
Plant	Phenology	Models
Phenology
Chuine,	Isabelle;	de	Cortázar-Atauri,	Iñaki	García;	Kramer,	Koen;	Hänninen,	Heikki
https://doi.org/10.1007/978-3-031-75027-4_14

This	publication	is	made	publicly	available	in	the	institutional	repository	of	Wageningen	University
and	Research,	under	the	terms	of	article	25fa	of	the	Dutch	Copyright	Act,	also	known	as	the
Amendment	Taverne.

Article	25fa	states	that	the	author	of	a	short	scientific	work	funded	either	wholly	or	partially	by
Dutch	public	funds	is	entitled	to	make	that	work	publicly	available	for	no	consideration	following	a
reasonable	period	of	time	after	the	work	was	first	published,	provided	that	clear	reference	is	made	to
the	source	of	the	first	publication	of	the	work.

This	publication	is	distributed	using	the	principles	as	determined	in	the	Association	of	Universities	in
the	Netherlands	(VSNU)	'Article	25fa	implementation'	project.	According	to	these	principles	research
outputs	of	researchers	employed	by	Dutch	Universities	that	comply	with	the	legal	requirements	of
Article	25fa	of	the	Dutch	Copyright	Act	are	distributed	online	and	free	of	cost	or	other	barriers	in
institutional	repositories.	Research	outputs	are	distributed	six	months	after	their	first	online
publication	in	the	original	published	version	and	with	proper	attribution	to	the	source	of	the	original
publication.

You	are	permitted	to	download	and	use	the	publication	for	personal	purposes.	All	rights	remain	with
the	author(s)	and	/	or	copyright	owner(s)	of	this	work.	Any	use	of	the	publication	or	parts	of	it	other
than	authorised	under	article	25fa	of	the	Dutch	Copyright	act	is	prohibited.	Wageningen	University	&
Research	and	the	author(s)	of	this	publication	shall	not	be	held	responsible	or	liable	for	any	damages
resulting	from	your	(re)use	of	this	publication.

For	questions	regarding	the	public	availability	of	this	publication	please	contact
openaccess.library@wur.nl

https://doi.org/10.1007/978-3-031-75027-4_14
mailto:openaccess.library@wur.nl


Chapter 14
Plant Phenology Models

Isabelle Chuine , Iñaki García de Cortázar-Atauri , Koen Kramer ,
and Heikki Hänninen

Abstract In this chapter, we provide an overview of plant phenology modeling,
focusing on mechanistic phenology models. After a brief history of plant phenology
modeling, we present the different models, which have been described in the
literature and highlight the main differences between them, i.e. their degree of
complexity and the different types of response function to temperature they use.
We also discuss the different approaches used to build and parameterize such
models. Finally, we provide a few examples of applications mechanistic plant
phenology models have been successfully used for, such as the modeling of frost
hardiness, forest growth and distribution, evolutionary dynamics of phenological
traits, and the reconstruction of temperature during the last millennium.

14.1 An Overview of Plant Phenology Models

The key importance of seasonal timing for plant growth, reproduction, and survival
has surged a growing number of ecologists and agronomists to understand and
model how environmental conditions control phenology in order to predict the
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impacts of climate change on agriculture and natural ecosystems. Phenology models
have become a key component of different kinds of models simulating crops yield
(Nissanka et al. 2015), Earth systems (Dahlin et al. 2015), population dynamics
(Anderson et al. 2013; Maino et al. 2016; and see also Chap. 15 in this volume),
species distribution (Chuine 2010), and evolutionary dynamics (Donohue et al.
2015; Duputié et al. 2015; Gaüzere et al. 2020).

14.1.1 The Different Types of Phenology Model

Phenology modeling has a long history starting in 1735 with a publication by De
Reaumur (1735) which suggested that differences between years and locations in the
date of phenological events could be explained by differences in daily temperatures
from an arbitrary date to the date of the phenological event considered. He thus
introduced the concept of degree-day summation. While this is still the most
important assumption in plant phenology modeling, major advances took place in
the late twentieth century for two main reasons: (i) the revolution in computer
science, and (ii) concerns about global climate change, which has major impacts
on phenological events (Cleland et al. 2007; Inouye 2022).

Most plant phenology modeling studies have focused on leaf unfolding and
flowering, and much fewer on fruit maturation, growth cessation or leaf senescence.
This is because (1) leaf unfolding and flowering are the most widely observed
phenophases, (2) the timing of these events can be observed more accurately
(Denéchère et al. 2019; Liu et al. 2021), and (3) leaf unfolding is very important
for primary production (Piao et al. 2007; Richardson et al. 2010) while flowering
largely determines plant reproductive success (see Sect. 14.4).

