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Preface 

Thirty-three years ago, the first International Course on Land Drainage was held at 
ILRI in Wageningen. Since then, almost 1000 participants from more than 100 
countries have attended the Course, which provides three months of post-graduate 
training for professionals engaged in drainage planning, design, and management, 
and in drainage-related research and training. In the years of its existence, the Course 
has proved to be the cornerstone of ILRI’s efforts to contribute to the development 
of human resources. 

From the beginning, notes of the Course lectures were given to the participants to 
lend support to the spoken word. Some twenty-five years ago, ILRI decided to publish 
a selection of these lecture notes to make them available to a wider audience. 
Accordingly, in 1972, the first volume appeared under the title Drainage Principles 
andApplications. The second, third, and fourth volumes followed in the next two years, 
forming, with Volume I, a set that comprises some 1200 pages. Since then, Drainage 
Principles and Applications has become one of ILRI’s most popular publications, with 
sales to date of more than 8000 copies worldwide. 

In this third edition of the book, the text has been completely revised to bring it up 
to date with current developments in drainage and drainage technology. The authors 
of the various chapters have used their lecture-room and field experience to adapt 
and restructure their material to reflect the changing circumstances in which drainage 
is practised all over the world. Remarks and suggestions from Course participants 
have been incorporated .into the new material. New figures and a new lay-out have 
been used to improve the presentation. In addition, ILRI received a vast measure 
of cooperation from other Dutch organizations, which kindly made their research 
and field experts available to lecture in the Course alongside ILRI’s own lecturers. 

To bring more consistency into the discussions of the different aspects of drainage, 
the four volumes have been consolidated into one large work of twenty-six chapters. 
The book now includes 550 figures, 140 tables, a list of symbols, a glossary, and an 
index. It has new chapters on topical drainage issues (e.g. environmental aspects of 
drainage), drainage structures (e.g. gravity outlets), and the use of statistical analysis 
for drainage and drainage design. Current drainage practices are thoroughly reviewed, 
and an extensive bibliography is included. The emphasis of the whole lies upon 
providing clear explanations of the underlying principles of land drainage, which, 
wisely applied, will facilitate the type of land use desired by society. Computer 
applications in drainage, which are based on these principles, are treated at length 
in other ILRI publications. 



The revision of this book was not an easy job. Besides the authors, a large number 
of ILRI’s staff gave much of their time and energy to complete the necessary work. 
ILRI staff who contributed to the preparation of this third edition were: 
Editorial Committee R. van Aart 

M.G. Bos 
H.M.H. Braun 
K.J. Lenselink 
H.P. Ritzema 
J.G. van Alphen 
Th. M. Boers 
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G. Zijlstra 

M.M. Naeff 

Members prior to 1993 

Language Editors M.F.L. Roche 
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Word Processing J.B.H. van Dillen 
Design and Layout J. van Dijk 

J. van Manen 

I want to thank everyone who was involved in the production of this book. It is my 
belief that their combined efforts will contribute to a better, more sustainable, use 
of the world’s precious land and water resources. 

Wageningen, June 1994 M.J.H.P. Pinkers 
Director 
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1 Land Drainage: Why and How? 
M.G.BOS' and Th.M.Boers' 

1.1 The Need for Land Drainage 

The current world population is roughly estimated at  5000 million, half of whom live 
in developing countries. The average annual growth rate in the world population 
approximates 2.6%. To produce food and fibre for this growing population, the 
productivity of the currently cultivated area must be increased and more land must 
be cultivated. 

Land drainage, or the combination of irrigation and land drainage, is one of the 
most important input factors to maintain or to improve yields per unit of farmed 
land. Figure 1 . 1  illustrates the impact of irrigation water management and the control 
of the watertable. 
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Figure 1.1 Influence of water control, improved management, and additional inputs on yields of paddy 
rice (FAO 1979) 
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To enlarge the currently cultivated area, more land must be reclaimed than the land 
that is lost (e.g. to urban development, roads, and land degradation). In some areas, 
however, land is a limiting resource. In other areas, agriculture cannot expand at the 
cost of nature. 

Land drainage, as a tool to manage groundwater levels, plays an important role in 
maintaining and improving crop yields: 
- It prevents a decrease in the productivity of arable land due to rising watertables 

- A large portion of the land that is currently not being cultivated has problems of 
and the accumulation of salts in the rootzone; 

waterlogging and salinity. Drainage is the only way to reclaim such land. 

