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[1] Analytical approximations were derived for solute transport of pesticides subject to
Freundlich sorption, and first-order degradation restricted to the liquid phase. Solute
transport was based on the convection-dispersion equation (CDE) assuming steady flow.
The center of mass (first spatial moment) was approximated both for a non-degraded
solute pulse and for a pulse degraded in the liquid phase. The remaining mass (zeroth
spatial moment) of a linearly sorbing solute degraded in the liquid phase was found to be a
function of only the center of mass (first spatial moment) and the Damköhler number
(i.e., the product of degradation rate coefficient and dispersivity divided by flow velocity).
This relationship between the zeroth and first spatial moments was shown to apply to
nonlinearly sorbing pulses as well. The mass fraction leached of a pesticide subject
to Freundlich sorption and first-order degradation in the solution phase only was found to
be a function of the Damköhler number and of the dispersivity, so independent of
sorption. Hence perceptions of the effects of sorption on pesticide leaching should be
reconsidered. These conclusions equally hold for other micropollutants that degrade in the
solution phase only.
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1. Introduction

[2] Pesticide use in agriculture is one of the main sources
of groundwater contamination. As early as the 1980s, tens
of pesticides had been detected in groundwater, in concen-
trations up to 100 mg/L [e.g., Leistra and Boesten, 1989].
The maximum admissible concentration for pesticides in
drinking water is 0.1 mg/L in the European Community
[Council of the European Communities, 1980]. When
groundwater pumped up for the drinking water supply
contains pesticide concentrations above this standard, the
water has to be purified with expensive technologies.
[3] Pesticide leaching to groundwater is determined ba-

sically by the sorption and degradation properties of the
pesticide [Jury and Gruber, 1989; Tiktak et al., 2004].
Sorption isotherms have experimentally been shown to
be nonlinear for many contaminants and pesticides [e.g.,
Brusseau and Rao, 1989; Calvet et al., 1980; Turin and
Bowman, 1997]. Pesticide sorption isotherms can usually be
described with the nonlinear Freundlich isotherm. Decreas-
ing the Freundlich exponent of non-degrading solutes
results in later breakthrough and increased tailing of effluent
curves [van Genuchten and Cleary, 1979]. Decreasing the
Freundlich exponent may strongly decrease the percentage
leached below 1 m depth for pesticides that are degraded in
both the liquid and solid phase [Boesten, 1991]. However,

assuming degradation in both the liquid and solid phase is
debatable as Ogram et al. [1985] have shown that the
degradation rate of 2, 4-Dichlorophenoxyacetic acid (2, 4-D)
in soil is proportional to the concentration in liquid phase.
At present, pesticide degradation is commonly attributed to
the liquid phase [Haws et al., 2006; Alexander, 2000; Scow
and Alexander, 1992]. It is therefore relevant to assess
whether the sensitivity of pesticide leaching to sorption
parameters is similarly high if it is assumed that the
transformation rate is proportional to the concentration in
liquid phase only.
[4] To assess the risks of groundwater contamination,

pesticide leaching to groundwater is often simulated with
mathematical models [e.g.; Hutson and Wagenet, 1992;
Beltman et al., 1995; Tiktak et al., 2004; Boesten, 2007;
Stenemo et al., 2007]. To check and evaluate mathematical
models, analytical solutions are needed. Analytical solu-
tions for the spatial moments of linearly adsorbing solutes
that are not degraded were derived by Jury and Roth [1990]
and Roth and Jury [1993]. Their solutions for the first
spatial moment (average location of the concentration
distribution) and the second spatial moment (variance of
the concentration distribution) also apply to solutes that are
degraded in both solid and liquid phase, because for linearly
sorbing solutes the distribution of a solute over the liquid
and solid phase is independent of its (local) concentration
[Jury and Roth, 1990]. In contrast, the distribution of a
nonlinearly sorbing solute over the phases depends on its
concentration. Modeling of nonlinear sorption indicated
that a model based on linear sorption cannot provide
accurate simulations of transport and degradation when
the Freundlich-exponent N is less than about 0.9 [Brusseau,
1995]. Analytical approximations for the first and second
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spatial moment of nonlinearly sorbing solutes in two-
dimensional systems were derived by Bosma et al. [1996]
using analytical solutions from Grundy et al. [1994] and
from Dawson et al. [1996]. Degradation of the solute was
not considered by Bosma et al. [1996] and by Dawson et al.
[1996]. An analytical solution for a continuous solute
injection subject to nonlinear sorption and first-order deg-
radation in the liquid phase was derived by Bosma and van
der Zee [1993]. They showed that for the continuous
injection the long term concentration distribution is inde-
pendent of sorption nonlinearity. Surprisingly, the interac-
tion between sorption nonlinearity and degradation rate was
only addressed occasionally. Analytical solutions describing
concentration as a function of depth and time are not
available for a nonlinearly sorbing solute pulse, except
approximations for a pulse that is not transformed [Serrano,
2003] and solutions for a continuous input of transforming
solute [Bosma and van der Zee, 1993]. Analytical solutions
are needed to determine the pesticide mass and to determine
when this mass arrives at a certain depth.
[5] The large time behavior of decaying compounds

