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AbsAbsAbsAbstracttracttracttract    
The allergen Bet v 1 is known as the primary sensitizer for birch pollen-related food 

allergy and is responsible for IgE cross-reactivity to pathogenesis-related 10 (PR-10) 

proteins from, in particular, fruits from the Rosaceae and vegetables from the Apiaceae 

families. The allergenic potential of PR-10 proteins is mainly characterized for specific 

recombinantly produced isoforms, which are used for research and diagnostic purposes. 

However, in natural food sources these allergens are often present as isoform mixtures. 

The first aim of this research was to purify and characterize PR-10 allergens as natural 

isoform mixtures to determine whether differences could be observed between natural 

and recombinant allergens and between plant families. The second aim was to find a 

relationship between the physico-chemical stability of PR-10 proteins and structural 

characteristics to explain differences in IgE binding potential and cross-reactivity. The 

PR-10 allergens Bet v 1 from birch, Api g 1 from celery, and Dau c 1 from carrot were 

purified under mild conditions following a standardized protocol. Different allergen 

isoforms were determined and circular dichorism (CD) analyses of the allergen mixtures 

showed a similar secondary structure composition as observed for other PR-10 proteins. 

The allergen mixtures and recombinant allergens were characterized by stability studies 

to pH, temperature and denaturant where CD was used to detect structural changes. 

Minor differences were observed in stability between natural isoform mixtures and 

between the recombinant isoforms, although recombinant Dau c 1 was likely 

destabilized by its attached His-tag. A general trend was observed for allergen stability, 

structural differences and their relationship to the IgE binding capacity in aqueous 

solutions. The allergenic potential decreases in the following order: Bet v 1, the primary 

allergen of birch pollen-related allergies, Mal d 1, Api g 1 and Dau c 1, in accordance 

with their amino acid sequence identity. Bet v 1 cross-reactive IgE antibodies preferably 

bind to the charged and polar residues of Mal d 1 for which the positive charge can be 

increased by the physiological pH of fruit. Api g 1 appears to be more stable than Dau c 

1 as the result of a tighter hydrophobic packing. However, the thermodynamic stability 

of Api g 1 is similar to that of Bet v 1, but the higher proportion of hydrophobic 

residues and the reduced proportion of charged residues are responsible for the lower 

IgE binding capacity. Furthermore, the IgE binding capacity is not severely affected, as 

long as the protein is able to refold. The implications of these findings are discussed in 

the context of the development of allergic symptoms upon exposure to these PR-10 

proteins. 
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1.1 1.1 1.1 1.1 Allergic response; Birch pollen hayAllergic response; Birch pollen hayAllergic response; Birch pollen hayAllergic response; Birch pollen hay    feverfeverfeverfever    
Birch pollen from the Betula pendula is a major source of allergens, which can induce 

hay fever as a result of flowering trees highly represented in Northern Europe. The 

trees flower during early springtime with the airborne allergen Bet v 1 as the major 

sensitizer. Bet v 1 is responsible for IgE-mediated cross-reactivity to allergens of other 

trees, but also fruits, vegetables and legumes. Other less abundant allergens in birch 

pollen besides Bet v 1 may cause allergic reactions and are numbered, Bet v 2 to 8, in 

order of identification. Bet v 2 (profilin) and Bet v 6 (isoflavone reductase) are two other 

birch pollen allergens known to cross-react with food allergens. Nevertheless, 90% of 

birch pollen allergic individuals are sensitized to Bet v 1 and 20% to Bet v 2, meaning 

that a group in the allergic population is sensitized to multiple allergens [1].    

 To evoke an allergic reaction, an individual first needs to be sensitized to the 

allergen by the T and B cell response, followed by the response that induces symptoms, 

the IgE-mediated degranulation of sensitized mast cells and basophils. Therefore, the 

allergen first needs to pass airway epithelium and submucosa either as intact protein or 

epitope-bearing peptides, followed by the uptake by an antigen presenting cell 

(dendritic cell or monocyte) present in the mucosa, which processes the allergen into 

peptides [2].  

 The subsequent selection of peptides, containing T cell epitopes, are presented by  

the major histocompatibility class II (MHC-II) complex, on the antigen presenting cell, 

to the T cell receptor of naïve CD4+ T cells. This recognition, together with co-

stimulatory molecules and a polarizing micro-environment, leads to differentiation into 

T helper 2 cells (Th2), generating the production of cytokines (e.g. interleukin (IL)-4 

and IL-13), which stimulate the allergen-specific B cells to produce IgE antibodies. IgE 

binds to the high affinity IgE receptor (FcεRI) on mast cells, which are then called 

sensitized. Upon a second exposure to the same allergen, allergens bind to IgE followed 

by cross-linking of two IgE molecules on the surface of the mast cell. Subsequently, the 

mast cell degranulates, releasing inflammatory compounds like histamine, which cause 

the typical allergic complaints of, e.g., hay fever and food allergy. Furthermore, the 

mast cell releases cytokines, including tumor necrosis factor (TNF)-α, IL-4 and IL-5, 

inducing the transcription of these cytokines and others as leukotrienes and prostaglandins, 

which contribute to the ongoing inflammatory response [2]. 
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1.2 1.2 1.2 1.2 AllergensAllergensAllergensAllergens    
Various research studies have tried different approaches to identify the characteristics 

that determine the allergenicity of proteins. Most proteins are non-allergenic and can 

be found in 9318 protein families in the Pfam (protein family) database. In this database 

only 184 Pfam domains (2%) are associated with allergens for which the variety of 

biochemical functions is limited [3]. Furthermore, in contrast to non-allergenic protein 

sequences, allergen sequences lack bacterial homologues [4]. Unlike plant food or pollen 

allergens, most animal food allergens have human homologues and it is hypothesized by 

Jenkins et al. [5] that the allergenicity of protein family members decreases due to their 

relatedness to human homologues. A set of sequences of animal foods with an identity 

less than 54% to human homologues are all allergens, whereas proteins with a sequence 

identity above 62% are rarely allergenic [5]. 

 

1.3 1.3 1.3 1.3 Structural characteristics of Bet v 1 and its homologues Structural characteristics of Bet v 1 and its homologues Structural characteristics of Bet v 1 and its homologues Structural characteristics of Bet v 1 and its homologues     
The complete coding sequence of the isoform Bet v 1a was determined by screening the 

pollen cDNA library with specific IgE antibodies against Bet v 1 [6]. Bet v 1 has been 

shown to be encoded by 7 different pollen expressed genes, responsible for the 

expression of 14 different isoforms [7]. The sequence encodes a protein of 160 amino 

acids with a molecular mass of approximately 17.4 kDa. Ferreira et al. [8] divided nine 

of the Bet v 1 isoforms into low, intermediate and high IgE binding reactivity. Schenk 

[9] showed that these isoforms are abundant in birch pollen extracts and from these 

isoforms, 35-38% showed high, 22-24% showed intermediate and 18-19% showed low 

IgE binding reactivity, which leaves 19-25% of the isoforms with unidentified IgE 

binding reactivity.  

 Birch pollen related allergy is induced by cross-reactivity of birch pollen-specific 

IgE antibodies and binding to birch pollen-related food allergens. This is based on the 

structural relationship of Bet v 1 and its homologues from other plant species. These are 

all members of the PR-10 protein family, where PR stands for “pathogenesis related”. 

Birch pollen cross-reactivity is mainly observed with homologous proteins of other 

trees from the Betulaceae family (e.g. alder, hazel), fruits from the Rosaceae family (e.g. 

apple, cherry, pear), vegetables from the Apiaceae family (e.g. celery, carrot) and 

legumes from the Fabaceae family (e.g. soybean, mungbean, peanut). Table 1 shows a 

list of the main cross-reactive PR-10 allergens in order of decreasing amino acid 
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identity together with protein parameters (total amino acids, molecular weight, iso-

electric point and % identity). With some exceptions, cross-reactive allergy seems to 

decrease and/or develop in the order of decreasing identity [1, 10].   

 
Table 1Table 1Table 1Table 1. Cross-reactive PR-10 allergens and protein parameters.  

PR-10 Source Family UniProt 

 Acc No 

PDB- 

entry 

AA MW pI Sequence 

identity % 

Bet v 1 birch  Betulaceae P15494 1bv1 160 17,571 5.39 100 

Aln g 1 alder Betulaceae P38948 - 160 17,339 5.46 81.2 

Cor a 1 hazel Betulaceae Q08407 - 160 17,512 5.43 72.5 

Pyr c 1 pear Rosaceae O65200 - 159 17,581 5.62 56.8 

Pru av 1 cherry Rosaceae O24248 2e09 160 17,660 5.87 59.3 

Mal d 1 apple Rosaceae P43211 - 159 17,651 5.68 55.6 

Gly m 4 soybean Fabaceae P26987 2k7h 158 16,772 4.69 46.2 

Ara h 8 peanut Fabaceae Q6VT83 - 157 16,952 5.03 46.2 

Vig r 1 mungbean Fabaceae Q2VU97 2flh 155 16,189 4.60 42.5 

Api g 1  celery Apiaceae P49372 2bk0 154 16,321 4.63 40.0 

Dau c 1 carrot Apiaceae O04298 - 154 16,049 4.63 36.8 

The protein parameters shown, are total amino acids (AA), molecular weight in Da (MW), iso-electric point 

(pI) and % amino acid identity compared to Bet v 1. Protein sequences are taken from the UniProt database 

and are shown with their accession number (Acc No). The PDB-entries were taken from the RCSB protein 

data bank. 

 

 The primary structure (linear epitopes), secondary and tertiary structure 

(conformational epitopes) of allergenic proteins are important for the molecular basis of 

IgE-binding. However, it is believed that birch pollen cross-reactivity is based on 

conformational epitopes [11]. The sequence conservation of the PR-10 amino acid 

sequences compared to the major allergen Bet v 1 is shown in the alignment of Figure 1. 

The secondary structure is also indicated in this figure. The three-dimensional 

structures of the major birch pollen allergen and plant homologues have been resolved 

mainly by X-ray diffraction, but also by solution NMR, for Bet v 1a [12, 13], Bet v 1L 

[14], Pru av 1 [15], Api g 1 [16], mungbean [17] and lupin PR-10 [18, 19]. The 3D-

structures are similar for all homologues and consist of a seven-stranded anti-parallel β-

sheet wrapped around a long C-terminal α-helix (residues 130 to 154). The β-sheet 

consists of seven anti-parallel strands and is separated from the long helix by two 
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consecutive shorter α-helices (residues 15-23 and 25-34) resulting in formation of a 

large forked cavity. This cavity is predominantly hydrophobic, and exhibits three 

openings on the protein surface [13].  

 

 
Figure 1.Figure 1.Figure 1.Figure 1.  Sequence alignment of Bet v 1 with PR-10 homologues of different plant families. PR-10 sequences 

are shown, including the first methionine, with their UniProt accession numbers between brackets. The 

highly conserved region (emboxed), including Glu46 and the P-loop, is indicated in the alignment. Secondary 

structure has been indicated on the bottom of the alignment, based on the 3D-structure of Bet v 1 (PDB-

entry; 1bv1). 

 

 An example of the 3D-structure of Bet v 1 is shown in Figure 2 (green) aligned with 

the structure of the major celery allergen Api g 1 (purple). Bet v 1 is not able to form 

disulfide bridges and the isoform Bet v 1a does not contain cysteines, in contrast to 

other isoforms such as Bet v 1L. It has been shown that Bet v 1 is not glycosylated, 

making it a suitable protein for recombinant expression systems. Another structural 

feature is a highly conserved loop region rich in glycine, GXGGXGXXK (residue 47-55), 

which is conserved among all Bet v 1 homologues and is referred to as the phosphate 

binding loop (P-loop, indicated in Figure 1) [10]. This loop is a conserved sequence 

motif named after Walker (Walker A motif) and is present in protein kinases and 

nucleotide binding proteins and has the ability to phosphorylate [20]. For Bet v 1, 



Chapter 1 

 14 

however, phosphorylation has never been demonstrated and it is unknown if the P-loop 

contributes to the biological function of Bet v 1. 

 

 

 
Figure 2Figure 2Figure 2Figure 2. PR-10 homologues show a conserved tertiary fold. An overlay is shown of the 3D-structures of Bet v 

1 (PDB-entry: 1bv1, green) and Api g 1 (PDB-entry: 2bk0A, purple). 

 

1.4 1.4 1.4 1.4 Biological function of Bet v 1 and other PRBiological function of Bet v 1 and other PRBiological function of Bet v 1 and other PRBiological function of Bet v 1 and other PR----10 proteins10 proteins10 proteins10 proteins        
The biological function of the Bet v 1 homologous proteins is still unclear, but several 

studies have shown ligand binding properties, RNAse activity, plant pathogenesis 

response and lipid binding activity. Bet v 1 and other homologues bind a variety of 

ligands as shown by X-ray crystallography, NMR and binding studies [14, 15, 17, 21, 

22]. Bet v 1a and Bet v 1L and the homologue from cherry, Pru av 1, and mungbean 

have been shown to bind ligands such as fatty acids, flavonoids, cytokinins and plant 

steroids, but  it is unknown whether this property is important for the function of Bet v 

1. Other studies have shown RNAse activity for some PR-10 proteins [22, 23]. Some of 

the PR-10 sequences are expressed as a result of external factors such as wounding, 

auxin treatment, copper exposure [22, 24-26].  

 Another structural function of Bet v 1 is the ability to bind to and permeabilize 

membranes by changing its conformation [27]. This feature was first observed in the 

structurally similar star-related lipid-transfer (START) domain superfamily. The START 
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domain has a similar tertiary fold to Bet v 1 and is able to bind ligands, such as 

cholesterol, as well as membranes [28, 29]. The ability of Bet v 1 to permeabilize 

membranes might facilitate the possibility to cross mucosal membranes and could 

provide a mechanism for Bet v 1 sensitization [27]. A recent study has shown the 

transport of Bet v 1 through conjunctival (eye) epithelium only for allergic patients, 

with the help of receptors expressed at high levels [30]. 

  

1.5 1.5 1.5 1.5 StabiStabiStabiStability of Bet v 1 crosslity of Bet v 1 crosslity of Bet v 1 crosslity of Bet v 1 cross----reactive food allergens and effects on reactive food allergens and effects on reactive food allergens and effects on reactive food allergens and effects on 

allergenicityallergenicityallergenicityallergenicity    
In general, food allergens are known as thermostable proteins, which require high 

temperatures to unfold [31]. However, birch pollen related allergens are known as 

thermolabile and their IgE binding capacity can be easily destroyed by thermal 

processing in food extracts [32-35] as shown for Mal d 1 and Api g 1. IgE binding to Dau 

c 1 is less affected by heating even when autoclaved at 121°C [35], but Dau c 1 also has 

been shown to act as a primary sensitizer [36, 37]. Food matrix effects such as enzymatic 

and non-enzymatic reactions during heating also have a negative influence on IgE 

binding [38, 39]. Furthermore, the stability of cytosolic PR-10 proteins is influenced by 

macromolecular crowding and is different from isolated allergens in aqueous 

environments [40]. Most conclusions regarding changes in IgE binding are based on 

changes of isolated allergens in aqueous environments, which are shown to be more 

stable to heating and require longer heating time to destroy IgE binding [41]. In general, 

stability measurements of PR-10 allergens is scarce, but could be easily studied by 

circular dichroism.  

    

1.6 1.6 1.6 1.6 Circular dichCircular dichCircular dichCircular dichroism: a method to study protein characteristicsroism: a method to study protein characteristicsroism: a method to study protein characteristicsroism: a method to study protein characteristics 
An analytical method, which is extensively used throughout this study is circular 

dichroism (CD), a spectroscopic technique that can be used to follow structural changes 

of proteins. A molecule’s chirality, i.e. L-amino acids and chromophoric character 

allows the optically active proteins to interact differently with left- and right-handed 

circularly polarized light. Peptide bonds of the polypeptide backbone can be monitored 

at wavelengths below 260 nm, in the far UV-region, to give information on the overall 

secondary structure of the protein in solution. A CD spectrum of a typical β-sheet has a 
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maximum at 198 nm and a minimum near 215 nm and a CD spectrum of a typical α-

helix has a maximum at 192 nm and two minima at 208 nm and 222 nm [42, 43]. Bet v 

1, a mixed α/β-protein, has a characteristic spectrum with a maximum at approximately 

196 nm and a broad minimum at 210-220 nm. 

 Accurate measurements of protein concentration is necessary for reliable 

determination of protein secondary structure. A method to determine protein 

concentration is the convenient and sensitive Bradford method, which gives different 

responses for different proteins. A second method is the bicinchoninic acid (BCA) assay, 

which also gives different responses for different proteins, but differences between two 

calibration curves for e.g. IgG and BSA are smaller than for the Bradford method [42, 

43]. The protein concentration of Bet v 1 and the homologues of Api g 1 and Dau c 1 is 

best determined by the microBCA assay.  

 The concentration is used to calculate the mean residual weight ellipticity, [θ]MRW, 

of the CD spectra from the observed ellipticity signal, [θ]obs, in mdeg according to: 

    [θ]MRW = 100·[θ]obs/C·l·n     (1.1) 

Where C is the concentration in mol/L, l the path length of the cuvette in cm and n the 

number of amino acids. The mean residual ellipticity can be used to predict the 

secondary structure by deconvolution methods such as CDNN, SELCON, LINCOMB 

and CONTIN [44, 45]. K2D is the only algorithm that determines the protein secondary 

structure without the use of protein concentration, but only uses the spectral 

information between 200 and 240 nm. All of the various methods give a reasonable 

estimate of the helical content. The methods, recommended for estimating the 

conformation of globular proteins in solution, such as Bet v 1, are SELCON and CDNN, 

which both give very good correlations between predicted and observed α-helix, β-

sheet and β-turn [44, 45]. SELCON and CDNN were both compared, but CDNN was 

used throughout this study to determine the secondary structure [46]. 

 

1.7 1.7 1.7 1.7 Protein stability studies with circular dichroism  Protein stability studies with circular dichroism  Protein stability studies with circular dichroism  Protein stability studies with circular dichroism      
To understand structure-function relationships of a protein, such as Bet v 1, knowledge 

is needed on the conformational stability. Stability is defined as a thermodynamic 

difference, the Gibbs free energy change, between the folded and unfolded state of a 

protein. The folded state of a protein can often be disrupted by an environmental 

change, such as temperature, pH or denaturant. The unfolded state, also referred to as 
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the denatured state, is usually reversible. When unfolding is irreversible, it usually 

involves chemical alterations of amino acid side chains taking place during or after 

unfolding. The reversibility of unfolding suggests a two-state mechanism, where only 

the folded and unfolded states are present. In this mechanism, no partially unfolded 

state is assumed to exist and in the midpoint of an unfolding curve (Figure 3), 50% of 

the protein is in the native state and 50% in the unfolded state [47]. Throughout this 

study, the assumption is made that proteins unfold according to the two-state 

mechanism. 

 The folded state of a protein is stabilized by a combination of hydrogen bonds, van 

der Waals interactions, electrostatic interactions and hydrophobic interactions. The 

thermodynamics of protein unfolding mainly shows the differences in strength of these 

interactions upon exposure to environmental changes and could therefore be used to 

characterize the differences between Bet v 1 isoforms and the cross-reactive allergens 

[47].   

 Thermodynamic parameters, such as the change in enthalpy ∆HTm at Tm, the 

temperature where 50% of the protein is unfolded, and ∆G, the Gibbs free energy 

change can be calculated by fitting a two-state mechanism to the data points [45]. The 

fitting procedure in this study is carried out by non-linear least-squares regression and 

is visualized in Figure 3 in steps according to the linear extrapolation approach for a 

thermal unfolding curve and can be followed by the description below [48]. The two-

state mechanism is shown as the equilibrium between the native (N) and unfolded state 

(D): 

    N  D         (1.2) 

The equation for the change in Gibbs free energy (∆G) at equilibrium is: 

    ∆G = -RT ln(Keq)       (1.3) 

R is the gas constant (J·K-1·mol-1) and T the absolute temperature (Kelvin). The 

dimensionless equilibrium constant, Keq, is defined as: 

    Keq = [N]/[D]        (1.4)  

The fraction of folded protein (fN) and the fraction of unfolded protein (fD) changes in 

an unfolding curve, but the sum of these fractions (fN + fD) is equal to 1. The observed 

signal (Yobs), ellipticity with CD, can therefore be described as: 

    Yobs = YN·fN + YD·fD       (1.5) 
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YN and YD are the functions of the linear fits shown in Figure 3a for the baselines of the 

folded (YN) and unfolded state (YD). The change in the folded fraction is similar to:  

    fN = 1- fD         (1.6) 

and can be written as: 

    fD = (YN – Yobs)/(YN –YD)     (1.7) 

and reformulated by using the equilibrium constant: 

    Keq = (YN – Yobs)/(Yobs –YD)    (1.8) 

Keq can be substituted in equation (1.3) giving: 

    ∆G = -RT ln((YN – Yobs)/(Yobs –YD))  (1.9) 

This equation forms the basis for all denaturation curves shown in this thesis and will 

be further described for thermal denaturation curves.  

 

The Gibbs free energy change for thermally induced unfolding is defined as: 

    ∆G = ∆H – T∆S       (1.10) 

where ∆H and ∆S are the changes in enthalpy and entropy associated with unfolding. 

By substitution of ∆G from equation (1.3) this leads to: 

    Keq = e- ∆H/RT +  ∆S/R        (1.11) 

From this equation follows the van ‘t Hoff equation: 

    ln(Keq) = -∆H/RT +  ∆S/R    (1.12) 

From the CD unfolding curve, the enthalpy and entropy are found by a straight line, 

equation (1.12), over a narrow temperature range from the transition of Figure 3A. This 

results in a linear plot of ln(Keq) versus 1/T (T in Kelvin), as shown in Figure 3B. The 

point where this line crosses the horizontal axis, defines the midpoint of thermal 

denaturation, Tm. The enthalpy can be calculated from the slope of this plot. By using 

non-linear least-squares regression, a fit will be obtained as shown in Figure 3C.  
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Figure 3Figure 3Figure 3Figure 3. Fitting procedure of a thermal unfolding curve of rApi g 1 (chapter 4).  measured by circular 

dichroism. Two baselines are drawn (AAAA) that represent the native state (YN) and the unfolded state (YD). 

Linear extrapolation of the transition (BBBB). Fit as performed by non-linear least square regression (CCCC). See text 

for further details.   

 

1.8 1.8 1.8 1.8 Research aim and thesis outlineResearch aim and thesis outlineResearch aim and thesis outlineResearch aim and thesis outline    
Despite the considerable similarities between different PR-proteins, such as structure, 

relative instability towards physical processing as compared to typical food allergens, 

there still remain differences between members of the PR-10-family with respect to e.g. 

sensitization potential and towards the frequency with which their consumption leads 

to clinical OAS-symptoms. Furthermore, research into birch pollen allergy or birch 

pollen related food allergy, increasingly makes use of recombinant allergens. There is a 

strong desire to use recombinant allergens for e.g. diagnostic purposes, because of 
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relative ease of preparation, and standardizations of composition of allergen 

preparations. However, the natural sources of these allergens have been shown to 

contain a large variety of allergen isoforms for which IgE binding capacity is largely 

unknown and likely variable. Therefore, the first aim of this research was to purify and 

characterize PR-10 allergens in natural isoform mixtures to determine whether 

differences can be observed between natural and recombinant allergens and between 

plant families. The second aim was to find a relationship between the physico-chemical 

stability of PR-10 proteins and structural characteristics and their behavior towards 

cross-reactivity. 

 Chapter 2Chapter 2Chapter 2Chapter 2 describes a general purification protocol, used to purify the PR-10 

allergens Bet v 1 from birch pollen, Api g 1 from celery root and Dau c 1 from carrot 

under mild conditions. The purified allergen mixtures are partially characterized by Q-

TOF MS/MS. In chapter 3chapter 3chapter 3chapter 3, the thermal stability of the natural allergen mixtures is 

compared to their recombinant counterparts and structural changes have been linked to 

the IgE binding capacity. Chapter 4Chapter 4Chapter 4Chapter 4 describes the thermodynamic stability of the 

recombinant and natural allergens by using CD with denaturant to determine the Gibbs 

free energy change. The Gibbs free energy change is also determined in an alternative 

method by measuring the pH-dependent thermal stability of natural Api g 1 and 

Dau c 1. In chapter 5chapter 5chapter 5chapter 5, differences in the primary, secondary and tertiary structure of 

PR-10 sequences are studied in a bioinformatics approach. The structural approach, on 

the tertiary level, is an electrostatic one and takes into consideration the physiological 

pH of the food of the different plant groups and the consequences for IgE binding 

studies. Chapter Chapter Chapter Chapter 6666 is the general discussion, which discusses the results of chapters 2 to 

5 and takes into consideration new developments in allergy and the biological function 

and conformational flexibility of allergens.    
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AbstractAbstractAbstractAbstract    
Birch pollen allergy is predominantly caused by the major allergen Bet v 1 and can lead 

to cross-reactions with homologous proteins in food. Two major cross-reactive food 

allergens are Dau c 1 from carrot and Api g 1 from celery, which have never been 

purified from their natural source. Here we describe a non-denaturing purification 

method for obtaining natural Bet v 1, Dau c 1 and Api g 1, comprising of ammonium 

sulfate precipitation, hydrophobic interaction chromatography (HIC) and size exclusion 

chromatography (SEC). This method resulted in 98-99% pure isoform mixtures for each 

allergen. Characterization of these isoform mixtures with Q-TOF MS/MS, clearly 

showed earlier reported isoforms of Bet v 1, Dau c 1 and Api g 1, but also new isoforms. 

The presence of secondary structure in the three purified allergens was demonstrated 

via circular dichroism and showed high similarity. The immune reactivity of the natural 

allergens was compared with recombinant proteins by Western blot and ELISA and 

showed similar reactivity.  
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2.1 Introduction2.1 Introduction2.1 Introduction2.1 Introduction    
The major allergen from birch pollen (Betula pendula also Betula verrucosa), Bet v 1, is 

an important source of airborne allergen in countries of Northern and Central Europe 

and Northern America during early springtime [1]. Exposure can lead to sensitization 

characterized by allergen-specific Th2 cells and IgE antibodies in genetically 

predisposed individuals. These individuals may develop clinical symptoms of type I 

hypersensitivity, characterized by rapid and local inflammatory reactions in the upper 

(allergic rhinitis) and lower airways (allergic asthma) [2]. After birch pollen 

sensitization, many individuals also develop allergic responses to fresh fruits and 

vegetables of the Rosaceae and Apiaceae family, such as apple [3, 4], cherry [5], celery 

[6] and carrot [7, 8]. This type of food allergy mainly causes local reactions such as oral 

itching and swelling of the lips and oral mucosa, also known as oral allergy syndrome 

[9].  

 Birch pollen-related food allergies are the result of cross-reactivity of IgE antibodies 

to Bet v 1 homologous proteins, e.g. Mal d 1 from apple, Pru av 1 from cherry, Api g 1 

from celery and Dau c 1 from carrot. These homologous allergens show a high similarity 

in primary, secondary and tertiary structure. At the amino acid level, the fruit allergens 

Mal d 1 and Pru av 1 show 64-66% sequence identity with Bet v 1, compared to 44% for 

the homologous vegetable allergens Api g 1 and Dau c 1 [10]. The secondary and 

tertiary protein structure also exhibit a high degree of similarity, as shown in X-ray 

crystallization and NMR studies of Bet v 1 and Pru av 1 [11-13]. Despite structural 

similarities, Bet v 1 homologues show different physico-chemical properties and 

immune reactivities. For example, Bet v 1L is a hypoallergenic isoform, differing in only 

9 amino acids from the highly allergenic Bet v 1a [11, 14-16], despite the high degree of 

homology and structural similarity between these isoforms.  

 Current purification methods for natural allergens include steps which may induce 

conformational changes caused by denaturing agents, e.g. acetone used for precipitation 

[17] and trifluoroacetic acid and acetonitrile, used as components in RP-HPLC protocols 

[18]. Other methods such as affinity chromatography may be selective for specific 

epitopes and might thus lead to the loss of isoforms during purification. Also elution of 

the allergen from the affinity column with highly acidic or basic buffers could result in 

conformational changes [19].  
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 Studies with purified proteins will inevitably be an approximation of in vivo 

situations, because any purification procedure or change in the physical or biochemical 

environment may lead to changes in functional properties. The use of allergens, isolated 

from natural sources, avoids possible erroneous chain folding as may occur in 

heterologous expression systems. In addition, when recombinant proteins are used, 

patients will be exposed to only one isoform and not to a proportional mixture 

reflecting their natural presence in food. Avoidance of organic solvents, chaotropic 

agents, or extreme physico-chemical conditions during isolation from natural sources is 

more likely to result in purified proteins that maximally resemble their natural 

equivalents. The aim of this study was to develop a method that not only allows 

purification of Bet v 1 from pollen, but also cross-reactive allergens e.g. Dau c 1 from 

carrot root (Daucus carota) and Api g 1 from celery tuber (Apium graveolens).  

 

2222.2.2.2.2 Materials and methods Materials and methods Materials and methods Materials and methods    
 

2.2.2.2.2222.1 Prote.1 Prote.1 Prote.1 Protein Extractionin Extractionin Extractionin Extraction    
Carrots from the cultivar Daucus carota var. Narbonne (de Wit & Zn., Hoogkarspel, The 

Netherlands) and celeriac (Apium graveolens), purchased from a local supermarket 

were used for purification of Dau c 1 and Api g 1, respectively. Small pieces of tissue 

were frozen in liquid nitrogen and ground to a fine powder with a Waring blender. 

Proteins were extracted from 300 g frozen powder in 300-400 mL 10 mM potassium 

phosphate extraction buffer, pH 7.0, containing 1 mM EDTA, 0.1% (w/v) ascorbate, 

4 mM DTT, 1 mM PMSF, 2% (w/v) polyvinylpolypyrrolidone, and 10 mM 

diethyldithiocarbamate following a combination of the methods of Björksten et al. [20], 

Rudeschko et al. [21], and Yamamoto et al. [8]. The suspension was blended for at least 

5 minutes, filtered over 4 layers of cheesecloth and centrifuged for 60 minutes at 16,000 

g at 4 °C. The supernatant was used for ammonium sulfate precipitation. For extraction 

of Bet v 1, 5% (w/v) pollen from a single tree, B. pendula var. Youngii, were stirred 

overnight at 4 °C in the same extraction buffer. The extract was filtered over 

cheesecloth and centrifuged according to the same procedure.   
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2.2.2.2.2222.2 Ammonium Sulf.2 Ammonium Sulf.2 Ammonium Sulf.2 Ammonium Sulfate Precipitationate Precipitationate Precipitationate Precipitation    
Dau c 1, Api g 1 and Bet v 1 were recovered from the supernatants by adding gradually 

increasing concentrations of ammonium sulfate to 50, 60, 70, 80, 90 and 100% 

saturation followed by stirring for 30 min at 4 °C. The protein pellets were collected by 

centrifugation and redissolved in 10 mM potassium phosphate buffer at pH 7.0 

containing 2 mM EDTA. Each fraction was analyzed with SDS-PAGE. The precipitates 

at 70-100 % (NH4)2SO4 saturation for carrot and birch and at 60-80% (NH4)2SO4 

saturation for celery were collected and redissolved in 10 mM potassium phosphate 

buffer, pH 7.0, containing 2 mM EDTA and (NH4)2SO4 to a final concentration of 1 M 

for Dau c 1 and 1.5 M for Api g 1 and Bet v 1.  

 

2.2.3 Hydrophobic Interaction Chromatography2.2.3 Hydrophobic Interaction Chromatography2.2.3 Hydrophobic Interaction Chromatography2.2.3 Hydrophobic Interaction Chromatography    
Protein binding was screened, on an FPLC™ System (Amersham Biosciences, Uppsala, 

Sweden), with the HiTrap™ hydrophobic interaction chromatography (HIC) selection 

kit (Amersham Biosciences), containing 5 different prepacked 1 mL columns with 3 

different alkyl ligands; butyl, phenyl or octyl. The phenyl ligand was coupled to 

Sepharose in 3 different columns differing in mean bead size, bead size range and ligand 

density. Samples were centrifuged at 30,000 g at 4 °C for 60 minutes, followed by 

filtering on a 0.45 μm ProFill regenerated cellulose filter (Alltech Associates Inc., 

Deerfield, IL, USA), before loading onto the HIC columns. Buffer solutions of 10 mM 

potassium phosphate buffer, pH 7.0, containing 2 mM EDTA with and without 

ammonium sulfate, were degassed and filtered over an OE 66 cellulose acetate 0.2 μm 

membrane filter (Schleicher & Schuell, Dassel, Germany) before use. The columns were 

first equilibrated with high salt concentration buffers of (NH4)2SO4, 1 M for Dau c 1 and 

1.5 M for Api g 1 and Bet v 1. After loading the protein and washing the column, 

fractions were collected by elution with buffer without (NH4)2SO4 at 1 mL/min. 