The definition of land drainage, as given in the constitution of the International 
Commission on Irrigation and Drainage/ICID (1 979), reads: 

‘Land drainage is the removal of excess surface and subsurface water from the 
land to enhance crop growth, including the removal of soluble salts from the 
soil.’ 

In this publication, we shall adopt the ICID definition because it is generally known 
and is applicable all over the world. Drainage of agricultural land, as indicated above, 
is an effective method to maintain a sustainable agricultural system. 

1.2 The History of Land Drainage 

Records from the old Indus civilizations (i.e. the Mohenjo-Daro and the Harappa) 
show that ‘around 2500 B.C. the Indus Valley was farmed. Using rainfall and 
floodwater, the farmers there cultivated wheat, sesame, dates, and cotton. Surplus 
agricultural produce was traded for commodities imported from neighbouring 
countries. Irrigation and drainage, occurring as natural processes, were in equilibrium: 
when the Indus was in high stage, a narrow strip of land along the river was flooded; 
at low stage, the excess water was drained (Snelgrove 1967). 

The situation as sketched for the Indus Valley also existed in other inhabited valleys, 
but a growing population brought the need for more food and fibre. Man increased 
his agricultural area by constructing irrigation systems: in Mesopotamia c. 3000 B.C. 
(Jacobsen and Adams 1958), in China from 2627 B.C. (King 191 1, as quoted by Thorne 
and Peterson 1949), in Egypt c. 3000 B.C. (Gulhati and Smith 1967), and, around 
the beginning of our era, in North America, Japan, and Peru (Kaneko 1975; Gulhati 
and Smith 1967). 

Although salinity problems may have contributed to the decline of old civilizations 
(Maierhofer 1962), there is evidence that, in irrigated agriculture, the importance of 
land drainage and salinity control was understood very early. In Mesopotamia, control 
of the watertable was based on avoiding an inefficient use of irrigation water and 
on the cropping practice of weed-fallow in alternate years. The deep-rooted crops 
shoq and agul created a deep dry zone which prevented the rise of salts through 
capillary action (Jacobsen and Adams 1958). During the period from 1122 B.C. to 
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220 A.D., saline-alkali soils in the North China Plain and in the Wei-Ho Plain were 
ameliorated with the use of a good irrigation and drainage system, by leaching, by 
rice planting, and by silting from periodic floods (Wen and Lin 1964). 

The oldest known polders and related structures were described by Homer in his Iliad. 
They were found in the Periegesis of Pausanias (Greece). His account is as follows 
(see Knauss 1991 for details): 

‘In my account of Orchomenos, I explained how the straight road runs at first 
besides the gully, and afterwards to the left of the flood water. On the plain of 
the Kaphyai has been made a dyke of earth, which prevents the water from the 
Orchomenian territory from doing harm to the tilled land of Kaphyai. Inside the 
dyke flows along another stream, in size big enough to be called a river, and 
descending into a chasm of the earth it rises again ... (at a place outside the polder).’ 

In the second century B.C., the Roman Cat0 referred to the need to remove water 
from wet fields (Weaver 1964), and there is detailed evidence that during the Roman 
civilization subsurface drainage was also known. Lucius Inunius Moderatus 
Columella, who lived in Rome in the first century, wrote twelve books entitled: ‘De 
Re Rustica’ in which he described how land should be made suitable for agriculture 
(Vutik 1979) as follows: 

‘A swampy soil must first of all be made free of excess water by means of a drain, 
which may be open or closed. In compact soils, ditches are used; in lighter soils, 
ditches or closed drains which discharge into ditches. Ditches must have a side 
slope, otherwise the walls will collapse. A closed drain is made of a ditch, 
excavated to a depth of three feet, which is filled to a maximum of half this depth 
with stones or gravel, clean from soil. The ditch is closed by backfilling with soil 
to the surface. If these materials are not available, bushes may be used, covered 
with leaves from cypress or pine trees. The outlet of a closed drain into a ditch 
is made of a large stone on top of two other stones.’ . 

During the Middle Ages, in the countries around the North Sea, people began to 
reclaim swamps and lacustrine and maritime lowlands by draining the water through 
a system of ditches. Land reclamation by gravity drainage was also practised in the 
Far East, for instance in Japan (Kaneko 1975). The use of the windmill to pump water 
made it possible to turn deeper lakes into polders, for example the 7000-ha Beemster 
Polder in The Netherlands in 1612 (Leeghwater 1641). The word polder, which 
originates from the Dutch language, is used internationally to indicate ‘a low-lying 
area surrounded by a dike, in which the water level can be controlled independently 
of the outside water’. 

