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Abstract: A significant body of controlled laboratory research suggests different biological
mechanisms by which the low-cost co-culture of seaweed and shrimp could improve
sustainability whilst increasing income for the many poor pond farmers of South-East
Asia. However, at the pond level, production and cost–benefit assessments remain largely
lacking. Here, we studied the extensive co-culture of Gracilariopsis longissima seaweed and
Penaeus monodon shrimp on pond production output, nutrient concentrations, and farm
income on the north coast of Java, Indonesia. Co-culture showed 18% higher seaweed
production during the first cycle (2261.0 ± 348.0 kg·ha−1) and 27% higher production
during the second (2,361.0 ± 127.3 kg·ha−1) compared to monoculture. Shrimp production
per cycle was 53.8% higher in co-culture (264.4 ± 47.6 kg·ha−1) than in single-species
cultivation (171.7 ± 10.4 kg·ha−1). Seaweed agar content and gel strength did not differ
between treatments, and neither did shrimp bacterial or heavy metals concentrations.
The profit of co-culture was, respectively, 156% and 318% compared to single-species
seaweed and shrimp cultivation. Co-cultivation lowered nutrient loading in the pond water
and in the sediment and is argued to be a low-investment and environmentally friendly
option for poor pond farmers to improve their income and financial resilience through
product diversification.

Keywords: pond aquaculture; Indonesia; food security; plant–animal synergy; sustainable
aquaculture

1. Introduction
The concept of co-culturing plants in animal aquaculture has long been promoted as a

sustainable way to remediate and mitigate environmental impacts, given that plants can
absorb nutrients and thereby reduce nutrient loads which may otherwise be harmful to
aquatic systems [1–5]. The idea of plants being used to mitigate excess nutrients, whether
or not originating from aquaculture or other sources, remains as viable as ever [6–11]. In ad-
dition, there is also a considerable body of research that demonstrates a number of potential
farm-level economic benefits of co-culturing aquatic plants and animals. However, most
of such research has so far taken place in freshwater systems and with fish as the animal
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component [12]. Research on brackish or marine co-culture has generally been much more
limited [13]. Even so, for controlled experimental systems, many biological benefits (or
potential benefits) have also since been demonstrated. Examples include better feed conver-
sion [14–17]; increased growth [9,14–25]; higher stocking density [15]; higher shrimp quality
in terms of fatty acid profile [16,17] and pigmentation [14,16,18]; improved shrimp immune
response to pathogens [19,21]; higher shrimp survival [9,21,23,26], possibly contributed to
by shelter provision against predators and cannibalism [6,27] and reduced crowding [22];
higher mussel survival [28]; higher seaweed nitrogen assimilation [18,20,26,28]; phosphate
assimilation [18,28]; protein content [17] and production [29]; and overall synergy between
plant and animal [30].

While such results suggest promise for economic benefits from co-culture integration
at the pond level, field trials for economic and environmental sustainability in outdoor
brackish-water farm ponds are quite rare. Also, studies focusing on if and how the nu-
merous demonstrable biological benefits at the laboratory or mesocosm level combine to
generate economic benefits in the farm setting remain few. Moreover, when economic assess-
ments are conducted, they are typically only partial, and consider only a subset of the cost
and or revenue components, such as either shrimp [6,31] or seaweed yield [29,32], or feed
costs [33], but rarely all factors jointly impacting financial feasibility. Laapo and Howara [34]
and Tran et al. [35], respectively, performed cost–benefit analyses for milkfish–Gracilaria
pond co-culture and tilapia–shrimp–seaweed pond polyculture, and were able to demon-
strate high net positive returns even though the underlying biological and environmental
mechanisms for improved returns were not studied. Economic analyses, such as those
provided for a controlled aquaponics system by Castilho-Barros et al. [31], showed that
with good management, an intensive co-culture system can also be economically viable.
However, due to the high investment requirements, aquaponics and other intensive cul-
ture systems are not easily applicable to the millions of small-holder fish farmers that
still account for 27.8% of worldwide farmed aquatic animal production [36]. Moreover,
Ahmed et al. [37] conducted a socio-economic assessment for small-holder extensive co-
culture of shrimp with mangroves in Bangladesh, and were unable to convincingly demon-
strate higher profitability. This appeared to be because higher production was also accom-
panied by higher costs of co-culture. Based on farmer responses, Ahmed et al. [37] found
evidence of the likely use of co-culture with mangroves as a risk mitigating strategy (via
product diversification) by the farmers but not convincingly for higher profitability. Clearly,
cost–benefit assessments of seaweed–shrimp integrated culture are dearly needed for a
better evaluation of the many potential ways in which such co-culture might or might not
make economic sense at the farm level under different environmental and socio-economic
constraints impacting aquaculture in different countries.

