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Abstract. Cutting-edge techniques are being employed by researchers
to develop algorithms that have the capability to automatically add
color to black-and-white videos. This advancement has the potential to
revolutionize our experience of historical films and provide filmmakers
and video producers with a powerful new tool. These algorithms employ
sophisticated deep neural networks to analyze images, identifying pat-
terns and offering a promising avenue for extracting meaning and insights
from visual data in the field of computer vision. Although current stud-
ies primarily focus on image colorization, there is a noticeable gap when
it comes to videos and movies in the realm of deep machine learning
techniques. Our investigation aims to bridge this gap and demonstrate
that the image colorization techniques used today can also be effectively
applied to videos and match the current state of the art presented at
NTIRE 2023 video colorization challenge. We explored the application
of diffusion models, which have gained popularity due to their ability
to generate images and text. Our implementation involves utilizing a
diffusion model to introduce noise in the frames, while a U-Net with self-
attention layers predicts the denoised frames, thereby predicting the color
of the video frames. For training purposes, we utilized the DAVIS and
LDV datasets. When comparing the colorized frames with the ground
truth in the test set, we observed promising results under several quality
metrics, such as PSNR, SSIM, FID, and CDC.
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1 Introduction

The role of color in shaping our perception and comprehension of the visual
world is undeniable, particularly in the context of video. However, numerous
older videos exist solely in black and white, imparting a sense of antiquity and
disconnection from the contemporary world. To address this issue, researchers
have employed deep learning models to restore the missing color information in
these videos. This field of research, known as Deep Learning Video Colorization
(DLVC), aims to develop algorithms capable of automatically adding color to
black-and-white videos.

Additionally, the New Trends in Image Restoration and Enhancement
(NTIRE) [21] challenge, proposed by the Computer Vision Foundation (CVF),
provides an opportunity to further developments in this research area by the
visual computing community. The challenge invites proposals for solutions in
video colorization.

The current literature on image generation reflects a significant interest in
diffusion models [8] even as the other computer vision areas [52]. These mod-
els draw inspiration from thermodynamics and, akin to the early neurons in
neural networks, have played a role in the advancement of machine learning
techniques. Recognizing this evolution in information generation architectures,
our paper aims to demonstrate the application of Deep Diffusion Probabilistic
Mode (DDPM) in generating the missing color channels within video frames.

1.1 Colorization

In the existing literature on DLVC, three prevalent methods are commonly
employed to introduce colors into video frames: scribble-based, example-based,
and fully automatic approaches [41].

Scribble-Based. Among the mentioned techniques, the scribble-based tech-
nique stands out as the traditional approach for accomplishing the task, dating
back to the era before deep learning gained prominence. This method primar-
ily involves transferring color information between adjacent pixels based on the
similarities in their luminance values. However, it overlooks significant factors,
such as texture and contextual details of the objects.

Consequently, the utilization of scribble-based approaches has become less
common due to the extensive human intervention they demand. Nevertheless,
there exist notable studies that employ this technique for DLVC (Deep Learning-
based Video Colorization) tasks [9,14,32,56,56]. However, achieving satisfactory
outcomes using this approach requires substantial human interaction throughout
the process.

Example-Based. An alternative approach, widely adopted following the rise of
machine learning, is the example-based technique applied to line art [1,39,43],
video restoration [4,19,30], video flow [47], object flow [18], region similarity [57],
neighbor pixels [51], spatial-temporal dependence [6].
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We can highlight notable achievements in the area, exemplified by works
such as BisTNet [57], ColorVid [48], and Deoldify [38]. These studies stand out
in terms of frame colorization and color propagation measures, representing the
forefront of advancements in colorization techniques. Consequently, they were
selected for comparison with our own results.

Compared to the scribble-based approach, establishing the mapping between
the example and the target frame in DLVC using the example-based method
is a more complex task. In most implementations, this technique is employed
to learn the correlation between the colors of the input and the luminance of
the target frame. Consequently, its capacity to generalize effectively is directly
influenced by the diversity of videos encountered during training.

Fully Automatic. Among the various methods for DLVC, this particular tech-
nique stands out prominently. Unlike the other approaches, it does not rely
on pre-colored examples during the inference process for frame coloring. As a
result, this method has been extensively explored in current DLVC solutions and
is regarded as some of the state of the art in the area using simple GAN [25],
temporal flow [27], auto-regulation propagation [26], and key frame color prop-
agation [29].

