Male Fruit Fly, *Bactrocera tau* (Diptera; Tephritidae) Attractants from *Elsholtzia pubescens* Bth

1A. Hasyim, 1Murayati, 1Mizu Istianto and 2W.J. de Kogel
1Balai Penelitian Tanaman Buah Jl. Raya Solok Aripa, KM 8, P.O. Box 5. Solok 27301
2Plant Research International B.V. P.O. Box 16, 6700 AA Wageningen, The Netherlands

Abstract: Studies on the ability of different plant extracts to attract male fruit flies indicated that an extract of *Elsholtzia pubescens* attracted male *Bactrocera tau* fruit flies in Passion fruit orchards in West Sumatra, Indonesia. Analyses of the plant extract showed that the major compound present was Camphor. Both the complete plant extract and its major compound Camphor were at least as efficient as the standard cue-lure in trapping male *B. tau* in trapping experiments in Passion fruit orchards.

Key words: Fruit flies, semiochemicals, attractant, trapping, male annihilation

INTRODUCTION

The damage to crops caused by fruit flies can be either direct, through oviposition in fruit and tissues of vegetative parts of plants and feeding by the larvae, or indirect, through decomposition of plant tissues by invading microorganisms (Dainty et al., 1983; Kalshoven 1981; Manoto 1991; Iwashi et al., 1996; Kaneshiro, 1989; Koyama et al., 1984). The losses caused in fruit crops by insect pests particularly by fruit fly, *Bactrocera tau* has been estimated to be as high as 40% of the production (Hasyim et al., 2004). The extent of losses varies between 30-100% depending on the fruit species and season (Dillon et al., 2005).

The predominant method of insect pest control has been through the use of conventional pesticides. They have been very effectively used over long time and have ensured yields and benefits to the growers. The continued use of such products has however been questioned in amount of pesticides that is being used to control pests. In many agricultural crops, the concept of Integrated Pest Management (IPM) has been developed as a means of rationalizing the use of pesticides. IPM has been defined by the International Organization of Biological Control (IOBC) as a pest management strategy employing all methods consistent with economic, ecological and toxicological requirements to maintain pests below economic threshold while giving priority to sustainable crop protection. Technologies and techniques which have found a useful role in IPM strategies include; the use of resistant plants varieties, cultural practices, the use of predators and parasites, microbial pesticides (entomopathogenic bacteria, viruses and fungi), botanical insecticides, insect growth regulators and semiochemicals.

Semiochemicals are defined as substances which transmit messages between living organisms, both plant and animals. These include insect pheromones but also plant produced attractants and repellents. For several species of fruit flies sex pheromone compounds have been identified e.g., for *Bactrocera oleae* (Baker et al., 1980).

Two compounds play significant roles as attractants for male Tephritid fruit flies: Methyl eugenol and cue-lure (Metcalf, 1990). These chemicals are distinctively plant-related products derived from phenylpropanoid and related compounds. Methyl eugenol [allyl-3, 4-dimethoxybenzene], occurring widely as a natural product in the plant kingdom, is a highly potent attractant for the male fruit flies of several species e.g., *B. dorsalis*. Due to its availability and strong attractant properties, it has been used both as a trapping agent in capturing native male fruit flies for population estimation and for pest control. Cue-lure on the other hand has not been isolated directly as a natural product (except as the hydrolysed derivative) and is a potent male attractant to another group of fruit flies e.g., *Bactrocera cucurbitae* (Yong, 1990).

Preliminary studies on the ability of different plant extracts to attract male fruit flies indicated that an extract of *Elsholtzia pubescens* attracted male *Bactrocera tau*...
fruit flies in passion fruit orchards in West Sumatra, Indonesia. *Elsholtzia pubescens* (local name: Salasih gunung) is a Lamiaceae herbaceous plant occurring throughout tropical Asia including West Sumatra, Indonesia. *Elsholtzia* spp. have been studied mainly because of their medicinal values, perfume components and antibacterial activity (Peng and Yang, 2005; Zue et al., 1992). In the present study steam distillates of *E. pubescens* were made and analysed and tested for attractiveness to male *B. tau* fruit flies in passion fruit orchard in West Sumatra to see if they could serve as a source of new effective attractants. The attractiveness was compared with standard cue-lure.

