higher estimation accuracy 
that may possibly be obtained through a three-dimensional model (because of its 
more realistic description of the reflected radiation field) is at the expense of its 
conceptual/computational complexity and requires a high number of input 
parameters. 

 
In general, the relationships between measured and estimated leaf chlorophyll 

content were poor in all inversion processes. This confirms other studies revealing 
similar difficulties in estimating leaf chlorophyll (Baret and Jacquemoud, 1994; 
Curran et al., 1992). This is also in line with previous studies that have 
demonstrated poor signal propagation from leaf to canopy scale (Asner, 1998; 
Jacquemoud et al., 1996; Yoder and Pettigrew-Crosby, 1995).  

 
According to Combal et al. (2003), three sources of prior information can be 

distinguished: ancillary data measured on site, knowledge of the type of canopy 
architecture, and knowledge of the typical distribution of canopy biophysical 
variables. Combal et al. (2003) as well as Meroni et al. (2004) have shown that 
utilizing prior information is an efficient way of solving the ill-posed problem and 
of improving the accuracy of the estimated canopy variables. In the case of 
spatialized (remote sensing) data, Atzberger (2004) showed that for mono-species 
canopies the intercorrelation between spectral bands also helps to constrain the ill-
posed inverse problem. Extensive field measurement in this study allowed us to 
identify the maximum and minimum values for the three parameters LAI, LCC 
and ALA, which increased the sampling density and facilitated the estimation of 
grass biophysical characteristics. 

 
For several sample plots at least one of the other 6 retrieved parameters (Cm, 

Cw, scale, ALA, hot and N) reached the upper/lower boundary. We argue that the 
possible reason is that some wavelengths are either badly measured or not well 
modeled by the combined SAILH and PROSPECT canopy reflectance model. 
Similar results have been found by Schlerf & Atzberger (2006) who demonstrated 
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that the PROSPECT leaf optical properties model is not simulating equally well 
the leaf optical properties across the 400-2500 nm wavelength range. The possible 
explanation of too restricted parameter ranges can be excluded as much wider 
ranges did not ameliorate the results (e.g. LAI: R2 = 0.37, RMSE = 2.46; CCC: R2 
= 0.56, RMSE = 1.27). 

 
Selecting subsets of wavelengths derived by Darvishzadeh et al. (2008c) from 

stepwise linear regression gave significantly higher errors for LAI and leaf 
chlorophyll content. This was not the case when the selection was based on 
literature results (subset II) or when only those wavelengths were chosen which 
were “well” modeled by PROSAIL (subset III). In these cases results similar to 
those obtained using all wavebands were obtained. The band selection from 
literature worked well, probably because we only considered wavelengths related to 
both biophysical and biochemical properties of vegetation, thus maximizing the 
information content in the input variables while eliminating all other wavelengths 
that introduce noise and model errors. Similarly, by eliminating wavelength having 
a high AAE (subset III), we eliminated noisy/badly modeled wavelengths. In the 
present study, we did not test whether including in the cost function the 
reflectance uncertainty matrix as shown for example by Lavergne et al. (2007) 
would improve the results. This would require to run the LUT inversion several 
times and to use boot-strap techniques to avoid loosing independency between 
measured and estimated biophysical variables. 

 
It has been demonstrated (Meroni et al., 2004; Schlerf and Atzberger, 2006) 

that the selection of a few wavebands will give often better results than those 
achieved using the full spectral resolution. The results in the present study (when 
using all bands) indicated a relatively good representation of the measured spectra 
by the PROSAIL model over most spectral regions (see Figures 5.2 and 5.3). 
Consequently, spectral subsetting did not clearly improve the parameter retrieval. 

 
The results of this study confirm that grass canopy characteristics such as leaf 

area index and canopy chlorophyll content can be estimated through the inversion 
of a radiative transfer model using hyperspectral measurements with accuracies 
comparable to those of statistical approaches (Darvishzadeh et al., 2008c), which is 
also supported by previous studies (Gemmell et al., 2002; Schlerf and Atzberger, 
2006). In contrast to statistical approaches, ground measured biophysical data may 
be almost entirely used for validating the retrieved model parameters (and to set 
the LUT ranges) and are not used to calibrate the radiative transfer model (except 
the soil reflectance spectra which has to be input into the radiative transfer model). 
Once an appropriate LUT has been built, it can in principle be applied to different 
remote sensing data acquired over similar vegetation types. 

 



Field level                Chapter 5 

 97 

5.5. Conclusion  
This study selected the widely used PROSAIL model to describe the radiation 

transfer in a heterogeneous Mediterranean grassland for use with hyperspectral 
data. For fast model inversion, a LUT approach was used. The LUT was built 
taking into account prior knowledge regarding LAI, LCC and ALA measured in 
the field. The accuracies of the retrieved vegetation variables are discussed on the 
basis of (i) the role of different ways of selecting the solution from the LUT (i.e., 
the best fitting spectra against the mean/median of the best 10 to 100 solutions), 
(ii) the stratification of data based on species heterogeneity, and (iii) the influence 
of spectral subsetting. We have demonstrated that the retrieval of canopy 
chlorophyll content and LAI at canopy level is feasible. However, accuracy 
decreases if the number of species within a subplot increases. This shows that the 
selected radiative transfer model is not well adapted to multi-species canopies. 

 
Several authors have used the PROSAIL model in homogeneous crop 

canopies. Its applicability to heterogeneous grasslands requires further experiments 
and validation work using different hyperspectral data sets. In this way scale and 
sensor effects as well as phenological influences can be studied. These factors may 
lead to (partially) different results. 

 
Unfortunately, the turbid medium assumption used in this model does not 

account for heterogeneities in the canopies (e.g., clumping effects, multiple leaf 
layers having different optical characteristics). Therefore, when the turbid medium 
hypotheses are violated, the model cannot realistically simulate the canopy 
reflectance, and the retrieved biophysical variables are expected to be biased 
(Meroni et al., 2004). Improvement in parameter retrieval may be expected from 
models that explicitly take into account canopy heterogeneities such as vertical leaf 
color gradient and clumping effects (e.g., Verhoef and Bach, 2007). However, 
heterogeneity is a relative term and is strongly scale dependent. Further studies are 
required to cope with the ill-posed inverse problem when inverting physically 
based radiative transfer models (e.g., Durbha et al. 2007). 
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Abstract  
Statistical and physical models have seldom been compared in studying 

grasslands. In this chapter, both modeling approaches are investigated for mapping 
LAI and canopy chlorophyll contents in a Mediterranean grassland using 
hyperspectral images. HyMap airborne images were acquired over Majella National 
Park, Italy, in early July 2005. In situ measurements of LAI and leaf chlorophyll 
content were collected during a field campaign concomitant with the time of image 
acquisition. We compared inversion of the PROSAIL radiative transfer model with 
narrow band vegetation indices and partial least squares regression. To assess the 
performance of the investigated models, the RMSE and R2 between in situ 
measurements and estimated parameters are reported. The results of the study 
demonstrate that the investigated biophysical grass canopy characteristics can be 
estimated through the inversion of a radiative transfer model with accuracies 
comparable to those of statistical approaches. Inversion of the PROSAIL model 
yielded high accuracies for LAI (R2=0.91, normalized RMSE=0.08) and for canopy 
chlorophyll content (R2=0.87, normalized RMSE=0.10). We found that a carefully 
selected spectral subset contains sufficient information for a successful radiative 
transfer model inversion. The advantage of physical models is that field 
measurements are not required for model calibration. Our results confirm that 
biophysical vegetation properties of Mediterranean grasslands can be accurately 
determined from remote sensing. 

 

6.1. Introduction 
Hyperspectral remote sensing measurements have enhanced the estimation of 

vegetation biophysical and biochemical characteristics (Ferwerda et al., 2005; Lee 
et al., 2004; Mutanga and Skidmore, 2004; Schlerf et al., 2005). Mapping and 
monitoring these characteristics is important for spatially distributed modeling of 
vegetation productivity, water and CO2 exchange, and surface energy balance (Pu 
et al., 2003; Turner et al., 1999). Among the many vegetation characteristics, leaf 
area index (LAI) and canopy chlorophyll content (CCC) are of prime importance 
(Bacour et al., 2006; Chen et al., 2002; Hansen and Schjoerring, 2003; Houborg et 
al., 2007). LAI, defined as one-sided leaf area divided by unit of horizontal surface 
area, is a key structural characteristic of vegetation because of the role of green 
leaves in controlling many biological and physical processes in plant canopies. 
Canopy chlorophyll content (defined as the product of LAI and leaf chlorophyll 
content) contributes to verifying vegetation physiological status and health, and has 
been found useful for detecting vegetation stress, photosynthetic capacity, and 
productivity (e.g., Boegh et al., 2002; Carter, 1994).  

 
In general, there are two common approaches to estimating vegetation 

biophysical and biochemical characteristics from remotely sensed data (Atzberger, 
1997; Liang, 2004). The statistical approach is associated with computation of 
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spectral vegetation indices or the use of several spectral bands in multiple (linear) 
regression models. The physical approach involves radiative transfer models 
(RTM) that describe, based on physical laws, the spectral/directional variation of 
canopy reflectance as a function of canopy, leaf and soil background characteristics 
(Goel, 1989; Liang, 2004). Both approaches have advantages and disadvantages. 
While statistical approaches are fast and easy to implement, the derived 
relationships are recognized as being sensor-specific and dependent on site and 
sampling conditions, and are expected to change in space and time (Baret and 
Guyot, 1991; Colombo et al., 2003; Gobron et al., 1997; Meroni et al., 2004). 
Conversely, radiative transfer models explaining the transfer and interaction of 
radiation inside the canopy, and hence offering an explicit connection between the 
vegetation biophysical and biochemical variables and the canopy reflectance 
(Houborg et al., 2007), are computationally more complicated and usually require 
additional input variables. Another drawback in using physically based models is 
the ill-posed nature of model inversion (Atzberger, 2004; Combal et al., 2002), 
meaning that the inverse solution is not always unique as various combinations of 
canopy parameters may yield almost similar spectra (Weiss and Baret, 1999). 

 
Numerous efforts to estimate and quantify vegetation properties by using 

remote sensing and either statistical or physically based approaches have been 
carried out in the last decades. Many of the previous studies, however, investigated 
homogeneous vegetation with typically one type of species, for example, 
agricultural crops (Atzberger, 2004; Atzberger et al., 2003a; Baret et al., 1987; 
Broge and Mortensen, 2002; Colombo et al., 2003; Danson et al., 2003; 
Jacquemoud et al., 2000; Walter-Shea et al., 1997) or forests (Chen et al., 1997; 
Disney et al., 2006; Fang et al., 2003; Gemmell et al., 2002; Kalacska et al., 2004; 
Meroni et al., 2004; Schlerf and Atzberger, 2006; White et al., 1997; Zarco-Tejada 
et al., 2004), or they were based on simulated data (Broge and Leblanc, 2001; 
Chaurasia and Dadhwal, 2004; Haboudane et al., 2004; Weiss et al., 2000). More 
research is required to assess the capability of different remote sensing retrieval 
algorithms in regard to heterogeneous (multiple species) grassland canopies. 
Mediterranean grasslands are characterized by highly heterogeneous canopies with 
a combination of different plant species in varying proportions, and appear to be 
challenging to remote sensing application as the reflectance is often a mixture of 
different surface materials (Fisher, 1997; Roder et al., 2007). 

 
The main objective of this study was to estimate and predict prime canopy 

characteristics such as LAI and canopy chlorophyll content in a heterogeneous 
Mediterranean grassland using both statistical and radiative transfer models. The 
study is based on airborne HyMap (Hyperspectral Mapping imaging spectrometer) 
hyperspectral images acquired in parallel with field reference measurements 
collected during a field campaign in summer 2005 in Majella National Park, Italy. 
The suitability of the methods is analyzed in terms of their prediction accuracy for 
estimating of LAI and canopy chlorophyll content.  
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6.2. Material  

6.2.1. Study area and sampling  
The study site is located in Majella National Park, Italy (latitude 41°52' to 

42°14'N, longitude 13°14' to 13°50'E). The park covers an area of 74,095 ha and 
extends into the southern part of Abruzzo, at a distance of 40 km from the 
Adriatic Sea. The region is situated in the massifs of the Apennines. The park is 
characterized by several mountain peaks, the highest being Mount Amaro (2794 
m). Geologically, the region is made up of calcareous rocks, which date back to the 
Jurassic period. The flora of the park includes more than 1800 plant species, which 
approximately constitute one third of the entire flora in Italy (Cimini, 2005).  