Extensive shrimp culture of Penaeus monodon in large outdoor ponds with little or
no fertilization or supplemental feeding remains the mainstay of small-holder shrimp
production in many countries of South-East Asia [38]. For instance, in 2021, in Bangladesh,
there were 186,275 ha of small shrimp ponds, with an average farm size of 1–4.5 ha and a
347 kg·ha−1 average annual output [38]. In Indonesia, the situation is somewhat different,
as the traditional P. monodon culture collapsed in the 1990s due to the spread of White Spot
Syndrome Virus, and shrimp farming largely switched to the lower-valued P. vannamei,
which has greater tolerance to environmental degradation and disease. However, up to
15% of the farmers in Indonesia are still small, “independent” farmers using “traditional”
technology while a much larger but unspecified group of farmers are small farmers that
practice some form of semi-intensive culture system with some input of feed and chemi-
cals [39]. Due to the spread of diseases and environmental degradation, in Indonesia today,
there are roughly 250,000 ha of abandoned ponds [40]. As continued expansion of shrimp
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production will likely further the trend of large-scale mangrove destruction and is highly
unsustainable [41], the urgency of developing effective ways for environmentally friendly
pond rehabilitation has been stressed by others before [42,43]. Followed by shrimp price
volatility, vulnerability to disease remains the second most important risk in small-scale
shrimp culture [44]. In this, co-culture with seaweed shows promise as seaweeds have
recently been shown to be able to have a strong inhibitory effect on shrimp pathogen
virulence [45].

The purpose of this work was to compare pond yields for separate and integrated
cultures of seaweed and shrimp along the north coast of Java, Indonesia. We chose Penaeus
monodon as the shrimp of study because of its local preference by shrimp farmers. This
species still accounts for about 19% of Indonesian shrimp production [46–48]. Typically,
post larval shrimp are placed in ponds with a maximum density of 25 ind·m−2 for semi-
intensive farming and left to grow out to a marketable size, either with or without some
form of additional feeding. Depending on the level of supplemental feeding, the time
needed to reach a marketable size is approximately 120 d. The seaweed Gracilariopsis
longisssima (Syn. Gracilaria verrucosa [49]) was chosen for our co-culture experiments. This
is one of the three principal species cultured in Indonesia and typically used as a co-crop
in saline and brackish ponds [50]. By measuring yields and product and water quality
parameters, as well as the associated economic costs and benefits, we aimed to assess
the potential for environmental remediation of combined culture and evaluate its net
incremental effect of on pond profits.

2. Materials and Methods
2.1. Study Site and Pond Selection

Our co-culture experiments took place in the rural village of Kaliwlingi in the province
of Brebes along the north coast of Central Java, Indonesia (6◦48′16′′ S; 109◦2′1′′ E) (Figure 1).
Nine ponds (sizes: 2000–5000 m2; approximate depths: 75 cm) were chosen based on
availability and willingness of three farmers to cooperate. The water of the ponds was
drained, the top layer (~15 cm) of pond sediment was removed, and the ponds were left to
dry for 7–10 d until the sediment cracked (~20% moisture content) and became odorless [51].
Then, according to common practice, the ponds were treated with Saponin.

2.2. Physical Parameters and Nutrients of Pond Water and Sediment

Concentrations of organic carbon, nitrate (NO3), and phosphate (PO4) in the sedi-
ment and water were measured ex situ using Wavelength Dispersive X-ray Fluorescence
(WDXRF) with a Rigaku Supermini200 every second week. Chlorophyll concentrations
were measured according to the spectrophotometric method of Strickland & Parson [52].
Primary production (PP) was calculated following Beveridge’s formula for annual pond
PP [53], including correction for an average pond depth of 0.75 m:

PP (gC m−2·day−1) = 56.5 chlorophyll-a(g·m−3)0.61 · 0.75 m · 365 d−1

The total dissolved solids (TDS), salinity (digital ATAGO® PAL-06S; 1 ppt accuracy),
temperature, and dissolved oxygen were determined using the Water Quality Checker
(YSI® Pro 20; 0.1 ◦C and 0.01 ppm), and turbidity (in terms of Nephelometric Turbidity
Units or NTUs) using the Thermo Scientific™ Orion™ AQUAfast AQ3010 and pH with
the EZDO 7200 and its ORP sensor, three times a day (morning, noon, and afternoon), two
days each week. Temperature and irradiance (PAR) were measured every 10 min using
HOBO-loggers (Hobo UA 003-64 Onset) attached at a depth of 30 cm and above the pond
for reference.
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At the end of the experiment, three sediment samples per pond were taken to de-
termine the CNP-composition and presence of heavy metals (As, Pb, Hg, and Cd) using
Wavelength Dispersive X-ray Fluorescence (WDXRF) with a Rigaku Supermini200 at the
Diponegoro University laboratory facilities. The level of detection (LOD) for all heavy
metals was ≥0.008 mg·g−1.