    

2.2.4 Size Exclusion Chromatography 2.2.4 Size Exclusion Chromatography 2.2.4 Size Exclusion Chromatography 2.2.4 Size Exclusion Chromatography     
The total protein fraction from HIC was concentrated in a Microsep 10K Omega 

centrifugal device (Pall Life Sciences, Ann Arbor, MI, USA) to a volume of about 500 μL 

before SEC. The concentrated samples were loaded on a XK 16/70 column (Amersham 

Biosciences) packed with 120 mL Superdex 75 prep grade (Sigma-Aldrich Inc., St. 

Louis, MO, USA). Proteins were collected upon elution with 10 mM potassium 
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phosphate buffer, pH 7.0, at 0.5 mL/min. Pooled fractions were concentrated and 

analyzed with SDS-PAGE, followed by quantification with the Micro BCA™ Reagent 

Protein Assay (Pierce, Rockford, IL, USA).  

 

2.2.5 SDS2.2.5 SDS2.2.5 SDS2.2.5 SDS----PAGE Gel ElectrophoresisPAGE Gel ElectrophoresisPAGE Gel ElectrophoresisPAGE Gel Electrophoresis    
Samples from the various purification steps were analyzed by SDS-PAGE for the 

presence of Bet v 1, Dau c 1 and Api g 1 by monitoring the occurrence of a band with 

relative masses (Mr) at 16-18 kDa. Proteins were separated on a 15% (w/v) acrylamide 

SDS-PAGE gel with a 5% (w/v) stacking gel, using the Mini-Protean II gel system 

(Bio-Rad Laboratories Inc., Hercules, CA, USA). Gels were stained with CBB R250 and 

analyzed with Quantity One Bio-Rad scanner software. A Low Molecular Weight 

calibration Kit (Amersham Biosciences) marker was used to determine relative 

molecular masses.  

 

2.2.6 Isoelectric Focusing2.2.6 Isoelectric Focusing2.2.6 Isoelectric Focusing2.2.6 Isoelectric Focusing    

Homogeneity of the isolated 16-18 kDa proteins of Api g 1 and Dau c 1 fractions after 

SEC was analyzed by IEF on the Phastsystem™ (Amersham Biosciences). Phastgel™ 

IEF gels (Amersham Biosciences) with a pH range of 4-6.5 were used and calibrated 

with an Isoelectric Focussing Kit (Amersham Biosciences). The IEF gels were stained 

with CBB R350.  

 

2.2.7 Identification of Proteins using Q2.2.7 Identification of Proteins using Q2.2.7 Identification of Proteins using Q2.2.7 Identification of Proteins using Q----TOF MS/MSTOF MS/MSTOF MS/MSTOF MS/MS    
The amino acid sequences of the purified allergens from birch, carrot and celery were 

determined using a Q-TOF 2 mass spectrometer (Waters, Milford, MA, USA). Samples 

of purified Bet v 1, Dau c 1 and Api g 1, containing 30 µg of protein, were run on a 15% 

(w/v) SDS-PAGE gel and subsequently stained with CBB. The Bet v 1 sample showed 

two protein bands at a relative molecular mass of 16-18 kDa and impurities around 29 

and 35 kDa. These 4 bands were cut out of the gel and sliced into 1 mm3 -pieces. Also 

the 16-18 kDa protein and minor impurities at 25 and 33 kDa for both Dau c 1 and Api 

g 1 were all analyzed separately.  

 Proteins were reduced with DTT and alkylated with iodoacetamide [22]. Gel pieces 

were dried under vacuum and swollen in 0.1 M NaHCO3, containing 5 mM calcium 

chloride and sequence grade porcine trypsin (10 ng/µl, Promega Corp., Madison, WO, 
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USA). After overnight incubation at 37 °C, peptides were extracted from the gel with 

50% (v/v) acetonitrile, 5% (v/v) formic acid and dried under vacuum. The peptides were 

redissolved in 0.5% (v/v) formic acid in 5% (v/v) acetonitrile and loaded onto a C18 

Atlantis column (15 cm x 75 µm ID, Waters, Milford, MA, USA). Peptides were eluted 

by a linear gradient (30 min) from 0.5%(v/v) formic acid in 5% (v/v) acetonitrile to 

0.5% (v/v) formic acid in 50% (v/v) acetonitrile at approximately 0.2 μL/min (resulting 

from a 1:20 split of 4 μL/min flow generated by the Waters CapLC pumps). The C18 

column was connected to a PicoTip (New Objective, Woburn, Massachusetts) which 

produced an electro-spray to be analyzed by a Q-TOF-2 mass spectrometer (Waters, 

Milford, MA, USA). The Q-TOF mass spectrometer was programmed to determine 

charge states of the eluting peptides, and to switch from the MS- to the MS/MS-mode 

for z ≥ 2+ at the appropriate collision energy for Argon gas-mediated CID. The resulting 

CID MS/MS spectra contained the sequence information for a single peptide per 

spectrum. 

 The ProteinLynx GlobalServer package V2.1 software (Waters, Milford, MA, USA) 

was used to process MS/MS data. Raw MS/MS spectra were deconvoluted to produce 

monoisotopic singly charged spectra with the proprietary MaxEnt3 algorithm. MS/MS 

spectra containing good quality CID products were automatically searched for sequence 

matches using the NCBI non-redundant protein database. Unassigned MS/MS spectra 

were automatically processed using the AutoMod algorithm, developed to identify 

amino acid substitutions, post-translational modifications and partial or non-specific 

cleavages. De novo sequences were generated with the MassSeq tool to search for the 

most likely protein homologues in the database.   

 

2.2.8 Circular Dichroism Spectroscopy2.2.8 Circular Dichroism Spectroscopy2.2.8 Circular Dichroism Spectroscopy2.2.8 Circular Dichroism Spectroscopy    
CD spectra of Bet v 1, Dau c 1 and Api g 1 were recorded at 20 °C on a Jasco J-715 

spectropolarimeter (Jasco Corporation, Tokyo, Japan) equipped with a quartz cuvette of 

1 mm path length. Far-UV spectra were recorded from 185-260 nm in 10 mM 

potassium phosphate buffer pH 7.0 filtered through a 0.2 μm syringe filter (Schleicher & 

Schuell) at a protein concentration of 2.9 μM Bet v 1, 5.8 μM Dau c 1 and 6.3 μM 

Api g 1. To increase signal-to-noise values, 20 scans were accumulated at a scanning 

speed of 50 nm/min, a 0.2 nm step width and 2 nm bandwidth. The buffer spectra were 
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subtracted from the protein spectra and the mean residue weight ellipticity [θ]MRW was 

calculated from the following equation:    

    
nlC

θ
θ

××

×
= obs

MRW

][100
][      (1)   

Here, [θ]obs  is the observed signal in degrees, C is the concentration in mol/L, l is the 

path length of the cuvette in cm and n is the number of amino acids. The program 

CDNN was used to deconvolute the secondary structure [23]. 

 

2.2.9 ELISA2.2.9 ELISA2.2.9 ELISA2.2.9 ELISA    
Immunodetection was performed by means of indirect ELISA. Ninetysix-well 

microplates (Greiner Bio-one, Frickenhausen, Germany) were coated with 2 μg/mL of 

natural Dau c 1, Api g 1 and Bet v 1 and the recombinant allergens rDau c 1.2, rApi g 1 

and rBet v 1a (Biomay, Vienna, Austria) in coating buffer: 40 mM NaHCO3, 9 mM 

Na2CO3, pH 9.6, 100 μL/well, by incubation for 1 h at 37 °C. All subsequent incubations 

were performed at room temperature on a microplate shaker. Coating solution was 

removed and 200 μL/well of blocking buffer: 2% (w/v) BSA in PBS: 1.4 mM KH2PO4, 

8 mM Na2HPO4, 2.7 mM KCl , 130 mM NaCl, pH 7.4, was added and incubated for 1 h. 

Microplates were washed after each incubation step in a microplate washer (Anthos 

Fluido, Anthos Labtec Instruments, GmbH. Austria) with 4 times 400 μL/well of 

washing buffer: 0.05% (v/v) Tween 20, 0.05% (w/v) BSA in PBS. During incubation, 

microplates were sealed. Serum in PBS (1:5, 100 μL/well) was added as primary 

antibody and incubated for 3 h. Human sera of six birch pollen-allergic patients, which 

were previously shown to cross-react with the carrot allergen Dau c 1 and the celery 

allergen Api g 1, were obtained from the Laboratory for Primary Health Care (SHO, 

Velp, The Netherlands). Specific IgE was determined for each serum by the 

ImmunoCAP method (Pharmacia, Uppsala, Sweden). Sera with birch pollen-specific 

IgE of >100 kU/L were used. Wells were subsequently incubated for 1 h with 100 μL of 

1:1000 monoclonal mouse anti-human IgE (DakoCytomation, Denmark or Sigma-

Aldrich) in dilution buffer (0.1% (w/v) BSA in PBS pH 7.4) and 100 μL of 1:1000 goat 

anti-mouse IgG antibodies conjugated with alkaline phosphatase (Sigma-Aldrich) in 

dilution buffer, both during 1 h. Freshly prepared substrate solution, containing 1 

mg/mL 4-nitrophenylphosphate disodium salt in carbonate buffer (35 mM NaHCO3, 15 

mM Na2CO3, 1 mM MgCl2, pH 9.6), by adding 200 μL/well. Color development was 
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measured at λ=405 nm using a microplate reader (ThermoLab Systems, Franklin, MA, 

USA). Sera from non-birch pollen allergic individuals with birch pollen-specific IgE of 

< 0.35 kU/L, were included as a negative control. Measurements were performed in 

triplicate. 

 

2.2.10 Western Blot2.2.10 Western Blot2.2.10 Western Blot2.2.10 Western Blot    
After electrophoretic separation of protein sample containing 2-3 μg of natural or 

recombinant protein by 15% (w/v) SDS-PAGE, proteins were either stained with CBB 

or transferred to a PVDF ImmobilonTM–PSQ membrane (Millipore, USA). Semi-dry 

blotting was performed with a Semi-phor (Hoeffer Scientific Instruments, San 

Francisco, CA, USA) using a constant current of 100 mA for 75 min. Wet blotting was 

performed with a Mini Trans-Blot® (Bio-Rad) using a constant voltage of 100 V for 60 

min. Membranes were blocked with blocking buffer, containing 2% (w/v) milk powder 

in PBS (1.4 mM KH2PO4, 8 mM Na2HPO4, 2.7 mM KCl, 130 mM NaCl, pH 7.4) and 

incubated for 1 h at room temperature. Serum (1:10) in 0.1% (w/v) milk powder in PBS 

7.4 was added as primary antibody and incubated at 4-5 °C overnight. Membranes were 

sequentially incubated for 1 h with mouse anti-human IgE (1:1000, DakoCytomation or 

Sigma-Aldrich) in dilution buffer: 0.1% (w/v) milk powder in TBS: 20 mM trizma-base, 

150 mM NaCl pH 8.2, followed by incubation for 1 h with goat anti-mouse IgG 

antibodies (1:1000) conjugated with alkaline phosphatase (Sigma-Aldrich) in dilution 

buffer. After each incubation step, membranes were washed for 2 times 5 minutes with 

washing buffer 1 (0.1% (v/v) Tween 20, 0.1% (w/v) milk powder in PBS pH 7.4) and for 

3 times 5 minutes with washing buffer 2 (0.1% (w/v) milk powder in TBS pH 8.3). 

Freshly prepared substrate solution was added, consisting of 5% (w/v) 

5-bromo-4-chloro-3-indolylphosphate and 5% (w/v) nitroblue tetrazolium in DMF 

added to 100 mM trizma-HCl, 5 mM MgCl2, 100 mM NaCl, pH 9.6.  

 

2.3 Results and discussion2.3 Results and discussion2.3 Results and discussion2.3 Results and discussion    

    

2.3.1 Purification of the natural allergens Dau2.3.1 Purification of the natural allergens Dau2.3.1 Purification of the natural allergens Dau2.3.1 Purification of the natural allergens Dau    cccc    1, Api1, Api1, Api1, Api    gggg    1 and Bet v 11 and Bet v 11 and Bet v 11 and Bet v 1    
Birch, carrot and celery extracts were monitored for the presence of proteins, with 

relative molecular masses at 16-18 kDa, by SDS-PAGE during purification. Clear 
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protein bands were visible at 16-18 kDa in the cell free extracts of carrot, celery (Figure 

1A and 1B) and birch (not shown). The majority of the 16-18 kDa protein from carrot 

was detected in the fractions collected at 80, 90, and 100% ammonium sulfate saturation 

(Figure 1A). Similar results were obtained for Bet v 1. The majority of the 16-18 kDa 

Api g 1 protein precipitated at 70 and 80% ammonium sulfate saturation (Figure 1B).  

 

 
Figure 1Figure 1Figure 1Figure 1. Ammonium sulfate precipitation of carrot and celery proteins. AAAA) Precipitated protein in each carrot 

fraction; BBBB) Precipitated protein in each celery fraction. The percentage of ammonium sulfate saturation is 

displayed on top of the lanes. CE: cell-free extract before ammonium sulfate precipitation. M: molecular 

marker. The arrow indicates the position of Dau c 1 and Api g 1.   

 

 The precipitated ammonium sulfate saturated fractions from 70-100% of Bet v 1 and 

Dau c 1 and from 60-80% of Api g 1 were used for concentration with HIC and further 

purification using SEC. From 5 different types of Sepharose HIC columns tested, the 

best results were obtained with a HiTrap octyl FastFlow column, with purity as 

selection criterion. The main aim of the HIC step was to concentrate the protein sample 

and to remove most of the ammonium sulfate. The unbound HIC fractions contained no 

protein bands at 16-18 kDa when analyzed with SDS-PAGE (not shown). This resulted 

in enrichment by a factor 2 of the three allergenic proteins after elution from the HIC 

column with low salt. Proteins were not eluted with a gradient, because the protein 

gradually released the column, resulting in a dilute fraction.  

 In HIC, proteins bind in their native state to the alkyl ligands of the column by 

hydrophobic interactions. This type of binding is not likely to be selective for certain 

isoforms, which can subsequently be recovered by non-denaturing agents. Hydrophobic 

characteristics of Bet v 1, Dau c 1 and Api g 1 are similar according to the ProtScale tool 

[24]. Therefore, we conclude that non-selective HIC is a better method to preserve the 
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native state of natural proteins compared to purification methods as Reversed Phase 

HPLC, in which highly denaturing agents are used. 

 SEC of HIC-concentrated Bet v 1, Dau c 1 and Api g 1 fractions showed similar 

results. Two peaks were clearly visible in the elution patterns as shown for the HIC 

purified carrot extract (Figure 2A). Peak A contained high molecular mass proteins not 

related to Dau c 1 (Figure 2B, lane 1). Peak B contained the 16-18 kDa Dau c 1 protein 

with minor impurities (Figure 2B lane 3 and 4) of approximately 25 and 35 kDa, which 

are clearly visible in lane 2 of Figure 2B. Fraction 4 was used for further experiments 

and fraction 3 was saved for a second SEC run. Analysis by SDS-PAGE indicated 

98-99% purity for all purified allergens. Yields for Bet v 1, Dau c 1 and Api g 1 were 

estimated at 250 mg/kg birch pollen, 3 mg/kg carrot and 10 mg/kg celery, respectively. 

 

    
Figure 2Figure 2Figure 2Figure 2. Size exclusion chromatography of carrot proteins, concentrated by HIC. AAAA) Two major peaks were 

visible after SEC, peak A and peak B. Boxes 1 through 4 correspond with the numbers of the SDS-PAGE gel of 

Figure 2B; BBBB) SDS-PAGE of the purified Dau c 1 allergen after SEC. M: molecular marker. HIC: Sample after 

HIC. Arrows indicate minor impurities at 25 kDa and 33 kDa.  

 

 An alternative for protein purification of natural Dau c 1 and Api g 1 might be 

affinity chromatography, but the available monoclonal antibodies used as stationary 

phases for the purification of Bet v 1 or Mal d 1, do not recognize an epitope of Dau c 1 

and Api g 1 (personal communication R. van Ree, AMC, Amsterdam, The Netherlands). 

Affinity chromatography also results in a mixture of different isoforms, as was reported 

for Mal d 1 from apple [25]. Another purification method for the natural Mal d 1 

allergen is described by Fahlbusch et al. [18], who used Reversed Phase HPLC and 

anion exchange chromatography. These methods do not exclude that isoforms are lost 

by selective extraction, which may lead to an altered immune reactivity as compared to 
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the isoform mixture in the source tissue. As Reversed Phase HPLC uses highly 

denaturing components e.g. TFA and acetonitrile, this may affect protein conformation 

and therefore immune reactivity. 

 

    
    

Figure 3Figure 3Figure 3Figure 3. Alignment of Bet v 1, (AAAA), Api g 1 (BBBB) and Dau c 1 (CCCC) with the identified peptides, as revealed by 

Q-TOF MS/MS analyses. The accession numbers of the different isoforms are given between brackets in the 

alignments. Theoretical tryptic peptides are displayed with grey-shaded boxes and Roman numbers at the 

amino acid positions. Peptides identified in the MS-mode and MS/MS-mode are respectively underlined and 

displayed in a box. Dots indicate identical amino acids with the aligned allergen and dashes indicate gaps.  

 

2.3.2 Charact2.3.2 Charact2.3.2 Charact2.3.2 Characterization of purified Bet v 1, Apierization of purified Bet v 1, Apierization of purified Bet v 1, Apierization of purified Bet v 1, Api    gggg    1 and Dau1 and Dau1 and Dau1 and Dau    cccc    1 by Q1 by Q1 by Q1 by Q----TOF mass TOF mass TOF mass TOF mass 

spectrometryspectrometryspectrometryspectrometry    
After tryptic digestion of the 16-18 kDa protein bands of purified Bet v 1, Api g 1 and 

Dau c 1 the resulting peptides were separated by nanoflow reversed phase LC and on-

line sequenced with the Q-TOF operating in MS/MS mode. In Figure 3, tryptic 

peptides, from which complete amino acid sequences were obtained in the MS/MS 

mode, are emboxed, while peptides, only characterized in the MS-mode by their 
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molecular mass, are underlined. Thirteen different peptide sequences were identified in 

the MS/MS spectra generated for Bet v 1 (Figure 3A), representing at least three 

isoforms of Bet v 1 in the purified sample. These isoforms are encoded by different Bet v 

1-type genes [26], namely Bet v 1.01A coding for Bet v 1a (Accession no. P15494), Bet v 

1.01B coding for Bet v 1d (Accession no. P43177) and Bet v 1.02B coding for Bet v 1m 

(Accession no. P43186). Six of these peptides could be assigned to tryptic peptides 

predicted for Bet v 1.01A. Three sequences were specific for the tryptic peptides III, V 

and X of Bet v 1.01B, while four peptides were specific for the tryptic fragments I, III, V 

and VII of Bet v 1.02B. From these isoforms the following proportions of the complete 

protein were fully sequenced in the MS/MS mode: Bet v 1.01A 50.9%, Bet v 1.01B 

57.2% and Bet v 1.02B 62.9%. In total, 13 Bet v 1-type genes are known, but only a 

subset is predicted to be expressed in pollen based on the detection of mRNA’s in pollen 

tissue [16, 26]. 

 In addition to the MS/MS mode, which provides amino acid sequence information, 

the sample was run in the continuous MS mode (Figure 4A). The combined MS 

spectrum reveals the molecular masses after deconvolution from m/z-ratios, where m= 

molecular peptide mass and z = peptide charge, of all peptides present in the digest. All 

major peaks could be assigned to tryptic peptides originating from either Bet v 1a, d or 

m, using the sequence information as obtained from the MS/MS run. An additional 

number of peptide masses in the MS spectrum of Figure 4A could be assigned to tryptic 

peptides originating from one or more of the three Bet v 1 isoforms based on their exact 

mass (Figure 3A, underlined peptides).  

 The protein band at an estimated relative molecular mass of 35 kDa in the SDS-

PAGE gel was identified as dimeric Bet v 1 since it had similar MS and MS/MS spectra 

of tryptic peptides as the monomeric Bet v 1. A 29 kDa protein in the Bet v 1 sample 

was also sequenced from the gel, but showed no homology to Bet v 1 and could not be 

identified on the basis of a search in the NCBI non-redundant protein database. 

 Breiteneder et al. [6] first described the purification and molecular characterization 

of a major allergen of celery, classified as Api g 1.0101. In our sample, six of the 

predicted tryptic peptide sequences of Api g 1.0101 were confirmed by MS/MS analysis 

(Figure 3B), resulting in a total protein coverage of 41.2%. The predicted peptides IV+V 

were sequenced as a partial digest (no tryptic cleavage after lysine at position 44).



Chapter 2 

 38 

    
    

Figure 4Figure 4Figure 4Figure 4. Q-TOF MS spectra of tryptic peptides of Bet v 1 (AAAA), Api g 1 (BBBB) and Dau c 1 (CCCC). The x-axis 

represents the m/z-values of the peptides. Identified peptides are annotated with the tryptic peptide numbers, 

their charge state (z) and the corresponding m/z-values. Peptide numbers refer to Figure 3.    

 

Also the homologous N-terminal part of Api g 1 was sequenced. However, we observed 

an amino acid substitution at position 4 (Ser4 for Thr4), which was also found by N-

terminal sequencing of the Api g 1 allergen by Schöning et al. [27]. This indicates the 

occurrence of an Api g 1 isoform in our sample, which deviates at the N-terminus from 

the one present in existing sequence databases.  
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 The sequences obtained after MS/MS analysis of the tryptic peptides present in the 

digested band of purified Dau c 1 are depicted in Figure 3C. Sequences of nine tryptic 

peptides coincided with the amino acid sequences of the predicted peptides I-VI and 

IX-XI of Dau c 1.0104 (Accession no. CAB03716) with a protein coverage of 62.7%. The 

predicted peptide III-V were found as a partial digest, in which trypsin was unable to 

cleave after lysine residues at positions 39 and 44. Also, an amino acid substitution was 

observed in peptide XI (Ala137 for Glu137), indicating the presence of one of the 

isoforms Dau c 1.0101, 1.0102, 1.0103 (Figure 3C, Accession no. CAB03715), or 1.0105. 

Four other peptides had sequences identical to the parsley PcPR1-3 Bet v 1 homologue 

(Accession no. CAA31085) [28]. IEF showed two major bands for Dau c 1 (not shown). 

This supported the findings with Q-TOF MS/MS for at least two isoforms for carrot, 

although we were able to identify a third one.  

 Two additional protein bands in the Dau c 1 sample were visible at 25 and 35 kDa, 

respectively (Figure 2B). These minor impurities were identified with Q-TOF MS/MS as 

actin and isoflavone reductase, respectively. The latter belongs to the group of the Bet v 

6 homologous allergens [29]. Therefore, the 35 kDa protein band is not a dimeric form 

of Dau c 1.  

 Figure 4B-C show the combined MS spectra of the tryptic peptides present in the 

purified Api g 1 and Dau c 1 samples. All major peaks could be assigned to sequences as 

determined by MS/MS analysis of the corresponding tryptic digests of Api g 1 and Dau c 

1. The two MS spectra contain several peaks with identical mass peaks. This is in 

agreement with the observation of identical sequences for these peptides of Api g 1 and 

Dau c 1 in MS/MS (see also Figure 3B-C). 

    

2.3.3 Circular Dichroism2.3.3 Circular Dichroism2.3.3 Circular Dichroism2.3.3 Circular Dichroism    
The CD spectra of Bet v 1, Dau c 1 and Api g 1 (Figure 5) showed that the isolated 

proteins were similarly folded. A broad minimum around 218 nm was observed for 

these allergens. Similarly, maximum ellipticity was observed at about 196 nm where the 

peak height for Bet v 1 was lower as compared to that for Dau c 1 and Api g 1. Other 

small differences were observed at the x-axis intercepts, 205 nm spectra of Bet v 1 and 

Api g 1 and 204 nm for Dau c 1. The CD spectra were deconvoluted using the 

wavelength range from 190-260 nm with the CDNN program of Böhm et al. [23].  The 

distribution of the estimated secondary structure is shown in Table 1. Between the 
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three allergens no significant differences were observed. These CD spectra were also 

very similar to those of natural and recombinant Bet v 1 [30] and recombinant Pru av 1 

[31] reported earlier.  

 

    
Figure 5Figure 5Figure 5Figure 5. Circular dichroism spectra of natural Bet v 1, Dau c 1 and Api g 1. 

 
Table 1Table 1Table 1Table 1. Secondary structure prediction of Bet v 1, Dau c 1 and Api g 1 as derived from circular dichroism 

analyses. 

  Protein   

  Bet v 1 Dau c 1 Api g 1  

 α-helix 29.0% 31.2% 30.3%  

 β-sheet 19.7% 18.9% 20.5%  

 β-turn 15.8% 16.3% 16.6%  

 random coil 39.2% 33.6% 33.6%  

CDNN was used for secondary structure prediction. 

 

2.3.4 Immunoblotting2.3.4 Immunoblotting2.3.4 Immunoblotting2.3.4 Immunoblotting    
Natural Bet v 1 (Figure 6A), Dau c 1 and Api g 1 (Figure 6B) showed immune reactivity 

in Western blot experiments with Bet v 1-specific IgE patient sera cross-reacting with 

the corresponding recombinant birch, carrot and celery allergens. The IgE binding 

capacity of natural and recombinant allergens were similar for carrot and celery. A 

lower IgE binding capacity was observed for natural Bet v 1 compared to recombinant 

Bet v 1. The isoform that is used to produce the recombinant protein is Bet v 1a, which 

is known to be the most allergenic isoform. Natural Bet v 1 is a mixture of at least three 

isoforms, including the hypoallergenic isoform Bet v 1d [14]. This mixture is thus likely 
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to have a reduced IgE reactivity compared to the recombinant protein for the majority 

of patients. Both dimers from natural and recombinant Bet v 1, though not visible in 

SDS-PAGE, showed clear immune reactivity. Recombinant Dau c 1 showed two 

antibody binding proteins, while only one band was visible in SDS-PAGE. The higher 

molecular mass of recombinant Dau c 1, compared to natural Dau c 1, as visible in 

SDS-PAGE and Western blot, resulted from a His-tag, fused with the recombinant 

protein. The second immune reactive protein band in the Western blot of the 

recombinant Dau c 1 sample, at lower molecular mass, could best be explained as a 

result of protein degradation, revealing an important epitope for Dau c 1 with higher 

affinity for IgE (personal communication, M. Susani, Biomay, Austria). Possible 

contaminants in the allergen samples did not exhibit immune reactivity in Western blot 

experiments with IgE from Bet v 1 allergic patients, demonstrating that immune 

reactivity in the allergen isolates was caused by Bet v 1, Dau c 1 and Api g 1 only. 

 

    
Figure 6Figure 6Figure 6Figure 6. SDS-PAGE and Western blot with natural and recombinant Bet v 1 (AAAA) and Api g 1 and Dau c 1 (BBBB) 

with human sera from birch pollen allergic patients. The diamond–shaped marker indicates the location of 

the Bet v 1 dimer. WB: Western blot, M: Molecular marker. 

 

 The immune reactivity of natural Bet v 1 (Table 2), Dau c 1 and Api g 1 (Table 3) 

was also confirmed in two different ELISAs, where they reacted with 6 different birch-

allergic patient sera. OD-values with standard deviations are expressed as relative values 

with the highest OD value set to 100, showed that reactivity was not exactly identical 

for each serum and allergen. However, the natural allergens bind to Bet v 1-recognizing 

IgE antibodies. Differences in ELISA reactivity between the natural and recombinant 

proteins could be explained by the presence of isoform mixtures of the natural proteins 

and possibly by serum-specificity. A lower immune reactivity for the natural Bet v 1 
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allergen was expected due to the presence of a hypoallergenic isoform, as shown by Q-

TOF MS/MS. The natural Dau c 1 mixture was shown to be primarily composed of the 

Dau c 1.0104 isoform, while the recombinant protein consisted of isoform Dau c 1.0103, 

which may explain the difference in immune reactivity of these two samples.  

 
Table 2Table 2Table 2Table 2. Results of ELISA with purified natural and recombinant Bet v 1 using several human patient sera A-F 

of Bet v 1 allergic patients.  

 Bet v 1  

 

 

nat rec  

 Serum % sd % sd  

 A 44.3 7.24 74.2 8.97  

 B 59.3 3.54 93.0 15.3  

 C 84.1 5.00 85.2 10.4  

 D 81.7 8.36 100100100100    6.76  

 E 20.8 5.88 23.8 4.20  

 F 33.7 9.99 17.7 5.89  

IgE binding capacity with standard deviations (sd) are given as a 

relative value and compared to the highest score, set to 100%, 

indicated in bold. 

 
Table 3Table 3Table 3Table 3. Results of ELISA with purified natural and recombinant Dau c 1 and Api g  compared to recombinant 

Bet v 1.  

Bet v 1 Dau c 1 Api g 1  

rec nat rec nat rec 

Serum % sd % sd % sd % sd % sd 

G 68.5 2.00 29.5 3.68 26.7 0.464 27.4 2.56 25.2 5.66 

H 49.7 3.04 25.1 4.25 14.6 0.317 18.5 0.628 15.7 2.14 

I 92.2 1.76 21.9 0.912 15.0 0.293 16.5 2.60 23.9 1.07 

J 43.4 2.67 21.3 3.03 14.0 1.34 14.2 4.98 11.0 0.518 

K 46.6 2.11 17.3 5.58 20.1 0.488 16.7 3.09 23.7 2.62 

L 100100100100    4.32 18.5 3.69 26.7 1.61 20.6 1.26 28.8 3.25 

Six different human sera were used of Bet v 1 allergic patients cross-reactive to Dau c 1 and Api g 1 (G-L). IgE 

binding capacity with standard deviation (sd) is given as a relative value and compared to the highest score, 

set to 100%, indicated in bold. 
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2.2.2.2.4 Concluding remarks4 Concluding remarks4 Concluding remarks4 Concluding remarks    
Until now, no purification method has been described for Dau c 1 and Api g 1 from 

their natural source. Purification of these allergens was hitherto performed on proteins 

expressed in recombinant systems. Advantages of recombinant proteins are the high 

degree of homogeneity, the high yield of protein and a similar reactivity in IgE binding 

studies. However, recombinant proteins will not be composed of isoform mixtures and 

they will not include ligands [12, 15, 32], as present in the natural matrix. Moreover, it 

is not known whether they are folded into the correct native state [33, 34]. 

 In conclusion, natural Bet v 1, Dau c 1 and Api g 1 allergens can be obtained at 98-

99% purity using a three-step-method, using ammonium sulfate precipitation, HIC and 

SEC, which are non-denaturing methods. The Bet v 1 and Dau c 1 samples, contained 

multiple isoforms as was shown by Q-TOF MS/MS. The characterization of these 

proteins, on the basis of CD spectra and immune reactivity, indicated a folded state of 

the protein comparable to that of recombinant proteins. The advantage of these allergen 

samples from natural sources is that they show the immune reactivity of naturally 

occurring isoform mixtures. 

 

2.5 Acknowledgements 2.5 Acknowledgements 2.5 Acknowledgements 2.5 Acknowledgements     
We thank Anett Oehme and Marjolein Meijerink for their contributions in the 

purification of Api g 1 and in ELISA analyses, respectively.  This research was supported 

by the Allergy Consortium Wageningen, The Netherlands Proteomics Centre and by 

the fellowship EX2003-0576 from the Ministerio de Educación y Ciencia (MEC), Spain. 

 



Chapter 2 

 44 

ReferencesReferencesReferencesReferences    
1. Ipsen, H. and Lowenstein, H., Isolation and immunochemical characterization of the major 

allergen of birch pollen (Betula verrucosa). J Allergy Clin Immunol, 1983198319831983. 72(2): p. 150-159. 

