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Safe drinking water is a basic need for 
all human beings. Preventing microbial 
contamination of drinking water is of 
primary concern since endemic illness 
and outbreaks of infectious diseases can 
have significant social and economic 
consequences. Confirming absence of 
indicators of faecal contamination by 
water analysis only provides a limited 
verification of safety. By measuring 
pathogenic organisms in source water 
and modelling their reduction by treat-
ment, a higher level of drinking water 
safety can be verified. 

This thesis provides stochastic methods 
to determine reduction of pathogenic 
microorganisms by drinking water 
treatment. These can be used to as-
sess the level and variability of drinking 
water safety while taking uncertainty 
into account. The results can support 
decisions by risk managers about treat-
ment design, operation, monitoring, and 
adaptation. Examples illustrate how the 
methods can be used in water safety 
plans to improve and secure production 
of safe drinking water. 
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SUMMARY 
 

Stochastic modelling of drinking water treatment  
in quantitative microbial risk assessment  

 
Drinking water outbreaks of infectious disease in the twentieth and twenty-
first centuries made clear that the absence of indicator organisms did not 
guaranty that the drinking water was safe. The World health organization 
(WHO) has developed the Water Safety Plan (WSP) approach to address the 
shortcomings of the indicator principle. The WSP aims to achieve safe drinking 
water by adequate control of drinking water sources, treatment and 
distribution. The ability of the total system to provide safe drinking water and 
the required activities to verify that safe water is provided are assessed in the 
WSP. Since conditions can vary between individual systems, site specific 
studies are required to assess the safety of a drinking water system. In 
addition, it has become clear that very short periods of unsafe water can have 
a major impact on the (mean) risk of infection from drinking water. 
Quantitative microbial risk assessment (QMRA) was developed to assess the 
level and variability of the health risk and can include the uncertainty involved 
in the assessment. It is therefore logical to apply QMRA in the WSP at points 
where risks need to be quantified. 
 
Health-based targets can be set to determine whether the drinking water is 
safe enough. Commonly applied health-based targets are the maximum 
acceptable concentration of pathogenic microorganisms in drinking water, the 
risk of infection and disability adjusted life years (DALY). The health-based 
target in Dutch drinking water legislation is a maximum of 1 infection per 
10,000 people per year. This is roughly similar to a concentration of one virus 
per one million litres or 10-6 DALY. In QMRA the risk of infection is calculated 
from the number of pathogenic microorganisms a person is exposed to (the 
dose) and the chance that this person develops an infection (the dose-
response). Microbial analysis of one million litres of water is not feasible. In 
QMRA the number of pathogenic microorganisms in drinking water can be 
calculated from their concentration in the source, for example surface water, 
and their reduction by drinking water treatment. Previous research indicated 
that one of the largest uncertainties in QMRA comes from estimating the 



Summary 
 

ii 

efficacy of drinking water treatment. Goal of the current study was to improve 
the quantification of the efficacy of drinking water treatment for the reduction 
of (pathogenic) microorganisms. 
 
In the WSP, several legislations and industry standards, treatment efficacy is 
determined through the application of “log credits”. For example, through 
experiments it was found that filtration removed 99% of a bacteria species, 
which equals two log credits (bacteria are removed by two orders of 
magnitude). Generally a “conservative mean value” is chosen based on a 
literature survey of similar experiments. However, the results from these 
studies can vary over several orders of magnitude. These various observations 
are a cause of uncertainty with regard to the treatment efficacy of a specific 
treatment system. In the current work, uncertainty was studied by 
stochastically modelling treatment efficacy. The efficacy was described by a 
triangular probability density function (PDF) in the stochastic treatment model. 
The parameters of the PDF were chosen so that they resembled the various 
efficacies reported in the literature. In the example, Cryptosporidium removal 
by filtration varied from 0 to 5 log units, with most studies reporting 2 log 
removal. From the stochastic model it became clear that, based on this 
knowledge, only 1.5 log removal was expected, and there was a 5% chance 
that removal was even lower that 0.8 log units. On the other hand there was a 
50% chance that removal exceeded 2 log units. For a system that requires 
several log units of Cryptosporidium reduction it may well be worthwhile to 
assess the achieved site specific removal. 
 
For some processes, such as chemical disinfection, there is a clear relationship 
between the exposure of microorganisms to the disinfectant and the 
inactivation of microorganisms. Therefore, in the WSP, the efficacy of these 
processes is generally calculated with CT models, in which C is the 
concentration of the disinfectant and T is the contact time. Several to many 
log credits for inactivation are often awarded based on these calculations. The 
current study showed that these models do not take the limitations of full-
scale treatment systems into account. Due to hydraulic shortcomings and 
practical limitations, the mixing of the disinfectant and contact time at full-
scale often differed from the conditions during experiments from which the CT 
models were developed. The actual efficacy at full-scale is often limited to 2 to 
3 log units. The research showed that at an ozonation system where over 6 
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log units of inactivation was expected only 2 log units of inactivation was 
achieved at full-scale. 
 
Besides the uncertainty with respect to the full-scale hydraulic situation, the 
susceptibility of the microorganism to the disinfectant was a source of 
uncertainty. This susceptibility is generally investigated using freshly cultured 
organisms in a laboratory setting resulting in inactivation rate constants that 
describe inactivation kinetics. The study showed that environmental 
populations of microorganisms were more resistant to the disinfectant than 
cultured populations. Cultured microorganisms that survived temporal exposure 
to environmental conditions were also more resistant than freshly cultured 
microorganisms. The application of very conservative values for the 
inactivation rate constants is therefore recommended when modelling full-scale 
systems. 
 
Since the source water quality and the efficacy of drinking water treatment 
can vary by orders of magnitude, the site-specific situation needs to be 
assessed. The characteristics of the source water, treatment process 
conditions, process monitoring and microbial monitoring of the water were 
combined in the treatment assessment framework to assess the level and 
variation of treatment efficacy. Various types of information were used to 
highlight the elements of the assessment.  
 
Extensive microbial monitoring of drinking water provided insight in the way 
microorganisms were distributed in drinking water. In the study the results of 
the daily, continuous monitoring of Cryptosporidium in the UK were analysed. 
This showed that the Cryptosporidium concentration generally followed a 
continuous curve of regular low concentrations and rare high concentrations. 
Since extremely high concentrations rarely occurred, these were generally 
regarded as an “event”. However, these events were the result of normal 
variations of the system and were therefore referred to as “normal events”. 
The frequency and magnitude of these events can be predicted from 
observations of regular variations through statistical analysis. These predicted 
events need to be included in QMRA since the arithmetic mean concentration, 
and thus the mean risk, is dominated by these normal events. In approximately 
30% of the 216 studied systems a curve break was observed where extremely 
high concentrations of Cryptosporidium occurred unexpectedly. In these cases 
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a “special event” occurred, such as a treatment failure, an operational error or 
an unusual peak contamination of the source water. The frequency and 
magnitude of “special events” cannot be predicted by statistical analysis of 
observations of regular variation of treatment efficacy. However, very frequent 
observations such as on-line monitoring of process conditions may detect such 
special events. None or only a few Cryptosporidium were detected in the 450 
samples of 1,000 litre at systems with high drinking water quality. At these 
systems it is likely that nominal concentrations, below detection limit, 
dominate the arithmetic mean Cryptosporidium concentration in drinking 
water. The developed QMRA methods to calculate the distribution of 
pathogens in drinking water from the concentration in the source water and 
the reduction by treatment can be applied at these systems to calculate the 
mean concentration.  
 
The uncertainty involved in microbial analysis methods needs to be included 
when microbial monitoring data is used in risk assessment. The variable 
recovery and indirect quantification methods (e.g. presence-absence tests) are 
examples of uncertainties that are introduced by microbial methods. In addition 
the way microorganisms are distributed in water may be unknown and the 
concentration of microorganisms varies in time. Methods to separately quantify 
uncertainty and variation were developed in the study. By plotting the 
monitoring data and the data analysis results as a complementary cumulative 
distribution function (CCDF) the focus of the graph was put on the rare events 
of high concentrations. Since these high concentrations dominate the mean 
concentration, accurate assessment of these high concentrations is essential. 
From the graph, the concentrations that dominate the mean concentration 
were determined. In most cases the concentrations that occurred 1% to 5% of 
the time dominated the mean concentration. However, in some cases special 
events that occurred only 0.1% of the time dominated the mean 
concentration. 
 
Microbial data from regular monitoring programmes was collected from water 
supply companies. The data was analysed to assess site specific treatment 
efficacy. Similar studies reported in literature compared samples before and 
after treatment taken on the same day to assess treatment efficacy. The 
current study showed that this led to an overestimation of the variability of 
treatment, which consequently led to underestimation of treatment efficacy. 
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Therefore an improved method was developed to calibrate the stochastic 
treatment model with microbial monitoring data. With the improved method, 
the predicted concentrations after treatment corresponded to the monitored 
concentrations. Model calibration provided information on treatment 
performance and was thus used for treatment assessment. The predictive 
value of the calibrated model was tested by splitting the datasets for 
calibration and validation. At full-scale, generally only indicator organisms are 
monitored. In studies where both indicator and pathogenic microorganisms 
were monitored, there appeared to be little correlation between their removals 
when comparing samples from the same day. However, calibrating the 
stochastic model with indicator-organism data did provide an effective model 
of pathogen reduction. Apparently the variation of treatment efficacy for 
indicators and pathogens was similar, but this was obscured in daily 
observations due to the over dispersed distribution of microorganisms in water 
and temporal variations.  
 
These applications of the stochastic model all aimed to assess the ability of 
the system to provide water that complies with the health-based target. This is 
also the first step in the WSP. The current WSP manual applies semi-
quantitative methods to estimate the potential health effect and applies log 
credits and CT models to estimate treatment efficacy. QMRA methods can 
improve the quantification and include the uncertainty of these assessments. 
Stochastic QMRA can be applied to predict the frequency and magnitude of 
normal events to estimate the mean risk more accurately. The uncertainty of 
the model outcome can be assessed by stochastic modelling of variables and 
parameters in process models. By using site specific information such as on-
line disinfectant residual measurements, the results of process variations and 
control can be included in the risk assessment. Consequently the effect of 
process improvements can be estimated beforehand to support decisions by 
risk managers. Examples showed that doubling disinfectant dose had little 
effect on the efficacy of ozone and chlorine disinfection. However, improving 
hydraulic conditions and process control could double the efficacy of these 
processes without the need for more disinfectant. 
 
The frequency and magnitude of a special event cannot be predicted by 
QMRA. However, when a special event is identified in a WSP, QMRA can be 
used to quantify the health effect of such an event. Thus risks from various 
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events can be compared and prioritised and monitoring can be designed to 
detect such a special event. The required monitoring to detect relevant events 
is directly related to the efficacy of the treatment process. Weekly monitoring 
is sufficient for 1 log reduction, and daily monitoring is sufficient for 2 log 
reduction. However, a monitoring frequency of ten seconds is required when 6 
log reduction is the treatment goal since even very short moments of failure 
will affect the mean reduction. It is therefore easier to monitor multiple barriers 
with limited efficacy than a single, very effective barrier. This type of 
monitoring needs to verify that the process is running within specifications, for 
example by monitoring turbidity or disinfectant residual on-line.  
 
In theory a treatment system can be operated such that the required efficacy 
is exactly achieved. However, a full-scale treatment system is not a large 
laboratory; therefore process control needs to take into account the variations 
of processes and equipment, the efficacy of corrective actions and the 
required response time. QMRA can be used to determine setpoints and critical 
limits in the WSP such that, even when events occur, the water will continue 
to comply with the health-based target without excessive costs or other 
disadvantages. Assessing the ability to meet health-based targets, determining 
setpoints and critical limits, designing microbial and on-line monitoring and 
preparing corrective actions are all examples of QMRA applications in a WSP.  
 
The study has provided several scientific methods and techniques that can be 
applied directly in drinking water practice. Implementing these methods will 
require investment of resources. However, this investment is far less than the 
costs resulting from overestimation of the risk which could lead to 
unnecessary expansion of treatment, or costs following an outbreak when the 
risk is underestimated. Some elements of QMRA are outside the scope and 
expertise of the drinking water industry. The legislator (or a central drinking 
water organisation) could support the water companies by providing guidelines 
for the acceptable uncertainty of the assessed risk, the applicable dose-
response relations and the choice of index pathogens. Thus the drinking water 
industry can now go beyond the indicator concept, by using QMRA to support 
proactive management that can ensure the provision of safe drinking water. 
 

Patrick Smeets 2008  



 

vii 

SAMENVATTING 
 

Stochastisch modelleren van drinkwaterzuivering  
bij kwantitatieve microbiologische risicoanalyse 

 
Bij drinkwatergerelateerde uitbraken van infectieziekten in de twintigste en 
eenentwintigste eeuw is gebleken dat de afwezigheid van indicatorbacteriën 
geen garantie bood dat het water veilig was. De wereldgezondheidsorganisatie 
(WHO) heeft het waterveiligheidsplan (water safety plan of WSP) ontwikkeld 
om de tekortkomingen van het indicatorprincipe te ondervangen. Het 
waterveiligheidsplan is erop gericht de veiligheid van het drinkwater te 
bewerkstelligen door adequaat beheer van drinkwaterbronnen, 
drinkwaterzuivering en drinkwaterdistributie. In het waterveiligheidsplan wordt 
bepaald of het volledige systeem veilig drinkwater kan leveren, en welke 
maatregelen nodig zijn om te verifiëren dat daadwerkelijk veilig water wordt 
geleverd. Omdat de systemen onderling erg kunnen verschillen is 
locatiespecifiek onderzoek nodig om de veiligheid van een drinkwatersysteem 
te bepalen. Bovendien is uit onderzoek gebleken dat zeer korte momenten van 
onveilig water een grote invloed kunnen hebben op het (gemiddelde) risico op 
infectie via drinkwater. Kwantitatieve microbiologische risicoanalyse 
(quantitative microbial risk assessment QMRA) is ontwikkeld om niet alleen het 
niveau maar ook de variatie van het gezondheidsrisico te schatten en daarbij 
ook de onzekerheid van die schatting te bepalen. Het ligt daarom voor de hand 
om QMRA in het WSP toe te passen daar waar risico’s moeten worden 
gekwantificeerd.  
 
Om te bepalen of het drinkwater veilig genoeg is, moeten eerst 
gezondheidsdoelen worden gesteld. Veel gebruikte gezondheidsdoelen voor 
drinkwater zijn de maximaal toelaatbare concentratie pathogene micro-
organismen in drinkwater, het infectierisico en het gezondheidseffect (disability 
adjusted life years DALY). In Nederland is de norm gesteld op maximaal 1 
infectie per 10.000 inwoners per jaar. Dit komt globaal overeen met één virus 
in een miljoen liter water of 10-6 DALY. Het infectierisico wordt bij QMRA 
berekend uit het aantal pathogene micro-organismen dat iemand binnen krijgt, 
de dosis, en de kans dat die persoon een infectie ontwikkelt, de dosisrespons 
relatie. Microbiologische analyse van een miljoen liter drinkwater is niet 
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uitvoerbaar. Daarom kan bij QMRA het aantal pathogene micro-organismen in 
drinkwater worden berekend uit het aantal in de bron, bijvoorbeeld 
oppervlaktewater, en de verwijdering of inactivatie door de 
drinkwaterzuivering. Eerdere onderzoeken gaven aan dat juist het bepalen van 
de locatiespecifieke effectiviteit van de drinkwaterzuivering de grootste bron 
van onzekerheid was in QMRA. Doel van het onderzoek was dan ook het 
kwantificeren van de locatiespecifieke effectiviteit van de drinkwaterzuivering 
voor het verwijderen van (pathogene) micro-organismen te verbeteren. 
 
In het WSP, diverse drinkwaterwetten en industriestandaarden wordt de 
efficiëntie van de zuivering bepaald aan de hand van zogenaamde “log 
credits”. Door middel van proefonderzoek is bijvoorbeeld bepaald dat filtratie 
99% van de bacteriën verwijdert, dit komt dan overeen met 2 log credits 
(bacterieaantallen worden met twee ordes van grootte gereduceerd). 
Doorgaans wordt op basis van een literatuurstudie van dergelijk 
proefonderzoek een “veilig gemiddelde” waarde gekozen. De spreiding in 
gevonden verwijdering tussen de verschillende studies is echter zeer groot en 
beslaat doorgaans enkele logeenheden. De onzekerheid die hieruit volgt voor 
de effectiviteit van een specifieke locatie is onderzocht door de log credits 
stochastisch te modelleren. De verwijdering werd beschreven als een 
kansdichstheidsfunctie (probability density function PDF) in het stochastische 
model. Een driehoeksverdeling werd zodanig gekozen dat deze de spreiding in 
gerapporteerde log-verwijderingen goed beschreef. De driehoeksverdeling 
beschreef zo de onzekerheid die met het gebruik van log credits gepaard gaat. 
In het voorbeeld varieerde Cryptosporidium verwijdering door filtratie van 0 tot 
5 log-eenheden, met een meest waarschijnlijke verwijdering van 2 log-
eenheden. Uit het stochastische model volgde dat, op basis van deze kennis, 
de verwachte verwijdering echter 1,5 log-eenheden bedroeg, en er was een 
kans van 5% dat de verwijdering zelfs lager was dan 0,8 log-eenheden. Aan 
de andere kant was er 50% kans dat de verwijdering meer dan 2 log-eenheden 
bedroeg. Voor een systeem dat enkele log-eenheden verwijdering van 
Cryptosporidium moet bewerkstelligen kan het dus zeker van belang zijn om de 
werkelijk gerealiseerde locatiespecifieke verwijdering te bepalen. 
 
Bij een aantal processen, zoals chemische desinfectie, bestaat er een duidelijk 
verband tussen de mate van blootstelling van micro-organismen aan het 
desinfectiemiddel en de inactivatie van micro-organismen. Daarom wordt in het 
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WSP de effectiviteit van dergelijke processen doorgaans berekend met 
zogenaamde CT modellen, waarbij C de concentratie desinfectiemiddel is en T 
de contacttijd. Op basis van deze berekeningen wordt vaak enkele tot vele log-
eenheden inactivatie van micro-organismen berekend. Het onderzoek heeft 
echter aangetoond dat deze modellen onvoldoende rekening houden met de 
beperkingen van full-scale drinkwaterzuiveringen. Door hydraulische 
tekortkomingen en praktische beperkingen komen menging en verblijftijd in de 
praktijk doorgaans niet overeen met condities in het laboratorium waarin de CT 
modellen zijn ontwikkeld. De werkelijke effectiviteit wordt hierdoor vaak 
drastisch verminderd en blijft doorgaans beperkt tot 2 à 3 log-eenheden. Het 
onderzoek heeft aangetoond dat bij een ozoninstallatie waarbij meer dan 6 log-
eenheden inactivatie van micro-organismen werd verwacht slechts 2 log-
eenheden inactivatie werd gerealiseerd.  
 
Naast de onzekerheid met betrekking tot de hydraulische situatie van full-scale 
zuiveringen, bleek ook de gevoeligheid van het micro-organisme voor het 
desinfectiemiddel een bron van onzekerheid. Deze gevoeligheid wordt 
doorgaans onderzocht in het laboratorium met gekweekte micro-organismen 
resulterend in inactivatieconstanten die de kinetiek beschrijven. Uit het 
onderzoek bleek echter dat natuurlijke populaties van micro-organismen veel 
resistenter waren voor desinfectiemiddellen dan gekweekte populaties. 
Gekweekte micro-organismen die een tijdelijke blootstelling aan natuurlijke 
condities overleefden bleken ook resistenter dan vers gekweekte micro-
organismen. Daarom wordt aanbevolen zeer conservatieve waarden voor de 
inactivatieconstanten te hanteren bij het modelleren van praktijksituaties. 
 
De kwaliteit van de bron voor drinkwater en de effectiviteit van de zuivering 
kan ordes van grootte verschillen. Het is daarom van belang de locale situatie 
zo goed mogelijk te bepalen aan de hand van informatie als kenmerken van de 
bron en de zuivering, procesinstellingen, procesmetingen en microbiologische 
analyse van het water. Door deze informatie te combineren in een raamwerk 
(treatment assessment framework) werd een zo goed mogelijk beeld gevormd 
van het niveau en de variatie van de effectiviteit van de zuivering. 
Verschillende soorten informatie werden hierbij gebruikt om verschillende 
onderdelen van de risicoanalyse te belichten. 
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Uit uitgebreide microbiologisch analyse van drinkwater kan een beeld worden 
gevormd van de verdeling van pathogene micro-organismen in drinkwater. In 
dit onderzoek zijn de gegevens van de dagelijkse, continue analyse van 
Cryptosporidium in drinkwater in Groot-Brittannië geanalyseerd. Hieruit bleek 
dat deze concentratie doorgaans een curve volgt waarbij hogere concentraties 
minder vaak voorkomen. Extreem hoge concentraties worden daarom zelden 
waargenomen en worden dan beschouwd als een “voorval” (event). Deze 
voorvallen zijn echter het gevolg van normale variaties in het systeem en 
worden daarom “normale voorvallen” genoemd (normal events). De frequentie 
en mate van deze normale voorvallen kan met behulp van statistiek worden 
voorspeld uit reguliere waarnemingen. Dit is nodig aangezien de gemiddelde 
concentratie, en daarmee het gemiddelde risico, voornamelijk wordt 
gedomineerd door de hoge concentraties tijdens deze normale voorvallen. In 
circa 30% van de 216 onderzochte locaties is echter ook een breekpunt in de 
curve waargenomen waarbij onverwacht zeer hoge concentraties 
Cryptosporidium optraden. In dat geval is er blijkbaar sprake geweest van een 
“speciaal voorval” (special event) zoals een storing in de zuivering, een fout 
van een operator of een piekverontreiniging in het ruwe water door een niet-
reguliere lozing. De frequentie en mate van speciale voorvallen is daarom niet 
te voorspellen uit reguliere microbiologische waarnemingen. Wel kunnen 
maatregelen worden genomen om dergelijke situaties te detecteren met andere 
middelen, zoals het on-line monitoren van procescondities. Bij locaties met een 
hoge waterkwaliteit werd in slechts enkele of helemaal geen van de circa 450 
monsters van 1.000 liter Cryptosporidium aangetroffen. In deze gevallen is het 
waarschijnlijk dat juist de meer frequente concentraties onder de detectiegrens 
de gemiddelde concentratie in het drinkwater domineren. Door de verdeling 
van concentraties pathogene micro-organismen in drinkwater te berekenen uit 
concentraties in de bron en verwijdering door de zuivering, kan in dat geval de 
werkelijke gemiddelde concentratie, inclusief de concentraties onder de 
detectielimiet, worden geschat.  
 
Bij de interpretatie van microbiologische gegevens moet voldoende aandacht 
worden besteed aan de onzekerheid van microbiologische bepalingen. Onder 
andere een variabele opbrengst van de methode (recovery), een indirecte 
kwantificatie (bijvoorbeeld aanwezigheidstest in plaats van directe telling) en 
een niet homogene verdeling van micro-organismen in het water zijn oorzaken 
van onzekerheid met betrekking tot het werkelijke aantal micro-organismen in 
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het bemonsterde water. Bovendien varieert dit aantal in de tijd. In het 
onderzoek zijn methoden ontwikkeld waarmee deze onzekerheid en variatie 
afzonderlijk worden gekwantificeerd. Door de meetgegevens en de resultaten 
van de data analyse als een complementair cumulatieve dichtheidsfunctie 
(CCDF) in een grafiek weer te geven komt de nadruk op zeldzame voorvallen 
van hoge concentraties te liggen. Aangezien deze voorvallen de gemiddelde 
concentratie domineren is een accurate schatting van deze hoge concentraties 
essentieel. Uit de frequentie waarmee een bepaalde concentratie wordt 
overschreden kan worden afgeleid welke concentraties de gemiddelde 
concentratie domineren. Bij analyse van de meetgegevens bleken doorgaans 
concentraties die slechts 1% tot 5% van de tijd voorkwamen de gemiddelde 
concentratie te domineren. In een aantal gevallen domineerden echter speciale 
voorvallen die 0.1% van de tijd voorkwamen de gemiddelde concentratie. 
 
De locatie specifieke effectiviteit van de zuivering is eerder bepaald op basis 
van microbiologische analyses. Studies in de literatuur vergeleken hiervoor 
monsters voor en na zuivering die op dezelfde dag waren genomen. Uit de 
studie bleek dat hierdoor de variabiliteit van de zuivering werd overschat, en 
daarmee de effectiviteit werd onderschat. Daarom werd in de studie de 
effectiviteit van de zuivering in het stochastische model zodanig gekalibreerd 
dat de berekende verdeling van concentraties na zuivering overeen kwam met 
de gemeten verdeling van concentraties. Zo werd calibratie van het model 
gebruikt om de effectiviteit van de zuivering te bepalen. De voorspellende 
waarde van een dergelijk gekalibreerd model is geverifieerd door de 
meetgegevens voor calibratie en validatie op te splitsen. Meestal worden in de 
praktijk alleen indicator organismen gemeten. In studies waarin zowel 
pathogene micro-organismen als indicator organismen zijn gemeten leek er, op 
basis van vergelijking van monsters van dezelfde dag, weinig overeenkomst 
tussen de verwijdering van beide organismen. Toch bleek een stochastisch 
model dat werd gekalibreerd met gegevens van indicator organismen de 
verwijdering van pathogene micro-organismen accuraat te voorspellen. 
Blijkbaar komt de variatie van verwijdering voor beide organismen overeen 
maar wordt de directe vergelijking verstoord door bijvoorbeeld de 
ongelijkmatige verdeling (overdispersie) van de organismen in het water en 
variaties in de tijd.  
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Voorgaande toepassingen betroffen de inschatting of een systeem water kan 
leveren dat voldoet aan de gestelde gezondheidsdoelen. Dit is ook de eerste 
vraag die moet worden beantwoord in het WSP. In de huidige WSP handleiding 
worden hiervoor semi-kwantitatieve methodes toegepast en maakt men voor 
het schatten van de effectiviteit van de zuivering gebruik van log credits en CT 
modellen. Met QMRA kan de kwantificatie worden verbeterd en kan worden 
aangeven hoe zeker deze inschatting is. Met stochastische QMRA kan men 
normale voorvallen voorspellen uit gemeten variaties om zo het gemiddelde 
risico te schatten. Ook kan bijvoorbeeld onzekerheid in procesmodellen worden 
meegenomen door variabelen en parameters als stochastische verdelingen op 
te nemen. Door gebruik te maken van lokale gegevens, zoals on-line ozon 
metingen, wordt het effect van de variatie van procescondities en 
processturing meegenomen in de risicoschatting. Vervolgens kan ook het 
effect van procesverbeteringen worden geschat met het procesmodel. In 
voorbeeldstudies bleek het verdubbelen van de dosis ozon of chloor weinig 
effect te hebben op de desinfectie terwijl het verbeteren van de hydraulica en 
de procescontrole de effectiviteit konden verdubbelen.  
 
De kans op een speciaal voorval kan niet worden voorspeld met QMRA. Het 
effect van een speciaal voorval dat in een WSP wordt geïdentificeerd kan 
echter wel worden gekwantificeerd met QMRA. Zo kunnen verschillende 
risico’s worden geprioriteerd en kan monitoring om dergelijke speciale 
voorvallen te detecteren worden ontworpen. De mate van benodigde 
monitoring is gerelateerd aan de effectiviteit van de zuivering. Zo is wekelijkse 
monitoring voldoende bij 1 log verwijdering, en dagelijkse monitoring bij 2 log. 
Bij 6 log verwijdering is echter een monitoringsfrequentie van 10 seconden 
noodzakelijk aangezien zeer korte momenten van falen al funest zijn voor de 
gemiddelde effectiviteit. Meerdere barrières elk met beperkte effectiviteit zijn 
daarom eenvoudiger te monitoren. Dergelijke monitoring dient te verifiëren dat 
een proces binnen specificaties werkt, bijvoorbeeld door troebelheid of 
chloorconcentratie te meten.  
 
In principe kan een zuivering zo worden ingericht dat de benodigde effectiviteit 
precies wordt gehaald. Een zuivering in de praktijk is echter geen groot 
laboratorium, daarom moet bij de processturing rekening worden gehouden 
met variaties in het proces en apparatuur, de effectiviteit van correcties en de 
benodigde reactietijd om deze correcties uit te voeren. Met behulp van QMRA 
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kan worden bepaald hoe setpoints en alarmniveaus in het WSP moeten worden 
gekozen zodat, zelfs wanneer een voorval plaatsvindt, het water blijft voldoen 
aan de gezondheidsdoelen zonder onevenredige meerkosten of andere nadelige 
effecten. Het bepalen van de effectiviteit van de zuivering, de instelling van 
setpoints en alarmniveaus, het ontwerpen van microbiologische en on-line 
monitoringsprogramma’s en het voorbereiden van corrigerende maatregelen 
zijn allen voorbeelden van QMRA toepassingen in het WSP. 
 
De studie heeft een aantal wetenschappelijk onderbouwde methoden en 
technieken ontwikkeld die direct in de drinkwaterpraktijk toepasbaar zijn. Het 
toepassen van deze methoden zal enige investering vragen van mensen en 
middelen. Deze investering is echter vele malen kleiner dan kosten die volgen 
uit een overschatting van het risico die leidt tot onnodige uitbreiding van 
zuiveringscapaciteit of kosten als gevolg van een uitbraak wanneer het risico is 
onderschat. Een aantal zaken met betrekking tot de risicoschatting ligt echter 
buiten de kennis- en invloedssfeer van de waterleidingbedrijven. De wetgever 
(of de centrale drinkwaterorganisatie) zou de drinkwaterbedrijven hierin beter 
kunnen ondersteunen door duidelijke richtlijnen te geven met betrekking tot de 
gewenste (on)zekerheid van het geschatte risico, de toe te passen 
dosisrespons relaties, en de keuze van pathogene micro-organismen waarvoor 
de analyse wordt opgesteld. Zo kan de drinkwaterindustrie de tekortkomingen 
van het indicatorconcept overwinnen en de drinkwaterveiligheid op een nog 
hoger niveau brengen. 
 
 

Patrick Smeets 2008 
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History of microbially safe drinking water 

From the beginning of time man has learned to carefully choose drinking water 
in order to reduce the risk of illness. Drinking water supply started with the 
rise of civilisations. The population in cities and communities needed to be 
provided with safe drinking water, while in the mean time water was 
increasingly polluted by the communities. This led to waterborne outbreaks of 
infectious disease, which were already recorded by the Egyptians in 3180 BC 
(Rose and Masago 2007). Outbreaks continued to occur through the ages, as 
the relationship between faecal pollution of the water and outbreaks had not 
been recognised.  
 
Drinking water treatment of surface water was originally started to improve 
the aesthetic properties of drinking water. By the time of the Egyptians (15th-
13th century BC) and Romans (300 BC-200 AC) settling was applied to reduce 
turbidity and in the 5th century B.C. Hippocrates, the Father of Medicine, 
invented the "Hippocrates Sleeve", a cloth bag to strain rainwater. Supply of 
settled and filtered water in modern times started in 1804 (Scotland) and 
1806 (Paris). Initially slow sand filters were used to provide a more aesthetic 
product and soon filtration was recognised to reduce outbreaks of typhoid and 
cholera. In the 1870’s Robert Koch studied water filtration systems that were 
effective in removal of bacteria after the Hamburg cholera outbreak of 1892. 
In his biography of Koch’s work, Brock (1988) states that “water filtration has 
probably saved more lives than immunization and chemotherapy combined”. In 
1906 the first ozonation plant for disinfection was started in France. John 
Snow already promoted chlorination after his pioneering epidemiologic studies 
during London’s cholera outbreaks of the 1850’s. Still chlorination became 
common practice only around 1910. From 1920 the combination of 
sedimentation, filtration and chlorination virtually eliminated epidemics of 
classical waterborne diseases, such as cholera and typhoid, in areas so 
supplied (AWWA 2006). However, outbreaks of waterborne disease due to 
poor drinking water quality still occur today, even when treatment is in place. 
From 1974 to 2002, 26 out of 35 outbreaks in the USA and Canada, as 
reported by Hrudey and Hrudey (2004), were due to surface water treatment 
failure or inadequate treatment to deal with sudden peak increases of pathogen 
concentrations in source water. Some major outbreaks like that of 
cryptosporidiosis in Milwaukee where treatment efficiency was compromised 
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would have been prevented or the impact on human health reduced, by 
adequate treatment. So despite modern water treatment, means to verify that 
the water is safe to drink are still required. 
 
By the end of the nineteenth century, the presence of specific bacteria in 
drinking water was recognized as an indicator of unsafe water. The use of 
coliforms as indicator organisms to judge the microbial safety of drinking water 
was initiated (Greenwood and Yule, 1917). The absence of indicator 
organisms such as Escherichia coli in drinking water is still part of most 
legislation today. In the 1970’s the shortcomings of coliforms became clear. 
Newly recognized waterborne pathogens, such as viruses and protozoa turned 
out to be more resistant to drinking water treatment processes such as 
chlorination than coliforms. The search for other, more resistant indicator 
organisms such as bacterial spores and bacteriophages was started. Their 
applicability turned out to be limited, as outbreaks continued to occur even 
when no indicator organisms were detected (Hrudey and Hrudey, 2004). Large 
drinking water related outbreaks were generally picked up by epidemiology, 
but the prevalence of endemic illness caused by drinking water was so low in 
most developed countries that epidemiology was not sensitive enough to 
identify the source (Taubes 1995). Apart from monitoring drinking water for 
the absence of indicator organisms, other ways to protect the drinking water 
consumer were sought. In the 1970’s the National Academy of Sciences 
initiated chemical risk assessment for drinking water resulting in the ‘Safe 
drinking water act’ in 1974 (SDWA 1974). Analogous to the chemical risk 
targets, a target for risk of infection (not illness) below 10-4 per person per 
year was being advocated in the USA.  
 
Between 1983 and 1991 quantitative microbial risk assessment (QMRA) was 
used sporadically to assess microbial risks in drinking water (Haas 1983, Gerba 
and Haas 1988, Regli et al.1991, Rose et al. 1991). These first assessments 
were focussed on producing a reliable dose-response relationship for the very 
low pathogen doses expected in drinking water. These led to the ‘single hit 
theory’ stating that exposure to a single pathogenic organism could lead to 
infection and subsequently illness. The studies calculated the risk of infection 
from the monitored or estimated pathogen concentrations in drinking water. 
These studies recognised the limitations of drinking water monitoring for 
QMRA. Regli et al. (1991) concluded that: ‘Inordinately large numbers of high-
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volume samples (generally a total volume of >100,000 to 1,000,000 L) are 
required to ascertain whether a potable water is below the 10-4 risk level. 
Thus, finished-water monitoring is only practical to determine whether a very 
high level of risk exists, not whether a supply is reasonably safe.’ Hrudey and 
Hrudey (2004) showed that the occurrence of false positives makes it virtually 
impossible to estimate indicator bacteria concentrations in drinking water by 
monitoring at the observed low level. However, direct monitoring of pathogens 
in drinking water has been applied. The statutory Cryptosporidium monitoring 
(DWI 1999) in the UK has been the most extensive monitoring program for 
pathogens in drinking water and is further discussed in Chapter 3. 
 
To overcome the shortcomings of drinking water monitoring, computational 
methods were applied in QMRA. Regli et al. (1991) stated that: ’Determining 
pathogen concentration (or demonstrating its absence) in source waters and 
estimating the percentage-removal or inactivation by treatment allow for risk 
estimates of pathogen occurrence in finished water and the associated risk of 
infection.’ Subsequent studies found that quantifying treatment efficacy 
introduced substantial uncertainty in QMRA (Teunis et al. 1997, Gibson III et 
al. 1999, Payment et al. 2000). From the outbreaks it had become clear that 
short hazardous events could have a significant impact on public health. In 
addition, the financial consequences of an outbreak may well make these 
events important to identify and advert (Signor and Ashbolt 2007). Although 
counteracting peak events is necessary to prevent outbreaks, sufficient 
treatment during baseline (normal) conditions is also required to achieve an 
acceptable level of endemic infections. In specific situations the sporadic cases 
(during baseline conditions) appeared to represent a greater proportion of 
waterborne disease than outbreaks (Nichols 2003). This was also a conclusion 
reached for a water supply system in Gothenburg, based on failure reporting 
and QMRA (Westrell et al. 2004).  
 