Another aspect of this technique is its training objective. While other meth-
ods utilize coloration training models that map colors from examples to target
frames, this approach focuses on comprehending the objects present in the image,
their illumination, and the temporal characteristics to preserve consistent color-
ing. Consequently, these factors contribute to making example-less DLVC more
challenging compared to the other methods.

For our implementation, we will adopt the fully-based technique as it offers
greater control over the colorization process, allowing us to influence the colors
generated by the model. Consequently, it becomes crucial to develop a method
that can effectively inform the diffusion model about the objects present in the
frame, along with other contextual information, in order to facilitate accurate
color generation.

1.2 Contributions

Our main focus is on devising an approach utilizing a diffusion model to generate
color for monochromatic frames, aiming to generate results that closely resemble
the originally colored frames.

We can summarize our contributions as follows: (i) implementing an algo-
rithm capable of performing monochrome video frame colorization using the
conditional diffusion technique, (ii) achieving the ability to generate high-quality
results for videos that were not included in the training data, thus establishing
a generalist approach, and (iii) contributing to the advancement of diffusion
models in DLVC tasks by introducing innovative architectural enhancements.
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2 Diffusion Models

Diffusion Models, including Generative Adversarial Networks (GANs) [13], Vari-
ational Autoencoders (VAEs) [24], and certain Autoregressive models [34], fall
under the category of generative models. The utilization of generative models
has witnessed significant growth in recent years, leading to advancements in
both the quality of generated outputs and the methods employed for achieving
them [7].

The prevailing implementation of diffusion models in computer vision, found
in nearly every generative problem within the field, is known as the Deep Diffu-
sion Probabilistic Model (DDPM) [40]. Drawing upon principles from thermo-
dynamics, these methods have demonstrated notable achievements in computer
vision tasks, positioning them as the current state of the art in the field [8].

The application of DDPM models can be conceptualized as a high-level
Markov Chain process [12]. During the forward pass of the network, small incre-
ments of noise are introduced over a finite number of steps. On the other hand,
the reverse process, which constitutes the learnable part of the network, aims to
predict the noise that was added to the original sample [17]. Typically, autoen-
coders are employed in the reverse process to learn and predict the added noise.

To illustrate this process, suppose a sample x without any noise, denoted as
x0. During the diffusion process, noise is incrementally introduced at each step
t. As a result, the sample becomes progressively noisier, resulting in a sequence
of samples x1, x2, x3, . . . , xt. Ultimately, at the end of the diffusion process, the
final sample xt is predominantly composed of pure noise.

Conversely, the reverse process starts with a random noise sample, and the
model’s objective is to predict the noise that needs to be subtracted in order to
reconstruct the original sample x. Starting from the noisy sample xt, the reverse
process gradually eliminates the noise until reaching the noise-free original ver-
sion x0. At a high level, we can consider that the model learns to predict a
slightly denoised version xt−1 based on the input of xt.

The implementation of DDPM models is gaining ground in several areas of
visual computing, such as super-resolution [22], image generation [33], manipu-
lation [23], and multimodal implementations such as inpainting [2], and segmen-
tation [35].

3 Related Work

The relevance of colorization in the actual literature and the possibility of appli-
cations of the diffusion models are discussed in depth in this section.

Significant progress has been made in the field of image colorization using dif-
fusion processes. Several works have emerged, each showcasing slight variations
in implementation with the aim of achieving increasingly natural and realistic
results. These advancements contribute to pushing the boundaries of image col-
orization techniques and further enhancing the overall quality of the generated
outputs.
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One significant advancement in image colorization is the utilization of unsu-
pervised methods for posterior samplings. This approach enables faster training
and inference, enhancing the overall efficiency of the process. Additionally, these
methods have shown potential for application in other related problems, such as
inpainting and deblurring [22].

Another implementation is the Generative Probabilistic Image Colorization
(GPIM) [11], primarily employed for the colorization of line drawings. GPIM
allows for the creation of multiple colorizations for the same input, adding flexi-
bility and creativity to the process. Furthermore, this work introduces the use of
positional embeddings, which facilitate the accurate filling of colors between the
lines of the drawings, enhancing the quality and coherence of the colorization
results.