Three main types of phenology models exist: analytical, statistical, and mecha-
nistic. Analytical phenology models are mathematically tractable and focus on the
cost/benefit tradeoff of producing leaves to optimize resource acquisition (Kikuzawa
1991, 1995a, b, 1996; Kikuzawa and Kudo 1995) and are designed to understand the
evolution of leaf lifespan strategies in trees, rather than the annual variation in plant
phenology. Statistical phenology models use statistical techniques such as regression
and classification to relate the timing of phenological events to climatic factors. Their
parameters are estimated from data using various statistical fitting methods. Most of
these models do not consider specific biological processes, and can be simple
correlations with average temperature in different periods of the year (Boyer 1973;
Spieksma et al. 1995; Emberlin et al. 1997; Ruml et al. 2012). Other models are more
complex such as the Spring Indices Models (Schwartz and Marotz 1986, 1988;
Schwartz 1997; Schwartz et al. 2013), models based on Partial Least Square
regressions (particularly suited to autocorrelated data), and models based on semi
parametric or modified survival models (Terres et al. 2013; Allen et al. 2014;
Betancourt 2022). We do not comment more on these types of models in this
chapter, which is focused on the third type of model, i.e. mechanistic models,
which are the most numerous in the literature. However, one needs to note that
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some models can be considered as intermediate between statistical and mechanistic
as they use some response functions to environmental cues to compute some
covariates which are characteristic of mechanistic models (Allen et al. 2014).

Mechanistic phenology models formally describe known or hypothetical cause-
effect relationships between physiological or gene regulation processes and some
driving factors in the plant’s environment. A new relationship is introduced in a
mechanistic model only if information on its impact on the process is available.
Parameters of mechanistic models have physical dimensions that can, in principle
(see Sect. 14.3), be measured directly instead of being estimated by statistical
inference, although this is not always possible (see Sect. 14.3.1). The structure of
mechanistic models is usually based on systems theory rather than mathematical
analyses of statistical inference (Hänninen and Kramer 2007; Chuine 2010). The
following paragraphs provide a detailed overview of hypotheses of mechanistic
models.

14.1.2 Hypotheses and Structure of Mechanistic Phenology
Models

Mechanistic phenology models are deeply grounded on experimental work designed
to decipher how environmental conditions regulate the development of vegetative
and reproductive organs. From experimental evidence, we know at least three things
on this regulation. First, in perennials naturally, bud endodormancy, i.e. the period
during which dormancy is caused by internal factors (Lang et al. 1985) is naturally
broken by cool temperatures (from slightly negative to around 12 °C, Vegis 1973;
Sarvas 1974; Hänninen 1990; Caffarra et al. 2011a). Cool temperatures are also
needed for annual plants during the vernalization period (Satake 2010). Second,
warm temperatures (positive temperatures) accelerate cell growth during
ecodormancy, i.e. the period during which dormancy is caused by external factors,
and subsequent development of leaves, flowers and fruits (Lamb 1948; Sarvas 1972,
1974; Landsberg 1974; Campbell and Sugano 1975; Lang et al. 1985; Caffarra et al.
2011b). Third, photoperiod may interact with the temperature response during
ecodormancy in perennials by compensating for a lack of chilling during
endodormancy, but also during stem elongation in grasses. Large differences in
the sensitivity of bud break to photoperiod exist between species and studies (Heide
1993a, b; Kramer 1994b; Falusi and Calamassi 1996; Caffarra et al. 2011a; Flynn
and Wolkovich 2018). The effect of photoperiod has been particularly well demon-
strated for Fagus species (Wareing 1953; Heide 1993b; Myking and Heide 1995;
Basler and Körner 2014; Fu et al. 2019; Flynn and Wolkovich 2018; Osada et al.
2018) and winter crops like wheat (Wang and Engel 1998).