 
Abandoned agricultural areas and settlements in Majella are returning to oak 

(Quercus pubescens) woodlands at the lower altitude (400 m to 600 m) and beech 
(Fagus sylvatica) forests at higher altitudes (1200 m to 1800 m). Between these two 
formations is a landscape composed of shrubby bushes, patches of grass/herb 
vegetation, and bare rock outcrops. The dominant grass and herb species include 
Brachypodium genuense, Briza media, Bromus erectus, Festuca sp, Helichrysum italicum, 
Galium verum, Trifolium pratense, Plantago lanceolata, Sanguisorba officinalis and Ononis 
spinosa (Cho, 2007).  

 
Stratified random sampling with clustering was adopted in this study. For this 

purpose, the area was stratified into grassland, forest, shrubland and bare rock 
outcrops using a land cover map provided by the management of Majella National 
Park. We distinguish four main phytosociological classes of varying areas within 
the grasslands: semi-natural/farmlands, grazed/periodically flooded areas, open 
garrigues and abandoned farmlands. Coordinates (x y) were randomly generated in 
the grassland stratum to select plots. A total of 45 plots of 30 m x 30 m were 
generated and a GPS (Global Positioning System) was used to locate them in the 
field. For each plot, the relevant biophysical and biochemical parameters were 
measured within four to five randomly selected subplots (1 m x 1 m) and their 
averages per plot were calculated. The various plots were covered with different 
species compositions and relative abundances, while the within-plot variability was 
small. The species varied in terms of leaf shape, leaf size, the number of leaves and 
their typical angle distribution. The within-plot variability of SPAD measurements 
also indicated some variation in chlorophyll contents, albeit this has not been 
quantified within the present study. 

 

6.2.2. LAI measurements  
In each subplot, LAI was non-destructively measured using a widely used 

optical instrument, the Plant Canopy Analyzer LAI-2000 (LICOR Inc., Lincoln, 
NE, USA). A detailed description of this instrument is given by  LI-COR (1992) 
and Welles and Norman (1991). Measurements were taken either under clear skies 
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with low solar elevation (i.e., within two hours after sunrise or before sunset, 
respectively) or under overcast conditions. To prevent direct sunlight on the 
sensor, samples of below- and above-canopy radiation were made with the sun 
behind the operator and using a view restrictor of 45°. For each subplot, reference 
samples of above-canopy radiation were taken by measuring incoming radiation 
above the grass subplot. Next, five below-canopy samples were collected, from 
which the average subplot LAI was calculated.  

 
LAI measured using LAI-2000 corresponds to plant area index (PAI), including 

the photosynthetic and non-photosynthetic components (Chen et al., 1997). In our 
study, non-photosynthetic components were almost non-existent. Despite the 
non-random distribution of grass leaves, no corrections for clumping were applied. 
Therefore, LAI used here corresponds to effective PAI, and in the following 
sections these measurements are abbreviated as LAI. 

 

6.2.3. Chlorophyll measurements  
In each 1 m x 1 m subplot, a SPAD-502 Leaf Chlorophyll Meter (Minolta, Inc.) 

was used to assess leaf chlorophyll content. SPAD values express relative amounts 
of chlorophyll in leaves by measuring transmittance in the red (650 nm) and NIR 
(920 nm) wavelength regions (Minolta, 2003). SPAD measurements give a unitless 
but highly reproducible measure that is well correlated with leaf chlorophyll 
concentration, and is commonly used to characterize chlorophyll concentration in 
many plant species (Campbell et al., 1990; Haboudane et al., 2002; Jongschaap and 
Booij, 2004; Nakano et al., 2006). A total of 30 leaves representing the dominant 
species were randomly selected in each subplot, and their SPAD readings were 
recorded. From the 30 individual SPAD measurements, the average was calculated. 
These averaged SPAD readings (unitless) were converted into leaf chlorophyll 
contents (µg cm-2) by means of an empirical calibration function provided by 
Markwell et al. (1995). Although the Markwell function refers to soybean and corn 
leaves, the same authors have demonstrated that it can also be applied to other 
plant species (Markwell et al., 1995). Hence, we decided not to establish specific 
calibration functions for the grass species, since each sample plot consists of 
several species. The total canopy chlorophyll content (g m-2) for each subplot was 
obtained by multiplying the leaf chlorophyll content by the corresponding LAI. 

 

6.2.4. Image acquisition and pre-processing 
Airborne HyMap data of the study site were acquired on 4 July 2005. The flight 

was carried out by DLR, Germany’s Aerospace Research Centre and Space 
Agency. The HyMap sensor contained 126 wavelengths, operating over the 
spectral range of 436 nm to 2485 nm. The average spectral resolutions were 15 nm 
for 436 nm to 1313 nm, 13 nm for 1409 nm to 1800 nm, and 17 nm for 1953 nm 
to 2485 nm. The spatial resolution of the data was 4 m (average flight height 1983 
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m above ground). The images were taken concomitant with the field campaign. 
The data were collected in four image strips, each covering an area of about 40 km 
by 2.3 km. The image acquisition was close to solar noon and the solar zenith and 
azimuth angles for the four image strips ranged between 30º to 33.7º and 111.5º to 
121º, respectively. 

 

 
Figure 6.1. True color composite of HyMap image acquired on 4 July 2005 (bands 634, 542 and 452 
nm) showing part of the study area (Majella National Park, Italy). The red points demonstrate the 
distribution of sample plots in this part of the study area. 

 
 
The image strips were atmospherically and geometrically (sub-pixel accuracy) 

corrected by DLR. The atmospheric correction was performed using ATCOR4-r 
(Atmospheric and Topographic Correction software, rugged terrain), which is 
based on the MODTRAN-4 (MODerate spectral resolution atmospheric 
TRANsmittance) radiative transfer code. However, effects related to the sensor’s 
large field of view in across-track direction (Schiefer et al., 2006) were not 
accounted for, resulting in some visible artifacts towards the borders of the strips. 
Conversely, our sample plots were located mainly in the central parts of the images 
(Figure 6.1). 

 
The corrected strips were used to retrieve the spectra of each sample plot. As 

the pixel size of the images was 4 m, a 7 x 7 pixel window (i.e., 28 m x 28 m) 
centered around the central position of a plot was used for collecting grass spectra 
from each sample plot (30 m x 30 m). By taking only pixels located entirely in the 

¯
0 0.8 1.60.4 Km
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plot, we avoided border effects. From the 7 x 7 pixel window, the average 
spectrum was calculated. Owing to cloud coverage in some portions of the strips, 
the spectra of four of the 45 plots could not be extracted. Hence, only the 
remaining 41 plots were considered for the analysis. Table 6.1 summarizes the 
statistics of the measured variables for these plots. 

 
 

Table 6.1. Summary statistics of the measured biophysical and biochemical variables of grassland 
sample plots (n=41). SPAD is the average SPAD reading for 120 to 150 randomly selected leaves in 
each plot. To derive leaf chlorophyll content from SPAD readings, the Markwell et al. (1995) 
formulas have been used. CCC is the canopy chlorophyll content, being the product of LAI and leaf 
chlorophyll content. 

Measured variables Min Mean  Max  StDev  Range Variation 
coefficient 

LAI (m2 m-2) 0.72 2.87 7.54 1.59 6.8 0.55 

SPAD (unitless) 24.2 32.7 41.0 3.7 16.9 0.12 

Leaf chlorophyll (µg cm-2) 18.9 28.7 40.9 4.7 22.0 0.16 

CCC (g m-2) 0.21 0.86 2.3 0.56 2.10 0.65 

Dominant species number 1 2.34 4 0.81 3 0.35 

 

6.3. Methods 
We investigated radiative transfer model inversion and two statistical modeling 

techniques (narrow band vegetation indices and partial least squares regression) to 
estimate the LAI and canopy chlorophyll content of the studied grasslands.  

 

6.3.1. The narrow band vegetation indices 
Narrow band indices were computed from the extracted HyMap spectra using 

all possible two-band combinations, involving 126 wavelengths between 436 nm 
and 2485 nm. The normalized difference vegetation index (NDVI) (Rouse et al., 
1974) as a representative of ratio indices, and the second soil-adjusted vegetation 
index (SAVI2) (Major et al., 1990) as a representative of soil-based indices were 
selected for analysis. These two vegetation indices have been shown to perform 
best for estimating vegetation biophysical characteristics computed from field 
spectra (Darvishzadeh et al., 2008a). 

 
The narrow band NDVI and SAVI2 indices were systematically calculated for 

all possible 126 x 126 = 15,876 wavelength combinations between 436 nm and 
2485 nm. The NDVI was computed according to: 
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Where 1λρ  is the reflectance at wavelength λ1 and 2λρ  is the reflectance at 

wavelength λ2 with λ1 ≠ λ2.  
 
The narrow band SAVI2 was calculated according to the following formula:  
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Where ρ  is the reflectance, a. is the slope and b is the intercept of the soil line 

between bands at wavelengths λ1 and λ2. 
 
The soil line parameters a and b were calculated from field spectral 

measurements of the bare soils of a few plots with no vegetation (Darvishzadeh et 
al., 2008c). They were systematically calculated for all possible band combinations 
(126 x 126). We assumed that the measured soil optical properties were 
representative for the study area. Consequently, the soil line parameters were 
considered constant for all 41 plots. Implicitly, we assumed that the soil line 
concept, originally defined for the red-NIR feature space, could be transferred to 
other spectral domains (Darvishzadeh et al., 2008a; Schlerf et al., 2005; Thenkabail 
et al., 2000).  

 

6.3.2. Partial least squares regression 
Partial least squares regression (PLSR) is a technique that reduces the large 

number of measured collinear spectral variables to a few non-correlated latent 
variables or factors while maximizing co-variability to the variable(s) of interest 
(Atzberger et al., 2003b; Cho et al., 2007; Geladi and Kowalski, 1986; Hansen and 
Schjoerring, 2003; Williams and Norris, 1987). The latent variables contain the 
relevant information present in the measured reflectance spectra and are used to 
predict the dependent variables (here, biophysical and biochemical grass 
characteristics).  

 
As with other linear calibration methods, in partial least squares regression the 

aim is to build a linear model: 
 
Y=Xβ+ε             (Eq. 3) 
 
where Y is the mean-centered vector of the response variable (grass 

characteristics), X is the mean-centered matrix of the predictor (spectral 
reflectance), β is the matrix of coefficients, and ε is the matrix of residuals. Partial 
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least squares regression is closely related to principal component regression (Geladi 
and Kowalski, 1986). Whereas principal component regression performs the 
decomposition on the spectral data alone, partial least squares regression uses the 
response variable information during the decomposition process and performs the 
decomposition on both the spectral data and the response variable simultaneously 
(Schlerf et al., 2003). Valuable descriptions of the partial least squares regression 
algorithm are given in Ehsani et al. (1999), Geladi and Kowalski (1986), and 
Williams and Norris (1987). 

  
In conditions where highly correlated input variables (spectral reflectances) are 

included in the model, an appropriate variable selection is known to improve 
partial least squares regression models (Cho et al., 2007; Darvishzadeh et al., 2008c; 
Davies, 2001; Kubinyi, 1996; Martens and Martens, 2000; Schmidtlein and Sassin, 
2004), especially if the noisy wavelengths are excluded. Partial least squares 
regression was applied to the entire reflectance spectra (436 nm to 2485 nm) and 
to a subset of wavelengths used by Cho et al. (2007) and Darvishzadeh et al. 
(2008c) specifically related to certain vegetation parameters (Table 6.2).  

