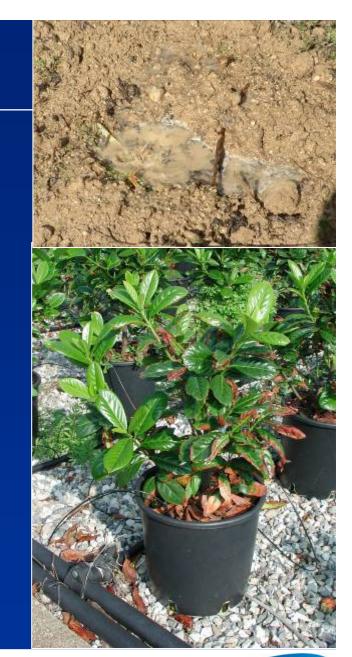
FLOW-AID, a farm level tool for irrigation management under deficit conditions: Pre-liminary case-study results

Brussels (Belgium) - May, 29th 2009

Jos Balendonck


Outline

Introduction
Technology "building blocks"
Case study results
Conclusions

Water Management Challenges

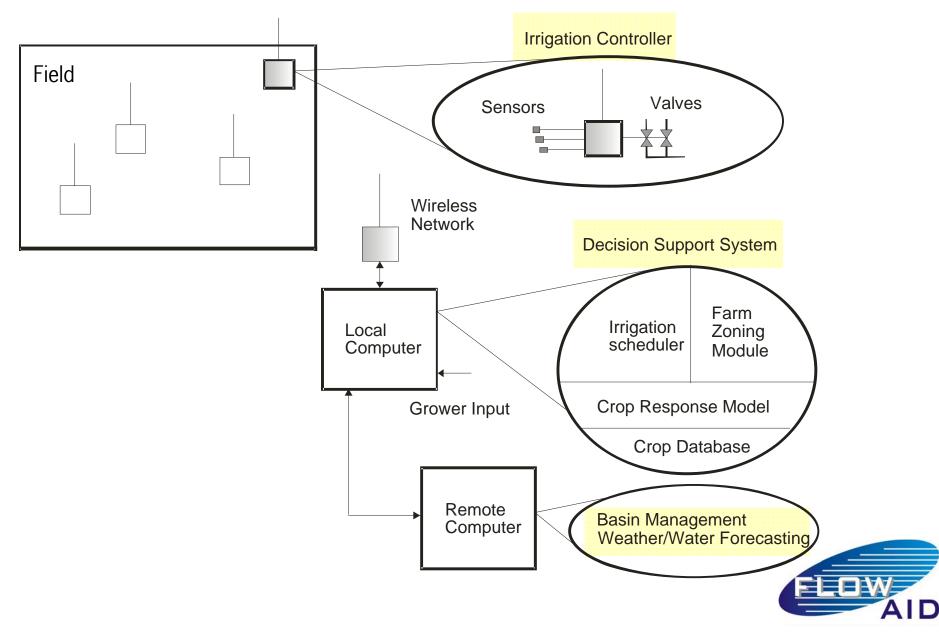
- Over irrigation in cases of high (fresh) water availability
 - Irrigation amounts depend on availability
 - Leaching or run-off of water and nutrients
- Deficit irrigation if water availability and irrigation water quality is low
 - Use of marginal water resources
 - Yield losses and crop damages

Objectives

- Efficient use of available water (SAVE WATER)
- Rational use of nutrients and marginal water resources (SAVE NUTRIENTS)
- Economically and socially accepted farming (EARN MONEY)

By:

Improving current irrigation practices by introducing new tools:


- Decision Support System for optimal irrigation
- Sensitive, simple and affordable tools to determine optimal irrigation amount and the source of water

For:

- High value horticultural crops
- Arid, semi-arid as well as humid areas
- Protected and non-protected cultivation

System Layout

Crop Planning (where to plant what crop?)

- Advising tool (long term planning)
- Optimal crop planning in view to water availability and basin constraints
- MOPECO, model for Optimal Economic Water Use Efficiency (Maximum Gross Margin)
- Input: farm data crops, sizes, machines, water constraints ...
- Use crop model for deficit irrigation
- Output: Annual Crop Plan