(degraded in either both liquid and adsorbed or degraded
only in liquid phase) in the infinite domain was studied with
solutions for the interfaces of the spreading compound (the
boundary between the contaminated and the uncontaminated
soil solution) by Escobedo and Grundy [1996]. These
solutions could not then be linked to the mass of the
compound that remains from the initial mass. Using the
interface approach, spatial moments were computed by van
Duijn et al. [1997] for the case without degradation.
Because the moments would then depend on the initial
mass distribution, calculating the moments for solutes that
are degraded was not possible.
[6] Thus our aim is to quantify the major effects of

nonlinear sorption on transport of pesticides in soil, with
emphasis on the combined effects of nonlinear sorption and
first-order degradation. We developed analytical approxi-
mations for the spatial moments of solute pulses moving
through soil that are subject to nonlinear sorption and first-
order degradation in solution. We are particularly interested
in the zeroth moment (the total mass of the solute in the
system), and the first moment (the mass weighted average
of the travel distance of the solute pulse in the system). In
this paper, we use mass to denote the zeroth moment of the
total mass and center of mass for the first spatial moment.

2. Mathematical Model

2.1. Solute Transport and Degradation

[7] We describe pesticide transport by the one-dimen-
sional convection-dispersion equation (CDE), assuming
first-order degradation kinetics in the liquid phase only:

r
@q

@t
þ q

@c

@t
¼ q D

@2c

@x2
� q v

@c

@x
� q kc ð1Þ

where r is the dry bulk density (M L�3), q is the mass
sorbed per mass of dry soil (M M�1), t is time (T), q is the
volumetric water content of the soil (L3 L�3), c is the
concentration in solution (M L�3), D is the hydrodynamic
dispersion coefficient (L2 T�1), x is the distance (L), v is the

filtration velocity (L T�1) and k is the degradation rate
coefficient (T�1). Note that only degradation in the liquid
phase is considered. See the Notation section for a full
description of the symbols. We consider equilibrium
nonlinear sorption, which is described by the Freundlich
equation,

q ¼ KF cr
c

cr

� �N

ð2Þ

where KF is the Freundlich sorption coefficient (L3 M�1), cr
is a reference concentration at which the Freundlich sorption
coefficient has been estimated (M L�3) and N (�) is the
Freundlich power which is assumed to satisfy 0 < N � 1.
We consider a semi-infinite system, where initially the
concentration is zero in the entire system. A flux pulse
is introduced at t = 0 and x = 0, which contains an initial
mass M0 per unit surface (M L�2). The mass in the system
M (M L�2) is defined as

M ¼
Z
R

qcþ rKFcr
c

cr

� �N
" #

dx ð3Þ

Combining equations (1) and (2) results in
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Equation (4) may be written in a non-dimensional form
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by introducing the following dimensionless parameters

C ¼ c

cr
T ¼ vt

Ld
X ¼ x

Ld
S ¼ r

q
KF w ¼ k Ld

v

ð6Þ

where Ld = D/v is the dispersivity (L). The parameter w is
the Damköhler number [Boucher and Alves, 1959]. The
dimensionless mass per surface area Mc in this system is
defined as

Mc ¼
Z
R

C þ S CN
� �

dX ð7Þ

which results in the following relationship between Mc

and M

Mc ¼
M

q crLd
ð8Þ

We eliminated the dimensionless sorption coefficient S
from the system by substitution of

u ¼ C S
1

N�1

� 	
ð9Þ
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Substitution of equation (9) into equation (5) gives

@ uþ uN½ �
@T

¼ @2u

@X 2
� @u

@X
� wu ð10Þ

The dimensionless mass per surface area, Mu, is defined by:

Mu ¼
Z
R

uþ uN
� �

dX ð11Þ

Solutions of equation (10) are valid for every dimensionless
sorption parameter S, differing only by a constant factor
from each solution for C, as given by equation (9).
Combining equations (7), (9) and (11) shows that Mu is
the following function of the dimensionless mass per
surface area.