2.3. Experimental Design for Growth and Yield

The growth and yield of P. monodon and G. longissima were measured over a 122 d
cultivation period, without supplemental feeding or fertilization. Seaweed and shrimp
were cultured separately and/or jointly using identical stocking rates for either of the
two in order to assess potential differences in production under the three different culture
scenarios. Throughout the text, we refer to the three culture settings or treatments as
“Shrimp”, “Seaweed”, and “Combined”. Each scenario was executed in triplicate. As the
cultivation period of seaweed is much shorter compared to the shrimp, two cultivation
cycles of 45 d each were applied for seaweed during the course of the experiment. The
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difference in days was used for the manual harvest of the seaweed and its restocking. The
initial stocking, at a density of 100 g·m2 which was chosen for practical reasons (seeding
time and availability of seed material and costs), took place shortly prior to the broadcast
stocking of the shrimp. At the end of each cycle, the seaweed was harvested, weighed, and
air dried on netting hung above the ground using bamboo sticks. After harvest, the ponds
were restocked, and the second “hanging method” was used, whereby seaweed seedlings
are attached to ropes and hang freely in the water column. Seaweed was weighed and
sampled prior to the (re)stocking moments and at harvest to assess dry matter content and
the total yield. In addition to total production per cycle in terms of weight yield, important
quality parameters for seaweed (in terms of agar content and gel strength) were measured.

Penaeus monodon post larvae of ~12 weeks old (0.15 g) were seeded in the ponds
at a density of 10 post larvae·m−2. For comparison, the optimum stocking densities for
intensive farming, semi-intensive, and extensive (non-fed) cultivation, respectively, are
45, 25, and 4.8 post larvae·m−2 [54,55]. Our stocking level was chosen as the intermediate
between the optima for semi-intensive and extensive (non-fed) cultivation based on local
expert input and to potentially enhance the differences between the treatments. Shrimp
were weighed prior to stocking and at harvest. Ten randomly caught individuals were
weighed every second week.

2.4. Calculation of Biological and Economic Yield

Specific growth rates (SGR) in %·day−1 were calculated using the formula given below,
in which d = day, T = number of days of cultivation, W0 = initial wet weight, and Wt = wet
weight at harvest:

SGR (%·day−1) = [ln(Wt) − ln(W0)]/T · 100%

The prices obtained by the farmers were used to assess generated revenue (R). Variable
cost estimates (V) for pond preparation, seeding, pond maintenance, harvest, and product
treatment up to the point of sale to middlemen were obtained from the farmers. Price per
kg for seaweed (dried) was $0.35 (IDR 5000.-), and for the shrimp, this was $6.37 (IDR
90,000.-). All cost and yield figures were standardized to productivity per hectare for one
cycle of shrimp and two cycles of seaweed cultivation.

Fixed costs, such as the costs of obtaining the ponds or renting ponds, depreciation
costs, and capital costs were assumed to be equal and of no differential effect in our assess-
ment. Variable production costs (V) were then subtracted from the generated revenues to
determine the Contribution Margin (C) for comparative cost–benefit ratios, assuming equal
fixed costs. Most often, the Profit Margin for a product being considered is used to decide
whether or not to include that product in a product portfolio. Thereby, the profit margin is
the measure of the total difference between revenue from sales and all costs, both variable
and fixed. However, to better understand how a specific addition of a product can or cannot
contribute to profits of a running operation, it is better to look at the contribution margin
as we have here [56]. Hence, our economic assessment only addressed the incremental
cost–benefit of co-culture over monoculture for farmers that were already involved in these
activities. Individual and synergistic contributions of shrimp and seaweed to total pond
revenues were calculated, following Alam et al. [57], as follows:

Contr. seaweed (%) = yield seaweed (IDR)/yield seaweed and shrimp (IDR) · 100%

Contr. shrimp (%) = yield shrimp (IDR)/yield seaweed and shrimp (IDR) · 100%
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2.5. Product Quality and Food Safety Assessment

For the harvested Gracilariopsis, two key quality criteria, namely agar content and
gel strength, were determined following Rejeki et al. [58] After drying, 500 g of seaweed
was pre-treated with 5 L of NaOH 6% (w/w) at 85 ◦C for 3.5 h. After ample washing, the
samples were neutralized with 200 mL of acetic acid 0.5% (w/w) for 1h at room temperature.
Extraction using 200 mL distilled water at 85 ◦C for 2 h was followed by filtering while
still hot using a 100% cotton cloth. The mixture allowed to gel at room temperature
for 24 h. Based on the air-dried weight, agar yields were calculated. Gel strength was
measured using the Brookfield CT3 4500. Dried agar starch (1.5 g) was dissolved in
100 mL distilled water by magnetic stirring for 20–30 min at 90 ◦C. Stabilization of the
solution was performed in an 80–90 ◦C water bath for 15min in order to reduce and remove
irregularities [58]. Then, 22 mL samples were left overnight at 28 ◦C, after which, gel
strength was measured using a Rheometer following Bono et al. [59].