2. Kay, A.B., Allergy and allergic diseases. First of two parts. N Engl J Med, 2001200120012001. 344(1): p. 30-37. 

3. Vieths, S., Schoning, B., and Petersen, A., Characterization of the 18-kDa apple allergen by two-

dimensional immunoblotting and microsequencing. Int Arch Allergy Immunol, 1994199419941994. 104(4): p. 

399-404. 

4. Vanek Krebitz, M., Hoffmann Sommergruber, K., Laimer da Camara Machado, M., Susani, M., 

Ebner, C., Kraft, D., Scheiner, O., and Breiteneder, H., Cloning and sequencing of Mal d 1, the 

major allergen from apple (Malus domestica), and its immunological relationship to Bet v 1, the 

major birch pollen allergen. Biochem Biophys Res Co, 1995199519951995. 214(2): p. 538-551. 

5. Scheurer, S., Metzner, K., Haustein, D., and Vieths, S., Molecular cloning, expression and 

characterization of Pru a 1, the major cherry allergen. Mol Immunol, 1997199719971997. 34(8-9): p. 619-629. 

6. Breiteneder, H., Hoffmann-Sommergruber, K., O'Riordain, G., Susani, M., Ahorn, H., Ebner, C., 

Kraft, D., and Scheiner, O., Molecular characterization of Api g 1, the major allergen of celery 

(Apium graveolens), and its immunological and structural relationships to a group of 17-kDa tree 

pollen allergens. Eur J Biochem, 1995199519951995. 233(2): p. 484-489. 

7. Hoffmann-Sommergruber, K., O'Riordain, G., Ahorn, H., Ebner, C., Laimer Da Camara Machado, 

M., Puhringer, H., Scheiner, O., and Breiteneder, H., Molecular characterization of Dau c 1, the Bet 

v 1 homologous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1. Clin Exp 

Allergy, 1999199919991999. 29(6): p. 840-847. 

8. Yamamoto, M., Torikai, S., and Oeda, K., A major root protein of carrots with high homology to 

intracellular pathogenesis-related (PR) proteins and pollen allergens. Plant Cell Physiol, 1997199719971997. 

38(9): p. 1080-1086. 

9. Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Bjorksten, B., Moneret-Vautrin, 

D., and Wuthrich, B., Adverse reactions to food. European Academy of Allergology and Clinical 

Immunology Subcommittee. Allergy, 1995199519951995. 50(8): p. 623-635. 

10. Hoffmann-Sommergruber, K. and Radauer, C., Bet v 1-Homologous Allergens, in Plant Food 

Allergens, E.N.C. Mills and P.R. Shewry, Editors. 2003200320032003, Blackwell Publishing: Oxford, UK. p. 125-

140. 

11. Gajhede, M., Osmark, P., Poulsen, F.M., Ipsen, H., Larsen, J.N., Joost van Neerven, R.J., Schou, C., 

Lowenstein, H., and Spangfort, M.D., X-ray and NMR structure of Bet v 1, the origin of birch 

pollen allergy. Nat Struct Biol, 1996199619961996. 3(12): p. 1040-1045. 

12. Neudecker, P., Schweimer, K., Nerkamp, J., Scheurer, S., Vieths, S., Sticht, H., and Rosch, P., 

Allergic cross-reactivity made visible: solution structure of the major cherry allergen Pru av 1. J 

Biol Chem, 2001200120012001. 276(25): p. 22756-22763. 

13. Spangfort, M.D., Larsen, J.N., and Gajhede, M., Crystallization and preliminary X-ray investigation 

at 2.0 A resolution of Bet v 1, a birch pollen protein causing IgE-mediated allergy. Proteins, 1111996996996996. 

26(3): p. 358-360. 

14. Ferreira, F., Hirtenlehner, K., Jilek, A., Godnik-Cvar, J., Breiteneder, H., Grimm, R., Hoffmann-

Sommergruber, K., Scheiner, O., Kraft, D., Breitenbach, M., Rheinberger, H.J., and Ebner, C., 



Purification and characterization of natural allergens from birch, carrot and celery 

 45 

Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen 

allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med, 1996199619961996. 

183(2): p. 599-609. 

15. Markovic Housley, Z., Degano, M., Lamba, D., Roepenack Lahaye, E.v., Clemens, S., Susani, M., 

Ferreira, F., Scheiner, O., Breiteneder, H., and von Roepenack Lahaye, E., Crystal structure of a 

hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function 

as a plant steroid carrier. J Mol Biol, 2003200320032003. 325(1): p. 123-133. 

16. Swoboda, I., Jilek, A., Ferreira, F., Engel, E., Hoffmann Sommergruber, K., Scheiner, O., Kraft, D., 

Breiteneder, H., Pittenauer, E., Schmid, E., and et al., Isoforms of Bet v 1, the major birch pollen 

allergen, analyzed by liquid chromatography, mass spectrometry, and cDNA cloning. J Biol Chem, 

1995199519951995. 270(6): p. 2607-2613. 

17. Vieths, S., Schoning, B., Brockmann, S., and Aulepp, H., Untersuchungen zur Allergie gegen 

Lebensmittel pflanzlicher Herkunft: Herstellung und Charakterisierung von Obst- und 

Gemüseextrakten für serologischen Untersuchungen. Deutsche Lebensmittel-Rundschau, 1992199219921992. 

88(8): p. 239-243, 273-279. 

18. Fahlbusch, B., Rudeschko, O., Mueller, W.D., Schlenvoigt, G., Vettermann, S., and Jaeger, L., 

Purification and characterization of the major allergen from apple and its allergenic cross-reactivity 

with Bet v 1. Int Arch Allergy Immunol, 1995199519951995. 108(2): p. 119-126. 

19. Scholl, I., Kalkura, N., Shedziankova, Y., Bergmann, A., Verdino, P., Knittelfelder, R., Kopp, T., 

Hantusch, B., Betzel, C., Dierks, K., Scheiner, O., Boltz-Nitulescu, G., Keller, W., and Jensen-

Jarolim, E., Dimerization of the major birch pollen allergen Bet v 1 is important for its in vivo IgE-

cross-linking potential in mice. J Immunol, 2005200520052005. 175(10): p. 6645-6650. 

20. Bjorksten, F., Halmepuro, L., Hannuksela, M., and Lahti, A., Extraction and properties of apple 

allergens. Allergy, 1980198019801980. 35(8): p. 671-677. 

21. Rudeschko, O., Fahlbusch, B., Henzgen, M., Schlenvoigt, G., Herrmann, D., and Jager, L., 

Optimization of apple allergen preparation for in vivo and in vitro diagnostics. Allergy 

Copenhagen, 1995199519951995. 50(3): p. 262-268. 

22. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M., Mass spectrometric sequencing of proteins 

silver-stained polyacrylamide gels. Anal Chem, 1996199619961996. 68(5): p. 850-858. 

23. Bohm, G. and Jaenicke, R., Correlation functions as a tool for protein modeling and structure 

analysis. Protein Sci, 1992199219921992. 1(10): p. 1269-1278. 

24. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A., 

Protein Identification and Analysis Tools on the ExPASy Server. The proteomics protocols 

handbook, ed. J.M. Walker. 2005200520052005: Humana Press 571-607. 

25. Helsper, J.P.F.G., Gilissen, L.J.W.J., van Ree, R., America, A.H.P., Cordewener, J.H.G., and Bosch, 

D., Quadrupole time-of-flight mass spectrometry: A method to study the actual expression of 

allergen isoforms identified by PCR cloning. J Allergy Clin Immunol 2002200220022002. 110(1): p. 131-138. 

26. Schenk, M.F., Gilissen, L.J.W.J., Esselink, G.D., and Smulders, M.J.M., Seven different genes encode 

a diverse mixture of isoforms of Bet v 1, the major birch pollen allergen. BMC Genomics, 2006200620062006. 7: 

p. 168. 



Chapter 2 

 46 

27. Schoning, B., Vieths, S., Petersen, A., and Baltes, W., Identifiation and Characterisation of 

Allergens related to Bet v I, the Major Birch Pollen Allergen , in Apple, Cherry, Celery and Carrot 

by Two-Domensional Immunoblotting and N-Terminal Microsequencing. J Sci Food Agric, 1995199519951995. 

67: p. 431-440. 

28. Somssich, I.E., Schmelzer, E., Kawalleck, P., and Hahlbrock, K., Gene structure and in situ 

transcript localization of pathogenesis-related protein 1 in parsley. Mol Gen Genet, 1988198819881988. 213(1): p. 

93-98. 

29. Karamloo, F., Schmitz, N., Scheurer, S., Foetisch, K., Hoffmann, A., Haustein, D., and Vieths, S., 

Molecular cloning and characterization of a birch pollen minor allergen, Bet v 5, belonging to a 

family of isoflavone reductase-related proteins. J Allergy Clin Immunol, 1999199919991999. 104(5): p. 991-999. 

30. Batard, T., Didierlaurent, A., Chabre, H., Mothes, N., Bussieres, L., Bohle, B., Couret, M.N., Ball, T., 

Lemoine, P., Focks Tejkl, M., Chenal, A., Clement, G., Dupont, F., Valent, P., Krauth, M.T., Andre, 

C., Valenta, R., and Moingeon, P., Characterization of wild-type recombinant Bet v 1a as a 

candidate vaccine against birch pollen allergy. Int Arch Allergy Immunol, 2005200520052005. 136(3): p. 239-249. 

31. Neudecker, P., Lehmann, K., Nerkamp, J., Haase, T., Wangorsch, A., Fotisch, K., Hoffmann, S., 

Rosch, P., Vieths, S., Scheurer, S., Son, D.Y., Boehm, M., Karamloo, F., Franke, S., Hoffmann, A., 

and Haustein, D., Mutational epitope analysis of Pru av 1 and Api g 1, the major allergens of cherry 

(Prunus avium) and celery (Apium graveolens): correlating IgE reactivity with three-dimensional 

structure. Biochem J, 2003200320032003. 376(Pt 1): p. 97-107. 

32. Mogensen, J.E., Wimmer, R., Larsen, J.N., Spangfort, M.D., and Otzen, D.E., The major birch 

allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J Biol Chem, 2002200220022002. 

277(26): p. 23684-23692. 

33. Lorenz, A.R., Scheurer, S., Haustein, D., and Vieths, S., Recombinant food allergens. J Chromatogr 

B 2001200120012001. 756(1-2): p. 255-279. 

34. Verdino, P. and Keller, W., Circular dichroism analysis of allergens. Methods, 2004200420042004. 32(3): p. 241-

248. 

 



 

 

 
Allergenicity Allergenicity Allergenicity Allergenicity of natural and recombinant PRof natural and recombinant PRof natural and recombinant PRof natural and recombinant PR----10 10 10 10 

allergens in relation to thermal stabilityallergens in relation to thermal stabilityallergens in relation to thermal stabilityallergens in relation to thermal stability    

    

    

    

    

    

    
 

 

 

This chapter has been submitted as: 

Bollen, M.A., Jeurink P.V., Wichers, H.J., Helsper, J.P., van Boekel, M.A., and 

Savelkoul, H.F., Allergenicity of natural and recombinant PR-10 allergens in relation to 

thermal stability.



Chapter 3 

 48 

AbstractAbstractAbstractAbstract    
The birch pollen allergen, Bet v 1 is a sensitizer for food allergy to Api g 1 and Dau c 1 

from celery and carrot. Purified natural isoform mixtures and recombinant Bet v 1, Api 

g 1 and Dau c 1 were subjected to heat treatment to correlate structural changes, 

measured by circular dichroism, with immune reactivity in human PBMC cultures and 

ELISA. All allergens refolded after heating to 95 °C, but changes in secondary structure 

were observed after cooling the allergen samples, especially for the natural Bet v 1. Api 

g 1 and Bet v 1 showed a similar midpoint of thermal denaturation, Tm, but natural and 

recombinant Dau c 1 were less stable to heating. Heating for 2 hours at 100 °C 

completely destroyed allergenicity, unlike heating for 30 minutes at 95 °C. This 

allergenic potential was apparent from differential activity in ELISA assays.  
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3.1 3.1 3.1 3.1 IntroductionIntroductionIntroductionIntroduction    
In Northern European countries, birch pollen allergy is the primary cause for cross-

reactive allergies towards other trees (Betulaceae), fruits (Rosaceae), vegetables 

(Apiacaea) and legumes (Fabaceae). The major allergen in birch pollen is Bet v 1, which 

belongs to the PR-10 class of pathogenesis-related proteins [1-3]. Members of this 

protein family in foods show a high amino acid identity with Bet v 1 and are also 

similarly folded as shown with X-ray diffraction and NMR studies [4-7]. The 3D-

structure of PR-10 proteins consists of a seven-stranded anti-parallel β-sheet folded 

around a C-terminal α-helix. The β-sheet and the C-terminal part of the α-helix are 

separated by two small α-helices [4]. A hydrophobic cavity in the Bet v 1 structure has 

the ability to bind a broad range of ligands such as fatty acids, cytokinins, flavonoids 

and sterols. This phenomenon may be of importance for the biological function [5, 8-

10]. 

 To evoke an allergic reaction, the allergen needs to be presented as linear peptides 

bound within the major histocompatibility class II (MHC-II) complex to the T cell 

receptor on allergen-specific naïve CD4+ T cells. This recognition leads to 

differentiation of T helper 2 cells (Th2). Under the influence of the cytokines produced 

by Th2 cells (e.g. IL-4 and IL-13) the allergen-specific B cells will induce antibody 

isotype switching leading to the production of IgE antibodies that can bind to type I Fcε 

receptors on mast cells. These events together are called the sensitization phase. A 

second exposure to the same allergen will lead to the cross-linking of the IgE antibodies 

on the surface of the mast cell, resulting in the subsequent degranulation of the mast 

cell releasing inflammatory compounds like histamine, which cause the typical allergic 

complaints of e.g. hay fever or food allergy [11]. 

 The major symptom of IgE-mediated allergic reactions to Bet v 1 is a rapid and local 

inflammatory reaction in the upper and lower respiratory organs. Birch pollen-related 

food allergy is characterized by local reactions in and around the oral cavity (oral 

allergy syndrome) [12, 13]. In contrast to many other food allergens in which the IgE-

reactivity is preserved after some physical-chemical treatment, Bet v 1 allergens have 

been characterized as structurally labile as they are unstable to heating, denaturation 

and proteolysis [14-19]. Upon heating, the PR-10 allergen changes conformation and 

shows decreased IgE binding capacity after it has refolded upon cooling down [20, 21]. 

After purification, PR-10 allergens appear much more stable [17].   
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 The recombinant Bet v 1.0101 (Bet v 1a) and Bet v 1.0401 (Bet v 1d) or Bet v 1.1001 

(Bet v 1L) isoforms display differences in immune reactivity. Bet v 1.0101 is the most 

commonly used allergen in diagnostic applications, because it strongly binds to specific 

IgE. The other isoforms Bet v 1.0401 or Bet v 1.1001 differ in 7 or 9 amino acids from 

Bet v 1.0101, respectively, and have been characterized as hypoallergenic making them 

useful as allergy vaccines [22, 23]. Hitherto, it remains unclear why these isoforms have 

a decreased IgE binding capacity and whether this is due to structural differences in 

protein folding of the recombinant proteins. Differences in circular dichroism (CD) 

spectra have been observed between the allergenic Bet v 1.0101 and hypoallergenic Bet 

v 1.1001, whereas X-ray diffraction showed no clear difference between the crystal 

structure of the different variants [9, 23]. In contrast to the recombinant PR-10 

proteins, purification of the natural allergens Bet v 1, Api g 1 and Dau c 1 from birch, 

celery and carrot, respectively, resulted in a mixture of isoforms [24]. 

 In the present study, the heat-stability of recombinant PR-10 allergens Bet v 1 from 

birch, Api g 1 from celery and Dau c 1 from carrot was compared with the heat-stability 

of the same allergens after purification from their natural source. The aim was to study 

possible molecular differences of PR-10 proteins by linking differences in thermal 

stability to immune reactivity. By assessing both T cell responses and allergenicity (IgE 

binding), we were able to show that our natural and recombinant PR-10 proteins had 

comparable secondary structure and IgE binding capacity, whereas rBet v 1 was not 

capable of inducing a T cell response. However, heat-treatment affected the natural and 

recombinant PR-10 proteins in different manners.  

 

3.2 3.2 3.2 3.2 Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    

    

3.2.1 Allergens3.2.1 Allergens3.2.1 Allergens3.2.1 Allergens    
From each of the natural allergens nBet v 1, nApi g 1 and nDau c 1, isoform mixtures 

were purified according to chaptechaptechaptechapter 2r 2r 2r 2. Briefly, ammonium sulphate precipitation was 

followed by hydrophobic interaction and size exclusion chromatography. The obtained 

isoform mixtures were analyzed by mass spectrometry (Q-TOF MS/MS). The single 

recombinant allergen isoforms rBet v 1a, rApi g 1 and  rDau c 1.2 were purchased from 

Biomay (Vienna, Austria). All allergens were dissolved in 10 mM potassium phosphate -

buffer, pH 7.0, buffer exchanged and concentrated on a Microsep 3K centrifugal device 
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(Pall Life Sciences, Ann Arbor, MI, USA). Protein concentrations were determined 

using the MicroBCATM Protein Assay (Pierce, Rockford, IL, USA) with BSA as a 

standard. 

 Prior to the human PBMC cultures and ELISA, five different allergen solutions were 

prepared at 0.1 mg/ml in potassium phosphate buffer, pH 7.0. One of the samples was 

kept at room temperature and three other samples were heated in a GeneAmp PCR 

9700 apparatus at 1 °C/min, which was comparable to heating in the CD 

spectropolarimeter. The fifth sample was heated in the GeneAmp apparatus for 2 hours 

at 100 °C to destroy all IgE binding capacity. The different heat-treatments are 

described in Table 1. Explanation of the given sample labels (Untreated, TG, MG, MQ, 

and H2) are given in the legend of Table 1. All samples were allowed to equilibrate at 

room temperature for at least 1 hour before continuing the experiment.  

 
Table 1Table 1Table 1Table 1. Heat treatment schedule of the allergen samples prior to immune experiments 

Sample Heating rate 

(°C/min) 

Final Temp. Time at final 

Temp. 

Cooling rate 

(°C/min) 

Untreated - 24 °C - - 

TGa 1.0 Tm 30 min 1.0 

MGb 1.0 95 °C 30 min 1.0 

MQc 1.0 95 °C 30 min Quick 

H2d Quick 100 °C 120 min Quick 

aTG: Heated to Tm, Gradually cooled. Tm was determined by the CD measurements 

as described in section 3.2.2 

bMG: Heated to Maximum temperature reached with CD, Gradual cooling 

cMQ: Heated to Maximum temperature reached with CD, Quick cooling 

dH2: Heated for 2 hours 

 

3.2.2 Circular Dichroism (CD) 3.2.2 Circular Dichroism (CD) 3.2.2 Circular Dichroism (CD) 3.2.2 Circular Dichroism (CD)     
CD spectra of natural and recombinant Bet v 1, Dau c 1 and Api g 1 were recorded at 20 

°C on a Jasco J-715 spectropolarimeter (Jasco Corporation, Tokyo, Japan) at a protein 

concentration of 10 μM in 10 mM potassium phosphate buffer of pH 7.0. Prior to use, 

the buffer was passed through a 0.2 μm syringe filter (Schleicher & Schuell, Dassel, 

Germany). Far-UV spectra were recorded from 190-260 nm with a quartz cuvette of 1 

mm path length, by accumulating 20 scans at a scanning speed of 50 nm/min, using a 
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0.2 nm step width and 2.0 nm bandwidth. Spectra were corrected for buffer 

background. The mean residue weight ellipticity [θ]MRW (units in deg.cm2.dmol-1) was 

calculated from the following equation:  

      

  
nlC

θ
θ

××

×
= obs

MRW

][100
][             (1) 

 

Here, [θ]obs  is the observed signal in degrees, C is the concentration in mol/L, l is the 

path length of the cuvette in cm and n is the number of amino acids. The program 

CDNN was used to deconvolute the secondary structure [25]. 

 Thermal denaturation spectra were recorded for all allergens by heating to 95 °C and 

cooling to room temperature at a rate of 1 °C/min at 222 nm with a bandwidth of 1.0 

nm. After cooling, full spectra were measured from 195-260 nm under the same 

conditions as stated in the previous paragraph. The thermal denaturation curve data 

were fitted for both the heating and cooling steps, according to a non-linear least square 

fit method [26] using the program TableCurve (Jandel Scientific, Erkrath, Germany). 

With this method, six parameters are estimated corresponding to equation 2, which 

includes the slopes and intercepts of the baselines of the folded/native (βN) and 

unfolded/denatured (βD) states with the ellipticity values (intercepts) for the folded (αN) 

and unfolded (αD) state. The other derived parameters are the temperature at the 

midpoint of denaturation, Tm, and the enthalpy of unfolding at Tm, ∆HTm.  

 

  
RT

T
TH

RT
T
TH

T

T

TβαTβα
θ DDNN

/1∆

/)(1∆

)(
e1

)e(

mm

mm



















−

−−

−

+

+++
=    (2) 

 

3.2.3 Blood donors f3.2.3 Blood donors f3.2.3 Blood donors f3.2.3 Blood donors for human allergen specific PBMC culture or human allergen specific PBMC culture or human allergen specific PBMC culture or human allergen specific PBMC culture     
Birch-pollen allergic individuals were recruited into the study directly after the birch 

pollen season (July, 2007). Blood withdrawal was performed at the Hospital Gelderse 

Vallei (Ede, The Netherlands). Donors were selected based on a positive Bet v 1 – IgE 

test while being negative for the other birch pollen allergens Bet v 2, Bet v 4, and Bet v 

6. The three donor sera contained 66.5, 58.5 and 19.7 kU/L Bet v 1-specific IgE, whereas 
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the specific IgE levels were < 0.1 kU/L for Bet v 2, Bet v 4 and Bet v 6. An informed 

consent was obtained before sample collection and experiments were approved by the 

local ethical committee. 

 

3.2.4 In vitro stimulation studies3.2.4 In vitro stimulation studies3.2.4 In vitro stimulation studies3.2.4 In vitro stimulation studies    
The isolation of human peripheral blood mononuclear cells (PBMC) from the birch-

pollen allergic individuals, culture conditions, cell viability, determination of the 

immunological phenotype, the allergen-specific proliferation capacity, and the 

production of several cytokines were performed according to a detailed previous 

technical study [27]. The samples were measured on the FACSArray, using the FCAP 

software (BD Biosciences). Detection limits for quantitative determinations were 1.1 

pg/ml for IL-1β, 0.3 pg/ml for IL-4 and IFN-γ, 0.5 pg/ml for IL-5, 2.3 pg/ml for IL-10, 2.2 

pg/ml for IL-12 , 0.6 pg/ml for IL-13 and 0.7 pg/ml for TNF-α. 

 

3.2.5 Patient sera for ELISA 3.2.5 Patient sera for ELISA 3.2.5 Patient sera for ELISA 3.2.5 Patient sera for ELISA     
Sera were obtained from the Hospital Gelderse Vallei (Ede, The Netherlands) and the 

Laboratory for Primary Health Care (SHO, Velp, The Netherlands). The sera of birch 

pollen allergic individuals with IgE levels > 100 kU/L for birch were initially screened 

for their response to Bet v 1 and cross-reactivity to Api g 1 and Dau c 1. For Bet v 1 

ELISA, a serum pool was prepared by combining 14 sera containing high (> 100 kU/L) 

Betv 1-specific IgE content. For Agi g 1, a serum pool was prepared by combining 14 

sera positive for Api g 1-specific IgE while all sera are also positive for Bet v 1-specific 

IgE. A Dau c 1 serum pool was prepared by combining 7 sera containing Dau c 1-

specific IgE. As a negative control, a healthy serum pool of three volunteers was 

included with birch pollen-specific IgE levels of <0.35 kU/L. 

 

3.2.6 3.2.6 3.2.6 3.2.6 Indirect ELISAIndirect ELISAIndirect ELISAIndirect ELISA    
In an indirect ELISA, 300 ng of the heat-treated or untreated allergens in 100 μl PBS pH 

7.4 were coated on 96-well MaxiSorp microplates (Nunc, Wiesbaden, Germany) by an 

overnight incubation at 4 °C. Untreated rBet v 1 was included as a positive control and 

for the negative control, a healthy control serum pool, and blanks for non-specific 

binding of the secondary antibody were included. All values obtained in the indirect 

ELISA experiments were corrected for the blank values and were expressed as 
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percentage of the positive control (untreated rBet v 1). Plates were blocked for 1 h with 

200 μl/well blocking buffer (4% (w/v) BSA in PBS, pH 7.4). After each incubation step, 

plates were washed 4 times with 400 μl/well washing buffer (0.05% (w/v) BSA and 

0.05% Tween-20 in PBS). Serum dilutions (1:1) in dilution buffer (0.1% (w/v) BSA in 

PBS) were added in duplicate at 100 μl/well and incubated for 1.5 h. After washing, 100 

μl/well of an 1 μg/ml biotin-labeled mouse anti-human IgE (BD Biosciences) was 

incubated for 1 h, followed by a 30 min incubation of 100 μl/well streptavidin poly-

HorseRadishPeroxidase (1:10,000; Sanquin, Amsterdam, The Netherlands). Color 

development was started by the addition of 100 μl/well TMB substrate solution (KPL, 

Gaithersburg, MD, USA) and stopped by adding 100 μl/well 1 M H3PO4. The developed 

color was measured with a microplate spectrophotometer at 450 nm using 690 nm as a 

reference wavelength. 

 

3.2.7 Inhibition and cross3.2.7 Inhibition and cross3.2.7 Inhibition and cross3.2.7 Inhibition and cross----reactive inhibition ELISAreactive inhibition ELISAreactive inhibition ELISAreactive inhibition ELISA    
In the inhibition ELISA, untreated natural or recombinant allergens of Bet v 1 and Api 

g 1 were coated on the plate by an overnight incubation of 300 ng/well allergen solution 

in PBS at 4 °C. Untreated and heat-treated samples of natural and recombinant Bet v 1 

and Api g 1 were pre-incubated overnight at 4 °C with the appropriate serum pools in 

dilution buffer (1:1) at a final allergen concentration of  30, 3, 0.3, 0.06, 0.012 or 0.0024 

μg/ml.  

 In the cross-reactive inhibition ELISA, untreated rBet v 1 was coated to the plates at 

300 ng/well. The serum pools responding to Api g 1 and Dau c 1 were pre-incubated 

with heat-treated or untreated rApi g 1 or nApi g 1 and rDau c 1 or nDau c 1, 

respectively, at a concentration of 30, 3, 0.3, 0.06, 0.012 or 0.0024 μg/ml. 

 For the inhibition control in both types of ELISA, coating was performed with the 

respective untreated allergen and serum pools were added without pre-incubations. As 

a positive control, coating was performed with rBet v 1 with the addition of the 

respective positive serum pools, while as a negative control the serum pool from healthy 

individuals was used. For all different coatings, blanks were used to determine non-

specific binding, which were subtracted from all detected values.  
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3.3 Results3.3 Results3.3 Results3.3 Results    

    

3.3.1 Circular Dichroism (CD) 3.3.1 Circular Dichroism (CD) 3.3.1 Circular Dichroism (CD) 3.3.1 Circular Dichroism (CD)     
CD spectra were recorded for a detailed comparison between the purified natural 

allergen isoform mixtures and commercially obtained recombinant allergens. The effect 

of heating on the protein conformation was determined by heating to 95 °C followed by 

gradual cooling down to 20 °C. The effect of heat treatment on the secondary structure 

of all measured allergens is shown in Table 2. Here, differences in secondary structure 

elements are not only observed between the three allergens from different plant origin, 

but also as a result of heating and cooling down. The latter effect is best described as a 

small but consistent decrease in the proportion of α-helix, which is accompanied not 

only by an increase in β-sheet and β-turn but also in random coil. 

 
Table 2Table 2Table 2Table 2. Secondary structure of recombinant and natural Bet v 1, Api g 1 and Dau c 1 before and after heating 

to 95 °C followed by cooling to 20 °C. The secondary structure composition was deconvoluted from the 2 

 nBet v 1 rBet v 1 nApi g 1 rApi g 1 nDau c 1 rDau c 1 

Before/after 

heating 
Before After Before After Before After Before After Before After Before After 

α-Helix 20.9 18.0 21.7 19.5 30.2 24.9 29.8 24.3 33.3 28.9 33.4 29.5 

β-Sheet  28.5 28.4 26.6 28.5 25.1 26.4 24.3 27.9 21.8 23.6 21.8 23.1 

β-Turn 15.2 17.9 14.9 16.0 12.6 14.8 13.0 14.6 12.8 14.3 13.1 14.6 

Random Coil 33.7 34.4 34.6 34.2 29.8 31.8 30.2 31.3 29.5 30.9 29.2 30.4 

Total Suma 98.3% 98.6% 97.7% 98.3% 97.7% 97.9% 97.3% 98.1% 97.3% 97.6% 97.4% 97.6% 

aTotal sum is the sum of all secondary structure elements and shows that the prediction is near 100% and in 

the same range for all allergens for direct comparison. 

 

 The CD spectra clearly showed differences between the natural and recombinant 

Bet v 1 allergens before and after the heat treatment (Figure 1), while no such spectral 

differences were observed between rApi g 1 and nApi g 1 or rDau c 1 and nDau c 1 

(data not shown). As is clear form Figure 1, when nBet v 1 and rBet v 1 unfold, the 

spectra as a whole shift to a lower wavelength, whereas a decrease in amplitude for 

[θ]MRW is observed for the maximum at 196 nm and the minimum at 222 nm. The cooled 

allergens nBet v 1, nApi g 1 and nDau c 1 intersected the x-axis at a lower wavelength 

of an approximate difference of 2.2, 1.0 and 0.5 nm, respectively, and all three showed a 
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decrease in the amplitudes for [θ]MRW at 196 nm and 222 nm. For the three recombinant 

allergens, a smaller shift of about 0.5 nm was observed.  

 

 
Figure 1Figure 1Figure 1Figure 1. CD Spectra of recombinant and natural Bet v 1 before and after heating. Spectra are shown for nBet 

v 1 and rBet v 1 measured at 20 °C and after heating to 95 °C and cooling down to 20 °C (cooled). 

 

 Thermal denaturation curves were measured by following changes in the CD signal 

at 222 nm (Figure 2). From the fits of the heating data, two parameters were derived as 

a measure for the thermal stability; Tm, the temperature indicating the midpoint of 

thermal unfolding, and ∆HTm, the enthalpy of unfolding at Tm (Table 3). Dau c 1 has a 

lower thermal stability compared to Api g 1 and Bet v 1, and this holds true for both 

natural and recombinant preparations. Unfolding of rDau c 1 started at a low 

temperature of 30 °C (Figure 2C), whereas nDau c 1 appeared to be more stable given its 

start of unfolding at 40 °C. The thermal stability of rDau c 1 (Tm of 45.1 °C) differs from 

that of nDau c 1 (Tm of 55.7 °C). Recombinant and natural forms of Api g 1 and Bet v 1 

showed higher and similar Tm-values of approximately 65 °C. Values of ∆HTm were 

lower for the natural allergen isoform mixtures compared to recombinant Bet v 1 and 

Api g 1 (Table 3). The ∆HTm-value of rDau c 1 was lower than the other recombinant 

allergens and was in the same range as the natural allergens. 
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Figure 2Figure 2Figure 2Figure 2. Thermal denaturation of natural and recombinant Bet v 1 (AAAA), Api g 1 (BBBB) and Dau c 1 (CCCC) followed 

by CD at 222 nm. The curves represent the best fits of the data to a two-state unfolding transition and are 

shown as the fraction of unfolded protein.  

 
Table 3Table 3Table 3Table 3. Thermodynamic parameters from CD thermal denaturation curves.  

 Heating   

 Natural Tm (°C) ∆HTm (kJ/mol) 

 nBet v 1 67.8 ± 0.5 204.2 ± 12.0 

 nApi g 1 66.5 ± 0.1 265.1 ± 7.2  

 nDau c 1 55.7 ± 0.1 247.0 ± 5.3 

    

 Recombinant Tm (°C) ∆HTm (kJ/mol) 

 rBet v 1 63.7 ± 0.1 371.4 ± 13.0 

 rApi g 1 69.7 ± 0.1 368.0 ± 12.8 

 rDau c 1 45.1 ± 0.1 238.1 ±  6.5 

Tm and ∆HTm are shown with the standard deviation from the fits of Figure 2.    
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3.3.2 The effect of thermal treatment of rBet v 1 on the T cell response 3.3.2 The effect of thermal treatment of rBet v 1 on the T cell response 3.3.2 The effect of thermal treatment of rBet v 1 on the T cell response 3.3.2 The effect of thermal treatment of rBet v 1 on the T cell response     
Heat treated rBet v 1 was exposed to the PBMC of three birch pollen allergic 

individuals. Viability of cells is a prerequisite for cell activation. The viability of the 

PBMC was assessed by using Annexin V in combination with propidium iodide. The 

viability of the rBet v 1 stimulated cells did not change compared to the unstimulated 

medium control, whereas the anti-CD3/anti-CD28 stimulated cells showed an induction 

of viable cells (data not shown).  

