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ABSTRACT: The risk management of degrading engineering systems can be optimised through inspections
and renewals. In the probabilistic modelling of life-cycle management, the renewal theorem plays a key role in
the computation of the expected number of renewals and the cost rate associated with a management strategy.
The renewal theorem is well known and its rigourous mathematical proof is presented in the literature, though
probabilistic arguments associated with its derivation are not well understood by the engineering community.
The central objective of this paper is to present a more lucid and intuitive interpretation of the renewal theorem
and to derive asymptotic expansions for the first and second moment of the number of renewals. As far as the
authors know, the latter expansion is new in the sense that it also contains a constant term.

1 INTRODUCTION

In industrialised nations, the infrastructure elements
critical to economy, such as bridges, roads, power
plants and transmission lines, are experiencing aging
related degradation, which makes them more vul-
nerable to failure. To minimise the risk associated
with failure of an infrastructure system, inspection
and replacements are routinely carried out. Because
of uncertainty associated with degradation mecha-
nisms, operational loads and limited inspection data,
probabilistic methods play a key role in develop-
ing cost effective management models. The theory
of stochastic renewal processes and the renewal the-
orem have been fundamental to the development
of risk-based asset management models (Rackwitz,
2001; van Noortwijk, 2003). For an example in bridge
management, see van Noortwijk and Klatter (2004).
Although the renewal processes have been discussed in
many mathematical treaties (Feller, 1950, 1966; Karlin
and Taylor, 1975; Tijms, 2003), the concepts are not
amenable to the engineering community. The objec-
tive of this paper is to present a conceptually simple
and intuitive interpretation of renewal processes with
applications.

For sake of conceptual simplicity, we consider a
discrete time scale to model the process of times at
which failure occurs with an independent, identically

477

distributed (iid) sequence of 0—1 random variables,
where 1 means occurrence of failure. This leads to
a discrete version of the Poisson process where the
times between failures are independent, geometrically
distributed random variables. However, in cases where
the geometric distribution of the inter-occurrence time
cannot be justified, a natural way to generalise the anal-
ysis is to model it as a renewal process. The renewal
theorem provides asymptotic results for the first and
second moment of the number of failures. For discrete-
time and continuous-time renewal processes, see Feller
(1949, 1950) and Smith (1954, 1958), respectively. In
this paper, we extend Feller’s asymptotic expression
for the second moment of the number of renewals.

We propose to model the renewal processes with a
sequence of 0—1 variables which are in general neither
independent nor identically distributed. The probabil-
ities of occurrence of failure are given by the renewal
sequence associated with the distribution between fail-
ures. This approach gives insight in the dependence
structure of the indicator variables of the event that
failure occurs. The proposed approach allows to cal-
culate quite easily the mean and variance of the number
of failures in a finite time horizon.

The proposed model is applied to develop a risk-
based asset management framework for utility wood
poles in an electrical transmission line network. Using
the actual inspection data, we model the lifetime
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Figure 1. Terminology associated with the renewal process
where N, = n.

distribution as a discrete Weibull distribution. A sec-
ond example concerns the renewal of hydraulic cylin-
ders for which the lifetimes are distributed according
to a Poisson distribution.

This paper is organised as follows. In Section 2, we
present the basic properties of discrete-time renewal
processes by studying the number of renewals over
a finite time horizon. For an infinite time horizon,
asymptotic results are obtained in Section 3. Dis-
counted renewal cost is incorporated to the renewal
model in Section 4. Two illustrations of the pro-
posed discrete-time renewal model are presented in
Section 5. Conclusions are formulated in Section 6.