State of the art of QMRA in 2002 

Treatment assessment for QMRA 
Regli et al. (1991) first suggested monitoring pathogens in source water and 
modelling the removal by treatment. Initially rules of thumb and engineering 
guidelines were used to provide a point estimate of treatment efficacy. Rose et 
al. (1991) used QMRA to determine the required treatment efficacy to reach 
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health-based targets, rather than actually assess the efficacy. As more 
research was performed, it became clear that treatment efficacy could vary 
substantially between treatment sites. LeChevallier et al. (1991) assessed 
treatment efficacy for Cryptosporidium and found substantial differences in 
treatment efficacy at very similar sites. These could not be explained by 
treatment characteristics such as filter to waste practice or choice of 
coagulant. Payment et al. (1993) studied removal and inactivation of viruses 
and indicator organisms. He used the mean of the observed concentrations 
before and after treatment steps to quantify treatment efficacy, thus 
disregarding the effect of treatment variations. Other QMRA studies did not 
model treatment but started from a concentration in treated water, such as 
Haas et al. (1993) who based virus concentrations in drinking water on 
Payment (1985). Similarly Crabtree et al. (1997) did not estimate treatment 
efficacy for virus removal but assumed concentrations in drinking water of 
1/1000 and 1/100 virus per litre. Gerba et al. (1996) assumed 4 log reduction 
of rotavirus by treatment based on SWTR credits. Teunis et al. (1997) 
incorporated the variation in time and the uncertainty with regard to the 
efficacy at a specific site in a stochastic QMRA by the use of PDFs to describe 
the concentrations of microorganisms and treatment efficacy. Microbial 
monitoring data before and after treatment were paired by date to provide a 
set of reduction values, and the PDF was fitted to these. Their conclusion was 
that (variation of) reduction by treatment dominated the uncertainty of this 
risk. Haas et al. (1999) provided an overview of methods for QMRA both in 
drinking water and other fields such as recreational waters and food. They 
found that identification of distributional form may be subject to error if a 
limited amount of data points are used. Consequently the risk analysis should 
not put too much weight on the tails of these distributions which would 
represent rare event of poor treatment. Haas et al. (1999) also discussed the 
use of monitoring data (virus removal by lime treatment) and process models 
(for virus decay in groundwater and chemical inactivation) to assess treatment 
efficacy. Teunis and Havelaar (1999) performed a full QMRA, including 
quantification of treatment efficacy using monitored reduction of Spores of 
Sulphite-reducing Clostridia (SSRC) as a surrogate for Cryptosporidium 
removal. Variability of filtration was modelled by a two-phase model: “good 
removal” and “poor removal”. Medema et al. (1999) applied similar methods. 
Variability of ozonation was modelled by running an inactivation model with 
monitored ozone concentrations. Payment et al. (2000) used log credits from 
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the SWTR in risk assessment of Giardia since “Attempting to actually 
enumerate indicator microorganisms or pathogens under actual plant 
conditions rarely provides useful data”. Dewettinck et al. (2001) assessed the 
safety of drinking water production from municipal wastewater based on 
treatment efficacy reported in literature. Fewtrel et al. (2001) assessed the 
uncertainties in drinking water QMRA and found that treatment contributed the 
least uncertainty. However, this was based on a single experiment of 
Cryptosporidium removal by treatment. A 2001 USEPA study on 
Cryptosporidium removal (USEPA 2001) found large ranges of removal 
(typically over 3 log) and generally less removal at full-scale than at laboratory 
or pilot scale. In an extensive literature review of treatment efficacy by 
LeChevallier and Au (2001), large variations in treatment efficacy between 
studies was found. Masago et al. (2002) applied QMRA to assess the risk 
from Cryptosporidium, including the effect of rare events. Treatment was 
modelled bimodally with good removal (99.96%) or poor removal (70.6%).  
 
In general it could be concluded that most QMRA studies used log credits to 
model treatment performance, which were not site specific. Site specific 
assessment of treatment efficacy for QMRA indicated that treatment efficacy 
at full-scale could be significantly higher or lower than the applied log credits 
(Teunis et al. 1997; 1999, Teunis and Havelaar 1999, Medema et al. 1999). 
Moreover, such an assessment could provide management strategies to be 
applied at the site to improve drinking water safety. Site specific assessment 
was complicated by the way pathogens were distributed in water, treatment 
variations and correlation between treatment steps. 
 
Distribution of pathogens in water 
Pipes et al. (1977) found that organism counts in 100 ml samples from a 10 L 
sample were not necessarily Poisson distributed, which would be expected if 
the organisms were randomly dispersed in the water. Gale et al. (1997) found 
that although Bacillus subtilus var. niger were Poisson distributed in raw water, 
this was not the case in treated water (within a 500 ml sample). He concluded 
that treatment could change the distribution of microorganisms in the water. 
As a consequence, in an outbreak overdispersion would lead to some 
individuals ingesting high numbers of pathogens and some not receiving any. 
In combination with the dose-response relationship, this might have an impact 
on the assessed risk. At low doses the risk of infection would be determined 
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by the arithmetic mean concentration. The arithmetic mean is dominated by 
the rare high concentrations when organisms are over-dispersed. Quantifying 
these high concentrations is problematic due to their rarity. Gale (2001) also 
showed that organisms are not completely dispersed in drinking water. The 
(lack of) relation between influent and effluent samples observed by Teunis et 
al. (2004) might partly be caused by the over dispersion of microorganisms. 
The change of distribution of microorganisms in water due to water treatment 
processes was likely to affect the observed reduction by treatment from 
microbial monitoring.  
 
Treatment variation and rare events 
From stochastic QMRA studies it became clear that when variations were 
incorporated, rare events of high pathogen concentrations or poor treatment 
could dominate the risk of infection. Haas and Trussell (1998) compared a 
system redundancy method to a stochastic method as a way of incorporating 
rare events of poor treatment. The system redundancy method was based on 
log credits per treatment step. Compliance of reduction by the total treatment 
was required even when one barrier failed completely (rare event). The 
stochastic method applied a probability density function (PDF) of likely 
performance to the separate barriers and combined these in a Monte Carlo 
simulation to predict total treatment efficacy for QMRA. The importance of 
good PDF fit for very skewed data was stressed, implying that high numbers 
of data points were required. Gibson III et al. (1999) identified exposure 
assessment (including treatment assessment) as one of the important fields of 
research for risk assessment of waterborne protozoa due to the uncertainty 
about and variability of protozoan reduction by treatment. Teunis et al. (1999, 
2004) explored various methods to quantify variation of treatment efficacy. 
They found that the extremes of the distributions of treatment efficacy (and 
other factors such as recovery) dominated the assessed risk. The approach of 
statistical analysis of fractions was more appropriate than often used 
calculations based on the ratio between the (geometric) means “before” and 
“after” treatment. Masago et al. (2002) found that eliminating rare 
occurrences (<1% of time) of high concentrations exceeding 1/80 L was 
required to reduce the risk to 10-4 per person per year. This demonstrated the 
impact of rare events on average risk and the need to estimate the frequency 
and magnitude of rare events of poor treatment in QMRA. 
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Correlation between treatment steps 
Initially the efficacy of all steps in treatment was considered to be independent 
(Regli et al. 1991). Smith et al. (1992) stated that potential dependencies 
between parameters in QMRA needed to be addressed. However, when 
correlations between “relatively well known variables” were concerned, 
analysts should focus on better quantifying the key factors rather than to 
focus on correlations. Bukowski et al. (1995) showed that the choice of PDF 
type could dominate the risk assessed through Monte Carlo simulation. The 
impact of correlations was only significant when correlations were very high. 
Medema et al. (1999) suggested that interaction between treatment processes 
might cause correlation between the efficacies of consecutive treatment steps. 
They suggested this correlation could cause the deviance between predicted 
and monitored concentrations after treatment in their QMRA study. Haas 
(1999) explored the use of copulas to describe correlations between the 
random variables in Monte Carlo simulation. He concluded that the chosen 
form of correlation may have a significant impact on the results. He did not 
specify how to determine the correlation within a QMRA of drinking water. 
Correlation was not incorporated in stochastic QMRA studies by Teunis et al. 
(1997; 1999). More recently a correlation between concentration of 
microorganisms and reduction efficacy was suggested by Haas and Kaymak 
(2003). So far the studies have been inconclusive on the occurrence of 
correlation between treatment steps and the need to incorporate correlation in 
QMRA. 
 
Direct assessment of pathogens in drinking water 
Apart from modelling treatment, direct assessment of pathogens in drinking 
water was also performed. Isaac-Renton et al. (1999) tried to correlate 
Cryptosporidium levels in drinking water to seroprevalence of antibodies in 
three communities. None of the supplies were filtered and only chlorination 
was applied. No Cryptosporidium was found in deep-well water, and only few 
in water from a well protected catchment, whereas 20% of samples in water 
from the unprotected watershed were positive for Cryptosporidium. However, 
there were no significant differences in seroprevalence rates, which ranged 
from 33% to 53%. No direct link between monitored drinking water quality 
and infection of the population could be established. Lloyd and Drury (2002) 
evaluated the first results of the UK statutory Cryptosporidium monitoring. 
After nine months of sampling, 0.23% of the samples were non-compliant (i.e. 
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contained more than 1 oocysts per 10L) and no outbreaks had been associated 
with these observations. Oocysts were detected in 8.9% of all samples, 
covering 44% of the sampled sites. Even though most of these samples were 
in compliance, levels of 0.01 to 0.10 oocysts per 10 L could pose a health 
risk. Hellard et al. (2001) went one step further and investigated the effect of 
microbial water quality on rates of community gastroenteritis in Melbourne by 
measuring the difference in the levels of illness among two population groups, 
each comprising approximately 300 households. One group consumed normal 
tap water and the other consumed water that was filtered and disinfected with 
ultraviolet radiation. The study found no measurable difference in illness rates 
between the normal tap water group and the filtered water group, thus 
demonstrating that Melbourne’s unfiltered drinking water does not make a 
significant contribution to gastroenteritis rates (8% being the detection limit). 
These studies showed the limitations of drinking water monitoring and 
epidemiology to assess low levels of risk at reasonable costs. 
 
QMRA in drinking water guidelines and legislation 
After the first attempts of Quantitative Microbial Risk Assessment (QMRA) in 
1983, QMRA was applied in various ways to improve the microbial safety of 
drinking water. In 1996 the ILSI Risk Science Institute Pathogen Risk 
Assessment Working Group developed a conceptual framework to assess the 
risks of human disease associated with exposure to pathogenic 
microorganisms (ILSI 1996) which was based on QMRA. This was later 
evaluated by Teunis and Havelaar (1999). Haas et al. (1999) wrote an 
extensive guide to risk assessment for pathogens in (drinking) water to which 
the reader is referred for details on the QMRA method.  
 
In 1989 the USEPA used QMRA to develop technical requirements for drinking 
water treatment in the Surface Water Treatment Rule (USEPA 1989) in order 
to roughly achieve a maximum risk of infection of 10-4 per person per year for 
Giardia and viruses. Later the SWTR was extended for Cryptosporidium in the 
IESWRT (USEPA 1998), and was further elaborated in the LT1ESWTR (2002) 
and LT2ESWTR (2006). The rule awarded ‘reduction credits’ for treatment 
processes when these are sufficiently monitored. The combined processes 
needed to provide sufficient treatment for the level of source water 
contamination.  
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Other regulators did not set technical standards; instead they required a site 
specific QMRA for each drinking water system. In 2001 Dutch drinking water 
regulations included a maximum acceptable risk of infection of 10-4 per person 
per year, to be verified with QMRA (Anonymous 2001). The WHO Water 
Quality: Guidelines, Standards and Health (WHO 2001) presented a 
harmonized framework for risk assessment and management. Apart from risk 
of infection, WHO promoted a risk endpoint of 10-6 disability adjusted life 
years (DALY) which includes the adverse health effects when an infected 
individual becomes ill. The reader is referred to (WHO 2004) for a complete 
explanation of the DALY. The new proposed Canadian drinking water 
guidelines for viruses include QMRA to verify that sufficient treatment is 
applied to reach a health-based target of 10-6 DALY (CDW 2007). QMRA was 
also considered for legislation of bathing water (USEPA 2007) and in Australia 
for water reuse (NWQM 2006, 2007). 
 
A third development to improve drinking water safety focussed on managing 
risks on an operational level. In 1994 the use of Hazard Analysis and Critical 
Control Point (HACCP), as applied for food safety, was tested for applicability 
in drinking water safety (Havelaar 1994, Teunis et al. 1994). Over the years 
this concept developed into Water Safety Plans (WSP) (Barry et al. 1998, 
Deere and Davison 1998, Davison et al. 2006). In 2004 the IWA and WHO 
presented the Bonn charter (IWA/WHO 2004) which set a high level 
framework for drinking water risk management. In addition WHO published the 
third edition of the Drinking Water Guidelines (WHO 2004). Both promoted the 
use of Water Safety Plans (WSP) to manage drinking water safety in an 
integral manner. In 2002 the MicroRisk project was started (MicroRisk 2002, 
Medema et al. 2006) to bring together the WSP and QMRA methods.  
 

QMRA: its value for risk management  

At various steps in the HACCP-based process of the water safety plan (WSP), 
questions emerge that relate to the balance between safety and costs of the 
water supply system. More safety can be obtained by including additional 
control measures, by setting very strict limits, by intensive monitoring etc. 
However, resources are not unlimited and drinking water is not the only 
transmission route for pathogens and toxic compounds that need to be 
controlled. QMRA provides information for efficient allocation of resources to 
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water supply. By setting health-based targets based on the contribution of 
drinking water to the overall health risk of the human population, it becomes 
clear when safe is safe enough. Links between QMRA and WSP are illustrated 
by the questions it answers in Figure 1. Most of these questions especially 
relate to drinking water treatment, since it is there that the (polluted) source 
water is transformed to safe drinking water.  
 

Sy
st

em
 

as
se

ss
m

en
t

Assemble team

Describe water supply

Conduct hazard analysis

Identify controll measures

O
pe

ra
tio

na
l 

m
on

ito
rin

g Define operational limits

Establish monitoring

M
an

ag
em

en
t &

 
co

m
m

un
ic

at
io

n Establish corrective actions

Establish record keeping

Establish validation & verification

What is my health target?
What are the priority hazards?
What are the significant hazardous events?

Is my treatment adequate to produce 
drinking water that meets the health 
based target?
What are appropriate operational and 
critical limits?

How much monitoring is necessary?

What level of corrective actions is 
needed?

Risk management questions that 
need quantification

Steps in the Water Safety Plan

Sy
st

em
 

as
se

ss
m

en
t

Assemble team

Describe water supply

Conduct hazard analysis

Identify controll measures

O
pe

ra
tio

na
l 

m
on

ito
rin

g Define operational limits

Establish monitoring

M
an

ag
em

en
t &

 
co

m
m

un
ic

at
io

n Establish corrective actions

Establish record keeping

Establish validation & verification

What is my health target?
What are the priority hazards?
What are the significant hazardous events?

Is my treatment adequate to produce 
drinking water that meets the health 
based target?
What are appropriate operational and 
critical limits?

How much monitoring is necessary?

What level of corrective actions is 
needed?

Risk management questions that 
need quantification

Steps in the Water Safety Plan

 
Figure 1 Risk management questions that can be quantified by QMRA (from: Medema et al. 2006). 

 
Complying with health targets 
At the water utility level, a QMRA can be conducted to answer the question: 
"Do we meet the health target?". It is the responsibility of the water utilities to 
meet the health-based targets and to demonstrate to the regulators and the 
public that these targets are met. During the WSP process the risks are 
approached in a semi-quantitative manner (high, medium, low etc.), based on 
experience, industry standards and subject to personal interpretation. In many 
cases, this is sufficient information for risk management; i.e. it is clear that a 
well-head that is not properly closed may give rise to contamination of the 
water from the well and the corrective action will be to close the well-head 
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properly. In these cases, there is usually no further quantitative assessment of 
the risk of contamination necessary to trigger the appropriate corrective 
actions. However, this does not answer the question whether the overall water 
supply system from source-to-tap provides safe drinking water to the 
consumer. A quantitative microbial risk assessment of a drinking water system 
can demonstrate that the health-based targets are met.  
 
A QMRA (in the WSP: System assessment) is therefore the logical first step 
when safety of a water supply system is under consideration. QMRA cannot 
only provide a quantitative estimate of the level and variation of risk. It also 
provides an indication of the uncertainty of the assessment, allowing for a 
balanced interpretation of the outcome. If the outcome of the assessment 
indicates that the drinking water could be unsafe under some conditions, 
QMRA can help to identify the most economic, sufficiently effective measure 
to bring the risk within the health-based targets. When drinking water is 
produced from surface water, drinking water treatment generally forms the 
means by which the water quality is controlled. Since direct assessment of 
drinking water safety through drinking water pathogen monitoring is not 
feasible, quantifying treatment efficacy is a crucial step in QMRA. 
 
Quantifying normal events and special events 
Bartram et al. (in WHO 2001) identified that QMRA should not only be directed 
at the nominal performance of treatment systems, but also at the moments of 
poor source water quality and treatment performance. These moments, 
referred to as hazardous events in the WSP, may comprise most of the health 
risk. The study in this thesis distinguished between “normal events” and 
“special events”. Normal events were the extreme consequence of normal 
variations in the system, such as seasonal variations of temperature, filter 
backwash cycles and chemical dosing control. Although these variations 
normally balance out to a low nominal risk level, some extreme combination of 
conditions can lead to an event. These normal events can be predicted by 
extrapolating normal variations, similar to extrapolating wind velocities to 
predict the one in 1,000 year storm. Whereas normal events may come as a 
surprise to risk managers faced with an extreme variation, QMRA can estimate 
the frequency and magnitude of normal events based on observed nominal 
variation. 
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Special events are not part of these normal variations. Examples of special 
events are treatment equipment failure, human error and terrorist actions, 
which cannot be predicted based on nominal observations. In the HACCP-
based WSP system, special events in treatment were identified and prioritized 
through fault trees and Risk Factor Matrices (Davison et al. 2006). These 
methods relied on experience and insights of risk managers and operators to 
identify events and quantify the actual effect of an event on drinking water 
safety. However, the effect of e.g. a dosing pump failure on health is hard to 
quantify intuitively. QMRA can be used to quantify the effect of a special 
event on consumers health. This allows the risk manager to prioritize events 
based on their effect on drinking water safety. The special events that are 
identified in the WSP can be incorporated in QMRA as risk scenarios in order 
to assess the combined risk of infection of normal and special events. 
 
Setting critical limits 
A treatment system can be designed to provide exactly the right level of 
treatment to meet the health-based targets. However, in practice the risk 
manager needs to account for variations and inaccuracies in order to run a 
practical and stable process. Treatment systems are controlled by setpoints, 
operational limits and critical limits. During normal operation at the setpoint, 
the treatment will run between operational limits. When the process deviates 
beyond the critical limits, corrective actions are required in order to meet 
health-based targets. Setting of appropriate operational and critical limits is 
complex since they depend on the (long term) treatment target, variability of 
the process, response time and the options for corrective actions. The 
applicable safety margin for treatment efficacy is limited due to other goals 
such as costs or prevention of disinfection by-products. QMRA can address 
these issues by quantifying the microbial risk outcome of different options 
both for individual and combined processes. Arriving at the optimal limits will 
need several iterations, using practical experience and ongoing scientific 
insights to further improve the operation of the treatment system. Critical 
limits will depend on circumstances such as water temperature or source 
water turbidity. For complicated systems a real-time computer model of the 
water supply system (for disinfection and other water quality parameters) may 
be helpful in maintaining optimal water quality and choosing the most 
appropriate corrective measures. 
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Designing monitoring programs 
Monitoring of treatment systems serves two goals. On the one hand 
monitoring is applied to verify that the system nominally meets the health-
based targets. Microbial monitoring provides the most direct verification of 
system performance. However microbial monitoring requires resources and 
funds, and cannot be applied limitlessly. QMRA can be used to design the 
microbial monitoring plan so that results will provide a statistically valid 
verification of treatment performance at the required confidence level. 
Monitoring results can be used in QMRA to adapt the microbial monitoring 
program to match the site specific situation. 
 
On the other hand monitoring to detect events requires a high measurement 
frequency, which is not feasible with microbial monitoring. Rather than 
quantifying efficacy, this type of monitoring should detect deviations that 
indicate that treatment is failing. Monitoring of surrogates (turbidity, particles), 
process conditions (flow, temperature, disinfectant residual) and equipment 
(dosing pump, valves) can provide an indication of failure and is generally 
easier and cheaper than microbial monitoring. Very short failure events can 
significantly impact the mean treatment efficacy. QMRA can be used to design 
frequency of (on-line) monitoring to verify that the health-based targets are not 
compromised by failure events. 
 
Preparing corrective actions 
When critical limits are exceeded, corrective actions are needed to restore 
system control and prevent non-compliance with the health-based target. 
Different levels of corrective actions may be undertaken. These could be 
restricted to the control measure that is out of bounds, but could also include 
other control measures that may be enhanced or additional (emergency) 
control measures. QMRA can be used to select the most appropriate corrective 
actions under the given conditions, as it looks at the system as a whole, rather 
than at individual control measures. The level and duration of the required 
corrective action can also be determined through QMRA. 
 
Treatment design: comparing alternatives 
During the design of a water treatment plant, or when changes to a treatment 
plant are required, one needs to choose between different solutions. Each 
(combination of) solutions needs to comply with the health-based targets. A 
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QMRA can help identify the most economic alternative. Thus unnecessary 
investments can be avoided. Here QMRA can be used as a design tool. QMRA 
can also be used in the design stage to evaluate control strategies, determine 
required redundancy and prepare effective monitoring. 
 

Research questions 

The principal question of the study was “How can we quantify the reduction 
of pathogens by drinking water treatment for QMRA purposes?”. Given the 
state of the art in QMRA, this led to the following specific research questions 
and goals.  
 
“How can we combine all site specific full-scale information?” 
From the literature study it was clear that the many types of data, microbial an 
non-microbial, could be used to quantify treatment efficacy of a full-scale 
system. The type of data could vary per treatment process. Therefore the 
framework to combine different types of data on treatment efficacy in Chapter 
1 was developed. Chapter 2 discusses the implementation of the framework in 
risk assessment.  
 
“What can we learn from microbial monitoring of drinking water”  
Although microbial monitoring can only verify drinking water safety to a 
certain extent, the information collected by microbial monitoring of drinking 
water does provide a direct impression of microorganism distribution in 
drinking water. Such datasets can include a large number of non-detects (or 
“zeros”). Most studies had used mean concentrations in drinking water derived 
from these datasets for QMRA, thus disregarding the variability. A. goal of the 
study in Chapter 3 was to perform a stochastic risk assessment based on 
these data that included variability and to determine the impact of the non-
detects interpretation.  
 
“How can we use process models in QMRA?” 
Process models for disinfection processes have been used for legislation. 
However, in some cases indicator bacteria were detected in disinfected water 
even when process models predicted indicator concentrations many orders of 
magnitude below detection limit. If process models were to be used for 
QMRA, these need to provide a more accurate estimate of treatment efficacy 
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at full-scale. The study in Chapter 4 set out to develop an ozonation 
disinfection model that could be applied for full-scale modelling in QMRA. 
Chapters 2 and 7 applied disinfection modelling in QMRA. 
 
“How can we include variability and uncertainty in treatment modelling?” 
The information on full-scale treatment efficacy was expected to include 
significant uncertainty, and previous studies had shown that treatment 
efficacy could vary substantially in time and between sites. The methodology 
for stochastic modelling of treatment (Teunis et al. 1997; 1999, Teunis and 
Havelaar 1999, Medema et al. 1999, Haas et al. 1999) was developed further 
in Chapters 5 and 6 in order to include variability and uncertainty from various 
types of data in treatment modelling.  
 
“How can we quantify treatment efficacy based on microbial monitoring?” 
The microbial monitoring data in treated water and at different stages in 
treatment could provide the best site specific full-scale information to assess 
treatment efficacy. Available methods (Teunis et al. 1997; 1999, Teunis and 
Havelaar 1999, Medema et al. 1999, Haas et al. 1999) did not always provide 
an accurate prediction of microorganism concentrations after treatment. A goal 
of the study in Chapter 5 was to improve the methodology of stochastic 
treatment modelling to provide a more accurate prediction. 
 
“How accurate is stochastic treatment modelling in practice?” 
Few of the studies that applied stochastic treatment modelling actually 
validated the model outcomes with monitoring data. None of the studies 
verified how accurately the stochastic modelling predicted future treatment 
performance or how well a model calibrated with indicator data predicted 
pathogen reduction. A goal of the study in Chapter 7 was to assess the 
accurateness of stochastic treatment modelling applications for QMRA in 
practice.  
 
“How can QMRA be applied in the WSP?” 
QMRA in itself does not improve drinking water safety. QMRA can be applied 
as a tool in water safety plans (WSP), as discussed previously in this chapter. 
QMRA could provide objective, quantitative decision support for risk managers 
working with the WSP. The final goal of the study in Chapter 7 was to provide 
examples of QMRA applications for use in the WSP. 
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Approach of the study  

Catchment to Tap System (CTS) 
The study was started in 2002 as part of the MicroRisk project (MicroRisk 
2002, Medema et al. 2006) in which 12 partners from 7 countries 
participated. The goal of the MicroRisk study was to provide a unified 
approach for QMRA in drinking water from source to tap. The current study 
was part of work package 3 “Treatment”.  
 
Historical treatment data was collected from twelve Catchment to Tap 
Systems (CTS) during the project. Appropriate datasets were analysed to 
determine the usability of such data for QMRA. This study especially focussed 
on the water treatment system of the city of Amsterdam which was studied in 
detail in two aspects. The first aspect was the development of the QMRA 
methodology for treatment using the extensive amount of data already 
available for this treatment system. The second aspect was the optimization of 
the ozonation process at this location (Chapter 4). Ozonation efficacy was 
assessed by stochastic process modelling, laboratory experiments, pilot 
experiments and mathematical process modelling. The treatment assessment 
framework was developed to effectively combine the data generated in the 
MicroRisk project. 
 
The treatment assessment framework 
The treatment assessment framework in Figure 2 was used to combine 
information about pathogen reduction by drinking water treatment as input for 
a QMRA model. Different pathogens pose varying challenges to water 
treatment. Bacteria are removed less by filtration than other microorganisms 
but are readily inactivated by disinfection. Protozoa are relatively insensitive to 
chlorine disinfection but are better removed by filtration than bacteria and 
readily inactivated by UV. Virus removal and inactivation is in the range 
between bacteria and protozoa reduction. By assessing the reduction of a suite 
of pathogens and indicators, the challenges posed by other (unknown) 
pathogens was covered. The treatment assessment did not differentiate 
between different strains of microorganisms unless these were specifically 
discussed.  
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In order to assess the efficacy of a treatment system, site specific data that 
provides information on the performance of that system was needed. Frequent 
monitoring of pathogens at different stages of treatment would provide the 
ideal dataset to determine the barrier efficiency, but pathogen concentrations 
are often too low for detection. Especially monitoring after the first treatment 
steps would result in mostly non-detects. Various indicator organisms, 
surrogate parameters or process conditions were used to estimate pathogen 
treatment efficacy. Many water utilities already collected some of this data 
either for compliance with drinking water legislation (indicator organism 
sampling) or for operational purposes (residual chlorine measurement to control 
chlorine dosing). The available data from the MicroRisk CTSs was compiled to 
provide an overview of treatment performance for a range of treatment 
processes under different conditions in different countries. Thus European 
water treatment practice and data availability was reflected. 
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Figure 2 MicroRisk treatment assessment framework. The chapter numbers refer to the chapters 
where the approach is applied. 

 



 Introduction 
 

-19- 

Reduction at a treatment site varied in time and this variation was monitored 
by collecting data over a period of several years. The quality of the data varied 
between the CTSs, and between treatment processes within a single CTS. 
Figure 2 illustrates how reduction by each treatment barrier can be estimated 
based on commonly available data.The numbers in Figure 2 refer to the 
chapters in this thesis that discuss the use of these types of data. 
 
Other types of data that can be used for treatment performance assessment 
include results from (site specific) pilot tests as discussed for ozonation in 
Chapter 4. Such tests are more applicable to the local situation than general 
literature values. Use of other data like operational diaries or failure reports can 
provide information about the frequency and duration of events in treatment 
(Westrell et al. 2003, Nilsson et al. 2007, Signor et al. 2007). 
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Abstract 

Determining the concentration of pathogens in drinking water is a crucial step 
in quantitative microbial risk assessment of drinking water. When pathogens 
cannot be detected directly in drinking water, their concentration in drinking 
water can be calculated from their concentration in raw water and their 
reduction by treatment. This study compared a point estimate approach to 
stochastic approaches for this calculation using different types of data in a 
case study of Campylobacter removal by surface water treatment with rapid 
sand filtration, ozonation and slow sand filtration. The point estimate based on 
literature, provided an indication of the mean Campylobacter concentration in 
drinking water. The point estimate also showed that the Campylobacter 
concentration could be several orders of magnitude higher or lower than the 
average under extreme conditions. How certain the estimate of the mean 
concentration was, or how often extreme conditions occurred was not 
assessed. Therefore three stochastic assessments were performed. 
A stochastic assessment using full-scale Campylobacter monitoring data 
incorporated the variability of raw water concentration and treatment efficacy. 
This provided an estimate of frequency and magnitude of peak Campylobacter 
concentrations in drinking water. In addition the stochastic method provided 
insight in the uncertainty of the estimated raw water concentration and 
treatment efficacy. As an alternative, E. coli monitoring data was used as a 
surrogate for Campylobacter. This more extensive data provided a more 
detailed insight in the estimated variation. Finally the inactivation by ozonation 
was calculated with a process model using monitored ozone concentrations, 
temperatures and contact times to illustrate a situation where microbial 
monitoring was not feasible. The process model results were similar to the 
microbial assessments. The stochastic modelling in this study included the 
variability of the system. However, the assessed uncertainty about raw water 
concentrations and treatment efficacies could affect the calculated 
Campylobacter concentrations in drinking water. In addition, risk managers and 
legislators need to know the uncertainty of the assessment when using it as a 
basis for decisions. Future research should therefore focus on including 
uncertainty in the stochastic assessment.  
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Introduction 

Water treatment is the major barrier against pathogenic microorganisms when 
preparing drinking water from surface water. The level of treatment is to be 
adapted to the pathogen contamination level of the source water. An estimate 
of the number of pathogens in the treated water can be calculated from the 
measured amount of pathogens in source water and the estimated treatment 
efficacy as part of a risk assessment (Regli et al. 1991, Haas et al., 1999). In 
a point estimate assessment the efficacy of a treatment step is represented by 
a single value for efficacy (USEPA, 2003; WHO 2004). However, it is known 
that full-scale treatment efficacy varies in time due to variation of conditions 
such as water quality, flows and operation. Short term peaks of pathogens in 
the source water or a short period of failure in treatment can lead to an 
increase of the average exposure and thus to an increase of the risk of 
infection (Teunis et al., 2005). Stochastic methods have been proposed to 
calculate pathogen concentration in the treated water using varying raw water 
concentrations and treatment efficacy (Bartram et al., 2001; Medema, 2003). 
In a stochastic assessment, the treatment efficacy is represented by a variable 
value. The first goal of the study was to compare the point estimate 
assessment to the stochastic assessment. 
 
Stochastic assessments have used monitoring data of pathogens or indicators 
in raw water and water at different stages of treatment (Teunis et al. 1997).  
A large dataset of pathogen analysis before and after treatment would be ideal 
for treatment assessment. However, pathogen analyses are generally scarce 
and after a certain point in treatment pathogens can no longer be detected. 
Since indicator organisms such as E. coli are present in the source water in 
higher concentrations than pathogens, they can often be detected further 
down the treatment train. This, and the fact that they are more frequently 
measured for legislative purposes makes the indicator data valuable for 
treatment assessment. The second goal of the study was to compare an 
assessment with pathogen data to an assessment with indicator organism 
data. 
 
In cases where the removal of pathogens can be modelled with a process 
model using input from process parameters, information about process 
parameters can provide estimates of treatment efficacy. In addition, process 
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conditions such as disinfectant residual, temperature and flow can be 
monitored on-line. This provides an opportunity for detailed assessment of 
treatment variability at relatively low costs. The third goal of the study was to 
determine whether a process model could provide a realistic estimate of 
treatment efficacy in an assessment.  
 

Materials and methods 

Case study system 
The case study used data from a full-scale treatment system. River water was 
pre-treated by coagulation, sedimentation and filtration. The pre-treated water 
was transported to the dunes for artificial recharge in open canals. After a 
residence time of approximately 90 days, the water was abstracted through 
open canals and stored in an open pond. Since the soil passage removed most 
microorganisms from the pre-treated water, recontamination in the pond by 
waterfowl and wildlife was the main source of faecal contamination. Since the 
water in the pond was the last open water before final treatment, it was 
considered as the raw water in the treatment assessment. The final treatment 
system is shown in Figure 1. The water was abstracted from the pond (RAW) 
and treated by rapid sand filtration (RSF), ozonation (O3) and slow sand 
filtration (SSF). 
 

 
Figure 1 Treatment steps of the case study treatment system 

  
Available data consisted of Campylobacter and E. coli measurements in raw, 
filtered and ozonated water over an eight-year period and measurements of 
ozone process conditions. The system consisted of five parallel lines of six 
ozone contact chambers in series. Temperature was measured in the main 
flow at the intake point. Flow was measured for each of the five lines. Ozone 
concentration was measured in each of the thirty contact chambers.  
 
Microbial monitoring 
Campylobacter was analysed according to NEN 6269 (Anonymous, 1996). 
Samples were analysed by direct filtration and direct inoculation of the filter in 
tubes with Preston Campylobacter selective enrichment broth. The tubes were 
incubated in microaerobic conditions for 48 hr at 42°C. A loopful of Preston 
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medium was then transferred onto Karmali selective medium. These paltes 
were incubated for 48 hr at 42°C. Positive results were confirmed by 
microscopic examination in a hanging drop for the typical morphology and 
motility of Campylobacter. Campylobacter was quantified by the most 
probable number method (MPN) in three parallel tubes for three filtered sample 
volumes using decimal dilutions. Reported MPN concentrations were taken 
from MPN tables by De Man (1975). E. coli was analysed by direct filtration 
and direct inoculation of the filter on lauryl sulphate agar (Oxoid Basingstoke, 
England, nr. MM0615). The plates were incubated for 4 hr at 25°C and then 
for 18-24 hr at 44°C. A proportion of the typical yellow colonies were 
confirmed in brilliant green bile salts lactose medium for 24-48 hr at 44°C. 
 
Pathogen reduction model 
Pathogen concentrations in treated water Cout were calculated from the 

pathogen concentration in raw water Craw and their reduction by the treatment 

processes in series using Equation 1 (Haas et al. 1999). 
 

ssfO3rsf πππ ×××= rawout CC  (1) 

 
Where πrsf is the efficacy of rapid sand filtration, πO3 is the efficacy of 

ozonation and πssf is the efficacy of slow sand filtration. Treatment efficacy π 

was the fraction of organisms that passed a treatment step. The (variation of) 
removal efficacy π was taken from literature, calculated with a process model 
or calculated from monitored concentrations of pathogens or indicator 
organisms before and after a treatment process on the same day using 
Equation 2.  
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where Cdout is the concentration of organisms after a treatment step on date d 

and Cdin is the concentration of organisms before a treatment step on date d.  
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Treatment efficacy was expressed as log reduction log10(π). The log reduction 

over a longer period was calculated from the arithmetic mean concentrations 
before and after treatment over the total period with Equation 3.  
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Process model for ozonation 
Disinfection by ozonation was modelled using ozone concentration CO3, 

contact time t and inactivation rate constant ke. The CT10 model (Equation 4) 

and the CSTR model (Equation 5) were used (Smeets et al. 2006). 
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In which CO3 was the ozone concentration, t10 was the contact time that was 

exceeded by 90% of the water. Contact time t was calculated from the 
measured flow and the volume of the contactor and t10/t was estimated as 

0.56 based on tracer tests. The CSTR disinfection model for this system was 
discussed by Smeets et al. (2006). Due to ozone decay, ozone was not 
detected in all chambers all the time. The appropriate number of CSTR in 
series therefore varied between 1 and 6. The point estimate in approach 1 
used the mean number of 3 CSTR as a best estimate and 1 and 6 CSTR as 
extreme values. In approach 4 each of the thirty contact chambers was 
modelled as a CSTR with Equation 5 using the measured ozone residual, flow 
and temperature. Contact time t was calculated from the flow per treatment 
line and the volume of each contact chamber. The efficacy of each line was 
calculated by multiplying the efficacy of each contactor in that line. The 
efficacy of the total ozonation process was calculated as the mean of the 
individual lines on each date. A beta PDF was fitted to the calculated 
inactivations.  
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Point estimate assessment 
Discrete values were used in Equation 1 in the point estimate assessment. The 
point estimate of raw water Campylobacter concentration was calculated as 
the arithmetic mean of the monitored concentrations at the intake. The values 
for πrsf and πssf were taken from a literature review including pilot experiments 

and full-scale data analysis (Hijnen et al. 2005a, 2005b). πO3 was calculated 

with Equations 4 and 5 using the average operational setpoints. Equation 1 
was calculated with the mean, maximum and minimum reported values for 
each step in the assessment. This resulted in a best estimate, a maximum 
estimate and a minimum estimate of the Campylobacter concentration in 
treated water. A sensitivity analysis of the point estimate was performed by 
making all possible combinations of the mean, maximum and minimum values 
of the assessment steps. 
 
Stochastic assessment 
The variability of Cin, πrsf, πO3 and πssf were addressed in a stochastic 

assessment by Monte Carlo simulation of Equation 1. Each variable was 
represented by a probability density function (PDF). The raw water 
concentrations were described by fitting a gamma PDF to the monitored 
Campylobacter concentrations (Haas et al. 1999). A beta PDF was fitted to 
the removal values of πrsf and πO3 assessed from the monitoring data (Teunis et 

al. 1999). The maximum likelihood estimates (MLE) of the fitted PDF 
parameters were determined by the “pdf-fit” functions in Matlab® statistical 
toolbox. This function also provided the parameter pairs α2.5% - β2.5% and α97.5% 

- β97.5% of the 95% confidence interval (CI) boundaries of the fitted PDF. The 

95% CI parameters thus indicated how well the PDF described the data. No 
site specific data was available for the slow sand filtration. Therefore the 
values of πssf reported in literature (Hijnen et al. 2005a, 2005b) were used as if 

they represented the variability of efficacy (Figure 2). A beta PDF was fitted to 
the πssf data and used in the Monte Carlo simulation. Due to the limited amount 

of data points, the 95% CI boundaries of the PDF parameters could not be 
determined. 
 
Monte Carlo simulation was performed by drawing random values from each 
PDF of  Cin, πrsf, πO3 and πssf . The pathogen concentration after treatment was 
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calculated from the random values with Equation 1. This procedure was 
repeated 100,000 times, resulting in as many estimates of Campylobacter 
concentration in drinking water. Together these estimates described the 
variability of the estimated concentration. 
 

 
Figure 2 Removal of bacteria by slow sand filtration as reported in literature (Hijnen et al. 2005a, 
2005b) (bars) and the fitted beta PDF (line). 

 
Approaches 
Four different approaches were applied to study the impact of choices made in 
the risk assessment. Approach 1 used the point estimate of the raw water 
concentration and the efficacy of each treatment step. Ozonation was efficacy 
was estimated with the CSTR model (Equation 5) based on operational 
settings. Approach 1 reflected the situation when no site specific data on 
treatment efficacy was available and a ‘simple’ calculation method was 
chosen. Approach 2 used Monte Carlo simulation with the PDFs based on the 
Campylobacter (pathogen) data for Cin, πrsf, and πO3 and the PDF based on 

literature for πssf. This reflected a situation where some microbial monitoring 

data was available and variability was taken into account. Approach 3 used 
the large number of E. coli data as an indicator of variation of Cin and as a 

surrogate for Campylobacter reduction πrsf, and πO3. The PDF based on 

literature was used for πssf. This assessment showed the effect of using a large 

dataset in the treatment assessment. Approach 4 was similar to approach 3 
for Cin, πrsf, and πssf. Ozone efficacy πO3 was modelled with the CSTR model 
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(Equation 5) using monitored ozone concentrations, temperatures and contact 
times (based on flow). This illustrated how a disinfection process could be 
included in a treatment assessment when microbial monitoring was not 
feasible. 
 