At the end of the experiment, nine samples of shrimp per pond were analyzed for bacte-
rial contamination (total plate count in colony-forming units per gram, CFU·g−1) according
to the Standard Nasional Indonesia procedures (SNI 2332.3:2015 [60]), for Escherichia coli,
according to SNI 2332:1-2015 [61], for Salmonella and for Vibrio cholerae according to SNI
01-2332.2-4 2006 [62], all by the Central Java Laboratory of the Ministry of Fisheries in
Semarang. Heavy metals in shrimp were assessed using the same protocol as for the
sediments, as described above.

2.6. Statistical Analysis

Statistical analysis was performed using Graph Pad Prism (V8.2.1) software. Compar-
ison between ponds within treatments was performed using Welch’s one-way ANOVA
(under assumption of a Gaussian distribution and variable standard deviations). Gel
strength, bacterial presence (total plate count), seaweed production, and carbon, nitrate,
and phosphate content of both the water and the sediment were likewise compared using
an unpaired Welch’s t-test. When concentrations were below the level of detection, the
minimum detection level was set as the measured level. All samples were pooled per pond
and the different ponds were treated as experimental replicates. Throughout the text, mean
values are followed by standard deviations (±SD).

3. Results
3.1. Water and Sediment Parameters

Table 1 provides the comparisons of water quality parameters for the three different
experimental treatments divided across the three sets of ponds. The total dissolved solids
(TDS) were, respectively, 19.29 ± 2.20, 21.67 ± 2.63, and 23.79 ± 1.51ppt for the treatments
of Combined, Shrimp, and Seaweed. The ponds with the Combined culture showed the
lowest salinity of 24.9 ± 2.9‰, whereas those with the monocultures Shrimp and Seaweed
had higher salinities of, respectively, 28.6 ± 3.6‰ and 31.6 ± 1.8‰. These differences were
likely due to different proximities to the main marine tidal water channels of the village.
Although significant, all were within the optimal range for both growth (20–35 psu) and
survival (10–35 psu) of P. monodon [63]. Gracilariopsis grows decidedly better at the higher
range of salinities observed within our ponds. As in our experiments, the ponds with
only seaweed happened to be those also optimal for seaweed, this choice would have the
effect of minimizing potential differences between the chosen treatments. Temperature
measurements (both by hand and by continuous monitoring) did not show substantial dif-
ferences between the ponds. The average temperature was 31.4 ± 2.2 ◦C, with a minimum
of 27.0 ◦C and a maximum temperature measured of 36.0 ◦C. Overall, the average DO
of the ponds was 3.67 ± 0.59 ppm in the morning, increasing to 5.15 ± 1.05 ppm during
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midday and ending at 5.44 ± 1.03 ppm by the end of the afternoon. The largest consistent
differences in DO in the ponds were due to the diel cycle of photosynthesis, but there were
also smaller significant differences between the three treatments (Table 1). An explanation
for this remains wanting, but could be due to an artefact caused by differences in the timing
of sampling. Turbidity for Combined, Shrimp, and Seaweed cultures was, respectively
18.89 ± 12.23, 23.04 ± 12.20, and 17.21 ± 8.31 NTUs. The differences were significant
between Shrimp and Combined (p < 0.001), and between Shrimp and Seaweed (p < 0.001),
but not between Seaweed and Combined (p = 0.077) (Table 1). These results were likely due
to bioturbation caused by the shrimp. Mean chlorophyll-a concentrations neither differed
significantly between ponds nor between treatments. A slight increase in chlorophyll-a
was observed over time for the Shrimp and Combined treatments.

Table 1. Average water parameters (±SD). Significance is for the overall comparison between treatments.

Combined Shrimp Seaweed Significance ¹

Total diss. sol. (ppt) 19.29 ± 2.20 21.67 ± 2.63 23.79 ± 1.51 ***
Salinity (‰) 24.94 ± 2.91 28.37 ± 3.73 31.42 ± 2.05 ***

pH 7.53 ± 0.59 7.77 ± 0.63 7.41 ± 0.50 NS
Temperature (◦C) 31.61 ± 2.08 31.26 ± 2.30 31.38 ± 2.11 NS

Dissolved oxygen (%) 4.8 ± 1.11 5.08 ± 1.36 4.77 ± 4.36 ***
Turbidity (NTU) 18.89 ± 12.23 23.04 ± 12.20 17.21 ± 8.31 ***
Chl-a (mg·m−3) 1.71 ± 0.94 2.06 ± 1.41 2.12 ± 0.99 NS

Primary prod. (gC·m−2·d−1) 0.18 ± 0.07 0.20 ± 0.08 0.21 ± 0.06 NS
1 1-way ANOVA, NS > 0.05; *** < 0.001.