 As shown in Figure 3A, the amount of proliferating Ki-67+ cells was low in the 

medium control, but strongly upregulated in the anti-CD3/anti-CD28 stimulated cells. 

However, this induced proliferation could not be observed in the untreated rBet v 1 

stimulated control (Figure 3A) or heat-treated rBet v 1 stimulated control (data not 

shown). To assess which cells were mainly proliferating within the PBMC cultures, a 

human PBMC subset staining was performed. The assessed subsets comprised T cells 

(CD3+), B cells (CD19+), NK cells (CD16/CD56+) and monocytes (CD14+). As depicted in 

Figure 3B, mainly the T cells, B cells and NK cells were induced in the anti-CD3/anti-

CD28 stimulated human PBMC culture compared to the medium control, whereas 

stimulation by untreated rBet v 1 (Figure 3B) or heat-treated rBet v 1 (data not shown) 

showed no effect on the PBMC subsets. Figure 3C shows that in the medium control 

both CD4+ and CD8+ cells were present, although very low amounts were activated. 

However, addition of anti-CD3/anti-CD28 to the culture resulted in increased numbers 

of CD4+ and CD8+ cells, and also induced activation of both T cell subsets. As for 

PBMC subsets addition of untreated (Figure 3C) or heat-treated rBet v 1 did not alter 

the number or the activation status of the T cell subsets.  
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Figure 3Figure 3Figure 3Figure 3. Human PBMC cultures stimulated with untreated rBet v 1 (rBet v 1) were cultured for 7 days. 

PBMC stimulated with anti-CD3 plus anti-CD28 were cultured for 3 days (αCD3/αCD28). At both time 

points, Ki-67 positive cells were detected and the relative number of Ki-67+ cells is depicted in Figure 3AAAA. 

Figure 3BBBB shows the PBMC surface markers to analyze CD3+ cells (T cells), CD16+CD56+ (NK cells), CD19+ 

cells (B cells) and CD14+ cells (monocytes). Figure 3CCCC shows the PBMC surface markers to analyze CD3+CD4+ 

cells (Th), CD3+CD4+CD25+ (activated Th), CD3+CD8+ cells (Tc) and CD3+CD8+CD25+ cells (activated Tc). 

 

 

 Cytokine production of the (un-)stimulated PBMC cultures was measured by using 

the Flexsets (Table 4). Anti-CD3/anti-CD28 was able to induce an upregulation of the 

monocyte-derived IL-1β and TNF-α, whereas IL-12 was not altered compared to the 
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medium control. Also the Th1 cytokine IFN-γ, both Th2 cytokines IL-5 and IL-13 and 

the regulatory cytokine IL-10 were upregulated by anti-CD3/anti-CD28 when 

compared to the medium control. However, none of the measured cytokines were 

altered when comparing the rBet v 1 stimulated cells to the medium control, as shown 

in the lower part of Table 4.  

 
Table 4Table 4Table 4Table 4. Cytokine production by human PBMC. 

 Stimulation IL-1β IL-12 TNF-α IFN-γ IL-5 IL-13 IL-10 

 Medium 12.2 2.9 2.8 6.3 1.6 4.2 3.5 

 αCD3/28 819 1.3 1762 59939 14.3 287 51 

 rBet v1 b.d. b.d. b.d. 47.7 1.8 2.2 b.d. 

 rBet v 1 MQ b.d. b.d. 1.5 12.4 2.7 4.0 3.8 

 rBet v 1 MG b.d. b.d. b.d. 17.2 3.7 4.9 4.4 

 rBet v 1 TG 1.5 2.3 1.6 36.2 2.6 3.9 3.1 

Cytokine values are presented in pg/ml.  

b.d., Below detection limit 

 

3.3.3 Effect of heating on the IgE binding capacity 3.3.3 Effect of heating on the IgE binding capacity 3.3.3 Effect of heating on the IgE binding capacity 3.3.3 Effect of heating on the IgE binding capacity     
Allergens were heated and labeled with a code for heat treatment as described in Table 

1. In an indirect ELISA, heat treated samples of all six allergen preparations were coated 

directly onto the microtiter plates and the results are shown relative to the positive 

control Bet v 1 (Figure 4). For the measurements of IgE binding to Bet v 1, Api g 1 and 

Dau c 1, different serum pools were used as positive controls. Comparison of MG and 

MQ treatments of nBet v 1 and rBet v 1 showed that recognition by the serum pool was 

different for rBet v 1 leading to a 50% reduction, while this was not the case for nBet v 

1. A clear decrease was observed in antibody binding capacity of the serum pool to the 

allergens Api g 1 and Dau c 1 for both natural and recombinant preparations. Dau c 1 

did not show any IgE binding for either recombinant or natural Dau c 1. Recombinant 

and natural Api g 1 showed a response of 30% relative to rBet v 1 and no difference for 

the TG sample heated to Tm. Both treatments leading to MG and MQ samples reduced 

the response by 50%, whereas the H2 treatment showed an equal response to the 

healthy control value.  
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Figure 4Figure 4Figure 4Figure 4. Indirect ELISA of thermally treated allergen coated to the plate. All values were compared relatively 

to the positive control by using untreated Bet v 1. A representative Healthy Control (HC) was included, 

which did not differ among the other used coatings. All values are means of duplicate measurements. Samples 

included are: Untreated; TG, heated to Tm and gradually cooled down; MG, heated to 95 °C and gradually 

cooled down; MQ, heated to 95 °C and quickly cooled down; H2, heated for 2 hours at 100 °C. 

 

 In the inhibition ELISA, differences between the inhibition of 300 ng/well coated 

rBet v 1a and nBet v 1 were observed, when the serum was pre-incubated with the 

heat-treated allergens (Figure 5A and B). TG or MG and MQ heat treatment did not 

alter the inhibition of rBet v 1a binding of the serum pool (Figure 5A). For nBet v 1, the 

MQ- and MG-treated allergen decreased the inhibition by 50% when pre-incubated 

with 6 ng of the treated allergen (Figure 5B). The inhibition ELISA with Api g 1 showed 

similarly shaped inhibition curves for rApi g 1 and nApi g 1 (Figure 5C and D) for the 

untreated samples and the TG heated samples. The MG and MQ heated samples 

decreased IgE binding to nApi g 1 more than to rApi g 1, as shown by a larger decrease 

in the inhibition curve of nApi g 1 (Figure 5C). An inhibition ELISA for Dau c 1, by 

coating untreated Dau c 1 to the plate could not be performed due to the low coating 

efficiency of the protein and/or the low serum reactivity (data not shown). 
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Figure 5Figure 5Figure 5Figure 5. Inhibition ELISA with heat treated samples of rBet v 1 (AAAA), nBet v 1 (BBBB), rApi g 1 (CCCC) and nApi g 1 

(DDDD) by coating with the respective untreated allergen. All values are means of duplicate measurements. 

Included samples are: Untreated; TG, heated to Tm and gradually cooled down; MG, heated to 95 °C and 

gradually cooled down; MQ, heated to 95 °C and quickly cooled down; H2, heated for 2 hours at 100 °C. 

 

 A cross-reactivity inhibition ELISA was performed by coating rBet v 1 to the plate 

and pre-incubating the treated and untreated samples of natural and recombinant Api g 

1 and Dau c 1 with the respective serum pools (Figure 6). The inhibition curves of rApi 

g 1 showed maximal 20% inhibition, which decreased to the 10% inhibition level of the 

H2 treatment (Figure 6A). Natural Api g 1 showed 40% inhibition, which decreased to 

20% at a lower inhibitor concentration (Figure 6B). The rDau c 1 did not cause any 

inhibition (Figure 6C), whereas nDau c 1 was only able to completely inhibit IgE 

binding by pre-incubating serum with 3000 ng of untreated nDau c 1 (Figure 6D). The 

curves of nDau c 1 showed that the samples heated to 95 °C (MG and MQ) exhibited a 

60% inhibition capacity, which was similar to the MQ and MG of nBet v 1 sample at a 

lower inhibitor concentration. 
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Figure 6Figure 6Figure 6Figure 6. Cross-reactivity inhibition ELISA with rBet v 1 coated to the plate and serum preincubated with 

heat treated samples of rApi g 1(AAAA), n Api g 1 (BBBB), rDau c 1 (CCCC) and nDau c 1 (DDDD). All values are means of 

duplicate measurements. Included samples are: Untreated; TG, heated to Tm and gradually cooled down; MG, 

heated to 95 °C and gradually cooled down; MQ, heated to 95 °C and quickly cooled down; H2, heated for 2 

hours at 100 °C. 

 

3.4 3.4 3.4 3.4 DDDDiscussioniscussioniscussioniscussion    
In the present study, we report cytokine production profiles, T cell subset induction, 

and IgE binding analysis as readout parameters to investigate thermal stability and the 

structural consequences of purified allergens. We found small differences in thermal 

stability of Bet v 1 and Api g 1 for the recombinant forms, and for corresponding 

allergens, purified from their natural source. Striking differences were observed for 

recombinant and natural Dau c 1, showing a lower thermal stability than the other 

allergens. More profound conformational changes were observed for all the natural 

allergens after heating compared to the untreated samples. Particularly for the natural 

allergens, these conformational changes resulted in differences in allergenic potential as 
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measured by comparing the IgE binding ability in the indirect and inhibition type 

ELISA. 

 The T cell activation by rBet v 1 was investigated by human PBMC cultures from 

allergic individuals with a proven birch pollen allergy, were investigated. Besides a 

possible increase in cytokine production, also proliferation of the PBMC would indicate 

that the cells were activated by the allergen-derived peptides. However, in our study, 

rBet v 1 was not potent enough to induce either cytokine production or T cell 

proliferation. This could be explained by the low frequency of allergen-specific T cells 

present in the PBMC isolated from blood of selected birch pollen-allergic individuals. 

Also literature is scarce on Bet v 1-specific stimulation of human PBMC where often T 

cell clones are used [15]. Due to the fact that each T cell clone resembles the response of 

one single Bet v 1-specific T cell, a large range of T cell clones of one person should be 

obtained in order to establish the allergen-specific response of one individual. Bet v 1 

changes conformation when heated, but is presented to the T cell in the form of linear 

peptides of approximately 12 to 18 amino acids by the antigen-presenting cell 

eventually leading to a predicted similar T cell response as shown with T cell clones in 

the study of Bohle et al. [15].  

 Additionally, B cell responses and resulting formation of IgE antibodies were 

analyzed for their effects of heat-treatment on conformational B cell epitopes, as 

reflected by CD and ELISA with both natural and recombinant Bet v 1, Dau c 1 and Api 

g 1. Bohle et al. [15] also measured thermal denaturation curves for recombinant 

allergens and found Tm-values similar to ours. Changes in [θ]MRW, as measured with CD, 

best represent the changes in α-helical content [28]. After heating, a conformational 

change was observed for all allergens resulting in the decreased α-helical content, as 

shown in Table 2. The structural changes were visible from the spectrum of nBet v 1 

after heating (Figure 1) and also from the cooling curves which showed partial folding 

(Figure 2). Recombinant allergens contained only a single isoform, whereas natural 

allergens were composed of a mixture of isoforms. The mixture presumably induced 

broadening of the transition area of the thermal denaturation curve resulting in a less 

steep slope and a lower ∆HTm. By mass spectrometric analyses, Schenk [29] showed that 

the isoforms Bet v 1m, Bet v 1a and Bet v 1d were predominantly present in the natural 

sample of Betula pendula ‘Youngii’ in a ratio of about 30:45:25. In our study, the most 

striking differences in IgE binding capacity between the recombinant and natural 
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samples were observed for Bet v 1. In the indirect ELISA (Figure 4), heating to 95 °C did 

not affect nBet v 1, whereas the IgE binding to rBet v  1 was reduced by 50%. This can 

be explained by the isoform mixture of nBet v 1 containing a particular isoform that is 

more stable to heating, which is supported by the higher Tm-value and the decreased 

slope of the CD thermal denaturation curve (Figure 2A). Alternatively, the higher IgE 

binding affinity of a single isoform other than Bet v 1a, can become apparent after 

heating. Furthermore, heating to Tm did not affect the total IgE binding capacity. 

Heating for 2 hours at 100 °C increased the amount of in insoluble precipitate and 

abolished all IgE binding to all assessed PR-10 proteins.  

 The thermal stability of Dau c 1 was different from the other allergens. The Tm-

values of recombinant and natural Bet v 1 and Api g 1 were around 65 °C, whereas 56 °C 

and 45 °C was determined for nDau c 1 and rDau c 1, respectively. The difference in Tm-

values between nDau c 1 and rDau c 1 might be explained by the presence of a 

remaining His-tag attached to the N-terminus of rDau c 1, which caused a decreased 

thermal stability of the N-terminal β-strand that is possibly responsible for the 

stabilization of the C-terminal loop region and α-helix through hydrogen bonding. 

Another possibility is the lability of the isoform Dau c 1.0103 (Accession no. 

CAB03715), which was the isoform that constituted the commercially available rDau c 

1. The nDau c 1 mixture contained at least two isoforms, Dau c 1.0104 (Accession 

no.CAB03716) and a homologue of the parsley protein PcPR1-3 (Accession 

no.CAA31085) [24]. 

 Furthermore, the Tm-value for rApi g 1 resembled the Tm-value of Api g 1.01, as 

reported by Wangorsch et al. [30]. Besides the thermal denaturation curves of the 

recombinant allergen Api g 1.01, these authors also analyzed Api g 1.02. Interestingly, 

the thermal denaturation curve of Api g 1.02 showed a transition around 55 °C, which 

resembled the value of nDau c 1. Api g 1.02 has a 63% identity with the parsley 

homologue PcPR1-3 found in the mixture of nDau c 1, but only a 50% identity with  

Dau c 1.0103. Therefore, the PcPR1-3 homologue could influence the thermal stability 

of the nDau c 1 sample, resulting in a lower Tm-value than nApi g 1 that did not contain 

this isoform. 

 For all ELISA experiments, samples were exposed to heat-treatment, comparable to 

heating performed in the CD measurements, to link the results of conformational 

changes directly to IgE binding capacity. However, binding of an allergen to a 
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polystyrene microtiter plate might induce a conformational change [31], which 

subsequently affects the binding capacity to the plate as well as the IgE binding capacity 

to treated and non-treated immobilized allergens. The inhibition results of recombinant 

and natural Bet v 1 (Figure 5A and B) were different from the results observed in the 

indirect ELISA. For the indirect ELISA, rBet v 1 showed a 50% decrease in IgE binding 

capacity for the treated samples, but for the inhibition ELISA no decrease was observed. 

However, natural Bet v 1 showed the opposite effect. Again, this difference suggests 

differential IgE binding potentials and thermal stability by the presence of multiple 

isoforms. Heat-treatment of this natural isoform mixture can result in an altered IgE 

binding potential, which was visible in the inhibition ELISA, as this inhibition occurred 

in solution. However, in the indirect ELISA this difference could not be observed, as all 

isoforms are immobilized at the polystyrene surface, in a more or less altered 

conformational configuration. This observation can be complemented with the 

conformational differences between rBet v 1 and nBet v 1 (Figure 1 and 2A), since nBet 

v 1 showed a more permanent heat-induced structural loss than rBet v 1. This structural 

loss was increased by prolonged heating for the ELISA experiment and caused the 

reduced IgE binding capacity of nBet v 1. The higher affinity of heat-treated nBet v1 

compared to rBet v 1, resulted in an unchanged signal for the indirect ELISA, whereas a 

decreased signal in the inhibition ELISA was due to the higher affinity of the untreated 

nBet v 1 bound to the polystyrene plate.  

 No effects were observed for the cross-reactivity inhibition ELISAs with rBet v 1 

coated on the polystyrene plate and serum pre-incubated with rApi g 1, nApi g 1 and 

rDau c 1. This was probably due to the low levels of allergen-specific IgE for Dau c 1 

and Api g 1. Only nDau c 1 was able to completely inhibit IgE binding to rBet v 1 at a 

high concentration. In contrast to the Dau c 1 response in this study, our previous 

ELISA experiments (chapter 2) showed similar reactivity of Dau c 1 and Api g 1 [24]. 

However, our current study used a phosphate containing coating buffer of pH 7.4 

instead of a carbonate buffer of pH 9.6, which possibly induced conformational changes 

of the protein [32]. To overcome the lack of Dau c 1 plate-binding, a cross-reactive 

inhibition ELISA was performed by binding untreated rBet v 1 to the polystyrene plate 

which enabled comparison of the natural isoform mixtures with the recombinant single 

isoforms. The low thermal stability of Dau c 1 was reflected in the ELISA experiments 

as both natural and recombinant Dau c 1 did not show IgE binding in an indirect or 
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inhibition ELISA. In the cross-reactive inhibition ELISA, natural, but not recombinant 

Dau c 1, was able to inhibit rBet v 1 in solution, which emphasizes the difference 

between natural and recombinant Dau c 1.   

 The inhibition curve of rBet v 1 in this study was similar to the one published by 

Wagner et al. [23] who performed cross-reactivity ELISAs with hypoallergenic variants 

of Bet v 1 in which Bet v 1a (1.0101) was the strongest inhibitor. The other allergens, 

rBet v 1d (1.0401) and rBet v 1L (1.1001), were still able to inhibit the IgE binding to 

rBet v1a, although a higher inhibitor concentration was needed. For these inhibition 

experiments, Wagner et al. [23] used patient sera with a very low response to the 

hypoallergenic variant coated to the plate. The experiments performed in the present 

study showed even less reactivity of Api g 1 and Dau c 1 to IgE. It is tempting to assume 

that the hypoallergenic variants of Bet v 1 have a higher affinity for IgE than Dau c 1 

and Api g 1. Therefore, care should be taken in adopting such recombinant isoforms as 

hypoallergenic proteins. 

 Moneo et al. described sensitization of 4 patients for carrot, who produced IgE-type 

antibodies that were able to recognize Dau c 1, but not Bet v 1 [33]. This observation is 

not in line with the common perception of pollen-fruit syndrome, starting with 

sensitization for Bet v 1 and later occurring cross-reactions to PR-10 containing 

vegetables and fruits, and suggests that Dau c 1 can be a primary sensitizer [33, 34]. As 

in our study, Dau c 1 was found to be less heat-stable than other PR-10 proteins and 

larger physico-chemical stability of Dau c 1 apparently cannot account for such 

observations. Likely, other (food) components play a role in the sensitization process. 

 

3.5 Conclusion3.5 Conclusion3.5 Conclusion3.5 Conclusion    
In conclusion, heat-treatment affects the allergenic structure leading to changes in IgE 

binding capacity of an allergen in solution in comparison to the binding capacity of the 

polystyrene-bound allergen. However, no changes in the IgE binding capacity were 

observed for allergens heated to Tm and also no differences were observed for the 

thermal treatments MG and MQ considering the different cooling rates. In contrast, IgE 

binding capacity is largely destroyed by heating the protein for 2 hours at 100 °C. In 

addition, differences in heat-induced structural changes and allergenicity between 

natural and recombinant allergens are based on natural isoform mixtures and their 

differences in affinity of binding to specific IgE antibodies. Both natural and 
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recombinant Dau c 1 were found to be significantly less thermo-stable than Bet v 1- and 

Api g 1-forms, respectively. Therefore, future studies will be needed to elucidate the 

allergenicity of the isoforms present in the natural isoform mixtures, as these might 

resolve the discrepancy between negative IgE levels determined with recombinant 

proteins and these ‘non-allergic’ individuals that actually do display allergic symptoms.  
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AbstractAbstractAbstractAbstract    
Natural and recombinant Bet v 1, the major birch pollen allergen, and homologous 

allergens Api g 1 and Dau c 1, from celery and carrot, respectively, were studied by CD 

spectroscopy under conditions of varying denaturant concentration, pH and 

temperature to determine fundamental thermodynamic parameters for conformational 

stability. Thermodynamic studies increase basic knowledge regarding differences 

between birch pollen related allergens and are of importance to choose processing 

conditions. The conformational stability determined from Guanidine Hydrochloride 

denaturation curves was similar for  rBet v 1.0101 and rApi g 1.0101. Conformational 

responses to chaotropic salt were different for recombinant allergens from different 

species, but were similar for the natural isoform mixtures. The conformational stability 

of nApi g 1 and nDau c 1, was shown to be similar to rBet v 1.2801 at pH >4.4 [1], but 

nApi g and nDau c 1 were stable to heating at lower pH-values. 
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4.1 Introduction4.1 Introduction4.1 Introduction4.1 Introduction 
The major birch pollen allergen Bet v 1, a pathogenesis related-10 (PR-10) protein, is 

known as the primary sensitizer for birch pollen-related food allergy. The structural 

relationship with homologous proteins in foods is the basis for cross-reactivity [2-4]. 

Many birch pollen allergic individuals will develop a birch pollen-related food allergy, 

in particular to fruits from the Rosaceae family, while a smaller group will respond to 

vegetables such as carrot and celery from the Apiaceae [5]. In the case of carrot and 

celery, the exposure route plays a role, because these foods are most commonly 

consumed as processed foods whereas the Rosaceae are mostly consumed raw. In 

general, the PR-10 allergens are characterized as labile proteins, in contrast to most 

other food allergens [6] and cooking could therefore explain reduced IgE binding to Api 

g 1 from celery and Dau c 1 from carrot proteins [5]. 

 A few physico-chemical studies tested effects of processing on immune reactivity of 

PR-10 proteins. In several studies it was shown that the IgE binding capacity to Api g 1 

of processed celery was almost completely reduced [7-9]. Pickled celery, heat sterilized 

at a low pH, demonstrated a remarkable reduction of the IgE reactivity [9]. Both 

nonenzymatic and enzymatic browning reactions on rPru av 1 from cherry and on Mal 

d 1 extracts from apple, caused a remarkable reduction of the IgE reactivity [10, 11]. On 

the other hand, 60 minutes cooking of different recombinant allergens, Bet v 1, Mal d 1, 

Api g 1 and Dau c 1, completely abolished IgE binding, but without a reduction of the 

capacity to activate allergen-specific T cells [12]. Also gastrointestinal digestion 

destroyed IgE binding, but not T cell activation [13]. 

 The basis of allergen recognition is still unclear and a better understanding is needed 

concerning structural dynamics of the allergen. This can be accomplished by studying 

allergen mutants and relate structural changes of a protein to changes in IgE binding 

capacity [14, 15]. Nevertheless, many mutants created are not well characterized and 

they are different from natural isoforms, due to expression in recombinant systems. This 

can easily change the IgE binding capacity, resulting in limited relevance for practical 

situations. Furthermore, allergy research concentrates strongly on the allergen’s 

immune reactivity and its scope is directed to the malfunction of the immune system, 

but is less focused on structural properties of the allergen, which could result in 

overlooked impact of these properties on the immune system (e.g. lipid binding [16]). 
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  Thermodynamic studies can increase the basic knowledge regarding differences 

between PR-10 allergens and are of importance to choose experimental conditions 

during processing. A basic knowledge is obtained in terms of thermodynamic 

parameters such as ∆GD-N, Tm, ∆HTm and ∆CP, which are derived from the assumption of 

the reversible two-state model N D, were N is the native/folded and D the 

denatured/unfolded state. The conformational stability, ∆GD-N, is helpful in explaining 

differences between different PR-10 isoforms, as it is the fundamental measure for the 

difference of the Gibbs free energy between folded and unfolded molecules [17]. A 

physico-chemical parameter required for the calculation of ∆GD-N is mD-N, which is a 

measure for the dependence of the free energy on denaturant concentration and reflects 

the degree of surface area buried in the native state relatively to the denatured state 

[28]. The midpoint of thermal denaturation, Tm, is a stability parameter that indicates 

the temperature at which 50% of the protein is unfolded [17]. ∆HTm¸ is the enthalpy 

change required for a N D conversion of 1 mol of protein at Tm. This parameter is 

needed to calculate the heat capacity change upon unfolding, ∆CP, which is yet another 

parameter to measure stability and can be used to calculate the conformational stability 

at any given temperature at constant pressure. 

 Stability measurements by circular dichroism (CD) have been performed before 

with rBet v 1.2801 and its mutant Tyr120Trp and also with rMal d 1, which showed 

relatively low values of ∆GD-N and ∆CP [1]. By isolating the allergens from their natural 

source under mild conditions, isoform mixtures can be obtained [18], which are closer 

to practical situations than recombinant proteins. These mixtures can be studied for the 

overall stability. The objective of this investigation was to study the thermodynamic 

stability of recombinant and natural Bet v 1, Api g 1 and Dau c 1 by determining the 

conformational stability, ∆GD-N by Guanidine Hydrochloride (GuaHCl) denaturation 

using CD measurements. Also the effect of pH on thermal stability on nApi g 1 and 

nDau c 1 was studied to determine Tm, ∆HTm and ∆CP to increase general knowledge on 

stability of natural isoform mixtures and their pH dependence.  
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4.2 Materials and Methods 4.2 Materials and Methods 4.2 Materials and Methods 4.2 Materials and Methods     
 

4.2.1 Allergens4.2.1 Allergens4.2.1 Allergens4.2.1 Allergens    
The natural allergens nBet v 1, nApi g 1 and nDau c 1 from birch pollen, celery tuber 

and carrot, respectively, were purified as isoform mixtures as described in chapter 2chapter 2chapter 2chapter 2. 

Briefly, Bet v 1 was purified from birch pollen of Betula pendula ‘Youngii’, Api g 1 from 

celery tuber purchased from a supermarket and Dau c 1 from Daucus carota ‘Narbonne’. 

Ammonium sulphate precipitation with the protein extracts was followed by 

hydrophobic interaction and size exclusion chromatography. The purified allergens 

were identified as isoform mixtures using Q-TOF MS/MS. The single recombinant 

allergen isoforms rBet v 1a (further referred to as rBet v 1.0101), rApi g 1.0101 and rDau 

c 1.2 (further referred to as rDau c 1.0103) were purchased from Biomay (Vienna, 

Austria). All allergens were dissolved in 10 mM potassium phosphate buffer, pH 7.0, 

buffer exchanged and concentrated on a Microsep 3K centrifugal device (Pall Life 

Sciences, Ann Arbor, MI, USA). Protein concentrations were determined using the 

MicroBCATM Protein Assay (Pierce, Rockford, IL, USA) with BSA as a standard. 

 

4.2.2 GuaHCl denaturation curves4.2.2 GuaHCl denaturation curves4.2.2 GuaHCl denaturation curves4.2.2 GuaHCl denaturation curves    
Guanidine Hydrochloride (GuaHCl) denaturation experiments were carried out with 

natural and recombinant Bet v 1, Dau c 1 and Api g 1 at a protein concentration of 10 

μM in 10 mM potassium phosphate buffer (pH 7.0). A 6 M GuaHCl stock solution was 

prepared in 10 mM potassium phosphate buffer and diluted into 4, 2, 1 and 0.5 M 

solutions. After filtering the solution over a 0.2 μm syringe filter (Schleicher & Schuell, 

Dassel, Germany), the final GuaHCl concentrations were determined from refractive 

index measurements according to Nozaki [19] as calculated from equation 1: 

 

  [ ] ( ) ( ) ( )32
∆91.60∆38.68∆57.147GuaHCl NNN −+=   (1) 

 

[GuaHCl] is given in  mol/L and ∆N is the difference between the refractive index of the 

GuaHCl solution and the 10 mM phosphate buffer. 

 Circular dichroism (CD) spectra were recorded at 20 °C on a Jasco J-715 

spectropolarimeter (Jasco Corporation, Tokyo, Japan) after allowing the GuaHCl-
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protein solutions to equilibrate for two hours. Far-UV spectra were recorded from 

210-260 nm with a quartz cuvette of 1 mm path length, by accumulating 10 scans at a 

scanning speed of 50 nm/min, using a 0.2 nm step width and 2.0 nm band width. 

Ellipticity values at 222 nm were corrected for buffer/GuaHCl background and plotted 

against the GuaHCl concentration to display protein denaturation curves. The raw CD 

data were converted into the mean residue weight ellipticity [θ]MRW (units in 

deg·cm2·dmol-1) by using the following equation:         
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][               (2)  

 

 [θ]obs  is the observed signal in degrees, C is the concentration in mol/L, l is the path 

length of the cuvette in cm and n is the number of amino acids of the protein.  

 From the denaturation plots, the conformational stability, the free energy of 

unfolding O2H
ND∆ −G  of the protein in water was estimated, by assuming a two-state 

mechanism with a linear dependence of the pre- and post-transition baselines [20, 21]. 

The following equation was fitted to the data [22], 
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by using non-linear least squares regression with the program TableCurve (Jandel 

Scientific, Erkrath, Germany). Yobs is the observed signal and [GuaHCl] the chaotropic 

salt concentration. The other six estimated parameters, from equation 3, include the 

slopes and intercepts of the baselines of the native (βN) and denatured (βD) states with 

the ellipticity values of the native (αN) and denatured (αD) state at 0 M GuaHCl. 

[GuaHCl50%] is the midpoint of denaturation from the transition state where 50% of the 

protein is denatured. The mD-N value (in kJ mol-1 M-1 ) is a parameter correlating with 

the degree of protein surface exposed to the solvent upon unfolding. From the estimated 
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values of mD-N and [GuaHCl50%] the conformational stability, O2H
ND∆ −G  of the allergen in 

water, is calculated by using [20]: 

  

  [GuaHCl]∆∆ ND
O2H
NDND −−− −= mGG         (4) 

 

The apparent free energy difference, ∆GD-N, is the value of O2H
ND∆ −G  in the absence of 

denaturant and is 0 at [GuaHCl50%].  

    

4.2.3 pH stability experiments4.2.3 pH stability experiments4.2.3 pH stability experiments4.2.3 pH stability experiments    
pH stability experiments were performed with natural Api g 1 and Dau c 1 by recording 

far-UV CD spectra, similar to the GuaHCl denaturation experiment, and the thermal 

denaturation CD curves at different pH-values. Changes in ellipticity were followed at 

222 nm by heating to 95 °C at a rate of 1 °C/min using a band width of 1.0 nm with 10 

μM protein in different 50 mM buffers with the pH set at room temperature, similar to 

the method used by Mogensen et al. [1]: 100 mM HCl at pH 1.0, glycine at pH 2.0-3.5, 

sodium acetate at pH 4.0-5.3, MES at pH 5.5-6.5, MOPS at pH 6.5-7.5, and TRIS at pH 

8.0-9.0. The thermal denaturation curves were fitted using a non-linear least squares fit 

method [23] from the software program TableCurve according to the relation derived 

from the van‘t Hoff equation: 
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Six parameters were estimated from fitting equation 5, which includes the slopes and 

intercepts of the baselines of the native (βN) and denatured (βD) states with the 

ellipticity values (intercepts) for the folded (αN) and unfolded (αD) state. The other 

derived parameters were Tm, the temperature at the midpoint of denaturation, and ∆HTm 

the enthalpy of unfolding at Tm. After heating, the protein was cooled down to room 

temperature to study the refolding properties of the protein. The program CDNN was 

used to deconvolute the secondary structure of measured CD spectra [24]. 

 From the linear relationship between ∆HTm and Tm at varied pH, the specific heat 

capacity, ∆CP, can be obtained from the slope of the graph [25], making the assumption 
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that ∆CP does not depend on pH and temperature in the thermal transition range. With 

the value of ∆CP, the Gibbs energy change of unfolding at any temperature, ∆GT, is 

calculated using the Gibbs-Helmholtz equation at 298.15 K [23].  
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Gibbs energy values for protein stability are obtained by taking the value of ∆HTm and 

Tm at pH 7.0. Values thus calculated can be compared with O2H
ND∆ −G  values of protein 

stability curves. 