Results  

Microbial monitoring results 
The study used long-term water quality monitoring data of Campylobacter, E. 
coli, temperature, ozone contact time and residual ozone concentration from 
the full-scale plant over a six year period. Table 1 summarizes the data. 
 
Table 1 Overview of monitoring data 

 Campylobacter E. coli Ozonation conditions 

 
# 

Data 
Mean 
MPN/L 

%  
positive 

# 
Data 

Mean 
CFU/L 

%  
positive 

 
# 

Data 
Mean Min-Max 

Raw 33 199 100% 1963 383 99% T (°C) 354 12 2.3-19.5 

Filtered 31 12 100% 1988 29 84% CO3 (mg/L) 354 0.2 0-0.8 

Ozonated 31 0.2 35% 3447 0.18 5% t (min) 354 10 7-13 

 
Approach 1: Point estimate 
The arithmetic mean Campylobacter concentration in raw water was 199 
MPN/L. The minimum and maximum monitored concentrations of 0.3 and 
1100 Campylobacter/L were used in the point estimate assessment as ‘best 
case’ and ‘worst case’ values.  Efficacy of rapid sand filtration for the removal 
of bacteria was modelled as a point estimate of 0.6 log reduction, based on a 
literature study (Hijnen et al. 2005b). The minimum and maximum efficacies 
reported in literature were 0.1 and 1.5 log reduction. The efficacy of ozonation 
depends on operational conditions. Efficacy of ozonation was estimated from 
the setpoint of ozonation of a Ct10 of 1.2 mg.min/l at a temperature T of 5o C 

and an inactivation rate constant ke of 120 L/mg.min (Smeets et al. 2005). 

The CT10 model predicted over 100 log inactivation of E. coli. However, it is 
known that these high levels of inactivation are not achieved in a conventional 
ozone contactor due to hydraulic shortcomings (Do-Quang et al. 2000, Smeets 
et al. 2006). The more conservative CSTR model approach assuming 6 CSTRs 
in series and equal spread of CT over the contactors resulted in 8 log 
inactivation which was used as the maximum estimate of treatment efficacy. 
The best estimate of 3 CSTR in series resulted in 5 log inactivation and a 



Chapter 2 
 

-32- 

worst case estimate of 1 CSTR resulted in 2 log inactivation. Efficacy of slow 
sand filtration was modelled as a point estimate of 2.7 log reduction with a 
minimum and maximum efficacy of 1.2 and 4.8 log reduction based on a 
literature study (Hijnen et al. 2005a).  
 
Table 2 shows the result of the best estimate and the extreme combinations 
(minimum and maximum) of treatment step efficacies. This shows that the 
estimated Campylobacter concentrations after treatment ranged over 16 log.  
 
Table 2 Results of point-estimate assessment in approach 1 
 min 

estimate 
best 

estimate 
max 

estimate 
source 0.3 199 1100 
filtration 1.5 0.6 0.1 
ozonation 10 5 2 
slow sand filtration 4.8 2.7 1.2 
total reduction 16.3 8.3 3.3 
log pathogen concentration -16.8 -6.0 -0.3 

 
Since there were 4 variables with each 3 estimated values, 81 different 
combinations were made in the sensitivity analysis of the point estimate 
assessment. Figure 3 shows the calculated Campylobacter concentrations in 
treated water of all these combinations in a histogram. 38% of the 
combinations led to Campylobacter concentrations exceeding the best 
estimate of 10-6 Campylobacter/L, indicating that the best estimate could 
underestimate the risk.  
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Figure 3 Histogram of calculated mean Campylobacter concentration in treated water using 
combinations of minimum, mean and maximum estimates in the sensitivity analysis of the point 
estimate assessment. 
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Approach 2: Pathogen data 
Monitored Campylobacter concentrations in raw, filtered and ozonated water 
are shown in Figure 4. The reported concentrations ranged over two orders of 
magnitude, indicating large variations of faecal contamination of the raw 
water.  
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Figure 4 Reported Campylobacter concentrations in raw, filtered and ozonated water. Negative 
samples are shown as open markers at 0.01 MPN/L. 

 
A gamma PDF was fitted to the Campylobacter concentrations in source water 
as shown in Figure 5. The MLE PDF described the most likely variability of the 
concentration given the monitoring results. According to this PDF the 
concentration varied between 1.5 and 853  MPN/L for 95% of the time. The 
concentration that was exceeded for one day per year (the 99.7th percentile) 
was 1,434 MPN/l. As a consequence of this variation, the arithmetic mean 
concentration was199 MPN/L. 
 
The 95% boundary values of the PDF parameters indicate the uncertainty of 
how well the PDF described the data. For example, given the monitoring 
results, the probability that the concentrations in raw water exceeded the 
concentrations described by the 97.5% PDF was 2.5%. The 97.5% PDF had a 
mean concentration of 535 MPN/L. This means that there is a 2.5% 
probability that the mean concentration exceeded 535 MPN/L. Similarly there 
was a 2.5% probability that the mean concentration was below 74 MPN/L. 
This uncertainty about the accurateness of the PDF was summarized in Table 
3 by the mean concentration of the 2.5% and 97.5% PDF.  
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Figure 5 Raw water Campylobacter concentrations (histogram) and the gamma probability density 
function (PDF) with maximum likely parameters (line) and 95% confidence interval of parameters 
(dashed and dash-dot). 
 

Efficacy of filtration and ozonation were assessed from the monitored 
Campylobacter concentrations before and after these processes. No 
Campylobacter data for slow sand filtration were available, therefore the PDF 
based on literature values in Figure 2 was used in the assessment.  
 
Table 3 shows the results of the assessment based on the monitored 
Campylobacter concentrations. The estimated mean raw water concentration 
was 199 MPN/L, identical to approach 1. According to the fitted PDF, the raw 
water concentration varied between 1.5 and 853 MPN/L for 95% of the time, 
which is less extreme than the minimum and maximum estimates in approach 
1. Based on the Campylobacter data, removal by filtration at this site was 
more effective (1.1 versus 0.6 log removal) than was expected based on 
literature data (Table 2). The assessed inactivation by ozone was much lower 
than in approach 1 (1.6 versus 5 log inactivation). Apparently the assumed 
conditions for the process model in the point estimate did not reflect the actual 
conditions since some Campylobacter were detected after ozonation. 
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The stochastic assessment provided an estimate of the uncertainties. Table 3 
shows that the uncertainty with respect to the average raw water 
concentration ranged from 74 to 535 MPN/L. The uncertainty about the mean 
efficacy of filtration and ozonation was small (1.0 to 1.3 and 1.5 to 1.8 
respectively) 
 
Table 3 Results of pathogen assessment. α and β are the MLE parameters of the fitted PDF. 
 lower 

95% CI 
boundary 

MLE upper 
95% CI 

boundary 

α 
MLE 

 

β 
MLE 

PDF 
type 

raw water (95% CI) MPN/L 74 199 535 0.72 278 gamma 
filtration log reduction 1.3 1.1 1.0 0.70 7.65 beta 
ozonation log reduction 1.8 1.6 1.5 0.53 19.5 beta 
slow sand filtration log reduction * 2.0 * 0.41 36 beta 
 * No parameters for the 95% CI boundaries of the PDF could be determined. 

 
Figure 6 and Table 4 show the result of the Monte Carlo simulation. The 
histogram shows the estimated variability of the Campylobacter concentration 
in treated water. The arithmetic mean Campylobacter concentration, due to 
this variability, was 0.0025 MPN/L (-2.4 log MPN/L). This concentration was 
3.6 log higher than the best point-estimate. The difference was caused by the 
difference in assessed ozonation efficacy. 
 
The stochastic assessment provided an estimate of how the Campylobacter 
concentration in drinking water could vary. The median concentration was 
0.000055 MPN/L (-4.3 log MPN/L). The large difference between the median 
and the mean concentrations was caused by the skewed distribution of 
concentration. Although high concentrations rarely occurred, they had a high 
impact on the mean concentration. The mean concentration was exceeded 
only 12% of the time (88th percentile). The 95th percentile, often used as a 
measure of peak concentration, was estimated to be 0.0096 MPN/L (-2 log 
MPN/L). The 99.7th percentile (1-(1/365)) corresponds to the ‘maximum day’, 
which was calculated as 0.24 MPN/L. This concentration was expected to 
occur 0.3% of the time, however this could be spread over several shorter 
episodes over the year. The maximum estimate of 0.5 MPN/L in approach 1 
was of the same order of magnitude. The minimum point estimate of 10-16.8 
did not correspond to the 0.3rd percentile (‘minimum day’) of 10-11 of the 
stochastic assessment.  
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Figure 6 Histogram of log Campylobacter concentrations in treated water calculated with Monte 
Carlo simulation in Approach 2. 

 
Table 4 Results of Monte Carlo simulations in approaches 2, 3 and 4. 
 approach 

2 
approach 

3 
approach 

4 
raw water MPN/L 199 199 199 
filtration log reduction 1.1 1.04 1.04 
ozonation log reduction 1.6 1,74 1.58 
slow sand filtration log reduction 2.0 2.0 2.0 
Monte Carlo simulation results    

total reduction  4.6 4.7 4.6 
log pathogen concentration -2.3 -2.4 -2.3 
95% of log Campylobacter concentration -1.7 -1.9 -1.8 
99.7% ‘worst day’ log Campylobacter concentration -0.6 -0.8 -0.5 

 
Approach 3: Indicator organism data 
Figure 7 shows the yearly variation of Campylobacter and E. coli concentration 
in raw water. The 34 Campylobacter concentrations in Figure 7 showed a 
yearly pattern similar to the 1,963 E. coli concentrations. However, the mean 
Campylobacter concentration was 50% of the mean E. coli concentration. The 
E. coli concentration variation was considered as an indicator of 
Campylobacter concentration variation. The E. coli variation was applied to the 
average Campylobacter concentration to improve the estimate of variation in 
the stochastic assessment.  
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Figure 7 Yearly variation of reported E. coli (’00-’05) and Campylobacter (’03-’05) concentrations 
in raw water.  

 
Campylobacter and E. coli are similarly reduced by rapid sand filtration and 
slow sand filtration (Hijnen et al. 2005b) and ozonation (Smeets et al. 2005). 
The E. coli reduction by filtration and ozonation was applied in the assessment 
as a surrogate of Campylobacter reduction. Table 5 shows the resulting values 
of the assessment. The uncertainty about the mean values of Cin, πrsf and πO3 

in Table 5 shows that the 95% confidence intervals of the fitted PDFs were 
very small due to the large amount of E. coli data. Results of the Monte Carlo 
simulation using the E. coli data were similar to the results of the simulation 
with Campylobacter data (Table 4). Although the use of surrogate data did not 
affect the estimate of pathogen concentrations in drinking water, it did reduce 
the uncertainty with respect to the appropriate PDF parameters. 
 
Table 5 Results of indicator assessment in approach 3. α and β are the MLE parameters of the 
fitted PDF. 
 lower 

95% CI 
boundary 

MLE upper 
95% CI 

boundary 

α 
MLE 

 

β 
MLE 

PDF 
type 

raw water (95% CI) MPN/L 174 199 226 0.78 256 gamma 
filtration log reduction 1.06 1.04 1.02 0.55 5.41 beta 
ozonation log reduction 1.78 1,74 1.70 0.42 22.8 beta 
slow sand filtration log reduction * 2.0 * 0.41 36 beta 
* No parameters for the 95% CI boundaries of the PDF could be determined. 
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Approach 4: Treatment modelling 
Approach 4 was similar to approach 3 with the exception that the efficacy of 
ozonation was assessed by modelling Campylobacter inactivation using 
monitored process conditions. This approach was an example of how different 
types of data could be combined in a treatment assessment. Figure 8 
illustrates how the different types of data were used in each step.  
 
The result of the process model in Table 6 shows that the calculated 
inactivation of Campylobacter by ozone was slightly lower than when 
microbial monitoring was used (Table 3 and Table 5). However, this had only a 
limited effect on the estimated Campylobacter concentrations in treated water.  
The modelled inactivation was much lower than the point estimate in approach 
1 and more in line with the microbial assessments in approaches 2 and 3. This 
shows that the process settings used in approach 1 were not always achieved 
in practice. Moments of sub-optimal conditions were incorporated in the 
monitoring data used in approach 4 and as a result the modelled inactivation 
was lower.   
 
Table 6 Results of approach 4 where pathogen data, indicator data and process modelling and 
literature data were combined. α and β are the MLE parameters of the fitted PDF. 
 lower 

95% CI 
boundary 

MLE upper 
95% CI 

boundary 

α 
MLE 

 

β 
MLE 

PDF 
type 

raw water (95% CI) MPN/L 174 199 226 0.78 256 gamma 
filtration log reduction 1.02 1.04 1.06 0.55 5.41 beta 
ozonation log reduction 1.62 1.58 1.52 0.25 8.8 beta 
slow sand filtration log reduction * 2.0 * 0.41 36 beta 
* No parameters for the 95% CI boundaries of the PDF could be determined. 
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Figure 8 Visualization of the model calculations for approach 4 where different types of site 
specific data were combined in a stochastic assessment. 
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Discussion 

Point estimate versus stochastic assessment 
Several approaches for QMRA were applied to a case study treatment system. 
The point estimate assessment required no site specific information and used a 
simple calculation method. The worst case point estimate of Campylobacter 
concentration in treated water was almost six orders of magnitude higher than 
the best estimate and 16 orders of magnitude higher than the minimum 
estimate. In the sensitivity analysis, 38% of the combinations led to 
Campylobacter concentrations exceeding the best estimate. The point estimate 
provided an indication of the possible Campylobacter concentration in drinking 
water at the treatment site. Since the point estimate combined raw water 
quality with the extent of treatment, it could be used to compare and prioritise 
different treatment systems. The point estimate showed that, as a result of 
extreme conditions, the Campylobacter concentration in drinking water could 
vary over 16 orders of magnitude. However, it provided no information about 
the likelihood of these extreme conditions. Therefore the point estimate may 
not provide sufficient basis for decisions by the risk manager or the legislator.  
 
Approach 2 used Campylobacter monitoring data in a stochastic assessment. 
By fitting the MLE and the 95% CI PDF to the data, the uncertainty about the 
mean Cin could be determined. Similarly the uncertainty with respect to the 

reductions πrsf, πO3 and πssf was quantified. In addition, the stochastic 

assessment provided information about the variability of the system so the 
frequency and magnitude of peak concentrations could be estimated. The use 
of site specific information increased the credibility of the outcome of the 
stochastic assessment.  
 
Pathogen versus indicator organism 
The uncertainty about the raw water PDF parameters was reduced from 0.8 
logs (74-535 MPN/L) to 0.1 logs (174-226 MPN/L) in approach 3 by using E. 
coli monitoring data. The E. coli data included sixty times more data points 
than the Campylobacter data. Since the uncertainty about the PDF parameters 
was reduced, the uncertainty about the mean concentration was also reduced. 
However, the assumption that variation in source water and reduction by 
treatment of Campylobacter and E. coli were similar introduced some 
uncertainty that was not quantified. The estimated mean and peak 
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Campylobacter concentrations were similar to the estimates in approach 2 
since the E. coli and Campylobacter data showed similar variation. This 
illustrated that collecting more data by intensive monitoring could reduce 
uncertainty. However, intensive microbial monitoring may not be feasible in all 
situations. 
 
Use of process models 
Modelling ozone efficacy as a point estimate based on operational setpoints in 
approach 1 resulted in an overestimation of inactivation compared to the 
assessment in approaches 2, 3 and 4. The overestimation of inactivation by 
ozone in approach 1 was caused by wrong assumptions on process conditions. 
Short periods of low ozone concentrations, observed in the data, were not 
accounted for by the point estimate. In microbial risk assessment, process 
models without detailed site specific information should also account for these 
suboptimal conditions. 
 
Approach 4 showed how information of process operation, such as ozone 
concentration, contact time and temperature, could be used to assess 
treatment efficacy through a disinfection model. Process modelling resulted in 
estimates of mean and peak Campylobacter concentrations similar to 
approaches 2 and 3. This verified that the model provided a reliable estimate 
of inactivation by ozone. Process modelling could be applied when 
microorganism concentrations are to low to monitor. In addition, process 
modelling provides an opportunity to further improve the assessment of 
ozonation. By monitoring CO3, T and t on-line and using the model, a very large 

dataset of ozonation efficacy, exceeding that of E. coli, could be acquired with 
a minimum of resources. Such a dataset could further reduce the uncertainty 
about ozonation efficacy.  
 
The slow sand filtration was included using data from literature in all 
approaches. The differences in reported efficacies may be caused by variability 
of the process e.g. due to differences in design (sand grain, filterbed depth), 
operation (filtration rate, scraping) and conditions (temperature, organic load). 
The efficacy of slow sand filtration was described by a beta PDF. However, 
the PDF-fit method could not determine 95% CI parameters, and looking at 
Figure 2 a uniform distribution of log reductions might also be applicable. More 
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site specific data on slow sand filtration could improve the assessment. Site 
specific data about slow sand filtration could be obtained by experiments with 
dosed microorganisms, since microorganism concentrations in the influent are 
generally very low. These experiments could support a choice for PDF type 
and reduce the uncertainty. 
 
Uncertainty of the assessment 
Approaches 2, 3 and 4 assessed the uncertainty about the raw water 
Campylobacter concentration and the treatment efficacy. This was illustrated 
in Tables 3, 5 and 6 by the 95% CI of the mean concentration and efficacies. 
These uncertainties were not included in the Monte Carlo simulations. 
Assumptions such as the applicability of E. coli as a surrogate for 
Campylobacter, the choice of PDF type for slow sand filtration and the 
independence between treatment steps also introduce some uncertainty in the 
assessments. In addition the PDFs of Craw, πrsf, πO3 and πssf were based on data 

that generally included some level of uncertainty such as recovery, 
quantification of the microbial method (MPN method) and culturability and 
infectivity of the organisms. These uncertainties were not specifically 
addressed in the presented stochastic methods. However, they may have an 
impact on the estimated Campylobacter concentration in drinking water. When 
the stochastic assessments are used for decision support by risk managers or 
legislators, the uncertainty of the assessment results needs to be taken into 
account. Development of methods that specifically address uncertainty in the 
drinking water treatment assessment is therefore needed. 
 

Conclusions 

A point estimate assessment was compared to three stochastic assessments 
of drinking water treatment efficacy. Although the point estimate assessment 
provided an indication of the Campylobacter concentrations in drinking water, 
it provided no information about the uncertainty of this estimate. Minimum and 
maximum estimates ranged over 16 orders of magnitude. The stochastic 
method using monitored Campylobacter data showed that the estimated 
concentrations in drinking water indeed varied over several orders of 
magnitude. The frequency and magnitude of peak concentrations and their 
impact on the pathogen breakthrough to treated water could be estimated. The 
stochastic methods also provided insight in the uncertainty of the estimated 
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raw water concentrations and treatment efficacy. Increasing the amount of 
data by using monitored E. coli as a surrogate for Campylobacter reduced the 
uncertainty about the variability. When monitored process conditions were 
used to model inactivation by ozonation, the results were similar to the results 
of the microbial assessments. Process modelling could be applied when no 
microbial data was available and could allow for on-line monitoring of 
treatment efficacy. The presented stochastic methods focussed on including 
variability in the assessment. However, uncertainty about the elements of the 
assessment may have an impact on the result. Development of methods to 
include uncertainty in the stochastic assessment is therefore needed, 
especially when risk assessment results are used for decision support or 
legislation. 
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Abstract 

Quantitative Microbial Risk Assessment (QMRA) is increasingly being used to 
complement traditional verification of drinking water safety through the 
absence of indicator bacteria. However, the full benefit of QMRA is often not 
achieved because of a lack of appropriate data on the fate and behaviour of 
pathogens. In the UK, statutory monitoring for Cryptosporidium has provided a 
unique dataset of a specific pathogen directly measured in large volumes of 
treated drinking water. Using this data a QMRA was performed to determine 
the benefits and limitations of such state of the art monitoring for risk 
assessment. Estimates of the risk of infection at the 216 assessed treatment 
sites ranged from 10-6.5 to 10-2.5 person-1.day-1. In addition, Cryptosporidium 
monitoring data in source water was collected at eight treatment sites to 
determine how Cryptosporidium removal could be quantified for QMRA 
purposes. Cryptosporidium removal varied from 1.8 to 5.2 log units and 
appeared to be related to source water Cryptosporidium concentration. 
Application of general removal credits can either over- or underestimate 
Cryptosporidium removal by full-scale sedimentation and filtration. State of the 
art pathogen monitoring can identify poorly performing systems, although it is 
ineffective to verify drinking water safety to the level of 10-4 infections  
person-1.year-1.  
  

Introduction 

Drinking water is generally monitored for the occurrence (absence) of indicator 
organisms in a relatively small volume of water (<500ml), but absence in this 
volume does not guarantee safe drinking water. Additional approaches to 
safeguard drinking water quality, such as the Surface Water Treatment Rule 
(USEPA 2006) and Water Safety Plans (WHO 2004), have therefore been 
introduced. Quantitative Microbial Risk Assessment (QMRA) (Haas et al. 1999) 
is a method that can be used to estimate the health risk associated with 
drinking water consumption. The risk of infection is calculated from the 
exposure to pathogens (the chance of ingesting one or more pathogens) and 
the dose-response relation (the chance of infection from the number of 
pathogens ingested). In most situations it is not feasible to monitor directly for 
the presence of pathogens since they are present in extremely low numbers. 
However, the UK statutory monitoring for Cryptosporidium has resulted in a 
large quantity of data from the monitoring of large volumes of drinking water. 



Use of UK statutory Cryptosporidium monitoring for QRA 
  

-47- 

The UK Water Supply Regulations (Amended) 1999 (DWI 1999), that were 
introduced as a treatment rather than a health-based standard, require 
continuous monitoring of finished drinking water for Cryptosporidium oocysts 
at least 23 hours per day at a rate of at least 40 litres per hour. This could be 
considered the best possible pathogen monitoring programme that can be 
achieved given the current state of the art of pathogen analysis. The database 
of monitoring results provides a unique opportunity to study drinking water 
safety based on measured pathogens in drinking water. The monitoring is 
performed to ensure compliance with the UK drinking water treatment 
standard of less than 1 oocyst per 10L of final water. The endpoint of QMRA 
is an estimated risk of infection, and Dutch drinking water regulations require a 
maximum risk level as low as 10-4 per person per year. This study investigated 
whether extensive monitoring of treated water as applied in the UK could be 
used to verify compliance with this risk level. 
 
Since most pathogens are not monitored as extensively in drinking water, a 
different approach is generally used in QMRA. Pathogens are monitored in 
source water, and their reduction through treatment is estimated so the 
concentration in drinking water can be calculated (Regli et al. 1991). An 
essential step in such a risk assessment is determining the reduction of 
pathogens by drinking water treatment (Teunis et al. 1997; Gibson et al. 
1999). Generally, reduction has to be estimated from indirect information such 
as; process removal credits from literature or pilot experiments, removal of 
surrogates like turbidity, reduction of indicator organisms such as E. coli or 
modelling of disinfection processes. These indirect measurements of pathogen 
reduction all have their specific shortcomings. Direct measurement of 
pathogens before and after treatment could provide a direct measurement of 
treatment efficacy. For some sites Cryptosporidium monitoring data was 
collected for the source water to see if this would aid the modelling of 
treatment in QMRA.  
 
Changes in conditions that are outside the limits normally experienced at a 
treatment works are often referred to as extreme events. The most common 
extreme event that is considered is heavy rainfall (storms) in the catchment of 
the treatment works. Abnormally high rainfall can wash pathogens from 
agricultural land used for grazing into the river (the source water) (Signor et al. 
2007). If there has been little or no rainfall previously, the increased numbers 
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of pathogens scoured from the land is not offset by the increased dilution and, 
at least initially, the numbers of pathogens in the source water will increase. 
The flow rate of the river also increases, causing high turbidity and carrying 
pathogens more quickly to the abstraction point of the water treatment works. 
The concern is whether the treatment works can handle this increased 
microbial challenge or if the quality of the treated water will deteriorate in 
relation to the increased loading in the source water and how this can be 
modelled in QMRA.  
 
The goal of this study was to test whether elaborate end-product testing can 
provide valuable information for quantitative risk assessment. On the one hand 
risk of infection was estimated directly from the treated water monitoring. On 
the other hand Cryptosporidium reduction by treatment was assessed by 
comparing Cryptosporidium in the source and treated water. Finally the impact 
of peak events in the source water on treated water quality was studied.  
 

Methods 

For this study, the results of statutory Cryptosporidium monitoring at 216 UK 
water treatment works from 1/4/2000 until 31/3/2002 were obtained from 
WRC plc, Swindon, UK. The daily sampled volume and the oocysts 
concentration in that volume were used in the data analysis. In addition data 
from source water monitoring at 8 UK water treatment works (Sites A-H) from 
5-1-1993 to 20-4-2004 was obtained. These samples were taken at irregular 
intervals, typically between one week and one month. The treatment schemes 
at these sites are presented in Table 1. All sites apply Coagulation, 
Sedimentation, Filtration, GAC filtration and Chlorination. At sites A and E 
ozonation is also used and at site B there is also Dissolved Air Flotation. 
 
 To study the effect of source water peaks one UK Water Company (not 
described in Table 1) submitted Cryptosporidium monitoring data from one of 
its water treatment works that was fortuitously collected during a period of 
extreme rainfall. At this treatment works, the river water is abstracted for 
treatment. The first stage of treatment consists of bank-side storage of around 
2 days. The initial coagulation stage is a process that uses sand and 
polyelectrolyte with aluminium sulphate. After settlement the water is passed 
through a bank of rapid gravity filters. Ozone is added and after contact the 
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water passes through GAC filters before final chlorination. Statutory 
monitoring for Cryptosporidium is carried out on the final water from this 
works. During the period, immediately before and for two weeks after, 
additional source water monitoring was carried out in the form of one 10 litre 
grab sample each day. 
 
Table 1 Treatment processes at sites A to H 
Site Treatment 

A Coagulation Sedimentation GAC filtration Ozone Chlorination   

B Impoundment Coagulation (Polyelectrolyte) Sedimentation Dissolved Air Flotation Filtration  
GAC filtration  Chlorination   

C Coagulation (Polyelectrolyte) Sedimentation Filtration GAC filtration  Chlorination   

D Impoundment Coagulation (Polyelectrolyte) Sedimentation Filtration GAC filtration  
Chlorination   

E Coagulation (Polyelectrolyte) Sedimentation Filtration GAC filtration Ozone Chlorination   

F Coagulation (Polyelectrolyte) Sedimentation Filtration GAC filtration  Chlorination   

G Coagulation (Polyelectrolyte) Sedimentation Filtration GAC filtration  Chlorination   

H Coagulation Sedimentation Filtration GAC filtration  Chlorination   

 
The methods used for Cryptosporidium monitoring and analysis in drinking 
water in connection with the UK Water Supply Regulations (Amended) 1999 
are strictly controlled by the UK Drinking Water Inspectorate (DWI). The 
methods are detailed in supplements to the Regulations and include a 
requirement to provide a high level of security such that a “chain of evidence” 
is produced to allow the results to be admissible in a court of law. The DWI 
stipulated methods include Sampling and Transportation of Samples (Part 1), 
Laboratory and Analytical procedures (Part 2), Validation of new Methods (Part 
3) and Requirements for the Inter-laboratory Proficiency Scheme (Part 4). All 
laboratories undertaking Cryptosporidium analysis in connection with the 
regulations must take part in the inter laboratory scheme. In addition the 
laboratories are regularly inspected by inspectors from the DWI and are 
awarded a license of proficiency that can be revoked at subsequent 
inspections if standards have fallen below the required standard. The 
regulations are given in full on the DWI Internet site (www.dwi.gov.uk). 
Basically the method of sampling and analysis involved filtration at the 
sampling point using an IDEXX Filter Max© filter or a Pall Life Sciences 
Envirochek ™ filter. On return to the laboratory the filters go through an elution 
process. The eluent is then treated with centrifugation and immuno-magnetic 
separation to concentrate the oocysts. The concentrate is then treated with an 
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immuno-fluorescent reagent and examined microscopically. The requirements 
stipulated in the DWI Standard Operating Procedures (SOP) are extremely strict 
about each of the stages of the analyses in an attempt to retain the “chain of 
custody”, maximise the efficiency of recovery and provide the best means of 
comparing results from different laboratories. For example the SOP for 
microscopic examination requires that where an initial result of 0.5 oocysts per 
10 litres is obtained, the microscopic examination should be checked by 
another approved microscopist in the same laboratory. If the results of initial 
analysis suggests more then 0.7 oocysts per 10 litres or there is doubt about 
identification of some “oocysts”, the microscopic examination should be 
checked by one of the DWI approved microscopists from another organisation 
as well as being examined by another microscopist in the same laboratory. The 
recovery of the method is approximately 30%-60%, recovery is not 
determined for individual samples (DWI 2006). On the one hand such recovery 
leads to an underestimation of Cryptosporidium concentrations, on the other 
hand only part of the counted oocysts are human pathogenic, viable and 
infectious (Aboytes et al. 2004). Since there is insufficient data to quantify 
these effects, it was assumed that the net effect on the assessment was 
negligible.  
 
Oocyst concentrations were plotted in a Complementary Cumulative 
Distribution Function (CCDF) graph of exceeded concentration on a log-log 
scale. Non-detects are not shown but determine the starting point of the 
graph. To determine the impact of possible oocysts concentrations represented 
by the non-detects, three approaches were used to extrapolate the measured 
oocyst concentrations to below detection limits. For the minimal estimated risk 
of infection, these concentrations were set to 0, assuming that no oocysts 
were present in the drinking water produced on that day. For the maximum 
estimate, these samples were set to the detection limit (1 oocyst per 1000 L). 
For the best estimate the concentration in the non-detect samples was 
extrapolated linearly on a log-log scale (log-linear) as: 
 

)(log)(log 1010 cryptoCbafrequency •+=  (1) 

 
Where Ccrypto is the Cryptosporidium concentration in oocysts.L-1. Parameters a 

and b were determined from the lowest 10 measured concentrations. If the 
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number of positive samples was between 2 and 10, all samples were used for 
the extrapolation. Single or no positives were not extrapolated. 
 
Source water was generally monitored in 1 to 10 L samples. Recovery in the 
source water can be influenced by water quality changes such as high 
turbidity (Nieminsky et al. 1995; Wohlsen et al. 2004). In this study the 
recovery for all samples was assumed equal since the recovery was not 
assessed for individual samples. The reduction of Cryptosporidium at the 
assessed treatment sites A to H relies on the physical removal by 
sedimentation and filtration. Chlorination has a very limited effect on 
Cryptosporidium under normal operating conditions. Site A and E apply 
ozonation which could inactivate oocysts. Since the inactivated oocysts are 
not removed from the water, they are counted by the analysis. Therefore this 
assessment only evaluated the physical removal of Cryptosporidium by 
treatment. Average concentrations before and after treatment at each site 
were calculated as the total number of oocysts counted in the total sample 
volume. Log removal was calculated from the average concentrations. The 
number of Cryptosporidium in the source water and the total volume of the 
treated water samples determine the maximum level of reduction that can be 
demonstrated at a site. The demonstrable Cryptosporidium reduction by 
treatment works was calculated by assuming that only one Cryptosporidium 
was counted in the total treated water sample volume. 
 
Risk of infection was calculated both as a point estimate based on average 
values and as a varying risk using Monte Carlo simulation. Treated water 
Cryptosporidium concentrations were determined from the data. Drinking 
water consumption in the UK was modelled with a Poisson distribution for the 
number of 190 ml glasses per day (mean of 2.81 glasses) (Mons et al. 2006). 
For the point estimate the mean consumption of 0.53 L was applied. A Beta-
Poisson dose-response model (α = 0.115, β = 0.176) was used to calculate 
the risk of infection when exposed to a concentration of Cryptosporidium 
(Teunis et al. 2002): 
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Pinf_d is the daily risk of infection (person-1.day-1), and consumption is the 

volume of daily consumed unboiled drinking water (L). The yearly risk of 
infection Pinf_y (person-1.year-1) is generally approximated by 365 times the daily 

risk of infection. However, at daily risks above 10-3.5 (person-1.day-1) this 
approach significantly overestimates the actual risk. Therefore the yearly risk 
of infection was calculated as (Haas et al. 1999): 
 

365)1(1 inf_dinf_y PP −−=  (3) 

 
The Monte Carlo simulation was performed by 100,000 independent draws 
from monitored Cryptosporidium concentrations and the applicable type of 
extrapolation.  
 

Results and discussion 

Overview of monitoring results 
The treated water results of 216 sites, including sites A to H, were collected. 
Table 2 provides an overview of these results. 
 
Table 2 Overview of statutory UK Cryptosporidium monitoring results 

Number of sites 216  
Number of samples 97,997  
# Positive 5353 (5.5%) 
Total sample volume 115,303,050 L 
Total # oocysts counted 24919  
Average oocysts concentration 0.000216 oocysts.L-1 
# Non-compliance (>0.1 oocysts.L-1) 18 (0.018%) 

 
Figure 1 shows the frequency of observed concentrations is almost linear on a 
log-log scale. The minimal, maximal and log-linear extrapolation of negative 
sample results are also represented in the graph. For each concentration the 
exposure to Cryptosporidium (Ccrypto*frequency) was calculated to show the 

relative impact of the observed concentrations. The exposure at relatively low 
concentrations between 0.001 and 0.01 oocysts.L-1 seems to be five times 
higher than the exposure at high concentrations between 0.5 and 1 oocyst.L-1, 
since the latter rarely occur. 
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Figure 1 Complementary Cumulative Frequency Distribution (CCDF) of observed Cryptosporidium 
concentrations (black), exposure due to these concentrations (grey) and three approaches to 
extrapolate the 94.5% negative samples (dashed).  

 
For site A to H 4,214 samples of source water and 5,579 samples of finished 
water, representing 133,500 and 6,826,549L of tested water respectively 
were collected. Each of the 8 sites had analysed approximately 850,000 L of 
finished water in 700 samples of 1,200 L over a period of 23 months. Table 3 
provides an overview of the monitoring results.  
 
Table 3 Results of source water and finished water monitoring at site A to H 

 Source water  Treated water 

 # 
samples 

% 
positive 

oocysts 
counted 

volume 
analysed 

(L) 

 #  
samples 

% 
positive 

oocysts 
counted 

volume 
analysed 

( L) 
A 470 2% 8 2,746  702 0.57% 4 817,989 

B 643 18% 179 3,561  691 0.43% 6 828,326 

C 489 43% 701 1,289  710 0.42% 3 820,731 

D 1025 24% 275 3,756  698 0.29% 2 863,874 

E 25 44% 36 292  699 0.72% 5 948,163 

F 467 20% 99 2,083  698 0.86% 6 834,655 

G 397 39% 191 1,335  695 2.01% 14 889,946 

H 698 31% 332 118,473  686 2.92% 37 822,861 

 
The period of source water monitoring varied per site and did not (completely) 
overlap with the study period of finished water monitoring. Table 4 compares 
the overlapping source water monitoring period to all source water monitoring. 
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All the source water data was used in the analysis of treatment efficacy, since 
it provided a better representation of source water concentration and variation 
than the limited number of samples in the overlapping period. 
 
Table 4 Average and maximum Cryptosporidium concentration (oocysts/L ) in source water during 
treated water study period and all source water monitoring.  

 Source water monitoring during 
treated water study period 

 All source water 
monitoring results 

 # 
samples 

average 
concentration 

maximum 
concentration 

 # 
samples 

average 
concentration 

maximum 
concentration 

A 16 0.0008 0.10  470 0.0029 0.57 

B 7 0.0592 1.54  643 0.0503 8.48 

C 2 - -  489 0.5438 420.00 

D 28 0.0158 0.42  1025 0.0732 3.33 

E 4 0.3095 1.20  25 0.1233 1.20 

F 13 0.0021 0.40  467 0.0475 3.21 

G 15 0.0567 1.00  397 0.1430 4.29 

H 119 0.0021 1.00  698 0.0028 4.76 

 
Seasons may have an impact on both the concentrations of Cryptosporidium in 
the source water and treatment efficacy. Between 25% to 50% of the source 
water samples were positive for Cryptosporidium. The positive monitoring 
results for all sites were plotted against the day of the year in Figure 2. The 
only seasonality observed is a decrease of Cryptosporidium in August and a 
slight increase of positives from September to December for most sites.  
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Figure 2 Yearly observations of Cryptosporidium in source water (non-detects are not shown). 
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Seasonal variations like temperature or algal blooms could lead to 
compromised treatment resulting in Cryptosporidium in the drinking water. 
Cryptosporidium was detected in 5.5% of all treated water samples. Figure 3 
shows how these samples were spread over the year. From January to March 
relatively little Cryptosporidium were detected, whereas the number of positive 
samples doubled in July.  
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Figure 3 Yearly distribution of all treated water samples containing Cryptosporidium. 

 
The source water event data collected for a single site during the period before 
and after the rainfall are shown in Figure 4. The only detection of 
Cryptosporidium in the final water occurred on day 32 when one oocyst was 
detected in approximately 1200 L.  
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Figure 4 Observation of peak contamination of Cryptosporidium in river water in relation to flow. A 
single oocyst was detected in a 1,200 L treated water sample on day 32 (not shown). 
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QMRA based on treated water monitoring 
The risk from the combined monitoring results of all sites was assessed under 
the assumption that each site produces the same amount of drinking water. 
The mean Pinf_d in Table 5 is the average risk of infection determined by Monte 

Carlo simulation. The point Pinf_d is the point estimate of average risk based on 

mean Cryptosporidium concentration, drinking water consumption and dose-
response. The point estimate results in a slightly higher estimation of risk for 
all approaches. The estimated risk varies by a factor of 4 (0.6 log) depending 
on the approach for extrapolation of measured Cryptosporidium concentrations 
below the detection limit. The difference between log-linear and minimal 
approach is less than 0.03 log. The uncertainty caused by the negative 
samples has very little impact on this risk assessment. The yearly average risk 
of infection was 2.8*10-2 person-1.year-1. 
 