2 THEORY OF RENEWAL PROCESSES

2.1 General concepts

The basic premise is that the lifetime (7') of a com-
ponent is a random variable. It is assumed that the
component is replaced with a new and identical com-
ponent as soon as a failure occurs. The probability
distribution of T is given as

P(f = K) =Dk (J[- =12 )

We will always assume that the probability distribution
(pr) 1s aperiodic which is certainly the case if p; > 0.
This process is shown in Figure 1 inwhich 7, Ty, 15, . . .
denote an 7id sequence of positive, integer valued ran-
dom variables corresponding to inter-arrival times of
failure. The probability generating function of (py) is
given by

P(z) = Zp;.:"‘.

k=0

where po=0. The probability distribution (py) is
referred to as the renewal distribution. The time of
occurrence of the nth renewal (failure) is given by the
partial sum

‘SIH = Y-‘i o g Y;; (” 2 1}
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The counting process N =(N;;t=0,1,2,...) asso-
ciated with the sequence (S,) is called the renewal
process with renewal distribution (py)

Ny=n & §,<t<S, (n>0), (1)
where Sy = 0. The simplest example of a renewal pro-
cess is the discrete Poisson process with a shifted
geometric renewal distribution

pe=pl=p* " (k>1).

where 0 < p < 1. However, the simplest way to define
the discrete Poisson process is by introducing an iid
sequence X, X}, X5, ... of 0—1 random variables

P(\ = 1.] =p= 1-— P{X = U).
and defining Ny =0 and

N=Xa+...+X, (t=1)

It follows that &V, is binomially distributed and there-
fore the discrete Poisson process is also called the
binomial process.

2.2 Distribution of number of renewals

The number of renewals, N;, in the interval (0, 7] is a
random variable, and its distribution can be derived
from probabilistic arguments. In particular N, =0 if
only if §| =T > t, hence

t
P(N;=0)=P(Ty >t)=1-) p 2)
k=1

For n > 1, it follows by conditioning on 7 and (1) that

f
P(Ne=n) =) piP(Spy St —k < Sp).
k=1

It is clear that the time of occurrence of the (n — 1)th
failure necessarily follows an inequality, S, - | >n — 1.
It means that we only have to sum over £ such that
t—k>n—1or k<t+1—n. In summary, it leads
to a recursive formula to calculate the probability
distributions of N, as

t+1-n

P(Ny=n)= Y pP(Nerx=n-1), 3)
k=1

where P(N, =0) is given by (2).



2.3 Renewal function

The expected number of renewals up to time # (first
moment) is referred to as the renewal function, i.e.,
M (t) =E(N,). This section presents the derivation of
M(?). An alternative way to write &, is

o0
Ni= 1s.<t- )

n=1

Note that the indicator function 1, =1 when the con-
dition 4 is true, otherwise it is zero. Actually, the sum
in (4) is over the finite range n =1, .. ., ¢, since Sy > k
for all k. Now taking expectations of both sides of (4)
results in

E(N) =) E(Lis.<n) = ) Falt), )

n=1 n=1

where F, denotes the cumulative distribution function
of S,,. A recursion equation for E(N;) can be derived
using (4) and (5) as

E(N; Ty =k)

=E (1 +3 Vg atuzeiy T = A-) ©)

n=2

for k €[1,t]. Recall from (4) that

This equation comes from the fact that the pro-
cess starts afresh after the first failure. Since 77 is
independent of other failure times, (6) is rewritten as

E{_"\"_;: = Jl|} = (1 2 E{;\'_;_;'-}}[J;'-.

By summation over k=1, .. ., ¢, and using the law of
total probability

E(N,) = M(t) = F(t)+ >_ pB(Nii). M
k=1

Equation (7) is called the renewal equation, and the
renewal function is its unique solution corresponding
to the renewal distribution (py).

2.4 Rate of renewal

The rate of occurrence of renewals can be derived
through the use of a random indicator variable ;. It
is an indicator of a renewal at time j, such that /; = 1 if
there is a renewal at step j, otherwise 0. Since a renewal

takes place at discrete times Sy, the indicator variable
can be written as

;
L= 1y (G21)
k=1

The mathematical properties of the sequence (/;) are
extensively studied in Kingman (1972) under the name
of discrete-time regenerative phenomena. Indicators
of recurrent events as defined in Feller (1949, 1950)
are examples of regenerative phenomena. The renewal
rate at time j, denoted as u;, is defined as

w=P(I;=1) (G>1), (8)

and it can be expressed as

P(Sk=j) (=1 9

J
uj =
k=1
It follows from (8) that u; =[E(J;) for j=1,2,... Let

us define uy = 1. The renewal rate can be alternatively
derived using the generating function