Most differences between mechanistic phenology models come from the number
of different phases they represent, the response functions to environmental variables
they consider for each phase, and the occurrence of interactions between these
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phases (Fig. 14.1). Development is represented by a state variable, S for develop-
ment Stage, which is the integration of development rates (R) over time (in steps of
days, hours or minutes) from a start date t0, which are a function of some environ-
mental cues. The general structure of mechanistic phenology models for one specific
development phase is the following:

tn such that Sn,t =
tn

tn-1

Rn,t Zð Þ= Sn
� ð14:1Þ

where n a development phase (e.g., endodormancy, ecodormancy, fruit maturation),
Sn,t is the state of development on day t in phase n; tn is the end of phase n and tn-1

the end of phase n-1. Rn,t is the rate of development during phase n on day twhich is
a function of one or a set of daily or hourly environmental variables Z (e.g.,
temperature, photoperiod, water potential), and Sn* the critical state required to
reach tn. Virtually any phenology model can fit into this framework. For example,
the growing degree-day model also called Thermal Time model or Spring Warming
model, the simplest plant phenology model, requires only three parameters and can
be written as a one-phase model as follows:

R1,t xtð Þ= 0 if xt ≤ Tb

xt -Tb if xt >Tb
ð14:2Þ

Fig. 14.1 Structure of mostly used mechanistic 2-phase phenology models. S is the state of
development, S* are critical states of development corresponding to the end of each phase of
development, R are the rates of development, f are response functions to environmental cues:
temperature (T) and photoperiod (P), which can be combined with an addition, multiplication, or
composition. Results of f functions and their combination are integrated through time to determine
the state of development. Phase 2 can either follow phase 1, starting at t1 determined by S*1, or
overlap with phase 1. Results of response functions of phase 2 to environmental cues ( f2,1 and f2,2)
can be affected by the state of development of phase 1
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where xt is daily mean temperature, tn-1 = t0 is the day on which summation starts,
Tb is the summation threshold temperature, and S1* is the familiar degree-day sum
required to complete the phenophase at t1.

Several phases can be modeled in a single model composed of several sub-models
each describing a specific phase such as dormancy induction, endodormancy,
ecodormancy, etc. (Fig. 14.1).

Two-phase models for leaf unfolding and flowering typically consider
endodormancy in addition to ecodormancy (e.g., the Sequential, Parallel, Alternat-
ing, Deepening Rest models, Table 14.1, Fig. 14.1). An important difference
between two-phase models is the relationship between the endodormancy phase

Table 14.1 List of the different phenology models described in the literature

Phenophase Plant types Model name

Ecodormancy Crops Growing Degree Days/Thermal Time1,
Photothermal Time2, Triangular Growing
Degree Hour model3, Robertson model4, Sinclair
model5, Soltani model6, Hartkamp model7

Grapevine Sinusoidal-parabolic model8, Action Days
model9

Fruit trees Growing degree Hours10

Red osier
Dogwood

Kobayashi and Fuchigami model11

Endodormancy Fruit trees Asymcur12, Chilling Hour13,14, Dynamic
model15,16, Positive Utah17, Smoothed Utah18

Endodormancy +
Ecodormancy

Trees Alternating19,20, Bidabé21, Deepening Rest 22,
Four Phases23,24, Hänninen model25,26, Kramer
model27, Parallel28,29, PGC30, PGCA31,
PhenoFlex32, PIM model33, Sequential34,35,
Unichill36, UniForc37, Unified38

Crops Biological Days39

Dormancy induction +
Endodormancy + Ecodomancy

Trees DormPhot40

Fruit maturation Trees Asymmetric unimodal41,42,43

Leaf senescence Trees Delpierre model44

Land
surface

White model45

1, de Reaumur (1735) in Wang (1960); 2, Masle et al. (1989); 3, Robertson (1968); 4, Sinclair et al.
(1991); 5, Hammer et al. (1993); 6, Soltani et al. (2006); 7, Hartkamp et al. (2002); 8, Riou (1994);
9, Pouget (1972); 10, Anderson et al. (1986); 11, Kobayashi and Fuchigami (1983a); 12, Richardson
et al. (1982); 13, Bennett (1949); 14, Weinberger (1950); 15, Erez et al. (1990); 16, Fishman et al.
(1987); 17, Linsley-Noakes et al. (1995); 18, Bonhomme et al. (2010); 19, Cannell and Smith
(1983); 20, Kramer (1994b); 21, Bidabé (1967); 22, Kobayashi et al. (1982); 23, Hänninen (1990);
24, Vegis (1964); 25, Hänninen (1990); 26, Hänninen (1995); 27, Kramer (1994b); 28, Hänninen
(1987); 29, Landsberg (1974); 30–31, Gaüzere et al. (2017); 32, Luedeling et al. (2021); 33, Schaber
and Badeck (2003); 34, Linkosalo et al. (2008); 35, Richardson et al. (1974); 36, Hänninen (1987);
36–37, Chuine et al. (1999); 38, Chuine (2000); 39, Hunt and Pararajasingham (1995); 40, Caffarra
et al. (2011b); 41, Wang and Engel (1998); 42, Yin et al. (1995); 43, Yan and Hunt (1999);
44, Delpierre et al. (2009); 45, White et al. (1997)
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and the ecodormancy phase: phases either follow each other or overlap. In the latter
case, the endodormancy status affects the ecodormancy status and this interaction
has been formalized in different ways (Hänninen 1990; Kramer 1994a, b; Chuine
2000; Zhang et al. 2022, 2023).