The application of generative models using diffusion techniques offers var-
ious possibilities in the realm of video processing, including text-based edit-
ing. For instance, an example involves employing a pre-trained diffusion model
in conjunction with keyframe generation to edit subsequent frames in a video
sequence [5]. Other approaches focus on generating videos based on textual
inputs [16,54,59]. In their methodology, the text descriptions are encoded into
embeddings, and diffusion models are employed to generate videos that corre-
spond to the provided textual descriptions.

Continuing with the application of DDPM in videos, another method involves
video interpolation, where the model generates intermediate frames to preserve
temporal consistency throughout the video [46].

While there has been a significant volume of work published on DDPM in
the domain of video generation, we observe a disparity in terms of quantity and
quality of results in the field of DLVC. This discrepancy highlights a research
gap that exists in this area, which the present work seeks to bridge.

4 Methodology

In this section, we outline our methodology, starting with a description of the
dataset utilized and its key characteristics. Then, we present the architecture of
our model, followed by a detailed explanation of the training process.

4.1 Datasets

To train our model, we utilized two datasets, the DAVIS dataset [45] and the
Large-scale Diverse Video (LDV) dataset [53], which DAVIS consists of 120
videos that were divided into training and validation sets, and LDV had 200
videos for training. Prior to feeding the images into the model, we resized them
to dimensions of 224×224 pixels. Furthermore, we employed data augmentation
techniques, such as random cropping and rotations. These augmentation opera-
tions were implemented to enhance the generalization capability of the dataset
during training.
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For our research, the dataset was divided into three distinct components. The
first part consists of grayscale frames denoted as Sg ∈ R1×H×W . The second part
consists of the original frames with color denoted as R ∈ R3×H×W . Finally, the
output color frames generated by our model are represented as Sc ∈ R3×H×W .
Here, H and W represent the height and width of the frames, respectively.

4.2 Model

Our architecture can be divided into four distinct deep-learning models, with
diffusion serving as the primary model. In the following paragraphs, we will pro-
vide a breakdown of each of these models, elucidating their individual purposes
and highlighting their interconnections within the overall architecture.

Encoder. The Encoder E is responsible for generating the latent space of the
original frame R. The output of the Encoder is denoted as LatR ∈ R4×28×28,
which serves as the prediction objective for the diffusion model. To ensure
the quality of the generated latent space, we use a pre-trained model with
weights [35] from ImageNet [37].

The aim of transforming video frames into latent spaces is twofold: simplify-
ing the process and reducing the amount of data that the diffusion model has to
handle. This trend towards diffusion processes in visual computing is illustrated
by the use of this approach [35].

Visual Attention Conditioning. To guide the denoising process and facili-
tate the diffusion process, we incorporated the Visual Attention Conditioning
(VAC) module. This module utilizes a pre-trained self-attention visual model,
specifically the VIT B 32 model provided by PyTorch [44], which employs Trans-
formers for visual tasks [10].

In this process, the grayscale frame Sg is used to generate a latent repre-
sentation denoted as Vfeatures ∈ R50×768, referred to as the hotline. This latent
representation serves the purpose of guiding the diffusion model in determining
how the colorized frame should be created. The hotline representation is directly
incorporated into the convolution layers of our diffusion model, enabling effective
colorization based on the provided information.

Diffusion Model Latent Colorization. The Diffusion Model Latent Coloriza-
tion (DMLC) module is the core component of our implementation. It operates
by taking a random noise distribution as input and utilizes the information from
Vfeatures to generate a latent space representation denoted as Latc. This latent
space represents a color version of LatR, effectively removing noise from the
original frame. To achieve this noise removal process, we employ an architecture
inspired by the U-Net [36].

Similar to many recent implementations, our diffusion model generates infor-
mation in the form of a latent space rather than directly from pixels [3]. This
approach offers several advantages, including the ability to leverage existing pre-
trained models and reduce the computational resources required for the diffusion
process. To achieve this, the network responsible for creating the latent space
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Fig. 1. Topology of our network, illustrating the data flow during both training and
inference. The grayscale frame Sg is transformed into a colored version Sc using the out-
put LatR of the DMLC and decoded by D. During training, the data flow is represented
by the orange line, while during inference, the blue line demonstrates the process.

and decoding the diffusion output was pre-trained and is only used for inference
during the diffusion process.

Decoder. The Decoder D is used as the final component of our architecture,
responsible for converting the latent space obtained from the DMLC back into
an image representation denoted as Sc. Similar to the Encoder E , the implemen-
tation and weights of the Decoder D were pre-trained.