U(z) =ug+wmz+us2®+ ...

which is related with the generating function of the
renewal distribution as

U(z) =1+ P(2)U(z). (10)

Consider an example of renewal distribution, p; =p
and p, =1 — p=g¢q. Its generating function is given as

P(z) = pz+¢22.
Using Equation (10)
1 1

U(z)

—q —pz —qz?

and partial fractions, the generating function U(z) is
obtained as

g (s T = 1_'("‘1’}1?“ o
v )

Thus,

o G
Uy = —————,
1+g¢q

The following recursion can be used to calculate the
sequence as

n
Uy = Zp;:u.,,_;. (n>1u=1). (11)
k=1
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In general, the renewal indicators /; are not indepen-
dent. It turns out that

E(fp1ntm) = Unlpm-

Since

Ne=h+.o.+ L,

the mean and the factorial second moment can be
expressed in terms of the sequence u; as

1
E(N) =,
i=1

(12)

and since [j2 =I; for 0—1 random variables

-1
wi(ug + ...+ upj).
1

E(N(N;, — 1)) =2

i

(13)

From (12) and (13), the second moment of the number
of renewals follows simply

E(N?) = E(N(N, — 1)) + E(N,). (14)
So, the basic idea is that the renewal rate can be directly
obtained from the generating function of the renewal

distribution. Then, it can be used to compute moments
of the number of renewals.

2.5 Distribution of remaining lifetime and age

In the context of the renewal process, it is of interest
to obtain the remaining lifetime of a component at a
future time ¢. Since it is a random variable, its prob-
ability distribution can be derived from the renewal
arguments as follows.

At time ¢, the number of renewals is denoted as N,.
The next renewal will occur at time Sy, 4. Thus the
remaining lifetime (also called the excess of residual
lifetime) can be written as
h)Lf — .S’_\',.{.] — !I (ISJ
The time of the last renewal that occurred before time
t is denoted as Sy,. The age (or current lifetime) of the
current component is therefore given as
1; =t- S-'\'r‘ (16])
If there was a renewal precisely at time #, then Sy, =¢
and the age of the current component is 0. The age

of the current component is also referred to as the
backward recurrence time at .

Consider the event
{A,=1i,N,=k,RL, = j}

It follows from (16) that the event can only occur if
i=t—Sk. So Sy =t—iand, since S; > k, we get that
i+k<t IfRL,=jand N; =k, then (15) implies that
Sks1=t+j or Tp11=8ky1 —Sk=i+j. The joint
distribution of (4, NV;, RL,) is given by

P(A, =i, N, = k, RL; = j)
P(S* =t—4,Tp =1 '.'—}} = p,-_jP(S;.. =1—1).

where i+k<t and j>1. By the law of total
probability,

i—i
P(A;=4,RLy =) =pis; Y _P(Sk =t —i).
k=1

and (9) implies that the joint distribution of (4, RL,)
is given by
IP‘{_A; =i, RL, =j)=1u iPitje (17)

By the law of total probability, the marginal distribu-
tions of the age and the remaining life are

P(Ac=i)=w_; Y piyy=w_i(l—F(), (18)
i=1

with 0

i< tand

i
P(RL =j) =) uprejk (5 2>1). (19)

k=0

3 ASYMPTOTIC RESULTS

This section analyses the generalised renewal equation

t
Iy =a; + Zpk;r;_;. (t =0), (20)
k=1

where (a;) is some given sequence. When a, = F(¢), the
solution is the renewal function. If ¢y =1 and a, =0
for all 7 > 0, the solution is the renewal sequence (u;).
Using generating functions, we can show that the solu-
tion of (20) is the convolution of the sequence (a,) and
the renewal sequence (u;)

t
r = E gy

k=0
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Ifthe kth moment of the renewal distribution exists,
it will be denoted by ;. One of the most important
theorems about renewal processes is the renewal the-
orem. If the first moment of the renewal distribution
exists, then

(21)

lim u, = —
400 H

For the discrete renewal theorem, see Feller (1950,
Chapters 12 & 13) and Karlin and Taylor (1975, Chap-
ter 3). It follows for the renewal function M () = E(V;)
that

. M(t) 1
lim = —.
t—oo 5

(22)

The discrete version of the key renewal theorem fol-
lows now directly. Let (x;) be the solution of the
generalised renewal equation (20). If the first moment
of the renewal distribution exists and Y ;- , |a;| is
convergent, then

hm T = |llll E ARty = — E aj.