Mu ¼ S
1

N�1Mc ð12Þ

We consider solutions for applications of pesticides
deposited at the soil surface, giving the initial condition

u ¼ d Xð ÞMu;0 X > 0 T ¼ 0 ð13Þ

where d(X) is the Dirac-d function in space, and Mu,0 is
defined as the dimensionless dose introduced into the
system.

2.2. Leached Mass Fraction

[8] With respect to pesticide leaching, the main interest is
in the fraction of the applied mass that arrives in ground-
water, i.e., the leached fraction. For linear sorption (N = 1)
and ignoring dispersion, the leached fraction F that passes a
defined reference distance L (L) over infinite time, is
determined by

F ¼ ML;1
M0

¼ exp � kL

v


 �
ð14Þ

as shown by Jury and Roth [1990] and applied by van der
Zee and Boesten [1991].
[9] Jury and Gruber [1989] derived the analytical solu-

tion for the leached fraction of a linearly sorbing and
degrading pesticide subject to dispersion. They assumed
degradation both in liquid and sorbed phases. Using their
solution we derived the following solution for the leached
fraction for a system with degradation in only the liquid
phase:

Fd ¼ ML;1
Mo

¼ exp �0:5
L

Ld

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4w

p
� 1


 �
 �
ð15Þ

van Genuchten and Cleary [1979] presented an equation for
the steady state value of the resident concentration during
breakthrough of a continuous feed solution of a linearly
sorbing solute that is degraded in the liquid phase. On the
basis of results from numerical calculations of nonlinearly
sorbing solutes, they observed that their steady state
solution holds regardless of adsorption of the solute, and
hence is independent of the particular form of the sorption

isotherm. This follows also from equation (4) assuming a
continuous input, i.e., @c/@t = 0. We rewrote their equation
in terms of flux concentrations and found again
equation (15). In view of this, equation (15) is likely to
be valid as well for pulses of nonlinearly sorbing solutes
that are degraded in the liquid phase.

2.3. Approximations for the Remaining Mass and the
Center of Mass

[10] We focus our study on the spatial moments
[Valocchi, 1989] of the total mass of the pulse in the
liquid and the solid phase. The zeroth spatial moment has
already been defined in equation (7). The first spatial
moment (the position of the center of mass) or the mean
traveled distance m* is defined as

m* ¼ 1

Mc

Z
R

X C þ S CN

 �

dX ð16Þ

We use the spatial moments to assess the impacts of the
three dimensionless parameters that determine the transport
of nonlinearly sorbing solutes according to equations (10),
(11) and (13): (1) mass in the system Mu, (2) Freundlich
exponent N and (3) Damköhler number w.
[11] Our goal is to find analytical approximations of Mu

and m*. The procedure is to base these approximations on
simplifications and to demonstrate later that these simplifi-
cations are defensible by comparing them with numerical
solutions. We start with the approximation for Mu. The
simplification is that an approximation for a system with a
Freundlich isotherm can be based on a system with a linear
sorption isotherm. The inspiration for this simplification
comes from the claim in section 2.2 (based on van
Genuchten and Cleary [1979]) that the solution for the
fraction leached (i.e., equation (15)) derived for a linear
isotherm is valid also for non-linear sorption. Similarly, we
base an analytical expression for the total remaining amount
of pesticide residing in the soil profile also on a system for a
linear isotherm.
[12] To derive this analytical expression for Mu, we use

solutions given by Jury and Roth [1990]. They derived
analytical solutions for the spatial moments using a Laplace
transform of the travel distance PDF representing the solute
resident concentrations as a function of distance x at a fixed
time t from a pulse input (Dirac-d) of an inert substance to
the CDE [pp. 55 and 181]. We included linear sorption and
transformation in the liquid phase in the CDE and applied
Jury and Roth’s Laplace transforms, obtaining the following
expression for remaining mass

Mu ¼ Mu;0 exp �wT

R

� �
ð17Þ

(where R = 1 + S) and for the center of mass:

m* ¼
ffiffiffiffi
T

p

r
exp � T

4R

� �

þ 1

2
1þ T

R

� �
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2
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T
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1