Nitrate, phosphate, and carbon concentrations are shown in Table 2. The nitrate
content of the pond waters decreased for all treatments, but only significantly for the two
monocultures (Shrimp: p = 0.013, Seaweed: p = 0.010). In contrast, nitrate concentrations
in the pond sediment increased for Shrimp and Combined while remaining almost the
same for Seaweed, but no significant effects could be demonstrated. Phosphate concentra-
tions in pond waters varied over time, but no significant decrease was found. However,
phosphate content in the sediment decreased significantly during culture for all treatments
(p-values for Shrimp: 0.005, Seaweed: 0.003, and Combined: 0.003). All three culture
systems effectively consumed phosphate. For the water, organic carbon content remained
equal for the ponds with only Shrimp, but increased (insignificantly) for the Combined
culture (p = 0.082) and increased significantly for Seaweed (p = 0.013). The carbon con-
tent of the sediment increased for Shrimp and Combined but decreased for Seaweed, but
only insignificantly.

Table 2. Nitrate, phosphate, and carbon concentrations at the beginning and end of the experiment in
both the water and pond sediment. Values are averages for the ponds ±SD.

Water Sediment
Treatment Start (T0) End (T6) Start (T0) End (T6)

Nitrate
(mg·L−1)

Seaweed 0.97 ± 0.14 0.37 ± 0.05 2.93 ± 0.50 3.03 ± 1.69
Shrimp 1.29 ± 0.19 0.73 ± 0.12 2.54 ± 2.50 2.71 ± 0.99

Seaweed + Shrimp 0.78 ± 0.07 0.47 ± 0.38 2.73 ± 1.88 2.86 ± 0.76

Phosphate
(mg·L−1)

Seaweed 0.03 ± 0.03 0.02 ± 0.00 0.32 ± 0.03 0.04 ± 0.02
Shrimp 0.07 ± 0.05 0.02 ± 0.00 0.34 ± 0.05 0.02 ± 0.00

Seaweed + Shrimp 0.04 ± 0.01 0.02 ± 0.00 0.32 ± 0.04 0.02 ± 0.00

Carbon
(mg·L−1)

Seaweed 0.48 ± 0.02 0.53 ± 0.11 3.89 ± 0.24 3.70 ± 0.32

Shrimp 0.76 ± 0.12 0.67 ± 0.22 1.08 ± 0.21 1.43 ± 0.61

Seaweed + Shrimp 0.66 ± 0.11 0.68 ± 0.14 1.29 ± 0.24 1.59 ± 0.32
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None of the sediment samples had levels of Hg and Cd exceed the levels of detection.
However, for As and Pb, mean concentrations were above detection levels in sediment
(Table 3). The heavy metal contents in the shrimp were all below the standard allowable
limits of the current Indonesian National Standards [64] and European Union standards [65].
The limits for these two regulations are, respectively, <1 mg·kg−1 (As, Hg and Cd) and
<0.5 mg·kg−1 for Pb. The comparisons of heavy metals concentrations between treatments
were neither clear cut nor significant.

Table 3. Heavy metal content (mg·g−1) in the cultivated shrimp and the pond sediments. All values
marked as “0.008” are those below the level of detection (LOD). Averages were calculated using the
LOD of 0.008 mg·g−1.

Source Treatment Replicate. Arsenic
(As)

Lead
(Pb)

Mercury
(Hg)

Cadmium
(Cd)

Shrimp

Combined

1 0.011 ± 0.002 0.008 ± 0.000 0.051 ± 0.002
2 0.020 ± 0.001 0.008 ± 0.000 0.008 0.047 ± 0.006
3 0.008 ± 0.000 0.043 ± 0.006 0.143 ± 0.021

Mean 0.013 ± 0.005 0.020 ± 0.018 0.008 ± 0.000 0.080 ± 0.048

Shrimp

1 0.008 ± 0.000 0.012 ± 0.001 0.017 ± 0.002 0.056 ± 0.002
2 0.034 ± 0.005 0.008 ± 0.000 0.008 ± 0.000 0.023 ± 0.006
3 0.008 ± 0.000 0.024 ± 0.004 0.008 ± 0.000 0.027 ± 0.003