Crop Response Model and Database for Deficit

	sponse to Quantity (E Quality (Sal	T-based)		Relative yield	$Y = 100 - B \cdot (EC - A)$
Crop Stress Response Database					EC (mS/cm)
ELDWAID	EU Project nº036958 Farm Level Optimal Water ma Assistant for Irrigation une	3		DI PISA	
EDIT Product Name SAVE RECORD AS RECORD NAME ADD NEW RECORD BARLEY	ARLEY CROP (SHORT NAME) SCIENTIFIC NAME BARLEY Hordeum vulgare	ET GROUP (FAO)	REFERENCES 0	Open Web Page	
CANCEL EXPORT DATABASE REPORT Regional Setting: Regno Unito	DEVELOPMENTAL STAGE START DAY (1-365) Initial I Crop development II Mid Season III Mid Season IV Total growing cycle T [< <<<<>> Record 1 of 20	DURATION (DAYS) Kc ROOT DEPTH (40 0.00 0.00 60 0.00 0.00 60 0.00 0.00 40 0.00 0.00 40 0.00 0.00 200 0.00 0.00	m) Ky (RAW/TAW) 0 0.55 0 0.55 0 0.55 0 0.55 1.15 0	ECth b 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	FLOW

DSS-Irrigation Scheduler

- Farm-level tool
- Day to day planning
- Short-term Water Availability
- Weather Forecasts
- Plant Status (monitoring)
- Crop Stress Model
- Set Irrigation Controllers

NODE SETUP			2
	 Time Scheduler Water Uptake Model Root Zone Sensor Volumetric Sensor Deep Zone Sensor 	General Name Irrigation id 1 Crop Tomato Surface 1000.0000 m2 Irrigation flow 0.0500 Safety Conditions Minimum Time between two irrigations 180 Maximum Time between two irrigations 1000 Maximum Irrigating Time 10 Maximun Irrigating Volume 10.0000 C Irrigation Enable Time Window	min min min
Start Condition Start Irrigation with Root Zone	Sensor	FROM: 07:00 TO: 17:00	•
Stop Condition Stop Irrigation with Volumetric	Sensor	[ОК
Stop inigation with J volumetric		L	
			Cancel

Irrigation (Fertigation) Controller

Stand-alone operation

- Remotely programmed
- Parameterized
- Wired or Wireless

Activation On/Off

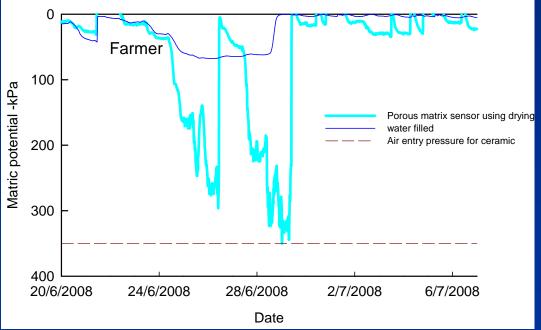
- Timed
- Sensor controlled
- Model based (f.i. ET)
- Multiple valves
- Multiple water sources

Improved Soil Sensor Performance

Soil Moisuture Content
 Soil calibrations

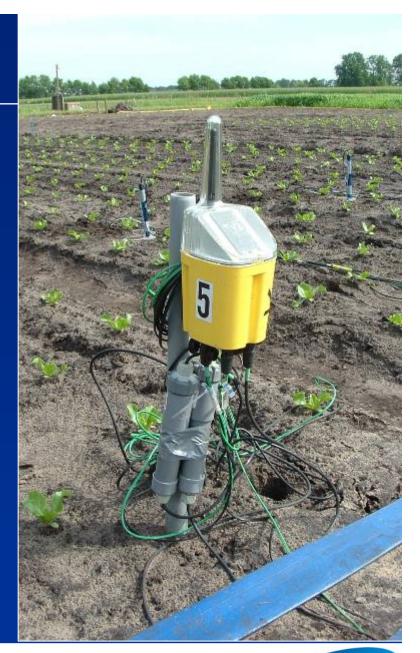
Electrical Conductivity (EC)

- Total Nutrient Concentration
- WET-sensor, ECHO-probe
- Pore Water EC calibration



Robust tensiometer

- Water filled tensiometer
- Small range
- Air entry at dry end



- Porous Matric Sensor
- Large range
- No air entry at dry end

Wireless Sensor Network

No cabling, easy installation
Multiple nodes and sensors
Robustness in field

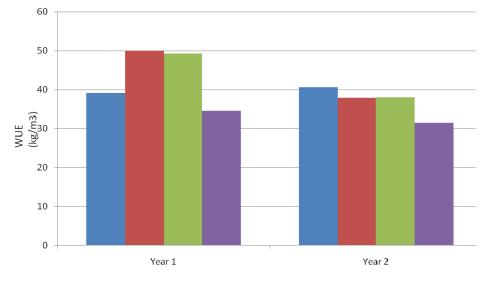
Long Range (100m – 500m)
Weather proof
Data Reliability
Solar powered

Turkey

Region Izmir (Tahtalı Dam)