2
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T

R
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Equation (18) is the same as the solution derived by Jury
and Roth, but with T replaced by T/R. Hence for large times
T the center of mass is approximated by:

m* ¼ 1þ T

R
T=R � 4ð Þ ð19Þ

We combine equations (17) and (19) and thus obtain a
relation between the mass and the center of mass for linear
sorbing pulses,

Mu ¼ Mu;0 exp �w m*� 1ð Þ½ � ð20Þ

Equation (20) is valid for T/R � 4, hence for m* � 5 (see
equation (19)), which means the traveled distance is larger
than 5 times the dispersivity Ld. Equation (20) includes
neither sorption parameters nor time T, which implies that
the mass remaining in the system centered at X = m*
depends neither on sorption nor time. As described before,
we expect that equation (20) is also valid for nonlinear
sorbing solutes. We use this as a working hypothesis that
will be checked numerically later.
[13] To proceed, we make the following simplifications:

(1) at large times, the mass in the liquid phase can be
ignored due to nonlinear sorption, because at low total
concentration most of the mass is sorbed, the concentration
in the solute phase becomes small, and u + un in the left side
of equation (10) can be approximated by un [van Duijn et
al., 1997], (2) the dispersion term in equation (10) can be
ignored because nonlinear sorption dominates pulse spread-
ing at large times and pore scale dispersion is of lesser
importance [Fesch et al., 1998; Bosma et al., 1996], and (3)
that no transformation is assumed to occur. The last as-
sumption is shown later in this paper to be appropriate,
when we substitute equation (20) into the analytical expres-
sion found for m* and compare the approximation with
numerical solutions of equation (10). After the mentioned
simplifications, the reduced equation describing transport of
a nonlinearly sorbing pulse becomes

@uN

@T
þ @u

@X
¼ 0 ð21Þ

Using a similarity variable [see Grundy et al., 1994], we
derived the following expression for the center of mass
based on equation (21):

m* ¼ aNM
1�N
u TN ð22Þ

where aN denotes

aN ¼ N�N 1� Nð ÞN�1

2� N
ð23Þ

See Appendix A for the derivation of equations (22) and
(23). Equation (23) results in aN = 1.33 for N = 0.5, in aN =
1.42 for N = 0.7 and in aN = 1.0 for N = 1, hence aN goes
through a maximum between N = 0.5 and N = 1.
[14] We can now obtain an approximation for the center

of mass for a system with first-order transformation in

the liquid phase, by substituting the expression for Mu of
equation (20) into equation (22), resulting in

m* ¼ aN Mu;0 exp �w m*� 1ð Þ½ �
� �1�N

TN ð24Þ

Equation (24) can be rewritten to

m* exp w 1� Nð Þ m*� 1ð Þ½ � ¼ aNM
1�N
u;0 TN ð25Þ

Equation (25) is an implicit function of m* that cannot be
further simplified. Its right hand side is identical to that of
equation (22), which concerns a non-degrading pulse.
Hence the term exp[w(1 � N)(m* � 1)] is responsible for
the impact of transformation on the movement.
[15] To grasp the behavior of equation (25), the left side

of equation (25) is plotted in Figure 1 as a function of m* for
different values of w(1 � N). If w(1 � N) = 0, the function
reduces to the 1:1 line and equation (25) reduces to the
solution for no degradation. For the other values of w(1 �
N), the figure gives a measure of the impact of the term
exp[w(1 � N)(m* � 1)] on the resulting m* value. The faster
the degradation proceeds, the stronger the reduction in
movement. With increasing time, the value of the right side
of equation (25) increases. Hence increasing time implies
shifting to higher values of the vertical axis in Figure 1,
which shows increasing divergence of the four lines for
higher values of the vertical axis. Consequently Figure 1
implies that the deviation from the ‘‘TN type of behavior’’ of
equation (25) increases with increasing time.
[16] Now, with equations (20) and (25), we have obtained

analytical approximations for the mass and for the center of
mass of nonlinearly sorbing solutes transformed in the
liquid phase, which are tested and explored in the results
section.

2.4. Procedures for Numerical Solutions

[17] A numerical procedure was developed to check the
analytical approximations. Equation (10) was solved nu-

Figure 1. The function m* exp[w(1 � N) (m* � 1)] of
equation (25) as a function of m* for different values of
w(1 � N) as indicated.
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merically using an explicit finite difference scheme. The
concentration between the grid points was estimated with a
central difference approximation which suppresses numer-
ical dispersion [van Genuchten and Wierenga, 1974]. Time
integration was carried out with Euler’s method. The
procedure was checked against analytical solutions for a
system with linear sorption.
[18] For most of the numerical simulations, we defined

100 to 2000 layers with thickness DX = 0.5 and used a
time step of DT = 0.2. At the start of the simulations, the
applied pesticide was assumed to be present in the top
layer. All system properties are assumed to be constant in
space and time. We calculated the concentration distribu-
tions in the system to determine the spatial moments for a
number of combinations of Mu, N and w. The moments as
defined by equations (7) and (16) were calculated via
numerical integration.