Mean 0.017 ± 0.013 0.015 ± 0.008 0.011 ± 0.004 0.036 ± 0.016

Sediment

Combined

1 0.005 ± 0.001 0.008 ± 0.000
0.008 0.0082 0.038 ± 0.005 0.008 ± 0.000

3 0.008 ± 0.000 0.018 ± 0.002

Mean 0.017 ± 0.016 0.011 ± 0.005 0.008 ± 0.000 0.008 ± 0.000

Shrimp

1 0.018 ± 0.003 0.008 ± 0.000
0.008 0.0082 0.021 ± 0.004 0.018 ± 0.003

3 0.008 ± 0.000 0.064 ± 0.044

Mean 0.016 ± 0.006 0.030 ± 0.034 0.008 ± 0.000 0.008 ± 0.000

Seaweed

1 0.008 ± 0.000 0.008 ± 0.000
0.008 0.0082 0.008 ± 0.000 0.048 ± 0.009

3 0.008 ± 0.000 0.008 ± 0.000

Mean 0.008 ± 0.000 0.021 ± 0.021 0.008 ± 0.000 0.008 ± 0.000

3.2. Production

The SGR of seaweed in co-culture was significantly higher (3.62 ± 0.02) than com-
pared to monoculture (3.30 ± 0.08%·day−1) (Table 4). The mean seaweed yield for the
monoculture was 1923 ± 25.2 and 1858 ± 34.8 kg·ha−1, respectively, for the two subsequent
cultivation periods. For the co-cultivation, seaweed yield was higher, respectively, 2261 and
2361 kg·ha−1, notwithstanding the less optimal salinity regime. Seaweed production for
both the first harvest experiment (p < 0.01) and the second harvest experiment (p < 0.05) was
significantly higher when co-cultivation was used. Combined cultivation yielded 18% more
seaweed than only Seaweed during the first cycle and 27% more during the second cycle.
Shrimp yield was higher when co-cultivation was applied (+53.8%). Shrimp yield was
171.7 kg·ha−1 for monoculture and 263.89 kg·ha−1 for Combined (Figure 2). Due to the low
replication of these field trials (only three replicates per system), test power was relatively
low and this apparently large difference was not statistically significant. However, the
apparent differences in yield were consistent with demonstrated differences in the SGR of
the shrimp, which were 4.44 ± 0.06 and 4.79 ± 0.16 for Shrimp and Combined, respectively
(p = 0.026, Table 4). In addition, there was a significantly large difference in survival (of
about 30%) for shrimp between the Shrimp and the Combined culture settings (Table 4).
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Table 4. The specific growth rate (SGR) for both shrimp and seaweed and overall survival rate (SR)
for the shrimp in the three different culture treatments compared. (*) indicates p < 0.05 for comparison
between treatments.

SGR (% Day−1)
Treatment

Shrimp Seaweed Combined

Shrimp 4.4 ± 0.06 * - 4.79 ± 0.16 *
Seaweed - 3.30 ± 0.08 * 3.62 ± 0.02 *

Shrimp SR (%): 61 ± 2.45 * - 80 ± 3.76 *
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The largest differences in economic effect between the different culture types was
seen in the revenue·ha−1 (Table 5). The contribution margin of the Combined culture
was, respectively, 156% and 318% of the contribution margin of cultivating either only
seaweed or shrimp. For Combined, the contribution of seaweed and shrimp to overall
pond production was, respectively, 49% and 51%.

Table 5. Overview of revenue generation (R), variable costs (V), and the resulting contribution
margin (C) for monocultures and co-cultivation based on prices and cost structures for Kaliwlingi
village, Brebes, Indonesia. Values in USD ($) and calculated using the exchange rate of USD/
IDR = 1:14,129.50. “pm” = pro memoria.

Seaweed Shrimp Combined

Revenues
Seaweed Yield

(kg·ha−1)
1st harvest

(Mean ± SD) 1923.3 ± 25.2 - 2161.0 ± 348.0

2nd harvest
(Mean ± SD) 1858.3 ± 150.7 - 2361.0 ± 127.3

Shrimp yield (kg·ha−1) - 171.7 ± 10.4 264.4 ± 47.6

Mean Revenue ($) 1st harvest 680.61 800.14
2nd harvest 657.61 835.53

Shrimp 1093.46 1680.88
Subtotal 1338.22 1093.46 3316.54

Fixed costs ($) pm pm pm

Variable costs
($·ha−1) Pond prep. labor 28.31 28.31 28.31

Pond prep. pump rent 21.23 21.23 21.23
Pond prep. consumables 7.08 7.08 7.08

Stocking material 159.24 212.32 371.56
Seeding–labor 14.15 7.08 21.23
Harvest–labor 70.77 70.77 141.55
Drying–labor 14.15 14.15

Drying–materials 17.69 17.69
Subtotal 332.64 346.79 622.81

Contribution Margin ($·ha−1) 1005.58 746.66 2693.73
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3.3. Product Quality Aspects

Seaweed agar content increased significantly only for the Seaweed and Combined
treatments during the first round of cultivation (p = 0.02), but not during the second
cultivation cycle (p = 0.554). No differences in gel strength were found during the first
cultivation cycle. For the second cycle, a slight reduction was measured for the gel strength
of the Combined treatment, but this was only significant for the hanging method (p < 0.05).
No significant difference could be established in gel strength between the hanging and
broadcast method (Table 6).

