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ABSTRACT: The paper presents a sampling-inspection strategy for the evaluation of time-dependent reliability
of deteriorating structures, where the deterioration is assumed to initiate at random times and at random locations.
After initiation, defects are weakening the structure’s resistance. The system becomes unacceptable when at least
one defect reaches a critical depth. The defects are assumed to initiate at random times modeled as event times of
a Non-Homogeneous Poisson Process (NHPP) and to develop according to a non-decreasing time-dependent sta-
tionary gamma process.The intensity rate of the NHPP is assumed to be a combination of a known shape function
in time and an unknown proportionality constant. When sampling inspection (i.e., inspection of a selected subre-
gion of the structure) results in the number of defect initiations, Bayes’theorem can be used to update prior beliefs
about the proportionality constant of the NHPP intensity rate to the posterior distribution. On the basis of a time-
and space-dependent Poisson process for the defect initiation, an adaptive Bayesian model for sampling inspec-
tion is developed to determine the predictive probability distribution of the time to failure. A potential application
is, for instance, the inspection of a large vessel or pipeline suffering pitting/localized corrosion in the oil industry.

1 INTRODUCTION

In the oil industry, corrosion is a major threat for
inspection engineers responsible for the overall safety
of the industrial plants. Inspection reveals damage
caused by corrosion and helps in judging the system
safety and its capability of future functioning. In order
to justify the safety and functioning, one of the options
is to inspect the entire system. However, such a com-
plete inspection is not always feasible or necessary
and may be too costly. Instead, the so-called sampling
inspection is used.

Sampling inspection is a partial inspection of the
system aimed at collecting a representative sample
from the defect population. This sample is then used to
estimate the defect population distribution. Extrapola-
tion techniques are employed to estimate the extreme
corrosion damage in the not inspected part of the sys-
tem. For that purpose, extreme-value theory has been
applied (Scarf & Laycock 1996). A problem appears
when the defect population is too small to accurately
fit an extreme-value distribution. This paper proposes
an alternative method which also can be applied when
there is a lack of data.

We present an approach which is based on
constructing a probabilistic model representing the

corrosion process and using a Bayesian method for
inference on the number of defects in the entire system
based on partial inspection. We assume a deteriora-
tion process of local defects weakening the structural
resistance (e.g. pitting corrosion) and an inspection
counting all the defects present in the inspected parts
of the system.

This paper is organized as follows. Section 2
presents the mathematical formulation of the deterio-
ration process, which is a combination of the following
two stochastic processes: the defect initiation process
modeled as event times from a Non-Homogeneous
Poisson Process (NHPP) and the defect growth process
modeled by a stationary gamma process. In Section 3
the sampling inspection is described, where the entire
system is subdivided into the inspected sections. We
use the so-called Bernoulli splitting mechanism to split
the Poisson process of the initiation of all defects in the
system to a number of Poisson processes that govern
the initiation of defects in disjoint sections. Section 4
presents the evaluation of the failure probability for
the entire system which is defined as the probability
that in the operational time (0, t] at least one defect
occurs that is deeper than the critical depth or the
corrosion allowance. An adaptive Bayesian model is
developed to update the probability distribution of the

281



proportionality constant of the NHPP intensity rate
on the basis of partial observation of the number of
defects in the system. Using the updated distribution,
the Bayes estimate of the total number of defects can be
obtained. Finally, Section 5 presents an example of the
sampling inspection and Section 6 draws conclusions
regarding the model and its applicability.

2 DETERIORATION PROCESS

In this paper, we focus on the deterioration process
which initiates in space and time before weaken-
ing the system resistance. The goal is to combine
the two stochastic processes of defect initiation and
defect growth. This is done in the subsections below,
where the Poisson process of defect initiation, the
gamma process of wall penetration, and the localized
corrosion process are defined and presented.

2.1 The stochastic process of defect initiation

It is unlikely that all defects appear at the same time.
They rather initiate at random times and then grow
depending on the environment and conditions of the
component. For that reason, we model the appearance
of the defects in time and the total number of defects
that have initiated up to a certain time t.To achieve this,
we assume that the number of defects in time follows
a NHPP with certain intensity function.