3. Results and Approximations

3.1. Illustrative Concentration Profiles

[19] To illustrate the impact of nonlinear sorption on
solute transport, Figure 2 shows some concentration profiles
calculated with equation (10) and a numerical solution
procedure. First, the concentration profiles without degra-
dation are discussed (Figure 2a). The skewness of the front
of the solute profile increases in time, leaving a concentra-
tion tail behind, which is characteristic for the nonlinearly
sorbing pulse [see van Genuchten and Cleary, 1979]. The
velocity of a nonlinearly sorbing solute pulse decreases with
depth [Bosma et al., 1996]. Because of the sorption non-
linearity, the ratio dissolved:adsorbed shifts to less solute in
the liquid phase, illustrated by the 8.7% decrease of the total
mass in solution at T = 400 to 5.9% at T = 2000. Then, as
time increases and the penetration of the pulse into the soil
increases, the pulse velocit decreases.

[20] Figure 2b shows results that include degradation of
the solute. The progress of the pulse through the system
slows down. A decreasing part of the total mass in the
system is dissolved, illustrated in Figure 2b by the number
of 4.9% of the total mass present in solution at T = 400
decreasing to 1.5% at T = 2000, and therefore less available
for transport, as well as less available for degradation.
[21] Hence solute transport, assuming degradation in the

liquid phase, is affected by sorption in a complex way if
sorption is a nonlinear process. Both movement and degra-
dation are affected. In this paper, we assess the interaction
between these two processes.

3.2. Mass Fraction Leached

[22] We tested our hypothesis that the leached fraction of
a pulse for a system described by equation (10) with a
nonlinear sorption isotherm is equal to the leached fraction
of the corresponding system with a linear isotherm. We did
so for a range of parameters as shown in Figure 3. The
leached fraction calculated numerically corresponds very
well with the analytical prediction from equation (15).
Appendix B shows that the leached fractions calculated
for a two-site sorption model using N values ranging from
0.8 to 1 were also predicted well with equation (15). We
conclude that the hypothesis (the leached fraction of a pulse
does not depend on the sorption model) is strongly sup-
ported by our calculations. Hence despite the impact of
sorption nonlinearity on the traveltime of the pulse through
the soil, the fraction of the dose that leaches to groundwater
does not depend on the slope or the shape of the sorption
isotherm. The only loss process in the model is degradation.
Thus pulses of strongly sorbing substances move slower
through soil than pulses of weakly sorbing substances, but
strongly sorbing substances are also degraded slower than
weakly sorbing substances. The confirmation of our hy-
pothesis shows that these opposing effects cancel out

Figure 2. The dimensionless total concentration C* (= C + SCN), for T = 400, 1200 and 2000 as
calculated numerically using equations (5) and (6) for v = 0.02 m d�1, q = 0.5, r = 1000 kg m�3, Ld =
0.1 m, cr = 1 g m�3, Dx = 0.2 m, Dt = 0.1 d, KF = 1 L kg�1, N = 0.7, k = 0.01 d�1 and M0 = 0.1 g m�2.
Part A shows results for no degradation and part B for w = 0.5. Between brackets the percentage of total
mass in the system that is dissolved is indicated. Note that the scales of the vertical axes in A and B
differ.
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exactly with respect to the fraction that passes a certain
depth.

3.3. Remaining Mass in System

[23] We tested the extent to which equation (20) can be
used to predict the remaining mass for a system with
nonlinear sorption as a function of the center of mass. A
few examples of these checks (Figure 4) show that our
analytical approximation corresponds very well with the
numerical results. A restriction on the use of equation (20) is
m* � 5. Nevertheless, even for values of m* below 5, the
correspondence between numerical result and approxima-
tion is very good. The curves cross at m* = 1 (not shown).
Below m* = 1 the equation gives unrealistic results of mass
higher than the initial mass. The relationship described by
equation (20) was also tested for other Mu and for N values
between 0.5 and 1, and similar results were obtained.
[24] The theoretical backing for the successful prediction

of equation (20) for systems with nonlinear sorption is
similar to that of the indifference of the mass fraction
leached to sorption: pulses of strongly sorbing substances
move slower through soil. Hence strongly sorbing substan-
ces need more time to reach a certain average depth than
weakly sorbing substances. At first glance, one would
expect that the remaining mass of a strongly sorbing
substance when it has reached a certain depth is smaller
than that of a weakly sorbing substance. However, strongly
sorbing substances are also degraded more slowly than
weakly sorbing substances. The success of equation (20)
shows that these opposing effects also cancel out each other
so that the remaining mass in the soil profile has the same
center of mass for all combinations of sorption parameters.