Table 6. Gel strength, agar content, and specific growth rate (SGR) for seaweed in either mono or
combined culture with shrimp (mean ± SD). Only three samples were taken from the batch used
for stocking (*). Note also that SGR for seaweed was determined only for the combined deployment
methods (**).

Treatment
Time in d

and (Cycle)
Gel Strength Agar Content SGR

%·d−1g·cm−2 n (%) n

Stocking material 0 (1) 20.2 ± 4.1 6 13.59 ± 0.75 * 3 -

Seaweed 30 (1) 35.7 ± 8.1 9 21.15 ± 0.06 9 2.4 ± 0.15
Combined 30 (1) 19.3 ± 13.1 9 21.62 ± 0.10 9 2.1 ± 0.55

Restocking material 0 (2) 41.3 ± 5.8 3 25.54 ± 0.16 9 -

Seaweed 30 (2) 43.8 ± 18.0 9 22.24 ± 0.20 9 3.2 ± 0.03
Combined (hanging) 30 (2) 16.2 ± 9.2 9 24.70 ± 0.26 9

3.7± 0.2 **Combined (broadcast) 30 (2) 16.7 ± 11.5 9 22.43 ± 0.20 9

At harvest, the presence of pathogenic bacteria, E. coli, in all shrimp was below
3 MPN·g−1 (MPN = Most Probable Number), while Salmonella and V. cholerae were not
detected. The total plate counts of samples were comparable within ponds, ranging from
about 3.7 logCFU·g−1 to 4.4 logCFU·g−1. Bacterial load appeared lower in ponds with
Combined culture or only Seaweed (4 ± 3.85 logCFU·g−1) than in ponds with only Shrimp
(4.3 ± 3.75 logCFU·g−1); however, the difference was not statistically significant (p = 0.145).

4. Discussion
While the many potential biological benefits in terms of sustainability, synergistic

production effects, and possible economic advantages of combined plant and animal
production have been well studied under controlled laboratory and/or culture basin
conditions, few of these have been investigated and/or demonstrated under outdoor farm
culture conditions. For the advantages of co-culture, as demonstrated in the confines of
the laboratory setting, to achieve wider application, making the step from the laboratory
to the farmer’s pond is essential. In our experiments, we set out to verify if production
and economic advantages could be convincingly demonstrated under real farm conditions.
Our field experiments at the farm level did show the practical difficulty in fully controlling
and/or randomizing for all environmental variables when working with farmers. This
is because, notwithstanding our care in selection of the most comparable ponds, there
remained some modest yet consistent differences in pond conditions between the three
different sets of replicate ponds. Thus, while our results provide empirical corroboration of
laboratory-based expectations under field conditions, they still fail to provide rigorous field
proof of possible differences between the three different culture forms studied. Our choice
for placing the seaweed monoculture treatment in the ponds that were most similar to
seawater conditions, and thus most favorable to Gracilariopsis growth, likely inadvertently
minimized potential contrasts between the different culture options studied. Another point
to keep in mind is that our cost–benefit analysis was only partial as it only included the
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main variable costs of culture and excluded several fixed costs that were assumed to be
largely equal and obligatory (e.g., pond ownership or rental, and depreciation). Therefore,
our comparison is not a full assessment of economic viability based on the overall profit
margin but strictly an incremental comparison between options using the contribution
margin as a criterium. As stressed by Gallo [55], if a product being considered has a positive
contribution margin, then its production contributes to fixed costs and profit, even if its
conventionally calculated profit margin is negative. As in the small subsistence family
farms being studied, ponds are practically an obligatory form of income generation; the
contribution margin is the most relevant criterium to use for farmer decision-making.

In Indonesia, seaweed culture and extensive shrimp culture in ponds largely occur
side by side but separately. This work shows that they can be combined in the same
pond with synergistic benefits to both. More specifically, and notwithstanding the various
above-discussed limitations and constraints, our results largely confirm what has been
suggested from controlled tank or basin experiments previously. In particular, our results
showed: (a) the expected reduction in nutrient contents of pond waters, particularly nitrate
concentrations; (b) a large synergistic effect on growth (SGR) of both shrimp and seaweed
and higher survival of shrimp under combined culture conditions; (c) a large positive effect
on cost–benefit ratios for combined culture over monoculture, notwithstanding higher
labor costs for including seaweed; and (d) no compromise of product quality as measured
for seaweed, in terms of seaweed agar contents and gel strength, and for shrimp, in terms
of bacterial and heavy metals concentrations. Even so, much more work will be needed to
validate the higher productivity, functioning, and broader effects on product quality for
co-culture under different field circumstances and with different species combinations.