 
 

Table 6.2. Subset of wavelengths for estimating grass characteristics using partial least squares 
regression and radiative transfer model inversion. 

Wavelength 
(nm) 

Vegetation parameters Reference 

466 Chlorophyll b Curran (1989) 

695 Total chlorophyll  Gitelson and Merzlyak (1997), Carter (1994) 

725 Total chlorophyll, leaf mass  Horler et al. (1983) 

740 Leaf mass, LAI Horler et al. (1983) 

786 Leaf mass Guyot and Baret (1988) 

845 Leaf mass, total chlorophyll Thenkabail et al. (2004) 

895 Leaf mass, LAI Schlerf et al. (2005), Thenkabail et al. (2004) 

1114 Leaf mass, LAI Thenkabail et al. (2004) 

1215 Plant moisture, cellulose, starch Curran (1989), Thenkabail et al. (2004) 

1659 Lignin, leaf mass, starch Thenkabail et al. (2004) 

2173 Protein, nitrogen Curran (1989) 

2359 Cellulose, protein, nitrogen Curran (1989) 

 
 
The optimum number of latent factors was estimated by leave-one-out cross-

validation. A common way of using cross-validation for this estimation is to select 
the number of factors that minimizes the root mean square error (RMSE) between 
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measured and predicted values (Geladi and Kowalski, 1986). To prevent 
collinearity and to preserve model parsimony, the condition for adding an extra 
factor to the model was that it had to reduce the RMSE of cross-validation 
(RMSECV) by >2% (Cho et al., 2007; Darvishzadeh et al., 2008c; Kooistra et al., 
2004). In addition, coefficients of determination (R2) between measured and 
predicted values in the cross-validation were used to evaluate the relationships 
found. The partial least squares analysis was performed using the TOMCAT 
toolbox 1.01 within MATLAB (Daszykowski et al., 2007). 

 

6.3.3. Validation of statistical techniques 
Statistical models can be evaluated using two common types of validation 

procedure: (i) validation based on an independent test data set, and (ii) cross-
validation (also called the leave-one-out method). The general applicability of both 
validation techniques has been analyzed in previous studies and shown to produce 
similar results (Darvishzadeh et al., 2008c; Selige et al., 2006). In this study we used 
the cross-validation procedure, which yields reproducible and statistically sound 
results. In cross-validation, each sample is estimated by the remaining samples. 
This meant that for each variant we developed 41 individual models, each time 
with data from 40 observations. The calibration model was then used to predict 
the observation that was left out. The resulting cross-validated RMSE (RMSEcv) 
was selected as the accuracy indicator of the model in predicting unknown 
samples.  

 

6.3.4. The PROSAIL radiative transfer model 
The widely used PROSAIL radiative transfer model was selected for physically 

based canopy parameter retrieval. PROSAIL is a combination of the SAILH 
canopy reflectance model and the PROSPECT leaf optical properties model. Both 
sub-models are relatively simple and need only a limited number of input 
parameters with reasonable computation time, which makes model inversion for 
retrieval of leaf and canopy parameters feasible. 

 
The PROSPECT model (Fourty et al., 1996; Jacquemoud and Baret, 1990; 

Jacquemoud et al., 1996) calculates the leaf hemispherical transmittance and 
reflectance as a function of four input parameters: the leaf structural parameter N 
(unitless); the leaf chlorophyll a + b concentration LCC (µg cm-2); the dry matter 
content Cm (g cm-2); and the equivalent water thickness Cw (g cm-2). The spectral 
leaf optical properties (leaf reflectance and transmittance) calculated by 
PROSPECT are inputs into the SAILH canopy reflectance model. This model 
(Verhoef, 1984; Verhoef, 1985) is a one-dimensional bidirectional turbid medium 
radiative transfer model that has been later modified to take into account the hot 
spot effect in plant canopy reflectance (Kuusk, 1991). Turbid medium defines the 
canopy as a horizontally homogenous and semi-infinite layer that consists of small 
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vegetation elements that act as absorbing and scattering particles of a given 
geometry and density. Consequently, the model is best adopted for use in 
homogeneous vegetation canopies (Meroni et al., 2004; Schlerf and Atzberger, 
2006; Verhoef, 1984). Apart from the leaf reflectance and transmittance, the 
SAILH model requires eight input parameters to simulate the top-of-canopy 
bidirectional reflectance. These are sun zenith angle, ts (deg); sensor viewing angle, 
to (deg); relative azimuth angle between sensor and sun, phi (deg); fraction of 
diffuse incoming solar radiation, skyl; background reflectance (soil reflectance) for 
each wavelength, rsl; LAI (m2 m-2); average leaf inclination angle, ALA (deg); and 
the hot spot size parameter, hot (m m-1), defined as the ratio between the average 
size of the leaves and the canopy height (Verhoef, 1985). To account for the 
changes induced by moisture and roughness in soil brightness, we used a soil 
brightness parameter, scale (Atzberger et al., 2003a). Therefore, in PROSAIL 12 
input parameters that characterize the leaf, the canopy and the soil have to be 
specified. Of the 12 input parameters, four parameters, (sensor viewing angle, 
azimuth angle, sun zenith angle and fraction of diffuse incoming solar radiation) 
were fixed. For the eight remaining input parameters (i.e., LAI, ALA, scale, hot, N, 
LCC, Cm and Cw), 100,000 parameter sets were generated randomly (Darvishzadeh 
et al., 2008b) (Table 6.3). 

 

6.3.4.1. The look-up table (LUT) inversion  
Perhaps the simplest method of solving the inversion of a radiative transfer 

model is by using a look-up table (LUT). LUTs offer an interesting alternative to 
numerical optimization and neural network methods because they permit a global 
search (avoiding local minima) while showing less unexpected behavior when the 
spectral characteristics of the targets are not well represented by the modeled 
spectra (Schlerf and Atzberger, 2006). A LUT is built in advance of the actual 
inversion through forward calculations using the radiative transfer model. For the 
inversion, only search operations are needed to identify the parameter 
combinations that yield the best fit between measured and LUT spectra. However, 
to achieve high accuracy for the estimated parameters, the dimension of the table 
must be large enough (Combal et al., 2002; Tang et al., 2006; Weiss et al., 2000).  

 
To build the LUT, 100,000 parameter combinations were randomly generated 

(uniform distributions) and used in the forward calculation of the PROSAIL 
model. We also tested normally distributed random parameters and found no 
significant differences (not shown). The ranges (minimum and maximum) for each 
of the eight “free” model parameters are reported in Table 6.3. To prevent too-
wide parameter spaces and to reduce the size of the parameter spacing, the 
maximum and minimum values of LAI, LCC and ALA (recorded along with LAI, 
using the LAI-2000 instrument) were fixed based on prior knowledge from the 
field data collection (Combal et al., 2003; Darvishzadeh et al., 2008b). The leaf 
parameters N, Cm and Cw are often fixed at nominal values (e.g., Chaurasia and 
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Dadhwal, 2004; Haboudane et al., 2004; Houborg et al., 2007; le Maire et al., 2004). 
For the leaf structural parameter N of PROSPECT, Haboudane et al. (2004) and 
Houborg et al. (2007) used a fixed value of 1.55 for various crops, including corn, 
soybean, wheat and spring barley. Jacquemoud et al. (2000) used a fixed value of 
N=1.7 for soybean, while Atzberger et al. (2003a) used a range of N=2 ± 0.34 for 
wheat crop. Since grasses have relatively thin leaves, we used a range of 1.5 to 1.9 
for the N parameter (Darvishzadeh et al., 2008b). The ranges of other input 
parameters (Cw, Cm, hot and scale) were similarly selected in agreement with the 
existing literature (Cho, 2007; Combal et al., 2003; Darvishzadeh et al., 2008b; 
Haboudane et al., 2004; le Maire et al., 2004; Schlerf and Atzberger, 2006). We 
used the measured average bare soil reflectance spectra of the study area to 
represent soil optical properties. Since most of the plots were located close to the 
nadir line of the image strips, the sensor viewing angle (to) and the relative azimuth 
angle (phi) were fixed at 0º. The sun zenith angle was fixed at 31.5º. With respect to 
the fraction of diffuse incoming solar radiation (skyl), a fixed value of 0.1 across all 
wavelengths was used, as in many similar studies (Cho, 2007; Darvishzadeh et al., 
2008b; Schlerf and Atzberger, 2006). Hence, we have neglected the fact that the 
amount of diffuse sky light depends on atmospheric conditions and solar zenith 
angle, and, furthermore, is wavelength-dependent. This simplification seems 
justified, however, by the fact that skyl has only a very small influence on canopy 
reflectance (Clevers and Verhoef, 1991) and by the lack of on-site measurements 
of skyl.  

 
 

Table 6.3. Specific ranges for nine input parameters used for generating the LUT, using forward 
calculation of the PROSAIL model. Within the specified ranges, parameter values were drawn 
randomly (uniform distributions). 

Parameter Abbreviation 
in model 

Unit Minimum 
value 

Maximum 
value 

 
Leaf area index* LAI m2 m-2 0 8 

Mean leaf inclination angle* ALA deg 40 70 

Leaf chlorophyll content* LCC µg cm-2 15 45 

Leaf structural parameter N no dimension 1.5 1.9 

Dry matter content Cm g cm-2 0.005 0.010 

Equivalent water thickness Cw g cm-2 0.01 0.02 

Hot spot size hot m m-1 0.05 0.10 

Soil brightness scale no dimension 0.5 1.5 

* The minimum and maximum values are selected based on prior knowledge from the field and 
measurement geometry.  
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To find the solution to the inverse problem for a given canopy spectra, for each 
modeled reflectance spectra of the LUT the root mean square error between 
measured and modeled spectra (RMSEr) is calculated according to:  
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λλ        (Eq. 4) 

 
where Rmeasured is the measured reflectance at wavelength λ, Rlut is the modeled 

reflectance at the same wavelength in the LUT, and n is the number of wavebands. 
Traditionally, the solution is regarded as the set of input parameters corresponding 
to the reflectance in the LUT which provides the smallest RMSEr. However, this 
solution is not always the optimal solution since it may not be unique (ill-posed 
problem) (Atzberger, 2004). To overcome this problem and to enhance the 
consistency of the estimated variables, we also investigated the mean and median 
from the best 10 and 100 simulations, respectively (Combal et al., 2003; 
Darvishzadeh et al., 2008b). 

 
An appropriate band selection – or alternatively the weighting of different 

spectral bands – is known to improve radiative transfer model inversion and 
prevents bias in the estimation of the variables of interest (Bacour et al., 2001; 
Fang et al., 2003; Lavergne et al., 2007; Meroni et al., 2004; Schlerf and Atzberger, 
2006). This is particularly the case if the hyperspectral data set contains wavebands 
that are either noisy or poorly modeled by the radiative transfer model being 
inverted. Neither the selection of an optimal spectral subset nor the weighting of 
spectral bands is a trivial problem, and these are still open issues within the remote 
sensing community (Lavergne et al., 2007; Meroni et al., 2004). Therefore, to 
account for band selection the inversion of the model was also tested with a small 
number of pre-defined bands related to leaf chlorophyll, LAI and leaf mass (Table 
6.2) (Cho et al., 2007; Darvishzadeh et al., 2008b; Darvishzadeh et al., 2008c). 

 
The reported values of RMSE and R2 statistics differ. For the statistical models 

we report the cross-validated RMSEcv and R2cv, and for the radiative transfer model 
inversion we report values of RMSE and R2 derived from fully independent 
validation. 