During the 16th, 17th, and 18th centuries, drainage techniques spread over Europe, 
including Russia (Nosenko and Zonn 1976), and to the U.S.A. (Wooten and Jones 
1955). The invention of the steam engine early in the 19th century brought a 
considerable increase in pumping capacity, enabling the reclamation of larger lakes 
such as the 15 000-ha Haarlemmermeer, southwest of Amsterdam, in 1852. 
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In the 17th century, the removal of excess water by closed drains, essentially the same 
as described above by Columella, was introduced in England. In 18 I O, clay tiles started 
to be used, and after 1830 concrete pipes made with portland cement (Donnan 1976). 
The production of drain pipes was first mechanized in England and, from there, it 
spread over Europe and to the U.S.A. in the mid-19th century (Nosenko and Zonn 
1976). Excavating and trenching machines, driven by steam engines, made their advent 
in 1890, followed in 1906 by the dragline in the U.S.A. (Ogrosky and Mockus 1964). 

The invention of the fuel engine in the 20th century has led to the development of 
high-speed installation of subsurface drains with trenching or trenchless machines. 
This development was accompanied by a change from clay tiles to thick-walled, 
smooth, rigid plastic pipes in the 1940’s, followed by corrugated PVC and polyethylene 
tubing in the 1960’s. Modern machinery regulates the depth of drains with a laser 
beam. 

The high-speed installation of subsurface drains by modern specialized machines 
is important in waterlogged areas, where the number of workable days is limited, and 
in intensively irrigated areas, where fields are cropped throughout the year. In this 
context, it is good to note that mechanically-installed subsurface drainage systems 
are not necessarily better than older, but manually-installed systems. There are many 
examples of old drains that still function satisfactorily, for example a 100-year-old 
system draining 100 ha, which belongs to the Byelorussian Agricultural Academy in 
Russia (Nosenko and Zonn 1976). 

Since about 1960, the development of new drainage machinery was accompanied by 
the development of new drain-envelope materials. In north-western Europe, organic 
filters had been traditionally used. In The Netherlands, for example, pre-wrapped 
coconut fibre was widely applied. This was later replaced by synthetic envelopes. In 
the western U.S.A., gravel is more readily available than in Europe, and is used as 
drain-envelope material. Countries with arid and semi-arid climates similar to the 
western U.S.A. (e.g. Egypt and Iraq) initially followed the specifications for the design 
of gravel filters given by the U.S. Bureau of Reclamation/USBR (1978). The high 
transport cost of gravel, however, guided designers to pre-wrapped pipes in countries 
like Egypt (Metzger et al. 1992), India (Kumbhare et al. 1992), and Pakistan 
(Honeyfield and Sial 1992). 

1.3 From the Art of Drainage to Engineering Science 

As was illustrated in the historical sketch, land drainage was, for centuries, a practice 
based on local experience, and gradually developed into an art with more general 
applicability. It was only after the experiments of Darcy in 1856 that theories were 
developed which allowed land drainage to become an engineering science (Russell 
1934; Hooghoudt 1940; Ernst 1962; Kirkham 1972; Chapter 7). And although these 
theories now form the basis of modern drainage systems, there has always remained 
an element of art in land drainage. It is not possible to give beforehand a clear-cut 
theoretical solution for each and every drainage problem: sound engineering 
judgement on the spot is still needed, and will remain so. 
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The rapid development of theories from about 1955 to about 1975 is well illustrated 
by two quotations from Van Schilfgaarde. In 1957 he wrote: 

‘Notwithstanding the great progress of recent years in the development of 
drainage theory, there still exists a pressing need for a more adequate analytical 
solution to some of the most common problems confronting the design engineer.’ 

In 1978, the same author summarized the state of the art for the International Drainage 
Workshop at Wageningen (Van Schilfgaarde 1979) as: 

‘Not much will be gained from the further refinement of existing drainage theory 
or from the development of new solutions to abstractly posed problems. The 
challenge ahead is to imaginatively apply the existing catalogue of tricks to the 
development of design procedures that are convenient and readily adapted by 
practising engineers.’ 

With the increasing popularity of computers, many of these ‘tricks’ are combined in 
simulation models and in design models like SWATRE (Feddes et al. 1978; Feddes 
et al. 1993), SALTMOD (Oosterbaan and Abu Senna 1990), DRAINMOD (Skaggs 
1980), SGMP (Boonstra and de Ridder 1981), and DrainCAD (Liu et al. 1990). These 
models are powerful tools in evaluating the theoretical performance of alternative 
drainage designs. Nowadays, however, performance is not only viewed from a crop- 
production perspective, but increasingly from an environmental perspective. Within 
the drained area, the environmental concern focuses on salinity and on the diversity 
of plant growth. Downstream of the drained area, environmental problems due to 
the disposal of drainage effluent rapidly become a major issue. 