As productivity of shrimp farming has been steadily declining, pond farmers have
been transitioning to seaweed cultivation, which, today, has become a major activity in
Indonesia’s coastal areas [66]. Co-culture could tap into plant–animal synergy and be of
benefit to both the seaweed and shrimp sectors and both environmental and economic
sustainability. The available evidence further indicates clearly that the benefits of co-culture
are also possible in partially fed or fertilized culture systems [31,34,35,67]. In addition,
co-culture could help bolster farm economic resilience by affordably mitigating market
risks through product diversification [1,37]. Given the pressing need worldwide for more
sustainable food production, further work to assess and understand the potential co-culture
under field settings is urgently needed.

Our study did not address the specific biological pathways leading to the higher
effective growth of shrimp and/or seaweed, but such topics are very interesting for further
study. Shrimp are principally known as detritivores [67] but it may be that in co-culture
with seaweed, shrimp will feed significantly from within the seaweed clumps that provide
additional surface on which food like filamentous algae and other natural food sources
grow [67] and thereby have more food available. As co-culture with seaweed changes
the pond plankton community for the better by inhibiting the abundance of harmful
species [68], some demonstrable differences in shrimp diet are certainly to be expected.
Also, higher shrimp survival, as we found in co-culture, might be due to a reduced impact of
cannibalism or predation by wading herons and egrets, but this remains to be investigated.

While Pb and Cd concentrations in shrimp tissue were lower in the Shrimp mono-
culture treatment, As and Hg were lower in the Combined treatment ponds. Seaweed
capacity for bio-absorption of As and Hg may sequester these heavy metals and thereby
reduce their uptake by the shrimp through digestion and osmoregulation [69]. These heavy
metals are known to be efficiently bound by carboxylates, sulphates, and hydroxyls found
in gracilariid cell walls [70]. In contrast, the remobilization of Pb and Cd from the sediment
to the water column as a result of the physical presence of the seaweed on the bottom, in
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contact with the sediment, is probably what produced the rise in levels in the Combined
treatment. It has been found that when seaweed is cultivated on the bottom, Pb and Cd
rapidly re-enter the water and might then be more easily absorbed by shrimp due to their
strong affinity for sediment particles [11,71]. Additionally, compared to other heavy metals,
shrimp have a greater propensity to accumulate Pb and Cd. This is believed to be because
of particular physiological mechanisms in their excretion and metabolic systems [72].

The value of co-culture of seaweed with shrimp under the cost and price structure
affecting the small subsistence shrimp and seaweed farmers in our study area in Indonesia
mirrors the results previously found by others [34,35]. We therefore argue that in light of
the accumulated evidence, co-culture should likely be broadly beneficial to small family
farms culturing Gracilariopsis and/or Penaeus in brackish ponds in Indonesia, and possibly
even other similar species. Thus, for those who do not yet practice co-culture, our results
may serve as convincing stimulus to take the small steps needed to combined shrimp
and seaweed cultures. For those who already have access to ponds and are practicing
either seaweed or shrimp monoculture, the incremental investment costs to expand their
operation towards co-culture are fairly minimal. This makes co-culture relatively easier
to achieve for poor farmers than any capital-intensive technology-transformation to an
intensive culture system [73–75] would. Hence, with proper information campaigns and
training [76,77], co-culture can probably be achieved on a wide scale, at a low cost, and
fairly quickly result in much needed socio-economic benefits to poor coastal communities.
In Indonesia, any such efforts would strongly align with the national ambition of becoming
the world’s leading producer of agar-agar and carrageenan products [78,79] and can be
highly recommended for improved sustainability.

While functioning market and supply chains exist in all but the most rural and distant
coastal areas of the Indonesian archipelago, this is certainly not the case for a significantly
contrasting country like Bangladesh. There, seaweed culture remains practically unknown,
and processing and market chains for small-scale producers to make use of would first need
to be developed [80,81]. In other words, implementing seaweed culture in Bangladesh,
would be much more complicated than in a country like Indonesia, even though co-culture
might be a cautious first step to developing such an industry, as has been pinpointed
by others as being of significant potential to Bangladesh [81–84]. So, while our findings
certainly seem to have wider applicability, the recommended roadmap and specifics for
successful implementation of seaweed and shrimp co-culture may differ significantly
depending on the environmental and socio-economic situation of the country or region
being considered.
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