3.4. Center of Mass

[25] To verify the validity of equation (25), centers of
mass calculated with equations (22) and (25) are compared
with centers of mass from numerical simulations for some
representative combinations of N and w for realistic values
of Mu (Figure 5). Figure ws that equation (22) (i.e.,

the approximations for no degradation) describes the strong
effect of N on the time course of the center of mass well.
Equation (22) overestimates the centers of mass for all three
N-values with a difference of about 10–20%, except for the
first time points of N = 0.5. However, there is no systematic
discrepancy in the approximation related to the value of the
Freundlich exponent N. We therefore reject the possibility
that this discrepancy is related to the Freundlich exponent.
The overestimation of the centers of mass must be due to
ignoring the mass in solution and ignoring dispersion as
described before.
[26] Comparing the approximation including degradation

with numerical results in Figures 5b to 5d shows that
equation (25) describes the strong effect of N on the time
course of the center of mass well also if the pesticide is
degraded. With increasing Damköhler number the approx-
imation shifts from slight overestimation of numerical
centers of mass to slight underestimation of numerical
centers of mass. Nevertheless, the approximations in Fig-
ures 5b to 5d describe the centers of mass, better than the
approximation for Damköhler number zero in Figure 5a.
Obviously the different simplifications have opposing
effects on the differences between numerical and analytical
results in Figure 5, thus compensating each other to some
extent.
[27] The results of the simulations presented in Figure 5

indicate that the approximations given by equations (22)
and (25) describe the first spatial moment of pulses well,
considering that they were derived for a system without
dispersion and ignoring the mass in the liquid phase. These
approximations demonstrate the impact of the transport
parameters on the mass and movement of nonlinearly
sorbing and degrading solutes like pesticides. The mass
and the movement of a solute pulse are affected by two
opposing effects of sorption nonlinearity. First, when the
Freundlich exponent N decreases, displacement of the
pulses slows down because the mass in solution (available
for movement) decreases. Secondly, when N decreases, the
degradation rate decreases, because the mass in solution

Figure 4. The dimensionless mass, Mu, as a function of
the dimensionless center of mass, m*, for Damköhler
numbers w as indicated in graph. The Freundlich exponent
N is 0.7 and the initial mass Mu,0 is 0.1. The points are
numerically calculated based on equation (10), and the lines
are calculated with equation (20).

Figure 3. Comparison of analytically and numerically
calculated leached fraction as a function of the Damköhler
number w. The line is the analytical solution calculated with
equation (15) for Ld = 0.1 m and a depth, L, of 1 m. The
dots are numerical solutions for parameter values as
indicated in the figure.
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(available for degradation) decreases. Consequently, each of
the two processes (transport and degradation) slows down
the progress of the other process; slower displacement
velocities imply longer degradation periods for decreasing
mass, whereas slower degradation rates imply a larger mass
and therefore larger displacement velocities.
[28] To test equation (25) for masses other than pre-

sented, we performed additional calculations with injected
masses that were 100 times larger and masses that were
100 times smaller, for N = 0.7 with w = 0.0737 and with
w = 0.364. The discrepancies between analytical and
numerical m* were comparable to those found in Figures
5b–5d for N = 0.7.
[29] It was expected that equation (25) would not work

well in the initial period, because the assumptions made for
the analytical approximation (ignoring dispersion and ignor-
ing the mass in solution) are unlikely to be valid in the initial
period. Furthermore, if m* is smaller than 5, then the
restriction of equation (2 � 4) leads to a discrepancy.

However, also in the initial period the approximation predicts
the centers of mass well.