Three-phase models for leaf unfolding or flowering typically describe the dor-
mancy induction phase in addition to endodormancy and ecodormancy phases
(Dormphot model). The Four-phase model for leaf unfolding describes a dormancy
induction and an ecodormancy phase, but splits the latter into two phases (true rest
and post-rest). In most models, phase n follows sequentially phase n-1, but in some
models the processes of the different phases can overlap. For instance, a parallel
model allows ontogenetic development (which is the typical process of
ecodormancy) to take place at high temperatures even before endodormancy has
completed.

For herbaceous species, especially crops, models can be more or less complex
depending on the number of phases they take into account as well, but typically they
consider a germination phase that depends on temperature and soil moisture, a
flowering phase that depends on temperature, precipitation and photoperiod, and
the maturation phase that depends on temperature (Wang and Engel 1998).

Whatever the species, the developmental responses to temperature have been
described by various types of functions, linear and nonlinear (Fig. 14.2). Response
functions to other cues have been introduced in phenology models for plants,
especially for photoperiod (Schaber and Badeck 2003; Caffarra et al. 2011b;
Gaüzere et al. 2017; Kramer et al. 2017), but they are similar to functions already
used for temperature. The effects of temperature and photoperiod on bud develop-
ment seem to interact in a complex way (e.g. Brelsford and Robson 2018; Brelsford
et al. 2019). For example, in the model of Caffarra et al. (2011b), which is based on
experimental results, photoperiod compensates for a lack of chilling temperature
during endodormancy and the mid-response photoperiod of the sigmoid response
function varies with the amount of chilling received.

The variety of model assumptions and formulations called for a consistent
notation and for attempts at unification. This was started by Hänninen (1987) who
divided models in two categories (“sequential” and “parallel”) based on their
ecophysiological distinctions. Later on, Hänninen (1990, 1995) introduced a unify-
ing formulation for several model types, and Kramer (1994a, b), Chuine (2000),
Hänninen and Kramer (2007) and Kramer et al. (2017) broadened the approach
using fitting procedures to select between different forms of model structure and
response functions.

As reviewed in this chapter, traditionally, mechanistic tree phenology models
have been used for temperate and boreal trees. However, recently the scope of the
models has broadened to cover more southern trees too. Chen et al. (2017) first
proposed to use a numerical approach (see Sect. 14.3.1) with observational pheno-
logical records to develop a model for Melia azedarach, a tree species of tropical
origin, and apply the model in subtropical and tropical conditions in eastern China
(but see Supplementary Material in Zhang et al. 2022). More recently, Zheng et al.
(2021, 2022, 2023) took an experimental approach (see Sect. 14.3.2) to develop
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process-based phenology models for several subtropical tree species. Their studies
based on experimental work revealed that higher temperatures have a chilling effect
in the subtropical than in the more northern trees (Jewaria et al. 2021).

To facilitate the development and the parameterization of mechanistic phenolog-
ical models, different software packages have been developed, e.g. the user friendly
PMP (Phenology Modeling Platform) freeware (http://www.cefe.cnrs.fr/en/
logiciels/ressources-documentaires), and the Phenor R package (Hufkens et al.
2018).

14.2 Molecular Phenology Models

The last twenty years, there has been major advances in our understanding of
molecular–genetic pathways of environmental regulation of plant development
(Chiang et al. 2021; Lloret et al. 2022; Satake et al. 2022; Wang and Ding 2023).