 

4.3 Results4.3 Results4.3 Results4.3 Results    
    

4.3.1 Protein stability estimated from denaturation with guanidine 4.3.1 Protein stability estimated from denaturation with guanidine 4.3.1 Protein stability estimated from denaturation with guanidine 4.3.1 Protein stability estimated from denaturation with guanidine 

hydrochloridehydrochloridehydrochloridehydrochloride    
Conformational stability of proteins can be determined by measuring the unfolding 

curves in aqueous solutions with increasing concentrations of chaotropic salts like 

guanidine hydrochloride (GuaHCl) [20]. The parameters derived from the fit of these 

graphs resulted in a value for the change in Gibbs free energy, ∆GD-N, in water 

( O2H
ND∆ −G ). Protein stability curves were measured with GuaHCl denaturation for both 

recombinant and natural Bet v 1, Api g 1 and Dau c 1. The resulting graphs are shown 

in Figure 1 with the individual data points as a fraction of the unfolded protein versus 

the increasing GuaHCl concentration and the corresponding denaturation curves fitted 

with equation 3. The proteins started to unfold already at low [GuaHCl] resulting in an 

imprecise estimate of the parameter, βN, for the slope of the baseline for the native 

protein. Therefore, a change was made in the fitting procedure by fixing this parameter 

to zero, resulting in similar standard errors from the regression analysis for all GuaHCl 

denaturation curves showing that βN is redundant here. The GuaHCl concentration at 

which 50% of the protein is unfolded, [GuaHCl50%], could be estimated from these fits, 

together with the parameter mD-N. These estimated parameters mD-N and [GuaHCl50%] are 

given in Table 1 with the standard deviations of the fits and the calculated O2H
ND∆ −G  from 
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equation 4. The table is supplemented with urea denaturation data adapted from 

Mogensen et al. [1] for rBet v 1.2801 (differs from rBet v 1.0101 at position 63 and has a 

Leu residue instead of Phe) and its mutant Tyr120Trp and rMal d 1.  

 

 
Figure 1Figure 1Figure 1Figure 1. CD denaturation curves of natural and recombinant allergens by increasing the GuaHCl 

concentration. The individual measured points are displayed with the stability curves fitted using equation 3. 

 

The stability curves of Figure 1 and the O2H
ND∆ −G  values in Table 1 clearly showed a 

low stability of rDau c 1.0103, which started to unfold already at low concentrations of 

GuaHCl, which incidentally resulted in a larger fitting error (Table 1). The sharp 

transition from native to denatured state was reflected in a larger value of mD-N for rDau 

c 1.0103. The conformational stability in terms of Gibbs free energy change was 

calculated from the two parameters [GuaHCl50%] and mD-N. The generally observed 

trend was a lower mD-N value for the natural allergens and a higher O2H
ND∆ −G  for the 

recombinant Bet v 1 and Api g 1. Apart from rDau c 1.0103 , the [GuaHCl50%] values of 

natural and recombinant Api g 1 were 0.24-0.51 M higher than Dau c 1 and Bet v 1. 
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TablTablTablTable 1e 1e 1e 1. Thermodynamic parameters of the recombinant and natural allergens of Bet v 1, Api g 1 and Dau c 1 

determined from GuaHCl denaturationa and the pH experimentb. 

 mD-N 

(kJ/mol·M) 

[GuaHCl50%] 

(M) 

O2H

ND∆ −G   

(kJ/mol) 

∆CP 

(kJ/mol·K) 

∆GT  

(kJ/mol) 

pH opt. 

for Tm 

pH transition  

at 20 °C   

rBet v 1.0101 28.7 ± 2.6 0.52 ± 0.01 15.0 - - - - 

nBet v 1 13.4 ± 2.1 0.66 ± 0.03 8.8    - - - - 

rApi g 1.0101  14.2 ± 2.4 1.03 ± 0.04 14.6  - - - - 

nApi g 1 11.7 ± 1.4 0.90 ± 0.03 10.5 5.5 19.9 6.5 4.75 

rDau c 1.0103  31.4 ± 6.2 0.24 ± 0.02 7.6 - - - - 

nDau c 1 18.5 ± 1.6 0.66 ± 0.01 12.1 4.7 17.4 6.3-6.5 4.42 

rBet v 1.2801c 10.1 ± 1.3 2.43 ± 0.07 24.4 5.0 18.8 6.5-7.0 ~3.5 

rBet v 1.2801 

Y120Wc 

11.0 ± 1.1 2.46 ± 0.03 27.0 - - - - 

rMal d 1c 11.6 ± 1.3 2.61 ± 0.03 30.5 - - - - 

a) All conditions for GuaHCl denaturation are at 25 °C and pH 7.0. Errors reported are standard deviations 

from regression analysis. mD-N and [GuaHCl50%] values were estimated from the fits of Figure 1 and were used 

to calculate the conformational stability in water, 
O2H
ND∆ −G  from equation 4. 

b)The value of  the heat capacity change, ∆CP, was derived from the slopes of Figure 4 and was used to 

calculate the conformational stability, ∆GT, at 25 °C for pH 7.0 from equation 6. The pH optimum for 

reversible unfolding and the pH transition of the midpoint of the fit at 20 °C were both determined from 

Figure 3. 

c)Urea denaturation and pH experimental data adapted from Mogensen et al. [1]. 

 

4.34.34.34.3.2 Effect of pH on thermal stability of nApig 1 and nDau c 1.2 Effect of pH on thermal stability of nApig 1 and nDau c 1.2 Effect of pH on thermal stability of nApig 1 and nDau c 1.2 Effect of pH on thermal stability of nApig 1 and nDau c 1 
Thermal stability of natural isoform mixtures of Api g 1 and Dau c 1 was determined 

under various pH-conditions (range 2.0-9.0) using CD spectrometry at 222 nm (Figure 

2). Thermal stability was expressed in terms of Tm, the temperature values where 50% 

of the protein was unfolded and ∆HTm, the enthalpy of unfolding at Tm. Reproducibility 

of these two parameters was confirmed by duplicate measurements of buffer at pH 4.9 

and by determining the differences between the two buffers MES and MOPS at pH 6.5, 

which were minimal (with %RSD of ≤ 1% for Tm-values and ≤ 10% for ∆HTm). 

Differences were observed between a 10 mM potassium phosphate and 50 mM MOPS 

buffers at pH 7.0 with approximately 5 °C lower Tm-values for the potassium phosphate 
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buffer. These differences may be caused by changes in buffer pH at higher temperature, 

but also by differences in ionic strength. 

 Thermal unfolding as a function of pH showed similar patterns for nDau c 1 (Figure 

2A) and nApi g 1 (not shown). Four different relationships could be distinguished in the 

pH-range from 2.0-9.0: 1) no transition during heating from pH 2.0-4.0 for both nDau c 

1 and nApi g 1; 2) one transition observed in the pH range 4.4-5.6 for nDau c 1 and 4.4-

6.0 for nApi g 1, but most of the CD signal was lost at 95 °C due to aggregation, which 

prevented the protein from refolding; 3) two transitions, at about 60 °C and 85 °C for 

nDau c 1 at pH 6.0 and pH 6.3 for Api g 1; 4) one transition in the pH range 6.3-9.0 for 

nDau c 1 and 6.5-9.0 for nApi g 1 with remaining ellipticity at 95 °C that allowed 

refolding of the protein upon cooling. 

 Although a transition was not visible upon heating in the pH range 2.0-4.0 at 222 

nm, changes did occur in the CD spectrum at other wavelengths. A representative 

example, with CD spectra measured at pH 4.0, of thermally treated nDau c 1 is 

displayed in Figure 2B. Compared to the CD spectrum at pH 7.0, a clear difference in 

shape was visible, which was apparent from the estimates of decreasing helical structure 

(33.4 to 20.9%) and an increase in β-sheet content (21.7 to 27.2%). When the protein 

was heated, a change did not occur between 210 and 260 nm, but a shift to a lower 

wavelength occurred in the intercept of the x-axis. Upon cooling, the protein did not 

refold to its starting signal and the signal at 222 nm decreased to values below its 

starting point with a minimum in the spectrum at 217 nm (Figure 2B). The secondary 

structure deconvolution program CDNN could not determine a difference between the 

protein spectra at 95 °C and the cooled protein, but by comparing unheated and heated 

protein, a decrease was found for the helical (20.9 to 18.6%) and β-sheet content (27.2 

to 25.1%). For pH 3.5 and below, cooling after a 95 °C treatment resulted in an increase 

in the helical content and a decrease in β-sheet (data not shown).      
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Figure 2Figure 2Figure 2Figure 2. Effect of pH on thermal stability of nDau c 1 and nApi g 1 in the range of 20-95 °C. A)A)A)A) Thermal 

denaturation curves of nDau c 1 can be divided into four different groups as indicated in the graph: 1) heat 

stable between pH 1.0-4.0; 2) unfolding but no refolding capacity between pH 4.4-5.6; 3) both unfolding and 

refolding capacity between pH 6.3-9.0; 4) a double transition at pH 6.0, B)B)B)B) CD spectra of nDau c 1 at pH 7.0 

and 4.0. The CD spectra at pH 4.0 were measured at 20 °C, 95 °C and at 20 °C after cooling down. C C C C and D D D D) CD 

signal at 222 nm at different pH values at four different temperatures  at 20, 65, 80 and 95 °C for nApi g 1 and 

20, 55, 70 and 95 °C for nDau c 1. The CD signal at 20 °C is represented with a fit to the data points at 

different pH. 

  

 Plotting [θ]MRW,222nm at four temperatures, by taking measured points of Figure 2A  at 

that particular temperature, against the pH (Figure 2C and D), showed differences 

between nApi g 1 and nDau c 1. Both plots at 20 °C showed a transition region near 

their pI, at 4.4 for nDau c 1 and 4.75 for nApi g 1, with a difference in the shape of the 

fits. Two plateaus were visible for nDau c 1 in the pH-ranges 2.0-4.0 and 6.0-8.0 while 

the signal for nApi g 1 was slightly decreasing. This resulted in a smaller [θ]MRW,222nm 

change in the transition region for nApi g 1 as compared to nDau c 1. The graphs also 



Thermodynamic characterization of the PR-10 allergens Bet v 1, Api g 1 and Dau c 1 

 85 

showed that [θ]MRW,222nm was unchanged in the pH range 2.0-4.0 when heating the 

allergens to 95 °C. The sharp decrease in [θ]MRW,222nm at 95 °C between pH 5.6-6.5 was at 

a point where irreversible unfolding changed into reversible folding in the higher pH 

range. Under the irreversible unfolding conditions, an insoluble precipitate was formed 

upon heating.  

 Differences in thermal stability between nApi g 1 and nDau c 1 were seen by 

plotting Tm versus pH for each thermal denaturation curve (Figure 3). The highest Tm 

value found for nApi g 1 was 71.9 °C at pH 6.0 and 62.8 °C for nDau c 1 at pH 5.6. The 

thermal denaturation curves with a double transition region at pH 6.3 and 6.0 for nApi 

g 1 and nDau c 1, respectively, were not taken into account. At these pH-values the 

allergens were more stable to heating as shown by an intermediate state visible after the 

first transition (Figure 2A), which continued unfolding at a temperature above 80 °C. 

Optimal pH stability with complete refolding ability was observed at pH 6.5 and 6.3-6.5 

for nApi g 1 and nDau c 1, respectively. Furthermore, the Tm values were lowest at pH 

4.6: 39.1 °C for nApi g 1 and 41.2 °C for nDau c 1. Tm increased very rapidly below pH 

4.6 resulting in a higher Tm value for pH 4.4 for both nApi g 1 and nDau c 1. At a pH 

below 4.4 no thermal denaturation occurred, as judged from the [θ]MRW,222nm signal and 

consequently no parameters could be calculated.  

   

    
Figure 3Figure 3Figure 3Figure 3. pH stability of nApi g 1 and nDau c 1 measured by CD. The pH is plotted to the Tm values as 

determined from the fits of the thermal denaturation curves of each buffer. The lines are shown to guide the 

eye. 
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 The conformational stability of the allergens as determined from the GuaHCl 

stability curves for pH 7.0, could be derived from the proposed linear relationship of Tm 

and ∆HTm at different pH values (Figure 4), as was empirically established by Privalov 

[26]. For this approach, the calculation of ∆GT from equation 6 required the specific 

heat capacity, ∆CP as a parameter. ∆CP is defined as the change in enthalpy with 

temperature and could be derived from the slope of the linear regression of ∆HTm versus 

Tm. All calculated ∆HTm and Tm parameters were calculated from the different buffers 

assuming two-state unfolding kinetics. However, data between pH 4.4-6.0 did not 

follow two-state unfolding kinetics and were visually divided in the plots from the pH 

range 6.5-9.0. All data points of nDau c 1 showed a clear linear relationship, but for 

nApi g 1, a linear relationship was only observed in the pH range 4.4-6.0. Therefore, the 

value of ∆CP (Table 1) was derived from the linear slopes in the pH range 4.4-6.0 for 

nApi g 1 and the complete range for nDau c 1. The ∆GT values were calculated at 25 °C 

from equation 6 by using the Tm and ∆HTm values of nApi g 1 (Tm = 66.5 °C; ∆HTm = 265.1 

kJ/mol) and nDau c 1 (Tm = 55.7 °C; ∆HTm = 247.0 kJ/mol) from thermal denaturation 

curves at pH 7.0 (Table 1). 

 

    
Figure 4Figure 4Figure 4Figure 4. Relationship of enthalpy of unfolding ∆HTm and Tm of nApi g 1 (AAAA) and nDau c 1 (BBBB). ∆HTm and Tm 

were determined from the fits of the thermal denaturation curves between pH 4.4 and 9.0. The data points are 

split up in two series; 1) Irreversible unfolding (low pH range, diamond shapes), 2) Reversible folding (higher 

pH range, open circles). For nApi g 1, a linear fit is shown through the data points at low pH (diamond 

shapes) and for nDau c 1 a fit is shown through all data points. The heat capacity change ∆CP was derived 

from the slopes of the linear fits. 
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4.4 Discussion4.4 Discussion4.4 Discussion4.4 Discussion 

This study described differences in conformational stability of the major birch pollen 

allergen Bet v 1 and the vegetable allergens Api g 1 and Dau c 1 from celery and carrot, 

respectively. Conformational stability was determined from thermodynamic 

parameters, derived from CD measurements. The characterization of thermodynamic 

parameters is helpful in explaining differences between the folded and unfolded states 

of PR-10 proteins and could form a basis for explaining the severity of the allergic 

response to different isoforms. The recombinant single isoforms rBet v 1.0101, rApi g 

1.0101 and rDau c 1.0103 were compared with isoform mixtures, purified from their 

natural source [18]. In general, the conformational stability of the measured allergens 

were low and differences observed between natural and recombinant and between the 

vegetable and birch protein showed how important this thermodynamic 

characterization could be.  

 In the first part of this study, differences in conformational stability were clearly 

visible between the recombinant PR-10 allergens. Naturally occurring globular proteins 

in general have a O2H
ND∆ −G  between 21-42 kJ/mol [17], but the values found by GuaHCl 

denaturation were below 15 kJ/mol for all allergens. By using a linear extrapolation 

method, the lowest estimate for O2H
ND∆ −G  was obtained, but this method in general should 

give the best agreement with O2H
ND∆ −G  values from urea denaturation curves [20]. The 

low O2H
ND∆ −G  of rDau c 1.0103 was the result of a low [GuaHCl50%], which was almost 3 

times lower than [GuaHCl50%] for nDau c 1. This commercially available allergen was 

purchased with an attached His-tag, which likely decreased protein stability. Both rBet 

v 1.0101 and rApi g 1.0101 showed a similar conformational stability, but different 

properties in the presence of denaturant. These allergens were different in the mD-N and 

[GuaHCl50%] values with a 2 times higher [GuaHCl50%] for rApi g 1.0101 (1.03 M). A 

point of attention is that the parameters derived for the natural allergens were averages 

of a mixture, whereas the parameters determined for recombinant allergens were based 

on a single isoform. This resulted in reduced slopes in the transition regions for the 

natural allergens and therefore lower estimates of the conformational stability in 

GuaHCl denaturation experiments. However, [GuaHCl50%] values were similar between 

the recombinant and natural allergens of Bet v 1. For Api g 1 both [GuaHCl50%] and 

mD-N values were similar between natural and recombinant allergen preparations.  
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 Most striking were the relatively high values of mD-N for rBet v 1.0101 and rDau c 

1.0103 as compared to other denaturation studies [1, 17, 22, 27-29]. A ratio from the 

GuaHCl and urea denaturation data could be calculated from the mD-N-values of rBet v 

1.0101 of our data and of rBet v 1.2801 of Mogensen et al. [1]. This m(GuaHCl)/m(urea) 

ratio is 2.8 and describes the unfolding of the protein as polar compared to ratios of 1.6-

2.3 for unfolding of non-polar sidechains [29]. Myers et al. [28] showed a linear 

relationship between changes in the accessible surface area (∆ASA) of a protein and the 

mD-N values measured by GuaHCl or urea denaturation. ∆ASA is defined as the 

difference between the solvent accessible surface area of the native protein and the 

modelled denatured protein. From the values of ∆ASA, calculated from the GuaHCl 

data mD-N (Table 2), an estimate could be made of the theoretical number of amino acid 

residues, ∆CP and mD-N of urea denaturation. The mD-N value of rBet v 1.0101 calculated 

for urea denaturation corresponded to the mD-N value of Mogensen et al [1] and was 

slightly higher, because the linear relationship did not correct for polar unfolding. The 

number of amino acid residues was overestimated for rBet v 1.0101 and rBet v 1.2801 

for the GuaHCl and urea experiments, respectively (not shown for data of Mogensen et 

al. [1]), whereas the number of amino acid residues for nBet v 1 and nApi g 1 were 

underestimated, due to lower mD-N values as a result of isoform mixtures. These 

theoretically derived values showed the possibility that rBet v 1.0101 does not follow 

two-state unfolding, whereas rApi g 1.0101 does. rBet v 1.0101 was shown to be able to 

form dimers (and oligomers) in solution [30]. In folding experiments by Mogensen et al. 

[1], a misfolded intermediate state was detected for rBet v 1.2801 whereas Mal d 1 

folded without intermediates.   

 The second part of this study described the pH dependence of nApi g 1 and nDau c 1 

as another method to estimate the conformational stability, which could be compared 

with a similar study with rBet v 1.2801 [1]. This method also showed the effect of pH 

on thermal stability of the natural allergens. According to this method, the 

conformational stability of nApi g 1 and nDau c 1 was similar to rBet v 1.2801, but 

higher than the conformational stability determined in the GuaHCl denaturation 

experiment. However, the pH characteristics of nApi g 1 and nDau c 1 were different 

from rBet v 1.2801.  

 For the thermal denaturation curves, two-state folding kinetics was assumed, which 

is a completely reversible process meaning that the unfolded protein is able to refold 
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Table 2Table 2Table 2Table 2. Theoretical derived parameters from the linear relation of mD-N values and the changes in accessible 

surface area. 

  ∆ASAa 

(Å2) 

Number of 

AA-residuesb 

∆CP
c 

(kJ/mol·K) 

Urea mD-Nd 

(kJ/mol) 

 Theoretical proteine 13,880 159159159159    9.4 7.9 

 rBet v 1.0101 27,459 305 17.6 12.7 

 nBet v 1 10,641 124 7.4 6.0 

 rApi g 1.0101  11,550 134 8.0 6.4 

 nApi g 1 8,823 105 6.3 5.3 

 rDau c 1.0103  30,186 334 19.3 13.8 

 nDau c 1 16,095 183 10.7 8.2 

All parameters were calculated from the mD-N values of GuaHCl denaturation (Table 1) from the empirically 

established linear correlations described by Myers et al. [28].  

a The change in accessible surface area, ∆ASA was calculated from; mD-N(GuaHCl) = 859 + 0.22(∆ASA)  

b The number of amino acid residues was calculated from; ∆ASA = -907 + 93(#res) 

c The heat capacity change, ∆CP, was calculated from; ∆CP = -336 + 0.66(mD-N(GuaHCl))  

d The theoretical value for urea denaturation, Urea mD-N, was calculated from; mD-N(GuaHCl) = -110 + 2.3(mD-

N(urea)) 

eA theoretical protein was included in the table with the parameters calculated for 159 amino acid residues.  

N.B.N.B.N.B.N.B. All linear correlations are given in Cal. 

 

completely. From the described linear relationship [26] between ∆HTm and Tm the heat 

capacity change was determined by linear fitting of the data points of thermal 

denaturation curves at different pH without using a calorimeter [25, 26]. For both nApi 

g 1 and nDau c 1, a pH range was observed without two-state kinetics (simplest 

representation; N  D  Aggregation) showing irreversible unfolding between pH 

4.4-6.0 and pH 4.4-5.6, respectively. However, a linear relationship was observed for 

nDau c 1 for both reversible and irreversible unfolding data points fitted to a two-state 

equation, showing more correlation than rBet v 1.2801 [1]. For nApi g 1 a linear 

relationship was only visible for the data points corresponding to irreversible unfolding 

(pH 4.4-6.0). For reversible unfolding, a non-correlated cluster was visible and a linear 

relationship was only fitted to the ∆HTm and Tm values at low pH. This division of data 

points was caused by the Tm-values of nApi g1, which were 10 °C higher than for nDau 

c 1 above pH 6.0, but below pH 6.0 Tm-values were similar (Figure 3). ∆HTm was 

comparable for both allergens (ratio ∆HTm,Api g 1/∆HTm,Dau c 1) = 0.75-1.4) in the complete 
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pH range. The linear relationship between ∆HTm and Tm was likely affected by non-two 

state kinetics and not by the presence of multiple isoforms in the measured solution. 

Nevertheless, a general trend was observed for the natural allergens, which allowed us 

to study the overall protein stability.  

 The slopes of the linear fits of nApi g 1 and nDau c 1 from our study showed ∆CP 

values, which were similar to rBet v 1.2801 observed by Mogensen et al [1]. The 

parameter ∆CP is related to mD-N and gives indications for exposure of the non-polar 

accessible surface area by unfolding. The low values of ∆CP found in this experiment, 

indicated that the protein is not strongly hydrophobic, which corresponds to polar 

unfolding established by mD-N [17]. The conformational stability parameter, ∆GT, of rBet 

v 1.2801 at pH 7.0 was 18.6 kJ/mol, a value close to the O2H
ND∆ −G  of the GuaHCl curve of 

rBet v 1.0101 (Table 1) and close to the ∆GT values of both natural allergens (Table 3). 

By using the pH dependence as a model system for determining the conformational 

stability instead of GuaHCl denaturation, the influence of the isoform mixture could be 

averaged and results in better estimates of ∆G. 

 Besides differences in thermodynamic parameters, differences were also observed in 

the pH stability of the natural allergens Api g 1 and Dau c 1 between rBet v 1.2801 [1]. 

A midpoint for a pH transition was visible at pH 3.5 for rBet v 1.2801 which was 

approximately 1 pH unit lower than for nApi g 1 and nDau c 1 and 2 units lower than 

Bet v 1’s isoelectric point. The optimal pH-values of about 6.4 with the highest Tm were 

similar for the three allergens (Table 1, Figure 3). The most remarkable difference was 

the observation that both nApi g 1 and nDau c 1 were stable to heating below pH 4.4 

whereas rBet v 1.2801 showed unfolding at pH 3.5-4 [1]. In a different study, it was 

shown that rBet v 1.0101 was completely unfolded at pH 2.2 [30]. The Bet v 1 

homologue, rPru p 1 from peach, showed reversible unfolding at neutral pH when 

heated to 95 °C. At pH 3, rPru p 1 was completely unfolded at room temperature [31]. 

The natural allergens Api g 1 and Dau c 1 in our study therefore contradict the general 

statements that Bet v 1 homologues are more susceptible to denaturation at low pH than 

at neutral pH [31]. 

 In conclusion, our study has shown that thermodynamic characterization gives 

useful information about allergens. Such information could be helpful in interpreting 

behavior of allergens in relation to food processing as well as in relation to 

immunological response.  



Thermodynamic characterization of the PR-10 allergens Bet v 1, Api g 1 and Dau c 1 

 91 

ReferencesReferencesReferencesReferences    
1. Mogensen, J.E., Ipsen, H., Holm, J., and Otzen, D.E., Elimination of a misfolded folding 

intermediate by a single point mutation. Biochemistry, 2004200420042004. 43(12): p. 3357-3367. 

2. Hoffmann-Sommergruber, K., Demoly, P., Crameri, R., Breiteneder, H., Ebner, C., Da Camara 

Machado Margit, L., Blaser, K., Ismail, C., Scheiner, O., Bousquet, J., and Menz, G., IgE reactivity to 
Api g 1, a major celery allergen, in a Central European population is based on primary sensitization 
by Bet v 1. Journal of Allergy and Clinical Immunology Aug, 1999199919991999. 104(2 Part 1): p. 478-484. 

3. Hoffmann-Sommergruber, K., O'Riordain, G., Ahorn, H., Ebner, C., Laimer Da Camara Machado, 

M., Puhringer, H., Scheiner, O., and Breiteneder, H., Molecular characterization of Dau c 1, the Bet 
v 1 homologous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1. Clin Exp 

Allergy, 1999199919991999. 29(6): p. 840-847. 

4. Radauer, C. and Breiteneder, H., Evolutionary biology of plant food allergens. J Allergy Clin 

Immunol, 2007200720072007. 120(3): p. 518-525. 

5. Hoffmann-Sommergruber, K. and Radauer, C., Bet v 1-Homologous Allergens, in Plant Food 
Allergens, E.N.C. Mills and P.R. Shewry, Editors. 2003200320032003, Blackwell Publishing: Oxford, UK. p. 125-

140. 

6. Mills, E.N.C., Sancho, A.I., and Moreno, F.J., The effects of food processing on allergens, in 

Managing allergens in food, E.N.C. mills, H.J. Wichers, and K. Hoffmann Sommergruber, Editors. 

2007200720072007, Woodhead Publishing Limited and CRC Press LLC: Cambridge. p. 117-133. 

7. Ballmer-Weber, B.K., Hoffmann, A., Wuthrich, B., Luttkopf, D., Pompei, C., Wangorsch, A., 

Kastner, M., and Vieths, S., Influence of food processing on the allergenicity of celery: DBPCFC 
with celery spice and cooked celery in patients with celery allergy. Allergy, 2002200220022002. 57(3): p. 228-35. 

8. Luttkopf, D., Ballmer-Weber, B.K., Wuthrich, B., and Vieths, S., Celery allergens in patients with 
positive double-blind placebo-controlled food challenge. J Allergy Clin Immunol, 2000200020002000. 106(2): p. 

390-399. 

9. Jankiewicz, A., Baltes, W., Bögl, K.W., Dehne, L.I., Jamin, A., Hoffmann, A., Haustein, D., and 

Vieths, S., Influence of Food Processing on the Immunochemical Stability of Celery Allergens. J Sci 
Food Agric, 1997199719971997. 75: p. 359-70. 

10. Garcia-Borrego, A., Wichers, J.H., and Wichers, H.J., Decreasing of the IgE-binding by Mal d 1, the 
main apple allergen, by means of polyphenol oxidase and peroxidase treatments. Food Chemistry, 

2007200720072007. 103(1): p. 94-100. 

11. Gruber, P., Vieths, S., Wangorsch, A., Nerkamp, J., and Hofmann, T., Maillard reaction and 
enzymatic browning affect the allergenicity of Pru av 1, the major allergen from cherry (Prunus 
avium). J Agric Food Chem, 2004200420042004. 52(12): p. 4002-4007. 

12. Bohle, B., Zwolfer, B., Heratizadeh, A., Jahn-Schmid, B., Antonia, Y.D., Alter, M., Keller, W., 

Zuidmeer, L., van Ree, R., Werfel, T., and Ebner, C., Cooking birch pollen-related food: divergent 
consequences for IgE- and T cell-mediated reactivity in vitro and in vivo. J Allergy Clin Immunol, 

2006200620062006. 118(1): p. 242-249. 

13. Schimek, E.M., Zwolfer, B., Briza, P., Jahn-Schmid, B., Vogel, L., Vieths, S., Ebner, C., and Bohle, 

B., Gastrointestinal digestion of Bet v 1-homologous food allergens destroys their mediator-
releasing, but not T cell-activating, capacity. J Allergy Clin Immunol, 2005200520052005. 116(6): p. 1327-33. 

14. Scheurer, S., Son, D.Y., Boehm, M., Karamloo, F., Franke, S., Hoffmann, A., Haustein, D., and 

Vieths, S., Cross-reactivity and epitope analysis of Pru a 1, the major cherry allergen. Mol 

Immunol, 1999199919991999. 36(3): p. 155-167. 



Chapter 4 

 92 

15. Neudecker, P., Lehmann, K., Nerkamp, J., Haase, T., Wangorsch, A., Fotisch, K., Hoffmann, S., 

Rosch, P., Vieths, S., Scheurer, S., Son, D.Y., Boehm, M., Karamloo, F., Franke, S., Hoffmann, A., 

and Haustein, D., Mutational epitope analysis of Pru av 1 and Api g 1, the major allergens of cherry 
(Prunus avium) and celery (Apium graveolens): correlating IgE reactivity with three-dimensional 
structure. Biochem J, 2003200320032003. 376(Pt 1): p. 97-107. 

16. Mogensen, J.E., Ferreras, M., Wimmer, R., Petersen, S.V., Enghild, J.J., and Otzen, D.E., The major 
allergen from birch tree pollen, Bet v 1, binds and permeabilizes membranes. Biochemistry, 2007200720072007. 

46(11): p. 3356-3365. 

17. Creighton, T.E., Proteins: Structures and Molecular properties. 2nd ed. 1993199319931993, New York: W. H. 

Freeman and Company. 507. 

18. Bollen, M.A., Garcia, A., Cordewener, J.H., Wichers, H.J., Helsper, J.P., Savelkoul, H.F., and van 

Boekel, M.A., Purification and characterization of natural Bet v 1 from birch pollen and related 
allergens from carrot and celery. Mol Nutr Food Res, 2007200720072007. 51(12): p. 1527-1536. 

19. Nozaki, Y., The preparation of guanidine hydrochloride. Methods Enzymol, 1972197219721972. 26 PtC: p. 43-50. 

20. Pace, C.N., Determination and analysis of urea and guanidine hydrochloride denaturation curves. 
Methods Enzymol, 1986198619861986. 131: p. 266-280. 

21. Tanford, C., Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv 

Protein Chem, 1970197019701970. 24: p. 1-95. 

22. Clarke, J. and Fersht, A.R., Engineered disulfide bonds as probes of the folding pathway of barnase: 
increasing the stability of proteins against the rate of denaturation. Biochemistry, 1993199319931993. 32(16): p. 

4322-4329. 

23. Yadav, S. and Ahmad, F., A new method for the determination of stability parameters of proteins 
from their heat-induced denaturation curves. Anal Biochem, 2000200020002000. 283(2): p. 207-13. 

24. Bohm, G. and Jaenicke, R., Correlation functions as a tool for protein modeling and structure 
analysis. Protein Sci, 1992199219921992. 1(10): p. 1269-1278. 

25. Becktel, W.J. and Schellman, J.A., Protein stability curves. Biopolymers, 1987198719871987. 26(11): p. 1859-77. 

26. Privalov, P.L., Stability of proteins: small globular proteins. Adv Protein Chem, 1979197919791979. 33: p. 167-

241. 

27. Saito, Y. and Wada, A., Comparative study of GuHCl denaturation of globular proteins. II. A 
phenomenological classification of denaturation profiles of 17 proteins. Biopolymers, 1983198319831983. 22(9): p. 

2123-2132. 

28. Myers, J.K., Pace, C.N., and Scholtz, J.M., Denaturant m values and heat capacity changes: relation 
to changes in accessible surface areas of protein unfolding. Protein Sci, 1995199519951995. 4(10): p. 2138-2148. 

29. Greene, R.F., Jr. and Pace, C.N., Urea and guanidine hydrochloride denaturation of ribonuclease, 
lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem, 1974197419741974. 249(17): p. 5388-5393. 

30. Scholl, I., Kalkura, N., Shedziankova, Y., Bergmann, A., Verdino, P., Knittelfelder, R., Kopp, T., 

Hantusch, B., Betzel, C., Dierks, K., Scheiner, O., Boltz-Nitulescu, G., Keller, W., and Jensen-

Jarolim, E., Dimerization of the major birch pollen allergen Bet v 1 is important for its in vivo IgE-
cross-linking potential in mice. J Immunol, 2005200520052005. 175(10): p. 6645-6650. 