The Poisson process is commonly used in applica-
tions. For instance, Nicolai et al. (2007) used the NHPP
with power law intensity function to model the arrivals
of localized corrosion on a steel structure with coating
protection, and van Noortwijk & Klatter (1999) used
a homogeneous Poisson process to model the initia-
tion of scour erosion of the sea-bed protection of a
storm-surge barrier.

In this paper we do not restrict ourselves to the
power law intensity function. However, we assume that
the defect initiations occur according to a NHPP with
intensity function λm(t), where λ is the proportional-
ity constant and m(t) is an arbitrary intensity function.
The expected number of defects up to time t is then:

The interpretation of the expectation in Equation (1)
is that given the value of the proportionality constant
λ the intensity function is known and the number of
defects follows a known Poisson distribution. How-
ever, depending on the value of λ different Poisson
distributions of the number of defects are realized.
Figure 1 shows two NHPP examples with proportion-
ality constants λ = 1 and λ = 0.4 together with their
realizations.

The reason for performing a statistical analy-
sis solely on the NHPP proportionality constant is
the usual lack of deterioration data. In this way,

Figure 1. The expected value of the number of defects
together with the 2.5% and 97.5% quantile of the NHPP with
power law intensity M (t) =t2 for λ = 1 (–) and λ= 0.4 (–·–).

engineering knowledge about the shape of the
expected number of defect initiations and the observed
number of defect initiations can be combined. We
assume that information about the shape of the inten-
sity function m(t) is known from physics and/or expert
judgment. In this article, we apply Bayesian inference
to estimate the proportionality constant λ leaving the
function m(t) as known.

In general, the arrival times from a NHPP are not
independent. Suppose that the random vector (S1, . . . ,
Sn) represents the first n arrival times from the NHPP
with intensity function m(t). It follows that the condi-
tional joint probability density function of the vector
(S1, . . . , Sn) given {N (t) = n} is:

where 0 < s1 < . . . < sn ≤ t. It can be shown that con-
ditional on {N (t) = n}, the vector (S1, . . . , Sn) has the
same distribution as the order statistic of n indepen-
dent, identically distributed (iid) random variables Ui,
where:

for 0 ≤ s ≤ t, which implies the density in Equation 2
(Kulkarin 1995, page 228, Theorem 5.12).

2.2 The stochastic process of defect growth

Given that a defect has occurred, the process of wall
penetration is activated. The wall thickness loss on a
corroded spot is an increasing process in time and
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because of its monotonic and uncertain behavior a
gamma stochastic process is proposed in the litera-
ture as a proper representation (Abdel-Hameed 1975,
van Noortwijk 2007).

The gamma process is a stochastic process with
independent gamma distributed increments making
it always monotonic. More precisely: let α(t) be a
non-decreasing, right continuous, real-valued func-
tion for t ≥ 0, with α(0) = 0. The gamma process with
shape function α(t) > 0 and scale parameter β > 0 is a
continuous-time stochastic process {X (t): t ≥ 0} with
the following properties:

I. X (0) = 0 with probability one;
II. X (t) − X (r) : ga(g1α(t) − α(r), β)∀t >r ≥ 0;

III. X (t) has independent increaments;

where ga(·|α, β) is the gamma probability density func-
tion. Recall that a random variable X has a gamma
distribution with shape parameter α > 0 and scale
parameter β > 0 if its probability density function is
given by:

where x > 0.
In the literature on corrosion for steel structures, the

assumption is often made that the corrosion rate (the
rate of wall thickness loss) in the long run is constant in
time (American Petroleum Institute 2000). Therefore,
we restrict ourselves to the wall loss process repre-
sented by a stationary gamma process {X (t): t ≥ 0}
with linear shape function αt. In general, this restric-
tion is not required and an arbitrary shape function α(t)
can be used. It follows that the expectation and vari-
ance of the process X (t) are linear in time and given by:

The parameters α and β may be chosen based on the
assessment of the expected annual wall thickness loss
on a corrosive location and its variation.

In this paper, we do not discuss updating the corro-
sion growth process. It is assumed that the uncertainty
in the corrosion development is known and assessed
by experts. For Bayesian inference on the corrosion
rate, we refer to Kallen & van Noortwijk (2005).