4. General Discussion and Conclusions

[30] The spatial moments, mass (zeroth moment) and
center of mass (first moment) of a solute pulse moving
through the soil system were approximated analytically.
First, by ignoring mass present in the liquid phase and
dispersion, an approximation was derived for the center of
mass of a nondegraded nonlinear sorbing solute. Secondly,
for a linear sorbing solute that is degraded in the liquid
phase a relation was derived between the mass and center of
mass. Combining the two results gave an implicit solution
for the center of mass of a nonlinear sorbing solute degraded
in the liquid phase as a function of time.
[31] Analytical and numerical solutions showed that the

fraction of a pesticide application that leaches to ground-
water depends neither on the Freundlich sorption coefficient

Figure 5. Comparison of the centers of mass, m*, calculated numerically and analytically. The
numerical calculations are based on equation (5). The analytical calculations are done with equation (22)
in part A, and with equation (25) in parts B – D (note that equation (25) reduces to equation (22) if w =
0). Calculations are carried out for N values 0.5 (lower curves), 0.7 (middle curves) and 0.9 (upper
curves) as indicated in part A. The initial mass for the numerical calculations is M0 = 0.1 g m�2, hence
dimensionless initial mass Mu,0 = 0.018 for N = 0.5, Mu,0 = 0.0031 for N = 0.7 and Mu,0 = 0.45 � 10�6 for
N = 0.9. (a) is for Damköhler number 0, (b) for Damköhler number 0.0737, (c) for Damköhler number
0.364, (d) for Damköhler number 0.737.
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nor on the curvature of the Freundlich isotherm. The mass
leached appeared to be a function of the Damköhler number,
i.e., the product of degradation rate coefficient (k) and
dispersivity (Ld) divided by flow velocity (v). Furthermore,
mass as a function of center of mass is also a function of the
Damköhler number. Our analytical solution approximated
the progress of the center of mass of a nonlinear sorbing
pulse as calculated by a numerical model very well. Com-
paring these spatial moments of nonlinearly sorbing solutes
with spatial moments of linearly sorbing solutes revealed
that the nonlinearity of sorption increases the traveltime of a
solute pulse through the system. However, it also decreases
the degradation rate of the solute pulse. These two effects
were shown to compensate each other exactly, if we
consider the mass fraction leached beyond a certain depth.
[32] Our results describe the fate of pesticides that leach

to groundwater. Nonlinear sorption has no impact on the
total amount of pesticide that in due course leaches to
groundwater. The traveltime of the center of mass to the
groundwater table increases strongly with increasing non-
linearity of sorption. For nonlinearly sorbing pulses the
shape of the concentration distribution becomes more
skewed with increasing nonlinearity of sorption, with a
steep upstream gradient. Therefore the first traces of non-
linearly sorbing pesticides enter groundwater later than first
traces of linearly sorbing pesticides. At the time the center
of mass passes the groundwater table, the front of linearly
sorbing pesticide pulses has penetrated deeper into the
groundwater than the front of the skewed distributed non-
linearly sorbing pesticides. On the other hand, it also means
that linearly sorbing pulses will pass the groundwater table
relatively quickly, whereas the tail of nonlinearly sorbing
pesticide may be very slow. Thus traces of pesticides may
still cross the groundwater table long after the center of
mass passed.
[33] We made assumptions regarding (1) a uniform soil

profile (so sorption and degradation rate uniform with
depth), (2) steady state water flow, (3) application of
individual pulses, and (4) zero and first spatial moments
of concentration profiles. Assessments of pesticide leaching
to groundwater are usually based on (1) heterogeneous soil
profiles (sorption and degradation rate function of depth),
(2) non-steady water flow, (3) multiple applications, and
(4) leaching concentrations at 1 m depth averaged over
periods of typically one to three years (see e.g., the FOCUS
groundwater scenarios used in EU pesticide registration
[FOCUS, 2000]). Hence it is still open for debate whether
the message of this paper should have implications for
pesticide registration. To address this issue, we did calcu-
lations for one of these FOCUS groundwater scenarios with
(A) the conventional degradation rate concept (rate propor-
tional to total concentration) and (B) a degradation rate
proportional to q c (i.e., the approach followed in this
paper). This was done with the PEARL model which is
based on a Darcian water flow model combined with a
CDE-type leaching model [Boesten, 2007], and is an
accepted instrument in EU pesticide registration. Appendix
C shows that for such a heterogeneous soil with non-steady
flow both the leached mass and the leaching concentration
as used in EU pesticide registration become much less
sensitive to the sorption coefficient and becomes completely
insensitive to the Freundlich exponent when concept A is