31. Gaier, S., Marsh, J., Oberhuber, C., Rigby, N.M., Lovegrove, A., Alessandri, S., Briza, P., Radauer, 

C., Zuidmeer, L., van Ree, R., Hemmer, W., Sancho, A.I., Mills, C., Hoffmann-Sommergruber, K., 

and Shewry, P.R., Purification and structural stability of the peach allergens Pru p 1 and Pru p 3. 
Mol Nutr Food Res, 2008200820082008. 52: p. S220-S229. 

 

 



 

 

 
Differences of PRDifferences of PRDifferences of PRDifferences of PR----10 allergens and implications 10 allergens and implications 10 allergens and implications 10 allergens and implications 

for predicting crossfor predicting crossfor predicting crossfor predicting cross----reactivity of birch pollenreactivity of birch pollenreactivity of birch pollenreactivity of birch pollen----

related food allergensrelated food allergensrelated food allergensrelated food allergens    

    

    

    

    

    

    
 

This chapter has been submitted as: 

Bollen, M.A., Schenk, M. F., Wichers, H.J., Helsper, J.P.F.G., Savelkoul, H.F.J., and van 

Boekel, M.A.J.S., Differences of PR-10 allergens and implications for predicting cross-

reactivity of birch pollen-related food allergens. 



Chapter 5 

 94 

AbstractAbstractAbstractAbstract    
The major allergen from birch pollen, Bet v 1, is responsible for cross-reactivity to PR-

10 allergens from especially fruits from the Rosaceae and vegetables from the Apiaceae. 

It is believed that cross-reactivity is based on similarities of the tertiary structure of PR-

10 allergens, but as such cross-reactivity is poorly understood. The present study shows 

that IgE binding is not easily predicted on the basis of surface topology alone and that 

the differences in amino acid properties, surface charge and intermolecular interactions, 

all contribute to IgE. On the basis of structural properties of amino acids and secondary 

structure, the Rosaceae PR-10 were characterized as positively charged/polar proteins 

and the Apiaceae as negatively charged/hydrophobic proteins. Electrostatic potentials 

were calculated for structural models of PR-10 sequences to determine the charge 

distribution on the surface, which shows large charge differences among PR-10 

sequences compared to Bet v 1. This study also takes into account the effect of low pH 

of fruit resulting in protonation of amino acid side chains and the resulting changes in 

the electrostatic potential.  
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5555.1 Introduction.1 Introduction.1 Introduction.1 Introduction    
One of the major challenges in allergy research is to predict the allergenic potential of a 

protein. Molecular structure and biological function are highly important factors with 

regard to the identification of proteins as allergens. Only a few of the protein families 

that are described in the Pfam-database are known to contain allergens. In general, 

their biological functions are limited to hydrolysis of proteins, polysaccharides and 

lipids; binding of metal ions and lipids; storage; and cytoskeleton association [1, 2]. 

Besides having a limited number of biological functions, allergens have none or very 

few bacterial homologues, whereas a randomly selected group of control proteins have 

hundreds of bacterial homologues [3]. Furthermore, a relationship exists between 

allergenicity and the evolutionary distance from human homologues, showing that 

proteins are rarely allergenic when their amino acid sequence identity to human 

homologues is higher than 62% [4]. 

 Allergy to the major birch pollen allergen Bet v 1 is the primary cause for birch 

related allergies to foods of especially the Rosaceae and Apiaceae families. The high 

amino acid similarity among these homologues provides a molecular basis for cross-

reactivity [5]. Structural characterization, by X-ray crystallography and NMR studies, 

yields important information about the tertiary fold of the ubiquitous PR-10 protein 

family. However, observed differences in IgE binding to different naturally occurring 

isoforms of Bet v 1 can not be directly explained from this conserved three dimensional 

structure alone as both allergenic and hypoallergenic isoforms are structurally similar 

[6-8]. Over 50 unique Bet v 1 isoforms from various birch species have already been 

identified [9]. It is unclear whether all isoforms of Bet v 1 are relevant for cross-

reactivity to fruit and vegetables as the IgE reactivity of numerous Bet v 1 isoforms 

remains unknown. Selected on the basis of its high IgE reactivity, Bet v 1a (Bet v 1.0101 

or Bet v 1.2801 with mutation F62L) has become the most studied PR-10 isoform. This 

isoform is highly abundant among several birch species [10], although the other 

potential allergenic isoforms might be equally important for the induction of an allergic 

response. 

 A highly conserved region in the primary structure of PR-10 proteins is a glycine-

rich loop, referred to as the phosphate loop (P-loop, 45-EGNGGPGT-52 for Bet v 1). 

The Fab fragment of a monoclonal murine IgG1 antibody BV16, which inhibits the 

binding of human IgE to Bet v 1a, was crystallized in complex with the structure of Bet 
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v 1, showing that this antibody binds to Bet v 1 in the P-loop. Residue Asn43, Glu45, 

Gly46, Asn47, Pro50 and Gly51 of Bet v 1 were involved in hydrogen bonding to the 

Fab fragment [11]. Substitution of the acidic Glu45 residue in the P-loop by a polar 

serine, resulted in a 50% reduction of IgE binding capacity and no binding to the 

monoclonal BV16 antibody, suggesting that the P-loop is an important epitope. The 3D-

structure of the serine mutant and the wildtype Bet v 1 were identical as determined by 

X-ray crystallography [12].  

 Ever since, residue Glu45 is considered a critical amino acid for human IgE binding 

[12], but cannot be the only factor involved. The Bet v 1L isoform is hypoallergenic [6, 

7] and shows virtually no affinity to human IgE in in vitro studies [8]. However, the 

3D-structure of Bet v 1L is identical to Bet v 1a and its P-loop is 100% identical to all 

other Bet v 1 isoforms. Moreover, Pru av 1, Api g 1.01, and two isoforms of Mal d 1, 

were not able to bind to BV16, whereas residue Glu45 is conserved for Pru av 1 and Mal 

d 1 [13, 14]. This indicates that other residues are important for binding of BV16 and for 

human IgE as well. The amino acids Asn43, Asn47 and Pro50, which are forming 

hydrogen bonds between Bet v 1a and BV16, are substituted by Ile43, Asp47 and Val50 

in case of Mal d 1 and could be of comparable interest. Furthermore, the P-loop region 

is not completely conserved for the celery allergen Api g 1, which has a positively 

charged Lys at this position. An increase in IgE binding was observed for the 

substitution of this residue into the acidic residue Glu [14], but the mutation of a 

positively into a negatively charged amino acid could also cause an intramolecular 

rearrangement in the proteins as observed for mesophilic and thermophilic proteins 

[15]. 

 Potential IgE binding sites can be determined by site-directed mutagenesis studies of 

Bet v 1. However, such studies were driven by the creation of hypoallergenic mutants 

more than by the wish to elucidate the nature of cross-reactivity [16]. Other mutant 

studies are based on the different amino acids of Bet v 1a and the hypoallergenic 

isoforms Bet v 1d and Bet v 1L [17]. Many of the conclusions are drawn on the basis of 

immunoblotting or direct ELISA and for both methods the sensitivity may be 

influenced by conformational changes of the allergens [17-19]. Furthermore, these 

mutant studies are transferred to the cross-reactive allergens of the Rosaceae and 

Apiaceae. For these allergens it is mostly unknown if cross-reactivity is affected by 

changes in tertiary structure or protein stability.  
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 The PR-10 protein family contains several proteins that are known as allergens, 

while some members are hypoallergenic or have not been described as such. Previous 

studies have focused on identifying IgE epitopes on the basis of similarities between 

known allergens. In contrast, the present study focuses on differences and similarities 

between PR-10 proteins, including those of the Rosaceae and Apiaceae family, but also 

those which are not known as allergens. From this comparison, it becomes evident that 

prediction of IgE-binding cannot be based on surface topology of the putative binding 

site alone, and that such structure-function relationships are much more complex. 

Differences in amino acid composition of PR-10 proteins may lead to changes in their 

electrostatic potential. In our approach, the relevance of the charge state of the PR-10 

structure and its influence on IgE binding is considered. For this purpose, we searched 

the GenBank database for ESTs or mRNAs of PR-10 sequences that have been recovered 

from edible parts of fruits, nuts, legumes and vegetables. Some of these have been 

identified as allergen, while others are potential allergens.  

    

5555.2 Materials and methods .2 Materials and methods .2 Materials and methods .2 Materials and methods     
    

5555.2.1 Database search.2.1 Database search.2.1 Database search.2.1 Database search    
Bet v 1 homologues were recovered from GenBank/EMBL/DDJB by searching with 

MegaBLAST for entries with more than 25% sequence identity to Bet v 1a (X15877).  

This search was performed in April, 2007. We selected only mRNA sequences and ESTs 

that had been recovered from edible plant parts for further analysis. PR-10 proteins are 

present as a multigene family in many plants. Different PR-10 gene family members 

display a high degree of similarity within a particular plant species and to avoid 

redundancies, one complete sequence was randomly selected among the recovered 

databank entries (Table 1). 

 

5555.2.2 Amino acid.2.2 Amino acid.2.2 Amino acid.2.2 Amino acid properties properties properties properties    
Sequences were aligned to the sequence of Bet v 1a (X15877) using ClustalW and 

sequence identity was calculated. Next, a data table was created on the basis of Bet v 1’s 

secondary structure of the protein entry in the Protein Data Bank (PDB-entry; 1bv1) as 

assigned by the DSSP-algorithm in the graphical viewer Visual Molecular Dynamics 

(VMD) [20]. The protein was divided into nine structural elements (Table 2) by taking 
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one loop and/or random coil region together with the subsequent β-strand or α-helix. 

Among the PR-10 proteins, the chain length differs by a few amino acids at the C-

terminal end (residues 156 to 160). Therefore, residues 156 to 160 were not taken into 

consideration. The two short α-helices were taken together as these structures interact 

with all parts of the structure and are, not for all sequences, partially shielded by the 

same residues from the C-terminal end. The discussed P-loop region is included in the 

element that is represented by the third β-strand.     

  The amino acid residues were distinguished per element by four different 

characteristics: 1) positively charged/basic (His, Arg and Lys), 2) negatively 

charged/acidic (Asp and Glu), 3) hydrophilic/polar (Asn, Gln, Gly, Ser, Thr and Tyr), 

and 4) hydrophobic/non-polar (Ala, Cys, Ile, Leu, Met, Phe, Pro, Trp and Val). These 

characteristics are chosen on basis of the representation by VMD. The number of 

amino acids per characteristic and element were combined in a data table, which was 

subjected to a principal component analysis with Pirouettte 4.0 (Infometrix Inc, Bothel, 

WA, USA).     

    

5555.2.3 Structur.2.3 Structur.2.3 Structur.2.3 Structuralalalal modeling and energy minimization modeling and energy minimization modeling and energy minimization modeling and energy minimization    
To calculate the net charge and protonation states of PR-10 sequences, 3D protein 

models were built using SWISS-MODEL [21] for PR-10 sequences of grape (Vitis 

vinifera; CV096864 and EC931728), clementine mandarin (Citrus clementina; 

DY260937), Valencia orange (Citrus sinensis; EH406480), bell pepper (Capsicum 

annuum; CO912259), Ara h 8 from peanut (Arachis hypogaea; AY328088), Dau c 1.01 

from carrot (Daucus carota; Z81361) and Mal d 1, Mal d 1.06A02 and Mal d 1.06A03 

from apple (Malus domestica; X83672, AY789248, AY827701). These PDB-structures 

were submitted to energy minimization and a short equilibration (100 ps) in a water-

box in the VMD interface using NAMD molecular dynamics [22]. The original PDB-

entries of Bet v 1a (1bv1), Bet v 1L (1fm4), Pru av 1 (1e09) and Api g 1 (2bk0A) were 

taken from the RCSB protein data bank as well and treated similarly to rule out any 

effects of constraints. For this procedure, hydrogen atoms were added to the amino acid 

side chains of the PDB-files, followed by solvation of the protein in a water box with 10 

Å of water on each end of the molecule. The parameters used for the configuration file 

are described on the VMD website in the NAMD tutorial file 

(http://www.ks.uiuc.edu/Training/Tutorials/). CHARMM forcefield parameters were 



Differences of PR-10 allergens and implications for predicting cross-reactivity  

 99 

included at a simulation temperature set to 310 K. A 2 fs/step timestep with rigid bonds 

(fixed protein) and periodic boundary conditions were used with all molecules wrapped 

(wrapAll) at constant pressure. The protein was minimized for 1,000 steps to lower the 

potential energy, reinitialize the velocities to 310 K and eliminate bad initial contacts 

such as steric hindrance, bond length and bond angles. The equilibration was run for 

100 ps. The last frame of the trajectory file was considered as the energy minimized and 

equilibrated protein. Under similar conditions, the equilibration of Bet v 1L was run for 

2 ns to determine differences between the long and short equilibrations.  

 

5555.2.4 Electrostatic potential.2.4 Electrostatic potential.2.4 Electrostatic potential.2.4 Electrostatic potential    
Electrostatic potentials of the proteins were calculated for the energy minimized and 

equilibrated PDB-structures. PDB-files were converted to a PQR format by using 

PDB2PQR (version 1.3.0) [23] with a CHARMM forcefield [24]. PROPKA (Prediction 

of protein pKa values) Web interface [25] was used to assign protonation states in the 

pH range 3.0-8.0. The conversion to a PQR-file determines the side chain pKa values, 

places missing hydrogen atoms, optimizes the protein for favourable hydrogen bonding 

and assigns charge and radius parameters from the CHARMM forcefield. The 

electrostatic potentials were calculated by using APBS 0.5.0 (adaptive Poisson-

Boltzmann solver [26]) as a plug-in in VMD. A system temperature of 298.15 K was 

chosen with 0.15 M of mobile ions. The dielectric constants were set to 1.0 for the 

protein and 78.54 for the solvent (water). The electrostatic potentials were visualized in 

VMD and represented by their isosurfaces (blue as positive and red as negative charge). 

Pictures were rendered using Tachyon version 0.98, a program included in VMD. 
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5555.3 Results and Discussion.3 Results and Discussion.3 Results and Discussion.3 Results and Discussion    

    

5555.3.1 Primary structure propertie.3.1 Primary structure propertie.3.1 Primary structure propertie.3.1 Primary structure propertiessss    
PR-10 genes are transcribed in many food sources other than the plant species for 

which cross-reactivity by Bet v 1 homologues has been demonstrated. Table 1 lists the 

EST or mRNA sequences of PR-10 proteins, recovered from GenBank/EMBL/DDJB, 

which are transcribed in edible parts of plant foods. Not all plant foods, listed in Table 

1, have been described to cause birch-pollen related food allergy in which Bet v 1 acts 

as the primary sensitizer. For example, grape, mandarin and orange are regularly 

consumed fruits, but it is unknown whether these PR-10 proteins are expressed at low 

concentrations or whether cross-reactive epitopes are absent. The cross-reactivity of 

Rosaceae fruits, such as apple and cherry, and Apiaceae vegetables, such as carrot and 

celery, has been extensively studied. Table 1 shows the Genbank accession numbers, the 

allergen code, and the percentage of amino acid identity to Bet v 1a. The Rosaceae have 

an identity of approximately 55-60 % and are more related to Bet v 1a than the 

Apiaceae with an identity of 35-40 %. 

 Bet v 1a has been identified as an isoform with a high IgE-reactivity [6]. This 

isoform was shown to encompass approximately 40% of the total Bet v 1 content in 

pollen of Betula pendula Youngii [10]. Other abundant isoforms (20%) are highly 

similar to the hypoallergenic Bet v 1d or L (Bet v 1.0401 and Bet v 1.1001). However, 

the IgE binding capacity of the other 40% of the Bet v 1 content has not been 

determined or was shown to be intermediate. Little is known beyond the allergenic 

properties of Bet v 1a and Bet v 1L and there is also little information regarding the 

impact of individual isoforms on cross-reactivity. The differences in cross-reactivity 

between isoforms of Mal d 1 among different apple cultivars have recently been 

emphasized in a study of Gao et al. [27]. The isoforms of the iso-allergen Mal d 1.06A 

were shown to be associated with differences in allergenicity among 14 apple cultivars. 

Isoform variants 01 and 03 were shown to be associated with a higher allergenicity, 

while variant 02 was associated with a lower allergenicity as measured in skin prick 

tests. However, Mal d 1.0108 (indicated as Mal d 1) is the most frequently studied 

isoform. Therefore, sequences of Mal d 1.06A (and also Mal d 1.04) were also included 

for further analyses besides the sequence of Mal d 1 (Table 1). 
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Table 1Table 1Table 1Table 1. PR-10 sequences transcribed in fruits, vegetables, grains, nuts, legumes and seeds sorted by the 

overall amino-acid sequence identity to Bet v 1a (X15877). 

 Source 

 

EST or mRNA from  

edible part 

Allergen code  

(Genbank Acc No) 

 

Sequence identity 

to Bet v 1a 

 

 Beech nut (Fagus sylvatica)  AJ130889 -    69% 

 Hazelnut (Corylus avellana)   AF136945 Cor a 1.04 (AF136945)  67 % 

 Apple (Malus domestica)   AY789242 Mal d 1.04 (AY789242) 60 % 

 Apricot (Prunus armeniaca)   U93165 Pru ar 1 (U93165)  60 % 

 Cherry (Prunus avium)   U66076 Pru av 1 (U66076)  59 % 

 Peach (Prunus persica)   DQ251187 Pru p 1 (DQ251187)  59 % 

 Grape 1 (Vitis vinifera)   EC958497 -     58 % 

 Pear (Pyrus communis)   AF057030 Pyr c 1 (AF057030)  57 % 

 Apple (Malus domestica)   X83672 Mal d 1 (X83672)  56 % 

 Apple (Malus domestica)   AM283501 Mal d 1.06A  (AM283501) 55 % 

 Strawberry (Fragaria ananassa) AM236319 Fra a 1 (AM236319) 54 % 

 Grape 2 (Vitis vinifera) CV096864 - 53 % 

 Grape 3 (Vitis vinifera) EC931728 - 53 % 

 Cassava (Manihot esculenta)   DV457043 -     52 % 

 Valencia orange (Citrus sinensis)  EH406480 -    46 % 

 Soybean (Glycine max)   - Gly m 4 (X60043) 46 % 

 Peanut (Arachis hypogaea)   AY328088 Ara h 8 (AY328088)  45 % 

 Cluster bean (Cyamopsis tetragonoloba)  EG987166 -    44 % 

 Sweet potato (Ipomoea batatas)  CO499980 -    44 % 

 Sesame (Sesamum indicum)   BU668133 -     44 % 

 Cowpea (Vigna unguiculata)   CK151444 -     43 % 

 Oca (Oxalis tuberosa)   AF333436 -     43 % 

 Tomato (Solanum lycopersicum) AK427718 - 43% 

 Mungbean (Vigna radiata)   AY792956 Vig r 1 (AY792956)  42 % 

 Mandarin (Citrus reticulata)   DY260838 -     40 % 

 Celery (Apium graveolens)   Z48967 Api g 1.01 (Z48967)  40 % 

 Bell-pepper (Capsicum annuum)   CO912259 -     39 % 

 Yam-bean (Pachyrhizus erosus)   AY433943 -     39 % 

 Celery (Apium graveolens) Z75662 Api g 1.02 (Z75662) 39 % 

 Clementine mandarin (Citrus clementina) DY260937 - 38 % 

 Carrot (Daucus carota)   AF456481 Dau c 1.02 (AF456481) 38 % 

 Parsley (Petroselinum crispum)   X98688 -     38 % 

 Carrot (Daucus carota)   Z81361 Dau c 1.01 (Z81361)  36 % 

 Onion (Allium cepa)   CF452005 -     34 % 

 Asparagus (Asparagus officinalis)   AJ132612 -     33 % 

 Bread Wheat (Triticum aestivum)  CJ856226 -    31 % 

 Barley (Hordeum vulgare)   BI778636 -     31 % 

 Sorghum (Sorghum bicolor)   U60764 -     28 % 
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 In general, PR-10 proteins have a highly similar tertiary structure, while having 

several differences at the amino acid level. Therefore, the amino acid properties of the 

secondary elements, α-helix, β-strands and loops (Table 2), of the PR-10 sequences 

were investigated in detail studying the properties of the amino acid side chains in our 

analysis (positively charged, negatively charged, hydrophilic (polar) or hydrophobic). A 

principal components analysis (PCA) was performed on the properties per secondary 

element and the first two dimensions explained 40.5 % of the total variance (Figure 1). 

Several clusters were observed in the scores-plot of the PCA (Figure 1A). In general, 

PR-10 sequences within plant families, Betulaceae, Fabaceae (legumes), Rosaceae and 

Apiaceae, cluster together. The plot shows that the PR-10 sequences of the Fabaceae or 

legumes are more closely related to Bet v 1 than those of the Rosaceae and Apiaceae. 

Allergy to legume PR-10 is rather uncommon, although severe reactions have been 

observed for the soy allergen Gly m 4. Legumes are normally consumed as processed 

foods and the antibody binding capacity is depending on the rate of processing, which 

decreases with fermentation and heating time [28]. PR-10 sequences of asparagus, 

bread wheat, onion, sorghum and barley form a separate cluster, which is visible when 

the third dimension is taken into account. These sequences also have the lowest 

sequence identity to Bet v 1a. In conclusion, based on the properties of the amino acid 

side chains and secondary structure, we found no indication why PR-10 proteins in the 

Rosaceae family are more involved in Bet v 1-related allergies than those in the 

Fabaceae. 

 
Table 2Table 2Table 2Table 2. Sequence of Bet v 1 divided into secondary elements. 

 Name Amino acid residues Loop and/or random coil α-Helix or β-strand 

 β1 1-12 1-2 3-12 

 α1+2 13-34 13-14 15-34 

 β2_L1 35-46 35-40 41-46 

 β3_P-loop 47-58 47-52 53-58 

 β4_L2 59-76 59-67 68-76 

 β5_L3 77-88 77-80 81-88 

 β6_L4 89-107 89-95 95-107 

 β7_L5 108-123 108-112 113-123 

 α3_L6 124-155 124-130 131-155 
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Figure 1Figure 1Figure 1Figure 1. PCA plot of the amino acid characteristics of the secondary structure regions (Table 2) of PR-10 

sequences, including both allergens and proteins that have not been described as such. AAAA) Scores plot of the 

first two dimensions with the sources of PR-10 sequences with cross-reactive plant families indicated by 

ellipses. PR-10 sequences identified as allergens are shown in black with filled circles. Sequences of PR-10 

proteins that have not been described as allergens are displayed in gray with open circles. BBBB) Loadings plot of 

the first two dimensions of the variables, of the secondary structure components divided into the amino acid 

characteristics: positively charged (blue), negatively charged (red), polar (green) and hydrophobic (hphob, 

gray and open circles).   
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 The loadings plot (Figure 1B) can be used to quickly characterize the differences 

between PR-10 clusters and similarities in properties of PR-10 clusters per sequence 

region. The largest difference is observed for the region α3_L6, for which most 

Rosaceae PR-10’s contain more positively charged residues than Bet v 1a and for which 

the Apiaceae PR-10’s contain more hydrophobic residues and a reduced number of 

positively charged residues. The α1+2 region, especially α1, is shielded by the C-

terminal end (residue 155-160) of α3 for most PR-10 sequences, resulting in an 

increased number of hydrophobic residues. In general, the PR-10 sequences of 

Apiaceae are more hydrophobic than the Rosaceae, which contain more positively 

charged and polar residues. Api g 1 and Dau c 1 are especially more hydrophobic in the 

β5_L3, β6_L4, β7_L5 and α3_L6 regions, whereas these regions are more polar for Mal 

d 1, Pru av 1, Pyr c 1 and Pru p 1.  

 For region β4_L2 of Api g 1 and Dau c 1, two positively and three negatively 

charged residues have been substituted by polar residues compared to Bet v 1a. For 

Rosaceae, this region shows an increase in polar residues and is reduced by two 

negatively charged residues. The buried amino acids of this region are important for 

ligand binding as shown for several PR-10 proteins [8, 29]. The negatively charged 

residue Asp69 in the interior of Bet v 1 is not present in Api g 1 and is replaced by the 

hydrophobic residue Leu69. Mal d 1 and Pru av 1 have a positively charged residue His 

at this position. It is unknown whether a bound ligand has an effect on IgE binding, but 

the different residues indicate that PR-10 proteins of Rosaceae and Apiaceae may have 

different ligand binding properties. This may in turn have an effect on IgE binding as 

the interaction of the ligand changes the electrostatic potential of the protein surface.  

 In total, Api g 1 and Dau c 1 have eight positively and two negatively charged 

residues less than Bet v 1, which are substituted by mainly hydrophobic and polar 

residues. Mal d 1, Pru av 1, Pyr c 1 and Pru p 1 have an overall increased number of 

positively charged residues (two or three) and polar residues, which makes the 

Rosaceae PR-10 protein group more polar. Plotting the total number of hydrophobic 

residues versus the ratio of the number of positively and negatively charged residues 

(Figure 2) shows that Bet v 1a has a similar number of positively and negatively 

charged residues as the ratio is 1.0. Regions, indicated in this plot, show different 

characteristics: positively charged and polar; positively charged and hydrophobic; and 

negatively charged and hydrophobic. The Apiaceae are located close to some sequences 
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of the Fabaceae as opposed to the PCA analysis. The Rosaceae are more closely related 

to Bet v 1, especially the sequences of Mal d 1.04 and Mal d 1.06A. Several PR-10 

proteins which are not known to be involved in Bet v 1-related food allergies have 

intermediate characteristics between Bet v 1 and allergens of the Apiaceae and 

Rosaceae families as shown in Figure 1 and 2. Therefore, these sequences could be 

potential allergenic proteins as their structural characteristics are more related to 

Bet v 1.  

  

 
Figure 2Figure 2Figure 2Figure 2.Characteristics of PR-10 sequences from Table 2 based on the total amino acid count for AA 1-155. 

The total number of hydrophobic residues is plotted versus a ratio, which is the number of positively charged 

residues divided by the number of negatively charged residues. PR-10 sequences are considered positive 

above 1.00 and negative below 1.00. The dotted lines indicate sequences with similar properties.  

 

5555.3.2 Structural modeling.3.2 Structural modeling.3.2 Structural modeling.3.2 Structural modeling    
Three dimensional models of different PR-10 sequences were constructed by using 

existing PDB entries. All models, including the PDB structures from the PDB databank 

(Bet v 1a, 1bv1; Bet v 1L, 1fm4, Pru av 1, 1e09; and Api g 1.01, 2bk0A), were submitted 

to an energy minimization and a short equilibration in an aqueous environment. The 

short equilibration time can be used to study some of the dynamical processes, such as 
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hydrogen bond and salt bridge formation, of the protein in water. It is not within the 

scope of this study to add ions to the system, as this requires longer simulation time (at 

least 2 ns) in order to reach equilibrium between ion binding to and release from the 

protein. During the minimization and equilibration step, the polypeptide backbone and 

amino acid side chains have moved in the aqueous environment. The root mean square 

deviation (RMSD) was calculated per residue (Figure 3) to determine the movement of 

the minimized structures Bet v 1a, Mal d 1, Pru av 1 and Api g 1, as compared to the 

original PDB-file of Bet v 1. This was accomplished by a multiple structure alignment 

in VMD, which results in an overlay of all structures. Residues in the β-strands are the 

most stable in the structure and show little movement as observed from the RMSD-

plot. A larger RMSD is observed for the α-helices, with α3 showing an inward 

movement into the cavity as a result of the simulation (Figure 3, insert). The difference 

in RMSD for α2 of Api g 1 and Bet v 1a is observed in the original PDB-file [30] and is 

not a result of the simulation. The loop regions are the most flexible regions, and 

consequently show a high RMSD. The RMSD per residue is smallest for the 

equilibrated Bet v 1 structure. The inward movement of the α-helix can be explained 

by the absence of physiological ligands or other stabilizing molecules, such as water or 

ions, inside the cavity. 

 Interestingly, these short simulations show that the two salt bridge forming 

residues, Asp27 and the buried residue Lys54, are key residues, which are conserved 

among most PR-10 sequences. The formation and breaking of this salt bridge is 

influenced by the buried residue Asp69, a non-conserved residue which is important 

for ligand binding, as mentioned in the previous part. The ability of Bet v 1L to form 

salt bridges is influenced by Lys28, a residue which is replaced by Asn28 in Bet v 1a. In 

a 2 ns simulation of Bet v 1L, a salt bridge formed between Asp25 and Lys28. This 

prevents the formation of the Asp67-Lys54 salt bridge. The Asp27-Lys54 salt bridge can 

be broken, resulting in the formation of a salt bridge between Asp27 and Lys28, which 

allows the formation of the Asp69-Lys54 salt bridge. However, Bet v 1a is able to form 

both salt bridges. Furthermore, the formation of salt bridges is a dynamic process and 

responsible for changes in the electrostatic potential and could therefore affect 

antibody binding [31]. The salt bridge formation in Apiaceae PR-10 is reduced as a 

result of a reduced number of charged amino acids. 
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Figure 3Figure 3Figure 3Figure 3. RMSD of the aligned and energy minimized PDB models of Bet v 1, Mal d 1, Pru av 1, Api g 1 and 

Grape 3 compared to the non-simulated PDB-file of Bet v 1, 1bv1. The variable α-helix regions are shown as 

inserts for 1bv1 (red) and Api g 1 (blue, α1+2 with L1) and 1bv1 (red) with Mal d 1 (blue, L6 with α3).  

 

5555.3.3 Differences in electrostatic potentials.3.3 Differences in electrostatic potentials.3.3 Differences in electrostatic potentials.3.3 Differences in electrostatic potentials    
The modeled and equilibrated structures were used to calculate the electrostatic 

potential of the protein. Small changes in electrostatic properties can change the 

interaction with antibodies as the formation of an antibody-allergen complex requires 

both a high degree of complementarity in shape and chemical complementarity [32]. 

This chemical complementarity is determined by hydrophobic interactions, 

electrostatic interactions and proton donors and acceptors for hydrogen bond formation 

[33]. The overall net charge at neutral pH is negative for all PR-10 proteins (Figure 4). 

Dau c 1 and Api g 1 have the most negative net charge as supported by the observed 

difference between the positively and negatively charged residues (6 to 7 more 

negatively charged residues). Mal d 1.06A02 has a similar negative net charge, but a 

different ratio in positively and negatively charged residues. 
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Figure 4Figure 4Figure 4Figure 4. PR-10 net charge of energy minimized PDB-files (Bet v 1a, Bet v 1L, Pru av 1 and Api g 1) and 

structural models at pH 7.0.  

 

 By mapping the electrostatic potential on the surface of a protein, it is possible to 

better understand the interaction of IgE and the PR-10 protein via charged residues 

that play an important role as electron donors [34]. A general idea of important binding 

sites can be established by looking at PR-10 sequences of similar plant families. 

However, when electrostatic potentials of PR-10 proteins from different plant families 

are compared, more differences than similarities are observed. These differences are 

emphasized by the electrostatic potential as shown in Figure 5 for Bet v 1 (A), Api g 1 

(B), Dau c 1 (C), Mal d 1 (D) and a grape PR-10 (E). The electrostatic potentials are 

depicted as isosurfaces, showing the full range of the charge, and showing the positively 

(blue) and negatively (red) charged areas with the P-loop facing forward. These 

pictures show that charges around the P-loop are different among the PR-10 sequences, 

but within plant families, such as Api g 1 and Dau c 1 from the Apiaceae, the 

electrostatic potentials are similar. Therefore, cross-reactivity is hard to predict and the 

different mutant studies do not contribute to a better understanding. 
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Figure 5Figure 5Figure 5Figure 5. Electrostatic potentials of PR-10 proteins Bet v 1 (AAAA), Api g 1 (BBBB), Dau c 1 (CCCC), Mal d 1 (DDDD) and grape 

3 (EEEE). The blue and red isosurfaces represent the positive and negative charges, respectively. A cartoon 

representation of the Bet v 1 structure (FFFF) is shown oriented with the P-loop facing forward.  