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Wang and Engel
Yan and Hunt
Anderson GDD

a

d

b

c

Temperature (°C)

tne
mpolevedfo ti n

U

0

5

10

15

20

25

30

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

Sigmoid
GDD

0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

Normal
Linear Plateau
Curvilinear Plateau
Triangle

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30

Smoothed Utah
Utah
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the references. (Reproduced with permission from Chuine et al. 2013)
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As a result, there is increasing potential to incorporate molecular data into phenology
models. Although molecular phenology models’ structure is not necessarily different
from other mechanistic models, their specificities deserve special attention. Molec-
ular phenology is defined by Kudoh (2016) as ‘the study of the seasonal patterns of
organisms captured by the techniques of molecular biology’. Therefore, molecular
phenology refers to the seasonal variations of gene expression, epigenetic modifi-
cations, and quantities of proteins, metabolites and other molecules. Molecular
phenology models are very recent and are gaining a lot of attention for several
reasons. First, they can be developed faster than other models as they do not require
long time series of data (one or two years of gene expression data can be sufficient)
and the cost of such data has decreased substantially in the last two decades. Second,
they allow testing complex hypotheses on the regulatory network of genes involved
in plant development under both natural and controlled conditions, and have thus a
higher potential to increase our understanding of the regulation of plant development
by environmental conditions. For example, Satake et al. (2013) identified the
temperature-dependent transcriptional regulation of the vernalization specific gene
AhgFLC and the floral integrator gene AhgFT in Arabidopsis halleri. More pre-
cisely, they showed that the production rates of both gene transcripts increase with
temperature, but more rapidly for AhgFLC than AhgFT, while the degradation rate
of AhgFLC decreases and that of AhgFT increases with temperature. Based on the
response to temperature of the transcription of only two genes, the authors were able
to predict the flowering time of Arabidopsis halleri they observed in several places in
Japan but also in different controlled conditions. The first molecular phenology
model was developed by Aikawa et al. (2010) using a 2-year census of the expres-
sion of a temperature-dependent flowering-time gene, AhgFLC, in a natural popu-
lation of perennial Arabidopsis halleri. Later on, Nagano et al. (2012) developed a
molecular phenology model using transcriptome data for rice raised in the field.
Other molecular phenology models have been published since by Satake et al.
(2013), Kudoh (2016), and Mochida et al. (2018). Since molecular phenology
models only differ from other phenology models by the phenological variables
used, biological data vs. molecular data, they can be either statistical models
(e.g. Nagano et al. 2012) or mechanistic models (e.g. Satake et al. 2013).

14.3 Methodological Considerations

Mechanistic phenology models need to be first calibrated and then validated.
Because phenology models are used to predict future phenology, whether over the
coming year (e.g., for orchard management) or over the next century (e.g., for global
warming impact assessment), model validation is an essential second step. Cross-
validation is an adequate testing method (Chatfield 1988) by which the model is
tested by comparing its predictions to observations not used in model fitting.
However, this method is data-hungry and it is not always possible to split the dataset
into two parts, one to fit the model, the other to test its prediction accuracy. In such
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cases, one can resort to “leave one out” (or jackknife) cross-validation (Stone 1977;
Häkkinen 1999) or test-train-validate methods applied in machine learning (e.g.,
Fabris and Freitas 2019).

Two approaches are used to estimate parameter values: the experimental
approach that tries to measure the response of development to different cues,
temperature, photoperiod, water availability under controlled conditions; and the
numerical approach, which uses numerical techniques to determine optimal param-
eter values from combined phenological and environmental time series.

14.3.1 The Experimental Approach

The experimental approach consists in carrying out experiments in order to analyze
the underlying mechanisms of phenological responses, one mechanism at a time
(Wareing 1953; Samish 1954; Vegis 1964, 1973; Perry 1971). A growing number of
studies have been following this method during the last two decades (Caffarra et al.
2011a; Baumgarten et al. 2021; Zheng et al. 2021; Zhang et al. 2022, 2023). This
method traces back to the pioneering work of Sarvas (1972) who determined
experimentally the temperature response of development rate during ecodormancy,
using observations of meiosis in pollen mother-cells of several forest tree species. He
found that developmental time, i.e. the average time between two meiotic phases,
declines exponentially with increasing temperature. Sarvas (1974) also determined
the progress of dormancy release indirectly using regrowth tests where seedlings
were incubated at growth-promoting temperatures following a period of chilling.
Both the chilling duration and temperatures were varied systematically. Sarvas
found that the duration of chilling required for completion of endodormancy was
shortest at +3.5 °C, and concluded that the rate of development (rate of dormancy
release) was highest at this temperature. These results led to the triangular temper-
ature response (peaking at 3.5 °C) proposed for the rate of dormancy release
(Fig. 14.2b).