A defect (corroded spot) is said to be unacceptable
if its depth exceeds a corrosion allowance depth, say y.
Suppose that a defect is present on a particular location
at time zero and it grows according to a gamma pro-
cess. The first time at which the corrosion allowance
is consumed by the growing defect, denoted by T , has
the following cumulative distribution function:
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Figure 2. Two sample paths of a gamma process together
with the mean, the 2.5% and 97.5% quantiles and the
corrosion allowance depth y = 5.

0
5

10
15

20

0

5

10

15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

Time to reach the critical depth

Defect depth

Li
fe

tim
e 

de
ns

ity

Figure 3. Hitting time density function of the gamma
process reaching the corrosion allowance depth y = 5.

In the literature, the distribution F in Equation 5 is
known as the first hitting time distribution (Karlin &
Taylor 1981).The space-time duality in Equation 5 fol-
lows from monotonic behavior of the gamma process
trajectories (van Noortwijk & Klatter 1999).

Figure 2 shows a sample path of the gamma pro-
cess with linear expectation and variance given by
Equation 4. Figure 3 shows the corresponding first
hitting time probability density function of the gamma
process reaching the corrosion allowance depth y = 5
defined in Equation 5.

2.3 Pitting/localized corrosion process

We define the pitting/localized corrosion process as
a combination of the process of defect initiation and
defect growth described in the subsections above. First,
we assume that the defects initiate at event times from
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Figure 4. Sample paths of the pitting/localized process and
defect depth population density function with m(t) = qtq − 1,
q = 2.

a NHPP and then they grow independently following
the gamma process.

From the fact that the arrival times of the NHPP
conditional on the number of arrivals can be treated as
an order statistic from a sequence of iid random vari-
ables (Equations 2–3), it follows that the probability
distribution function of the defect depth population at
time t is given by:

where X ( · ) is the gamma process.
The probability in Equation 6 is the probability that

a defect is smaller than depth x > 0 given that it has
initiated up to time t according to a NHPP with inten-
sity m(t) and grown since the initiation according to
the gamma process X ( · ).

Figure 4 shows sample paths of the localized cor-
rosion process and the probability density function of
the defect population at time t = 10, where the power
law intensity function with the exponent q = 2 is used.
Figure 5 shows the histogram of defect depths col-
lected from the pitting/localized corrosion process at
time t = 10.

3 SAMPLING INSPECTION

Sampling inspection is partial inspection of the sys-
tem where only pre-selected sections are inspected.
Let S denote the system surface (two dimensional
plain: S ⊆ P2). We assume that the defects initiate in
S according to the NHPP arrival times as described in
Section 2.1. Suppose that an area A (A ⊆S) is selected
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Figure 5. Defect depth histogram collected from the sample
paths of the pitting/localized process shown in Figure 4 at
time t = 10.

for inspection. It follows that the total number of
defects in S can be written as:

where the number of defects in A (N (t; A)) and the
number of defects in S\A (N (t; S\A)) are independent
Poisson processes with the intensity function pλm(t)
and (1 − p)λm(t), respectively (Kulkarin 1995, page
219). This is called the Bernoulli splitting mechanism
of the underlying Poisson process N (t) with splitting
parameter 0 < p < 1 defined by:

The parameter p represents the expected number of
defects in the selected area A relative to the expected
number of defects in the entire system S. In particu-
lar if defects are uniformly distributed in space then
p = |A|/|S| (i.e. the ratio of the size of the inspected
area A to the size of the entire system S).

The resulting Poisson processes from the Bernoulli
splitting mechanism are independent for a given
value of the proportionality constant λ. However, if
we assume that the proportionality constant λ from
Equation 1 is unknown and it is represented by a ran-
dom variable �, then by the total probability law and
Bayes’ theorem it follows that:

where f�(λ) is the probability density function
of �. Equation 9 demonstrates a Bayesian way to
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incorporate the information about λ from the inspected
part of the system to make inferences about the non-
inspected part. The probability in Equation 9 is the
probability of having n defects in the non-inspected
part of the system S\A given there are k defects present
in the inspected area A.The distribution of � is updated
from the prior to the posterior with observations from
the inspected area A which is shown in Equation 21.