Table 5 Daily risk of infection for the combined 216 UK sites included in the study  
 
Extrapolation 

Monte Carlo simulation 
Mean 
Pinf_d 

Point estimate 
of 

Pinf_d 

Minimal  7.45*10-5 8.08*10-5 
Loglinear 7.98*10-5 8.75*10-5 
Max 26.96*10-5 28.20*10-5 

 
The risk of infection was also assessed for individual sites based on their 
monitoring results. As an example, Figure 5 shows the distributions of 
Cryptosporidium concentrations in treated water for sites 22 to 28. Several 
typical distribution forms were observed. Sites 24 and 25 show a typical 
distribution where over 10% of the samples is positive. The frequency of 
occurrence decreases with increasing concentrations. Site 23 has a similar 
distribution, but is susceptible to peak events, shown by a higher increase of 
observed concentrations at decreasing frequencies. Site 22 is an example of a 
site with highly variable concentrations. Sites 27 and 28 show less variation at 
1% and 10% positive samples respectively. Finally at site 26 only one oocysts 
was found in one sample, so it could not be extrapolated. 
 
The risk of infection was estimated with Monte Carlo simulation using the 
three different approaches to deal with non-detect samples. Figure 5 shows 
the resulting frequency of concentrations for the log-linear extrapolation. The 
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assessed daily risks for these sites are presented in Table 6. Since the minimal 
assessment of risk at sites 22, 23, 24 and 25 is relatively high it is hardly 
impacted by the way the negative samples are interpreted. At sites 27 and 28 
extrapolation of the measured Cryptosporidium concentrations increases the 
assessed risk by one or two log units. The few ‘extra’ oocysts from the 
extrapolation have a strong impact on the low average concentration at these 
sites. Secondly, the few positive samples are all very low and show little 
variation. 

 
Figure 5 Monitored Cryptosporidium concentrations in treated water at sites 22 to 28 including 
extrapolation by Monte Carlo simulation. 

 
When this little variation is extrapolated below detection limit, this results in a 
large percentage of the water being just below detection limit (steep 
extrapolation in Figure 5). Site 26 shows that a single detected oocyst is 
sufficient to achieve an average yearly risk of infection exceeding 10-4. When 
no Cryptosporidium is detected, assumptions on how to interpret these 
negative samples can still yield a risk exceeding 10-4 person-1.year-1 (or 2.7*10-

7 person-1.day-1).  
 
The frequency of minimal estimates of daily risk of infection at all 187 sites 
where Cryptosporidium was found (Figure 6) ranges from 10-6.5 to 10-2.5 
person-1.day-1. The minimal risk estimate for the 29 sites where no 
Cryptosporidium was detected could be reported as <5*10-7 person-1.day-1and 
the maximum risk estimate is approximately 3.4*10-4 person-1.day-1. 
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Table 6 Risk assessment results for 7 individual sites 
   Daily risk Yearly risk 

site 
number 

# of 
samples 

% 
positive 

minimal loglinear max minimal 

22 417 7.7% 3.8*10-4 4.25*10-4 8.06*10-4 1.5*10-1 
23 201 53.7% 1.6*10-3 1.60*10-3 1.73*10-3 4.4*10-1 
24 453 53.9% 9.6*10-4 1.01*10-3 1.08*10-3 2.9*10-1 
25 459 29.0% 4.8*10-4 6.20*10-4 7.59*10-4 1.9*10-1 
26 454 0.2% 4.7*10-7  3.43*10-4 1.7*10-4 
27 454 0.9% 2.6*10-6 1.67*10-4 3.44*10-4 9.3*10-4 
28 454 7.3% 3.1*10-5 2.07*10-4 3.50*10-4 1.1*10-2 

 
Risk levels were equally spread among sites with different sources (river, 
spring, groundwater or undefined), although the highest risks (10-3.5 to 10-2.7 
person-1.day-1) were not observed for groundwater and springs. There was no 
correlation between treatment throughput, number of samples or total 
monitoring volume and the risk of infection. 
 

 
Figure 6 Frequency of minimal estimates of log of risk of infection at the 187 sites where 
Cryptosporidium was found. At 29 sites no Cryptosporidium was detected. 

 
Cryptosporidium removal 
Table 7 and Figure 7 provide an overview of the over-all Cryptosporidium 
removal at sites A to H. The average treated water concentration is very 
similar for most sites, so the observed log removal is dominated by the source 
water concentration. Due to the small number of oocysts found in treated 
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water, the assessed log reduction is slightly less than the demonstrable log 
reduction for most sites.  
  
Table 7 Over-all log removal at the treatment sites and demonstrable log removal   
site average 

source 
concentration 

average 
treated 

concentration 

 
log 

removal 

demonstrable 
log 

removal 

A 0.0029 0.0000049 2.78 3.38 

B 0.0503 0.0000072 3.84 4.62 

C 0.5438 0.0000037 5.17 5.65 

D 0.0732 0.0000023 4.50 4.80 

E 0.1233 0.0000053 4.37 5.07 

F 0.0475 0.0000072 3.82 4.60 

G 0.1430 0.0000157 3.96 5.10 

H 0.0028 0.0000450 1.79 3.36 
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Figure 7 Log reduction based on Cryptosporidium monitoring and demonstrable log reduction (if no 
Cryptosporidium had been found) at eight drinking water treatment sites in the UK. 

 
Since the physical treatment processes at sites A, C, D, E, F, G and H are of 
the same type one would expect similar log removal. A literature study 
resulted in a best estimate of 3.2 log removal of Cryptosporidium by 
conventional treatment (sedimentation, filtration) with a range of 1.4 to 5.5 
log (Hijnen et al. 2005b). Indeed 1.8 to 5.2 log removal was determined in this 
study. Site B could have provided more removal with the additional Dissolved 
Air Flotation, however this was not observed. Since treated water 
concentrations are similar at all sites, the removal appears to be related to the 
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source water concentration. False positives or contamination in the laboratory 
could lead to such an observation. However this seems extremely unlikely for 
the analysis of Cryptosporidium given the strictness of the analysis procedures 
and the quality assurance regime demanded by the DWI. The following 
explanations for the differences in observed removal at these sites are 
discussed: 

- The treatment design and operation is tailored to the water treated 
to comply with the drinking water standard. 

- Cryptosporidium is accumulated in the treatment up to a steady 
state where sporadically some Cryptosporidium are released, 
independent of the source water concentration. 

- Short high peaks of Cryptosporidium in the source are the cause of 
the positive samples in treated water. These peaks are not 
demonstrated by the infrequent monitoring of source water but are 
found in the continuous treated water sampling. 

- Short “failure” of treatment occurs at a similar frequency at all 
sites.  

- Sedimentation and filtration are more effective to remove high 
concentrations of microorganisms than low concentrations. 

 
Design and operation 
Sedimentation is generally optimised for the local situation. Regular jar tests 
are performed to determine optimal dosing of coagulant and coagulant aid and 
rapid and slow mixing energy. The removal of suspended matter or turbidity is 
thus optimised to reach a low turbidity after sedimentation. Polluted source 
water with high turbidity requires a better and more frequent optimisation than 
clean source water with low turbidity. The better optimised system also 
provides more Cryptosporidium removal, resulting in a relationship between 
source pollution and Cryptosporidium removal. Dugan et al. (2001) found that 
optimisation of sedimentation can improve Cryptosporidium removal from less 
than two to more than 5 log. In addition a filter receiving higher turbidity will 
show breakthrough of turbidity after the filter, so the filter can be backwashed 
in time. When turbidity is low before filtration, breakthrough may go 
unnoticed. Finally both sedimentation and filtration perform optimally within a 
range of suspended solids concentrations. Insufficient material can be present 
to form suitable flocks for sedimentation, while ripening of filters also requires 
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sufficient suspended matter. Thus higher pollution drives treatments to 
improve their performance to meet both Cryptosporidium and other standards.  
 
Accumulation 
Filtration processes capture particles (including Cryptosporidium) in the filter 
bed. Periodically the filter is backwashed to remove accumulated particles 
when the head loss over the filter has increased too much or when 
breakthrough of turbidity is observed. There is no direct relation between 
particles and Cryptosporidium concentration in the source water. So the 
amount of Cryptosporidium accumulated in the filter bed during a filter run is 
not directly related to the source water quality. Due to change of flow, some 
of the accumulated Cryptosporidium may detach from the filter material and 
leave the filter with the filtrate. Thus the number of Cryptosporidium after a 
filter could be more related to the loading of the filter than to the actual source 
water concentration. In the UK a system referred to as “slow start up” is being 
used by water companies to bring a filter back on line after backwashing. This 
procedure has been shown to reduce the risk of residual oocysts in the filter 
being washed into the filtrate as the filter compacts after backwashing (WHO 
2004). Still some form of attachment and release might occur at a low level. 
 
Peaks in source water 
The data for sites A to H were analysed to determine whether a recorded peak 
concentration in the source water had led to Cryptosporidium in the treated 
water. The source and treated water samples were combined by date. This 
showed that 57 treated water samples were positive, but unfortunately source 
water samples on the same date were only available on 5 occasions and 4 of 
these were negative for Cryptosporidium. The remaining single positive sample 
did not show a particularly high concentration. Neither were peaks in the 
source water observed in the periods preceding the 57 positive treated water 
samples. Comparing the average source water concentration to the maximum 
concentration in Table 4 shows that peaks of 10 to 200 times the average 
concentration have been recorded. So although these peaks could potentially 
lead to peaks in the treated water, this could not be confirmed from the UK 
statutory monitoring data. 
 
The reported source water peak event in Figure 4 was studied in detail. A 
single oocyst was detected in the treated water on day 32. Because of the 
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bank-side storage for 2 days the ‘paired’ source water value was a no detect 
in 10 L on day 29. However, due to mixing or preferential flow in the bank-
side storage, the peak of 65 oocysts in 10 litres in the river water on day 32 
may have led to an increased concentration at the intake of the treatment 
works on the same day. The fact that none of the treated water samples on 
the subsequent days 33-40 was positive for Cryptosporidium implies that the 
single detected oocyst was not related to the peak in the source water. These 
findings suggest that the detection of oocysts in treated water is not always 
related to peaks in source waters.  
 
Short treatment failure 
The failure of equipment (e.g. a dosing pump, valve), installations (e.g. 
defective filter nozzle) or erroneous operation leading to decreased treatment 
performance is referred to as treatment failure. The occurrence of treatment 
failure is related to equipment age, maintenance and operational procedures. 
For the studied sites the frequency at which treatment failure occurs could be 
similar. However, if failure of treatment occurred at the same frequency at 
sites with different source concentrations this would lead to higher peaks at 
the more polluted sites. These sites only found low concentrations of one or 
two oocysts per sample, just like the less polluted sites. Therefore it is not 
likely that the similar occurrence of Cryptosporidium in the treated water of 
the studied sites is a consequence of treatment failure. 
 
Reduction related to microbial density 
Some studies have observed that at high concentrations of microorganisms 
before slow sand filtration, more removal was found (Hijnen et al. 2005a; 
Hijnen et al. 2006). Removal of spores of sulphite-reducing Clostridia ranged 
over three log units at full-scale, and in some cases the concentration after 
filtration exceeded the influent concentration. They concluded that the high 
DEC-values assessed during short term dosing experiments most likely are not 
predictive for full-scale conditions. They attributed this observed relation 
between microorganism concentration and its removal to accumulation and 
release in the filter, as explained above. 
 
Modelling treatment in QMRA 
In QMRA removal by treatment is modelled as a ‘removal-credit’ or by a 
distribution of removal values. According to the LTSESWTR (USEPA 2003) a 
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conventional treatment (coagulation, sedimentation and filtration) provides an 
average of 3 log Cryptosporidium removal when the treatment complies with 
the rule. The point estimates of removal at sites A to H show that in practice 
1.8 to 5.2 log removal is achieved. So the type of treatment provides 
insufficient information to determine appropriate removal value(s) for 
Cryptosporidium. Local information can verify substantial higher removal, 
leading to a lower risk estimate. Information about removal of turbidity, 
particles or surrogate organisms could support a choice of removal value, 
although this could not be verified in this study. The distribution of 
Cryptosporidium in treated water might be related to its distribution in source 
water. Therefore the frequencies of Cryptosporidium in source and treated 
water were combined in one figure for each site. In the example in Figure 8, 
treated water at site G shows less variation that at H. The source water varies 
more at site H. For these sites, a single removal-credit could be used to model 
removal by treatment in QMRA. However, these were the poorest performing 
sites. Since the number of positive samples after treatment was very low for 
sites A to F, variability could not be quantified. Since source water events do 
not lead directly to Cryptosporidium in the treated water, a single removal 
credit is not appropriate for these sites. This leaves the question on how to 
model sedimentation-filtration in QMRA. One option is to relate the removal to 
the source water concentration. This leads to little variation in the treated 
water. However, both large and little variation in treated water was observed 
in this study. In order to improve knowledge about treatment efficacy this 
study could be expanded with additional information, such as design 
characteristics, additional source water data from other sites and on-line 
measurement of surrogates (turbidity) to match Cryptosporidium monitoring. 
Such a full-scale study at many sites could then lead to effective models of 
treatment efficacy for QMRA.  
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Figure 8 Reported source water (line) and treated water (dashed) Cryptosporidium concentrations 
for sites G (left) and H (right). 

 

Conclusions 

State of the art Cryptosporidium monitoring as required in the UK can be used 
to identify effectively those water supplies that do not reach a health-based 
target below 10-4 person-1.year-1. At that level, the impact of non-detect 
samples on the uncertainty of the risk estimate is limited. However, such 
monitoring is insufficient to verify a risk below the 10-4 level. When few 
Cryptosporidium oocysts are detected, the interpretation of the non-detect 
samples has a strong impact on the assessed risk level. Since such extensive 
monitoring is unable to verify risk levels below 10-4 and such monitoring is not 
feasible for all pathogens, QMRA will need to rely on source water monitoring 
and modelling of removal by treatment. The study has shown that removal of 
Cryptosporidium by conventional treatment systems can range from 1.8 to 5.2 
log. More removal was found at higher Cryptosporidium concentrations in 
source water. This may be due to better design and operation of such plants 
to meet treatment standards or due to accumulation and release of 
Cryptosporidium in the treatment processes.  
 
The use of a single average ‘removal-credit’ as applied in the Surface Water 
Treatment Rule can both underestimate or overestimate removal leading 
respectively to unnecessary actions or a false sense of safety. This underpins 
the need to perform site specific assessments of treatment performance. Since 
extensive microbial monitoring is not feasible for most sites, a treatment model 
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needs to be developed that appropriately describes the treatment’s ability to 
deal with peak events in source water, but also predicts the number of 
Cryptosporidium that break through treatment during nominal operation. 
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Abstract 

To determine the disinfection efficacy of ozonation, water companies can 
apply several disinfection calculation methods. The goal of this study was to 
evaluate the use of the T10 and CSTR method to extrapolate inactivation rates 
of ozone sensitive microorganisms observed in laboratory tests to full-scale 
ozonation in drinking water treatment. The inactivation efficacy of the 
ozonation at the Amsterdam water treatment works was assessed by 
determining E. coli concentrations in large volume samples before and after 
ozonation over a period of one year. The inactivation of dosed E. coli WR1 was 
tested in a bench-scale dissolved ozone plug-flow reactor (DOPFR) on the 
same feed water as the full-scale ozonation in which a concentrated ozone 
solution in Milli-Q® water was dosed. Applying the T10 method on the 
inactivation rates observed in the DOPFR strongly overestimated the 
inactivation capacity of the full-scale ozonation. The expected inactivation 
based on the CSTR method (LT2ESWTR) approached the observed inactivation 
at full-scale. Therefore, the CSTR method should be preferred to calculate 
inactivation of ozone sensitive organisms such as E. coli, viruses, Giardia and 
Campylobacter by full-scale ozonation. 
 

Introduction 

Ozonation is widely used in drinking water treatment for disinfection, 
breakdown of micropollutants and odor and taste improvement. At the 
Amsterdam treatment works, ozonation forms an important barrier for 
bacteria, Giardia and viruses. To improve the disinfection capacity, increasing 
the ozone dose is being considered (Hijnen et al., 2001). However, higher 
ozone doses also result in more bromate formation (Orlandini et al., 1997). 
Inactivation of Escherichia coli (E. coli) by ozone has been studied by several 
researchers (Finch et al., 1988; Zhou and Smith, 1994; Hunt and Mariñas, 
1997; Hijnen et al., 2001). All have used different types of reactors 
(Continuous Stirred Tank Reactor CSTR, Plug Flow Reactor PFR, Batch 
Reactor) and different types of water. The results of these studies show a 
wide range of inactivation kinetics, even at (apparently) comparable 
conditions. For instance, the required Ct (ozone concentration times contact 
time) for 3.5 log inactivation in demand free buffer at 15-21°C was 0.001-
0.05 mg min/l (see Table 1). 
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Table 1Reported ozone exposure (Ct) to reach 3.5-3.7 log inactivation of E. coli 
  2-5°C 15-21°C 
Farooq and Akhlaque, 1983 lab waste water  0.3 
Finch et al., 1988;  lab ozone demand free buffer  0.02 
Zhou and Smith, 1994; lab ozone demand free buffer 0.34 0.05 
Hunt and Mariñas, 1997; lab ozone demand free buffer 0.0025 0.001 
Hijnen et al., 2001 full-scale drinking water 2.2 0.7 1 
1 Only 2.6 log inactivation was found 

 
Hijnen et al. (2001) compared the observed inactivation kinetics in full-scale 
ozone systems with inactivation kinetics determined under laboratory 
conditions. They concluded that ozonation in practice appears to be much less 
effective than could be expected from the lab-obtained inactivation kinetics. 
Suboptimal hydraulics of full-scale ozone systems are known to reduce the 
efficacy of ozonation in practice (Ducoste et al., 2001). 
In the Long Term Second Enhanced Surface Water Treatment Rule Toolbox 
Guidance Manual (LT2ESWTR, USEPA, 2003) two methods are used to 
calculate the inactivation efficacy of full-scale ozone contactors from 
inactivation rate constants determined in laboratory tests. The T10 method 
calculates the Ct by integrating the ozone profile in the contactor in time. The 
Ct is corrected to Ct10 by applying a “baffling factor” for short circuiting. The 
(extended) CSTR method assumes the contactor consists of a series of CSTRs. 
Inactivation is calculated from the measured ozone concentrations in each 
CSTR.  
So far these methods are applied for Cryptosporidium, Giardia and viruses. The 
goal of this study was to evaluate the use of the T10 and CSTR method as 
models to extrapolate inactivation rates of ozone sensitive microorganisms 
such as E. coli observed in laboratory tests to full-scale ozonation in drinking 
water treatment.  
 

Materials and methods 

Bench-scale dissolved ozone plug flow reactor 
Ozone was produced from medical grade air using a Fisher ozone generator 
model 503. A counter current glass bubble column with a diameter of 40 mm 
and a height of 1.0 m was operated at 9 l/h, 0.5 bar and 5°C to dissolve up to 
50 mg/l ozone in Milli-Q® water. The ozone in Milli-Q® concentration was 
controlled by setting the ozone in gas concentration. Milli-Q® water with an 
electric conductivity (EC) of 5.5⋅10-3 mS/m, and a total organic carbon (TOC) 
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concentration of 5 μg/l was produced by a Milli-Q® Academic A10. TOC and 
EC were measured with an A10 TOC monitor (Millipore, USA). The ozone 
solution was fed through Teflon tubing to a venturi (test 1, 2) or a static mixer 
(test 3, 4, 5), which provided instant mixing with the test water. The 
Dissolved Ozone Plug Flow Reactor (DOPFR) (Figure 1) consisted of a 63.8 m 
polytertafluoroethylene (PTFE) tube of 8 mm internal diameter with 14 
sampling points at different distances (Table 2). Test water was fed to the 
venturi by a circulation circuit with a pressure reducing valve to provide 
sufficient feed pressure. The length of the DOPFR was selected by opening a 
three-way valve thus directing the total flow through the sampling point.  
 

 
Figure 1 Experimental setup of the DOPFR. 

 
Full-scale installation 
The full-scale installation (Figure 2) had a bubble column with a height of 5.0 
m and a surface area of 5.7 m2 followed by seven contact chambers with a 
total volume of 505 m3. The average hydraulic residence time at a flow of 
1500 m3/h was 26.7 min. Ozone was produced by Trailigaz HRS150X ozone 
generators and was distributed in water with diffuser plates. Although the 6 
sampling points were not placed in the ideal positions, ozone measured at 
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these points was used to illustrate the magnitude of ozone concentrations at 
full-scale as compared to bench-scale. For Ct calculations the residence time 
was calculated from the contactor volume between sampling points and the 
flow through the contactor. When modeling inactivation, the ozone 
concentrations in the chambers were calculated and the position of the 
sampling points was not relevant. 
 

 
Figure 2 The full-scale ozone contactor 

 
Microbial methods 
E. coli WR1 strain was originally isolated from surface water and obtained 
from RIVM, Bilthoven, The Netherlands. An inoculum was prepared from a 24 
h slant culture on agar using a pre-culturing technique with low substrate 
concentrations (Van der Kooij et al., 1982). The inoculum was grown at 25°C 
in 1 l bottles containing autoclaved tap water supplemented with 1 mg acetate 
C/l, which reached maximum counts of approximately 7*105 CFU/ml within 
one week. The bottles were stored at 6°C. A 1 l bottle was mixed with the 
test water (100-500 l) with an electrical mixer prior to experiments to reach 
approximately 3*103 CFU/ml concentrations in the test water. 
Microbiological samples were taken in 500 ml sterile bottles containing 4.2 ml 
1% sterile sodiumthiosulphate to immediately quench any remaining ozone. 
Rapid mixing in the sample bottle was achieved by the powerful sample flow. 
Samples were analyzed by direct filtration and direct inoculation of the filter, or 
by dilution and direct inoculation of 0.1 ml on lauryl sulphate agar (Oxoid 
Basingstoke, England, nr. MM0615). Analysis in triplicate showed good 
reproducibility with a standard deviation of 13%. Large volume sampling at 
full-scale was conducted as previously described in Hijnen et al. (2000). 
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Ozone analysis 
Ozone in water for the pilot tests was determined according to the indigo 
method (Bader and Hoigné, 1982). In the full-scale installation ozone was 
analysed using DPD-sulphate in the presence of Potassium Iodide where the 
extinction of colour was determined with an UV/VIS-spectro-photometer at 
550 nm (Gilbert and Hoigné, 1983). Both methods show cross-sensitivity to 
HOBr, which is likely to be formed since the test water contains bromide. This 
is relevant only at ozone concentrations below 0.1 mg/l (Von Gunten, 2005). 
Test results obtained below this concentration are presented in italic, since 
they are less accurate. 
Conductivity, alkalinity, and pH were analyzed according to Dutch standard 
drinking water methods described in NEN. Ozone stability in the DOPFR was 
determined by using pure Milli-Q® water (without microorganisms) as test 
water and measuring ozone at the last sampling point . Ozone concentrations 
were measured at different sampling points to determine ozone decay in the 
DOPFR. 
 
Experimental Procedures 
The test water and ozone solution flow was 91 l/h and 9 l/h respectively. After 
switching sampling points the system was allowed to flush with 3 times the 
system volume before sampling. Test water was cooled or heated to the 
desired temperature. All flows were determined regularly by volume 
measurements. The experimental conditions are given in Table 2. Water quality 
parameters were stable, typical values are pH 8, alkalinity 205 mg/l, bromide 
160 µg/l, EC 65 mS/m, dissolved organic carbon (DOC) 2.4 mg C/l, UV 
extinction at 254 nm (UV) 6.2 m-1.  
 
Hydraulic model of the DOPFR 
The residence time distribution (RTD) of the DOPFR was determined at each 
sampling point by step tracer experiments using a salt solution (120 g/l NaCl). 
The conductivity was simultaneously recorded every 0.1 s at two different 
points downstream from the tracer dosing point to determine the RTD between 
these points. A CSTR–in-series model was selected to describe the hydraulic 
characteristics of the DOPFR. The number of CSTRs and the hydraulic 
residence time were determined from RTD curves by parameter estimation 
through numerical integration of advection: 
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c is the tracer concentration (mg/l) (c0 is influent concentration), t is time 

(min), n is the number of CSTRs, v is the water velocity (m/min), Δx is the 
length of one CSTR (m), L is the length (m) and th is the average hydraulic 

residence time (min) from point i to i+1. 
 
The number of CSTRs and the hydraulic residence time were estimated 
through numerical integration of a set of n finite-difference equations of 
advection (1) by fitting on measured residence time distribution curves. In this 
case the discretisation error, which is numerical dispersion, is assumed to be 
equal to the hydrodynamic dispersion (Peyret and Taylor, 1983). The relation 
between the dispersion coefficient D (m2/min), the number of CSTRs and the 
hydraulic residence time is: 
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Ozone profile calculations 
A CSTR-in-series model (USEPA 2003) was used to determine the slow ozone 
decay rate ks (min-1) from the observed ozone concentrations in the DOPFR: 
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cO3, i and cO3, i-1 are the ozone concentrations at sampling point i respectively a 

preceding sampling point i-1 (mg/l). The median of all ks values was used for 

further calculations. 
The ozone dose cO3,d was calculated from the ozone solution concentration and 

the flow ratios. Instant ozone decay cO3,instant was calculated as:  

 

0,3,3,3 OdOinstantO ccc −=  (6) 

 
cO3,0 is the ozone concentration after instant ozone decay, extrapolated from 

cO3 at sampling point 1. Ct (mg min/l) at point i was calculated as the summed 

products of cO3 and th of each CSTR up to point i. Ct10 (mg min/l) was 

calculated with the T10 method (USEPA, 2003) by applying a correction factor 
of t10/th, where t10 is the time at which 10% of the water has passed the 

contactor. 
 
Disinfection calculations 
The inactivation of E. coli in an ideal batch or plug flow reactor can be 
described by a first order kinetic reaction (Oppenheimer et al., 1999):  
 

Ctkt ee
N
N −=

0

 (7) 

 
N0 and Nt are the number concentrations of organisms at 0 and t min 

respectively and ke is the inactivation rate constant (based on natural 

logarithm) in l /(mg min).  
The CSTR equation (USEPA, 2003) is used to calculate inactivation in CSTR 
number y: 
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cO3,y is the ozone concentration in CSTR number y and th,y is the hydraulic 

residence time in the CSTR. The total inactivation at a sampling point is 
calculated as the product of the inactivation in each of the CSTRs up to that 
sampling point: 
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Disinfection efficacy is expressed as Decimal Elimination (DE): 
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Temperature has a strong effect on the inactivation rate of ozone. Several 
authors (Hunt and Mariñas, 1997; Larson et al., 2003) found that inactivation 
rates for ozonation follow Arrhenius’ law: 
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A is the frequency factor in l/(mg min), Ea is the activation energy (J/mol), 

R=8.314 J/(mol K) is the ideal gas constant and Ta is the absolute 

temperature (K).  
 

Results  

Hydraulic model of the DOPFR  
Figure 3 shows the measured and calibrated conductivity of the RTD test for 
sampling point 4. The calibrated hydraulic residence times (th) of all sampling 

points in Table 2 are in compliance with the th based on flow and volume. 

Sampling point 9 resulted in an unlikely low number of CSTRs (Table 2).  
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Figure 3 Measured and calibrated step response for sampling point 4 

 
Hydraulic model of the full-scale installation 
The LT2ESWTR (USEPA, 2003) and the work of Do-Quang et al. (2000) 
suggest that each compartment can be modeled as a CSTR when simple 
baffles are used. The Amsterdam system has 7 compartments. Since the 
outlet of the last chamber is directly opposite to the inlet (Figure 2), it is not 
regarded to be a CSTR. A 6 CSTR model theoretically yields t10/th=0.58. 

Tracer tests at full-scale (Hofman et al, 2005) resulted in t10/th =0.55- 0.65, 

supporting the choice of a 6 CSTR model. 
 
Ozone decay 
Ozone decay of the test water in Table 2 was characterized by an average 
instant ozone decay of 0.55 (0.4-0.6) mg/l within the first second after 
dosing, followed by first order ozone decay with average ks of 0.97 (0.9-1.0) 

min-1.  
Ozone stability tests showed that the ozone concentration at the last sampling 
point was 83 % of the dose concentration. The ozone loss by auto 
decomposition, turbulence in the static mixer and/or by contact with the 
reactor surface was approximately 17%. 
 
E. coli inactivation in the DOPFR 
Tests were performed to determine E. coli inactivation kinetics under 
conditions relevant for the Amsterdam water works. In natural water the 
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ozone concentration quickly dropped below 0.1 mg/l. Still inactivation rate 
constants could be determined at reliable ozone concentrations (Table 2). At 
higher ozone doses, tailing was observed at a DE of 5 (Test 1 and 2 in Table 
2).  
 
E. coli inactivation at full-scale 
The inactivation results for the full-scale plant presented in Table 3 were 
calculated from twenty paired 1 l influent and 25 to 50 l effluent samples. E. 
coli was present in 10 of 20 samples after ozonation. At temperatures above 
14 °C no E. coli were detected in the treated water. The DE ranged between 2 
and more than 3 at Ct10 values between 0.4 and 1.0 (mg min)/l. 
 
Table 3 Results of full-scale installation inactivation tests using large volume sampling for E. coli 
after ozonation; sample volume SV 
 Ct Ct10 T E. coli in SV E. coli out DE 
Date mg min/l mg min/l °C CFU/100 ml l CFU/100 ml  
5-02-03 1.77 1.06 5.9 3.7 25 0.0080 2.67 
5-03-03 1.45 0.87 8.9 0.5 69 <0.0014 >2.54 
2-04-03 1.67 1.00 10.4 0.1 53 <0.0019 >1.72 
4-06-03 0.65 0.39 17.2 0.2 37 <0.003 >1.87 
2-07-03 0.87 0.52 16.1 0.4 43 <0.0047 >2.24 
6-08-03 0.75 0.45 18.1 1.9 33 <0.0030 >2.80 
3-09-03 0.64 0.39 15.0 3.2 44 <0.0023 >3.15 
1-10-03 1.25 0.75 14.3 0.3 43 <0.0023 >2.11 
5-11-03 1.01 0.61 10.9 1.1 50 0.0120 2.36 
1-12-03 1.28 0.77 9.8 0.55 31 0.0065 2.24 
8-12-03 1.69 1.02 7.3 2.3 32 0.0125 2.26 
15-12-03 1.29 0.78 8.5 2.3 31 0.0161 2.15 
22-12-03 1.41 0.84 7.4 2.4 52 0.0115 2.49 
29-12-03 1.38 0.83 7.8 0.8 52 0.0038 2.62 
5-01-04 1.38 0.83 7.0 5.8 51 0.0059 2.99 
12-01-04 1.32 0.79 8.5 0.4 53 <0.0019 >2.33 
19-01-04 1.35 0.81 7.8 0.4 51 <0.0020 >2.31 
26-01-04 0.84 0.50 7.2 0.8 51 <0.0020 >2.61 
2-02-04 1.19 0.72 8.5 0.4 50 0.0040 2.00 
9-02-04 0.98 0.59 7.4 0.5 50 0.0020 >2.40 
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Discussion 

E. coli inactivation in literature 
Figure 4 presents the Arrhenius plot for E. coli inactivation kinetics determined 
in the DOPFR and reported in literature. To provide the best model fit, data 
from Zhou and Smith (1994) was recalculated assuming a plug flow of 1 s 
caused by residence time in the syringe needle and non-ideal mixing conditions 
in the CSTR. It is clear that the temperature dependence of the inactivation is 
similar in all studies. The Hunt and Mariñas (1997) study shows significantly 
higher rate constants than the other studies. The studies used different E. coli 
strains and there were differences in culture conditions such as pH and 
temperature, which may explain the different inactivation rate constants. The 
DOPFR results agree well with the inactivation rate constants and temperature 
dependency found by Zhou and Smith (1994) and Finch et al. (1988). 
Therefore Ea = 48,261 J/mol and log A = 11.6 l/(mg min) are proposed for as 

conservative model values. The constants from Hunt and Mariñas (1997) (Ea 

= 43,054 J/mol and log A = 11.5 l/(mg min)) were used to determine the 
sensitivity of the model output to the inactivation rate constants. 
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Figure 4 E. coli inactivation rate constants from this study and literature 

 
Comparing DOPFR and full-scale inactivation 
The full-scale ozone installation consisted of five parallel lines in all of which 
ozone was measured. From the ozone profile the Ct10 was calculated for each 
line with a t10/th of 0.6. Microbiological samples were taken from the combined 

flow of all five contactors before and after ozonation. Figure 5 shows the 
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observed inactivation in the DOPFR and the full-scale ozonation. Negative post 
ozonation E. coli samples are presented as “DE larger than” (DE>) values, 
calculated by assuming 1 colony counted in the largest (negative) sample. The 
reported Ct10 in Figure 5 (on log scale) is the average Ct10 of the five ozone 
lines. Although ozone at full-scale was not measured at ideal positions, the 
inactivation at similar Ct values was clearly much higher in the DOPFR than at 
full-scale. 
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Figure 5 E. coli inactivation in DOPFR and full-scale installation 

 
T10 and CSTR calculations for E. coli inactivation in full-scale plant 
Expected E. coli inactivation at the Amsterdam treatment plant was calculated 
with the T10 and the CSTR method. Table 4 shows that the T10 method 
strongly overestimates disinfection efficacy. CSTR model calculations with the 
constants form Hunt and Mariñas (1997) still strongly overestimates 
inactivation, although it is better than the T10 method. The CSTR calculations 
with the proposed kinetics accounted for most of the difference between 
bench-scale and full-scale observations. Still there is a significant difference 
between the calculated inactivation with the CSTR model and the observed 
inactivation. Possible explanations are the heterogeneous susceptibility of 
environmental E. coli (Hom, 1972), age distribution in a population (Chick, 
1908) or protection by encapsulation in aggregates of microorganisms or 
particles (Hijnen et al., 2004). Haas and Kaymak (2003) suggest that high 
initial microbial densities in disinfection experiments result in higher 
inactivation rate constants. Measurements over the cross-section of a pilot-
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scale conventional contactor showed that water is poorly mixed in and after 
the bubble column. This results in zones with ozone concentrations of <10% 
to 150% of average concentrations (Van der Veer et al., 2005). Since the 
water is poorly mixed in the contact chambers, zones with low ozone 
concentrations will provide little inactivation. This introduces another hydraulic 
shortcoming of conventional contactors. 
 
Table 4 Observed and modeled DE (log inactivation) of E. coli in the full-scale installation either 
applying the CSTR or the T10 method; cO3,d 0.8 mg/l, cO3,instant 0.5 mg/l, ks 1 min-1. 

 Temperature 
 0 5 10 15 20 25 
Observed - 2.6 2.3 >3.1 >2.8 - 
T10 19 27 40 56 79 111 
CSTR (Hunt and Mariñas1) 8.0 8.8 9.5 10.3 11.0 11.7 
CSTR (proposed) 4.3 4.9 5.4 6.2 6.9 7.6 
1 Inactivation kinetics found by Hunt and Mariñas (1997) were applied. 

 
Significance for water treatment 
To illustrate the significance of these findings for water treatment, the 
expected inactivation of Cryptosporidium, Giardia, viruses and E. coli was 
calculated for the Amsterdam ozone system. Ozone inactivation kinetics in 
Table 5 were used. Assuming an ozone dose of 2 mg/l, instant ozone decay of 
0.5 mg/l and slow ozone decay of 1 min-1 the ozone profile was calculated. 
This would result in a Ct10 of 0.9 for the Amsterdam contactor. According to 
the T10 method log inactivation of Cryptosporidium, Giardia, viruses and E. 
coli would be 0.09, 1.9, 3.9 and 195 respectively. However, when the CSTR 
method was applied, log inactivation estimates were 0.14, 1.4, 2.1 and 8.7 
respectively. Figure 6 shows how the inactivation of the different 
microorganisms depends on the number of CSTRs. The CSTR model calculates 
less inactivation of Giardia and viruses than the T10 method for systems of 
less than 20 or 50 CSTRs respectively. The T10 method should not be used 
for full-scale plants since they are generally characterized by 3 to 7 CSTRs in 
series (Do Quang et al., 2000).  
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Table 5 Inactivation rates of modelled organisms 
Organism ke 10°C 

l/mg min 

Reference 

E. coli 499 DOPFR/Zhou and Smith (1994) 
Cryptosporidium 0.24 USEPA (2003) 
Giardia  4.9 AWWA (1991) 
viruses 10.0 AWWA (1991) 

 

0.01

0.1

1

10

100

1000

1 10 100 1000
Number of CSTRs

D
E

E. coli

viruses

Giardia

Cyptosporidium

 
Figure 6 Predicted inactivation of different organisms with CSTR method (curved lines), and T10 
inactivation credits (horizontal lines); T 10°C, cO3,d 2 mg/l, ks 1.0 min-1, cO3,instant 0.5 mg/l, th 15 

min, t10/th 0.6. 

 
Amsterdam water works considered increasing the ozone dose to improve 
disinfection of E. coli. Therefore the same calculations were performed but 
with a fixed number of 6 CSTRs and different ozone doses. Ozone 
concentrations were calculated from the ozone dose and the ozone decay rate. 
Figure 7 illustrates how the effect of increasing the ozone dose on inactivation 
of E. coli, viruses and Giardia is limited by the hydraulics of the system. For a 
resistant organism such as Cryptosporidium, the hydraulics have little effect on 
the inactivation kinetics. Since little inactivation takes place in the bulk of the 
water, small volumes with no inactivation have little effect on the average 
concentration after ozonation.  
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Figure 7 CSTR and T10 inactivation credits versus ozone dose in a conventional full-scale (6 
CSTR) system; T 10°C, ks 1.0 min-1, cO3,instant 0.5 mg/l, th 15 min, t10/th 0.6. 