The interconnection between the models in our architecture is illustrated in
Fig. 1, which depicts the flow of information through the different components,
showcasing the relationships and dependencies among the models.
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4.3 Training

To enhance the performance of each component in the architecture, we specifi-
cally train the DMLC model, enabling an isolated evaluation of the diffusion’s
effectiveness in the colorization task.

Our training batch consisted of 100 frames per iteration, and we conducted
a total of 300 epochs. We employed the AdamW optimization method [28], a
popular choice for diffusion and colorization problems, with a learning rate of
2e−5. The learning rate decayed by a factor of 0.1 every 50 epochs. For the
DMLC model, we used the Mean Squared Error (MSE) as the loss function, this
configuration had used in both datasets.

All experiments were conducted on a Windows 11 computer with the fol-
lowing specifications: AMD Ryzen-5600g (12 cores) running at 4.20 GHz, 32 GB
RAM operating at 3.2 GHz, and a GPU setup consisting of an NVIDIA GeForce
GTX 1080 Ti with 11 GB GDDR5 memory [31].

4.4 Evaluation

Our implementation requires only the monochromatic frame Sg as input for the
inference process, resulting in the generation of the colored frame Sc.

5 Evaluation Metrics

In our work, we conducted a quantitative evaluation of color videos by comparing
the colored frames with their corresponding original colored frames. This app-
roach allows us to measure the difference between the output of our architecture
and the ground truth.

We employed several methods to compare the pixel information of each frame,
including the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Metric (SSIM), and Fréchet Inception Distance (FID) and Color Distribution
Consistency (CDC). In the following sections, we will provide more details on
how each of these metrics is calculated and how their results can be interpreted.

5.1 Peak Signal-to-Noise Ratio

The Peak Signal-to-Noise Ratio (PSNR) directly operates on the pixel intensities
by comparing the maximum possible value with the Mean Squared Error (MSE).
Equation 1 demonstrates how the calculation can be performed for a single pair
of frames.

PSNR = 10 log10
(Lmax)

2

MSE
(1)

where, Lmax is the maximum intensity value. A higher PSNR value indicates a
closer similarity between the ground truth and the created image. It is important
to note that while PSNR provides a quantitative measure of image quality, it
does not directly correspond to human visual perception. This is because PSNR
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does not take into account the structural characteristics of objects in the images
during the comparison process [58].

Despite its limitations in capturing human visual perception, PSNR remains
one of the commonly used metrics for measuring and comparing image qual-
ity. Its simplicity and intuitive scoring make it widely adopted. When applied
to videos, PSNR can capture both spatial and temporal issues by comparing
frames individually, although it may not account for inconsistencies in frame
sequences [49]. In the domain of DLVC, many works still rely on frame-by-frame
comparison using PSNR as the evaluation metric [20,25,39,55].

5.2 Structural Similarity Index Metric

Unlike PSNR, the Structural Similarity Index Metric (SSIM) takes into account
additional information about the images, such as contrast and structural pat-
terns. This approach provides a more human-like way of observing and analyzing
the inputs [50].

The calculation of SSIM involves comparing local image patches and consid-
ering their luminance, contrast, and structural similarities. Equation 2 presents
a simplified version of the SSIM calculation.

SSIM(a, b) =
(2μaμb + C1)(2σab + C2)

(μ2
a + μ2

b + C1)(σ2
a + σ2

b + C2)
(2)

where, a and b represent the original and processed frames, respectively. μa and
μb denote the mean intensities of the frames, while σa and σb represent their
respective standard deviations. The parameter C reflects the contrast between
the images being compared, and it is calculated as C1 = (k1 · L)2 and C2 =
(k2 · L)2, where L = 2x − 1. The values of k1 and k2 are set to 0.001 and 0.003,
respectively, and x represents the number of bits per pixel.

5.3 Fréchet Inception Distance

The Fréchet Inception Distance (FID) is a metric commonly used to assess
the quality of generated images, initially introduced for evaluating generative
machine learning models [15]. FID compares images by analyzing the feature
space extracted by a deep learning model, typically utilizing Inception V3 as the
reference model [42].

Utilizing the feature space instead of pixel-level comparison has shown to be
an effective approach for measuring image similarity. The obtained distance value
through FID represents the dissimilarity between the two samples. In DLVC
methods, FID is commonly applied in supervised or semi-supervised approaches,
where the ground truth color frame is available.