4 EVALUATION OF FAILURE PROBABILITY

System failure is defined as the event that ‘in (0, t]
at least one defect occurs that is deeper than the
corrosion allowance depth y’. In general, we can con-
sider the process Nx(t) counting the number of defects
deeper than an arbitrary depth x up to time t and repre-
sent the failure probability in terms of the process Ny(t)
in the following way: 1 − P{Ny(t) = 0}. In Section 4.1
we calculate the probability distribution function of
the process Nx(t).

4.1 Exceedance probability

In order to calculate the probability distribution of the
process Nx(t) we first compute the conditional prob-
ability of the number of defects deeper than x up to
time t given n initiations. Using the fact that the event
times from the NHPP conditional on the number of
events can be represented by a sample of n iid ran-
dom variables with the probability distribution given
by Equation 3 and, independently of the initiation time,
the probability that a single defect is deeper than x
given it has initiated up to time t is pt = P{Dt > x}
(Equation 6), it follows that the probability distribu-
tion of exactly k defects deeper than x given n defect
initiations (n ≥ k) is the binomial distribution given by:

Taking into account all possible numbers of defect
initiations N (t) = n ≥ k it follows that:

Equation 11 implies that the process Nx(t) is a NHPP
with the expected number of defects exceeding x up
to time t given by:

The function Mx(t) in terms of the first hitting time
distribution F (Equation 5) is the following:

The failure probability as a function of t and fixed
value of x using the Poisson process Nx(t) is:

This failure probability represents the cumulative dis-
tribution function of the time to failure. Alternatively,
we can interpret this probability as the probability
that the maximum defect depth Y (t) evaluated over all
defects up to time t exceeds x > 0 by using the Poisson
process Nx(t) as a function of x. Hence, it follows that

Similarly to the process Nx(t) we can show that the
process Nx((r, t]) which counts the number of defects
that have initiated in the time interval (r, t] and grown
deeper than x up to time t, is a NHPP with the expected
value E(Nx((r, t])|λ) = λMx((r, t]), where:

4.2 Prior distribution of the number of defects

The proportionality constant of the NHPP intensity
function in Equation 1 is assumed to be uncertain and
modeled by a gamma-distributed random variable �
(taking values λ > 0) with shape parameter v > 0 and
scale parameter a > 0. The uncertainty in � expresses
the uncertainty in the expected value and variance of
the number of defects initiation N (t).

The main reason for choosing the gamma distri-
bution is that the gamma distribution is conjugated
with respect to the Poisson likelihood function. This
means that the posterior distribution of � is also a
gamma distribution except that the parameters of the
updated distribution are adjusted with the observa-
tions.Another reason for using the gamma distribution
is that the gamma-Poisson mixture has a closed form
known as the negative binomial distribution. This is
useful since the number of defect initiations and the
number of defects exceeding x (Equation 11) are both
Poisson processes. This means that both the prior and
posterior predictive probability of either the number of
defect initiations or the number of defects deeper than x
belong to the negative binomial family of distributions.

The probability of n defects up to time t inte-
grated over the uncertain � has a negative binomial
distribution given by:
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Figure 6. Number of defects distribution at time
t = 10: Poisson for fixed λ= 0.4(µN (t) = σ2

N (t) = 40),
λ = 1(µN (t) = σ2

N (t) = 100) and Negative Binomial
(µN (t) = 70, σ2

N (t) = 760) with 2.5% and 97.5% quantiles,
M (t) = t2.

where n = 0, 1, 2, . . .
The expected value and variance of the uncon-

ditional number of defect initiations (the negative
binomial distribution) are:

Note that if λ is known with certainty then
E(�) = λ, Var(�) = 0 and N (t) has a Poisson distri-
bution with known expected value and variance (i.e.
E(N (t)) = Var(N(t)) = λM (t)). However, if λ is uncer-
tain then (N (t)|λ) has a different Poisson distribution
for different value of λ (see Figure 1). The parame-
ters v and a of the gamma-distributed random variable
� can be assessed by specifying the expected value
and variance of the unconditional number of defects
in time interval (0,t], denoted by µN (t) and σ2