}.[I k=0

(23)

Following Tijms (2003, Chapter 8), we use the discrete
key renewal theorem to derive asymptotic expansions
for the first and the second moment of the renewal
process N. Suppose that the renewal distribution (py)
has a finite second moment p,. From (22), it follows
that M (t) ~ t/j11 + o(¢) for large ¢, where the term o(¢)
is of lower order than ¢. Define

t
Zn(r)=M(r)—E. t=0,1,2,...

Z, is the solution of the generalised renewal equation
(20) with

2+
Za, = — + 'u',z!%

t=0 ]

It follows from an application of the key renewal
theorem that (Feller, 1949)

[..-U{r)—i . T S (24)

lim
t— I 218 211

—20

An asymptotic expansion of the second moment of the
number of renewals N, can be found along the same
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lines but is much more technical. We only give the
result. Let M (¢) = E(N?) and assume that the renewal
distribution has a finite third moment u3. Then

2 9 X 1
lim [Mz(!} = {—., + (Z’T; g —,,) rH
- 1y i Mmool (25)
1

33 2pz—3us 1 —9pus 3

B 2] 3ud 6t 241

The asymptotic expansion for the first moment can
be found in Feller (1949) with a derivation using gen-
erating functions. In Feller’s paper, there is also an
expansion for the second moment but the constant term
is not explicitly given and it is not clear how this term
can be found using generating functions. Note that
the the coefficients in the expansion for the discrete
case and the continuous case are different. The results
for the continuous case can be found in Tijms (2003,
Chapter 8).

4 DISCOUNTED COST

In this section, we consider the case of constant
renewal cost ¢ > 0 with exponential discounting

t

K, = Z ce ™ I

i=1

where r > 0 is the discount rate and e~ is the discount
factor. It follows that

E(K;) = E ce "u

a=1

and
rlBIiE (K}) Zr("-’u =c(U(e )= 1),

i=1

where U is the generating function of the renewal
sequence (u;). It follows from the renewal equation
(10) that

eP(e)

E B =T Py

The variance of K is given by

t
Var(K;) = ¢ {Z -

i=1

-1 t—i t 2
2 E ue 2 E gk wy | — E e Huy
i=1

k=1



0.08/

0.07}

0.

3

0.

(=]

5t

Probability
=]
b4

e
o

3

o
=3

2t

o
o
=

5 10 15 20 25 30 35 40

Forecast Time

%

Figure 2. Lifetime distribution of the component.
and with « = e™" we get, after some simplification,

. o P(a?) — (P(a))?
lim Var(K;) = 0= Pld))1 = Pa)

t—o0

When the renewal cost depends on the renewal time 7'
and is denoted by c7, then the mean and variance of the
discounted cost over a finite (and infinite) time horizon
can be determined using the recurrence relations given
in van Noortwijk (2003).

5 ILLUSTRATIONS

This section presents illustrations in which the renewal
rate and the first and second moment of the num-
ber of renewals over a finite time horizon as well as
their asymptotic expansions are derived for renewal
inter-occurrence times having a discrete Weibull dis-
tribution and a shifted Poisson distribution.

5.1 Discrete Weibull distribution

This section illustrates an application of the theory
of renewal processes to the life-cycle management of
an electrical transmission line network. The lifetime
distribution of electrical components in power plants,
such as switches and relays, can be modelled by a
discrete Weibull distribution, as shown in Figure 2.
Suppose the lifetime follows a discrete Weibull
distribution with the hazard rate function given as
{k/m')""l (k=1,..., m) if a>1,
-'il‘.;.. -

BE= if0<a<l,

where 0 < 8 < 1. In the literature, this distribution is
also known as the discrete Weibull distribution of type
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Figure 3.
vice life.