MATERIALS AND METHODS

Plant material: *Elsholtzia pubescens* leaves were collected in August and September 2005 from Alahan Panjang, West Sumatra and transported in plastic bags to the laboratory where they were put to dry at room temperature (approx. 28°C) the same day. After 4 days the leaves were chopped before extraction. The plant was identified and authenticated by a plant taxonomist. A voucher specimen was lodged at Herbarium of Biology Department, University of Andalas, Padang.

Plant extraction: A simple laboratory quick fit apparatus with 2000 mL steam generator flask, a distilling flask a condenser and a receiving vessel, was used for steam distillation. The flask was heated with a gas burner. A hundred gram air dried and chopped leaves of *Elsholtzia* plants were subjected to steam distillation.

Coupled gas chromatography mass spectrometry (GC-MS): GC-MS was performed on a Hewlett Packard 5973 mass selective detector (70 eV), coupled to a Hewlett Packard gas chromatograph equipped with a split/splitless Programmed Temperature Vaporization (PTV) injection system (CIS 4; Gerstel, Mülheim an der Ruhr, Germany). Injections were done in split mode only (1 μL). The column was an 30 m EC-5 fused silica column, 0.25 mm ID and 0.25 μm film thickness (Alltech/Applied Science BV., Breda, The Netherlands). Conditions were: carrier gas, helium, constant head pressure at 0.6 bar; temperature programming, 50°C (2 min hold) to 300°C (5 min hold) at 8°C/min; injector temperature, 250°C; transfer line temperature, 300°C.

Bioassay: Field trapping of fruit flies was done using modified clear traps (Steiner et al., 1965) made from mineral water bottles baited with *Elsholtzia* extract, cue lure (Bedoukian, purity>97%) or (+) camphor (Sigma, purity>95%). Each trap was baited with 0.25 g *Elsholtzia* extract, 0.5 mL cue lure or 0.25 g camphor. Experiments were performed in a passion fruit orchard of approximately 1 ha. Per experiment, six traps per treatment were distributed randomly in the passion fruit orchard at 1.5 m from the ground level. Traps were placed at least 10 m apart from each other. Trapping experiments were conducted between 8.00 and 11.00 am. The experiment was repeated 10 times on ten different days. Trap data (number of flies per trap) were analyzed analyses of variance followed by Tukey-Kramer multiple range test.

RESULTS AND DISCUSSION

Analyses of the steam distillate of *E. pubescens* leaves showed that the major chemical compounds were Camphor, Camphene and Alpha pinene (Fig. 1). During the drying procedure of the plants and because of the simple distillation technique used, probably only part of the compounds present in the leaves were recovered. It is however a technique that could be used locally at low cost to extract attractants for fruitflies.

From literature, the chemical composition of several other *Elsholtzia* species is known and appears to be quite different. For example, the main components of *Elsholtzia ciliata* were found to be perillene (2.1-3.9%), Elsholtzia ketone (3.3-19.3%), α dehydro-elscholtzione (2.0-5.7%), dehydro-Elsholtzia ketone (66-72.4%) and humulene (1.5-3.8%) (Elena et al., 2002). Ahmad et al. (1988) analyzed that the major constituents of *Elsholtzia polystachya* were 1,4-cineole (20.04%), 1,8-cineole (26.11%), perillaldehyde (7.24%), neryl acetate (10.12%), geranyl acetate (2.14%) and β Caryophyllene (2.56%).

![Fig. 1: GC-trace of Elsholtzia pubescens](image)

Table 1: Mean±SD of male *B. tau* fruit flies captured in traps baited with different lures

<table>
<thead>
<tr>
<th>Chemical compound</th>
<th>No. flies captured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cue lure</td>
<td>34.3±3.57a</td>
</tr>
<tr>
<td>Elsholtzia extract</td>
<td>40.8±3.92a</td>
</tr>
<tr>
<td>Camphor</td>
<td>36.3±3.70a</td>
</tr>
</tbody>
</table>

Means in the same column followed by the same letter are not significantly different. p<0.05
Field tests showed that a steam distillate of *E. pubescens* was able to attract male *B. tau* fruit flies at least as efficient as a standard lure cue-lure. Furthermore, the main compound of the extract (Camphor) also attracted the flies at the same rate (Table 1).

Further studies will focus on improvement of the attractivity and study the effect of these compounds on other fruit fly species. In the future alternative lures, useful for fruit fly control, may be the result from these investigations.

ACKNOWLEDGMENTS

We thank the Ministry of Agriculture, Indonesia and the Ministry of Agriculture, Nature and Food Quality, the Netherlands, for funding this research through the HORTIN programme.

REFERENCES