N (t) (Equa-
tions 18–19). It follows that if σ2

N (t) > µt then the
parameters v and a are given by:

Consider the example from Figure 1 where two
Poisson processes are shown with λ = 1, λ = 0.4
and M (t) = t2. If one believes that the true distribu-
tion of the number of defect initiations lays between
the situation with λ = 1, where the number of defects
roughly varies between 80 and 120, and the situation
with λ = 0.4, where the number of defects roughly
varies between 27 and 53, then a suitable choice
for the negative binomial distribution would be the

one presented in Figure 6 (µN (t) = 70, σ2
N (t) = 760) for

which the number of defects varies between 26 and 133
(2.5% and 97.5% quantiles from the negative binomial
distribution).

4.3 Prior and posterior predictive failure
probability given sampling inspection

As mentioned before the gamma-Poisson mixture in
Equation 17 is a negative binomial distribution. Since
the failure probability (Equation 14) can be repre-
sented by the occurrence probability of the number
Poisson events Nx(t), it follows that the prior failure
probability of no defects exceeding x in the entire
system S is given by:

where Mx(t) is defined in Equation 13 and v and a are
the parameters of the prior gamma distribution of �.
In general the probability of n defects exceeding x is
given by Equation 17 where M (t) is replaced by Mx(t).

In order to derive the posterior predictive failure
probability, we first determine the posterior distribu-
tion of �. As mentioned in Section 4.2 the posterior
distribution of � given the Poisson number of defect
initiations found in the inspected area A at time t with
splitting parameter p is again a gamma distribution
given by:

where k is the number of defects observed in the area A.
Now, using Equation 17, the Poisson process Nx(t) and
the posterior distribution of � (Equation 22), it follows
that the posterior probability of no defects exceeding
x in S at the inspection time t (which depends only on
the uncertainty in the non-inspected part of the system
S\A) is:

Finally, the probability of no defects deeper than x in
S within time interval (0, t] given the inspection of A
at time r < t, where k defects with depths d1, …, dk
were observed each smaller than x is:
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where Nx((r, t]) is a Poisson process defined in Section
4.1 and Mx((r, t]) is defined in Equation 16.

5 EXAMPLE

For illustration purposes we present an example, where
an inspection of the system is carried out with 30%,
60%, 90% and 100% coverage at time t = 10 years (the
time since installation). The purpose of inspection is
to verify the number of defects in the entire system
using sampling inspection. This is achieved based on
updating the probability distribution of the proportion-
ality constantλwith the observations from the sampled
inspection areas and incorporating this information to
the entire system. The information about the rate of
defect growth and the defect initiation in time (M (t)) is
not intended to be updated with the inspection results.
It is assumed that this information is incorporated
in the model from other sources (e.g. defects growth
monitoring, laboratory testing, expert assessment). For
illustration purpose only, we assume perfect inspection
which means that there is neither measurement error
nor imperfect detection in the performance of inspec-
tion. In principle, however, a detection threshold can
be defined above which all defects are recordable and
this can easily be incorporated in the model.

The system is assumed to suffer from defects uni-
formly distributed in space what implies that the
coverage is p = |A|/|S| (Equation 8). We assume that
the defects initiate according to the power law NHPP
with exponent q = 2(M (t) = t2). Based on the assess-
ment of the possible number of defects at time t = 10
(µN (t) = 250, σ2

N (t) = 63000) resulting in no more than
925 defects with probability 0.025 and no less than 5
defects with probability 0.025 the parameters v and a
of the gamma distributed � are calculated using Equa-
tion 20. Regarding the wall loss process we assume a
stationary gamma process with linear shape function
as shown in Equation 4 with α = 5 and β = 10. This
means that the annual wall loss for a corrosive loca-
tion in the system ranges between 0.16 and 1.02 units
of wall thickness (2.5% and 97.5% quantile from the
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Figure 7. Maximum defect depth probability density func-
tion at the inspection time t = 10 in the non-inspected part
of the system for sampling inspection (Equation 23). The
population probability density function (Equation 6). The
prior maximum defect depth probability density function in
the entire system (Equation 21). The truemax is the true
maximum and the ‘max 30%’, ‘max 60%’ and ‘max 90%’
correspond to the observed maximum for the inspection
with 30%, 60% and 90% coverage, respectively. Referred
equations show the formulas for the cumulative distribution
function.

gamma distribution) with mean 0.5 units. The corro-
sion allowance depth is set to be y = 8, which means
that in approximately 10.87 years we would expect a
defect which initiated at time 0 crossing the barrier y
with probability 0.001.

