New Vegetable Production Systems in the Netherlands

Janjo de Haan & Wijnand Sukkel

APPLIED PLANT RESEARCH

Contents

- Problem statement
- Research visions for designing new vegetable growing systems
- Research questions
- More long term research to solve these problems is starting

APPLIED PLANT RESEARCH WAGENINGEN UR

Measures to reduce nitra	ate leaching \rightarrow reduction in vields/income
 Decision support systems Guided fertilization Warning systems 	→ extra costs
Green manure crops	\rightarrow not possible by late harvest
Removal of crop residues	→ extra costs
Purification of drainage water	→ extra costs
Extensification	\rightarrow reduction in income
 Organic agriculture 	ightarrow market is growing but small
→ Measures too expensive and/	or too little effect
→ Redesign of vegetable produc	tion systems is necessary
APPLIED PLANT RESEARCH WAGENINGEN DE	

Technical	Agro-ecological		
Uniformity	Diversity		
Recipy	Concept		
Reductionism	Holism		
General	Situational		
Control	Cooperation		
Specialist	Universalist		
Reaction	Precaution		
Economy	Ecology		
Global	Regional		

Fertigation and mulching with foil

Advantages

- Water and nutrient efficiency
- Reduction of leaching risks
- No weed control
- Lower disease pressure
- Increase in yield and quality
- Disadvantages
 - Higher costs
 - Higher labor need
 - Difficult to control soil nitrogen status

2

Results experiments fertigation

Meterik 1998-2000	Strawberry +foil	Leek -foil
 Reduction nitrogen fertilization 	-15 - 35%	-13%
 Lower residual soil nitrogen levels 	-10 - 50%	-45%
 Higher yields 	+10 – 15%	0%
 Net farm result 	-10%	
Leek 2006-2007		
 2006 Leek on little ridges with foil 	no effect	
 2007 Leek on potato ridges no ef 	fect	
 2007 Leek on asparagus ridges w 	with foil yield little high	er
Potato Vredepeel 1999-2001		
 Yield effect caused by drip irrigation 	on, not fertilization	
 No possibility to reduce nitrogen f 	ertilization	
No offect on residual sail nitragen	lavala	

APPLIED PLANT RESEARCH WAGENINGENUR

•

Outdoor hydroponics in leaf crops 2007					
(Matthijs Blind, Proeftuin Zv	vaagdijk)	·			
Relative yield	Lollo	Lollo	lceberg		
	rossa 1	rossa 2	lettuce		
NGS	104%	94%	102%		
• PTZ	88%	166%	82%		
 Hortiplan 	97%	134%	103%		
 Crop losses were lo Important aspects Water strategy Type of pot (size, m Wind 	w edium) important				
APPLIED PLANT RESEARC	R				

Agro-ecological vision

- Making use of ecology, Examples nature and external influences instead of excluding it
- Diversity and prevention are keywords
- Organic agriculture
- Conservation agriculture
- Permaculture
- Low input systems
- Integrated agriculture

APPLIED PLANT RESEARCH WAGENINGENUR

Comparison organic & conventional agriculture

	Meterik		Westmaas		Nagele OBS	
	conv	org	conv	org	conv	org
Relative yield (%)	100	77	100	60	100	78
Pesticide use (kg/ha)	4.1	0	4.8	0	2.3	0
Leachable nitrogen (kg/ha)	120	77	49	36	32	43

Meterik = Vegetable, sandy soil Westmaas = vegetable/arable, clay soil Nagele OBS = arable/vegetable, clay soil

APPLIED PLANT RESEARCH WAGENINGEN UR

Compared top organic to conventional shows: Lower yields (NL), sometimes comparable yields (Vegineco) Most limiting production factors in vegetables are pests and diseases Mostly a better environmental performance Biodiversity, organic matter, N-leaching, energy use (per/ha) Higher production costs (> labor and < yields) Less uniformity in the product and the production system Less specialization per farm