 

6.4. Results 

6.4.1. Narrow band vegetation indices 
NDVI and SAVI2 narrow band indices were calculated from the HyMap 

reflectance spectra, using all possible two-band combinations. The coefficients of 
determination (R2) between these narrow band vegetation indices and the grass 
canopy characteristics were computed. An illustration of these results is shown for 
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LAI in the 2-D correlation plot in Figure 6.2. The meeting point of each pair of 
wavelengths in a 2-D plot corresponds to the R2 value of the LAI and the 
vegetation index calculated from the HyMap reflectance values in those two 
wavelengths. Similar correlation plots were computed for canopy chlorophyll 
content (not shown). Based on the R2 values in the 2-D correlation plots, band 
combinations that formed the best indices were determined for LAI and canopy 
chlorophyll content. The best performing indices and the band positions are 
tabulated in Table 6.4. 
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Figure 6.2. 2-D correlation plots illustrating the coefficient of determination (R2) between narrow 
band SAVI2 and LAI. The 2-D correlation plot is not symmetrical. The Y axis is the nominator and 
the X axis is the denominator in Eq. 2.  

 
 
In general, the coefficients of determination between the grass characteristics 

and the two narrow band indices were relatively high. The narrow band SAVI2 had 
somewhat higher correlations with the studied variables than did the narrow band 
NDVI (Table 6.4). This indicates a slight advantage of soil-based indices over ratio 
indices. 

 
The “optimum” bands for LAI estimation were found in the NIR and SWIR 

regions. This confirms previous studies that have demonstrated that the bands 
from these regions are important for LAI estimation (Brown et al., 2000; Cohen 
and Goward, 2004; Darvishzadeh et al., 2008a; Darvishzadeh et al., 2008c; Lee et 
al., 2004; Nemani et al., 1993; Schlerf et al., 2005). The “optimum” bands for 
canopy chlorophyll content were also found mainly in the NIR and SWIR regions, 
albeit chlorophyll does not absorb outside the visible range. This artifact can be 
explained by the strong influence of LAI on canopy chlorophyll (LAI x leaf 
chlorophyll) since, in comparison with the leaf chlorophyll concentration, LAI had 
a higher coefficient of variation (Table 6.1). Figure 6.3 highlights regions where 
R2≥0.8 for LAI (top) and canopy chlorophyll content (bottom). Again, the 
similarity in the observed patterns is obviously due to the high correlation between 
the two canopy variables (r=0.97). The observed patterns are in agreement with a 
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previous study by Darvishzadeh et al. (2008c), who found similar patterns for these 
variables when using a different sensor (field spectrometer) and sampling. 

 
 

Table 6.4. Band positions and R² values between the best narrow band NDVI and SAVI2 (derived 
from 2-D correlation plots) and grass variables (n=41). CCC is the canopy chlorophyll content. 

 Narrow band VI λ (nm) R2 

LAI NDVI 1068/1215 0.85 

 SAVI2 1068/1229 0.87 
 

CCC NDVI 1068/1215 0.90 

 SAVI2 1068/1200 0.91 

 
 
 
 
 
 
 LAI 

SAVI2

 

NDVI

 
 
 
CCC 

 
Figure 6.3. Regions with high correlation (R2≥0.8) between narrow band vegetation indices (left: 
SAVI2, right: NDVI) and LAI and canopy chlorophyll content. 
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For the best performing narrow band indices (Table 6.4), cross-validated R2, 
RMSE and the normalized RMSE (NRMSE = RMSE/range) (Atzberger, 1997; 
Combal et al., 2003; Darvishzadeh et al., 2008b) were computed from linear 
regression models. A comparative analysis of the predictive performance of the 
narrow band vegetation indices is presented in Table 6.5. As can be observed from 
this table, compared with narrow band NDVI, narrow band SAVI2 gave slightly 
higher R2 and lower RMSE values for both canopy variables. The better 
performance of SAVI2 compared with NDVI is probably due to the fact that 
SAVI2 is less sensitive to external factors such as soil background effects.  

 
 

Table 6.5. Performance of narrow band vegetation indices for predicting grass variables in Majella 
National Park, Italy, using HyMap data. R2CV is the cross-validated coefficient of determination 
between estimated and predicted variables; RMSEcv is the cross-validated root mean square error; and 
NRMSEcv is the normalized cross-validated root mean square error, i.e., RMSEcv divided by range 
(n=41).  

 Narrow band VI R2cv RMSEcv NRMSEcv

LAI NDVI 0.83 0.64 0.095 

 SAVI2 0.85 0.62 
 

0.090 

CCC NDVI 0.89 0.18 0.085 

 SAVI2 0.90 0.17 0.080 

 
 
Figure 6.4 shows the relationships between the cross-validated and measured 

LAI and canopy chlorophyll content when using narrow band SAVI2. From this 
figure, it seems that no saturation has occurred for the studied variables. 
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Figure 6.4. Cross-validated prediction of grass variables in Majella National Park, Italy, using narrow 
band SAVI2. Left: estimated LAI versus measured LAI; right: canopy chlorophyll content. The 
optimum wavebands are those reported in Table 6.4. 
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6.4.2. Partial least squares regression  
The relationships between grass variables and reflectance spectra were modeled 

using partial least square regression. Cross-validated results using the entire 
reflectance spectra as inputs are shown in Figure 6.5. The optimal number of 
partial least squares regression factors preventing over-fitting was selected in two 
ways: (i) through visual inspection of cross-validated RMSE versus the number of 
factors plots, and (ii) by setting the condition that adding an extra factor must 
reduce the RMSECV by >2%. The number of factors in the final model was four 
for both LAI and canopy chlorophyll content. Compared with narrow band 
vegetation indices (Table 6.5), partial least squares regression using entire 
reflectance spectra only slightly increased cross-validated R2 values of the estimated 
and measured LAI and canopy chlorophyll content; however, their RMSEcv were 
also slightly increased (Table 6.6).  

 
 

Table 6.6. Performance of partial least squares regression for predicting grass variables in Majella 
National Park, Italy, using HyMap data. R2cv is the cross-validated coefficient of determination 
between estimated and predicted variables; RMSEcv is the cross-validated root mean square error; and 
NRMSEcv is the normalized cross-validated root mean square error (n=41).  

  No. of factors R2cv RMSEcv NRMSEcv 

Entire reflectance LAI 4 0.87 0.68 0.10 

 CCC 4 0.91 0.20 0.09 

      

Spectral subset (Table 6.2) LAI 4 0.87 0.65 0.10 

 CCC 4 0.91 0.19 0.09 

 
 
We formed a spectral subset of the full spectrum to build new partial least 

squares regression models by selecting a subset of wavelengths closely related to 
vegetation parameters (see Table 6.2). Waveband selection did not have any effect 
on the R2 values of the two studied grass variables. It slightly changed the 
prediction of grass LAI and canopy chlorophyll content by decreasing the RMSEcv 
(RMSEcv = 0.65 and 0.19 for LAI and canopy chlorophyll content, respectively). 
This supports the view that in vegetation studies a cautiously selected spectral 
subset includes almost the entire information of the full spectral resolution (Fourty 
and Baret, 1997). 
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Figure 6.5. Cross-validated prediction of grass variables in Majella National Park, Italy, using the 
entire reflectance spectra of HyMap in partial least squares regression models. Left: estimated LAI 
versus measured LAI; right: for canopy chlorophyll content.  

 

6.4.3. Inversion of PROSAIL  
To find the solution to the inverse problem, the LUT is sorted according to the 

cost function (RMSEr) and the set of variables providing the minimum RMSE is 
considered as the solution. Figure 6.6 illustrates measured and simulated canopy 
reflectance spectra found in this way for two subplots with contrasting LAI values. 
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Figure 6.6. Measured and simulated grass canopy reflectance spectra of two sample plots, with LAI 
equal to 2.1 (left) and 6.2 (right), respectively. Measured and simulated reflectance values are at 
discrete wavelengths; lines are only drawn to ease interpretation. 

 
 
As can be observed from Figure 6.6, generally the simulated reflectances were 

in relatively good agreement with the measured reflectances for canopies with 
different LAI values. A more concise analysis reveals that most spectral bands were 
modeled with average absolute error (AAE) (Eq. 5) lower than 0.02 reflectance 
units (Figure 6.7).  
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where Rmeasured is the measured reflectance at wavelength λ, Rbestfit is the best-fit 

reflectance at the same wavelength, and q is the number of measurements. 
 
Figure 6.7 plots the AAE between measured and best-fit spectra as a function 

of wavelengths. It shows that the AAE in some regions is relatively high (greater 
than 0.02), especially close to the water vapor absorption regions (1135 nm to 1400 
nm, and 1820 nm to 1940 nm). We considered the bands with an AAE greater or 
equal to 0.02 as wavelengths being either poorly modeled or poorly measured 
(Darvishzadeh et al., 2008b). In sub-section 6.4.3.1 we present a spectral subset 
where these bands have been excluded.  
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Figure 6.7. The average absolute error (AAE) between best-fit and the measured HyMap reflectance 
spectra as a function of wavelengths. The AAE has been calculated from the measured HyMap 
spectra of 41 sample plots against the best fitting LUT spectra (Eq. 5). 

 
 
The relation between the measured and estimated grass variables based on the 

smallest RMSE criterion is demonstrated in Figure 6.8. It can be observed that the 
PROSAIL inversion yielded very similar accuracies for LAI and canopy 
chlorophyll content, although it seems that LAI was estimated with slightly higher 
accuracy (NRMSE=0.10 for LAI versus 0.12 for canopy chlorophyll content). 

 
Investigation of the histograms of the other six retrieved parameters (N, ALA, 

Cm, Cw, hot and scale) revealed that several (30 out of 41) sample plots reached the 
upper/lower boundary of at least one model parameter (not shown). As the 
parameter ranges were quite large (Table 6.3), the possible reason could be that the 
reflectance in some wavelengths is either noisy or poorly modeled by the 
combined SAILH and PROSPECT canopy reflectance model (Darvishzadeh et al., 
2008b; Schlerf and Atzberger, 2006). 
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Figure 6.8. Estimated versus measured grass variables in Majella National Park, Italy, using the 
PROSAIL canopy reflectance model and the minimum RMSE criterion in the LUT search (n=41). 
Left: LAI; right: canopy chlorophyll content. 

 
 
We also evaluated the retrieval accuracy if multiple solutions are used (i.e., the 

first 10 and the first 100 best fits of the LUT) (Combal et al., 2003; Darvishzadeh 
et al., 2008b). Table 6.7 compares the “multiple solutions” with the “best-fit” LUT 
solutions. This demonstrates how different solutions affect the accuracy of the 
estimated variables. We tested for significance of the results and found no 
significant differences between the statistical parameters used for any number of 
solutions (one-way ANOVA; p>0.05). Throughout the rest of this study, we used 
the LUT inversion using the first 10 solutions for estimating the grass variables 
because it gave the highest estimation accuracies (although not significant).  

 
 

Table 6.7. R2, RMSE and normalized RMSE between measured and estimated grass characteristics 
(n=41) from PROSAIL inversion. The standard LUT solution is indicated as “best fitting spectra”. 
The grass characteristics were also retrieved considering the first 10 and 100 solutions. In these cases, 
the median and mean are shown. CCC is the canopy chlorophyll content. 

LAI (m2 m-2) CCC (g m-2) No. of 
solutions 

Statistical 
parameter R2 RMSE NRMSE R2 RMSE NRMSE 

 
Best fitting 
spectra 

/ 0.86 0.70 0.10 0.84 0.24 0.12 

First 10 Median  
Mean 

089 
0.89 

0.65 
0.63 

0.09 
0.09 

0.84 
0.85 

0.24 
0.23 

0.12 
0.11 
 

First 100 Median  
Mean 

0.84 
0.85 

0.66 
0.62 

0.10 
0.09 

0.81 
0.82 

0.25 
0.24 

0.12 
0.11 
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6.4.3.1. Use of spectral subsets in the inversion process 
We considered bands with an AAE greater or equal to 0.02 as wavelengths with 

high errors (Darvishzadeh et al., 2008b) (Figure 6.7). These bands were 
systematically excluded (one by one) in the inversion process, and each time the 
AAE between the measured and best-fit reflectance spectra was re-calculated until 
all remaining wavelengths had an AAE smaller than 0.02. The elimination of 
wavelengths stopped after 19 iterations. The remaining wavebands (n=107) are 
called subset II. Subset II and the wavelengths identified from literature (Table 6.2) 
(subset I) were used in the inversion procedure. 