Renewal rate of the component during the ser-

II (Stein and Dattero 1984; Ali Khan et al., 1989). Note
that when o = 1 the distribution becomes a geometric
distribution. Useful explicit expressions for the mean
and variance of the discrete Weibull distribution don’t
exist.

For the component at hand, let the shape parameter
be o =3 and the upper bound of the support of the
distribution m =40. The mean lifetime of this com-
ponent is about 15 years. Because the discrete hazard
rate function is defined as

Pr

1— Zf—_ll Di

JI.P.L. =

the probability function can be written as

k-1

PR = fl;—H[T —-h] (k=1,..., m).

=1

(26)

The probability function of the lifetime is shown in
Figure 2.

The formulas derived in the previous sections can
be applied to compute the renewal rate and associ-
ated statistics. Figure 3 plots the rate of occurrence of
renewal, calculated using (11), along with its asymp-
totic limit (1/u; =0.0677). The mean and standard
deviation of the number of renewals is plotted in
Figure 4, which were calculated using (12) and (14).

5.2 Shifted Poisson distribution

As a simplified example, we study the renewal of a
hydraulic cylinder on a swing bridge (adapted from
van Noortwijk and van der Weide, 2006). The dete-
rioration X(¢) at time ¢#>0 is assumed to be dis-
tributed according to a stationary gamma process with
shape function v(¢f)=(u/0)*t and scale parameter
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u = /o? for j1,0 > 0. Hence, the cumulative amount
of deterioration X (¢) has the gamma distribution

_!_.c,,;nnﬁx-- 1

~ e {5} @

for 1,0 > 0 with

.f.\'(;] (i?')

E(X(t)) = put, Var(X(t)) =t

The expected condition R(7) = ry — X (¢) is assumed to
degrade linearly in time from the initial condition of
7o = 100% down to the failure level of s = 0% for ¢ > 0.
The cumulative distribution function of the hitting time
of the failure level (lifetime) can be rewritten as:

BT, <t)=P(X(t) > y) = —11[“11’;?!1;;}11’,’;;(0").

where y=ro—s and T'(a,x)= [~ t“le ' d is the
incomplete gamma function for x >0 and a > 0. For
the hydraulic cylinder at hand, the time at which the
expected condition equals the failure level is 15 years
with parameters © = 6.67 and o = 1.81.

A useful property of the gamma process with sta-
tionary increments is that the gamma density in (27)
transforms into an exponential density if

t=(o/p)? = 0.074.

When the unit-time length is chosen to be (o/u)?,
the increments of deterioration are exponentially dis-
tributed with mean % /1 and the probability of failure
in unit time i reduces to a shifted Poisson distribution
(see, e.g., van Noortwijk et al., 1995):

p=PT=k)= ﬁ [Z’;—‘t_:]i .lr'xp{— g}
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Figure 6. First moment of cumulative number of cylinder
renewals.

fork=1,2,3,...The mean and variance of the shifted
Poisson distribution are

yp - yp
E. Vﬂl‘(f] = ;

E(T)=1+
The rate of cylinder renewal per unit time of length
A =0.074 year,
u; =E(I;) = E(N;) —E(N;-1) (G=1).
is determined over an eighty-year design life and dis-
played in Figure 5. For a finite time horizon of eighty
years, the first and second moment of the cumula-
tive number of cylinder replacements are determined
using (12) and (14), respectively. The first and second
moment are approximated with the asymptotic expan-
sions (24) and (25). In Figure 6, we can clearly see that
the asymptotic expansion for the first moment includ-
ing the constant term is a much better approximation
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than the asymptotic expansion excluding the constant
term. For this particular example, the constant term in
the asymptotic expansion for the second moment of
the number of renewals doesn’t have much influence
(see Figure 7).