 

Conclusions 

Dosing ozone in the form of a concentrated solution in a DOPFR provides 
higher E. coli inactivation than in a conventional ozone contactor. Hydraulic 
conditions in conventional ozone contactors show a strong deviation from plug 
flow, resulting in far less inactivation of ozone sensitive organisms than 
expected based on LT2ESWTR T10 calculations. The application of the CSTR 
method improves prediction of inactivation of microorganisms by full-scale 
ozonation and is therefore recommended. Still inactivation is overestimated, 
possibly due to poor mixing of ozone over the water volume resulting in 
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streamlines with little or no ozone and thus little or no disinfection. Increased 
resistance of sub-populations or particle protection can also reduce 
inactivation. Improving plug flow in a conventional ozone contactor should be 
considered in stead of increasing ozone dose to improve the disinfection 
capacity of a conventional ozone contactor. This is now studied at the 
Amsterdam Water Supply. 
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Abstract 
Quantitative microbial risk assessment (QMRA) is increasingly applied to 
estimate drinking water safety. In QMRA the risk of infection is calculated 
from pathogen concentrations in drinking water, water consumption and dose-
response relations. Pathogen concentrations in drinking water are generally 
below detection limits and monitoring the drinking water for pathogens 
provides little information for QMRA. Therefore pathogen concentrations are 
monitored in the raw water and reduction of pathogens by treatment is 
modelled stochastically with Monte Carlo simulations. The method was tested 
in a case study with Campylobacter monitoring data of rapid sand filtration and 
ozonation processes. This study showed that the currently applied method did 
not predict the monitoring data used for validation. Consequently the risk of 
infection was overestimated by one order of magnitude. An improved method 
for model validation was developed. It combines non-parametric bootstrapping 
with statistical extrapolation to rare events. Evaluation of the treatment model 
was improved by presenting monitoring data and modelling results in 
complementary cumulative distribution function (CCDF) graphs, which focus 
on the occurrence of rare events. Apart from calculating the yearly average 
risk of infection, the model results were presented in frequency number (FN) 
curves. This allowed for evaluation of both the distribution of risk and the 
uncertainty associated with the assessment.  
  

Introduction 

Monitoring the absence of indicator organisms in drinking water has been the 
main approach to safeguard drinking water quality since the beginning of the 
20th century (Greenwood and Yule 1917). However, drinking water outbreaks 
of infectious disease have shown that absence of indicator organisms in 
drinking water does not imply that there is no risk of infection (Hrudey and 
Hrudey 2004). Since 1980 Quantitative Microbial Risk Assessment (QMRA) 
has been applied to quantify the microbial safety of drinking water (Haas 
1983; Gerba et al. 1988; Regli et al. 1991; Rose et al. 1991; Teunis et al. 
1994; ILSI 1996; Gibson III et al. 1999; Payment et al. 2000). Risk of 
infection is calculated from the chance of ingesting pathogens (exposure or 
dose) and the chance of developing an infection from this exposure (dose-
response relation) (Haas et al. 1999). Pathogen concentrations in drinking 
water are generally below detection limits (Regli et al. 1991). QMRA studies 
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have therefore monitored pathogen concentrations in the raw water and 
modelled removal or inactivation by treatment to estimate concentrations in 
the drinking water (Teunis et al. 1997; Haas et al. 1998; Teunis and Havelaar 
1999, Westrell et al. 2003).  
 
In these QMRA studies, variability of each element was described by a 
Probability Density Function (PDF). Treatment was then stochastically 
modelled by Monte Carlo simulation. Determining the PDF for each element 
using the available data is a crucial step in such an assessment. PDF 
parameters have been estimated from pilot study results or literature. 
However, since raw water concentration and treatment efficacy vary in time 
and are specific for each drinking water production location, site specific 
information is preferred (Teunis et al. 1997; Nichols 2003; Smeets et al. 
2007). Monitoring pathogens or indicator organisms in raw water and after 
treatment steps provides such information. QMRA studies have fitted 
statistical distributions to such data to determine the PDF. Drinking water risk 
assessments have mainly used the lognormal, gamma and negative binomial 
distributions (Teunis et al. 1997; Haas et al. 1999). Other fields of risk 
assessment commonly use the Weibull distribution (Van Gelder 1999). The 
impact of choice of distribution on the result of the risk assessment has not 
been studied extensively (Haas et al. 1997). Preliminary trials to the current 
study indicated that the choice of PDF could dominate the QMRA outcome. 
Therefore this study focussed on non-parametric techniques for QMRA that do 
not require an a priori choice of PDF (Van Gelder 1999).  
 
Previous studies (Teunis et al. 2004) have shown that extreme events can 
dominate the average health risk. Historical data on source water 
concentrations and treatment efficacy can be used to predict normal rare 
events. These events are caused by the extremes of normal variations in the 
system such as flow changes, rainfall events, seasonal variations and 
treatment variations. Observed normal variations are extrapolated to these 
extreme events by a PDF. Therefore PDF should fit the extremes (tail) of 
observed variation, in this case monitoring data, since it is used to predict rare 
events of high concentrations or poor treatment. However, current methods of 
PDF estimation focus on the distribution type and parameters that best 
describe the bulk of the data, such as the Kolmogorov-Smirnov test (Haas et 
al. 1999) or likelihood ratio (Teunis et al. 1997). This study adopted the use of 
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Complementary Cumulative Distribution Functions (CCDF) graphs (Van Gelder 
1999) to visually evaluate the fit of PDF to the tail of the data. 
In current QMRA practice the treatment efficacy PDF is validated based on 
fractions resulting from microbial counts before and after treatment in samples 
taken on the same date. However, preliminary studies by the first author 
showed that the predicted concentrations were not in line with the monitored 
concentrations. Therefore improved methods for model validation were 
developed in this study. 
 
Much focus in QMRA studies has been on accounting for sampling variability 
due to (over-) dispersion, variable recovery, pathogen viability and infectivity 
(Teunis et al. 1997; Haas et al. 1999; Teunis and Havelaar 1999). The 
uncertainty that is introduced by Most Probable Number (MPN) type data has 
not been well studied. Haas et al. (1999) treated MPN data similar to count 
data. Although an 85% correction factor was applied to account for bias in the 
reported MPN it did not include the uncertainty of the MPN in the risk 
assessment. Since the case study included MPN type data, a method to 
include MPN uncertainty was developed.  
 
The outcome of QMRA studies is generally presented as a PDF or histogram of 
risk of infection (Westrell et al. 2003). No distinction between variability and 
uncertainty was thus made. Other fields of risk assessment such as flooding, 
traffic or industrial accidents, present societal risk of major accidents in a FN-
curve (Van Gelder 1999) plotting the number of casualties (N) versus the 
frequency of occurrence (F). This method seems appropriate for assessment of 
risk of infection through drinking water, since it is a societal risk. The FN curve 
allows differentiating between low incidental risk (1 infection per 10,000 
people each day of the year) and an outbreak (e.g. 365 infections per 10,000 
people on one day in a year). Although the yearly average risk is identical in 
both situations, the outbreak is considered less acceptable than the incidental 
risk. Therefore the FN curve provides better decision support for risk managers 
and inspectors than a distribution of the yearly average risk. 
 
Methods for large volume sampling, up to 1000 L, have become available in 
recent years (Hijnen et al. 2000; Smeets et al. 2007). Since resources are 
limited, water utilities need to carefully plan their sampling strategy, which 
includes finding a balance between a limited number of large volume samples 
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and a larger number of regular volume samples. This study differentiated what 
concentrations are most relevant for the yearly average risk of infection in 
order to support such decisions. 
 
The goal of this study was to develop improved methods for modelling drinking 
water treatment in quantitative microbial risk assessment of drinking water and 
to apply these methods in a case study. The following methods were adopted 
from other fields of risk assessment or newly developed: 

- Non-parametric bootstrap method for data uncertainty analysis; 
- Including MPN uncertainty in the non-parametric bootstrap method; 
- Implementation of CCDF graphs for data presentation; 
- Verification of validation method (model outcome matches the 

validation data); 
- PDF fitting with focus on tails of data; 
- Determination of relative risk related to concentrations; 
- Implementation of FN curves for risk presentation. 

 
The paper first describes the methods and the case study and compares 
different methods of data presentation. Then the non-parametric bootstrap 
method was applied to determine data uncertainty, including MPN uncertainty. 
Next the currently applied method to validate pathogen reduction by treatment 
for Monte Carlo simulation was compared to improved methods. The validated 
non-parametric treatment model was applied to predict pathogen 
concentrations after treatment. By comparing the predicted concentrations to 
the monitored concentrations, the accuracy of the current and improved 
methods was compared. Next parametric distributions were fitted to the 
validated model to extrapolate to rare events of high raw water pathogen 
concentrations or poor reduction by treatment. The predicted concentrations of 
the parametric treatment model were also compared to the monitored 
concentrations to verify the accuracy of the model. Risk of infection was then 
calculated from the concentrations predicted both with the currently applied 
method and the improved method of treatment model validation. Risk of 
infection was determined for each concentration to assess the relative impact 
on the risk, which provided guidance for monitoring. Finally the risk assessed 
with current and improved methods was compared in a FN curve. 
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Methods 

Case description 
Campylobacter monitoring data collected at the water treatment plant (WTP) 
Leiduin of Waternet (water cycle company for Amsterdam and surrounding 
areas) was used for the case study. The source for the WTP is water from the 
river Rhine which is pre-treated and infiltrated in the dunes. The water is 
abstracted in open canals and collected in an open reservoir before post-
treatment. The pre-treatment and the soil passage remove most pathogens 
from the Rhine water; however the water is re-contaminated by birds and 
wildlife in the open canals and reservoir directly before the treatment plant 
intake. The water in the reservoir was referred to as raw water in the case 
study. The reservoir is situated in a protected dune area, therefore 
contamination of the reservoir through waste water and agricultural run-off is 
unlikely. Water fowl like ducks, geese, gulls and swans in the reservoir and the 
abstraction canals are the most likely sources of Campylobacter. Wildlife like 
deer, rabbits and rodents and possibly some pets (cats, dogs) in the dunes can 
also contribute to the contamination with Campylobacter. Contamination can 
take place either by entering the water (waterfowl, rats, dogs) or by shedding 
faeces on the shore, which is then washed into the reservoir by rain during 
run-off. The reservoir is refreshed daily. Since the contamination takes place 
only in a small proportion of the water (the water surface where the ducks are 
swimming and the shores) and the reservoir is not mixed, the water quality at 
the intake sampling point is likely to vary significantly. The raw water is 
treated by rapid sand filtration, ozonation, softening, biological activated 
carbon filtration and slow sand filtration. Rapid sand filtration, ozonation and 
slow sand filtration are considered the main microbial barriers at the WTP 
(Figure 1). The risk of infection was calculated for consumption of ozonated 
water. Since some Campylobacter were detected in ozonated water this 
dataset was more appropriate to demonstrate the improved methods than the 
drinking water dataset in which no Campylobacter was detected. 
 



Improved methods for modelling drinking water treatment in QMRA 
 

-91- 

Slow
Sand 
FiltrationOZONE

Rapid
Sand
Filtration

Raw water
sampling

point

Filtered water
sampling

point

Ozonated water
sampling

point

Not included 
in the study

Slow
Sand 
FiltrationOZONE

Rapid
Sand
Filtration

Raw water
sampling

point

Filtered water
sampling

point

Ozonated water
sampling

point

Not included 
in the study

 
Figure 1 Microbial barriers and location of sampling points at WTP Leiduin. 

 
Microbial analysis 
Campylobacter samples were analyzed by direct filtration and direct inoculation 
of the filter in tubes with Preston Campylobacter selective enrichment broth. 
Positive results were confirmed by microscopic examination of a hanging drop 
for the presence of Campylobacter. Campylobacter was quantified by the most 
probable number method (MPN) in three parallel tubes for three filtered sample 
volumes using decimal dilutions. The collected monitoring data consisted of 
the MPN-arrays for each sample (e.g. 3-2-1 indicated three positive tubes in 
the largest volume, two positive tubes in the middle volume and one positive 
tube in the smallest volume). Reported MPN's were taken from MPN tables by 
De Man (1975).  
 
Non-parametric MPN bootstrapping 
The bootstrap method is a fairly easy tool to numerically calculate the 
uncertainty of a dataset of measurements, by repeatedly drawing results 
randomly from the dataset. The confidence interval for the monitored 
Campylobacter concentrations was determined by adapting a standard non-
parametric bootstrapping procedure (Van Gelder 1999) to include MPN method 
uncertainty (De Man 1975). A result was randomly drawn from the m 
monitoring results (with replacement, Equation 1) and for this result a random 
concentration was drawn according to the MPN likelihood distribution for the 
result (Equation 2). Thus a bootstrap sample of Campylobacter concentrations 
in the monitored water was produced.  
 
X*

ij=X[m.p]   i=1,…,n   j=1,…,k (1) 
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Where X is the dataset of monitored MPN results, X* is the bootstrap dataset 
of MPN results, i indicates the ith MPN result, j indicates the jth bootstrap 
sample, n is the number of draws in a bootstrap sample, k is the total number 
of bootstrap samples in a bootstrap dataset, p and q are uniform random 
variables, [m.p] is the integer ceil function (round up of m.p), C* is the 
bootstrap sample of Campylobacter concentrations (organisms/L), q is the 
likelihood of concentration C* given result X*, v1, v2, v3 are the three volumes 

(or dilutions) used in the MPN method and P1, P2, P3 are the number of 

positives at the respective volumes. Equation 2 was solved numerically to 
determine C* at a given q and X*. By producing k bootstrap samples of size n 
with n=m the C* resembled the likelihood of Campylobacter concentrations 
given the presence/absence results. From this the 95% confidence interval (CI) 
of the concentration was determined for each proportion of the water. Stable 
results were achieved with acceptable calculation times for k=10,000. 
 
In some ozonated water samples no Campylobacter were detected (0-0-0 
result). Consequently the MPN likelihood q in Equation 2 approaches 1 as C 
approaches 0, so no lower limit of the likely concentration can be determined. 
As a practical approach, the non detects were adapted before bootstrapping 
by doubling the sample volume and assuming one positive in the largest MPN 
volume (1-0-0 result). This is similar to setting non-detect samples of count 
data to ‘half the detection limit’, which is a conservative approach in risk 
assessment. Similarly, raw water samples that were all positive (3-3-3 result) 
were adapted to one negative in the smallest MPN volume (3-3-2 result) with 
half the sample volume to provide an upper limit of likely concentration. 
Although this is a simplified approach for these ‘larger than’ values, it proved 
to be efficient to demonstrate the methods in this study. Preferably these 
issues are prevented during monitoring by using sufficient sample dilutions. 
The bootstrap samples of raw, filtered and ozonated water were used for the 
assessment of pathogen reduction by treatment, the assessment of the raw 
water PDF and model verification. 
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Non-parametric validation of treatment efficacy 
Treatment efficacy π is the fraction of organisms that pass a treatment step. 
The observed treatment efficacy was calculated from the bootstrap datasets 
of monitoring data as: 
 

]3.][1.[
*

]2.][1.[
*

*

pkpnin

pkpnout
ij

C
C

=π     i=1,…,n  j=1,…,k (3) 

 
Where p1, p2 and p3 are uniform random variables and [n.p1] is the integer 
ceil function. Several methods can be used to select values from the bootstrap 
samples Cin

* and Cout
* that are ‘paired’ in Equation 3. The effects of using the 

‘random’, ‘date’ or ‘rank’ method was studied. The bootstrap samples Cin
* and 

Cout
* require different preparations for these methods.  

 
The random method assumes no correlation by date or rank. The bootstrap 
samples Cin

* and Cout
* did not undergo any adaptation, so samples before and 

after treatment were paired randomly (since samples X* were selected 
randomly in Equation 1).  
 
Pairing by date has been widely applied in QMRA (Teunis et al. 1997; Teunis 
and Havelaar 1999; Teunis et al. 1999) and can be considered the current 
‘state of the art’. Influent and effluent samples taken on the same day are 
compared and π is calculated for each pair. This assumes that samples before 
and after treatment are correlated in time. To enable pairing by date, the 
monitoring datasets Xin and Xout were prepared so that they only included 

results taken on the same day in date order. Equation 1 was adapted so that 
samples were drawn in order and without replacement ([m.p] was replaced by 
i so all bootstrap samples included every result once). Effectively the date-
bootstrap procedure produced a bootstrap dataset that only included MPN 
uncertainty.  
 
Pairing by rank has only been reported once (Teunis et al. 1999) and was 
referred to as ‘unpaired counts’, but its application was not explored further. 
Pairing by rank assumes complete correlation between the influent and effluent 
concentrations (lowest influent concentrations correlate to lowest effluent 
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concentrations etc.). To enable pairing by rank, the bootstrap samples Cin
* and 

Cout
* were sorted by concentration before determining π.  

 
Using Equations 1, 2 and 3 π∗

filt was determined from C∗
raw and C∗

filt, and π∗
O3 

was determined from C∗
filt and C∗

O3. Thus π* resembled the likelihood of actual 

Campylobacter reduction by removal and inactivation respectively. From this 
the 95% confidence interval (CI) of the reduction was determined for each 
proportion of the water for presentation in graphs. The study used the total 
bootstraps in calculations, not the 95% CI.  
 
Parametric extrapolation of bootstrap samples 
Parametric distributions were fitted to the k bootstrap samples of n raw water 
C∗

raw, removal π∗
filt and inactivation π∗

O3 values respectively using the fit 

functions in Matlab® for several distribution types. This resulted in k parameter 
pairs for each distribution type. Gamma, lognormal and Weibull distributions 
were fitted to C∗

in, π∗
filt and π∗

O3. The beta distribution was only fitted to π∗
filt 

and π∗
O3. 

 

)( *
jj CPDFfitG =  respectively )( *

jj PDFfitH π=   j=1,…,k (4) 

 
Where Gj is the parameter pair of the PDF fitted to the concentration bootstrap 

sample C*
j, Hj is the parameter pair of the PDF fitted to the reduction bootstrap 

sample π∗
j, and PDFfit is the fit function in Matlab® for the chosen PDF type. 

 
Non parametric treatment model 
Monte Carlo simulation was used to model reduction of pathogens by 
treatment. By using the bootstrap samples of C* and π* in Equation 5 a non-
parametric model of Campylobacter reduction by treatment was achieved. This 
model was used to verify which of the methods (random, date or rank) 
provided the best validation for Monte Carlo simulations. The number of draws 
in one simulation n was set to m (the number of monitoring samples) to verify 
whether the model predicted the distribution of concentrations after treatment 
correctly. The validation was considered to be correct when the predicted 
concentrations after treatment overlapped the monitored concentrations.  
 



Improved methods for modelling drinking water treatment in QMRA 
 

-95- 

*
]4.][3.[

*
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*
_ pkpnpkpninijout CC π=   i=1,…,n  j=1,…,k (5) 

 
Parametric treatment model 
To predict the likelihood of rare events of high concentrations, Monte Carlo 
simulation with the parametric PDF's (G for the raw water concentration and H 
for the reduction) was applied as: 
 

)()( ]2.[]1.[
#

_ pkpkijout HPDFrndGPDFrndC =   i=1,…,n  j =1,…,k (6) 

 
Where C#

out_ij is the predicted concentration after the treatment step, PDFrnd is 

the random draw of realisations from a given PDF function in Matlab®, G[k.p1] 

and H[k.p2] are a random PDF parameter pair of the raw water and the reduction 

respectively. The number of simulations n was chosen with respect to the 
proportion of time that was of interest (i.e. n=10,000 was applied in this 
study to predict events that can occur up to 0.01% of the time). 
 
Risk calculation 
Exposure was calculated from the Campylobacter concentration in the drinking 
water and consumption of unboiled drinking water. For QMRA purposes the 
consumption can also be modelled as a PDF. However for this study only the 
average consumption was used since the goal was to show the impact of 
treatment modelling (using a PDF for consumption would distort these effects). 
Daily exposure (dose) µd (Campylobacter/d) was calculated by multiplying the 

estimated concentration with the average Dutch consumption of 0.177 litre of 
unboiled drinking water per day (Mons et al. 2007). The daily risk of infection 
Pinf_d (infection per person per day) was calculated from exposure using a Beta-

Poisson dose-response model for Campylobacter with α=0.145 and β=7.59 
(Medema et al. 1996). 
 

α

β

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≈ d

inf_d

µ
P 11   (β≥1 and α ≤β) (7) 
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Since the concentration in the drinking water varies in time, the exposure also 
varies in time. In theory a frequently occurring low concentration could pose 
the same average yearly health risk as a rarely occurring high concentration. 
To assess the relative impact of occurring concentrations, the yearly risk of 
infection from exceeding a given concentration Ci (organisms/L) for a 

proportion of the year Fi (dimensionless) was calculated with Equation 8. 

Yearly risk of one or more infections Pinf_y (infection per person per year) was 

calculated with Fi=1. 

 
iF

iinf_diinf_y PP 365
__ )1(1 −−=  (8) 

 

Results 

Microbial monitoring  
Samples were taken at the raw water sampling point, mixed filter effluent and 
ozonation effluent. Campylobacter was analysed monthly in 2003 and 2005. 
In the winter period (December to February) of 2003, 2004 and 2005 
Campylobacter analysis was performed weekly. Table 1 provides an overview 
of the collected data. Figure 2 shows the sample results on a time scale 
including the uncertainty due to the MPN method. 
 
Table 1 Overview of Campylobacter monitoring data in Most Probable Number/L (MPN/L) 
 # Mean 

MPN/L 
Median 
MPN /L 

Min 
MPN /L 

Max 
MPN /L 

St. 
Dev. 

Skew Kurtosis 

Raw  41 197 110 0.30 1,100 224 1.90 7.53 
Filtered 32 11.6 4.0 0.40 110 20.6 3.72 17.65 
Ozonated 31 0.04 <0.03 <0.03 0.40 0.10 3.26 12.26 
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Figure 2 Campylobacter monitoring results in raw water, filtered water and ozonated water. Error 
bars indicate the 95% confidence interval of the MPN for Campylobacter. 

 
Methods to present distribution of concentrations 
The variation of Campylobacter concentration in time needs to be taken into 
account for QMRA. Currently monitoring data is presented in QMRA studies as 
histograms to fit a PDF or cumulative histograms to fit a CDF on a semi-log 
scale. In this study the data was presented as Complementary Cumulative 
‘Histogram’ to fit a Complementary Cumulative Distribution Function (CCDF) 
on a double log scale. This form of presenting data is generally applied in other 
fields of risk assessment and is well suited for extrapolation to rare events. 
Since the proportion of samples (similar to frequency) is plotted on log scale, 
and ‘rare’ events occur a small proportion of the time, this part of the data is 
‘magnified’. Figures 3a, 3b and 3c show the raw water monitoring data as 
PDF, CDF and CCDF respectively. 
 

 
Figure 3 Distribution of raw water Campylobacter monitoring data (bars or markers) and fitted 
lognormal distribution (lines) as PDF (3a), CDF (3b) and CCDF (3c) 
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Figure 4 shows the CCDF of the monitored Campylobacter MPN numbers in 
raw, filtered and ozonated water. It also shows the median and 95% 
confidence interval, as determined with non-parametric MPN bootstrap. Since 
30 to 40 Campylobacter samples were taken at each sampling point, each 
sample represents a proportion of 2.5-3.3% of the produced water. 

  
Figure 4 CCDF of monitored Campylobacter MPN concentrations (markers) and the medians (lines) 
and 95% CI (dashed lines) of the non-parametric bootstraps for raw water ( ), filtered water ( ) 
and ozonated water ( ).  

 
Non-parametric treatment model 
The non-parametric stochastic model of treatment efficacy was validated with 
the Campylobacter monitoring data (Table 1 and Figure 4) by non-parametric 
validation of treatment efficacy. Figures 5a and 5b show the estimated 
Campylobacter removal by filtration π∗

filt using the random, date and rank 

method. The removal found with the random method showed the highest 
variability of treatment efficacy. The date method resulted in similar removal, 
so pairing samples by date had little impact on the estimation of removal. Both 
the random and the date method results allowed for ‘negative removal’ to 
occur (πfilt >1). This would imply that pathogens were sometimes “produced” 

by the filter, which is unlikely. The rank method resulted in approximately 1 
log removal and little variation. The rank method did not allow for negative 
removal. 
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Figure 5 Non-parametric validation of Campylobacter removal by filtration π∗

filt with the date 

method (grey area) compared to random (5a) and rank (5b) method, median (line) and 95% CI 
(dashed). 

 
Figures 6a and 6b show the estimated inactivation of Campylobacter by 
ozonation. The random and the date method resulted in a very similar estimate 
of inactivation by ozonation. Both showed high variability of inactivation and 
possible occurrence of negative inactivation. The rank method resulted in a 
more stable inactivation of approximately 2 log.  
 

 
Figure 6 Non-parametric validation of Campylobacter inactivation by ozonation π∗

O3 with the date 

method (grey area) compared to random (6a) and rank (6b) method, median (line) and 95% CI 
(dashed). 
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The estimated removal and inactivation in the previous section provided the 
non-parametric validation of the stochastic treatment model. The impact of the 
method of validation on the predicted concentrations after a treatment step 
was determined for the currently applied date method and the new rank 
method. The random method was not included in the rest of the study since 
the results were very similar to the date method. The concentrations after 
filtration were calculated from the raw water bootstrap samples (Figure 4) and 
the validated removal using the date method or the rank method (Figure 5b). 
The calculated concentrations were compared to the bootstrap of filtered 
water monitoring results C*

filt in Figure 7a (date method) and 7b (rank method). 

The concentrations after ozonation were calculated from the filtered water 
bootstrap samples (Figure 4) and the validated inactivation using the date 
method or the rank method (Figure 6b). The calculated concentrations were 
compared to the bootstrap of ozonated water monitoring results C*

O3 in Figure 

8a (date method) and 8b (rank method).  

 
Figure 7 Campylobacter concentration in filtered water calculated with the non-parametric model 
validated by conventional date method (7a) and new rank method (7b), median calculated 
concentration (line) and 95% CI (dashed), compared to monitored concentrations (markers) and 
95% CI of C*

filt (grey area). 

 
Figures 7a and 8a show that the date method resulted in substantial 
overestimation of Campylobacter concentrations both after filtration and 
ozonation. The rank method in provided an appropriate estimate of πfilt and πO3 

for Monte Carlo simulation since the monitored concentrations in Figures 7b 
and 8b are in line with the predicted concentrations. The rank method was 
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used in the rest of the study since it provided the best validation of the 
treatment model. The date method was included to demonstrate the error 
caused by this currently used method. 

 
Figure 8 Campylobacter concentration in ozonated water calculated with the non-parametric model 
validated by conventional date method (8a) and new rank method (8b), median calculated 
concentration (line) and 95% CI (dashed), compared to monitored concentrations (markers) and 
95% CI of C*

O3 (grey area). 

 
Parametric treatment model 
The non-parametric model cannot predict rare events of high Campylobacter 
concentrations or poor treatment removal due to the limited number of 
samples. The non-parametric model validations C*

raw, π*
filt and π*

O3 were 

therefore extrapolated with parametric distributions. Figures 9a and 9b shows 
that both the Weibull and gamma distributions underestimated rare high 
Campylobacter concentrations in raw water. This would result in 
underestimating the risk of infection from rare events. The lognormal 
distribution in Figure 9c matched the shape of C*

raw and was therefore chosen 

to extrapolate the raw water Campylobacter concentrations in this study.  
 
The obtained bootstraps of reduction by treatment π*

filt and π*
O3 were 

extrapolated to rare events of poor reduction (high values of π) with the 
Weibull, beta, gamma and lognormal distributions. Figure 10a shows the fit of 
the gamma distribution to π*

filt. Weibull and beta distributions provided a 

practically identical graph and are therefore not shown. 
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Figure 9 Median (line) and 95% CI (dashed) of Weibull (9a), gamma (9b) and lognormal (9c) 
distributions fitted to the non parametric bootstrap (95% CI in grey) of Campylobacter 
concentrations in raw water. Markers indicate the monitored concentrations in MPN/L. 

 
Figure 10b shows the fit of the lognormal distribution to π*

filt. Although all 

distributions provided a reasonable fit for most of the data, only the lognormal 
distribution provided a reasonable fit to the high π*

filt values (poor removal). 

Therefore the lognormal distribution was used in further analysis in this study. 

 
Figure 10 Median (line) and 95% CI (dashed) of gamma (10a) and lognormal (10b) distributions 
fitted to the non parametric bootstrap of Campylobacter removal by filtration π∗

filt
 (grey area 

indicates 95% CI, grey line indicates median). Weibull and beta distributions (not shown) provided 
a graph identical to the gamma distribution (a). 

 
The gamma and lognormal distributions were fitted to the bootstrap of 
inactivation by ozone π∗

O3. Again the lognormal distribution provided the best 

fit to rare events of poor inactivation. The lognormal distribution was therefore 
used in the rest of the study. 
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Parametric model of total chain 
Monte Carlo simulation of the treatment from raw to ozonated water was 
performed to estimate the occurrence of Campylobacter in ozonated water. 
The parametric model was used to include normal rare events. The 
concentration in raw water, removal by filtration and inactivation by ozonation 
were modelled with lognormal distributions. Figures 11a and 11b shows the 
resulting median and 95% CI of predicted Campylobacter concentrations at 
each step compared to the monitored concentrations and their 95% CI. The 
date method shown in Figure 11a predicts concentrations after filtration and 
ozonation that are very high compared to the monitoring results. This indicates 
that currently applied QMRA methods based on pairing monitoring data by 
date can significantly overestimate the concentration of pathogens after 
treatment. The new method of pairing by rank resulted in a stochastic model 
of treatment that predicts concentrations that are in line with monitoring 
results (Figure 11b). Since the same data was used for validation and 
verification, this study only demonstrated that the rank method results in an 
accurate model, whereas the date method overestimated concentrations. The 
predictive accuracy of the rank method will be assessed in a subsequent study 
by using separate datasets for validation and verification. 
 

 
Figure 11 Monte Carlo simulation of Campylobacter concentrations at different stages of treatment 
validated with the date (11a) and rank (11b) method, median (lines) and 95% CI (dashed), 
compared to monitored concentrations (markers) and 95% CI of monitoring (grey area) at several 
stages in treatment; raw water ( ), filtered water ( ) and ozonated water ( ). 
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Modelled risk of infection 
The risk of infection from consuming ozonated water was calculated based on 
the modelled Campylobacter concentration in ozonated water. The choice of 
method to determine reduction by treatment had a significant impact on the 
assessed risk. The individual health risk is represented by the average yearly 
risk of infection. The date method predicted a 70 % (33%-96%) average 
yearly risk of infection, whereas the rank method predicted 8.3% (3.8%-18%). 
So the conventional date method predicted a ten times higher average yearly 
risk of infection than the new rank method. The Dutch drinking water 
guidelines (Anonymous 2001) require a maximum individual risk of 10-4 yearly 
average risk of infection, which corresponds to 2.75*10-7 daily risk of 
infection. Approximately 3 log reduction was needed in order to achieve this 
level of safety in the drinking water. The slow sand filtration at WTP Leiduin 
further treated the ozonated water to achieve this reduction. 
 
Figure 12a shows that according to the date method the risk was dominated 
by concentrations of approx. 28 Campylobacter /L (black line) occurring in 1 % 
of the water (grey line), which corresponds to an average yearly risk of 25% 
(black line). This concentration is 70 times higher than the maximum 
monitored concentration of 0.4 Campylobacter /L in Table 1 observed in 3% of 
the samples. Figure 11a however shows that the concentration after ozonation 
predicted with the date method is not in line with the monitoring data 
therefore this high estimate of risk seems unlikely. 
 
Figure 12b shows that according to the rank method the average yearly risk 
was dominated by concentrations of approx. 0.14 Campylobacter /L (black 
line) occurring in 10 % of the water (grey line), which corresponds to an 
average yearly risk of 1.7% (black line). This concentration was exceeded in 
10% of the monitoring samples; therefore the estimate of the frequency was 
regarded accurate. The extrapolation to rare events through modelling 
predicted that higher concentrations did not have a significant impact on the 
average yearly health risk. 
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Figure 12 Median (grey line) and 95% CI (grey area) of modelled Campylobacter concentration in 
ozonated water, and median (line) and 95% CI (dashed) of yearly risk of infection related to the 
proportion of each concentration using the date (12a) and the rank (12b) method. 

 
Since the choice of treatment model validation method appears to have a 
significant effect on the assessed risk, the model results need to be compared 
to the original monitoring data. The modelling also provides guidance for future 
monitoring. Frequent sampling of 10 L volumes will verify or improve the 
estimate of the concentrations that dominate the risk of infection. Lower 
concentrations which required larger volumes have little effect on the risk 
estimate. Smaller sample volumes would result in negative samples only, thus 
providing no additional information for the QMRA. 
 
The FN curve of daily risk of infection is shown in Figure 13a and 13b. 
Filtration had a limited effect on the daily risk whereas ozonation had a major 
impact. The date method (Figure 13a) predicted more frequent occurrence of 
high risk than the rank method (13b). The rank method provided the best 
validation of the model, therefore only the FN curve for the rank method 
(Figure 13b) is discussed here. The FN curve shows both the variation of risk 
and the uncertainty of the assessed risk thus supporting decisions by risk 
managers and inspectors. The societal risk can be evaluated with the FN curve 
by evaluating the likelihood of simultaneous infection of a large number of 
people, referred to as an outbreak. An outbreak is represented in the FN curve 
by a high daily risk of infection. The FN curve in Figure 13b shows that the 
risk of infection from drinking ozonated water exceeds 0.7% one day per year 
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(proportion of 0.0027). In a city of 1 million people 7,000 people would gain 
an infection of which some would develop illness. The upper 97.5 confidence 
limit of this estimate is 2% risk of infection one day per year, resulting in 
20,000 infections. Since outbreaks may be detected when over 1% of the 
population becomes ill (Regli et al. 1991), the risk assessment indicates that 
an outbreak might be detected yearly for this case study. A detected outbreak 
would result in a much greater effect on society than the incidental infections 
due to the yearly average risk. Current legislation does not set requirements for 
the acceptable frequency and magnitude of such an outbreak. The numbers in 
this example are hypothetical since the ozonated water passes slow sand 
filtration before distribution which reduces the risk. 
 

 
Figure 13 FN curve of median (lines) and 95% CI (grey area) of daily risk of infection from drinking 
raw water (line), filtered water (dashed) or ozonated water (dash-dot) using the date method (13a) 
or the rank method (13b). 

 

Discussion 

Monte Carlo simulation of treatment is common practice in current QMRA 
studies. Since removal by treatment cannot be measured directly, it is 
calculated from concentrations before and after treatment measured on the 
same day. This approach assumes a correlation in time between these 
individual samples. However, it is known that such correlation is disturbed by 
several causes, even when the residence time in the treatment process is 
accounted for. Firstly, sampling variation due to (over-)dispersion of organisms 
in the water needs to be accounted for. Gale et al. (1997) showed that 
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treatment enhances clustering of microorganisms, thus impacting the 
dispersion. Secondly, the residence time of particles in some processes (e.g. 
filtration) can be very different from the water residence time (Yao et al. 
1971). In addition, treatment processes vary in time (filtration cycles) and in 
space (inhomogeneous mixing of disinfectants). Finally microbial methods can 
have a large impact due to the quantification uncertainty (MPN, 
presence/absence) and recovery. Several methods have been published to 
account for these disturbances such as statistical correction for recovery 
(Teunis and Havelaar 1999) or the use of copula’s or correlations (Bukowski et 
al. 1995; Haas 1999). In this case study, pairing by date resulted in the same 
assessed removal as random pairing, indicating that there is little correlation in 
time between influent and effluent data. The predicted concentrations based 
on the date method to estimate treatment removal efficacy did not match with 
the monitoring data Campylobacter MPNs. However the rank method applied 
in this chapter was in agreement with the monitoring data. The ramification 
from the rank method is that samples taken years apart may be paired, which 
contradicts to the intuitive expectation that only samples taken within a short 
time frame may be correlated. However, one must consider that the goal of 
the Monte Carlo simulation is to model the transition from the raw water 
distribution to the treated water distribution, not to predict the chance of an 
individual microorganism passing treatment. 
 
The presented results were obtained for one case study, the applicability to 
other situations needs to be studied further. Since correlation in time may be 
relevant for other treatment systems, the choice of date or rank method must 
always be made with care. This study provided two methods for this. Firstly 
the random method provides a benchmark for data with no correlation. When 
the date method results in a significant deviance from the random method, this 
indicates that correlation in time has a significant effect. Secondly, 
concentrations after treatment predicted by non-parametric modelling should 
be in line with the validation data, taking into account the uncertainty of a 
limited dataset and method uncertainties. 
 
Reported removal by treatment in literature is also applied in QMRA. Generally 
reported removal ranges over several log units, so the choice of removal in a 
QMRA study will significantly impact the assessed risk. One needs to consider 
that the date method was generally used to determine these literature values 
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of removal. The results from this study lead to a new consideration of the 
reported data, since the rank method could lead to significant reduction of the 
range of reported removal. 
 
The study adapted methods that are generally applied in other field of risk 
assessment, such as flooding, traffic or industrial accidents (Van Gelder 
1999), for application in drinking water for QMRA. This includes the use of 
CCDF, non-parametric bootstrapping and the FN curve. The main difference is 
that for many other fields of risk the extremes (water levels, fatal accident, 
earth quakes or process temperatures) can be monitored directly, leading to 
other extrapolation techniques such as peak over threshold (POT). It is unlikely 
that microbial monitoring catches the actual peak contaminations or moments 
of poor treatment. Microbial monitoring results must therefore be considered 
as random samples of the variation, to be extrapolated with statistical 
distributions. Adapting monitoring strategies to capture the real peaks may 
provide a significant improvement of the assessed risk. It must also be 
considered that the techniques presented in this study only predict the events 
due to (combinations of) ‘normal’ variations. Assessment of other ‘man-made’ 
events, such as operational errors or intentional contamination, need to be 
addressed with other methods, such as water safety plans (WHO 2004). 
 