 
The role of the spectral subsets in the estimation of grass variables was again 

evaluated on the basis of the R2 and the normalized RMSE between the measured 
and estimated grass variables. The results showed that, after removing the 
wavelengths with high AAE (AAE≥0.02), the relationships between measured and 
estimated LAI and between measured and estimated canopy chlorophyll content 
were considerably improved (Table 6.8). For instance, LAI was estimated with an 
accuracy of 0.53 m2 m-2, which represents just 8 percent of the range of LAI. The 
results obtained by employing subset I (Table 6.2) instead of the full spectral 
resolution were incoherent. The subsetting gave slightly better results for canopy 
chlorophyll content, but inferior results for LAI (Table 6.8).  

 
 

Table 6.8. R2, RMSE and normalized RMSE between measured and estimated grass canopy variables 
(n=41) from PROSAIL inversion relating to the two spectral subsets. CCC is the canopy chlorophyll 
content. 

LAI (m2 m-2) CCC (g m-2) Spectral 
sampling set 

Statistical 
parameter R2 RMSE NRMSE R2 RMSE NRMSE 

 
Using all 
wavelengths 
(n=126) 

Best fitting 
spectra 

Median of 10 
Mean of 10 

0.86 
 

089 
0.89 

0.70 
 

0.65 
0.63 

0.10 
 

0.09 
0.09 

0.84 
 

0.84 
0.85 

0.24 
 

0.24 
0.23 

0.12 
 

0.12 
0.11 

 
Subset I (n=12)
(based on 
literature) 

Best fitting 
spectra 

Median of 10 
Mean of 10 

0.83 
 

0.85 
0.85 

0.80 
 

0.74 
0.74 

0.12 
 

0.11 
0.11 

0.88 
 

0.89 
0.89 

0.23 
 

0.22 
0.21 

0.11 
 

0.10 
0.10 

 
Subset II 
(n=107) (based 
on AAE) 

Best fitting 
spectra 

Median of 10 
Mean of 10 

0.80 
 

0.90 
0.91 

0.73 
 

0.57 
0.53 

0.11 
 

0.08 
0.08 

0.84 
 

0.87 
0.87 

0.25 
 

0.23 
0.22 

0.12 
 

0.11 
0.10 

 
 
Overall, the estimation accuracies between measured and estimated canopy 

chlorophyll content improved using both spectral subsets (Table 6.8). This reflects 
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the danger with existing bands that may contain (excessively) high noise levels 
and/or are poorly modeled by PROSAIL (Darvishzadeh et al., 2008b). 

 

6.4.4 Mapping grass variables 
The LAI and canopy chlorophyll content of the Majella grassland were mapped 

using the PROSAIL model. Before producing the maps, a grassland mask obtained 
from maximum likelihood classification was used to mask out the non-grass areas 
from the HyMap image strips, thus eliminating areas occupied by other land cover 
types (mainly forest and housing areas). The masked HyMap image was used as 
input to the inversion process and maps of predicted LAI and canopy chlorophyll 
content were retrieved using the best fitting spectra. They are presented in Figure 
6.9. 

 
The means obtained for all image pixels were 2.91 m2 m-2 for LAI and 0.92 g m-

2 for canopy chlorophyll content, which are very close to the means of the samples 
measured during the field measurements. We confirm that the spatial distribution 
of LAI as predicated by inversion of the PROSAIL model is similar to what we 
observed on the ground during the field campaign. 

 

6.5. Discussion 
Compared with the statistical models used in this study, inversion of the 

radiative transfer model gave higher R2 (and lower normalized RMSE values) for 
LAI, and similar results for canopy chlorophyll content. These findings are also 
supported by previous studies (Gemmell et al., 2002; Schlerf and Atzberger, 2006), 
which demonstrated that inversion of a radiative transfer model gave accuracies 
comparable to those of statistical approaches. The result shows the benefits of 
using the physical rather than the statistical approach, taking into account that 
(almost) no calibration work was required for the physical approach. However, 
inversion of the physically based models is always hampered by the ill-posed 
inverse problem (Atzberger, 2004; Combal et al., 2002). 

 
We found almost no difference in the accuracies of retrieved LAI and canopy 

chlorophyll content produced by using the inversion algorithm and the statistical 
models. This is due to the fact that in our study LAI and canopy chlorophyll 
content are closely correlated (Darvishzadeh et al., 2008b, 2008c) as leaf 
chlorophyll contents in the study area were relatively uniform.  
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Figure 6.9. Maps (top) and histograms (bottom) of grass variables for a subset area of Majella 
National Park, Italy, from PROSAIL canopy reflectance model inversion, using the minimum RMSE 
criterion in the look-up table (LUT) search. Left: LAI (m2 m-2); right: canopy chlorophyll content (g 
m-2). 

 
 
The bands selected as the best combination of the vegetation indices for LAI 

were found in the NIR to SWIR regions. This confirms previous studies that have 
suggested a strong contribution by SWIR bands to the strength of relationships 
between spectral reflectance and LAI (Brown et al., 2000; Cohen and Goward, 
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2004; Darvishzadeh et al., 2008a; Lee et al., 2004; Nemani et al., 1993; Schlerf et 
al., 2005).  

 
Compared with the narrow band NDVI, the narrow band SAVI2 gave 

somewhat higher R2 (and lower normalized RMSE values) for LAI. This result is in 
agreement with those of Broge and Leblanc (2001) and Darvishzadeh et al. 
(2008a), who found SAVI2 to be the best vegetation index for LAI estimation. The 
narrow band SAVI2 performed also relatively well for canopy chlorophyll content. 
This confirms that SAVI2 is relatively insensitive to external factors such as soil 
background effects. 

 
Compared with narrow band indices, the partial least squares regression 

achieved slightly better results (Table 6.6), as important information may lost when 
only two wavelengths are selected for narrow band vegetation indices from the 
total spectral information available in hyperspectral data (Darvishzadeh et al., 
2008c; Lee et al., 2004). By selecting a subset of wavelengths known to be strongly 
related to vegetation parameters, the results of partial least squares regression were 
only slightly improved (Cho et al., 2007; Darvishzadeh et al., 2008c; Davies, 2001; 
Kubinyi, 1996; Martens and Martens, 2000; Schmidtlein and Sassin, 2004). 
Although our waveband selection method was somewhat simplistic, it worked well 
because we considered wavelengths related to both biophysical and biochemical 
properties of vegetation, thus maximizing the information content in the input 
variables. 

 
Concerning the physical approach, Combal et al. (2003) and Meroni et al. 

(2004) have shown that utilizing prior information is an efficient way of solving the 
ill-posed problem and improving the accuracy of the estimated canopy variables. 
In the case of spatialized (remote sensing) data, Atzberger (2004) showed that for 
mono-species canopies the intercorrelation between spectral bands also helps to 
constrain the ill-posed inverse problem. However, the regularization of the inverse 
problem was beyond the scope of this study. We simply used the approximate 
maximum and minimum values from the field measurements for the three 
parameters LAI, LCC and ALA as prior information for building the LUT. In this 
way, we increased the sampling density and constrained the estimated grass 
biophysical characteristics into their measured ranges (Darvishzadeh et al., 2008b).  

 
The possible reason that in many cases at least one of the other six retrieved 

parameters (Cm, Cw, scale, ALA, hot and N) reached the upper/lower boundary is 
that some wavelengths are either noisy or poorly modeled by the combined 
SAILH and PROSPECT canopy reflectance model. Similar results have been 
found by Darvishzadeh et al. (2008b) and Schlerf & Atzberger (2006), who 
demonstrated that the radiative transfer models (PROSAIL and PROSPECT, 
respectively) do not simulate the reflectance equally well across the 400 nm to 2500 
nm wavelength range. The possible explanation of too-restricted parameter ranges 
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can be excluded since much wider ranges, as shown by Darvishzadeh et al. (2008b) 
did not ameliorate the results (not shown). 

 
The relationships between measured and estimated grass variables were slightly 

improved when wavelengths either based on low AAE (subset II) or selected from 
literature (subset I) were used for model inversion. The result is in agreement with 
those of Fang and Liang (2005), Meroni et al. (2004) and Schlerf and Atzberger 
(2006). They demonstrated that, when inverting radiative transfer models, the 
selection of a few wavebands may give better results than those achieved using the 
full spectral resolution. The results in the present study (when using all bands) 
indicated good relationships between measured and estimated grass variables and a 
relatively good representation of the measured spectra by the PROSAIL model 
over most spectral regions. Consequently, spectral subsetting did not clearly 
improve the parameter retrieval. Similar results have been obtained at field scale 
(Darvishzadeh et al., 2008b).  

 
In the present study, we did not evaluate the possible benefits of regularization 

efforts when inverting the radiative transfer model. Increased retrieval accuracies 
have, for example, been demonstrated by Lavergne et al. (2007) using the 
reflectance uncertainty matrix in the cost function. This would require, however, 
the LUT inversion to be run several times and boot-strap techniques to be used to 
avoid losing independency between measured and estimated biophysical variables. 

 

6.6. Conclusion  
The effectiveness of statistical versus physical modeling for mapping LAI and 

canopy chlorophyll contents in a Mediterranean grassland were investigated in this 
study. For the retrieval of the grass variables, narrow band vegetation indices, 
partial least squares regression and the widely used PROSAIL radiative transfer 
model (Verhoef, 1984; Verhoef, 1985; Jacquemoud and Baret, 1990) were used in 
the analysis. For radiative transfer model inversion, a LUT approach was used. 
While constructing the LUT, prior knowledge regarding LAI, leaf chlorophyll 
content and mean leaf angle measured in the field was taken into account. The 
models were validated by comparing estimated and field-measured canopy 
variables (R2 and RMSE).  

 
The results of the study demonstrate that grass canopy characteristics such as 

LAI and canopy chlorophyll content can be estimated through the inversion of a 
radiative transfer model with accuracies comparable to (or even better than) those 
of statistical approaches. In contrast to statistical approaches, ground-measured 
biophysical data may be almost entirely used for validating the retrieved model 
parameters (and for setting the LUT ranges) and are not used to calibrate the 
radiative transfer model (except the soil reflectance spectra that have to be input 
into the radiative transfer model). Once an appropriate LUT has been built, it can 
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in principle be applied to different remote sensing data acquired over similar 
vegetation types (Darvishzadeh et al., 2008b), thereby overcoming the main 
limitation of statistical models, which are known to be highly site- and sensor-
specific. 
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7.1. Introduction 
Accurate quantitative estimation of vegetation biochemical and biophysical 

characteristics is necessary for a large variety of agricultural, ecological, and 
meteorological applications (Asner, 1998; Hansen and Schjoerring, 2003; Houborg 
et al., 2007). Remote sensing, because of its global coverage, repetitiveness, and 
non-destructive and relatively cheap characterization of land surfaces, has been 
recognized as a reliable method and a practical means of estimating various 
biophysical and biochemical vegetation variables (Cohen et al., 2003; Curran et al., 
2001; Hansen and Schjoerring, 2003; Hinzman et al., 1986; McMurtrey et al., 1994; 
Weiss and Baret, 1999). The tools for vegetation remote sensing have developed 
considerably in the past decades (Asner, 1998). Imaging spectrometry or 
hyperspectral remote sensing, with sensors that typically have hundreds of narrow, 
contiguous spectral bands between 400 nm and 2500 nm, has the potential to 
measure specific vegetation variables that were difficult to measure using 
conventional multi-spectral sensors. Previous studies have shown that 
hyperspectral data are crucial in providing essential information for quantifying the 
biochemical (Broge and Leblanc, 2001; Ferwerda et al., 2005; Gamon et al., 1992; 
Gitelson and Merzlyak, 1997; Mutanga et al., 2005; Peterson et al., 1988) and 
biophysical characteristics of vegetation (Blackburn, 1998; Elvidge and Chen, 1995; 
Gong et al., 1992; Lee et al., 2004; Mutanga and Skidmore, 2004; Schlerf et al., 
2005).  