 

5555.3.4 The P.3.4 The P.3.4 The P.3.4 The P----looplooplooploop    
The assignment of Glu45 as the most important amino acid of the IgE- epitope in the P-

loop has led to mutational IgE-epitope analyses in allergens as Pru av 1 and Api g 1 

whereas these proteins are different in their overall charge. For Pru av 1, residue 45 was 

substituted by Trp, creating a mutant with different properties (aromatic residue) and 

large steric hindrance. Although the 3D-structure is similar, as shown by NMR 

spectroscopy, IgE binding to this mutant is reduced [14]. In a mutant study of Api g 

1.01, the positively charged residue Lys44 was substituted by the negatively charged 

Glu, which resulted in increased, but also decreased IgE binding capacity [35]. This 

substitution changes the electrostatic properties at this part of the protein and can have 

an effect on long range ion pairs without affecting the structure [31]. Furthermore, β3 

of Api g 1 is different from Bet v 1, lacking a residue in the sequence, 42-EVK-44 

compared to 42-ENIE-45. The surface exposed Ile44 residue in Bet v 1 forms hydrogen 

bonds with the surface exposed Glu45, whereas Val43 is a buried residue in Api g 1 and 

Lys44 is in closer proximity to the negatively charged Glu42. When Lys44 is replaced 
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by a negatively charged residue, this would rather result in repulsion of charges on the 

surface, which may also affect IgE-binding considerably.  

 

5555.3..3..3..3.5555 Effect of pH on the electrostatic potential Effect of pH on the electrostatic potential Effect of pH on the electrostatic potential Effect of pH on the electrostatic potential    
Electrostatic interactions are important for protein-antibody interactions and 

membrane binding. A study by Mogensen et al. [36], showed that Bet v 1 and Mal d 1 

were bound to membranes in a pH dependent manner. The ability to bind to 

membranes was first discovered for the steroidogenic acute regulatory protein (StAR), 

which is a structural homologue of Bet v 1. StAR associates with lipid membranes of 

mitochondria at a pH around 3.5-4.0 by undergoing a conformational change [37]. It 

was suggested that binding of Bet v 1 and Mal d 1 is encouraged by electrostatic 

attractions at low pH when the protein is positively charged. A conformational change 

of the protein was visible upon in vitro membrane binding, observed as an increase in 

α-helix by circular dichroism, and a loss of tertiary structure by 1D-NMR [36].     

 In diagnostics and research studies, the effect of pH on the IgE binding to proteins 

in food products is generally not taken into account. The tested allergens are generally 

purified and dissolved in a buffer of neutral pH. PR-10 proteins have been described as 

cytosolic proteins and the pH of the cytosol is in general neutral. When fruits of the 

Rosaceae are eaten, the PR-10 sequences are released from the cytosol into an acidic 

environment, which has a pH of pH 3.3-4.0. This may cause protonation of negatively 

charged amino acid side chains. It takes approximately 30 seconds to reduce the pH in 

the oral cavity to 4.0 when eating acidic products [38]. The allergens will come into 

contact with the acid before they bind to antibodies. Protonation itself leads to an 

increase in the positive charge of the electrostatic potential and between pH 3.5- 4.5 

the total charge of most PR-10 proteins will be positive. Vegetables of the Apiaceae 

have a higher pH varying from pH 5.7 to 6.4 (http://www.cfsan.fda.gov/~comm/lacf-

phs.html), which was shown to minimally affect the overall charge. The positive charge 

can affect IgE binding as well as binding of the PR-10 to mucosal membranes.  

  To illustrate the effect of a physiologically relevant pH on the electrostatic 

potential, the electrostatic potentials were calculated for the original PDB-entries of Bet 

v 1a (pH=7.0), Api g 1.01 (pH=6.0) and Pru av 1 (pH=4.0), accordingly. Figure 6 shows 

the difference between PR-10 allergens in both food groups. Negatively charged areas 

are observed for Api g 1, whereas Pru av 1 is mostly positively charged. In the context 



Differences of PR-10 allergens and implications for predicting cross-reactivity  

 111 

of membrane binding, Pru av 1 and other fruits could cause oral allergy symptoms as a 

direct effect of membrane binding, whereas Api g 1 and other Apiaceae do not have 

this effect. This might explain differences between the IgE binding capacity of Apiaceae 

and Rosaceae, apart from the fact that most Apiaceae are eaten as cooked foods. 

 

 
Figure 6Figure 6Figure 6Figure 6. The effect of pH changes on the electrostatic potential of PR-10 allergens. A cartoon representation 

of Bet v 1a (AAAA, EEEE) shows the orientation of the PR-10 sequences presented by their electrostatic potential: Bet 

v 1a at pH 7 (BBBB, FFFF); Api g 1 at pH 6 (CCCC, GGGG); and Pru av 1 at pH 4 (DDDD, HHHH). 

 

 The charge and polar characteristics of Mal d 1.06A02 and Mal d 1.06A03 are more 

similar to the sequence of Bet v 1a than Mal d 1 (Figure 2). For these sequences models 

were created, by using the 3D-structure of Pru av 1 (PDB-entry: 1e09) as a template, to 

investigate the difference of amino acid Val12 of variant 02 and Ile12 of variant 03 and 

the difference between Mal d 1. Between pH 5.0-7.0, the calculated overall net charge 

shows a more negatively charged character of Mal d 1.06A02 than Mal d 1.06A03, 

which are both more negatively charged than Mal d 1. At pH 4, the isoforms are 

positively charged and Mal d 1.06A03 has the highest positive charge. Furthermore, 

Mal d 1.06A03 is able to form more hydrogen bonds than Mal d 1.06A02 at position 12 

with the surrounding amino acids Ile13, Glu147 and Val151, because of the longer side 

chain of Ile12.  

 The charge predictions depend fully on the prediction of the pKa-values and the 

correctness of the energy minimized conformation of the protein in a completely 

aqueous solution. The prediction of pKa-values depends not only on the position of 
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ionisable groups (buried or surface exposed), but also on interactions via hydrogen 

bonds [25]. These pKa-values are important as they can be used to determine 

differences in deprotonation or protonation of side chains at a specific pH, which can 

give an extra indication for differences in antibody binding sites. Therefore, differences 

in IgE binding between Bet v 1a and Bet v 1L and between Mal d 1.06A02 and Mal d 

1.06A03 could be partially explained by charge differences caused by side chain pKa-

values of the negatively charged residues and histidine. These pKa-values are affected 

by intramolecular interactions, which can be decisive for the charge state of the 

allergen at acidic pH. 

 

5.4 Concluding remarks5.4 Concluding remarks5.4 Concluding remarks5.4 Concluding remarks    
By characterizing the secondary structure by properties of amino acids, clear differences 

are observed for the PR-10 plant families of the Rosaceae and Apiaceae. The Rosaceae 

are more related to the Betulaceae, but are in general more positively charged and polar. 

The Apiaceae are more negatively charged and hydrophobic. The Fabaceae are closely 

related on the basis of the amino acid side chain properties of the secondary structure, 

but the overall negative charge is comparable to Apiaceae. Moreover, the characteristics 

of the PR-10 sequences of foods for which PR-10 cross-reactivity has hardly been 

described, are less pronounced in characteristics and are in closer proximity to Bet v 1 

than the Rosaceae and Apiaceae. Nevertheless, allergic responses of this group are rarely 

reported and could imply that these PR-10 sequences are expressed at very low amounts 

as was shown for studies on grape allergens. Furthermore, for grape it is unknown what 

the effects are of the high tannin (polyphenol) content on the protein structure and 

concentration during eating [39, 40]. Enzymatic effects on polyphenols have been 

described to decrease the IgE-binding capacity of Mal d 1 [41]. 

 Electrostatic complementarity is one of the driving forces in protein-antibody 

binding. However, the electrostatic potentials, shown on the 3D-structure of Bet v 1 

cross-reactive PR-10 sequences, indicate that it is troublesome to draw consistent 

conclusions on conformational epitopes. The difference in charge and hydrophobic 

residues between Bet v 1 and other allergens is responsible for the IgE-binding capacity, 

depending on the surface topology of IgE-antibodies. To understand the differences in 

cross-reactivity of PR-10 proteins, the different characteristics of amino acid side chains 

should be taken into account, when a site-directed mutagenesis study is performed. The 
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influence of the pH of fruit on PR-10 allergens is unknown, but suggests that IgE-

binding could be directed to a positively charged surface of Rosaceae PR-10 and a 

negatively charged surface of Apiaceae PR-10. A lower pH and changes in the 

electrostatic potential could also induce membrane binding to mucosal areas or could 

introduce conformational changes in the protein that affect IgE-binding. Furthermore, 

molecular dynamics could be well suited to explain differences between Bet v 1a and 

Bet v 1L including the effect of introduced mutations, but requires experimental 

evidence. A well suited analytical approach to determine possible IgE epitopes of Bet v 

1 and differences among groups of plant families, would be amino acid shaving, for 

which residues are only substituted by Alanine [42]. A first step is to understand the 

differences in IgE-binding capacity between Bet v 1 isoforms before the transfer is made 

to cross-reactive allergens. 
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6666.1 .1 .1 .1 IntroductionIntroductionIntroductionIntroduction    
Phylogenetic analysis results in overall topology of the relationships between the amino 

acid sequences of PR-10 related proteins with a proven allergenicity, and provides a tool 

to predict possible relationships at the amino acid level and protein structure. By 

constructing a phylogenetic tree based on the available PR-10 allergen sequences in the 

UniProt database (Table 1), the different PR-10 sequences grouped according to large 

families from the Betulaceae, Rosaceae, Apiaceae and the Fabaceae (Figure 1). 

Apparently, a large discrepancy exists between the amino acid sequence and the final 

allergenicity of the protein, as illustrated by the sequence identity between the 

allergenic sequence Bet v 1a and the hypoallergenic sequence Bet v 1L despite their 

largely different capacity in IgE binding. Alternatively, Dau c 1 and Api g 1 sequences 

are situated far apart from the Bet v 1, with low sequence identity, but share a profound 

IgE cross-reactivity. The allergenic potential of the various PR-10 protein family 

members is thus not only based upon the primary amino acid relationships. Therefore, 

studies into the functional properties of these proteins, such as structure-function and 

stability studies are required to explain the allergenic potential of these PR-10 family 

members. 

 The first aim of this study was therefore to characterize and identify differences 

between PR-10 proteins as compared to the major birch pollen allergen Bet v 1. For this 

purpose the allergens Api g 1 and Dau c 1 were purified from their natural sources. 

Subsequently, thermodynamic stability studies were performed on the natural allergen 

mixtures and the most commonly used recombinant isoforms: Bet v 1.0101, Api g 

1.0101 and Dau c 1.0103. The second aim was to find a relation between the physico-

chemical stability of PR-10 proteins as differences in the allergen’s structural properties 

and stability could explain the differences observed for the IgE binding capacity. The 

same factors are likely to predict the allergenic nature of other homologous PR-10 

proteins. By investigating PR-10 proteins, using a bioinformatics approach and 

including pH-effects demonstrated the distinction between the two major families, 

Rosaceae and Apiaceae, of birch pollen related cross-reactive food allergens. In general, 

this study has applied a different approach in allergen characterization, which can lead 

to improved understanding of the relationship between (structural) stability and 

differential IgE binding of the various isoforms to which people are exposed. 

 



General Discussion 

 121 

Table 1Table 1Table 1Table 1. PR-10 allergen sequences from Betulaceae trees, Rosaceae fruits, Apiaceae vegetables and Fabaceae 

legumes sorted by the overall amino-acid sequence identity to Bet v 1a (P15494). 

 Source 

 

Family UniProt 

Accession No 

Allergen 

code  

Sequence identity 

to Bet v 1a 

 Birch pollen (Betula pendula) Betulaceae P15494 Bet v 1a 100 % 

 Birch pollen (Betula pendula) Betulaceae P43177 Bet v 1d 96 % 

 Birch pollen (Betula pendula) Betulaceae P43185 Bet v 1L 94 % 

 Alder (Alnus glutinosa) Betulaceae P38948 Aln g 1 81 % 

 Hornbeam (Carpinus betulus) Betulaceae P38949 Car b 1 73 % 

 Hazel (Corylus avellana)   Betulaceae Q08407 Cor a 1.01 73 % 

 Hazelnut (Corylus avellana)   Betulaceae Q9SWR4 Cor a 1.04  67 % 

 Apple (Malus domestica)   Rosaceae Q4VPL0 Mal d 1.04 60 % 

 Apricot (Prunus armeniaca)   Rosaceae O50001 Pru ar 1  60 % 

 Cherry (Prunus avium)   Rosaceae O24248 Pru av 1  59 % 

 Peach (Prunus persica)   Rosaceae Q2I6V8 Pru p 1   59 % 

 Pear (Pyrus communis)   Rosaceae O65200 Pyr c 1  57 % 

 Apple (Malus domestica)   Rosaceae P43211 Mal d 1  56 % 

 Apple (Malus domestica)   Rosaceae B0B0M5 Mal d 1.06A 55 % 

 Strawberry (Fragaria ananassa) Rosaceae Q2565S2 Fra a 1 54 % 

 Raspberry (Rubus idaeus) Rosaceae Q0Z8U9 Rub i 1 fragment 

 Soybean (Glycine max)   Fabaceae P26987 Gly m 4  46 % 

 Peanut (Arachis hypogaea)   Fabaceae Q6VT83 Ara h 8  45 % 

 Mungbean (Vigna radiata)   Fabaceae Q2VU97 Vig r 1  42 % 

 Celery (Apium graveolens)   Apiaceae P49372 Api g 1.01  40 % 

 Celery (Apium graveolens) Apiaceae P92918 Api g 1.02  39 % 

 Carrot (Daucus carota)   Apiaceae Q8SAE7 Dau c 1.02  38 % 

 Carrot (Daucus carota)   Apiaceae O04298 Dau c 1.01   36 % 
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Figure 1Figure 1Figure 1Figure 1. Phylogenetic tree of PR-10 allergens from the Betulaceae, Rosaceae, Fabaceae and Apiaceae. The 

multiple sequence alignment and neighbour joining was carried out with ClustalW2 at the EMBL-EBI 

website.  

    

    

6666.2 .2 .2 .2 PRPRPRPR----10 10 10 10 protein protein protein protein stabilitystabilitystabilitystability    

    

6666.2.1 .2.1 .2.1 .2.1 Mal d 1 and Gly m 4Mal d 1 and Gly m 4Mal d 1 and Gly m 4Mal d 1 and Gly m 4    
The general purification protocol, as described in chapter 2 allows the  purification of 

the PR-10 allergens Api g 1 and Dau c 1 and can also be used for the purification of Bet 

v 1. However, when applying the same protocol to purify Mal d 1 from apple and Gly 

m 4 from soybean results were less satisfactory. In apples, Mal d 1 is present in very low 

concentrations, resulting in low yields or complete loss of the allergen during 

purification. Therefore, we discontinued the purification of Mal d 1, as affinity 

chromatography has been shown to perform better [1], although it is unknown 
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whether the antibodies used for affinity chromatography are selective for certain 

isoforms. Gly m 4 is present in a completely different matrix since soybeans need to be 

defatted before making a protein extract. The major allergenic soy protein are the seed 

storage proteins such as legumins, vicilins, glycinin and β-conglycinin. Gly m 4 is only 

a minor part of the protein fraction. One of the subunits of glycinin has the same 

molecular weight as Gly m 4 and was interfering on SDS-PAGE gels [2]. Therefore, the 

protocol in chapter 2 is not suitable for purification of Gly m 4. 

 For the low yield of purified nMal d 1, the CD spectrum was similar to that for nApi 

g 1 (Figure 2A). It is expected, as described in chapter 2, that different Mal d 1 isoforms 

are present in the purified Mal d 1 solution. The heat denaturation curve was obtained 

after heating to 95 °C at 1 °C/min followed by cooling down at the same rate (Figure 

2B). A midpoint of thermal denaturation, Tm, was determined around 75 °C and the 

protein was able to refold for at least 80%. The concentration used to measure thermal 

denaturation for Mal d 1 was at least 2 times lower (below 5 μM) than for the other 

measured allergens and resulted in increased noise in the curve. As a result of a higher 

Tm and increased noise, a two-state denaturation curve, to determine ∆HTm as shown in 

chapter 4, could not be fitted to the data points. Nevertheless, Tm of the natural allergen 

is different from rMal d 1.0108 as shown by Bohle et al. [3], which did not show a clear 

thermal transition. The Tm measured for nMal d 1 is 10 °C and 5 °C higher than those 

obtained for rBet v 1 and rApi g 1, respectively. The recombinant Mal d 1.0108 of Bohle 

et al. [3] did not have the ability to refold, whereas a study by Ma et al. [4] showed the 

ability of rMal d 1.0108 to refold completely. Bohle et al. [3] used a 5-10 times higher 

protein concentration, which could have influenced thermal unfolding. The difference 

in refolding capacity could also be caused by differences in folding of recombinant 

proteins during production and purification. These observations suggest that stability 

studies may be especially useful to determine differences between batches of 

recombinant allergens.   

    

6666.2.2 Thermal stability.2.2 Thermal stability.2.2 Thermal stability.2.2 Thermal stability    
The differences in thermal stability between different PR-10 allergens can be partially 

explained from the differences between homologous proteins from mesophiles and 

thermophiles. Mesophiles are organisms with an optimal growth temperature between 

20 to 40 °C and thermophiles live at temperatures above 55-60 °C [5]. Thermophilic
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Figure Figure Figure Figure 2222.... CD spectra of purified nMal d 1 and nApi g 1 (A) and thermal denaturation curve of nMal d 1 

encompassing the heating and cooling patterns, measured at 222 nm (B). 

         

proteins are built to function optimally under extremely high temperatures, and are 

protected from denaturation by differences in amino acid composition as compared to 

mesophilic proteins [6, 7]. Large data sets of structurally aligned mesophilic and 

thermophilic proteins, and others for 3D-structures are available (e.g. the PDB-

databank) which may be combined to explain the differences in stability. Only small 

differences in thermal stability were found between Bet v 1 and Api g 1 (chapter 3), but 

their amino acid composition and hydrophobic and charge properties are different 

(chapter 5). In contrast, the heat stability of Api g 1 was quite different from that of 

Dau c 1 while both allergens showed 80.5 % identity in overall amino acid 

composition.   

 In general, the proportion of charged residues, especially Glu and Lys, and the 

hydrophobic residues Ile and Val are increased in thermophilic proteins. Some of the 

residues are less abundant in proteins that are biologically active at high temperatures, 

such as Ala, Met, Cys, Asn  and Gln. At elevated temperature Met and Cys , due tot the 

presence of a sulphur group, can undergo oxidation and Asn and Gln can be deamidated 

[6, 8]. The relative amino acid composition of Bet v 1a, Bet v 1L, Mal d 1, Mal d 1.06A, 

Api 1 and Dau c 1 is shown in Table 2 with the averages for proteins in general [9]. 

Amino acids of the respective PR-10 allergens that are less or more abundant than for 

average proteins, have been indicated with light grey and dark grey, respectively 

(difference >1 %). Bet v 1 and the Mal d 1 isoforms have an increased fraction of 

charged amino acids, in particular Lys and Glu, as compared to Api g 1 and Dau c 1 
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(chapter 5). This could be important for an increased stability, especially because these 

residues are able to form salt bridges and hydrogen bonds. Figure 3 shows the 

differences in charged residues and hydrogen bonds on the surface of the β-sheet of Bet 

v 1a and Api g 1. Most of these charged residues can be found on the C- or N-terminal 

ends of the β-strands of Bet v 1a and can therefore increase stability of the β-sheet. Api 

g 1 does not have these charged residues and consequently can not form hydrogen 

bonds and salt bridges to the same extent as Bet v 1a.     

 Api g 1 and Dau c 1 have an increased Ile and Val content, compared to proteins in 

general. These amino acids can stabilize the protein as they do in thermophilic proteins. 

Bet v 1a and Api g 1 are  stabilized by the high proportions of charged and hydrophobic 

residues, respectively, both resulting in similar Tm values. On the other hand, Dau c 1 is 

less thermo stable, which could be a result of fewer hydrophobic interactions due to the 

higher content of the small Ala residues. Other, less pronounced stability factors in 

thermophilic proteins are a low proportion of the polar Ser and Thr residues [7]. Thus, 

the higher proportion of these residues in Dau c 1 than for Api g 1 could explain the 

lower stability of the former. Furthermore, a higher Tm is observed for (purified) Mal d 

1 [3] as compared to Bet v 1a  and this increase in thermal stability could be caused by a 

higher proportion of charged and/or hydrophobic residues, e.g. Ile (and Val for Mal d 

1.06A). The amount of polar residues is also higher in Mal d 1, which could have a 

negative effect on stability, giving a possible explanation for the inability of rMal d 

1.0108 to refold under certain conditions. The differences and similarities in protein 

stability can also be explained by thermodynamic stability, as described by Pace [10] 

and Myers and Pace [11]. In the first study the contribution of the hydrophobic effect 

to globular protein stability is described. Pace found that proteins gain 5.4 kJ/mol in ∆G 

for each buried -CH2 group of a hydrophobic residue [10]. In the second study Myers 

and Pace [11] concluded that uncharged hydrogen bonding of polar residues stabilizes 

proteins by 4.2 to 8.4 kJ/mol per intramolecular hydrogen bond. Therefore, differences 

in stability between PR-10 proteins can be readily explained by differences in 

proportion of polar (charged and uncharged) and hydrophobic residues.    
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Figure Figure Figure Figure 3333.... Hydrogen bonds between charged residues on the surface of Bet v 1 (AAAA, PDB-entry; 1bv1) and Api g 

1 (BBBB,    PDB-entry; 2bk0). Negatively charged residues are shown in red and positively charged in blue. 

Hydrogen bonds are shown as green wires (cutoff values: distance 4.0 Å and bond angle 30°). 

 

 

6666.2.3.2.3.2.3.2.3    Stability towards denaturants and Stability towards denaturants and Stability towards denaturants and Stability towards denaturants and pH pH pH pH     
In chapter 4, it was shown that the natural isoform mixtures of Api g 1 and Dau c 1 are 

stable to heating at a low pH, an observation different from rBet v 1 and also rPru p 1 

[12, 13], but similar to pH dependence properties as found for patatin [14], a soluble 

protein from potato tuber also known as the allergen Sol t 1. This protein maintains its 

secondary structure at low pH and does not unfold between 20 and 80 °C at pH 2, 3 and 

4 [14]. Patatin showed both unfolding and precipitation at pH 6, which was also 

observed for nApi g 1 and nDau c1 in the pH range of 4.4-6.0. The conformation, most 

stable to heating, is attained for all three proteins at approximately pH 6.0, which is 

close to their iso-electric points [14]. Api g 1, Dau c 1 and patatin have an iso-electric 

point below 5.0 and proteins are generally more stable near their iso-electric point [15]. 

The allergen’s electrostatic charges are neutral around its pI. This probably leads to 

increased exposure of hydrophobic sites causing the protein to precipitate. In general, 

proteins are more soluble at a pH more remote from the iso-electric point, because of 

the lower hydrophobic exposure, which explains the refolding capacity observed at a 

pH above 6.0. At a pH below the iso-electric point, small changes in the secondary 

structure are observed, which can be explained by altered electrostatic interactions. 
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Aspartic acid and glutamic acid residues are protonated at low pH and this will change 

the overall net charge from negative to positive resulting in the stabilization of the 

structure of Api g 1 and Dau c 1 [9]. 

  As mentioned in chapter 4, differences in protein stability in Guanidine 

hydrochloride experiments, can be ascribed to differences in charged and hydrophobic 

residues. This property is apparent in chapter 5 and is confirmed by the denaturation 

experiments in chapter 4. Recombinant Bet v 1.0101 showed polar unfolding as 

illustrated by the high value of mD-N value and the steep slope in the transition (chapter 

4; Table 1 and Figure 1). Recombinant Dau c 1 has a polar His6-tag and this may have 

resulted in unfolding behaviour similar to polar unfolding. Api g 1 is most stable 

towards denaturant, which is probably related to a more optimal hydrophobic packing 

compared to Bet  v 1 and Dau c 1. The difference between the denaturant stability of 

Api g 1 and Dau c 1 can therefore be similarly explained as for thermal unfolding: Dau c 

1 has more polar (uncharged) residues and less hydrophobic residues.   

 

6666.3.3.3.3    The Bet v 1 superfamily and The Bet v 1 superfamily and The Bet v 1 superfamily and The Bet v 1 superfamily and membrane membrane membrane membrane bindingbindingbindingbinding        
Classification of allergens on the basis of structure and function showed that 707 

allergens belong to 134 different allergen families, which together contain 184 protein 

family domains. This is only 2% of the 9318 known protein families [16]. The biological 

function of allergens remains unclear in many cases, although certain protein families 

are involved in biochemical functions such as hydrolysis of proteins, polysaccharides 

and lipids; metal and lipid binding; transport; storage; and cytoskeleton association [16]. 

The tertiary fold of Bet v 1 has been shown to be distributed throughout all three 

biological superkingdoms (Archaea, Bacteria and Eukarya). These related proteins show 

low sequence similarity but many of them are involved in the binding of hydrophobic 

ligands such as membrane lipids. Bet v 1 has also been shown to bind various ligands 

[17]. 

  Bet v 1 is not only able to bind ligands, but was also shown to bind and 

permeabilize membranes [18]. This property was discovered for one of the structurally 

related proteins, the steroidogenic acute regulatory protein-related lipid transfer 

(START) domain MLN64 from human and StarD4 from mouse, which both have an 

extra N-terminal α-helix and two additional β-strands in the β-sheet as compared to Bet  

v 1 [19]. The structure of the START domain of the steroidogenic acute regulatory 
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protein (StAR) is predicted to be closely related to MLN64 and StarD4 and is responsible 

for the transport of cholesterol from the outer to the inner mitochondrial membrane. 

Different studies have shown that StAR acts exclusively on the outer membrane of 

mitochondria in the cytoplasm. A conformational change of StAR at pH 3.5 was 

characterized as a molten globule state, a partially unfolded protein which has lost some 

of its tertiary structure but retained its secondary structure. This allowed the protein to 

associate with membranes. When StAR is exposed in vivo to protonated phospholipids 

of the mitochondrial membrane, the hydrophobic residues are exposed to the StAR 

surface, the protein changes conformation and the C-terminal α-helix of StAR is 

partially inserted into the membrane [19-21]. Moreover, in the presence of  membrane 

lipids the C-terminus of the protein is protected from digestion by pepsin or trypsin 

[19]. Furthermore, most of the StAR characteristics seem to apply to Bet v 1.  

 A membrane binding study was performed with Bet v 1 and Mal d 1 and both 

allergens were shown to bind phospholipid membranes with the ability to change 

conformation and the property to protect against proteolysis [18]. Bet v 1 was shown to 

form an enriched α-helical structure at pH 3.3 in the presence of sonicated, zwitterionic 

lipid vesicles. This structural change was even more pronounced at pH 6.5 and below in 

the presence of anionic lipid vesicles. In the presence of micelle-forming 

lysophospholipids, an increase in α-helix was observed throughout the pH range 2.3-

9.3. Together with the α-helix content, also the proportion of random coil increased, 

indicating that the membrane binding states were partially unfolded. Furthermore, the 

conformational change protects the protein from proteolytic degradation which may be 

due to shielding of the N- instead of the C-terminal part as shown for StAR [18].  

 A major difference between Bet v 1 and both Api g 1 and Dau c 1 was the unfolding 

of Bet v 1 at acidic pH with a midpoint around pH 3.6 whereas Api g 1 and Dau c 1 

were shown to be stable below pH 4.0 (chapter 4). Bet v 1 clearly showed unfolding to a 

denatured state at low pH without the formation of a stable intermediate [12, 18]. It can 

be speculated that Api g 1 and Dau c 1 are able to form a molten globule state at low pH 

similar to the properties of StAR, whereas Bet v 1 lacks this ability. A molten globule 

state was not confirmed in our study, but it is very likely that membrane binding also 

occurs for Api g 1 and Dau c 1.  

 Similar membrane binding properties were shown for β-lactoglobulin [22] and α-

lactalbumin [23], which are major cow milk allergens from the whey fraction [24]. The 
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α-helix content in both milk proteins increased when the proteins bound to anionic 

membranes when lowering the pH. Similar to Bet v 1 [18], a decrease in tertiary 

structure was observed for α-lactalbumin. These membrane binding interactions were 

shown to be driven by electrostatic and hydrophobic interactions [22]. Bet v 1, β-

lactoglobulin and  α-lactalbumin have a pI of 5.4, 5.3 and 4.2-4.5, respectively, and the 

net charge of a protein becomes positive at pH values below pI. In case of StAR, a 

mitochondrial proton pump in the membrane is associated with the activity of StAR. 

This proton pump creates a local pH, which is needed for membrane binding. In living 

cells, Bet v 1 and PR-10 proteins are located in the cytoplasm (cytosol) where the pH is 

neutral and therefore a pH gradient at membranes would be necessary for zwitterionic 

membrane association [21]. The StAR membrane binding mechanism thus suggests that 

negatively charged membranes are not a prerequisite for conformational changes 

whereas at the same time a pH gradient is created by the proton pump. The influence of 

pH and the charge distribution on the protein can be important for fast membrane 

binding and yet unknown protein-antibody interactions, as was shown in chapter 5. 

Protein membrane binding is even more important as it may result in membrane 

disruption and cell leakage, thereby permitting the start of the immunological 

sensitization process. 

  

6666.4 .4 .4 .4 Fibril aFibril aFibril aFibril aggregation of allergenic proteinsggregation of allergenic proteinsggregation of allergenic proteinsggregation of allergenic proteins    
An allergen is a normally innocuous protein, which is considered harmful when the 

immune response is aberrant. It is not well understood what structural features of 

allergenic proteins induce the development of allergic diseases, but many allergenic 

proteins contain large hydrophobic portions, which are prone to aggregation. These 

proteins include animal lipocalins, lipid transfer proteins, pathogenesis related proteins 

and seed storage proteins [25]. Many food proteins are known to form soluble or 

insoluble aggregates, but little is known about the immunogenicity of these aggregates 

and whether or not this property is important in the development of allergies.    

 Under appropriate conditions, proteins form aggregates, which result in the 

formation of highly ordered β-structures, also known as amyloid fibrils. Amyloid fibrils 

are known to cause diseases such as Alzheimer’s disease, Parkinson’s disease, type 2 

diabetes and prion disorders (Creutzfeldt-Jakob disease) [26]. Simple variations in 

physico-chemical conditions such as temperature, protein concentration and ionic 
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strength can lead to the formation of fibrils. Mechanical influences such as agitation can 

have a similar effect [27]. The formation of amyloid fibrils can, in a variety of proteins, 

be triggered by membranes containing negatively charged phosphatidylserine. An 

instantaneous formation of fibrils is observed for lysozyme, insulin, glyceraldehyde-3-

phosphate dehydrogenase, myoglobin, transthyretin, cytochrome c, histone H1 and α-

lactalbumin [28]. These proteins have been shown to be cytotoxic or involved in the 

induction of apoptosis. Similar to Bet v 1 and β-lactoglobulin, they can bind membranes 

containing negatively charged phospholipids. A search in the Pubmed database shows 

that all these proteins, except for histone H1, have been described as allergens. Increases 

in the α-helix content for protein binding at the membrane could be of importance for 

the transition into the amyloid β-sheet structure as this was observed for the islet 

amyloid polypeptide and medin [29, 30]. 

 The ability to form amyloid fibrils is also common for other allergens. It is a 

dynamic process, which can be influenced by different factors. For example, the 

interaction of κ-casein from milk with phospholipid membranes increased fibril 

formation, but fibril formation was inhibited when membrane binding was enhanced 

upon the addition of αS-casein and β-casein [31]. The milk allergen α-lactalbumin 

formed amyloid fibrils at low pH where it adopts a molten globule state. This allergen is 

more susceptible to fibrillation when present in the disordered form, called S-

(Carboxymethyl)-α-lactalbumin, with three out of four reduced disulfide bonds [32]. 

Amyloid fibril formation in ovalbumin, an allergen from fresh egg-white, was observed 

in heat denaturation experiments where it forms soluble aggregates together with heat 

denatured ovalbumin [33]. On the other hand, formation of ovalbumin amyloid 

aggregates was inhibited when heme was added during heating [34]. It is unknown if 

fibril aggregates are involved in the development of allergies, but when they are in the 

range of available conformational structures of homologous allergens will increase 

significantly.  
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6666.5 .5 .5 .5 AllergenAllergenAllergenAllergenicity of icity of icity of icity of modifmodifmodifmodified allergens ied allergens ied allergens ied allergens  
An important effect of processing is the post-translational modification of allergenic 

proteins by a variety of reactions created by factors such as pH, enzymatic and non-

enzymatic reactions. Proteins can also denature and form soluble or insoluble 

aggregates. Most food allergens are known as stable allergens, but birch pollen related 

food allergens from the PR-10 family are generally regarded to be unstable. In several 

studies it has been shown that the IgE binding capacity of celery was almost completely 

lost by various processing technologies [35-37] and IgE reactivity of rPru av 1 from 

cherry and Mal d 1 extracts from apple were remarkably decreased by enzymatic and 

non-enzymatic browning [38, 39]. 