Later on, experimental work served (i) to elucidate how different cues were
regulating bud, leaf, flower, and fruits development, and thus determine which
type of response function should be used and how each cue was interacting with
the others (e.g. Hänninen 1990; Caffarra et al. 2011a; Chiang et al. 2021); but also
(ii) to identify the precise shape of the response functions (e.g. Pouget 1972; Porter
and Gawith 1999; Caffarra et al. 2011a; Baumgarten et al. 2021). However, one
needs to note that the experimental approach has also some important limits among
which the incomplete representation in controlled conditions of all cues that can
affect development and their interactions, and experimental flaws that may lead to
unmeasured covariation among treatments that can result in incorrect conclusions
(Buonaiuto et al. 2023).
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14.3.2 The Numerical Approach

In the numerical approach, field or experimental observations of the timing of
phenological events are related to meteorological data gathered at the same location
before the event. Phenological observations used to develop and test phenology
models have two main origins: historical observations in wild populations or phe-
nological gardens and experimental results. The accompanying meteorological data
comes from different sources: loggers on site, weather stations of national meteoro-
logical services some distance away, gridded meteorological products.

The numerical approach includes two aspects: the integration of the system of
Ordinary Differential Equations (ODEs) i.e. rate equations (Eq. 14.2) for each phase
(Fig. 14.1), and the inferring optimal parameters values by minimizing the deviance
between the model and observation or maximizing the explained variance. Numer-
ical integration in phenology models often uses a fixed time-step of 1 day or 1 h,
i.e. forward Euler integration (Press et al. 1989). The Euler method can have large
numerical errors e.g. if the rates of change of the ODEs differ very much. That is the
case in the parallel model when the rate of forcing changes very little compared to
the rate chilling. The Euler method also has large errors if the ODE changes very
rapidly, e.g. such as in Fig. 14.2 around the minimum and maximum temperature
of the response functions. Predictor-corrector methods such as Runga-Kutta
(Langtangen 2014) aim to reduce this type of numerical error.

Considering finding parameter values by optimizing a goodness of fit metric,
multiple goodness-of-fit metrics exist (Willmott 1981, 1982; Gauch et al. 2003;
Robeson and Willmott 2023) and many numerical approaches to optimize these.
These optimization methods are not equally performant in the case of phenology
models. Traditional optimization algorithms such as Downhill Simplex or Newton
methods (Press et al. 1989) rarely converge towards the global optimum if there is
the strong interdependency of phenological model parameters (Kramer 1994b). The
simulated annealing method is more effective in this respect (Chuine et al. 1998,
1999) because it is especially designed for functions with multiple optima. However,
which method to use also depends on the quality of the data, so that several
optimization methods are tested to reach solid conclusions (Kramer et al. 2017).

More recently Bayesian approaches have also been used to parameterize pheno-
logical models. Bayesian approaches coupled with experimental approaches that
provide prior information on the distribution of model parameters can be powerful
(Dose and Menzel 2004; Thorsen and Hoglind 2010; Fu et al. 2012). Other algo-
rithms such as CMA-ES (REFs) are particularly efficient to fit models with a large
number of parameters, but can be less efficient to fit models with fewer numbers of
parameters (Meier and Bigler 2023).

Despite the efficiency of those algorithms, critical expert knowledge is often
needed to assert the most realistic parameter values obtained when multiple fittings
are executed to account for the stochasticity inherent to most non-Bayesian algo-
rithms. Firstly, some parameters may be highly correlated (e.g. the base temperature
of a GDD and the critical sum to reach S*), which may lead to several sets of
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parameters that are statistically equivalent but have very different individual values.
Secondly, the estimation of the parameters depends on the data used to adjust the
parameters, which represent only a subset of the climatic conditions encountered by
the species or variety in its range (the data collected rarely covers the entire
geographical area) and/or its lifetime (long-term data series rarely exceed 20 years,
which is very short compared with the life expectancy of a tree). This can lead to
biased parameter estimates which can become particularly problematic when using
models to provide forecasts under future climate conditions (Lobo 2016). Parker
et al. (2013) explored the minimum number of observations that should be used to
define a robust parameter value: for a GDD-type function the number should be
around 20 data from at least three to five sites with contrasting climatic conditions.
Below these criteria, the robustness of the parameters obtained is low, and beyond
that, it improves very little. Thirdly, some model parameter estimates might differ
across a species range due to local adaptation and genetic differentiation (Chuine
et al. 2000), and might even be phenotypically plastic (Kramer et al. 2017). This
needs to be taken into account in the parameter estimation scheme whenever
possible. Because of these shortcomings, it is strongly recommended not to rely
solely on goodness-of-fit statistics to select parameter sets, but also on the form of
the response functions obtained, which must be realistic, i.e. consistent with what is
known from the experimental approach. Finally, Wallach et al. (2023) have recently
proposed a simple method to calibrate phenology models in order to avoid
overparameterization and help to decrease the prediction error.