 
In general, current remote sensing approaches for estimating vegetation 

biochemical and biophysical parameters include statistical (inductive) and 
physically (deductive) based models (Skidmore, 2002); each having advantages and 
disadvantages (Kimes et al., 2000; Liang, 2004; Atzberger, 1997; Atzberger, 2003c). 
Both models (statistical/physical) have been used widely for estimating 
biochemical and biophysical parameters in agricultural and forestry environments 
(these are typically homogenous areas in term of species type) (e.g., Atzberger, 
1997; Hansen and Schjoerring, 2003; Walter-Shea et al., 1997; Meroni et al., 2004; 
Schlerf and Atzberger, 2006; Zarco-Tejada et al., 2004a). Nevertheless, the 
estimation of vegetation characteristics for structurally different vegetation 
canopies and heterogeneous fields with different vegetation communities using 
either of the approaches has not been widely addressed in the literature. 

 
The main objectives of this study were (1) to investigate the potential of 

hyperspectral remote sensing for estimating biophysical and biochemical 
vegetation characteristics such as leaf area index (LAI) and chlorophyll content at 
canopy level, (2) to investigate the performance of different statistical techniques 
such as univariate versus multivariate techniques in predicting biophysical and 
biochemical vegetation characteristics, and (3) to test the performance of the 
statistical versus the physical approach for mapping and predicting biophysical and 
biochemical vegetation characteristics. The study consists of three levels of 
investigation: under controlled laboratory conditions (7.2), at field level using a 
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field spectrometer (7.3), and at airborne platform level (i.e., HyMap (Hyperspectral 
Mapping imaging spectrometer)) (7.4). Majella National Park in Italy was used as a 
test site for both field and airborne spectrometry. 

 

7.2. Laboratory level  
Much of the present research linking vegetation parameters such as LAI to 

spectral data has focused on single plant species (or structurally similar plant types) 
and background (soil type). Hence, the laboratory study was designed to further 
investigate the relationship between spectral data and the biophysical parameter 
(LAI), involving plant species widely different in terms of structure, and with 
varying leaf chlorophyll concentration and contrasting soil backgrounds. The 
experimental protocol ensured that a wide range of spectral measurements could 
be collected. The utility of hyperspectral remote sensing in predicting LAI was 
then investigated when all data were pooled together (section 7.2.1) and when the 
data were stratified based on soil type and plant species (section 7.2.2). 

 

7.2.1. Estimation of LAI from hyperspectral vegetation indices and 
the red edge position 

Many studies have investigated the relationships between vegetation indices and 
canopy variables, including LAI (Elvidge and Chen, 1995; Rondeaux and Steven, 
1995; Broge and Leblanc, 2001; Kodani et al., 2002; Pu et al., 2003b; Schlerf et al., 
2005; Wang et al., 2005). However, the conclusions drawn are contradictory, even 
for similar vegetation types. For this reason, we examined the performance of 
various narrow band vegetation indices, as well as red edge inflection point (REIP), 
in estimating the LAI of structurally different plant species with different soil 
backgrounds and leaf optical properties. The laboratory study was designed to test 
two hypotheses: (1) REIP is controlled primarily by canopy LAI and is a good 
predictor of LAI, and (2) the narrow band vegetation index is more responsive 
than REIP and the broad-band vegetation index for estimating canopy LAI. 
Narrow band vegetation indices involved all possible two-band combinations that 
are used for calculating ratio vegetation index (RVI) (Pearson and Miller 1972), 
normalized difference vegetation index (NDVI) (Rouse et al. 1974), perpendicular 
vegetation index (PVI) (Richardson and Wiegand 1977), second soil adjusted 
vegetation index (SAVI2) (Major et al. 1990) and the transformed soil adjusted 
vegetation index (TSAVI) (Baret et al. 1989), whereas the REIP was computed 
using three different techniques namely first derivative (Dawson and Curran 1998), 
linear interpolation (Guyot and Baret 1988) and inverted gaussian model (Bonham-
Carter 1988). 

 
REIP calculated using any of the three methods did not show a close relation to 

variations in LAI. The coefficient of determination (R2) calculated between LAI 
and REIP was very low (R2 < 0.1) when measurements of the different plant 
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species were pooled together. Consequently, we had to reject our first hypothesis 
that “REIP is controlled primarily by canopy LAI and is a good predictor of LAI”. 
We note that, as was the case in this study, successful studies with REIP have not 
used destructive sampling for LAI retrieval. On the contrary, LAI was estimated 
with reasonable accuracy from red/near infrared-based narrow band indices. 
Comparison between different narrow band vegetation indices revealed that the 
narrow band SAVI2 was the best overall choice as estimator of LAI based on cross 
validated R2 and root mean square error (RMSE) values (R2cv = 0.77, RMSEcv = 
0.59) (Figure 7.1). 
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Figure 7.1. Relationships between best narrow band SAVI2 and LAI. Left: using a simple linear 
model; right: using an exponential relationship (Baret and Guyot, 1991). 

 
 
Although the near infrared (NIR) region has been the keystone of the 

omnipresent vegetation indices (NDVI, RVI), our results showed that for most 
indices bands from the shortwave infrared (SWIR) region contained most 
information relevant to canopy LAI, and that the “hot spots” (regions with high R2 
values) mostly occurred in this region. Considering that the SWIR bands were 
important for most vegetation indices in this study, vegetation indices that do not 
include this spectral region may be less satisfactory for LAI estimation (Lee et al., 
2004). 

 

7.2.2. Effects of soil type and plant architecture in LAI retrieval 
The retrieval of canopy biophysical variables is known to be affected by 

confounding factors such as plant type and background reflectance. However, only 
a few studies deal with the effect of exterior features on the estimation and 
prediction of vegetation LAI using hyperspectral reflectance data. The study aimed 
to address this knowledge gap by investigating whether estimating LAI from 
hyperspectral reflectance measurements is significantly affected by soil type and/or 
plant architecture (e.g., leaf shape and size). In situ measurements of LAI were 
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related to reflectances in the red and NIR and also to five widely used spectral 
vegetation indices. 

 
The study confirmed that the spectral contrast between leaves and soil 

background determines the strength of the LAI-reflectance relationship. The 
higher the contrast between soil and leaves, the stronger the relationship between 
LAI and canopy reflectance. Figure 7.2 shows an example of this relationship for a 
red band (680 nm). 
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Figure 7.2. Scatter plot showing canopy reflectance and LAI of four plant species measured over two 
contrasting soil backgrounds in the red (680 nm) spectral band. The two colors (black and red) 
correspond to dark and light soil, respectively. Four symbols are used to distinguish the plant species. 

 
 
For the two soil types used in the study, all vegetation indices revealed strong 

correlations with LAI when the data for the four contrasting species were pooled. 
In general, the relationship between LAI and vegetation indices was deemed to be 
stronger in light soil than in dark. The optimal narrow bands forming the best 
vegetation indices for each soil type were located in different spectral regions. This 
indicates that relevant information for LAI estimation depends on soil brightness. 
It seemed difficult to define the most appropriate vegetation indices for estimating 
LAI in each soil type. However, the cross-validated results revealed that for data 
analyzed by soil type the narrow band RVI and SAVI2 were the best overall 
choices as LAI estimators. In other words, these two indices were the least affected 
by differences related to the four plant species. 

 
By stratifying data according to vegetation type, it was observed that the 

strength of the relationships between vegetation indices and LAI differs for 
different vegetation species. We found that for each vegetation species the 
optimum spectral region for LAI estimation was similar across the investigated 
vegetation indices, with the exception of PVI. Narrow band PVI showed a distinct 
behavior, with generally higher R2 values (lower RMSE values) and wavelengths 
different from those of the four other vegetation indices. PVI appears to be less 
sensitive to brightness variations in the soil background and adapts well to 
different plant species with different plant architectures, leaf sizes, etc. This 
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vegetation index was thus recognized as the most appropriate for LAI estimation 
under conditions of unknown soil reflectance.  

 

7.3. Field level 
Heterogeneous (in terms of species diversity) canopies present a challenge for 

remote sensing applications because the reflectance is often a mixture of different 
surface materials (Fisher, 1997; Roder et al., 2007). Therefore, more investigation is 
required to assess the capability of remote sensing models when it comes to natural 
heterogeneous canopies with a combination of different plant species in varying 
proportions. Canopy spectral measurements were made in the field using a GER 
3700 spectroradiometer (Geophysical and Environmental Research Corporation, 
Buffalo, New York), along with concomitant in situ measurements of LAI and leaf 
chlorophyll content during a campaign in the summer of 2005. The utility of 
hyperspectral remote sensing in predicting canopy characteristics such as LAI and 
canopy/leaf chlorophyll content in a heterogeneous Mediterranean grassland by 
means of different statistical models (section 7.3.1) and the inversion of a 
physically based model (section 7.3.2) was investigated. 

 

7.3.1. Estimation of LAI and chlorophyll using univariate versus 
multivariate analysis 

The estimation of canopy characteristics such as LAI and canopy/leaf 
chlorophyll content, using hyperspectral remote sensing, for heterogeneous grass 
canopies has not, to our knowledge, been addressed by researchers yet. Therefore, 
the effectiveness of hyperspectral remote sensing in estimating these characteristics 
in a heterogeneous Mediterranean grassland by employing different univariate and 
multivariate methods was examined. We compared narrow band vegetation 
indices, including REIP, with two important linear statistical methods known to be 
well suited for dealing with highly multicollinear data sets: partial least squares 
regression and stepwise multiple linear regression. The suitability of these different 
methods was analyzed in terms of their prediction accuracy. 

 
Compared with LAI and leaf chlorophyll content, canopy chlorophyll content 

was estimated with higher accuracy (R2cv = 0.74, relative RMSEcv = 0.35). The 
canopy chlorophyll content contains both the structure and chlorophyll 
information of vegetation and can be accurately estimated by canopy spectral 
reflectance. However, in our study this can be an artifact, as most of the variation 
in canopy chlorophyll content stemmed from the LAI variability, and the 
variability of leaf chlorophyll content was too low to have a noticeable influence 
on canopy chlorophyll content. On the other hand, the relationships between 
measured and estimated leaf chlorophyll content were poor for all methods, which 
indicated poor relationship between the canopy spectra and leaf chlorophyll 
content, and is in agreement with previous studies that have demonstrated poor 
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signal propagation from leaf to canopy scale (Asner, 1998; Jacquemoud et al., 1996; 
Verhoef, 1984; Yoder and Pettigrew-Crosby, 1995). 

 
The bands selected as the best combination of the vegetation indices for LAI 

were found in the NIR to SWIR regions. This confirmed our earlier results at 
laboratory level, which suggested a strong contribution by SWIR bands to the 
strength of relationships between spectral reflectance and LAI. The “optimum” 
bands for leaf chlorophyll were found mostly in the visible spectral range, mainly 
in the green and blue regions characterized by a strong light absorption due to 
chlorophylls a and b (Hansen and Schjoerring, 2003). Likewise, when the 
relationships between grass variables and reflectance spectra were examined using 
stepwise regression, at least one wavelength was selected from the visible regions 
for all grass variables. This highlighted the importance of visible wavelengths for 
indices related to leaf pigments. 

 
The REIP methods produced lower prediction accuracies, in particular for LAI. 

The finding confirmed our earlier result at laboratory level. Furthermore, 
compared with the narrow band NDVI, the narrow band SAVI2 gave somewhat 
higher R2 and lower relative RMSE values for LAI. This confirms that SAVI2 is a 
potentially useful vegetation index for extracting canopy variables such as LAI. 
However, the selection of appropriate wavelengths and bandwidths is important. 
The latter results also confirmed our earlier findings at laboratory level. 