5.4 Color Distribution Consistency

While FID serves as a valuable metric for assessing colorization quality, an addi-
tional metric is essential to evaluate the consistency of color propagation across
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video frames. To address this requirement, we opted for the Color Distribution
Consistency (CDC) metric.

Quality assessment within the CDC metric is conducted using the Jensen-
Shannon (JS) factor, which evaluates consecutive frames to gauge the similarity
of color distribution between them. The resulting value is normalized, ranging
from 0 to 1, similar to the FID metric. The calculation of CDC can be expressed
as depicted in Eq. 3:

CDCt =
1

3 × (N − t)

∑

c∈{r,g,b}

N−t∑

i=1

JS(Pc(Ii), Pc(Ii+t)) (3)

where N represents the number of frames in the video. Pc(Ii) denotes the nor-
malized probability distribution over the histogram of the image Ii across the
color channels (r, g, b). The parameter t is the temporal distance between frames
being compared. Thus, the values of t are responsible for defining the window
size between the frames being evaluated.

To comprehensively evaluate the model’s capability to consistently propagate
color across various temporal distances, we employed the standard configuration
with three different intervals for t (t = 1, t = 2, and t = 3). This approach allows
us to assess the model’s performance in propagating color between nearby (short-
term) and more distant (long-term) frames effectively. The process is expressed
in Eq. 4:

CDC =
1
3
(CDC1 + CDC2 + CDC4) (4)

Hence, our choice of evaluating our model and its various facets using these
metrics serves the purpose of highlighting improvements over the current state-
of-the-art methods. This comprehensive evaluation approach allows us to demon-
strate the advancements and effectiveness of our proposed model.

6 Experimental Results

After the training phase, we proceeded to evaluate our model on a separate
dataset containing samples that were not part of the training set these being
the DAVIS test set and the LDV validation set, as well as the NTIRE. In this
section, we present the quantitative results obtained using each metric, as well as
the qualitative results showcasing examples of the colorization tables generated
by our architecture.

6.1 Quantitative Evaluation

The quantitative evaluation of our architecture was performed using three met-
rics: PSNR, SSIM, FID, and CDC. The results obtained are shown in Table 1.

All methods reported in Table 1 utilized the same dataset for evaluating their
results. However, there was variation in the metrics used by different authors to
demonstrate the quality of their models. In our evaluation, we opted to utilize
the values provided by the respective authors and directly compare them with
our own results.
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Table 1. Comparison of results achieved by our architecture on the DAVIS dataset
with other approaches

DAVIS Dataset

Comparison PSNR ↑ SSIM ↑ CDC ↓ FID ↓
Lei et al. [26] 30.35 – – 6.22e−4

Chen et al. [6] – – 4.02e−3 5.87e−4

Huang et al. [18] 30.61 – – 6.87e−4

Ours 27.95 0.27 3.19e−3 5.02e−4

Fig. 2. Results of our model’s inference on the DAVIS dataset, illustrating the quality of
frame colorization. While some instances exhibit color leaking, the results demonstrate
a strong resemblance to the original colored images.

6.2 Qualitative Evaluation

Visual inspection is a commonly used qualitative method to evaluate DLVC
(Deep Learning-based Video Colorization) models. It involves comparing the
results of colorized images with their original colored counterparts.

In Fig. 2, we present the outcomes generated by our model, which include
the original colored frame denoted as R, its monochromatic version labeled as
Sg, and our implementation result represented as Sc.
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7 Conclusions

In summary, the findings of our work demonstrate that the utilization of
probability-based models for video colorization is a promising approach, yield-
ing satisfactory results in terms of color quality for video frames. The models
exhibited color fidelity when compared to the original samples, indicating that
they can serve as a viable solution for video colorization tasks, including areas
such as the restoration of old films and the recreation of historical content.

From the architectural innovations and comprehensive result evaluations, our
approach provides a notable advancement in the utilization of diffusion models
for DLVC problems. The outcomes of this study are anticipated to exert a pos-
itive influence on the development of more efficient and impactful models for
addressing DLVC challenges. In conclusion, our research demonstrates that the
conditional diffusion technique holds great promise as an approach for coloriz-
ing monochrome videos. The state of the art shows results comparable to ours,
underscoring the potential of our architecture. It is worth noting that we achieved
these results using limited hardware resources during model training.
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