Currently, about 170 million ha are served by drainage and flood-control systems 
(Field 1990). In how far the actual performance of these systems can be forecast by 
the above models, however, is largely unknown. There is a great need for field research 
in this direction. 

The purpose of this manual is, in accordance with the aims of ILRI, to contribute 
to improving the quality of land drainage by providing drainage engineers with ‘tools’ 
for the design and operation of land drainage systems. 

1.4 Design Considerations for Land Drainage 

In the ICID definition ofdrainage, ‘the removal of excess water’ indicates that (land) 
drainage is an action by man, who must know how much excess water should be 
removed. Hence, when designing a system for a particular area (Figure 1.2), the 
drainage engineer must use certain criteria (Chapter 17) to determine whether or not 
water is in excess. A (ground-)water balance of the area to be drained is the most 
accurate tool to calculate the volume of water to be drained (Chapter 16). 

Before the water balance of the area can be made, a number of surveys must be 
undertaken, resulting in adequate hydrogeological, hydropedological, and topogra- 
phicmaps (Chapters 2,3, and 18, respectively). Further, all (sub-)surface water inflows 
and outflows must be measured or estimated (Chapters 4, 10, and 16). Precipitation 
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Figure 1.3 Schematic drainage system 

The main drainage canal (ii) is often a canalized stream which runs through the lowest 
parts of the agricultural area. It discharges its water via a pumping station or a tidal 
gate into a river, a lake, or the sea at  a suitable outlet point (i) (Chapters 23 and 
24). 

Main drainage canals collect water from two or more collector drains. Although 
collector drains (iii) preferably also run through local low spots, their spacing is often 
influenced by the optimum size and shape of the area drained by the selected field- 
drainage system. The layout of the collector drains, however, is still rather flexible 
since the length of the field drains can be varied, and sub-collector drains can be 
designed (Chapter 19). The length and spacing of the field or lateral drains (iv) will 
be as uniform as is applicable. Both collector and field drains can be open drains 
or pipe drains. They are determined by a wide variety of factors such as topography, 
soil type, farm size, and the method of field drainage (Chapters 20,2 I ,  and 22). 

The three most common techniques used to drain excess water are: a) surface drainage, 
b) subsurface drainage, and c) tubewell drainage. 
a) Surface drainage can be described as (ASAE 1979) ‘the removal of excess water 

from the soil surface in time to prevent damage to crops and to keep water from 
ponding on the soil surface, or, in surface drains that are crossed by farm 
equipment, without causing soil erosion’. Surface drainage is a suitable technique 
where excess water from precipitation cannot infiltrate into the soil and move 
through the soil to a drain, or cannot move freely over the soil surface to a (natural) 
channel. This technique will be discussed in Chapter 20; 

b) Subsurface drainage is the ‘removal of excess soil water in time to prevent damage 
to crops because of a high groundwater table’. Subsurface field drains can be either 
open ditches or pipe drains. Pipe drains are installed underground at depths varying 
from 1 to 3 m. Excess groundwater enters the perforated field drain and flows 
by gravity to the open or closed collector drain. The basics of groundwater flow 
will be treated in Chapter 7, followed by a discussion of the flow to subsurface 
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drains in Chapter 8. The techniques of subsurface drainage will be dealt with in 
Chapter 21. 
c) Tubewell drainage can be described as the ‘control of an existing or potential high 

groundwater table or artesian groundwater condition’. Most tubewell drainage 
installations consist of a group of wells spaced with sufficient overlap of their 
individual cones of depression to control the watertable at all points in the area. 
Flow to pumped wells, and the extent of the cone of depression, will be discussed 
in Chapter 10. The techniques of tubewell drainage systems will be treated in 
Chapter 22. 

When draining newly-reclaimed clay soils or peat soils, one has to estimate the 
subsidence to be expected, because this will affect the design. This problem, which 
can also occur in areas drained by tubewells, is discussed in Chapter 13. 

Regardless of the technique used to drain a particular area, it is obvious that it 
must fit the local need to remove excess water. Nowadays the ‘need to remove excess 
water’ is strongly influenced by a concern for the environment. The design and 
operation of all drainage systems must contribute to the sustainability of agriculture 
in the drained area and must minimize the pollution of rivers and lakes from 
agricultural return flow (Chapter 25). 
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