Currently the individual risk, expressed as average yearly risk of infection or 
DALY, is the main parameter for risk evaluation (WHO 2004). The prevention 
of outbreaks however is one of the main concerns of water utilities and health 
authorities. The FN curve allows for evaluation of both the individual risk and 
the societal risk of ‘outbreaks’. Furthermore, it provides some insight into the 
uncertainty involved for both these aspects. The FN curve thus provides a 
basis for a new approach to risk evaluation and legislation. 
 
Microbial monitoring remains important to verify the achieved level of safety. 
This study provided a method to determine the concentrations that are most 
relevant for the yearly average risk of infection. This can support monitoring 
programs in order to efficiently direct resources e.g. by taking frequent small 
volume samples, rather than a few large volume samples. Since the presented 
methods assume ‘random’ samples, a large volume sample cannot be 
considered as a large number of small samples. After all, it cannot be assumed 
that the distribution of concentrations in the large volume is identical to the 
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distribution in the yearly produced water. Still large volume samples may be 
necessary to get a relevant number of positive samples per year. This means 
that sampling strategy may need to be adapted based on monitoring results: 
first find positives, and then determine concentrations most relevant for risk. 
 

Conclusions 

The currently applied method to model drinking water treatment in QMRA was 
compared to an improved method. This study showed that the currently 
applied method did not predict the monitoring data used for validation in a 
case study with Campylobacter monitoring data of filtration and ozonation 
processes. Consequently the risk of infection was overestimated by one order 
of magnitude in this case study. The improved method accurately predicted 
the validation data. In this case the rank method proved to be the best 
validation method, however this may not be the case for all systems. The 
study also introduced other techniques to QMRA that improve calculation, 
presentation and evaluation of data and risk. Since CCDF graphs focus on rare 
events, visual evaluation of modelled extrapolation is improved. The use of 
non-parametric methods reduces the impact of PDF choice in an early stage of 
QMRA. Calculating the risk per concentration provides guidance for monitoring 
and the FN curve allows improved risk evaluation by distinguishing between 
individual and societal risk. Together these methods provide an improved 
protocol for modelling drinking water treatment in QMRA.  
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Abstract 
Quantitative microbial risk assessment (QMRA) is increasingly applied to 
estimate drinking water safety. This study applied Monte Carlo (MC) modelling 
of drinking water treatment in QMRA using microbial monitoring data from a 
number of drinking water treatment plants to calibrate pathogen reduction. The 
study showed that pathogen concentrations after treatment could be predicted 
accurately when the model was properly calibrated. Current calibration 
methods pair influent and effluent samples by date to assess variability of 
reduction, however this resulted in overestimation of effluent concentrations 
by several orders of magnitude. An optimised calibration method was 
developed that, by definition, optimally predicted effluent concentrations. 
Campylobacter removal by filtration was predicted accurately using E. coli 
removal data to calibrate the MC model, even though direct comparison of 
data suggested no correlation between their removal. Application of the 
method to 20 datasets from various treatment sites provided a general 
overview of the efficacy and variability of full-scale treatment systems.  
 

Introduction 

Since 1980 Quantitative Microbial Risk Assessment (QMRA) has been applied 
to quantify the microbial safety of drinking water (Haas 1983; Gerba et al. 
1988; Regli et al. 1991; Rose et al. 1991; Haas et al. 1993; Teunis et al. 
1994; ILSI 1996; Gibson III et al. 1999; Payment et al. 2000). Risk of 
infection is calculated from the probability of ingesting pathogens (exposure or 
dose) and the probability of developing an infection from this exposure (dose-
response relation) (Haas et al. 1999). Pathogen concentrations in drinking 
water are generally below detection limits (Regli et al. 1991). QMRA studies 
have therefore monitored pathogen concentrations in the raw water and 
modelled removal or inactivation by treatment to estimate concentrations in 
the drinking water (Teunis et al. 1997; Haas and Trussel 1998; Teunis and 
Havelaar 1999, Medema et al. 1999, Westrell et al. 2003).  
 
Some studies used full-scale monitoring data of microorganisms before and 
after treatment steps to quantify treatment efficacy. A simple approach 
assumes a constant fraction of microorganisms in the influent reaches the 
effluent. The constant fraction is estimated from the monitoring data as the 
quotients of the arithmetic mean of effluent and influent concentrations 
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(Teunis et al. 1999). Variation of treatment efficacy has been observed in 
many studies. The variation has been accounted for in several studies by 
stochastically modelling treatment efficacy through Monte Carlo simulation. 
These studies generally paired influent and effluent samples taken on the same 
day to determine variation of treatment efficacy. A probability density function 
(PDF) was then fitted to this distribution e.g. through maximum likelihood 
estimation (Teunis et al. 1997, Teunis et al. 1999, Medema et al. 1999, 
Masago et al. 2004, Teunis et al. 2004, Smeets et al. 2007). Estimation of 
the PDF parameters can be referred to as stochastic model calibration. The 
correctness of calibrated model could be validated by applying the model to 
the influent concentrations to predict the monitored effluent concentrations 
(Smeets et al. 2007). The model was correctly calibrated when the monitored 
concentrations were within the credibility interval of the predict 
concentrations. Only few authors performed such validation. Medema et al. 
(1999) found that, when validating the model, the predicted concentrations 
after modelling a combination of treatment processes were higher than the 
observed concentrations used for calibration. They suggested that in reality 
interaction between treatment steps could reduce the variability leading to 
lower concentrations after treatment. Smeets et al. (2007) found that 
calibration by date did not result in an acceptably validated model even for a 
single process. They suggested that paring by date was not effective for 
calibration since over dispersion of microorganisms in water had a higher 
impact on observed concentrations that correlation in time between influent 
and effluent samples. Based on a single case study, Smeets et al. (2007) 
improved the methods for stochastic treatment model calibration. Validation of 
thus calibrated models resulted in an accurate prediction of microorganisms 
concentration after treatment. This study applied the improved methods 
developed by Smeets et al. (2007) to a range of other microorganisms and 
treatment systems in order to determine if these methods were generally 
applicable.  
 
Several studies have used the monitored removal or inactivation of surrogate 
or indicator organisms at full-scale to predict reduction of pathogens (Teunis et 
al. 1997, Teunis and Havelaar 1999, Teunis et al. 1999, Medema et al. 1999). 
Most used spores of sulphite-reducing Clostridia (SSRC) as a surrogate for 
Cryptosporidium reduction by treatment. However, many studies have found 
limited or no direct correlation between the reduction of pathogens and 
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surrogate or indicator organisms (LeChevallier and Au 2004, Hijnen et al. 
2004, Hijnen et al. 2005a, 2005b). None of the QMRA studies were able to 
verify if calibration with monitored indicator data provided an accurate model 
for pathogens reduction by treatment due to the lack of pathogen data. This 
study used both E. coli and Campylobacter treatment data to compare 
indicator and pathogen reduction. 
 
Most QMRA studies need to rely on pilot tests reported in the literature to 
quantify the efficacy of treatment processes (LeChevallier and Au 2004, 
Hijnen et al. 2004, Hijnen et al. 2005a, 2005b). However, these pilot tests 
lack the variability and long-term effects of a full-scale situation. Variability can 
be caused by seasonal effects such as temperature, water quality effect such 
as increased turbidity after rainfall, operational effects such as backwashing 
one out of ten parallel filters, maintenance, operational changes such as dose 
adjustment and flow rate. Long-term effects at full-scale could be filter 
ripening, build up of particles in sedimentation and filtration over time, 
predation and inaccuracy of (dosing) equipment due to fouling or aging. In 
addition, many experiments to assess treatment efficacy apply a short-term 
spiked dose of microorganisms before treatment, which can affect the 
assessed efficacy due to differences in microbial populations (cultured or 
environmental) and lack of long-term effects. This study set out to compile 
data from different treatment situations at full-scale to provide a general 
overview of actual full-scale treatment performance.  
 
Most QMRA studies have used information from the past (microbial 
monitoring) to predict future situations. Source water or treatment monitoring 
was typically performed for a period of one or a few years. However, 
conditions may change between years, even without being noticed. Thus the 
efficacy assessed in one year may not be applicable in another year. The year 
to year variability of a treatment process was therefore also studied. 
 
The goal of the study was to verify that improved methods for stochastic 
treatment model calibration could provide more accurate validation than the 
pairing by date method. The improved methods were then used to evaluate the 
following applications of stochastic treatment modelling in QMRA of drinking 
water: 
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- Assessment of full-scale treatment efficacy and variability based on 
full-scale microbial monitoring; 

- Stochastic treatment modelling to predict (variation of) 
microorganism concentrations after treatment and 

- Calibration of a stochastic treatment model for Campylobacter 
removal using E. coli full-scale monitoring. 

 

Methods 

Statistical methods 
The stochastic treatment analysis and model used of Monte Carlo simulation of 
influent water microorganism concentration Cin times reduction by treatment π. 

Both Cin and π were described by a probability density function (PDF) (Teunis 

et al. 1997; Smeets et al. 2007). Reduction by treatment π was assessed from 
monitored concentrations of microorganisms before and after full-scale 
treatment processes. Several methods for the calibration of π were compared 
in this study. The mean in/out method (or “constant fraction” method) used 
the quotients of the arithmetic mean of effluent and influent concentrations as 
a point estimate of treatment efficacy π (Teunis et al. 1999). The date method 
(pairing influent and effluent samples by date) was the current method to 
assess variable treatment efficacy (Teunis et al. 1999 , Smeets et al. 2007). 
The rank method (pairing influent and effluent samples by ranked 
concentration) had improved validation in a case study (Smeets et al. 2007) 
and the random method assumed no correlation between influent and effluent 
samples (Smeets et al. 2007).  
 
The optimised method to calibrate π was developed in this study. A simple 
calibration routine was used to determine the optimal parameters of the PDF of 
π (reduction by treatment). Parameters were considered optimal when 
validation of the model with the calibration data was accurate e.g. the 
monitored concentrations in the effluent were within the confidence interval of 
the predicted concentrations. This calibration routine used the parameters of 
the PDF of π, derived with the rank and the date method respectively, as initial 
estimates of the optimal PDF. The model was calibrated using parameter 
combinations incrementing in 50 steps from the rank to the date parameters 
pairs (resulting in 2,500 parameter combinations). The model was validated for 
each of these parameter pairs using 1,000 realisations of m samples in the 
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Monte Carlo simulation. Predicted concentrations were compared with the m 
monitored concentrations after treatment. Thus 2,500 runs of 1,000 
realisations of m samples were performed. The optimal parameter pair was 
determined by a least squares method comparing the median of the PDF of 
predicted concentrations after treatment to the median of the PDF of 
monitored concentrations. The best fit was confirmed by visual evaluation of 
the predicted and monitored PDF. If the visual evaluation did not provide a 
satisfactory fit, the initial estimates were adapted to include a broader range of 
parameter pairs until a satisfactory fit was achieved. 
Lognormal, gamma, Weibull and beta distributions were tested as PDF type to 
describe variation of treatment efficacy π. Gamma, Weibull and beta 
distributions generally did not provide a satisfactory fit of the tail of the 
distributions of poor treatment efficacy (high π values). Therefore only the 
lognormal distribution was applied in this study.  
 
Data analysis methods were described in (Smeets et al. 2007) and included 
non-parametric hierarchical bootstrapping for data analysis to include microbial 
method uncertainty caused by most probable number (MPN) data. However, 
most microbial data in this study was quantified by direct colony count. The 
bootstrapping method was adapted for application to direct count data, in 
which case the likelihood q of concentration C given count N was calculated 
according to a Poisson probability density function. The uncertainty in the 
concentration can be conveniently assessed by Bootstrap simulations. 
 
In one example in this study, monitoring data was simulated to demonstrate 
what variability of π would be observed based on yearly monitoring even if π 
did not change between years. A single MC simulation of concentrations after 
treatment was performed using m monitored concentrations in raw water of 
that year and m random draws from the treatment PDF of π. This provided a 
simulated PDF of microorganisms in treated water for that year. Monitoring 
results for treated water in that year were simulated by randomly drawing m 
samples from the simulated PDF.  
 
The variable reduction by treatment was reduced to a single log-reduction in 
Table 1 for ease of presentation. The reduction was calculated as the –log10 of 
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mean π since this better represented total log reduction over a period of time 
than the mean of the log reductions. 
 
Monitoring data 
Microbial monitoring data from catchment to tap systems (CTS) was collected 
by water companies and organisations within the MicroRisk project and by 
other water companies participating in QMRA research. Each water company 
used its own (standard) methods for microbial analysis. Data from Teunis and 
Havelaar (1999) was also evaluated. Table 1 provides an overview of the 
number of data per system, treatment process and organism. 
 

Results 

Treatment performance assessment 
Data from all the treatment systems was analysed with the conventional date 
method (pairing samples by date), the simple mean in/out method and with the 
random, rank and optimised method. Goal was to compare the estimates of π 
of these different calibration methods. The reduction of each monitored 
microorganism was assessed for each treatment step of each CTS in Table 1. 
Since it was impractical to present all details of the assessments in this paper, 
some selected examples were used to illustrate the general findings. Figure 1 
provides an example of monitored E. coli concentrations before and after 
filtration. E. coli were clearly reduced by treatment. The steepness of the 
distribution curve was slightly reduced by filtration, indicating that variability of 
E. coli concentrations slightly increased due to filtration.  
 
Several methods were applied to assess treatment efficacy based on the data 
in figure 1. The currently applied date method assumed a correlation in time 
between influent and effluent samples. However, when influent and effluent 
data were paired randomly (random method) the assessed reduction π was 
almost identical to reduction assessed through pairing by date, as was 
illustrated in Figure 2a. This illustrates that pairing by date did not affect the 
calibration of π. The rank method assumed that influent and effluent 
concentrations were correlated by concentration, e.g. that a high influent 
concentration would at some moment in time lead to a high effluent 
concentration. Pairing samples by rank led to relatively little variation of 
reduction, as illustrated in figure 2b. 
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Figure 1 Monitored E. coli concentrations before and after filtration at CTS 12 (markers), 95% CI 
of the individual concentrations (dashed lines) and 95% CI of the total dataset assessed through 
bootstrapping (grey area). 

 
The assessed distributions of reduction by the date and the rank method in 
Figure 2a and 2b were used in the stochastic model to predict the 
concentrations after filtration based on influent concentrations. Lognormal 
probability density functions (PDF) were fitted to the influent concentration Cin 

and the assessed reduction πdate and πrank respectively. These were then applied 

in the stochastic model by Monte Carlo simulation to predict Cout.  

 
Figure 2 Assessed reduction of E. coli by filtration at CTS 12 according to the random method 
(Figure 2a and 2b grey area), the date method (Figure 2a lines) and the rank method (Figure 2b 
lines). Dashed lines indicate the 95% credibility interval assessed through bootstrapping.  

 

a b
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Figure 3a shows that the date method significantly overestimated the 
concentrations after treatment. The rank method in Figure 3b slightly 
underestimated concentrations after treatment. Since the same data were used 
in the assessment to determine π, the predicted concentrations should 
perfectly match the monitored data. This suggested that both assumptions of 
correlation by date or by rank were incorrect. Teunis et al. (1999) already 
predicted that the real distribution of π would lie between these two extreme 
assumptions. The optimised approach was used to determine the PDF 
parameters of reduction by filtration π. Figure 3c shows that the monitored 
concentrations lie within the confidence interval of the predicted 
concentrations. Thus the correct calibration of the stochastic model was 
validated for the calibration data. Validation of the calibrated model for other 
datasets will be discussed later in this paper. 

 
Figure 3 Monitored E. coli concentrations after filtration at CTS 12 (grey area) compared to 
predicted concentrations using the date (3a), rank (3b) and optimised method (3c). 

Table 1 provides an overview of the available data from the assessed 
treatment systems, and the results of the treatment assessment according to 
the date and the optimised method. The lognormal distribution provided the 
best fit of both monitored concentrations and assessed reduction π in all the 
assessments with both methods. The variable reduction by treatment was 
reduced to a single log-reduction in Table 1 for ease of presentation. Table 1 
will be discussed for the optimised, date and mean in/out methods separately. 
 
Optimised method 
The optimised method was most effective to describe the transition of 
microorganism concentrations from influent to effluent of a treatment step. 
Therefore the assessed π provides information on the treatment process 
efficacy and variability. Some processes were assessed for the reduction of 

a b c



Chapter 6 
 

-124- 

the same organism at various locations. E. coli reduction by filtration sites 
CTS1, CTS2 and CTS12 was quite similar with averages of 0.84, 1,28 and 
0.94 log reduction respectively. Filtration at CTS12 was more variable, with a 
97.5% percentile of only 0.21 log, whereas CTS1 and CTS2 still provided 
0.43 and 0.64 log reduction. Disinfection processes showed more differences 
between sites, which was expected since sites might apply different doses 
and operate under different conditions. Ozonation achieved 2.68 log 
inactivation of E. coli at CTS 2 whereas CTS 12 only achieved 0.81 log 
inactivation. Comparing the mean, median and 97.5% percentile of the 
optimized estimate of π in Table 1 shows that some processes were fairly 
stable (e.g. E. coli inactivation by ozonation at CTS2) whereas other were 
more variable (e.g. E. coli inactivation by ozonation at CTS12). Comparing the 
optimized estimate of mean π in Table 1 to reductions reported in literature 
(Hijnen 2005a, 2005b) shows that treatment processes at full-scale generally 
appeared to achieve the lower range of reported reduction.  
 
The optimised method proved to be the most effective method to determine 
parameters of the reduction PDF for the purpose of stochastic modelling. The 
rank method and the optimised method often provided very similar results that 
accurately predicted effluent concentrations. Visual evaluation of the results 
was very effective to detect errors in data and provided a very intuitive 
measure for goodness of fit compared to statistical parameters. The results of 
the optimised method were compared to results of other methods that are 
currently used; the mean in/out method and the pairing by date method. The 
accuracy of these methods could thus be evaluated. Secondly the optimised 
method was applied to test how well stochastic modelling was able to predict 
reduction of microorganisms.  
 
Currently applied date method 
All systems in Table 1 were also assessed with the date method. Evaluation of 
the assessed reduction (similar to Figure 2) led to the conclusion that the date 
and random methods generally provided very similar estimates of reduction π. 
High variability of treatment efficacy was thus observed. Apparently the 
overdispersion of microorganisms in water dominated the observed 
concentrations such that pairing observations by date was no longer valid. The 
high variability led to underestimation of treatment efficacy. The level of 
underestimation depended on the site, such as the number of data points and 
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the shapes of their distributions. The assessed reduction with the date method 
was compared to the optimised method in Figure 4. In all but one cases the 
date method underestimated treatment efficacy, sometimes by two to three 
orders of magnitude.  
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Figure 4 Mean log reduction assessed with the conventional date method (pairing samples by date) 
versus assessment through the optimization method presented in this study. 

 
Underestimation of treatment efficacy and overestimation of variability led to 
overestimation of effluent concentrations (similar to Figure 3a). Especially rare 
events of high effluent concentrations were much higher than would be 
expected based on the monitoring results. Figure 5 shows that in some cases 
this effect was very significant.  

 
Figure 5 Monitored (grey area) and predicted (lines) SSRC concentrations after clarification at 
CTS1 predicted with the date (5a) and the optimized (5b) method. 

a b
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Mean in/out method 
The simplified approach of calculating π from mean influent and effluent 
concentrations was compared to the statistical approach. Results are shown in 
Table 1 and Figure 6. The simplified approach provided a fairly accurate 
estimate of the mean reduction in 60% of the cases. However, it significantly 
overestimated treatment efficacy in 30% of the cases compared to the 
optimised method. In one case the simplified approach underestimated 
treatment efficacy. Remarkably the mean in/out method was more accurate 
than the date method. The mean in/out method could be used as a first 
estimate of treatment efficacy. However, it provides no information on 
treatment variability, and there is a risk of overestimating treatment efficacy. 
The optimised stochastic method should be preferred over the mean in/out 
method for QMRA since it provides more information based on the same data. 
The optimised method provides a more accurate estimate of treatment efficacy 
and the information on treatment variability is of importance to determine the 
likelihood and impact of events. Information on variability can also be of 
importance for treatment optimisation. 
 
Figures 5 and 6 compared the methods to calibrate π from monitoring data. 
Calibration with the mean in/out and date methods generally did not result in a 
validated model. The model calibrated with the optimised method was 
consistently validated. This validation was performed with the monitoring data 
used for calibration in order to compare the methods. However, actual 
validation of the model requires application of the calibrated model to a 
different dataset. The goal of the development of a stochastic model was to 
predict concentrations that were not monitored and to quantify the 
uncertainties around the predictions. Therefore the optimised method was 
used in the rest of the study to test the validity and accuracy of stochastic 
treatment modelling in several applications.  
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Figure 6 Mean treatment efficacy of all cases determined by mean in/out method versus the 
optimised method. 

 
Yearly variability of treatment performance  
First the optimised method was used to assess treatment variability. The use 
of historical data to predict reduction of microorganisms by treatment assumes 
that reduction as it occurred in the past remains similar in the future. A dataset 
from CTS2 of ten years weekly samples was analyzed to determine how much 
variation in reduction occurs between subsequent years. Figure 7a shows the 
reduction of SSRC by filtration over a 10 year period. This shows that the level 
and variability of removal appeared to vary between years. The observed mean 
reduction varied between 1.2 and 1.7 log depending on the year that was 
monitored. During the year, reduction variation ranged over 0.6 to 2.5 log, 
depending on the assessed year. The analysis does not show whether the 
treatment efficacy actually varied between years, or the treatment did not vary 
and the observed variations were a consequence of monitoring effects. 
 
A simulation was performed to determine whether the observed variation in 
Figure 7a was due to actual variations in treatment efficacy or due to sampling 
error. The PDF of reduction π for the total 10 year period was used to generate 
10 years of weekly monitoring data (52 samples per year). These simulated 
data were then analysed identically to the monitored dataset. Figure 7b shows 
that in this simulation, where the reduction was identical each year, the 
observed mean reduction varied between 1.3 and 1.8 log.  
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Figure 7 Assessed reduction of SSRC by filtration at CTS 2 over a ten year period based on 
weekly monitoring of raw and filtered water (7a) and on simulated monitoring data using π 
assessed for the ten year period (7b) . Whiskers: 95% CI, box: 50% CI, line: mean reduction, 
dashed: median reduction. 
 

The range of variation within a year of 0.3 to 1.5 logs for the simulated data 
appears to be less than for the original data in Figure 7a. The original data 
showed more variation towards high removal than the simulated data. 
However these high removals are relatively unimportant in the risk 
assessment, since the lower removals dominate the risk. This simulation 
demonstrated that yearly observed variations of mean treatment efficacy could 
be caused by sampling effects. The difference in observed variation within a 
single year suggests that removal by filtration was not completely constant 
over the years. Operation of the filtration was not intentionally changed. 
However, unintentional variations in process conditions such as water 
temperature, pH and suspended solids concentration might have occurred 
which impacted treatment efficacy. A more detailed study might reveal 
correlations between these parameters and treatment efficacy, however, this 
information was not available for this study and is recommended for a follow-
up study. 
 
Validity of the calibrated stochastic treatment model 
The CTS 2 dataset of 10 years monitoring of SSRC before and after filtration 
was split up to test the validity of the calibrated stochastic treatment model. 
The data consisted of 52 samples before and after treatment per year. The 
first 5 years of data were used to validate the treatment model. This treatment 

a b
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model was then applied to the raw water SSRC data of each individual year, 
including the second 5 year period that was not used for validation. The 
predicted concentrations after filtration were then compared to the monitoring 
results. Figure 8 shows the monitored and predicted SSRC concentrations 
after filtration for each year. The predicted mean concentrations are very much 
in line with the monitored concentrations, both in the period used for validation 
and the following period. The model also predicted the yearly range of 
variation of these concentrations. The predicted concentrations change per 
year along with the monitored concentrations, indicating that the yearly 
change in source water concentration was the main cause for changes in 
observed post-filtration concentrations. Some inaccuracy was observed which 
may be due to sampling error. This example showed that stochastic treatment 
modelling can provide a realistic estimate of post treatment microorganism 
concentrations and their variability. 

 
Figure 8 Box-whisker plot of monitored (black) and predicted (grey) SSRC concentrations after 
filtration at CTS 2 per year. The model was calibrated with the first 5 years of data. Whiskers: 
95% CI, box: 50% CI, line: median concentration, dashed: mean concentration. 

 
Use of surrogate organisms 
Water companies generally monitor for indicator organisms. When the indicator 
and pathogen reduction by treatment is expected to be similar, the observed 
reduction of the indicator organism could be applied to the pathogen. This was 
tested using data on E. coli and Campylobacter before and after filtration at 
CTS 2. Figure 9 shows the relation between directly observed E. coli and 
Campylobacter reduction when compared by date. Figure 9 suggested that 
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there was little correlation between their reduction. Microbial method 
uncertainty for Campylobacter was significant since it was quantified in a 3X3 
MPN (Most Probable Number) matrix (whiskers in Figure 9). Still the method 
uncertainty could not fully account for the lack of correlation between E. coli 
and Campylobacter. Applications of the date method as discussed before 
showed that pairing influent and effluent samples by date was inappropriate to 
quantify treatment efficacy. Correlation between reduction of two organisms 
therefore could not be determined by pairing by date either, so directly 
observed correlation should not be expected. Still the level and variation of E. 
coli reduction could be an indicator of Campylobacter reduction when the 
datasets were compared as a whole in a stochastic assessment. 
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Figure 9 Observed removal of Campylobacter and E. coli by filtration based on monitoring results 
paired by date. 

 
The reduction by filtration π in the stochastic model was calibrated with the E. 
coli data before and after filtration. This calibrated reduction π was then 
applied to monitored Campylobacter in the source water in a Monte Carlo 
simulation. The predicted Campylobacter concentration after treatment was 
compared to monitored concentrations over the same period. Figure 10 shows 
the predicted and monitored Campylobacter concentrations. The monitored 
Campylobacter concentrations were within the predicted range. In this case 
the use of indicator data did provide an accurate model of the level and 
variability of pathogen reduction by treatment, despite the initially apparent 
absence of correlation. Direct comparison of E. coli and Campylobacter 
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reduction by pairing samples on the same date was not valid since the 
individual observed concentrations were affected by over dispersion of 
microorganisms in water. However, E. coli and Campylobacter are similar 
organisms with respect to their removal by filtration (size and surface 
characteristics and survival in the environment). Therefore both organisms 
were removed similarly. Although the momentary removal might not be 
identical at one moment in time, the level and variability of removal over a 
longer period was very similar. 

  
Figure 10 Predicted (lines) and monitored (grey area) Campylobacter concentration after filtration. 
E. coli removal was used to model removal of monitored Campylobacter concentrations in source 
water. 

 

Discussion 

Treatment assessment 
Microbial monitoring data at full-scale treatment systems provides the most 
direct information on site specific treatment performance with respect to 
pathogen reduction. This study showed that different methods to determine 
treatment efficacy from this data provide different results. Therefore the 
stochastic treatment model, consisting of Monte Carlo simulation, was used to 
validate the assessed treatment efficacy. Assessing treatment efficacy π could 
be regarded as calibration of the stochastic model. Using the same data for 
calibration and validation should result in optimal prediction of effluent 
concentrations, if π was correctly calibrated. The assessments made clear that 
the extreme concepts of pairing by date, random pairing and pairing by rank 
did not provide a calibrated model that resulted in optimal prediction of effluent 
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concentrations when validated with the calibration data. The optimised method 
was developed that actually used validation to determine the optimal 
parameters of the PDF of π. Thus the stochastic model could be considered a 
“black box” type of model. The calibrated PDF of π then became the assessed 
treatment efficacy. The calibrated π provided an evaluation of the level of 
treatment efficacy and it’s variation. This information could be used by risk 
managers and operators to determine whether the system was achieving the 
treatment targets. When the assessment indicates that treatment efficacy was 
highly variable, treatment optimisation could be applied to reduce the 
probability of rare event of poor treatment. 
 
Stochastic model calibration 
Stochastic modelling of drinking water treatment for QMRA purposes was 
applied to a range of full-scale microbial monitoring data. Most reported QMRA 
studies in literature calibrated the stochastic model with the ‘date method’, 
where influent and effluent samples were paired by date. The analysis of full-
scale data showed that pairing by date generally resulted in the same 
estimation of π as randomly pairing influent and effluent data. This indicated 
that there was no significant correlation in time between influent and effluent 
samples in the assessed full-scale treatment processes. The distribution of π 
calibrated with the date method showed a large range, including π values >1 
(treatment generates pathogens). Application of the date method to model the 
systems in Table 1 resulted in overestimation of concentrations after 
treatment, sometimes by several orders of magnitude. The ‘rank method’ for 
calibration of π (Smeets et al. 2007) generally provided a more accurate 
validation of the model, although in some cases the effluent concentrations 
were underestimated. The optimized method resulted in calibration of π that, 
by definition, resulted in optimal validation with the calibration data. The 
optimised estimate of π was generally identical or close to the rank method 
estimate. This indicated that sampling variations (due to over dispersion of 
microorganisms in water) had a significant effect on the observed reduction.  
 
The point estimate of π calibration by the mean in/out method concentrations 
provided a fairly accurate estimate of the mean treatment efficacy π in 60% of 
the assessments, but over predicted π in 30% of the assessments. The mean 
in/out method provided no information on treatment variability. The optimised 
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method should be preferred since it provides a more accurate estimate of 
mean treatment efficacy and provides information on variability of treatment 
efficacy based on the same data as the mean in/out method. 
 
Stochastic model applications 
The stochastic model calibrated with the optimised method was put to the test 
in several applications that could be part of a QMRA study. First the validity 
and accuracy of model predictions was tested. Using five years of data to 
calibrate π, the model was able to predict the yearly distribution of effluent 
concentrations based on the monitored influent concentrations. The example 
used a five year period to calibrate the model to reduce sampling error that 
may have occurred in the yearly observations. Using only one year of data 
would therefore have resulted in a less accurate model. This example showed 
that stochastic modelling to predict effluent concentrations was valid when 
system conditions were similar during calibration and prediction periods. 
 
Predicting pathogen reduction based on indicator monitoring data is a common 
application of stochastic treatment modelling in QMRA. The example of using 
E. coli removal by filtration to predict Campylobacter removal in this study 
showed that indicator organism data could be used for model calibration of 
pathogen removal. Still correlation between removal of both organisms was 
not observed directly when data was paired by date due to the over dispersion 
of organisms in water. This is similar to the shortcomings of the date method. 
The use of indicator organisms has several advantages. Microbial methods are 
generally simpler, cheaper, faster and provide a better quantified result (direct 
count methods and high recovery) than for pathogens. Indicator monitoring is 
already part of legal compliance monitoring in most countries, therefore the 
samples serve a dual purpose and historical data can be used for initial 
treatment assessments. Given the fact that many water utilities have a wealth 
of data on indicators in their systems, this data could well be used to rapidly 
increase our knowledge of drinking water treatment processes. The 
assessments presented in Table 1 provide a first overview of actual full-scale 
treatment efficacy. 
 
QMRA is often referred to as a “data hungry” method. This study made clear 
that sufficient microbial monitoring is essential for a accurate site specific 
assessment of treatment efficacy. However, it is the variability of the system 
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that requires this amount of monitoring, not the QMRA method. The QMRA 
method provides insight in the uncertainty of the assessment, which can be 
reduced by additional monitoring. Alternative methods, such as log credits do 
not account for site specific differences and provide no indication of the 
uncertainty of the assessment. This results in a false sense of accuracy (and 
possibly safety) of log credit methods.  
 

Conclusions 

QMRA is increasingly used for decision support ,e.g. in the water safety plan, 
or even for legal compliance. Stochastic modelling of pathogen reduction by 
treatment is an effective way to estimate pathogen concentrations in drinking 
water. Microbial monitoring before and after treatment steps provides the most 
direct site specific information on full-scale treatment performance. This study 
showed that the current method to calibrate stochastic models by pairing 
monitoring results of influent and effluent by date was inaccurate. Treatment 
efficacy was underestimated resulting in overestimation of pathogen 
concentrations in the effluent, sometimes by several orders of magnitude. An 
alternative method presented in this paper resulted in optimal prediction of 
effluent concentrations. The calibrated model provided an assessment of the 
level and variability of pathogen reduction by treatment. The model was 
effectively applied to case studies to predict pathogen concentrations in the 
effluent based on monitored influent concentrations. The assessment also 
showed that indicator organism data can be used to calibrate the stochastic 
model for pathogen reduction. The methods presented in this study are 
relatively simple to implement by risk managers and results can effectively and 
intuitively be evaluated visually. Simple methods for treatment quantification in 
QMRA, such as log credits, can provide a false sense of accuracy and security 
and do not take site specific factors into account.  
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Abstract 

The absence of indicator organisms in drinking water does not provide 
sufficient guarantee for microbial safety. Therefore the water utilities are 
implementing water safety plans (WSP) to safeguard drinking water quality. 
Quantitative microbial risk assessment (QMRA) can be used to provide 
objective quantitative input for the WSP. This study presents several 
applications of treatment modelling in QMRA to answer the risk managers 
questions raised in the WSP. QMRA can estimate how safe the water is, how 
much the safety varies and how certain the estimate of safety is. This can be 
used in the WSP system assessment to determine whether treatment is 
meeting health-based targets with the required level of certainty. The QMRA 
methods use site specific full-scale information to quantify and reduce 
uncertainties caused by log-credit assessments that are currently applied in the 
WSP. QMRA also provides decision support on other issues of the WSP such 
as designing physical and microbial monitoring, setting critical limits, 
optimising treatment and preparing corrective actions. Thus QMRA can 
contribute to efficient and effective management of microbial drinking water 
safety. 
 

Introduction 

At the start of the twentieth century, the use of coliforms as indicator 
organisms to judge the microbial safety of drinking water was initiated 
(Greenwood and Yule 1917). Verification of the absence of indicators in 
treated water samples is still part of most legislation today. The applicability of 
the indicator concept turned out to be limited, as outbreaks of infectious 
disease continued to occur (Hrudey and Hrudey 2004). By 1990 two 
developments to assess and improve the microbial safety of drinking water 
were started; Water Safety Plans (WSP) and Quantitative Microbial Risk 
Assessment (QMRA).  
 
The development of the WSP concept started in 1994 when the use of Hazard 
Analysis and Critical Control Point (HACCP), as applied for food safety, was 
tested for applicability in drinking water safety (Havelaar 1994, Teunis et al. 
1994). Over the years this concept developed into WSP (Barry et al. 1998, 
Deere and Davison 1998). The use of the WSP to manage drinking water 
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safety in an integrated manner was promoted by the Bonn charter (IWA/WHO 
2004) and the third edition of the Drinking Water Guidelines (WHO 2004).  
 
QMRA development started after the implementation of chemical risk 
assessment for the Safe drinking water act (SDWA 1974). Between 1983 and 
1991 risk assessment was used sporadically to assess microbial risks in 
drinking water (Haas 1983, Gerba and Haas 1988, Rose et al. 1991, Regli et 
al. 1991). In 1996 the ILSI Risk Science Institute Pathogen Risk Assessment 
Working Group developed a conceptual framework to assess the risks of 
human disease associated with exposure to pathogenic microorganisms (ILSI 
1996). The framework was later evaluated by Teunis and Havelaar (1999) and 
more or less resulted in an extensive guide to risk assessment for pathogens in 
(drinking) water (Haas et al. 1999). In the USA, the early QMRA studies 
formed the basis for the Surface Water Treatment Rule (SWTR, USEPA 1989). 
Technical requirements for drinking water treatment were defined in the SWTR 
guided by a risk target of 10-4 probability of infection per person per year for 
Giardia and viruses. Later the SWTR was extended for Cryptosporidium in the 
IESWRT (USEPA 1998), and was further elaborated in the LT1ESWTR (USEPA 
2002) and LT2ESWTR (USEPA 2006). Published QMRA studies generally 
concluded that quantifying treatment efficacy currently introduces the most 
uncertainty (Teunis et al. 1997, Gibson et al. 1999, Payment et al. 2000). 
QMRA studies have used different types of risk endpoints such as the yearly 
average risk of infection (Anonymous 2001), daily risk of infection Signor et al. 
(2007) and disability adjusted life years (DALY) (WHO 2004). The endpoint of 
yearly average risk of infection was used in this study, since it allowed 
effective demonstration of QMRA applications for WSP without introducing the 
complicating factors of the DALY. 
 
The goal of the WSP is to manage water supply such that health-based targets 
are met (Davison et al. 2006). To determine if the health-based targets are 
met, the risk of infection from the supplied water needs to be assessed. 
Qualitative and semi-quantitative estimates of risk have been applied in WSP, 
such as the risk matrix (Davison, 2006). The risk matrix relies on the previous 
experiences of those involved in the WSP development. The risk matrix 
requires detailed quantitative judgement on the effect of a risk such as 
‘compliance impact (minor)’ or ‘public health impact (catastrophic)’. This 
method leads to a subjective judgement of risk that is suitable to identify 
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‘clear’ risks. A ‘tier one’ level of risk assessment is generally applied, using log 
credits and CT tables to quantify treatment efficacy (Davison et al. 2006). Log 
credits could be effective at a screening level QMRA to prioritize between 
different sites and to identify sites that are likely not to achieve the health-
based targets (Medema et al. 2006). However, log credits do not account for 
site specific conditions and variations of treatment efficacy in time and the 
uncertainty involved (Teunis et al. 2004). The assessment of risk is relevant 
for several elements of the water safety plan. Chapter 1 discussed the 
relevance of risk estimation for several parts of the WSP: 

- verifying compliance with health-based targets  
- identify risk events  
- prioritize risks  
- design monitoring 
- setting critical limits 
- define corrective actions 

 
The goal of the study was to improve risk estimation in the WSP by including 
variability and uncertainty in the estimate using stochastic QMRA methods, 
and to demonstrate how this could provide decision support for the 
aforementioned parts of the WSP for which risk estimation is relevant. 
 