 
Overall, multivariate regressions improved the estimation of different grass 

characteristics (Figure 7.3). The relationship between measured and estimated LAI 
was better explained by multivariate calibration methods such as stepwise 
regression and partial least squares regression, respectively, than by univariate 
methods such as narrow band vegetation indices and REIP. This is probably 
because a one- or two-wavelength index employs only a limited amount of the 
total spectral information available in hyperspectral data. 
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Figure 7.3. Cross-validated prediction of grass variables in Majella National Park, Italy, using the 
entire reflectance spectra in partial least squares regression models. Left: estimated LAI versus 
measured LAI; right: for canopy chlorophyll content. 
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7.3.2. Estimation of LAI and chlorophyll by inversion of radiative 
transfer model 

Radiative transfer models have rarely been applied for studying heterogeneous 
grassland canopies. Therefore, the potential of radiative transfer modeling to 
predict LAI, leaf and canopy chlorophyll contents in a heterogeneous 
Mediterranean grassland was investigated. The widely used PROSAIL model was 
inverted with canopy spectral reflectance measurements by means of a look-up 
table (LUT). We tested the impact of using multiple solutions, stratification 
(according to species richness), and spectral subsetting on parameter retrieval. 

 
Of the three investigated parameters, canopy chlorophyll content was estimated 

with the highest accuracy (R2 = 0.70, normalized RMSE = 0.18). Leaf chlorophyll 
content, on the other hand, could not be estimated with acceptable accuracy (R2 
and RMSE), while LAI was estimated with intermediate accuracy (R2 = 0.59, 
normalized RMSE = 0.18). The findings are in agreement with the results obtained 
when statistical regression techniques were used (see section 7.3.1). 

 
The estimation accuracies were increased when data were stratified based on 

the number of species. This is confirmed by the estimation accuracy for LAI in 
subplots with only one type of species (R2 = 0.81, normalized RMSE = 0.14). The 
accuracy systematically decreased each time measurements with more (up to four) 
species were included in the inversion process, although this was less pronounced 
for canopy chlorophyll content. This demonstrated the limits of the PROSAIL 
radiative transfer model when the spectral reflectance stems from a rather 
heterogeneous condition.  

 
Prior information was incorporated by identifying the maximum and minimum 

values for three important model parameters (LAI, leaf chlorophyll concentration 
and mean leaf angle), which increased the sampling density and facilitated the 
estimation of grass biophysical characteristics. While considering multiple 
solutions, the accuracy of the estimated variables slightly increased, but differences 
between the statistical parameters were not statistically significant for any number 
of solutions. 

 
When a limited selection of wavelengths related to vegetation parameters from 

literature and wavelengths based on low average absolute error (AAE; Figure 7.4) 
were used for model inversion, the relationships between measured and estimated 
grass variables were similar to those obtained using all wavebands. This indicated 
that a carefully selected spectral subset contains sufficient information for a 
successful model inversion. Similar results have been reported in the literature 
(Meroni et al., 2004; Schlerf and Atzberger, 2006). 
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Figure 7.4. The average absolute error (AAE) between measured and best-fit reflectance spectra as a 
function of wavelengths. The AAE has been calculated from the 185 measured canopy spectra 
obtained using GER 3700 field spectroradiometer against the best fitting look-up table (LUT) 
spectra. 

 

7.4. Airborne level 
Statistical and physical models have seldom been applied simultaneously with 

hyperspectral data for studying grassland canopies. Consequently, the competence 
of statistical versus physical modeling for mapping LAI and canopy chlorophyll 
content in a Mediterranean grassland using hyperspectral HyMap airborne images 
was investigated. In situ measurements of LAI and leaf chlorophyll content were 
collected during a field campaign concomitant with the time of image acquisition. 
Based on the results obtained at the laboratory and field levels, we examined the 
effectiveness of using narrow band vegetation indices as well as partial least square 
regression via the inversion of the PROSAIL radiative transfer model at airborne 
level.  

 
Both canopy variables, LAI and canopy chlorophyll content, were retrieved 

with similar accuracy. The relationship between measured and estimated LAI was 
better explained by partial least square regression and the inversion of PROSAIL 
than by using narrow band vegetation indices. The findings confirmed earlier 
results obtained at field level, since both methods utilize more than two 
wavelengths from the entire spectral region (400 nm to 2500 nm) to estimate the 
variable of interest.  

 
The bands selected as the best combination of the vegetation indices for LAI 

were found in the NIR to SWIR regions. This confirmed previous results obtained 
at laboratory and field levels and emphasized the strong contribution of SWIR 
bands to the strength of relationships between spectral reflectance and LAI. 
Furthermore, the observed patterns (regions with high correlations; hot spots) 
were similar to those obtained at field level using a different sensor (field 
spectrometer) and sampling.   
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Compared with the narrow band NDVI, the narrow band SAVI2 gave 
somewhat higher R2 and lower normalized RMSE values for LAI. These results 
were also observed at laboratory and field levels and confirmed that SAVI2 is 
relatively insensitive to external factors such as soil background effects. 

 
Compared with narrow band indices, the partial least square regression 

achieved similar results. However, important information may be lost when only 
two wavelengths for narrow band vegetation indices are selected.  

 
The look-up table (LUT) that was built at field level was used at airborne level. 

The prior information used for the look-up table (the approximate maximum and 
minimum values from the field measurements of LAI, leaf chlorophyll content and 
mean leaf angle) facilitated the estimation of grass biophysical characteristics, and 
confirmed earlier results obtained at field level, as well as by other studies 
(Atzberger, 2004; Combal et al., 2003; Meroni et al., 2004), that utilizing prior 
information is an efficient way of solving the ill-posed problem and of improving 
the accuracy of the estimated canopy variables.  

 
Comparison between estimated and measured canopy variables indicated that 

the inversion of a radiative transfer model gave accuracies comparable to those of 
statistical approaches (R2=0.91 and 0.87, normalized RMSE=0.08 and 0.10; for 
LAI and canopy chlorophyll content, respectively). Figure 7.5 shows the maps of 
the leaf chlorophyll and water contents for a part of the Majella grassland that were 
produced using the PROSAIL model, and underlines the advantage of physical 
models, since ground-measured data were not required for model calibration and 
can be used for validating the retrieved model parameters.  

 
It can be observed from this figure that the grasses had a relatively high level of 

water content. This is in agreement with earlier findings by Cho (2007), who 
showed that the vegetation was fresher in 2005 than in 2004. 
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Figure 7.5. Maps of grass variables for a subset area of Majella National Park, Italy, from PROSAIL 
canopy reflectance model inversion using the minimum RMSE criterion in the look-up table search. 
Left: leaf chlorophyll content (LCC; µg cm-2); right: equivalent water thickness (Cw; g cm-2). 

 

7.5. Conclusion 
The intention was to investigate the potential of hyperspectral remote sensing 

for estimating biophysical and biochemical vegetation characteristics such as leaf 
area index (LAI) and chlorophyll content with focus on statistical and physical 
models. We have examined the performance of different statistical techniques such 
as univariate versus multivariate techniques for predicting biophysical and 
biochemical vegetation characteristics from laboratory to airborne level. The study 
further investigated the performance of the statistical versus the physical approach 
for mapping and predicting biophysical and biochemical vegetation characteristics. 
We have shown in this thesis that the information contained in hyperspectral data 
can accomplish these tasks. The main conclusions have been reached from the 
observations made in this thesis at three levels of investigation. 

 
It has been concluded that at canopy level red edge inflection point (REIP) is 

not an appropriate variable to be considered for LAI estimations, especially if 
several contrasting species are pooled together or if a heterogeneous canopy is 
being investigated. However, it may be appropriate for single species. 

¯
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Bands in the shortwave infrared (SWIR) region appeared to make a sound 
contribution regarding the strength of relationships between spectral reflectance 
and LAI. Since the SWIR bands were important in all three levels investigated and 
for most vegetation indices in this study, vegetation indices that do not include this 
spectral region may prove less satisfactory for estimating LAI.  

 
The results suggest that, in addition to the choice of vegetation index, prior 

knowledge of plant architecture and soil background is important when using 
remote sensing vegetation indices for LAI estimation. Therefore, before using 
hyperspectral imagery for large-scale mapping of vegetation biophysical variables, 
some kind of landscape stratification is required.  

 
The significance of using multivariate techniques such as partial least squares 

regression rather than univariate methods such as vegetation indices for providing 
enhanced estimates of heterogeneous grass canopy characteristics is highlighted in 
the study results, and further use of such techniques is recommended with 
hyperspectral data. 

 
The utility of the newly introduced subset selection method (wavelengths 

selection based on low average absolute error; AAE) for model inversion 
confirmed that a carefully selected spectral subset contains sufficient information 
for a successful model inversion.  

 
The results of the study demonstrated that grass canopy characteristics such as 

LAI and canopy chlorophyll content can be estimated through the inversion of a 
radiative transfer model with accuracies comparable to those of statistical 
approaches. The advantage of physical models compared to statistical approaches 
is that (almost) no field measurements are required for model calibration. Instead, 
ground-measured data are fully useable for validating the retrieved model 
parameters.  

 
It seemed that the heterogeneity (species diversity) almost disappeared at the 

airborne level, as the estimation accuracy of the studied variables increased using 
either the statistical or the physical model. However, heterogeneity is a relative 
term and is strongly scale dependent. 

 
To summarize, the study not only contributes to the field of information 

extraction from hyperspectral measurements but also enhances our understanding 
of vegetation biophysical and biochemical characteristics estimation. A number of 
achievements have been registered in exploiting spectral information for the 
retrieval of vegetation parameters using statistical and physical approaches. These 
concern the derivation of new vegetation indices and the successful 
implementation of a radiative transfer model inversion (with extensive validation), 
which involved the development of a new method to subset the spectral data 
based on average absolute error (AAE). 
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Since the accuracies obtained through inverting a radiative transfer model were 
comparable to those of statistical approaches, and taking into account the lack of 
robustness and transferability of statistical models for varying environmental 
conditions (Asner et al., 2003; Gobron et al., 1997), the radiative transfer models 
may be considered viable alternatives. 

 

7.6. The future  
The future lies in further extending the methods used and developed in this 

study to hyperspectral spaceborne sensors such as MERIS, MODIS and 
HYPERION for the prediction and mapping of vegetation biophysical and 
biochemical characteristics of large areas.  

 
Research such as studying vegetation through the use of remote sensing and 

biophysical modeling is usually confronted with the problem of unknown input 
parameters. On the other hand, statistical modeling requires extensive field survey 
to collect sufficient field data. In an operational project, however, a compromise 
can be made that includes achieving the research aim and meeting the constraints 
of time and data availability. 

 
The research presented here illustrates some of the possibilities for estimating 

and mapping LAI and chlorophyll under controlled laboratory conditions and in a 
relatively heterogeneous grassland. However, the application of the developed 
methods to other heterogeneous vegetation types and biophysical/biochemical 
characteristics not considered in this study needs to be evaluated using different 
hyperspectral data sets. In this way scale and sensor effects as well as phenological 
influences can be studied. For this, proper ground sampling measurements for 
obtaining biophysical variables, in particular leaf chlorophyll content, are required. 

