AGROTECHNOLOGY & Food Innovations

WAGENINGEN UR

Hydrolysis and Fermentation of Lime-pretreated Biomass

Robert R. Bakker, Ronald H.W. Maas, Mirjam A. Kabel*, Henk A. Schols*, Ruud A. Weusthuis, Ed de Jong

Alkaline pretreatment of lignocellulosic biomass has regained interest because of perceived advantages for ethanol production, including low formation of fermentation inhibitors. We investigated mild-temperature, lime (Ca(OH)₂) pretreatment of lignocellulosic biomass for enzymatic hydrolysis purposes.

Methods

- Feedstock: Wheat straw (32% glucan, 20% xylan)
- Pretreatment: 1.8 L working volume; 85°C, 16h
- Enzymatic hydrolysis: 24h-72h; 50°C
- Ethanol fermentation: Saccharomyces cerevisae, 32°C

Results

• Contrary to many other pretreatment methods, lime pretreatment at atmospheric conditions does not lead to significant dissolving of xylan or lignin.

		Composition [%]					
	mass [%]	Ara	Xyl	Man	Gal	Glc	Lignin
Wheat straw, untreated	100.0	2.1	20.3	0.5	0.7	32.0	24.0
Lime-pretreated wheat straw	99.3	2.0	19.0	0.0	0.0	33.0	23.5

• High enzyme loading rates show considerable glucan-to-glucose and xylan-to-xylose conversion.

Apparatus: pulp reactor used for pretreatment (left); Fermentation test bench for ethanol fermentation (right)

• Lower enzyme dosage (2 - 15 FPU/g dm) results in 16-53% glucan conversion, indicating high enzyme inhibition and/or inactivation.

• Fermentation of unwashed substrates show no (pH=5.0), moderate (pH=4.5) to severe (pH=4.0) inhibition of *S. cerevisae* due to acetic acid.

• Applying simple washing techniques to recover alkali and remove inhibiting compounds leads to major improvements in fermentability of substrates.

Conclusions

Lime pretreatment leads to high enzymatic degradability and fermentability of lignocellulose, without significant de-lignification or xvlan degradation. On-going work is focused on evaluating alkali recovery techniques. simultaneous saccharification and fermentation, upscaling, and economic evaluation.

$e \verb|conomiee| cologiet| e \verb|chnologiet| e $| chnologiet| e $|$

Agrotechnology & Food Innovations B.V. P.O. Box 17, 6700 AA Wageningen, The Netherlands Tel+31 317 475029 Fax+31 317 475347 E-mail info.agrotechnologyandfood@wur.nl Internetwww.agrotechnologyandfood.wur.nl * Laboratory of Food Chemistry, Wageningen University, the Netherlands

This research is supported with a grant of the Dutch Programme EET (Economy, Ecology, Technology) a joint initiative of the Ministries of Economic Affairs, Education, Culture and Sciences and of Housing, Spatial Planning and the Environment. Co-financing was provided by Program 412 Green Resources of the Dutch Ministry of Agriculture, Nature and Food Quality.