Methods 

The method of QMRA has been developed up to the point where a more or 
less standard framework is applied (Haas et al. 1999). Smeets et al. (2007) 
improved these methods for the analysis of full-scale microbial monitoring 
data. The risk for a specific system was assessed by identifying the pathogen 
sources, monitoring pathogens in source water, describing treatment 
performance, contamination during distribution and consumption and applying 
dose-response relations. Since all these elements vary in time and space, each 
was described by a Probability Density Function (PDF). The PDFs for each 
element were combined in a Monte Carlo simulation to calculate the risk of 
infection. This study focussed on quantifying treatment efficacy. To determine 
the efficacy of a treatment process, the Monte Carlo simulation was performed 
using the PDFs that described the treatment. A value was repeatedly drawn 
randomly from each of the PDFs and treatment efficacy was calculated for 
each combination.  
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Data on treatment from 12 catchment to tap systems (CTS), was collected in 
the MicroRisk project which represent the current status of treatment 
monitoring. This data included a description of the system, microbial 
monitoring data of raw water and treated water at different stages in 
treatment, non-microbial (on-line) monitoring data on treatment performance 
such as turbidity and chlorine residual, and process conditions such as flow 
rates and temperatures. From this data, suitable examples were selected to 
illustrate the developed methods. Ozonation at CTS1 and chlorination at 
CTS10 were studied in detail. The ozonation system at CTS1 consisted of two 
parallel contactors of 167 m3 with no baffling, the average contact time was 6 
minutes. Chlorination at CTS10 took place in a single unbaffled contact 
chamber with an average contact time of 40 minutes. Disinfection was 
modelled assuming Chick-Watson disinfection kinetics (Chick 1908) and a 
Continuously Stirred Tank Reactor (CSTR) in series model (USEPA 2006). 
Application of these models and applicable inactivation parameters were 
described in Smeets et al. (2005, 2006). A literature review was used to 
acquire nominal performance data for physical treatment processes (Hijnen 
2005a,b). Calculations were performed in Microsoft Excel and in Matlab® 
(including Statistics toolbox). Reduction of pathogens was calculated as 
 

in

out

N
N

=π  (1) 

 
Where π is the reduction of pathogens, Nin and Nout (organisms/L) are the 

pathogen densities before and after treatment respectively. Log reduction or 
Decimal Elimination (DE) was calculated as log10(π). 

 
A loss of treatment efficacy due to a special event, e.g. a clogged dosing 
pump, was referred to as a failure. The acceptable risk criteria for failures were 
expressed in the form of Equation 2 where αacc is the acceptable contribution 

of failures to average risk, πn is the nominal treatment efficacy, πf is the 

treatment efficacy during failure and pf is the proportion of time that failure 

occurs.  
 

ffnacc pππα ≥  (2) 
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The probability of detecting a failure event was calculated with Equation 3. 
Assuming that monitoring indicated either “non-failure” or “failure” of the 
process, the chance of detecting a failure event pd could be determined from 

the chance of failure pf and the number of samples N: 

 
N

fd pp )1(1 −−=   (3) 

 
The mean treatment efficacy including failures πm was calculated as: 

 

ffnfm pp πππ +−= )1(   (4) 

 
The average yearly treatment efficacy including corrective actions was 
calculated with Equation 5 which is similar to Equation 4 but included three 
situations: nominal treatment, failure and corrective treatment.  
 

ccffncfm pppp ππππ ++−−= )1(   (5) 

 
Where pc was the proportion of time that corrective treatment was performed 

and πc was the treatment efficacy during corrective treatment. 

 
The following applications of stochastic QMRA for parts of the WSP for which 
risk estimation is relevant were discussed: 

 Compliance with health-based targets 
- Including uncertainty of log credits 
- Reducing the uncertainty of log credits with site specific 

information 
- Including uncertainty of disinfection modelling 
- Including site specific variability in disinfection modelling 
- Modelling improvements of disinfection processes 

 Verifying treatment efficacy 
- Design of microbial monitoring 
- Design of process monitoring 

 Operation of treatment 
- Setting critical limits 
- Preparing corrective actions 



QMRA in the Water Safety Plan 
 

-143- 

Results 

Compliance with health-based targets 
 
Including uncertainty of log credits 
Risk managers that start to assess their system can account for the 
uncertainty caused by the lack of site specific information. The following 
example assesses the uncertainty included when assessing the 
Cryptosporidium removal efficacy of rapid sand filtration. Log credits provide 
an initial estimate of treatment efficacy (USEPA 2006), and numerous studies 
have indicated the variability of treatment (LeChevallier and Au 2004, Hijnen 
et al. 2005a, 2005b). This variation between studies was considered as the 
uncertainty with respect to the site specific efficacy. Figure 1 shows the 
reported removals in literature as a histogram (Hijnen et al. 2005b). Observed 
efficacy of Cryptosporidium removal by filtration varied from 1.3 to 5.3 log 
removal. Rather than selecting a conservative or mean log removal value as a 
point estimate, the whole range of observed removal was described by a 
triangular probability density function (PDF).  
 
Since the PDF was fit over the log removals, it was actually a log-triangular 
PDF, therefore the log of the mean reduction did not equal the mean of the log 
reduction. In the Monte Carlo simulation, the log of the mean reduction 
represented the expected value of the log-triangular distribution (mean 
out/mean in). The distribution in Figure 1 resulted in an expected value of 1.5 
log removal although the mode of the triangular distribution was 2 log removal. 
The 95% confidence limit (CL) was only 0.8 log removal, so there was a 5% 
probability that removal was even lower. Given Figure 1 there is a high 
probability that the removal exceeded 2 logs. Therefore collecting more site 
specific information on treatment efficacy could result in assessment of higher 
removal at an acceptable CL. 
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Figure 1 Histogram of log removal of Cryptosporidium by filtration reported in scientific literature 
and the triangular PDF describing uncertainty for stochastic modelling. 

 
This information can support decisions by the risk manager. When it is 
sufficiently likely that the health-based target is met with the expected 
removal, no specific action is required. When it is unlikely that the health 
target is met, the risk manager can decide to adapt the system (e.g. additional 
treatment) without requiring additional research. When it is uncertain if the 
target is met, the risk manager can collect more site specific information on 
treatment efficacy to demonstrate that low efficacy does not occur at this 
specific site. Collecting more information could be substantially more cost 
efficient than adapting treatment. 
 
Reducing uncertainty of log credits with site specific information 
A major source of uncertainty when applying log credits is the site specific 
performance of a treatment system. Site specific data can be used to reduce 
this uncertainty, for example through the use of surrogate information such as 
turbidity after filtration and turbidity removal. Studies have shown that 
turbidity removal is not a direct index of pathogen removal, yet a good 
working filter is able to produce water with a turbidity constantly below 0.1 
NTU (Hijnen 2005a,b). This knowledge was used to refine the triangular PDF 
of nominal removal that was applied to the log credits. Several CTSs in the 
MicroRisk project monitored reduction of indicator organisms and turbidity by 
conventional treatment processes. The overview of the results in Table 1 
shows that indeed the reduction of bacteria was highest at filtration sites with 
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very low turbidity after filtration and substantial turbidity reduction. At CTS 11 
high turbidity values coincided on a daily basis with positive bacterial results, 
whereas at CTS 2 no clear relation was found (daily data not shown). 
 
Table 1 Observed relation between effluent turbidity, turbidity removal and treatment efficacy for 
removal of E. coli and spores of sulphite-reducing Clostridia (SSRC). 
   Log Reduction 
CTS Process Effluent 

Turbidity 
Turbidity E. coli SSRC 

1 Filtr 0.1 1 0.5 0.2 
1 coag-sed-filtr 0.1 2 1.4 1.8 
2 Filtr 0.2 0.9 1.3 1.3 
5 coag-sed-GAC <0.05 2 >3 - 
6 coag-sed-GAC <0.05 0.9 >1 - 
9 Filtr 0.1 0.8 1 1.6 
10 coag-sed-O3-filtr 0.4 1.2 - 1.2 
11 direct filtr 0.05 2 2.7 - 

 
Two examples were used to demonstrate how log credits could be adapted 
using site specific data. CTS 10 provided an example where turbidity was 
measured before and after conventional treatment (coagulation-sedimentation 
and filtration). The filtrate turbidity varied between 0.1 and 1 NTU, indicating 
that filtration did not work effectively, so a PDF for a poorly working filter was 
applied (Figure 2). Turbidity at CTS 11 was recorded daily before and after 
direct filtration. Turbidity was consistently reduced from >1 NTU to <0.06 
NTU thus verifying that the filter was working well, so the triangular PDF for a 
well performing filter was applied. Figure 2 illustrates how the triangular PDF 
was adapted for these CTSs based on the recorded turbidity. The maximum of 
the PDF for poor performance was set to the original mode of the PDF, 
assuming a symmetrical triangular distribution. Similarly, the minimum of the 
PDF for good performance was set to the original mode of the PDF, again 
assuming a symmetrical triangular distribution. The choice of level of 
adaptation of the PDF was rather arbitrary in this study. However, the 
approach did provide a tool for risk managers to differentiate between systems 
based on site specific information. 
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Figure 2 Turbidity before and after conventional treatment (CTS10) and direct filtration (CTS11) 
was used to refine the triangular PDF for “good” or “poor” performing filters  

 
Including uncertainty of disinfection modelling 
Deterministic models generally describe disinfection as a first order reaction, 
where the achieved inactivation depends on disinfectant concentration C, 
contact time t and the inactivation rate constant for the microorganism k. 
Process conditions such as C and t vary in full-scale systems and may be hard 
to determinate exactly. The inactivation rate constant varies with temperature 
and values for specific disinfectants and pathogens reported in literature vary 
between studies (USEPA 2006, Smeets et al. 2005, 2006). These 
uncertainties and variations were included in a stochastic disinfection model in 
a case study of Campylobacter inactivation by ozonation at CTS1 by 
considering all the parameters and variables (C, t and k) as a stochastic 
parameter. To estimate disinfection with a CSTR disinfection model (USEPA 
2006) the parameters k, t and C needed to be determined. 
 
Various ozone inactivation rates found for E. coli were applied for 
Campylobacter inactivation (Smeets et al. 2005). Inactivation rates of 100 to 
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10,000 L.mg-1.min-1 were reported within the temperature range of 1 to 30 
°C. Conservative rates were in the order of 100-430 L.mg-1.min-1 and 
optimistic rates were 2,000-10,000 L.mg-1.min-1 depending on temperature. 
The range of inactivation constants exceeded the effect of temperature, 
therefore temperature was not modelled separately from the inactivation 
range. The inactivation rate k was modelled stochastically by uniformly 
distributing log10(k) from 2 to 4 in the stochastic model. 

 
Contact time of each part of the water was one major uncertainty in the 
modelling of disinfection systems. In this example a continuously stirred tank 
reactor (CSTR) model was used to account for residence time distribution 
(USEPA 2006). A single CSTR reflects the conditions in a single, unbaffled 
contact chamber, multiple CSTRs in series reflect more plug-flow like 
conditions. No tracer experiments were available to determine the appropriate 
number of CSTRs for the case study system. A single CSTR system was the 
most conservative estimate applied. The most optimistic estimate applied a 3 
CSTR model, and the stochastic model applied a uniform discrete distribution 
of 1 to 3 CSTRs (Do-Quang et al. 2000). 
 
The ozone dose was controlled by monitoring ozone concentrations in the 
ozone contactor and adjusting the dose to reach the setpoint. The measured 
ozone concentration only represented a small part of the total water volume. 
Van der Veer et al. (2005) showed that ozone concentrations can vary 
considerably over a cross-section due to limitation of mixing in ozone bubble 
columns. Figure 3 shows the measured ozone concentrations over the cross 
section of flow passage from the bubble column to the first contact chamber 
of a pilot installation. Ozone was measured at each of the intersections of the 
grid A1, A2 … J5 by a tube sampler. Although site specific differences will 
influence the pattern, a similar distribution of ozone concentration over the 
cross section of the water in a full-scale ozonation system could be expected. 
A normally distributed PDF with a standard deviation of 10% described the 
variation of the measured concentration relative to the average concentration 
in Figure 3. The same PDF was applied to the ozone concentration at the case 
study site to reflect the variability of the ozone concentration in the stochastic 
model. As a result, ozone concentrations C applied in the stochastic model 
varied from 50% to 150% of mean concentration. 
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Figure 3 Distribution of measured ozone concentrations (µg/l) over the cross section of the 
passage from the bubble column to contact chamber of a pilot ozone installation. Ozone was 
measured at each intersection of the grid A1, A2…J5. Ozone dose was 1,000 µg/l (Van der Veer 
et al. 2005). 

 
Three different approaches to include the uncertainty of disinfection modelling 
were applied to estimate the inactivation of Campylobacter based on the mean 
ozone concentration C and mean contact time t. The conservative approach 
used conservative values for all parameters and variables (1 CSTR, low 
inactivation rate constant). The optimistic approach used optimistic values (3 
CSTRs, high inactivation rate constant). The stochastic approach used the 
described distributions of the variables and parameters in a Monte Carlo 
simulation of the treatment system. The mean C column in Table 2 shows that 
choosing conservative or optimistic parameters resulted in 2.7 and 10.8 log 
reduction respectively. Using a point estimate for the ‘worst case’ or ‘best 
case’ situation would leave the risk manager with 8 orders of magnitude 
uncertainty about the efficacy of ozonation exceeded. Using a stochastic 
model the impact of the uncertainties was quantified, resulting in an estimated 
reduction of 3.5 log and a 95% CL that the inactivation exceeded 2.8 logs. 
The stochastic model indicated that there was a 50% probability that 
inactivation exceeded 6 logs. With this information the risk manager could 
decide whether treatment efficacy was sufficiently verified or whether 
additional site specific information should be collected to reduce uncertainty or 
to verify a higher level of inactivation.  
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Table 2 Estimate of over-all log inactivation of Campylobacter by a case study ozonation system 
using different types of models. 

 Mean C Site specific on-line monitoring data 

 Log reduction 
Nominal (95% CL) 

Log reduction 
Ex. events (95% CL) 

Log reduction 
Incl. events (95% CL) 

Conservative point estimate 2.7 2.7 2.6 
Stochastic 3.6 (2.8) 3.5 (3.4) 3.4 (3.4) 
Optimistic point estimate 10.7 10.8 4.8 

 
Including site specific variability in disinfection modelling 
The previous process model example at CTS 1 used general characteristics of 
the treatment system, such as operational setpoint and mean residence time 
and temperature to estimate disinfection efficacy. However, conditions vary in 
time and short events of poor performance can have a significant impact on 
average risk. Site specific information on this variation, such as on-line ozone 
and flow monitoring, could provide verification that health-based treatment 
targets were met. A one year dataset of on-line ozone measurements at an 
interval of 20 seconds, resulting in over 1.4 million records, were available 
from the case study site CTS1 (Figure 4). In addition, hourly flow and 
temperature measurements were available. The on-line data was used to model 
inactivation, again using the conservative, stochastic and optimistic approach. 
Several events of short periods of no measured ozone were recorded (see 
Figure 4). The impact of these short events on the assessed over-all log 
reduction over the year depended on the applied method. In one assessment 
ozone concentrations below 0.1 mg/l were excluded from the dataset to 
illustrate the effect of events. Table 2 provides an overview of the results. The 
stochastic and conservative approaches were not affected by the use of site 
specific monitoring data. The optimistic assessment was affected by the 
occurrence of short moments of ozone failure. These reduced the efficacy over 
the total period by 6 log units. This example showed that site specific data can 
reveal short periods of sub-optimal conditions that can affect the mean 
treatment efficacy, especially when nominal treatment efficacy is very high. 
Conservative approaches may underestimate treatment efficacy leading to 
unnecessary actions. Stochastic modelling can provide a realistic estimate of 
treatment efficacy even when site specific data is limited. 
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Figure 4 On-line ozone measurements at the case study site at a 20 second interval over a one 
year period. 

 
Modelling improvements of disinfection processes 
When the system assessment in the WSP indicates that health targets are not 
met, measures are required to improve the system. One of those measures 
could be to improve an existing disinfection process. This example discusses 
the chlorine disinfection process at CTS 10. The system assessment showed 
that over 3 log virus inactivation needed to be achieved by the chlorination to 
reach health-based targets. Inactivation of viruses by chlorination at CTS10 
was modelled with the CSTR model (USEPA 2006) using monitored chlorine 
residual and temperature data. Flow was assumed to be constant. The 
temperature dependant inactivation rate constant for viruses was deduced 
from the CT tables in the “Disinfection profiling and benchmarking guidelines” 
(USEPA 1999). The contact chamber was not baffled and based on general 
hydraulic characteristics it was modelled as a single CSTR (DoQuang et al. 
2000). Figure 5 shows the modelled inactivation achieved over a two month 
period. Under nominal conditions, 2.5 log inactivation was achieved, but due 
to the variability of the chlorine level, the mean inactivation over the total 
period was only 2.1 log.  
 
Several options for improving the efficacy of the process were studied: 
increasing chlorine dose, improving process control and improving hydraulics. 
Figure 6a shows that doubling the chlorine concentration would increase the 
inactivation to 2.3 log. This option was therefore ineffective to reach the 
health target and since it could have negative impact on other goals such as 
costs and disinfection by-products it was not preferred. A second option was 
an investment in improved process control (e.g. equipment and software) 
which would prevent the occurrence of low chlorine levels (Figure 6b).  
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Figure 5 Modelled inactivation of viruses by chlorine at CTS 10 based on on-line monitoring of 
chlorine residual. 

 
This was expected to increase the efficacy to 2.4 log inactivation, so not a 
significant improvement. Hydraulics of the system could be improved by 
placing baffles in the contact chamber.  
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Figure 6 Modelled effect of process improvements on inactivation of viruses by chlorine: doubling 
chlorine residual concentration (6a), improved process control (6b), improved hydraulics (6c) and 
improved hydraulics and process control combined (6d) 
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Figure 6c shows that if two baffles were placed to improve the hydraulic 
characteristic of the system to 2 CSTRs in series, the nominal inactivation 
could increase to 4 log. However, due to the events of low chlorine residuals, 
the inactivation over the total period would still be limited to 2.6 logs. By 
improving both hydraulics and process control, 4.1 log inactivation could be 
achieved (Figure 6d). This example shows that a single measure would not be 
effective and that the right combination of measures would be likely to achieve 
the required improvements. This type of modelling could be used by risk 
managers for decision support. 
 
Verification of treatment efficacy 
When the treatment assessment in the WSP indicates that the system is 
capable of producing safe water, the system needs to be monitored to verify 
that treatment targets were met. Therefore one of the monitoring goals is to 
verify that no rare hazardous events have occurred that could have a 
significant impact on the assessed risk. Since this often requires very frequent 
monitoring, microbial monitoring is generally not feasible. However, other 
parameters that may be monitored on-line can be used to verify the system 
was working as expected. Equipment monitoring such as dosing pump flow 
can also be used to verify that the system was operational, or to detect 
moments of failure. Deviation of any of these parameters could lead to 
reduced treatment efficacy, which may be hard to quantify. A conservative 
approach is to assume complete failure in case of a deviance. The following 
examples assume that monitoring either indicates compliance or failure (no 
pathogen reduction), however if efficacy during failure could be quantified in 
more detail this could be incorporated in the calculations.  
 
Design of microbial monitoring 
Microbial monitoring before and after a treatment process is the most direct 
way to assess treatment efficacy. Furthermore microbial monitoring of drinking 
water could also provide a direct assessment of drinking water safety. The 
microbial monitoring needs to provide a reliable estimate of the arithmetic 
mean concentration for both these applications. When organisms in water are 
over dispersed, high concentrations that rarely occur can still dominate the 
mean concentration. Monitoring will provide a range of microorganism 
concentrations, from which the mean concentration is calculated. A question 
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from the risk manager could be: Have I taken enough samples to determine the 
mean microorganism concentration in the water?  
 
To answer this question, the risk manager needs to determine whether the 
“dominant concentrations” have been determined by monitoring. The answer 
to this question is illustrated through Figures 7a, 7b and 8. The markers show 
the observed Cryptosporidium concentrations in drinking water at three 
treatment sites in the UK in 2000-2002 (data described in Smeets et al. 
2007). The contribution of each monitored concentration to the mean was 
determined from the proportion of the drinking water with that concentration. 
A low concentration of 0.01 organism/L occurring 100% of the time resulted 
in the same mean concentration as 1 organism/L occurring 1% of the time. 
The dashed line shows combinations of proportion and concentration that 
contributed equally to the mean concentration. The arithmetic mean 
concentration at the site in Figure 7a was 0.002 oocysts/L. The observed 
concentrations between 2*10-3 and 10-2 oocysts/L dominated this mean 
concentration. This is where the dashed line touches the markers of the 
observed concentrations. Based on this data, the average concentration was 
accurately determined, since higher and lower concentrations would not 
contribute significantly to the mean concentration. This typical shape was 
found for 30% of the 216 treatment sites for which data had been collected 
(Smeets et al. 2007).  

  
Figure 7 Monitored Cryptosporidium in drinking water (markers) including normal events (Figure 
7a) and special events (Figure 7b). The dashed line indicates combinations of proportion and 
concentration resulting in the same average concentration.  

a b 
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Dominant concentrations generally occurred in less then 1%-5% of the 
samples in raw water, during treatment and in drinking water. So in order to 
generate a usable estimate of the risk, over 20 to 100 microbial samples at 
any point in the system would typically be required. 
 
A complicating factor is the occurrence of ‘special events’. Figure 7a shows 
the concentrations due to normal variations, so high concentrations can be 
considered ‘normal events’. Figure 7b shows a ‘special event’ where very high 
concentrations occurred e.g. due to human error or equipment failure causing a 
curve break. In Figure 7b the dashed line touches the markers at the highest 
monitored concentration. The concentration during the special event therefore 
dominated the average concentration and thus on the risk at this site. These 
special events were observed in 10% of the datasets from 216 treatment sites 
in the UK. At the example site in Figure 7b, other monitoring efforts, apart 
from microbial monitoring, would be required to verify that these special 
events did not occur even for a few hours per year (a proportion of 10-3 
translates into eight hours per year). Methods for event monitoring will be 
discussed later. 
 
A second complicating factor is the detection limit or sample volume. At 
treatment sites with lower concentrations of Cryptosporidium in the treated 
water, the observed concentrations looked like Figure 8 which was typical for 
60% of the monitored UK sites. The arithmetic mean concentration was 6*10-

5 oocysts/L based on the monitoring results. This mean concentration was 
dominated by the lowest observed concentration (at the detection limit) of 
7*10-4 oocysts/L occurring 7% of the time. However, an intuitive interpolation 
to lower concentrations would exceed the dashed line, thus dominating the 
mean concentration and therefore the average risk. Larger volumes taken at a 
lower frequency could be used to determine the dominating concentration. 
Stochastic modelling of the treatment as performed in QMRA can provide an 
estimate of these low concentrations, based on raw water concentrations and 
removal by treatment. 
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Figure 8 Monitored Cryptosporidium in drinking water (markers) The dashed line indicates 
combinations of proportion and concentration resulting in the same average concentration.  

 
The microbial monitoring of drinking water can have three typical outcomes 
that provide decision support for the risk manager:  

- If the dominant concentrations were monitored accurately and 
therefore the system assessment was accurate (Figure 7a); 

- If the mean monitored concentration was dominated by the highest 
observed concentration, additional (more frequent) microbial 
monitoring is required to determine the dominant concentration 
(Figure 7b);  

- If the mean monitored concentration was dominated by the lowest 
observed concentration, larger sample volumes are required or the 
concentrations below detection limit need to be estimated through 
stochastic modelling of the treatment (Figure 8). 

 
Design of process monitoring  
First the acceptable level of increase of risk due to failure αacc in Equation 2 

needs to be chosen. The risk due to the event will add to the nominal risk. 
Risks due to failure events might result in a higher average risk than the 
nominal risk, which would not be considered acceptable. In this example the 
risk from failures is considered acceptable when on average it equals the 
nominal risk, so αacc equals 1. A more strict condition could be set by choosing 

a lower value for αacc. Complete failure of the treatment process during an 

event was assumed in this example, so treatment efficacy during failure πf 
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equalled 1. In that case the acceptable proportion of time that failure occurs pf 

equalled nominal reduction πn. The probability of detecting a failure event was 

calculated with Equation 3 assuming that monitoring indicated either “non-
failure” or “failure” of the process. By choosing the probability of detection pd 

at the desired confidence level (e.g. 90%, 95%, 99%) the required number of 
measurements N could be calculated. The safety of the system would be 
verified when no failures were detected with N measurements over the 
assessed period. Table 3 shows the required number of measurements in 
relation to the nominal log reduction to verify at the 95% confidence level that 
failure events did not significantly increase the risk. The monitoring frequency 
for the assessment of a one year period was also calculated. Approximately 
30% less measurements are required for a 90% confidence level, respectively 
50% more measurements are required for a 99% confidence level.  
 
Table 3 Number of required monitoring records to verify at the 95% confidence level that failure 
events do not significantly add to the risk when compared to nominal reduction 

Nominal log reduction #/year Monitoring interval 
 

0.05 1 1 year 

1 30 1 week 

2 300 1 day 

3 3,000 3 hours 

4 30,000 15 min 

5 300,000 2 min 

6 3,000,000 10 sec 

7 30,000,000 1 sec 

 
Table 3 shows that with daily sampling, no more than 2 log reduction can be 
verified. Above that, more frequent monitoring is required, leading to on-line 
monitoring. Some treatment plants claim 7 log inactivation of viruses with a 
disinfection system, so at a 100,000 m3/d plant every 3 litres must be 
monitored to be 95% confident that all water was sufficiently treated. If the 
criteria are set more strict, for example setting αacc to 10%, ten times as many 

samples are required. 
 
A multiple barrier system is easier to monitor. When 6 log inactivation is 
achieved through 1 barrier (treatment process) 3 million measurements per 
year are required. The continuous measurement of UV radiation intensity is an 
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example of such intensive monitoring to verifying absence of failure of the 
highly effective UV disinfection process. When three barriers of 2 logs are 
placed in series, only 300 measurements per year are required for each 
process, resulting in 900 measurements in total. So daily monitoring of each 
process step is then sufficient. This approach assumes that treatment process 
failures are independent such that failure of the first step does not 
automatically coincide with failure of the second step. Risk managers can 
minimise the risk of such consecutive failures in their design of the process for 
example by separating power supplies and placing physical barriers between 
equipment such that physical hazards (e.g. flooding or fire) would not affect 
both processes 
 
The example of the treatment assessment of adjusted log credits at CTS 11 in 
Figure 2 suggested that 3 to 5.5 log reduction could be achieved by this 
treatment system. Turbidity monitoring could be applied to verify the absence 
of significant rare events of poor treatment efficacy. According to Table 3 a 
monitoring frequency between 1 and 60 minutes would be required to verify 3 
to 5.5 log removal. The excellent turbidity removal in Figure 2 suggests that 
no events of poor removal took place. However, turbidity was only monitored 
daily, so according to Table 3 this was only sufficient to verify 2 log reduction 
at the 95% confidence limit. Now the risk manager would like to know how 
certain he could be that a higher level of removal was achieved based on the 
turbidity data. Given that no failure was observed in 365 records, according to 
Equation 2 the confidence level for 4 and 3 log reduction was only 4% and 
31% respectively. Figure 9 shows the confidence levels for the probability that 
a failure event occurring a certain proportion of time would be detected using 
daily monitoring. 
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Figure 9 Confidence level of verifying by daily monitoring the absence of a failure in relation to the 
proportion of time that the failure could occur. 

 
At the water treatment plant of CTS 10, the water was disinfected using 
chlorine. Chlorine residual concentrations were monitored every 15 minutes. 
Figure 10a shows the measured chlorine concentration over two 2.5 month 
periods. The following example illustrates the impact of monitoring frequency 
on risk assessment. A subset of the chlorine monitoring results was created to 
simulate daily sampling (Figure 10b). 
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Figure 10 Monitored chlorine concentrations at CTS 10 15 minute data (10a) and simulated daily 
data (10b) 

 
Virus inactivation was modelled from these monitored and simulated chlorine 
measurements assuming constant flow and contact time in a 3 CSTR 
disinfection model (USEPA 2006). Virus inactivation rate constants for chlorine 
at the measured temperatures were deduced from CT tables (USEPA 1999). 
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Inactivation was calculated for the full dataset of 15 minute samples (10,000 
records) and the simulated daily samples (100 records). A Beta distributed 
probability density function (PDF) was fitted to the disinfection calculated from 
the selection of daily samples (Figure 10b) to extrapolate to rare events of low 
inactivation. The daily sampling missed several short periods of no chlorine. 
Therefore, observed inactivation was always more than 2 log and over-all 
inactivation was 3.8 log. According to Table 3 a monitoring frequency of 15 
minutes would be required to capture significant rare events. Indeed when the 
full dataset of 15 minute data was assessed, the short periods of no chlorine 
were included in the calculations leading to less than 1.5 log reduction 1% of 
the time and little or no reduction for 0.1% of the time. Over-all inactivation 
was only 2.3 log. It was very unlikely (pd<10-22) that increasing the monitoring 

frequency further would have a significant impact on the assessed log 
reduction. Theoretically the monitoring frequency could be reduced to verify 
the 2.3 log inactivation, but it is likely that the water company will strive to 
improve chlorine control in order to fully use the disinfection potential of 3.8 
log, for which the 15 minute interval is required. 
 
Figure 11 shows that the fitted PDF did not account for the rare events of no 
chlorine, so the daily monitoring was insufficient to provide a PDF from which 
rare events could be extrapolated. 
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Figure 11 Frequency distribution of calculated log reduction by disinfection based on daily or 15 
minute monitoring data and the probability density function (PDF) fitted to the daily data. 
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Operation of treatment 
 
Setting critical limits 
A treatment system can be designed to provide exactly the right level of 
treatment to meet the health-based targets. However, in practice the risk 
manager needs to account for variations and inaccuracies in order to run a 
practical and stable process. The simulated example in Figure 12 is used to 
illustrate how QMRA can be used to set critical limits and setpoints. The 
health-based treatment target for the disinfection process simulated in Figure 
12 was 3 log inactivation of viruses. In this example the temperature and flow 
conditions were constant for the whole period. The required chlorine residual 
of 1.7 mg/l for 3 log inactivation was determined by disinfection modelling. So 
if the process was constantly run at exactly this concentration, the yearly 
health-based target would be met. This level is therefore considered the critical 
limit. However, in practice the chlorine dose would vary due to operational 
variation. Chlorine dosing was controlled by an automatic control loop in this 
example. The chlorine residual was measured and the dosing rate was adjusted 
if the measured concentration deviated from the setpoint. As a result, the 
chlorine residual level would typically vary between the operational limits if the 
system was working within specification, as indicated in Figure 12. At hour 20 
the chlorine dosing pump got clogged, resulting in a chlorine level below the 
lower operational limit. This triggered an alarm and the operator was able to 
clean the pump and restore normal operation. This event did not affect the 
average treatment performance in a way that the health-based target would 
not be met, since the critical limit was not exceeded. At hour 80 the chlorine 
dosing pump failed again, however this time the operator was not in time to 
restore the system before the critical limit was exceeded. The short period of 
time that disinfection was ineffective reduced the average treatment efficacy 
since the critical limit was exceeded. Therefore the operator needed to take 
corrective actions, such as starting emergency chlorination of the distributed 
water, in order to achieve the health-based target over the total period. 
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Figure 12 Simulated example of critical limits, operational limits, setpoints and monitoring of a 
chlorine disinfection process. 

 
This example illustrated that setting critical limits was not merely determining 
the lowest chlorine dose to meet the target, but also included setting 
operational setpoints and operational limits. Quantifying limits and setpoints is 
related to many site specific issues such as the treatment target, the normal 
variability of the process, the probability of events, the response time of the 
operator and the effect of corrective actions. Simply applying a higher setpoint 
for chlorine dose can have adverse effects in other objectives (cost, 
Disinfectant By-Product (DBP) formation, maintenance/operation) and therefore 
is not an option. QMRA can provide decision support for choosing setpoints 
and limits when some realistic assumptions are made. The mean treatment 
efficacy over a period was calculated with Equation 4. The proportion of time 
that the system fails pf and treatment efficacy during failure πf can be roughly 

quantified by means of the risk matrix in the WSP. In the example it was 
assumed that operator response could take up to 8 hours to restore the 
system to normal operation, an event could occur once a year and disinfection 
would fail completely during an event. Given these assumptions, pf was 

8/(365*24), πf equalled 1 and πm equalled 0.001 (3 log reduction). Using 

Equation 4 the nominal treatment efficacy πn to achieve πm was 0.000085 (4.1 

log reduction). Disinfection modelling showed that a chlorine residual of 2 mg/l 
was required to achieve 4.1 log reduction, therefore the lower operational limit 
was set to 2 mg/l. Due to normal variation in the process, observed from hour 
25 to 75 in Figure 12, a setpoint of 2.3 mg/l was needed to maintain this limit. 
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This example illustrated the basic approach to setting limits and setpoints. The 
method could be adapted to include other variables such as temperature and 
flow variations and partial treatment failure.  
 
One of the objectives of the multiple barrier system is to balance out peaks or 
failure at one point by adequate treatment at another point. Total pathogen 
reduction at a surface water treatment site is often many orders of magnitude 
due to a large number of treatment steps. The total treatment can be 
optimized such that the combination of reduction by individual treatment steps 
combined provides exactly the required reduction to meet the health-based 
targets. This is illustrated by the circle in Figure 13 for the combination of two 
processes. However, the previous example in Figure 12 showed that treatment 
targets generally need to be set higher to account for temporary failure. This is 
illustrated by the square in Figure 13. Therefore (partial) failure of one step 
would not directly lead to non compliance in a multiple barrier system. 
 
This example could be extended to an on-line control tool for pathogen 
reduction to respond to changes in process conditions. The disinfection model 
could be used in an algorithm programmed into a PLC or SCADA system to 
constantly adjust the critical limits, operational limits and setpoint for chlorine 
dosing to maintain the target level of inactivation. The treatment would thus 
be controlled by the combined effect of process conditions rather than control 
of individual parameters.  

 
Figure 13 Visualization of combined critical limits in a multiple barrier system. The light grey area 
illustrates compliance of the total system, the dark grey area illustrates non-compliance. 
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All treatment steps were considered to be independent in this study. In 
practice some interaction between treatment steps can be expected. Positive 
interaction occurs when failure at one step leads to failure of a consecutive 
step(s). For example, failure of pre-oxidation leads directly to less inactivation, 
but also increases oxidant demand at a later disinfection step, thereby 
reducing its efficacy. Negative interaction can occur when failure at an early 
step leads to increased performance of a consecutive step, e.g. poor 
sedimentation increases particle load to the filters which then work more 
effectively. Although these mechanisms have been observed, current 
knowledge is insufficient to create a deterministic model that describes these 
relations.  
 
Preparing corrective actions 
Even at a well managed system failures could occur that compromise drinking 
water safety. Such events could be detected by monitoring. A temporal 
decrease of drinking water quality could have a significant effect on the yearly 
average risk. When critical limits are exceeded, corrective actions need to 
bring back water quality to an acceptable level to comply with the yearly risk 
of infection. This is illustrated with the example of chlorine inactivation of 
viruses in Figure 14. The target inactivation by this system was 2.5 logs, 
which was generally achieved through process control. The risk manager 
would need to prepare a plan for corrective actions if failure occurred. Shutting 
down treatment completely in case of failure was not an option since this 
would disrupt the other processes and the distribution system would loose 
pressure thus risking ingress of contaminated water into the distribution 
system. An emergency UV disinfection unit which could achieve 4.5 log 
inactivation of viruses could be considered as a corrective measure. The first 
question for the risk manager was how quickly the emergency equipment 
needed to be in place. Or, stated differently: how long could this failure be 
allowed to continue without compromising the treatment target? QMRA could 
be used to answer this question. Figure 14 shows the calculated virus 
inactivation based on monitored chlorine residual concentration. During normal 
operation from 27 April to 19 May, generally 2.5 to 3 log inactivation was 
achieved (black line), resulting in a running average inactivation that complies 
with the target of 2.5 log inactivation. On 20 May the chlorine dosing failed 
completely (as an example), resulting in no disinfection. The grey line shows 
the level of inactivation that could be achieved with the emergency equipment. 
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The average yearly treatment efficacy was calculated for different response 
times with Equation 5. In this example πm and πn were 0.0032 (2.5 log 

reduction), πc was 0.000032 (4.5 log) pn was 139/365 (days until 20 May), pc 

was 1- pn - pf and pf varied between 0 hours and 27 days. The dashed line in 

Figure 14 shows the achievable yearly average inactivation in relation to the 
time the corrective action is started. It was clear from Figure 14 that the 
achievable yearly average quickly decreased in time. In this example, 
corrective measures needed to be taken within six and a half hours in order to 
comply with the yearly target of 2.5 log reduction. Risk managers can use 
similar calculations for decision support on emergency measures and 
emergency procedures in relation to the health-based treatment target, the 
critical limits of the treatment process and the achievable corrective action.  
 

 
Figure 14 Virus inactivation by chlorine based on chlorine residual monitoring (black line), the level 
of inactivation during corrective actions (grey line) and the yearly average inactivation that could 
be achieved by corrective actions in relation to the time required to start corrective actions 
(dashed line).  

 

Conclusions 

Water utilities have started to use water safety plans (WSP) to assess and 
improve the safety of the produced drinking water. Resources for assessments 
and improvements are limited and therefore need to be used effectively and 
efficiently where they provide the most benefit for health. Quantitative 
microbial risk assessment can be used to quantify several questions that are 
raised in the WSP. Without QMRA the system assessment in the WSP relies 
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on risk manager experience and log-credit from industry standards to quantify 
drinking water safety. However, this study showed that the resulting 
uncertainty of the assessed risk can be many orders of magnitude. This 
uncertainty often makes the difference between compliance or non-compliance 
with health-based targets. QMRA does not only tell us how safe the water is, 
but also how much the safety varies and how certain we are that we are 
meeting health-based targets. The QMRA methods presented in this study can 
be used to quantify and reduce uncertainties by using site specific full-scale 
information. QMRA cannot only be used in the system assessment, but also 
provides decision support on other issues of the WSP. This study provided 
examples of QMRA to design physical and microbial monitoring, to set critical 
limits, to support decisions on treatment optimisation and to prepare corrective 
actions. Thus QMRA can contribute to efficient and effective management of 
microbial drinking water safety. 
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Introduction 

Since 1980 several drinking water guidelines and legislations changed from 
monitoring water quality targets, such as the absence of indicator organisms, 
to setting health-based targets. Health-based targets have been set for 
treatment performance, water quality, infection risk and disability adjusted life 
years (DALY). Quantitative microbial risk assessment (QMRA) has been applied 
to set these targets and to assess whether the targets are met. QMRA has 
been applied in drinking water since 1989 (USEPA 1989) and is now part of 
several guidelines and legislations (Anonymous 2001, NHMRC 2004, WHO 
2004, CDW 2007). Drinking water treatment plays a crucial role in achieving 
the health-based targets and the assessment of treatment efficacy is an 
important part of QMRA. The study set out to determine how the reduction of 
pathogens by drinking water treatment could be quantified for QMRA 
purposes. This chapter discusses the findings of this thesis in relation to the 
research questions and other developments in the field of drinking water 
safety. 
 