 
Furthermore, a practical extension of the present work would be on the use of 

information obtained from statistical models to parameterize the physical models. 
This information may help in choosing the initial parameter values for model 
inversion and may probably improve the regularization of the model inversion, 
thus overcoming the ill-posed problem (Atzberger, 2004; Combal et al., 2002). 
However, the possibility of integrating statistical models with physical models 
needs to be further explored. A more accurate estimation of the biophysical and 
biochemical parameters for a variety of vegetation types can be expected from 
such an integrated approach, which may meet the requirements of ecological and 
technology-enhanced decision making processes and policies. 
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  چکیده
تخمین دقیق کمّی پارامترهای بیوشیمیایی و بیوفیزیکی گیاهان در زمینه های مختلفی چون 

امروزه، سنجش از دور به دلایل زیادی . کشاورزی، اکولوژی و هواشناسی اهمیّت بسزایی دارد
 نسبتاً ارزان سطوح همچون پوشش کامل زمین، قابلیت تکرار، عدم تخریب و مشخص نمودن

 های مختلف بیوفیزیکی و پارامترزمینی، به عنوان یک روش مطمئن و کاربردی برای تخمین 
 امکانات جدیدی ، دانش سنجش از دور فراطیفیتفپیشربا . شود میبیوشیمیایی گیاهان شناخته 

رسوم چند برای اندازه گیری پارامترهای بخصوصی از گیاهان که با استفاده از سنجنده های م
  . میسّر گردیده است،طیفی دشوار بودند

  
 های بیوشیمیایی و بیوفیزیکی گیاهان با پارامتربطور کلی روشهای موجود برای محاسبه و تخمین 

استفاده از سنجش از دور شامل دو روش کلی استفاده از مدلهای آماری و استفاده از مدلهای 
هر دو روش بطور گسترده برای .  دارد خود راخاصّفیزیکی می شود که هر یک مزایا و معایب 

مناطقی که عمدتاً ( های بیوشیمیایی و بیوفیزیکی گیاهان در کشاورزی و جنگل پارامترتخمین 
این در حالیست که . مورد بهره برداری قرار گرفته اند) پوشش همگون و یک نوع گیاه دارند

یاهانی با ساختار های مختلف و همچنین  گ(canopy) های گیاهان برای تاج پوش پارامترتخمین 
  .یک از روشهای مذبور مطالعه نگردیده است برای مناطقی با پوشش های ناهمگون توسط هیچ

  
 با بهره گیری از اندازه گیری های فراطیفی، عملکرد تکنیکهای مختلف آماری ،در این مطالعه

 های بیوشیمیایی و پارامتر همچون روشهای یک متغیری و چند متغیری برای محاسبه و تخمین
همچنین .  بررسی گردید (LAI) مانند کلروفیل موجود و شاخص سطح برگ،بیوفیزیکی گیاهان

 و به نقشه در آوردن پارامترهای گیاهی تخمینعملکرد مدلهای آماری و مدلهای فیزیکی برای 
      ه و بررسی برایاین مقایس.  با استفاده از داده های فراطیفی مقایسه و بررسی شدند،مذبور

 با پوشش های ناهمگون و ی گیاهانی با ساختار های مختلف و همچنین مراتع(canopy)تاج پوش 
 گوناگون در سه سطح مختلف آزمایشگاهی، زمینی و (plant communities) گیاسازندهای
  .ه استانجام گردید HYMAPجنده  فراطیفی سنتصاویر هوایی
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  سطح آزمایشگاهی
طح که شامل فصل دوّم و سوّم میشود، داده های بدست آمده از یک تجربهٔ گلخانه ای در این س

بطور خلاصه، فصل . نده ا با استفاده از اندازه گیری های فراطیفی استفاده شدLAIبرای محاسبهٔ 
 عطف را که شامل نقطهٔ مرکّب از طیف های باریک  گیاهی و اندکس هایLAIدوّم رابطه بین 

. هم می شود را بررسی می کند  (Red Edge Inflection Point; REIP)بش طیفیتازز بالبه قرم
دارای مقادیر گوناگون کلروفیل که در و گیاهانی با ساختار های بسیار مختلف  ،در این بررسی
فصل در .  قرار گرفته اندمطالعه مورد ، روشنی متفاوت اندازه گیری شده اندهٔخاکهایی با درج

 با استفاده از اندازه گیری های فراطیفی LAI تخمینآیا "که سؤال این خ به بررسی پاس سوّم
 "قرار می گیرد) شامل شکل و یا اندازه برگ(تحت تأثیر نوع خاک و یا ساختار فیزیکی گیاه 

 تأثیر این عوامل برتغییر رفتار طیفی تاج پوش در باندهای در این مبحث .شده است ختهادرپ
مشاهدات و نتایج بدست آمده در . موردبررسی قرار گرفته استنیز طیفی مرئی و مادون قرمز 

 سنجنده  فراطیفیاین فصول به توسعه فصلهای بعدی در سطوح زمینی و تصاویر هوایی
HYMAP کمک کرده است.  

  
  سطح زمینی

 از اندازه گیریهای طیفی تاج پوش که با استفاده از دستگاه طیف ،فصول چهارم و پنجم
مراتع ناهمگون بدست آمده اند،  در عملیات میدانی  GER 3700  (spectroradiometer)سنج

 عملکرد تکنیکهای مختلف آماری همچون روشهای یک متغیری ،فصل چهارم. بهره می گیرند
        و چند متغیری)  در بازتابش طیفیشامل اندکسهای گیاهی و نقطه عطف لبه قرمز(

(partial least squares regression and stepwise multiple linear regression) برای  را
در .  و کلروفیل موجود در سطح برگها و تاج پوش گیاهان بررسی می کندLAIمحاسبه و تخمین 

 و کلروفیل موجود در تاج پوش، با بکارگیری روش معکوس LAIفصل پنجم محاسبه و تخمین 
 PROSAIL (PROSAIL, Radiative transfer model) سازی مدل انتقال تابش تاج پوش

 look up table الگوریتم معکوس سازی مدل ،در این مطالعه. ه استرد بررسی قرار گرفتمو
 مربوط به توزیع حدّ احتمالی تعدادی از  (prior)  و از اطّلاعات پیش فرضهانتخاب گردید

  .ه استپارامترهای گیاهی برای ساخت آن بهره برده شد
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  HYMAPاطیفی سنجنده سطح تصاویر هوایی فر
 می باشد که همزمان HYMAP سنجنده  فراطیفی بر اساس داده های تصاویر هوایی،فصل ششم

 مشاهدات و نتایج بدست آمده از فصلهای قبل را ،فصلاین . عملیات میدانی گرفته شده اندبا 
دلهای  و کلروفیل موجود در تاج پوش را بر اساس مLAIبکار می گیرد و به نقشه در آوردن 

  .آماری و فیزیکی ارزیابی می کند
  

  :می باشد خلاصه نتایج بدست آمده از سه سطح مورد مطالعه به شرح ذیل 
        شاخص مناسبی برای،نتایج نشان داد که نقطه عطف لبه قرمز در بازتابش طیفی گیاه

یاه متفاوت ، خصوصاً اگر چندین نوع گمی باشدتاج پوش ن در سطح LAIاندازه گیری و محاسبه 
با هم در نظر گرفته شوند و یا تاج پوشهای ناهمگون ) از لحاظ ساختار فیزیکی و بیوشیمیایی(

در طول این مطالعه به مراتب مشاهده گردید که باندهای طیفی . مورد استفاده قرار بگیرند
 و LAI تاثیر بسزایی در استحکام رابطه میان  (SWIR)موجود در منطقه مادون قرمز دور

بینی می شود که نتایج استفاده از اندکس های گیاهیی که  طبیعتاً پیش. بازتابش طیفی دارند
. بخش نخواهند بود  رضایتLAIشامل طیفی از این منطقه نمی شوند برای محاسبه و تخمین 

اندکس های گیاهی در علم نتایج بدست آمده نمایانگر این است که در هنگام استفاده از 
 بلکه اطّلاعات ،، نه تنها انتخاب درست اندکس گیاهیLAI منظور تخمین سنجش از دور به

ساختارگیاه و نوع خاکی که در آن گیاه روئیده است، اهمّیت  مربوط به  (prior) پیش فرض
 ،به همین دلیل قبل از استفاده از تصاویر بدست آمده از سنجش از دور فراطیفی. ویژه ای دارند
 های بیوفیزیکی گیاهان، نوعی طبقه بندی و یا پارامتر مقیاس  نقشه بزرگهٔبه منظور تهی

 اهمیّت استفاده از ، نتایج مطالعه،علاوه بر این. به نظر می رسدجداسازی سرزمین ضروری 
 نسبت به استفاده از روشهای )partial least squares regressionمانند (روشهای چند متغیری 

 های پارامتر  برای بهبود تخمین را)مز در بازتابش طیفیمانند نقطه عطف لبه قر(یک متغیری 
روش نوین معرفی شده جهت انتخاب باندهای .  روشن می سازد،تاج پوش گیاهان ناهمگون

 که انتخاب مناسب و دقیق ،تأیید کرد (AAE)طیفی بر اساس میانگین قدر مطلق خطاها 
.  مدل انتقال تابش فراهم می سازدمعکوس سازی موّفقباندهای طیفی، اطّلاعات کافی را برای 

     همچنین نتایج مطالعه نشان می دهد که با استفاده از معکوس سازی مدل انتقال تابش،
می توانند )  و کلروفیل موجود در تاج پوشLAIمانند ( های تاج پوش گیاهان ناهمگون پارامتر
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این اصل که دقّت بدست آمده از توّجه به با . با دقّتی مشابه به مدلهای آماری تخمین زده شوند
 با دقّت بدست آمده از روشهای آماری یکسان می باشد، و با ،معکوس سازی مدل انتقال تابش

در نظر گرفتن عدم استحکام و عدم قابلیت انتقال مدلهای آماری برای محیطهای گوناگون، 
  . شوند مناسب در نظر گرفتهیمدلهای انتقال تابش می توانند به عنوان جایگزین

  
اندازه گیری های فراطیفی می افزاید و اطّلاعات از در مجموع این مطالعه به علم استخراج 

 های بیوشیمیایی و بیوفیزیکی گیاهان بهبود می پارامتردانش ما را در مورد محاسبه و تخمین 
اطّلاعات طیفی بازتابش برای دست یابی به اری از دچندین موّفقیت هنگام بهره بر. بخشد
این . نده ا های بیوشیمیایی و بیوفیزیکی گیاهان با استفاده از مدلهای مذکور به ثبت رسیدپارامتر

موّفقیتها شامل معرفی اندکس های گیاهی جدید و معکوس سازی موّفق مدل انتقال تابش همراه 
با معتبر سازی گسترده و توسعه یک الگوی جدید جهت انتخاب باندهای طیفی بر اساس 

 که یافته های این مطالعه در یاد آور می شود در پایان . قدر مطلق خطاها می باشندمیانگین
      پذیرفته گردیده و در حال چاپ  ISI قالب پنج مقالهٔ علمی در مجله های مرتبط و معتبر

  )برای اطّلاعات بیشتر به فهرست پیوست مراجعه شود. (می باشند
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Acronyms 
2-D Two dimensional 
AAE Average absolute error 
ALA Mean leaf inclination angle 

ATCOR Atmospheric and topographic correction software 
AVIRIS Airborne visible infrared imaging spectrometer 
BRDF Bidirectional reflectance distribution function 
CASI Compact airborne spectrographic imager 
CCC Canopy chlorophyll content 
Cm Dry matter content 

cv Cross validated 
Cw Equivalent water thickness 
FOV Field of view 

GER (Geophysical and environmental research corporation, Buffalo, 
New York) 

GPS Global positioning system 
hot Hot spot size parameter 

HyMap  Hyperspectral mapping imaging spectrometer 
LAI  Leaf area index 

LAI-2000 Plant canopy analyzer LAI-2000 (LICOR Inc., Lincoln, NE, 
USA) 

LCC Leaf chlorophyll content 

LI-3100  LI-3100 leaf area meter (scanning planimeter) (LICOR Inc., NE, 
USA)  

LUT Look-up table 
MLR Multiple linear regression 

MODTRAN Moderate spectral resolution atmospheric transmittance 
MSAVI Modified soil adjusted vegetation index 
N Leaf structural parameter 
NDVI Normalized difference vegetation index 

NIR Near infrared 
NRMSE Normalized root mean square error (RMSE/range) 
PAI Plant area index 
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PLSR Partial least square regression 
PROSAIL Combined SAILH and PROSPECT radiative transfer model 
PVI Perpendicular vegetation index 

r Correlation coefficient 
R2 Coefficient of determination 
REIP Red edge inflection point 
RMSE Root mean square error 
RRMSE Relative root mean square error (RMSE/mean) 
RTM Radiative transfer model 
RVI Ratio vegetation index 

SAIL Scattering by arbitrarily inclined leaves 
SAVI Soil adjusted vegetation index 
SAVI2 Second soil- adjusted vegetation index 
scale Soil brightness parameter 

skyl Fraction of diffuse incoming solar radiation 
SMLR Stepwise multiple linear regression 
SPAD SPAD-502 leaf chlorophyll meter (Minolta, Inc.) 
SWIR Shortwave infrared 
TSAVI Transformed soil- adjusted vegetation index 

VI Vegetation index 
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