14.3.3 A Way Forward

The numerical approach and the experimental approach have both advantages and
drawbacks. On one hand, the experimental approach is time consuming and exper-
imental conditions do not always reproduce very well the natural conditions and are
always simplified compared to natural conditions where several factors interact with
each other. On the other hand, the numerical approach is much quicker, provided that
sufficiently long phenological and temperature records are available, and that ade-
quate numerical methods are used, but it does not guarantee the realism of the model
and the parameter values, in the sense that the actually operating mechanisms are
identified. For example, numerical methods might indicate that photoperiod does not
play an important role in explaining the variability in leaf unfolding even when it is
experimentally known that photoperiod is an environmental cue for the species
(Kramer 1994b). This is typically the case if the variability of photoperiod in the
data is small relative to the variability in temperature. Moreover, in observational
time series the photoperiod is often correlated with temperature. A combination of
both approaches is needed to get realistic and efficient models that will be able to
project plant phenology in new climatic conditions.
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14.4 Applications of Plant Phenology Models

Plant phenology models are important tools in a wide range of applications such as
(1) prediction of the impact of global warming on the phenology of wild and
cultivated species (Hänninen et al. 2007; Morin et al. 2009; Hanninen and Tanino
2011); (2) improvement of primary productivity models or crop models (Kramer and
Mohren 1996; Krinner et al. 2005; Kramer and Hänninen 2009; Beaudoin et al.
2023); (3) prediction of the occurrence of pollen in the atmosphere, and thus the
occurrence of pollen allergies (Frenguelli and Bricchi 1998; Chuine and Belmonte
2004; Garcia-Mozo et al. 2007, 2008a, b); (4) species distribution modeling (Chuine
and Beaubien 2001; Morin et al. 2007, 2008); and (5) climate reconstruction using
historical phenological data (Chuine et al. 2004; Menzel 2005; Meier et al. 2007;
García de Cortázar-Atauri et al. 2010; Maurer et al. 2011; Yiou et al. 2012). In the
following paragraphs we describe some of these uses.

14.4.1 Frost Hardiness Modeling

Climate change is increasing the risk of false spring events because of earlier
flowering or leaf unfolding dates that expose leaves and flowers to higher risk
of exposure to freezing temperatures (Vitasse et al. 2018; Vautard et al. 2023). It
is thus necessary to better understand the interaction between endodormancy,
ecodormancy, and hardening in order to represent those processes accurately in
mechanistic models able to project what will be the risk of exposure to frost in the
upcoming decades (Sgubin et al. 2018).

Bud frost hardiness is intimately related to its state of development (Vitasse et al.
2014). Frost hardiness gradually increases while dormancy sets-in and is gradually
lost during ecodormancy once endodormancy is broken (Sakai and Larcher 1987).
Phenology models of leaf unfolding and flowering have been frequently used to
assess the risk of frost damage in perennial plants (Cannell 1985; Cannell and Smith
1986; Hänninen 1991; Kramer 1994a; Murray et al. 1989; Linkosalo et al. 2000).
The risk of frost damage can be assessed by estimating minimum air temperatures
around budburst (Cannell 1985; Murray et al. 1989; Hänninen 1991; Vitasse et al.
2018). More mechanistic models of cold hardiness have been developed that simu-
late frost damage over the whole year, and not only around budburst (Kobayashi and
Fuchigami 1983b; Repo et al. 1990; Kellomäki et al. 1995; Leinonen et al. 1995).
Leinonen (1996) first proposed a frost hardiness model based on bud development
state. In Leinonen’s (1996) model the state of hardiness is regulated by daily air
temperature and photoperiod, and the frost hardiness response to these environmen-
tal factors depends on the current state of ontogenic development of the bud. The
minimum temperature that can be withstood without damage therefore varies during
the annual cycle.
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It has been known for a long time that frost hardiness is also dependent on water
and soluble sugar contents (Siminovitch et al. 1953). However, this is only recently
that the relationships between frost hardiness, carbohydrates contents, bud develop-
ment states, and environmental cues (temperature and photoperiod) have been
incorporated into mechanistic models to predict more accurately frost hardiness
(Poirier et al. 2010; Charrier et al. 2013, 2018a, b; Deslauriers et al. 2021).