6 CONCLUSIONS

In the probabilistic modelling of life-cycle manage-
ment of engineering systems, the renewal theorem
plays a key role in the computation of the expected
number of renewals and the cost rate associated with
a management strategy. The renewal theorem is well
known and its rigourous mathematical proof is pre-
sented in the literature for both discrete and continuous
random variables. The mathematical details and tech-
nicalities associated with its derivation are not well
understood by the engineering community. This paper
presents a more lucid and intuitive interpretation of the
renewal theorem.

To simplify the presentation, we have utilised dis-
crete random variables in the formulation of the
renewal problem. This approach results in analytical
expressions for the renewal rate and the probability
distributions of the age and remaining lifetime. These
formulas are very easy to compute, in contrast with
the traditional continuous random variable formula-
tion which requires solution of integral equations. In
the proposed approach, the life-cycle cost in a finite
time horizon can be computed in a straightforward
manner using the rate of renewal. In addition to explicit
formulas for a finite time horizon, the paper derives
elegant asymptotic results for the renewal rate and dis-
counted life-cycle cost over an infinite time horizon.
Asymptotic expansions are derived for the first and

second moment of the number of renewals. As far as
the authors know, the latter expansion is new in the
sense that it also contains a constant term.

The proposed concepts are illustrated by two exam-
ples involving the discrete Weibull distribution and
the shifted Poisson distribution (resulting from a dis-
cretised gamma deterioration process). More detailed
practical applications of this approach to nuclear
power plant systems are under investigation.

REFERENCES

AliKhan, M.S., Khalique, A., & Abouammoh, A.M. 1989. On
estimating parameters in a discrete Weibull distribution.
IEEE Transactions on Reliability, 38(3): 348-350.

Feller, W., 1949. Fluctuation theory of recurrent events. 7rans-
actions of the American Mathematical Society, 67(1):98—
119.

Feller, W., 1950. An Introduction to Probability Theory and
its Applications, Volume 1. New York: John Wiley & Sons.

Feller, W., 1966. An Introduction to Probability Theory and
its Applications; Volume 2. New York: John Wiley & Sons.

Karlin, S. & Taylor, H.M., 1975. A4 First Course in Stochastic
Processes; Second Edition. San Diego: Academic Press.

Kingman, J.EC., 1972. Regenerative Phenomena. New York:
John Wiley & Sons.

Rackwitz, R., 2001. Optimizing systematically renewed
structures. Reliability Engineering and System Safety,
73(3):269-279.

Smith, W.L., 1954. Asymptotic renewal theorems. Pro-
ceedings of the Royal Society of Edinburgh, Section A
(Mathematical and Physical Sciences), 64:9-48.

Smith, W.L., 1958. Renewal theory and its ramifications.
Journal of the Royal Statistical Society, Series B (Method-
ological), 20(2):243-302.

Stein, W.E. & Dattero, R., 1984. A new discrete Weibull dis-
tribution. /EEE Transactions on Reliability, 33:196—197.

Tijms, H.C., 2003. 4 First Course in Stochastic Models. New
York: John Wiley & Sons.

van Noortwijk, .M., 2003. Explicit formulas for the variance
of discounted life-cycle cost. Reliability Engineering and
System Safety, 80(2):185-195.

van Noortwijk, J.M., Cooke, R.M., & Kok, M., 1995. A
Bayesian failure model based on isotropic deteriora-
tion. European Journal of Operational Research, 82(2):
270-282.

van Noortwijk, JM. & Klatter, H.E., 2004. The use of
lifetime distributions in bridge maintenance and replace-
ment modelling. Computers and Structures, 82(13-14):
1091-1099.

van Noortwijk, J.M. & van derWeide, J.A.M., 2006. Compu-
tational techniques for discrete-time renewal processes.
In Guedes Soares, C. & Zio, E., (eds.), Safety and Relia-
bility for Managing Risk, Proceedings of ESREL 2006 —
European Safety and Reliability Conference 2006, Estoril,
Portugal, 18-22 September 2006, pages 571-578.
London: Taylor & Francis Group.

484