A random sample from the deterioration process
is drawn resulting in 141 defects up to time t = 10.
Inspection with 30% coverage results in 47 defects,
60% in 77, 90% in 122 and 100% in 141. In this exam-
ple, the true maximum defect depth (dmax = 4.57) is
only found in the 100% inspection what is shown in
Figures 7–8.

Figure 7 shows the maximum defect depth proba-
bility density function at the inspection time t = 10
in the non-inspected part of the system. It can be
seen that the densities corresponding to bigger cov-
erage are shifted to the left. This is expected since the
remaining number of defects in the non-inspected part
of the system gets smaller resulting in smaller pos-
sible extremes. However, the spread of the densities
(the variance of the maximum defect depth in the non-
inspected part of the system) increases as the coverage
increases indicating that we may have just one but
deep defect outside the inspection areas. For instance,
in the present example the true maximum was only
found in the 100%-coverage inspection.The true maxi-
mum defect was not detected even in the 90%-coverage
inspection, because it occurred in the remaining 10%
of the system surface.
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Figure 8. Probability density function of the maximum
defect depth in the entire system S two years after inspec-
tion for sampling inspection (Equation 24). The population
probability density function t = 12 (Equation 6). The prior
maximum defect depth probability density function in the
entire system at time t = 12 (Equation 21). Referred equations
show the formulas for the cumulative distribution function.

Figure 8 shows the prediction of the maximum
defect depth in the entire system two years after inspec-
tion (t = 12) for sampling inspection. These densities
are calculated using the probability in Equation 24.

6 CONCLUSIONS

We have presented a method to model the deterio-
ration process of steel structures suffering localized
corrosion damage. The deterioration process is a
combination of two stochastic processes, namely the
process of defect initiation and the process of defect
growth. We calculate the time-dependent reliability
of a deteriorating structure based on the assumption
of a non-homogeneous Poisson process (NHPP) with
intensity having an uncertain proportionality constant
for the number of defect initiations and a stationary
gamma process for the defect-depth growth (wall pen-
etration). The probability that in the operational time
no defect occurs that is deeper than the critical depth
(corrosion allowance) is calculated a priori. Given the
observed number of defects in the inspected part of the
system obtained by sampling inspection, the posterior
predictive failure probability is derived. This proba-
bility may be used as an alternative to extreme-value
distributions in case of a lack of defect data.

We show that the failure probability as well as the
maximum defect depth probability distribution (most
important estimate in modeling extreme corrosion
damage) can be represented in terms of the Poisson
process Nx(t) which models the number of defects
that have initiated and exceeded depth x up to time t.

This representation allows incorporating information
about the defect morphology which includes the defect
growth and the shape of the expected number of defect
initiations in time that may come from other sources
than inspection.

Additionally, when a detection threshold h of an
imperfect detection device is specified, one can con-
sider the observations above threshold h by replacing
the Poisson process N (t) of the defect initiations with
the Poisson process Nh(t) of defects above threshold h.

Another advantage of the presented model is that the
failure probabilities are all related to the negative bino-
mial distribution, which makes the model attractive
from the computational point of view.

Summarizing, the practical relevance of the pro-
posed corrosion model is that it can assist inspectors
in estimating extreme corrosion damage. The model
better resembles the physics of corrosion by identi-
fying both the defect initiation and the defect growth.
Because prior engineering knowledge about the defect
initiation and defect growth is used, it can also be
employed in the presence of a lack of data. Bayes’ the-
orem is applied to update the prior information with
sampling inspection data and to adapt the estimation
of the extreme corrosion defects.
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