- Preservation area
- Greenhouses permitted
- Water from wells, no leaching

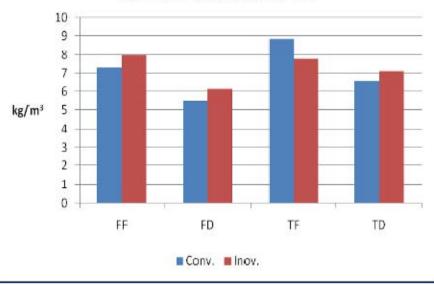
Objectives


- Local farmer (Cucumber)
- Zero drainage (reduce water use)
- Compensate Yield Losses
- Sensor activated control

Water Use Efficiency

- Marketable yield applied irrigation
- Highest in Deficit and Full Irrigation
- Lowest in Farmers' treatment

■ Full Irrigation ■ Deficit 1 ■ Deficit 2 ■ Farmer

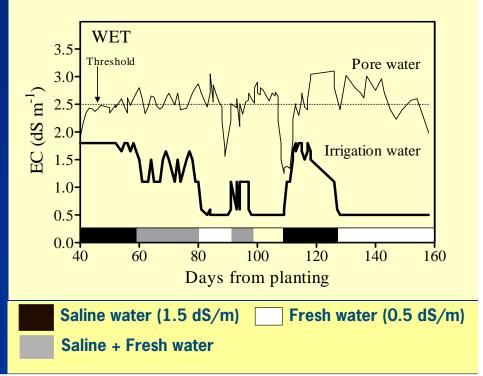


Jordan

- Irbid, Jordan Valley
 - Fruit and oriental trees, vegetables
 - Limited water resources
 - Poor water management at farm level
 - Low water use efficiency
- Objectives
 - Maximize Water Use Efficiency
 - Soil grown tomatoes
 - Dual water quality irrigation: Treated Waste Water (T) and Fresh Water (F)
 - Sensor Activated Irrigation
 - FULL (F) and DEFICIT irrigation (D)
- Results
 - 5-10% Higher WUE with Innovative Irrigation Strategies

Water Use Efficiency (kg/m³), 2008

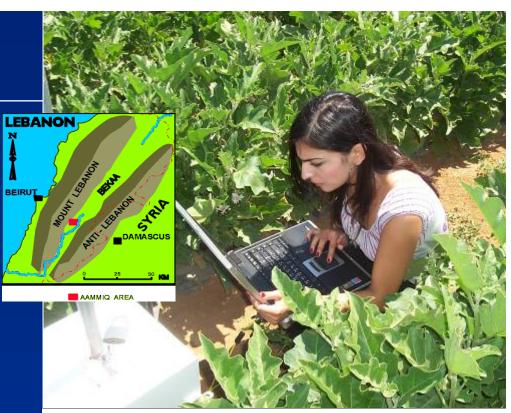

Italy


Pistoia, Tuscany

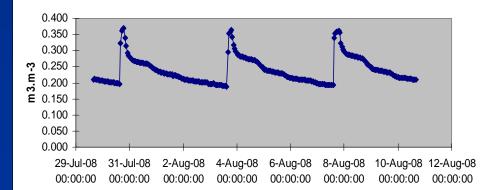
- Nursery stock production
- Farm sizes: 10 100 ha
- Container plants (drip/sprinkler)
- Many crop types + sizes/plot
- Need to use saline water

Objectives:

- Dual water irrigation: Cleaned Waste Water and Fresh Water
- Prevent Plant Stress
- Maintain maximum pore water EC-level using WET-sensors


Lebanon

South Bekaa Valley, Litany River


- Tal Amara Research Station
- Fruit trees and vegetables
- Water sources:
 - Surface irrigation
 - Pressurized pipelines (sprinklers and tricklers)
- Poor water management

Objectives

- Deficit irrigation performance (potato, eggplant)
- Enhance Water Use efficiency
- Evaluate New Technologies
 - Compare drip and furrow irrigation
- Transfer of knowledge to farmers

Soil water content (M3 m-3)

The Netherlands

- Limburg Vredepeel
 - Slight loamy-sandy soils
 - Rain-fed agriculture
 - High water tables
 - Leaching of Nitrate (WFD)

Objectives

- Prevent leaching
- Iceberg lettuce crop
- Use plastic cover to block rain
- Use shallow sensor activated control
- Use deep sensor adapt irrigation dose and monitor leaching
- Evaluate DSS (remote Host)

Pre-liminary findings and statements

- "Technology (sensors and control) offers farmers more possibilities to efficiently use water and nutrients under suboptimal conditions (deficit), and to minimize run-off, percolation losses and crop damage."
- "Technology can be used in a broad range of farming conditions,"
 - in soil or substrate based crop production;
 - in protected or non-protected cultures;
 - in arid or humid zones;
 - and it is usefull to manage multiple quality water sources."
- "New ICT-tools offer possibilities to link farm and basin management to further optimize Water Use Efficiency, making it a suitable tool for IWRM".