Combining information in the treatment framework 

Many types of data can provide information about treatment efficacy. This 
information needs to be combined for risk assessment. Recent legislations and 
guidelines promote the use of site specific information to assess drinking water 
safety (Anonymous 2001). In terms of quantification this is often limited to 
site specific source water monitoring to determine the level of faecal 
contamination (WHO 2004a, USEPA 2006, CDW 2007). Treatment 
performance monitoring, such as turbidity after filtration or disinfectant 
residual monitoring, is used to verify if the process complies, not to quantify 
the efficacy. In QMRA, available information is used to quantify drinking water 
safety. The treatment framework in Chapter 1 was developed to combine site 
specific full-scale data with the body of information on treatment efficacy from 
the literature. Treatment efficacy reported in literature ranged over several 
orders of magnitude for most treatment processes, and therefore provided little 
information for a site specific risk assessment. Information such as details on 
process design, (on-line) monitoring of process conditions or microbial 
monitoring, allowed for a more site specific assessment of treatment efficacy. 
The framework was applied in a case study in Chapter 2 and in Smeets et al. 
(2006). Site specific information improved the accuracy of the treatment 
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assessment in these studies. This study used data that was already available 
for the assessed systems. However, the treatment framework can be used 
beforehand to determine which monitoring efforts would provide the best site 
specific data at different stages in treatment. Microbial monitoring at the first 
stages of treatment would provide the most direct, site specific information, 
however, this would not be feasible at later stages. Full-scale monitoring of 
process conditions could still provide site specific information about the later 
stages in treatment.  
 

Including variability and uncertainty by stochastic modelling 

The information collected through the treatment framework will generally 
consist of discrete values. However, these values actually represent a 
measurement or analysis of a very small proportion of the total produced water 
volume (generally less than 0.001% for microbial samples). In addition the 
measurement or analysis itself includes inaccuracy and uncertainty. Statistical 
methods can be used to determine what information the reported values 
actually provide about the level, variability and uncertainty of the measured 
parameter in the total produced water. Since the concentration of pathogenic 
organisms in drinking water was generally below detection limit, their 
concentration was calculated from the concentration in raw water and 
reduction by treatment. Variability and uncertainty were included in stochastic 
models of treatment efficacy by describing each step by a probability density 
function (PDF). These stochastic treatment models, described by Teunis et al. 
(1994, 1997, 1999), were adapted to include different types of data in 
Chapter 2. Available microbial data was used to determine PDF parameters 
that described variability of a treatment step. Alternatively, the PDF of 
treatment efficacy was derived from a range of log-reductions described in 
literature to determine the uncertainty of using log credits for site specific 
treatment assessment. The distribution of the pathogen concentration in the 
treated water was then calculated through Monte Carlo simulation. The 
stochastic model approach was compared to the more common method of 
point estimates in case studies in Chapters 2 and 7. Stochastic modelling of 
treatment showed that, due to the uncertainty and variability of treatment 
efficacy, treatment was expected to be less effective than the average point 
estimate. As a consequence the calculated concentration in drinking water and 
thus the stochastically assessed risk of infection was higher. The stochastic 
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approach showed that the uncertainty of the point estimate of treatment 
efficacy could range over several orders of magnitude. So point estimates 
provided a false sense of accuracy. This study applied the treatment efficacies 
collected from literature assuming that these represent the variability and 
uncertainty about the efficacy of a treatment process. Most of the reported 
studies were performed under laboratory or pilot-scale conditions. Therefore 
the results may not be directly applicable to full-scale systems. In addition 
methods and data analysis may vary between studies, resulting in differences 
of observed efficacy. The study therefore focussed on including site specific 
data to reduce the uncertainty about treatment efficacy. The stochastic 
method was further improved in Chapters 5 and 6 to distinguish between 
variability and uncertainty when using microbial monitoring data. 
 

Microbial monitoring of drinking water 

Microbial monitoring of pathogens in drinking water has been used as a basis 
for QMRA (Lee et al. 2002, Wyn-Jones et al. 2002, Vivier et al. 2002, Mena 
et al. 2003, Aboytes et al. 2004, Smeets et al. 2007). However, monitoring of 
actual pathogens has been limited by the availability of analysis methods, the 
costs of these methods, method recovery and interpretation of the results. 
Furthermore, microbial monitoring to assess compliance with a level 10-4 
infection per person per year is not feasible, since this corresponds to 
extremely low pathogen concentrations. The UK statutory drinking water 
monitoring for Cryptosporidium, discussed in Chapter 3 has provided a direct 
insight in the way pathogens can be distributed in drinking water. The mean 
risk of infection is directly related to the mean pathogen concentration when 
pathogen concentrations are low. Correct assessment of the mean 
concentration of the (over-dispersed) pathogens in treated water requires 
sufficient microbial monitoring. Figure 1a shows a typical dataset of monitored 
Cryptosporidium concentrations in drinking water. The dashed line in Figure 1a 
indicates combinations of pathogen concentrations and proportions that result 
in identical mean concentrations. The point where the dashed line touches the 
monitored concentrations therefore dominated the mean concentration. Both 
lower and higher monitored concentrations had little impact on the mean 
concentration since they are further from the dashed line. The mean 
concentration could be estimated accurately for this dataset since the 
dominant concentrations were accurately determined. The monitored 
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concentrations resulted from the normal variations of the system, thus 
providing the continuous smooth curve in Figure 1a.  
 

 
Figure 1 Monitored Cryptosporidium concentrations in drinking water (black markers) and 
combinations of concentrations and proportions that result in identical mean concentrations 
(dashed line). Figure 1a shows a system with normal variations, Figure 1b shows a system where 
special events occurred and Figure 1c shows a system with good water quality where the risk is 
dominated by pathogen concentrations below detection limit. 

 
However, at some sites a curve break similar to Figure 1b was observed. Such 
a curve break could be caused by special events, such as operational error or 
equipment failure. The dashed line touched the highest concentration of the 
curve break. Therefore the special event dominated the mean concentration 
and thus dominated the mean risk. The required microbial monitoring 
frequency to detect such a special event would be very high, and therefore not 
practical for routine monitoring. Chapter 7 illustrated how (on-line) process 
monitoring (e.g. turbidity or disinfectant residual) could be used to detect 
special events.  
 
Figure 1c illustrates the effect of sample volume in a system with good water 
quality. The dashed line crosses the monitored concentrations at the lowest 
observed concentration. Therefore even lower concentrations, below detection 
limit, dominated the mean concentration. Estimating the arithmetic mean 
concentration with the few positive samples and many negative samples 
would have resulted in underestimation of the mean concentration. Estimation 
of the distribution of concentration below the detection limit would dominate 
the estimate of the mean concentration. The stochastic modelling methods for 
QMRA presented in this thesis could be used to estimate how concentrations 
below the detection limit are distributed, based on the concentrations in source 

b a c 
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water and reduction by treatment. Thus underestimation of risk could be 
prevented. 
 

The tree types of monitoring graphs (normal variation Figure 1a, special events 
Figure 1b and all or mostly non-detects Figure 1c) have all been observed at 
the 216 UK Cryptosporidium monitoring sites. The “dominant concentration” 
method described in Chapter 6 provides a tool to determine whether sufficient 
data was collected for an accurate estimate of the mean concentration. The 
“dominant concentration” method also provides guidance for a monitoring 
plan, supporting decisions on sample volume and frequency. If the dashed line 
touches at the lowest monitored concentrations, larger sample volumes would 
provide the most relevant information. If the dashed line touches at the highest 
monitored concentrations, a higher sampling frequency (possibly with smaller 
sample volumes) or surrogate monitoring would be required to better quantify 
normal and special event concentrations. The presented stochastic methods 
can address the uncertainty of the estimated pathogen concentration in 
drinking water to support decisions on additional monitoring. 

 

The Cryptosporidium concentration in drinking water was compared to the 
concentration in raw water at seven systems. Cryptosporidium removal ranged 
from 1.8 to 5.2 log, even though all seven systems consisted of coagulation, 
sedimentation, rapid sand filtration and GAC filtration. This showed that log 
credits based on unit processes do not account for differences between 
systems. 
 

Process modelling for QMRA 

Process models estimate treatment efficacy based on process conditions. 
Chapters 2 and 7 provided examples of how process models for disinfection 
could be used in the treatment framework to assess treatment efficacy for 
QMRA. Disinfection efficacy was estimated based on site specific process 
conditions. This approach provided an estimate of both the level of inactivation 
and the variability of the process. Chapter 7 provided examples of process 
model applications in a QMRA framework. Examples included applications for 
water safety plans (WSP) to design monitoring, set critical limits, prepare 
corrective actions and support decisions on optimisation of disinfection.  
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Chapter 4 demonstrated that the process model had to reflect conditions at 
full-scale and that proper validation for full-scale environmental conditions was 
required. Several types of disinfection models ranging from a simple CT 
calculation to complex Computational Fluid Dynamics (CDF) are being applied 
today to set process conditions to meet health-based targets (USEPA 2006, 
CDW 2007). Full-scale validation of an ozonation process in Chapter 4 showed 
that CT or CT10 models were ineffective to determine if a high level of 
inactivation (>2 log) was achieved in full-scale systems. Even when residence 
time distribution was determined by tracer tests, CT and CT10 models did not 
account sufficiently for hydraulic shortcomings at full-scale. The Continuously 
Stirred Tank Reactor Model (CSTR) provided an approximation of full-scale 
hydraulics in the case study. Apart from the choice of hydraulic model type, 
Chapter 4 showed that the calibration of the model parameters for full-scale 
environmental conditions was crucial. The most important calibration 
parameter for inactivation models was the inactivation rate constant of the 
organism. Experiments showed that this parameter could vary substantially 
between similar organisms such as E. coli and Campylobacter and between 
different strains of one organism (Smeets et al. 2005). In addition the 
inactivation rate constant varied within the population of a single strain as a 
function of organism age or level of environmental stress. As a consequence 
environmental E. coli populations had significantly lower inactivation rates than 
cultured E. coli. The cultured E. coli were generally used to determine 
inactivation rates in laboratory studies (Smeets et al. 2005). The findings 
suggest that conservative inactivation rates should be applied for full-scale 
modelling. Studies on inactivation rates of pathogens should be conducted 
under environmental conditions with environmental strains. Conventional 
applications of disinfection models often lead to more than 10 log 
overestimation of inactivation. One must take these shortcomings of process 
modelling into account when models are applied in QMRA and preferably 
validate the model predictions at full-scale.  
 
Process models for physical treatment, such as coagulation-sedimentation-
filtration, have also been reported in literature (Yao 1971). However calibration 
of these models is generally complex due to the number of parameters that are 
difficult to determine in a full-scale system. When these processes are located 
at the first stages of treatment, microbial monitoring at full-scale can be 
effective to assess the level and variability of treatment efficacy. Stochastic 
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data analysis and modelling as presented in Chapters 5 and 6 can then be 
applied to assess treatment efficacy and to predict normal events of poor 
efficacy. When physical treatment processes are applied at the final stages of 
treatment, such as slow sand filtration, or when filtration processes are very 
effective, such as soil passage (artificial recharge, bank filtration, dune 
infiltration) microbial monitoring may not be effective due to a lack of positives 
before or after treatment. These processes have been modelled in a QMRA 
setting (Schijven and Simůnek 2002, Van der Wielen et al. 2006) using site 
specific calibration experiments. Soil, water and microorganism characteristics 
can have a strong impact on the treatment efficacy and their combined effect 
in full-scale systems has not been well documented. The lack of positive 
microbial monitoring data is a general “problem” for QMRA in the final stages 
of treatment since safe drinking water contains little microorganisms. 
Therefore process models for physical processes that calculate treatment 
efficacy based on measurable parameters need to be developed. These models 
could improve QMRA studies of effective treatment systems since they could 
include site specific variability. 
 
Future application of process models in a QMRA framework could be the on-
line control of treatment efficacy as part of the SCADA system. The achieved 
treatment efficacy would become the target parameter instead of individual 
process parameters.  
 

Quantifying treatment efficacy using microbial monitoring 

Microbial monitoring can provide the most direct information about treatment 
efficacy. Many water utilities have monitored their source water as well as 
their treated water for faecal indicator organisms. Statistical analysis of such 
historical data in Chapters 3, 4, 5 and 6 provided insight in the amount and 
variability of faecal contamination of source and treated waters. The statistical 
methods described in Chapters 5 and 6 were able to distinguish between 
variability and uncertainty of the monitored concentrations. Examples showed 
how microbial monitoring issues such as sample volume, number of samples, 
non-detects and microbial method (MPN, direct count) could effectively be 
addressed. Other issues such as microbial method recovery, fraction viable non 
culturable cells and fraction human pathogenic strains were not demonstrated 
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These could also be addressed through the hierarchical bootstrapping method 
described in Chapter 5.  
 
Microbial monitoring data before and after a treatment step has been used in 
several studies to assess the variability of treatment efficacy (Teunis et al. 
1997, Medema et al. 1999). These studies paired the influent and effluent 
data by date to determine the variability of treatment efficacy. Thus correlation 
in time between influent and effluent samples was assumed. Chapters 5 and 6 
showed that randomly pairing influent and effluent samples resulted in the 
same assessment of the variability of treatment efficacy as pairing by date. 
This indicated that the assumed correlation in time was not valid. 
Alternatively, the rank method paired influent and effluent concentrations by 
ranked concentration. The rank method assumed that due to the over 
dispersion of microorganisms in water and the variability of treatment, samples 
could not be correlated by date. Pairing samples by rank led to an assessment 
of minimal treatment variability. The treatment efficacies assessed with the 
date and the rank methods were applied as “calibration” of the stochastic 
treatment model. The calibrated model was validated by comparing the 
predicted concentrations to the monitored concentrations after treatment. In 
general, pairing by date overestimated variation of treatment efficacy which 
resulted in an overestimation of concentrations after treatment. The rank 
method provided a better prediction of concentrations after treatment although 
it sometimes underestimated concentrations after treatment. So both 
assumptions of correlation in time and correlation by ranked concentration 
were not valid. 
 
Therefore an optimisation method was developed in Chapter 6 to calibrate 
treatment efficacy in the stochastic treatment model by determining the 
optimal parameters of the treatment PDF. The predicted distribution of 
concentration after treatment corresponded to the measured concentration 
when these parameters were used. The calibrated PDF now provided 
information on the level and variation of treatment efficacy. Thus the 
calibration of the model could also be considered as the treatment assessment. 
Presentation of the data in Complementary Cumulative Distribution Function 
(CCDF) plots allowed visual confirmation of the accuracy of the model. To 
prevent using the same data for calibration and validation, the model was 
calibrated and validated by splitting datasets. 
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Accuracy of stochastic treatment modelling  

Stochastic treatment modelling has been applied to predict pathogen 
concentrations after treatment (Teunis et al. 1997, 1999, Westrell et al. 2003, 
Masago et al. 2004). However, the accuracy of these models was not 
determined. These studies assumed that the stochastic model could be used to 
predict effluent concentrations including (normal) events. The validity of this 
assumption was assessed in Chapter 6 by splitting up datasets by and using 
only a part of the dataset to calibrate the stochastic treatment model. Splitting 
up the data by year and calibrating the model for each year showed that 
observed treatment efficacy could vary between years. This observation could 
be caused by the limitations of the monitoring (e.g. limited number of samples, 
overdispersion of microorganisms in water). The calibrated model for five years 
was used to predict concentrations after treatment for individual years over a 
ten-year period. The predicted concentrations of the years were compared to 
the monitored concentrations to assess the validity of the model. The 
calibrated model did predict the level and variation of microorganism 
concentrations after treatment, even when these levels varied between years. 
So the applicability of stochastic treatment modelling in this case study was 
verified. 
 
Many QMRA studies had to use surrogate organism monitoring to calibrate the 
stochastic treatment model for pathogens (Teunis et al. 1999, Medema et al. 
1999). Surrogate organisms for pathogens were chosen based on similarities 
in organism characteristics and behaviour during treatment. Common 
surrogate-pathogen combinations were SSRC-Cryptosporidium for coagulation, 
filtration and disinfection (Teunis et al. 1997, Hijnen et al. 2002), E. coli-
Campylobacter for coagulation, filtration and disinfection (Smeets et al. 2005) 
and bacteriophages (MS2, PRD1)-enteric viruses for filtration and transport 
through soil (Schijven and Simůnek 2002). The validity of these surrogates 
was generally assessed in pilot tests. However, data analysis at full-scale often 
indicated poor correlation between pathogen and surrogate reduction by 
treatment (Chapter 6, Smeets et al. 2005). Chapter 6 showed that surrogate 
data could be used to effectively calibrate a treatment model for pathogens, 
even when pairing pathogen and surrogate data by date indicated poor 
correlation. Due to the complexity and costs involved in pathogen monitoring, 
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treatment validation through surrogate organisms will continue to play an 
important role in the future.  
 

Applications of QMRA in the WSP 

QMRA in itself does not improve drinking water safety. Chapter 1 discussed 
the use of QMRA as a tool in Water Safety Plans (WSP). Several examples of 
QMRA applications in the WSP were demonstrated in Chapter 7.  
 
System assessment 
Assessment of the system’s capability to reach health-based targets is part of 
the WSP. The system assessment in the WSP (WHO 2006) uses a risk matrix 
for a semi-quantitative risk assessment. Chapters 2 to 6 of this thesis provided 
examples of how treatment efficacy can be assessed quantitatively and 
objectively. These examples made clear that point estimates using log credits 
and CT10 models are not sufficient for site specific assessment of treatment 
efficacy. Risk managers may overlook the impact of ‘normal’ events during 
semi-quantitative assessments due to the fact that they occur as part of 
normal variations. The presented stochastic methods were especially effective 
to quantify the frequency and magnitude of ‘normal’ events that result from 
regular variations in the system.  
 
Some events are the result of operational errors or equipment failure. These 
were referred to as ‘special’ events. Risk managers may estimate the 
frequency and magnitude of special events based on operational experience 
and failure reports or on other methodologies, such as Failure Mode Analysis 
(FMA). QMRA can quantify the effect of special events on risk to support 
decisions in the WSP. Examples of how these special events can be 
incorporated in QMRA were provided in Chapter 7.  
 
Risk prioritisation 
Risk prioritisation can be performed at different levels of detail. A point-
estimate QMRA using log credits can be sufficient to identify sites with the 
highest risk. When prioritising risk at a specific site, the risk estimate generally 
needs to be more accurate. The example of chlorine disinfection optimisation 
in Chapter 7 showed the relative priorities of average performance versus 
chlorine failure events. Improving the hydraulics of a chlorine disinfection 
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system would significantly increase nominal inactivation. However, yearly 
mean inactivation would only improve if rare events of low chlorine residual 
were also eliminated. Both hydraulic adaptation and elimination of chlorine 
failure were more effective than increasing the chlorine dose.  
 
Design monitoring 
Monitoring of drinking water treatment serves to assess water quality and 
treatment efficacy and to verify that no significant failure events occur. 
Microbial monitoring provided the most accurate site specific information of 
full-scale treatment performance. The dominant concentration concept 
presented in Chapter 6 can be used to design microbial monitoring 
programmes. Based on monitoring results, the method assessed whether 
monitoring was sufficient to accurately assess the mean concentration (Figure 
1a). When the mean concentration cannot be determined accurately from the 
data, the method provides guidance on monitoring strategies. The strategy 
could consist of frequent sampling of small volumes to quantify the frequency 
and magnitude of normal events. Or it could consist of less frequent sampling 
of larger volumes to quantify nominal concentrations (Figure 1c). In some 
cases larger sample volumes are not feasible. In that case stochastic treatment 
modelling can be used to estimate these concentrations based on 
concentrations before treatment and the assessed treatment efficacy. 
 
The required monitoring frequency to detect relevant failure events was 
discussed in Chapter 7. On-line monitoring of parameters that would indicate 
an event, such as turbidity, chlorine residual, flow or equipment monitoring, 
could be used since detecting the event is more important than quantifying 
efficacy. As treatment efficacy increased, more frequent monitoring was 
required to detect significant events. Daily monitoring could only verify two log 
reduction. Monitoring every ten seconds was required to verify six log 
reduction by a single treatment step. A multiple barrier system providing six 
log reduction would require less frequent monitoring since three processes 
each providing two log reduction would only require daily monitoring of each 
treatment step.  
 
Setting critical limits 
A treatment system can be designed to provide exactly the right level of 
treatment to meet the health-based targets. However, in practice the risk 
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manager needs to account for variations and inaccuracies in order to run a 
practical and stable process. Setpoints for processes such as disinfectant dose 
or filter run time are set accordingly and may be adapted for changes such as 
flow or temperature. Critical limits must be set to operational or monitoring 
parameters. As long as these limits are not exceeded, the produced water will 
comply with the health-based target. Examples in Chapter 7 showed that even 
a short deviation might lead to not reaching the yearly average health target. 
Therefore setpoints and operational limits must provide some safety margin 
that allows for periodic deviation and correction. The required margin depends 
on the level of monitoring, the response time needed to bring a setpoint back 
on specification and the expected frequency and magnitude of events. An 
example in Chapter 7 showed that a chlorine disinfection system required a 
setpoint corresponding to 4 log reduction to achieve 3 log reduction on a 
yearly basis would allow for an eight-hour failure to occur once a year. In that 
case the critical limit would equal the yearly target of 3 log reduction. 
 
Ideally the processes could be controlled on-line to achieve a level of pathogen 
reduction, rather than applying setpoints and critical limits for individual 
process parameters. Thus changes in flow or process conditions could be 
adequately addressed. In multiple barrier systems, the combined effect of the 
barriers, calculated with QMRA, could be controlled on-line. Deviance of one 
barrier could then be mitigated by the margin or adaptation of other barriers. 
Thus robust, effective and efficient operation could be achieved. 
 
Corrective actions 
When critical limits are exceeded to the extend that normal process control 
cannot bring the system back to specification, corrective actions are required. 
QMRA was used in Chapter 7 to determine the allowable response time in 
relation to the level of the corrective action. In general, corrective actions need 
to be taken rapidly. An example showed that adequate action was required 
within 6.5 hours in order to prevent exceeding the yearly treatment 
disinfection target of 2.5 log inactivation when loss of disinfectant residual 
was detected. The QMRA studies of full-scale data in Chapters 3, 5 and 6 
showed that risks were generally dominated by normal events occurring 
between 1% and 10% of the time. However, special events occurring less 
than 0.1% of the time could also dominate the mean risk.  
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Implications for the drinking water industry  

Water utilities have the responsibility to provide safe drinking water. Verifying 
that drinking water treatment effectively removes or inactivates pathogens 
from the source water is a crucial part of this responsibility. This study 
showed that point estimates based on literature can overestimate treatment 
efficacy. Point estimates using site specific monitoring data improve the 
estimate, but can still overestimate efficacy. Stochastic models include 
variability of water quality and treatment and therefore provide a better 
estimate of pathogen concentration in drinking water. However, the currently 
applied method of pairing microbial samples before and after treatment by date 
often leads to underestimation of treatment efficacy and thus to an 
overestimation of risk. The methods in this thesis have overcome this problem 
and can provide a more reliable estimate of risk. In addition they provide 
insight in the variability of risk and the uncertainty of the assessment.  
 
The stochastic methods are more complicated than point estimates and may 
claim more resources to collect data. The benefits of stochastic method can 
outweigh these disadvantages. Point estimates can also underestimate 
treatment efficacy leading to an overestimation of risk and collecting more 
data to reduce uncertainty can be more efficient than expanding treatment.  
Limited microbial monitoring can lead to overestimation of pathogen 
concentrations during events and thus to overestimation of the yearly average 
risk of infection. Measures to reduce this risk, such as additional treatment, 
will likely require more resources than extra monitoring. Chapter 6 provided 
guidance on monitoring strategies, such as sample volume and frequency to 
determine when monitoring has been “enough”.  
 
Currently monitoring often leads to ‘data graveyards’ without any value. By 
directing monitoring efforts towards use for QMRA this data would become 
valuable. Apart from monitoring design (sampling location, frequency and 
volume), this should include choice of microbial method (how quantitative is 
the result?) and data collection and storage (store actual counts and sample 
volumes, microbial method used, uniform parameters names etc.). QMRA 
methods could be used beforehand to address some of these issues and 
provide an effective and efficient monitoring programme that would lead to 
statistically valid conclusions. The overview of 20 case studies of full-scale 
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efficacy in Chapter 6 can be used by water utilities as a benchmark of what 
other systems have achieved in practice.  
 
The frequency and magnitude of ‘special’ events (e.g. due to equipment 
failure) cannot be predicted with the stochastic methods. Therefore water 
safety plans (WSP) are needed to identify ‘special’ events. Chapter 8 provided 
several examples of how QMRA can be used as a tool in the WSP. In many 
cases this included process modelling. Water utilities need to realise that a full-
scale treatment plant is not a large laboratory. Chapter 4 showed that process 
models that are effective to describe laboratory experiments can overestimate 
treatment efficacy by many orders of magnitude when they are directly applied 
to full-scale situations. This is caused by hydraulic shortcomings, variation of 
conditions and long term effects at full-scale and the differences between 
cultured and environmental microbial populations. Site specific validation of 
process models at full-scale is therefore required, especially if a process is 
expected to achieve high pathogen reduction exceeding 2 logs.  
 
Health-based targets are generally set over a longer period of time, such as 
yearly risk of infection. This could lead to the assumption that a short period of 
non-compliance is acceptable since the risk is averaged out. Since treatment 
systems generally need to achieve several log units of pathogen reduction, 
even a few hours of non compliance could lead to not meeting the yearly 
health-based target. Water utilities need to train their operators to realise the 
importance of continuous effective treatment. As an example, treatment 
should never be compromised for operational changes (e.g. start up of a 
treatment line) or maintenance (e.g. chlorine pump or ozone generator 
maintenance).  
 

Considerations for the regulators 

Recently QMRA has been incorporated in several guidelines and legislations 
each with a different approach and limit (Anonymous 2001, NHMRC 2004, 
WHO 2004a, CDW 2007). Guidelines have applied either the risk of infection 
(this thesis) or disability adjusted life years (DALYs) to define health-based 
targets (WHO 2004a). The Dutch drinking water regulations (Anonymous 
2001) require water companies to demonstrate compliance with a 10-4 yearly 
risk of infection target by a site specific QMRA. In Canada the Federal-
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Provincial-Territorial Committee on Drinking Water (CDW) is using QMRA in 
the development of new ‘Guideline Technical Documents for both Enteric Virus 
and Protozoa’ (CDW 2007).The draft guideline proposes 4 log reduction of 
viruses and 3 log removal of protozoa in combination with a health-based 
target of 10-6 or 10-7 DALY. The new Australian drinking water guidelines have 
incorporated QMRA, although it is recognised that generally not enough data 
will be available (NHMRC 2004). In the USA the LT2ESWTR was released 
(USEPA 2006). Although the preparations of the initial SWTR in 1994 were 
somewhat guided by the target of 10-4 risk of infection from Giardia, it is not 
the target of the LT2ESWTR to achieve a quantified level of safety (Ashbolt 
2007).  
 
Remarkably most legislations allow the use of log credits and CT10 models to 
quantify treatment efficacy. Log credits can be effective for an initial 
prioritisation of sites at risk. However, in a site specific assessment log credits 
can both over and underestimate treatment efficacy by several orders of 
magnitude (Chapters 2, 3, 4 and 7). As a consequence this approach could 
lead to unnecessary investments or a false sense of safety. Although 
legislations and guidelines recognised the variability of risk and the uncertainty 
of the QMRA results, no clear targets for acceptable events or the required 
level of uncertainty were set.  
 
With respect to variability, high risk events might be of concern since these 
could lead to an outbreak situation. This leads to the question whether the 
health-based target of 10-4 risk of infection per person per year sufficiently 
covers outbreak conditions. Incidence of gastroenteritis in affluent countries 
range from 0.1 to 3.5 episodes per person per year (Roy et al. 2006) or 1%-
2% incidence of Cryptosporidiosis (Casman et al. 2000, Van Pelt and Van 
Duynhoven 2006). Therefore the nominal 10-4 risk of infection from drinking 
water would contribute less than 10% to the endemic level of gastroenteritis, 
which seems appropriate. However, short events of high risk could lead to an 
outbreak situation resulting in social concern which can be referred to as “risk 
aversion” (similar to airplane crashes versus car crashes (Vrijling et al. 1998)). 
Therefore Signor et al. (2007) promoted the use of a daily risk target of 10-6 
risk of infection per person per day (the yearly 10-4 health target corresponds 
to an average daily risk of infection of 2.74*10-7 per person per day). With a 
yearly target of 10-4, theoretically a daily risk of 10-4 would be acceptable one 
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day per year when the risk on all other days would be negligible (e.g. <10-9). 
If on this day each infection would lead to illness, this would lead to 0.01% of 
the population becoming ill. This is far below the threshold of detection of an 
outbreak through health monitoring which is around 1% (Regli et al. 1991). 
Therefore the 10-4 health target is sufficient both for average risk and risk 
aversion. Legislators and risk managers need to be aware however that this 
average health target can be dominated by short rare events of high risk, and 
therefore quantification of these events in QMRA is crucial. 
 
The health target is presented as a discrete value, however in risk assessment 
some level of uncertainty around this value arises. Choosing an appropriate 
level of certainty is a political and social point of discussion rather than a 
technical one. The upper 95% confidence level (CL) is a level of certainty that 
is often used. Choosing the 50%, 90%, 95% or 99% confidence level may 
have an impact of several orders of magnitude with regard to the required 
treatment. For example, in Chapter 7, the median log reduction of 
Cryptosporidium by filtration reported in literature was 2 log (50% CL). 
However, when all the reported log reductions were incorporated in a 
stochastic assessment, the expected reduction was 1.5 log. The 90%, 95% 
and 99% CL were 1.1, 0.8 and 0.3 log reduction respectively, so the estimate 
of filtration efficacy could vary two orders of magnitude depending on the 
chosen confidence level. The stochastic method in Chapter 5 distinguished 
between the variability of risk and the uncertainty of the assessment, resulting 
in the FN-curve. This would allow legislators to decide whether both the 
average and the peak risk were acceptable and whether this was sufficiently 
certain.  
 
The application of QMRA in drinking water is still being developed, and water 
utilities need to make some crucial choices that are not site specific and are 
not in the field of expertise of water suppliers. These include: 

- the choice of QMRA method; 
- the selection of pathogens; 
- dose-response relations; 
- health effects risks and severity weight (DALY).  
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Since these choices could significantly affect the QMRA outcome, legislators 
should provide guidance for a uniform approach when QMRA is applied for 
legal compliance. 
 
Choice of QMRA method 
The OMRA method strives to provide an objective estimate of the risk of 
infection through statistical methods. Stochastic modelling of drinking water 
treatment through Monte Carlo simulation has become an accepted method for 
QMRA applications (Haas et al. 1999). However, slightly different methods for 
site specific stochastic treatment model calibration were reported in literature 
(Teunis et al. 1997, 1999, Petterson et al. 2006, Smeets et al. 2007). The 
choice of method can have a significant impact on the assessed risk. The 
methods proposed in this thesis require few prior assumptions and allow 
intuitive, visual evaluation of the modelling results and comparison with 
monitoring results. The current challenge to the QMRA experts is to provide a 
unified QMRA approach for the water industry and legislators. 
 
Selecting pathogens 
Recently new types and strains of human pathogenic microorganisms were 
identified as possibly being relevant for drinking water safety. Evidence of 
transitions between hosts due to genetic adaptation has raised concern for 
new viruses such as SARS (Kuiken et al. 2003) and Avian influenza (De Jong 
and Hien 2006). Another group of pathogens that is receiving increased 
attentions are zoonotic parasites, such as Cryptosporidium, Giardia, 
Toxoplasma, Cyclospora cayetanensis, Amebae and ciliated protozoa, 
Blastocystis, microsporidia and zoonotic helminths (Various 2004a, WHO 
2004b). But also known microbial parameters that were previously of less 
hygienic concern receive renewed attention, such as HPC infections in 
immunocompromised (Various 2004b, Glasmacher et al. 2003). Bioterrorist 
infectious agents could also include new threats to drinking water (Todd 2006, 
CAMRA 2007). It will not be feasible to asses the risk of infection for all these 
individual organisms. Therefore it is suggested to assesses the risk for a suite 
of index pathogens that are expected to cover the challenges posed by these 
existing and new microbes (MicroRisk 2006). This thesis showed that the 
limited knowledge about the index pathogens in drinking water caused 
uncertainties in QMRA. Improving our knowledge on the occurrence of index 
pathogens in source water, reduction by treatment and health consequences 
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should be the focus of research. By relating this knowledge to characteristics 
of emerging pathogens the risk from these pathogens can be assessed.  
 
Dose-response 
The impact of choice of dose-response is illustrated by two studies. Masago et 
al. (2004) found that absence of Cryptosporidium in daily samples of 180 L 
was sufficient to verify that the 10-4 health target was met, however Smeets 
et al. (Chapter 3) found that daily sampling of 1,000 L was not sufficient. 
These differences were caused by the applied dose-response models (Haas et 
al. 1996 respectively Teunis et al. 2002). In addition, susceptibility of the 
population may change in time due to demographic changes, such as aging of 
the population, increase of immunocompromised people due to healthcare, 
decrease of general immunity due to reduced exposure to pathogens and 
increase of infectivity due to changes in the genetic structure of viruses. To 
overcome the uncertainty about the dose-response the maximum risk curve 
could be used to provides a maximum estimate.  
 
Health effect and severity weight 
To determine the DALY additional assumptions about the health outcome risk 
following infection and the severity weight of this outcome need to be 
determined. These are only relevant when different hazards are compared, e.g. 
disinfection by-products versus risk of infection (Havelaar et al. 200, Ashbolt 
2004). However, when setting targets for individual hazards, the DALY 
approach introduces significant uncertainties. Choices made to calculate the 
DALY could dominate the outcome of the assessment and should therefore be 
made explicitly clear when reporting the results. 
 
Guidance by the legislator 
Water utilities have the expertise to make decisions with respect to source 
water, treatment and distribution of drinking water. Therefore legislation and 
guidance for water utilities should be directed at these issues that can be 
controlled by the water utilities. The water utilities will be capable of 
estimating the site specific dose distribution within the supplied population. 
Legislators should provide guidance to translate this dose to the resulting 
health risk targets. 
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Future research 

Although the knowledge on QMRA has progressed over the last two decades, 
the drinking water industry is still just at the beginning of applying QMRA on a 
regular (regulatory) basis. This leads to new insights and adaptations of 
methods. Research on the following issues can reduce the uncertainty in 
treatment assessment and enable a broader implementation of QMRA thus 
leading to safer drinking water. 
 
Process models 
Physical treatment processes such as coagulation, sedimentation, filtration and 
soil passage form important barriers of our drinking water systems. Microbial 
monitoring is not effective to assess the efficacy of these treatment processes 
when they are applied at the final stages of drinking water treatment. Process 
models that can estimate the efficacy of these processes based on measurable 
parameters could therefore improve the risk assessment for these final stages 
of treatment. Small scale drinking water systems and systems in developing 
countries generally do not have the resources for extensive microbial 
assessment. Process models could provide a relatively cheap and fast tool to 
assess and improve the safety of these systems. 
 
Some of the relevant parameters for physical treatment, such as size of the 
microorganism and its surface charge have been studied under laboratory 
condition. However, little is known about the state of microorganisms under 
environmental full-scale conditions. Microorganisms may be agglomerated or 
attached to particles which changes their size and surface characteristics. The 
characteristics will not be identical for all microorganisms, filter material and 
water conditions and the efficacy of a process will be determined by the 
proportion of the system with unfavourable characteristics for pathogen 
removal. Future research should focus on the development of process models 
that use measurable parameters to determine these characteristics.  
 
The challenge of this research will be to effectively address complications of 
environmental and full-scale conditions. Therefore sufficient information from 
full-scale systems is needed to provide feedback on the applicability of the 
process models. This thesis has provided a limited overview of full-scale 
treatment efficacy. The overview showed that in general processes are less 
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effective at full-scale than at pilot scale. However, individual systems were 
less variable than would be expected based on experimental findings. The 
overview of full-scale treatment efficacy could provide initial feedback for the 
process models. This could be expanded by collecting data from more full-
scale systems and including the model parameters in the process monitoring. 
 
Indexing new pathogens 
As new pathogens emerge their risk for infection through drinking water needs 
to be assessed. Based on their general characteristics such as occurrence in 
the environment, pathogenicity and known outbreaks though water, the 
pathogen may be indexed as a potential hazard for drinking water. The 
efficacy of drinking water treatment for this new pathogen needs to be 
assessed. It is impractical to perform experiments for each new pathogen and 
treatment process. Future research needs to determine what characteristics 
make an organism susceptible to or resistant against a treatment process. This 
could relate to the research on physical processes, where surface properties, 
size, shape, mobility and persistence determine the efficacy. Other properties, 
such as membrane composition and capsules may be relevant for disinfection 
processes, whereas DNA or RNA structure and repair mechanisms will impact 
the effectiveness of UV treatment. Emerging pathogens can then be indexed 
based on these characteristics without the need for extensive experiments 
with each organism. 
 
Interaction between processes 
The stochastic treatment model assumed independence between treatment 
steps. However, some interaction between processes is expected, e.g. failure 
of particle removal may reduce the efficacy of consecutive disinfection 
processes. Such common cause failures could lead to an event. Therefore 
interaction between processes needs to be studied in detail. Situations where 
this interaction occurs could then be modelled as special events in the 
stochastic model. 
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