14.4.2 Forest Growth and Distribution

An important application of phenology models is their contribution to more complex
models of forest growth and tree species distribution to assess climate change
impacts. The model FORGRO uses phenology and frost hardiness models to
simulate tree growth and productivity (Kramer 1995; Kramer et al. 1996; Leinonen
and Kramer 2002; Kramer and Hänninen 2009). The onset and end of the growing
season can be observed either by recording the changes of the canopy such as
budburst, autumn coloration, or loss of foliage, or by measuring gas exchanges
between the vegetation and the atmosphere. Both can be tested in a model that
couples growth and ontogenetic development. FORGRO describes the effects of
CO2 and temperature on photosynthesis, and the effect of temperature on both plant
and soil respiration. The description of these processes can be found in Mohren
(1987) and Kramer et al. (1996). Temperature also affects the duration of the
growing season and the level of frost hardiness, which can be described using the
mechanistic phenological modeling approach presented above in Eqs. 14.1 and 14.2.

Phenology models have also played an important role in plant species distribution
prediction in the last twenty years. and played a similar role in insect population
dynamics and distribution modeling (see also Chap. 15 in this volume). The model
PHENOFIT estimates survival and reproductive success based on the match between
annual plant development and local seasonal variations of climate. A mismatch
between the two may result in frost injury to flowers and leaves, but also in drought
injury should the vegetation period occur during the drought season, or in low
fecundity should the period between flowering and fall be too short or too cold for
fruit to mature (Pigott and Huntley 1981). These mismatches decrease primary
productivity, survival and reproductive success. Using PHENOFIT, Chuine and
Beaubien (2001) showed that phenology was a major determinant of species
range. More precisely, they showed that phenology partly drives southern bound-
aries because of the inability to fully develop leaves and flowers due to insufficient
chilling to break endodormancy, and also drives northern range limits due to a
too-short growing season length preventing fruit to reach maturation.
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14.4.3 Modeling the Adaptive Response of Phenological
Traits to Climate Change

The seasonal coordination of phenology to local climate conditions has several major
impacts on plant survival and reproduction (fitness), as well as on competitive relation-
ships via vegetative and reproductive performances (Lechowicz and Koike 1995;
Chuine 2010). A recent development in phenology modeling is thus to assess the
adaptive response of traits, such as the critical state of chilling in response to climate
change and the corresponding effect on the budburst to temperature. This approach
was first described in Kramer et al. (2008) and applied to the northern limits of Fagus
sylvatica L. (Kramer et al. 2010). The results indicate that adaptation of the timing of
budburst in trees is likely to occur even if the rate of climate change occurs in a time
span similar to the longevity of individual trees. Moreover, specific forest management
may increase the rate at which the timing of budburst adapts to climate change. The
theoretical background in this type of process-based genetic modeling is presented in
Kramer and Van der Werf (2010) and Berzaghi et al. (2020).

Using the model PHENOFIT, Duputié et al. (2015) also showed that the plasticity of
the date of budburst will help tree species to adapt to global warming, but to a certain
extent only. Some species, such as Scots pine, which have been planted widely
outside the border of their original climatic niche, are at the limit of the plasticity of
the budburst date, which will not help sustaining future climatic conditions in south-
western Europe (Duputié et al. 2015). Finally, the ability to link mechanistically
phenological events to environmental conditions on one hand and to fitness on the
other hand, also allows investigating the selective pressures imposed by climate and
global warming on phenological events (Gaüzere et al. 2020).

14.4.4 Climate Reconstruction Using Historical
Phenological Data

Phenology observations are a very good proxy for past climate reconstructions
(Brazdil et al. 2005). Both correlative (Aono and Omoto 1993; Menzel 2005;
Meier et al. 2007; Etien et al. 2008, 2009; Maurer et al. 2009, 2011; Aono and
Saito 2010; Možnỳ et al. 2010); and mechanistic phenology models have been used
in this task (Chuine et al. 2004; García de Cortázar-Atauri et al. 2010; Yiou et al.
2012). The latter approach, in particular, made use of grapevine harvest dates to
reconstruct temperature anomalies over the last seven centuries (Fig. 14.3, Chuine
et al. 2004), as well as atmospheric pressure anomalies over the last five centuries
based on temperature gradients (Yiou et al. 2012). Garcia de Cortazar-Atauri et al.
(2010) however warned of the difficulties of such reconstructions. They require
robust phenological models parameterized with large data series as well as a good
knowledge of the history and denomination of grape varieties, historical events such
as wars that can affect harvest dates independently of climate, and of historical
changes in agricultural practices that may have affected grape harvest dates.
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