 The reduction of the IgE binding capacity as mentioned above is influenced by the 

complexity of the matrix and is not translatable to allergens in aqueous solution. A 

small reduction of IgE reactivity by heating for 30 minutes at 95 °C of natural isoform 

mixtures and recombinant isoforms of Bet v 1, Api g 1 and Dau c 1 has been described 

in chapter 3. Heating for 2 hours at 100 °C was more effective and showed a more than 

500-fold reduction. On the other hand, 60 minutes cooking of different recombinant 

allergens, Bet v 1, Mal d 1, Api g 1 and Dau c 1, completely abolishes IgE binding, but 

without a reduction of the capacity to activate allergen-specific T-cells [3]. The stability 

of natural Api g 1 and Dau c 1 at low pH, as shown in chapter 4, could be due to the 

exclusion of the matrix. As mentioned above, isolated patatin has properties similar to 

natural Api g 1 and Dau c 1 at low pH, but van Koningsveld et al. [40] observed 

precipitation of patatin in protein extracts below pH 4. This was explained by the 

ability of proteins to form stable soluble or insoluble complexes with plant polyphenols, 

which influenced precipitation. Moreover, heat-induced aggregation of patatin resulted 

in irreversible unfolding of patatin with a reduction of the IgE-binding capacity by 25-

110 fold [41]. This reduction in IgE binding is also expected for the precipitate formed 

for heated Api g 1 and Dau c 1 between pH 4.4-5.6. The effect of other proteins and 

matrix components on Api g 1 and Dau c 1 is as yet unknown.  

 Also gastrointestinal digestion generally destroys IgE binding, but not T cell 

activation, though activation is less for digested than for undigested allergens, especially 

for rApi g 1.0101 [42]. It has been shown that aggregation of allergens can lead to 

protection of the allergen against pepsin and result in no or incomplete digestion, 

followed by higher proliferation of activated T-cells [42]. Protective effects to digestion 
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are also observed upon membrane binding of rBet v 1.0101 and rMal d 1 [18], while 

other PR-10 allergens are generally considered to be susceptible to pepsin digestion 

[43]. The protective effect against digestive enzymes makes it possible to explain several 

reported cases on allergic mono-sensitization to Dau c 1[44, 45].  

  

6.6 6.6 6.6 6.6 Food Food Food Food systems systems systems systems andandandand system system system systemssss biology biology biology biology    
Macromolecular crowding has an effect on biochemical reactions in the cytoplasm of 

living cells that take place at a high concentration of macromolecules (50-400 mg/ml) 

where they are susceptible to nonspecific interactions. These nonspecific interactions 

are of biological importance and influence various cellular processes, but are missed in 

in vitro studies [46]. Many food allergens are present in a matrix with a low water 

content. For in vitro or ex vivo measurements the allergen is removed from its natural 

environment and dissolved in aqueous solutions where it can adopt an activity or 

conformation that is energetically favorable. In the context of the flexibility of 

allergenic proteins, it is unclear if and how this can influence the sensitization process 

and IgE binding, whereas the native state of the protein is only known as the aqueous 

state. The structure of allergens may change by food processing, storage, consumption, 

the stomach, the gut and in case of aero-allergens the lungs, nose and eyes. Systems 

biology would be a solution to learn more about all complex interactions and factors 

involved in the mechanism of allergic sensitization.  

 One approach in systems biology is by combining all information of discovered 

mechanisms to start the creation of a general pathway. For house dust mite allergens, a 

general pathway is built, which forms the molecular basis of allergenicity for the 

biologically intact Der p 1 allergen in the human host. Der p 1 is an allergen with 

protease activity showing proteolytic activity in lung tissues, which is likely to be 

influenced by concentration, pH, stability and inactivation by anti-Der p 1 antibodies. 

The allergen has been shown to facilitate its own passage and the passage of other 

allergens across the epithelial barrier by digestion of tight junction proteins. This 

passage is followed by proteolytic activity of Der p 1 on the receptors CD23 on B-cells, 

CD25 on T-cells and CD40 on dendritic cells of the adaptive immune system favoring a 

T helper cell 2 (Th2) response. This may lead to uncontrolled IgE production and 

allergy [47]. Another house dust mite allergen, Der p 2, mimics the role of a human 

structural homologue, MD-2-related lipid binding protein, by interacting with the Toll-
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like receptor 4 (TLR4). Der p 2 promotes TLR4 signaling by binding lipopolysaccharide, 

which is related to the development of allergic asthma [48]. This kind of mimicry could 

also apply to the biological function of Bet v 1 and could give an explanation for the 

differences in the observed isoform allergenicity.    

 A different approach in systems biology is by transcriptomics analyses to follow the 

expression of different proteins involved in the induction and development of allergy. 

One of these studies reported the involvement of different proteins in the binding and 

transport of Bet v 1 through conjunctival epithelium (eye epithelium). The binding and 

transport only occurred in allergic patients and not in healthy individuals and was 

accompanied by the expression of receptors associated with lipid rafts/caveolae [49]. 

The processes involved with caveolae formation include endocytosis, exocytosis, 

cholesterol homeostasis and signal transduction. Human diseases, such as prion disease 

and tumorigenesis are affected by changes in caveolae function [50]. Interestingly, if a 

transport mechanism exists in conjunctival epithelium, it can also exist elsewhere such 

as the nose, lungs or mouth. Uptake of cross-reactive food allergens in the oral cavity 

could thus be a mechanism for cross-sensitization.    

 

6666....7777    Allergen isoformsAllergen isoformsAllergen isoformsAllergen isoforms    
As discussed in chapter 5, allergen isoforms are generally not well characterized. First 

of all, a systematic approach is needed to better understand the differences in single 

allergen isoforms and their differential impact on sensitization and on IgE binding 

capacity. Most studies concentrate on the isoform Bet v 1a, while other isoforms can be 

of similar interest [51]. Mutational studies, with single amino acid substitutions in Bet v 

1a, show patient-dependent changes in IgE binding capacity. A stronger effect in the 

decrease of IgE binding is obtained by replacing several residues [52-54], but it is 

unknown if similar effects are obtained by replacing several residues on a random basis. 

The best characterized birch pollen related food is apple for which it has been shown 

that a large variety of Mal d 1 isoforms are present. The Mal d 1.0108 is used in most 

research studies, but the isoform Mald 1.06A, with three different variants 01, 02 and 

03, accounts for differences in allergenicity among different apple cultivars [55]. 

Decreases in IgE binding capacity in different mutants of Bet v 1 are poorly understood 

and lead to unfounded statements in case of cross-reactive allergens, illustrating large 

differences in amino acid properties.    
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 A second biological example is the importance of Mal d 1 isoforms and the changes 

in their expression due to postharvest storage. Freshly picked apples might induce 

fewer symptoms in allergic individuals as the amount of expressed Mal d 1 is lower 

than in stored apples [56]. Storage effects were also observed for the carrots used in this 

study. Carrots were stored for 2 years at -20 °C and afterwards, the extract mainly 

showed a Dau c 1 protein band on SDS-PAGE gels. Furthermore, differences were 

observed in IgE-binding capacity in our study of purified Bet v 1 from birch pollen of 

Betula pendula ‘Youngii’ trees in two different Dutch cities. No IgE binding was 

detected on a dot-blot membrane, using sera from birch pollen allergic individuals for 

one of the cities, while in the other sample a strong response was observed. This 

observation can be explained by the release of different isoforms in early or late 

flowering trees. 

 

6666....8888    FFFFuture perspectivesuture perspectivesuture perspectivesuture perspectives    
It can be hypothesized that various biological activities of Bet v 1 are required in the 

human body to eventually result in allergic sensitization. When this hypothesis is true, 

different functional and structural aspects of the allergen should be taken into 

consideration. The first aspect is the conformation of the Bet v 1 allergens and their 

propensity to bind to membranes. The second aspect is the charge state of the protein, 

where the pI value can serve as a molecular switch at which the protein changes from a 

negatively to a positively charged state. This can affect membrane binding and 

recognition by IgE antibodies. The third aspect is ligand binding  which can be 

necessary for the intrinsic function of a PR-10 protein. Different PR-10 proteins may 

have different ligand specificities. The fourth aspect is the presence of allergen isoforms 

with different IgE binding capacity, membrane binding, ligand binding or other 

activities. The fifth aspect is cross-reactivity, which depends on the first four aspects 

and can explain differences observed between the PR-10 allergens from Rosaceae and 

Apiaceae. For example, transport through membranes in the oral mucosa may be 

facilitated by the low pH of the fruit, which changes the membrane binding property. 

Apiaceae are mainly consumed after cooking, which inactivates the membrane binding 

activity. In its active form, membrane binding would be difficult for Apiaceae PR-10 

allergens as they are mainly negatively charged. The pH of the food is too high to be 
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supportive, but when the allergic symptoms deteriorate, more receptors could be 

expressed on the surface of the membranes that also allow binding of these allergens. 

 Such a mechanism would imply that the importance of gastro-intestinal enzymes is 

highly overrated and that a T cell response against food allergens is not induced from 

the gut. It is unknown whether the allergen influences the T cell response directly 

through interactions in the adaptive immune response. IgE binding studies only detect 

Bet v 1 in its aqueous conformation and these assays are therefore of lower biological 

relevance. It would be meaningless to screen for IgE epitopes on the surface of the 

aqueous conformation, because the hydrophobic residues exposed to the surface under 

specific physiologically conditions will be equally important.     

 However, if the hypothesis that biological activity of Bet v 1 is needed in the human 

body for sensitization is untrue and IgE binding does depend on the aqueous 

conformation of the protein, a different approach would be required. Most research 

with site-directed mutagenesis show a far-UV CD spectrum to conclude that the 

protein is in a folded state with a similar secondary structure to Bet v 1. A CD spectrum 

does not give information about the  tertiary structure, soluble aggregates, and 

monomeric or multimeric states. In mice, for example, it has been shown that 

dimerization is important for in vivo IgE-cross linking [57]. Differences in 

thermodynamic parameters of PR-10 allergens can be easily determined by stability 

studies with CD and can be used to find a relationship between IgE binding capacity to 

explain differences in the allergenic potential of processed foods.  

 Only a minority of studies intends to draw conclusions on allergenicity by 

analyzing physical properties of allergenic proteins and their IgE binding capacity. 

Many of the (bio) physical properties of Bet v 1 and other PR10 allergens apply also to 

milk allergens of the whey fraction. The most extensively studied allergenic proteins in 

literature are β-lactoglobulin and α-lactalbumin with its structural homologue 

lysozyme. The stability characteristics of these proteins could reveal important 

information in relation to their allergenicity. Most mutant studies have been performed 

on lysozyme and the obtained structural and functional characteristics could serve as a 

model for other allergens. Milk is the best studied food system worldwide and could 

therefore be a good starting point for analyzing interactions between allergens and 

matrix compounds.  
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6666....9999    Concluding remarksConcluding remarksConcluding remarksConcluding remarks    
In the context of the research reported, a general trend is observed for allergen 

stability, structural differences and their relation to IgE binding capacity in aqueous 

solutions. Bet v 1 is the primary allergen of birch pollen related allergies and shows the 

highest IgE binding potential. The allergenic potential decreases in the order Mal d 1, 

Api g 1 and Dau c 1, in accordance with their amino acid sequence identity. Bet v 1 

cross-reactive IgE antibodies preferably bind to the charged and polar residues of Mal d 

1. Api g 1 appears to be more stable than Dau c 1 as the result of a tighter hydrophobic 

packing. However, the thermodynamic stability of Api g 1 is similar to that of Bet v 1, 

but the higher proportion of hydrophobic residues and the reduced proportion of 

charged residues are responsible for the lower IgE binding capacity. 

 Thermodynamic characterization of PR-10 allergens leads to a better understanding 

of differences in conformational stability between isoforms. However, a single 

recombinant isoform allows a more precise determination of the thermodynamic 

parameters. Amino acid changes lead to altered stability, biological function, 

electrostatic potential and packing of the protein and all of these can be important for 

facilitating protein-protein interactions in terms of explaining differences between the 

IgE binding capacity of Bet v 1 isoforms. Furthermore, the natural PR-10 allergen 

mixtures do contain different isoforms for which the IgE binding capacity is not well 

characterized. These mixtures can be used to screen for differences between the natural 

and the recombinant isoforms to obtain a better insight in stability and IgE binding of 

different plant foods that more closely resembles actual and realistic conditions and 

situations as encountered in tangible food products.    
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SummarySummarySummarySummary    
The allergen Bet v 1 is known as the primary sensitizer for birch pollen-related food 

allergy and its general characteristics are described in chapter 1chapter 1chapter 1chapter 1. Bet v 1 is a member of 

the pathogenesis related-10 protein family (PR-10) and can be found in a variety of 

plant groups such as other trees, fruit, vegetables, nuts and legumes. Cross-reactivity to 

other PR-10 proteins mainly occurs for trees of the Betulaceae, fruit from the Rosaceae 

and vegetables from the Apiaceae families. 

 This thesis describes the differences between PR-10 proteins, concentrating on Api g 

1 from celery and Dau c 1 from carrot in comparison to Bet v 1. The aim of this research 

was to purify and characterize PR-10 allergens in natural isoform mixtures in an 

attempt to relate structural characteristics to their physico-chemical stability and 

differences in allergenicity. The structural changes of the PR-10 allergens were mainly 

studied by circular dichroism (CD), a spectroscopic method, which can be used to study 

thermodynamic stability. 

 Chapter 2Chapter 2Chapter 2Chapter 2 describes the purification and characterization of natural isoform mixtures 

of Bet v 1, Api g 1 and Dau c 1. The allergens were purified under mild conditions using 

a standardized protocol, which comprised three major steps. In the first step, water-

soluble proteins in the extract were fractionated by an ammonium sulphate 

precipitation. The PR-10 protein fraction was further purified by hydrophobic 

interaction chromatography and size exclusion chromatography. The isolated allergens 

were characterized by Q-TOF MS/MS showing that the allergen was purified as an 

isoform mixture with minor impurities. Using Q-TOF MS/MS, approximately 41-63 % 

of the amino acid sequences of the allergens could be determined, revealing not only 

earlier reported, but also new isoforms. At least three isoforms of Bet v 1, two isoforms 

of Api g 1 and three isoforms of Dau c 1 were detected. All allergen mixtures showed a 

characteristic CD spectrum of PR-10 allergens with a similar secondary structure 

composition and gave a similar IgE response compared to single, commercially available 

recombinant isoforms.   

 These natural isoform mixtures were used to find a structural relationship between 

thermal treatment and the immune response by the T cell and the IgE binding capacity, 

described in chapter 3chapter 3chapter 3chapter 3. Therefore, thermal denaturation curves were recorded for 

natural (n) and recombinant (r) Bet v 1, Api g 1 and Dau c 1. The midpoint of thermal 

denaturation, Tm, was determined for all allergens. Heat treatment of the allergens, for 
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the immune experiments, was performed at a similar heating rate as for CD by gradually 

heating to 95 °C or to Tm followed by a 30 minutes incubation at these temperatures 

after which the protein sample was cooled down gradually or quickly. Human PBMC 

cultures were used to assess the T cell response and were only tested for Bet v 1 and 

thermally treated Bet v 1. However, Bet v 1 was not capable to induce cytokine 

production or T cell proliferation, possibly related to the low frequency of allergen-

specific T cells in the peripheral blood. The IgE binding capacity was tested for all three 

natural and recombinant PR-10 allergens in different ELISA experiments and showed 

that heating to Tm does not have an effect on IgE binding, as the allergens are able to 

refold completely. Heating to 95 °C resulted in a decrease in IgE binding capacity, 

although the effect was minor and independent of the cooling rate. However, heating to 

100 °C for 2 hours destroyed IgE binding capacity. Moreover, the small structural 

differences observed in the CD spectra of the allergens before and after thermal 

treatment were accompanied by only minor differences in IgE binding capacity 

between recombinant and natural isoforms. Dau c 1 was shown to be least thermo-

stable and was not able to bind IgE.   

 The allergens were further characterized in chapter 4chapter 4chapter 4chapter 4 in a thermodynamic CD study 

to determine thermodynamic parameters for conformational stability. The Gibbs free 

energy change, ∆GD-N, was determined for both natural and recombinant Bet v 1, Api g 

1 and Dau c 1 by Guanidine Hydrochloride (GuaHCl) denaturation. The determined 

∆GD-N values were more precise for single isoforms and showed an equal stability of rBet 

v 1 and rApi g 1. The stability of rDau c 1 was very low, which was also observed for 

the thermal denaturation curve. The ∆GD-N values of the natural isoforms were affected 

by the mixture composition, as the midpoint of denaturation, [GuaHCl50%], differed for 

various PR-10 proteins. Natural and recombinant Api g 1 had a [GuaHCl50%], which was 

almost 2 times higher than the other isoforms. Only rDau c 1 was unfolding at very low 

concentrations of denaturant.  

 A better approximation of the conformational stability of the natural isoform 

mixtures Api g 1 and Dau c 1 was obtained by measuring the thermal stability at 

different pH, for which similar ∆GT values were obtained as for rBet v 1. Moreover, 

different pH characteristics were found for nApi g 1 and nDau c 1 as compared to rBet v 

1. Both nApi g 1 and nDau c 1 showed secondary structure at pH-values below their pI, 

whereas rBet v 1 showed unfolding to a denatured state at low pH. Furthermore, below 
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pH 4.4, nApi g 1 and nDau c 1 were stable to heating, but above this pH, the allergens 

precipitated upon heating. At pH 6.0-6.3, a double transition was observed during 

unfolding and above this pH both allergens were able to refold after heating. Both nApi 

g 1 and nDau c 1 showed similar characteristics, although the Tm-values for the pH 

dependence of nDau c 1 were 10 °C lower. 

 Differences in structural characteristics of PR-10 proteins of fruits from the 

Rosaceae and vegetables from the Apiaceae compared to the primary allergic sensitizer 

Bet v 1 from the Betulaceae, are described in chapter 5chapter 5chapter 5chapter 5 using a bioinformatics approach. 

Cross-reactivity of birch-pollen related allergens is poorly understood and site-directed 

mutagenesis studies described in literature do not contribute to a better understanding. 

The primary and secondary structure of PR-10 proteins clearly showed different 

properties between the Rosaceae  and Apiaceae, which were characterized as positively 

charged/polar proteins and negatively charged/hydrophobic, respectively. These 

differences have consequences for IgE-binding, because protein-antibody interactions 

are driven amongst others by electrostatic complementarity. The contribution of the 

electrostatic charges is affected by the physiological pH of the food product and can 

have an, as yet unknown, effect on the IgE-binding capacity. For example, the acidic pH 

of Rosaceae fruit can result in protonation of negatively charged amino acids changing 

the PR-10 proteins from a negatively into a positively charged state. 

 The differences in structural characteristics of PR-10 proteins in relation to their 

physico-chemical stability were further discussed in the general discussion (chapter 6)chapter 6)chapter 6)chapter 6).    

The similar stability found between Bet v 1 and Api g 1, can be explained by the 

difference in amino acid composition of the polar (charged and uncharged) Bet v 1 and 

the hydrophobic Api g 1. Bet v 1 is stabilized by charged salt bridge forming residues on 

the protein surface, whereas Api g 1 is stabilized by its hydrophobic packing. The 

difference in thermo-stability between Api g 1 and Dau c 1, can be explained from a 

reduction in hydrophobic interactions in Dau c 1 due to a higher proportion of the 

small alanine residue and polar serine and threonine residues.    

 Furthermore, the ability of Bet v 1 and Mal d 1 to bind and permeabilize membranes 

is considered an important feature of the allergens in the sensitization mechanism. The 

allergen changes conformation upon binding to membranes, especially when they are 

anionic, and is then protected from proteolytic digestion. This membrane binding 

property is observed for various other negatively charged food allergens and could be a 
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general feature for allergic sensitization. However, this suggests that IgE could bind to 

an unknown conformation of the allergen, which exposes the buried amino acids to the 

surface of the protein. The ability to bind to anionic membranes could be induced by 

the physiological pH of food, especially for fruits of the Rosaceae. The low internal pH 

in these fruits gives the PR-10 allergen a positive charge, which would subsequently 

increase membrane association and IgE-binding.  

 In conclusion, thermodynamic characterization leads to a better comprehension of 

differences in conformational stability and structural properties between allergens. 

Amino acid differences, which occur in all mixtures of natural isoforms, lead to altered 

stability, biological function, electrostatic potential and packing of the protein. All of 

these properties can have an effect on protein-protein interactions and could explain 

differences between the IgE binding capacity of PR-10 isoforms.   
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SamenvattingSamenvattingSamenvattingSamenvatting    
Het allergeen Bet v 1 staat bekend als de primaire sensibilisator bij berkenpollen 

gerelateerde voedselallergie. De algemene eigenschappen van Bet v 1 zijn beschreven in 

hoofdstuk 1hoofdstuk 1hoofdstuk 1hoofdstuk 1. Bet v 1 is een eiwit uit de PR-10 familie, die aanwezig is in een variëteit 

aan plantengroepen zoals in andere bomen, fruit, groenten, noten en peulvruchten. 

Kruisreactiviteit tegen andere PR-10 eiwitten treedt voornamelijk op bij bomen van de 

Betulaceae, fruit van de Rosaceae en groenten van de Apiaceae families. 

 Dit proefschrift beschrijft de verschillen tussen PR-10 eiwitten, waarbij de focus ligt 

op Api g 1 uit knolselderij en Dau c 1 uit wortel in vergelijking met Bet v 1. Het doel 

van dit onderzoek was de zuivering en karakterisering van PR-10 allergenen in 

natuurlijke isovorm mengsels in een poging een verband te leggen tussen de structurele 

eigenschappen met de fysisch-chemische stabiliteit en verschillen in allergeniciteit. De 

structurele veranderingen van de PR-10 allergenen werden voornamelijk bestudeerd 

met behulp van de spectroscopische techniek circulair dichroisme (CD), welke kan 

worden gebruikt om de thermodynamische stabiliteit te bestuderen. 

 Hoofdstuk 2Hoofdstuk 2Hoofdstuk 2Hoofdstuk 2 beschrijft de zuivering en karakterisering van natuurlijke isovorm 

mengsels van Bet v 1, Api g 1 en Dau c 1. De allergenen werden gezuiverd onder milde 

omstandigheden waarbij gebruik werd gemaakt van een algemeen protocol dat bestond 

uit drie belangrijke stappen. De eerste stap bestond uit een fractioneringstap, waarbij 

wateroplosbare eiwitten in het extract werden geprecipiteerd met ammoniumsulfaat. 

De PR-10 eiwitfractie werd verder gezuiverd met behulp van hydrofobe interactie 

chromatografie en gelpermeatie chromatografie. De geïsoleerde allergenen werden 

gekarakteriseerd met behulp van Q-TOF MS/MS, waarbij werd aangetoond dat het 

allergeen gezuiverd was als isovormmengsel met slechts kleine verontreinigingen. Met 

Q-TOF MS/MS kon 41-63% van de aminozuursequentie van de allergenen bepaald 

worden, waarbij niet alleen eerder gepubliceerde isovormen werden gedetecteerd, maar 

ook nieuwe. Tenminste drie isovormen werden gevonden van Bet v 1, twee isovormen 

van Api g 1 en drie isovormen van Dau c 1. Alle allergeenmengsels hadden een 

karakteristiek CD spectrum voor PR-10 allergenen met een vergelijkbare samenstelling 

in secundaire structuur en vergelijkbare IgE-reactiviteit als bij de commercieel 

verkrijgbare recombinante isovormen. 

 Deze natuurlijke isovormmengsels werden gebruikt om een structurele relatie te 

vinden tussen een thermische behandeling en de immuunrespons op basis van de T-cel- 
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reactiviteit en IgE-bindingscapaciteit, zoals beschreven in hoofdstuk 3hoofdstuk 3hoofdstuk 3hoofdstuk 3. Hiervoor 

werden, met CD, thermische ontvouwingscurves opgenomen voor natuurlijk (n) en 

recombinant (r) Bet v 1, Api g 1 en Dau c 1. Het thermodenaturatie middelpunt, Tm. 

werd bepaald voor alle allergenen. Voor immuunreactiviteitsexperimenten werd de 

hittebehandeling van de allergenen hetzelfde uitgevoerd als bij CD, door middel van het 

geleidelijk verhitten tot 95 °C of Tm, gevolgd door een incubatie van 30 minuten bij deze 

temperatuur, waarna het eiwitmonster geleidelijk of snel gekoeld werd. Menselijke 

PBMC-cellen werden gebruikt om naar de T-cel-respons te bestuderen, maar werd 

alleen getest voor Bet v 1 en temperatuur-behandeld Bet v 1. Bet v 1 veroorzaakte geen 

productie van cytokines en leidde niet tot T-cel-proliferatie, wat waarschijnlijk 

veroorzaakt werd door het lage aantal van allergeen specifieke T-cellen in het perifere 

bloed. De IgE-bindingscapaciteit werd bepaald voor alle drie natuurlijke en 

recombinante PR-10-allergenen in verschillende ELISA-experimenten, waarbij werd 

aangetoond dat verhitten tot Tm geen effect heeft op IgE-binding, zolang het eiwit in 

staat is om volledig terug te vouwen. Verhitten tot 95 °C resulteerde in een afname van 

de IgE-bindingscapaciteit, hoewel dit effect klein was en onafhankelijk van de 

koelingsnelheid. Verhitten gedurende 2 uur bij 100 °C was voldoende om de IgE-

bindingscapaciteit te vernietigen. Daarnaast gingen de kleine structurele verschillen in 

de CD-spectra van de allergenen voor en na verhitting gepaard met slechts kleine 

verschillen in de IgE-bindingscapaciteit tussen recombinante en natuurlijke isovormen. 

Dau c1 was het minst thermostabiel en was niet in staat om IgE te binden. 

 De allergenen werden verder gekarakteriseerd in hoofdstuk 4 door middel van een 

thermodynamische CD-studie om de thermodynamische parameters voor 

conformationele stabiliteit te bepalen. De verandering van de Gibbs vrije energie, 

∆GD-N, werd bepaald voor natuurlijk en recombinant Bet v 1, Api g 1 en Dau c 1 middels 

Guanidine Hydrochloride (GuaHCl) denaturatie. De ∆GD-N waarden kunnen 

nauwkeuriger worden bepaald voor enkelvoudige isovormen en die toonden een gelijke 

stabiliteit voor rBet v 1 en rApi g 1. De stabiliteit van rDau c 1 was laag, wat ook al naar 

voren kwam bij de temperatuurdenaturatiecurve. De ∆GD-N waarden van de natuurlijke 

isovormen werden beïnvloed door de samenstelling van het mengsel, waarbij het 

denaturatiemiddelpunt, [GuaHCl50%], verschilde voor de verscheidene PR-10-eiwitten. 

Natuurlijk en recombinant Api g 1 hadden 2 keer hogere [GuaHCl50%] dan de andere 

isovormen. Alleen rDau c 1 ontvouwde bij hele lage denaturant concentraties. 
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 Een betere benadering van de conformationele stabiliteit van de natuurlijke 

isovormmengsels van Api g 1 en Dau c 1 werd verkregen bij het bepalen van de 

thermische stabiliteit bij verschillende pH-waarden, waarbij vergelijkbare ∆GT waarden 

werden gevonden als voor rBet v 1. Daarnaast werden andere pH-

afhankelijkheidseigenschappen gevonden voor nApi g 1 en nDau c 1 dan bekend is voor 

rBet v 1. Beneden het isoelectrisch punt van nApi g en nDau c 1, kon nog steeds 

secondaire structuur worden aangetoond, waar rBet v 1 ontvouwen was in een 

gedenatureerde toestand. Verder waren nApi g 1 en nDau c 1 stabiel bij verhitten bij 

een pH lager dan 4,4, maar boven deze pH precipiteerden deze allergenen bij verhitting. 

Bij pH 6,0-6,3 was een dubbele transitie zichtbaar in de thermische ontvouwingscurve 

en boven deze pH vouwden de allergenen volledig terug na verhitting. Hoewel de Tm-

waarden, voor de pH-afhankelijkheid van nDau c 1, 10 °C lager lagen, vertoonden nApi 

g 1 en nDau c 1 beide dezelfde pH-afhankelijkheidseigenschappen. 

 Verschillen in structurele eigenschappen van PR-10-eiwitten van fruit van de 

Rosaceae en groenten van de Apiaceae werden vergeleken met de primaire allergische 

sensibilisator Bet v 1 van de Betulaceae, als beschreven in hoofdstuk 5hoofdstuk 5hoofdstuk 5hoofdstuk 5 met behulp van 

een bioinformatica aanpak. Kruisreactiviteit van berkenpollen-gerelateerde allergenen 

wordt niet volledig begrepen en site-directed mutagenese studies, beschreven in de 

literatuur, dragen niet bij aan een beter inzicht. De primaire en secundaire structuur 

van PR-10-eiwitten zijn duidelijk verschillend tussen de Rosaceae en Apiaceae, die 

respectievelijk gekarakteriseerd werden als positief geladen/polair en negatief geladen/ 

hydrofoob. Deze verschillen hebben consequenties voor IgE-binding, omdat de 

drijfveer bij eiwit-antilichaam-interacties onder andere wordt veroorzaakt door 

elektrostatische complementariteit. De bijdrage van de elektrostatische lading wordt 

beïnvloed door de fysiologische pH van het voedselproduct en kan, een tot nu toe 

onbekend, effect hebben op de IgE-bindingscapaciteit. De zure pH van Rosaceae fruit 

kan bijvoorbeeld resulteren in de protonering van negatief geladen aminozuren, waarbij 

de negatief geladen toestand van een PR-10-eiwit verandert in een positief geladen 

toestand. 

 Het verschil in structurele eigenschappen van PR-10-eiwitten in relatie to hun 

fysisch-chemische stabiliteit werd verder bediscussieerd in de algemene discussie 

(hoofdstuk 6hoofdstuk 6hoofdstuk 6hoofdstuk 6). De vergelijkbare stabiliteit die gevonden werd voor Bet v 1 en Api g 1 

kan worden verklaard door het verschil in de aminozuursamenstelling van het polaire 
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(geladen en ongeladen) Bet v 1 en hydrofobe Api g 1. Bet v 1 wordt gestabiliseerd door 

geladen zoutbrug-vormende residuen op het eiwitoppervlak, waarnaast Api g 1 wordt 

gestabiliseerd door de hydrofobe pakking. Het verschil in thermische stabiliteit tussen 

Api g 1 en Dau c 1 kan worden verklaard vanuit een afname in hydrofobe interacties in 

Dau c 1 vanwege een hoger gehalte aan het kleine apolaire alanine-residu en de polaire 

serine en threonine-residuen. 

 Verder wordt de membraanbindende en –doordringbare eigenschap van Bet v 1 en 

Mal d 1 in beschouwing genomen, wat belangrijk kan zijn voor het 

sensibilisatiemechanisme. Het allergeen verandert van conformatie wanneer het aan het 

membraan bindt, met name aan anionische membranen, en wordt dan afgeschermd 

voor enzymatische afbraak door verteringsenzymen. Deze membraanbindende 

eigenschap is aanwezig voor een verscheidenheid aan andere negatief geladen 

voedselallergenen, wat zou kunnen betekenen dat dit een belangrijk kenmerk is voor 

allergische sensibilisatie. Dit wekt de suggestie dat IgE in staat is om aan een onbekende 

conformatie van het allergeen te binden, waarbij de verborgen aminozuren aan de 

oppervlakte van het eiwit worden blootgesteld. De mogelijkheid tot het binden van 

anionische membranen kan worden versterkt door de fysiologische pH van voedsel, in 

het bijzonder bij Rosaceae fruit. De lage interne pH van deze vruchten geven de PR-10-

allergenen hun positieve lading, waarop membraanassociatie en IgE-binding wordt 

verhoogd. 

 Samenvattend leidt een thermodynamische karakterisering tot een beter begrip van 

verschillen in conformationele stabiliteit en structurele eigenschappen tussen 

allergenen. Aminozuurverschillen, die in alle natuurlijke isovormmengsels aanwezig 

zijn, leiden tot een verandering in stabiliteit, biologische functie, elektrostatische 

potentiaal en pakking van het eiwit. Al deze eigenschappen kunnen een effect hebben 

op eiwit-eiwit-interacties en zouden verschillen kunnen verklaren tussen de IgE-

bindingscapaciteit van PR-10-isovormen. 
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