replaced by concept B. This indicates that switching to the
concept of a degradation rate that is proportional to q c may
turn out to be a major improvement of the regulatory risk
assessment of pesticide leaching.
[34] The results in this paper can be applied to the

transport of pesticides in groundwater to drinking water
wells, by considering transport to take place along a one-
dimensional stream tube to the well. Protection zones
around drinking water wells, where no pesticides may be
applied, can be smaller, taking into account the effect of
degradation in the saturated zone [Neupauer and Wilson,
2003; Beltman et al., 1995]. This study shows that sorption
does not affect the pesticide mass that will arrive at a
reference point, i.e., in the well, under the condition that
pesticides degrade in the liquid phase only. Hence by
combining degradation rates in the saturated zone with
traveltime distributions of capture zones of a drinking water
well the protected zone can be estimated, without the need
to consider sorption processes.
[35] In the risk assessment pesticide sorption is held to be

of great influence on pesticide leaching to groundwater. Our
analysis suggests that the sorption is often attributed the
wrong role: it does affect the moment of leaching, but not
the amount leached. Therefore our work suggests a redirec-
tion of sorption research. More attention should be given to
how sorption affects the degradation of pesticides in soil.
We note, that the focus toward pesticides in this work
concerns only the parameter values that were considered.
Regarding the conclusion of independency of the leached
quantities on sorption, it is clear that it holds for all first
order degradable contaminants for which degradation
occurs in the liquid phase only (excluding radioactive
decaying solutes).

Appendix A: First Spatial Moment
(Center of Mass) of u(X, T)

[69] Grundy et al. [1994] introduced a similarity variable
for u(X, T) for N < 1,

h ¼ X

TN
ðA1Þ

with

u X ; Tð Þ ¼ l h; Tð Þ
T

ðA2Þ

Substitution of equations (A1) and (A2) into equation (21)
to get the time independent partial differential equation for
l gives

N h
@lN

@h
þ N lN � @l

@h
¼ 0 ðA3Þ

[Grundy et al., 1994]. The solution for l is then

l ¼ Nhð Þ
1

1�N ðA4Þ

[Grundy et al., 1994]. Then the solution for u is

u ¼ T�1 NX

TN

� � 1
1�N

ðA5Þ
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Equation (A5) implies that u increases continuously with
depth. Because of the mass conservation condition
(equation (11)), ignoring dissolved mass and under the
condition that the solution is confined to the interval 0 < h < h2,
Mu can be calculated as [see Grundy et al., 1994]:

Mu ¼
Z h2

0

Nhð Þ1= 1�Nð Þ
h iN

dh ðA6Þ

We substitute h of equation (A1), apply that the mass is
conserved between 0 and h2 and then bring h2 to the left side of
the equation giving the upper boundary for which the solution
equation (A4) is valid

h2 ¼ N�N 1� Nð ÞN�1
M 1�N

u ðA7Þ

[Grundy et al., 1994]. Above this upper boundary, i.e., h > h2,
the value of l is zero.
[70] Using the above results from Grundy et al. [1994],

we derive the first spatial moment (equation (16)) of the
concentration distribution. Ignoring the dissolved mass we
get

m* ¼

Z X2

0

X uN dXZ X2

0

uN dX

ðA8Þ

where X2 = h2T
N. Substituting the solution for u

(equation (A5)) and using equation (A7) for the upper
boundary of X results in:

m* ¼ M 1�N
u TN N�N 1� Nð ÞN�1

2� N
ðA9Þ

Appendix B: Comparison of Predicted and
Calculated Total Leached Fractions, Using
Different Sorption Models

[71] We tested the hypothesis that the leached fraction is
predicted correctly with equation (15). The test was based
on calculations with sorption models that comprise nonlin-
ear sorption and non-equilibrium sorption.
[72] In the calculations, transport of solute was described

with the CDE and first order degradation kinetics
(equation (1)). Two sorption models were considered: (1)
Freundlich equilibrium sorption (consisting of equation (2)),
(2) a two-site Freundlich sorption model that consists of
equilibrium sites and non-equilibrium sites defined by
equations (B1), (B2) and (B3):

qtot ¼ qeq þ qne ðB1Þ

qeq ¼ KF;eqcr
c

cr

� �N

ðB2Þ

@qne
@t

¼ kd KF;necr
c

cr

� �N

�qne

" #
ðB3Þ

with:
qtot = total content sorbed to equilibrium sites, M M�1;
qeq = content sorbed to equilibrium sites, M M�1;
qne = content sorbed to non-equilibrium sites, M M�1;
kd = desorption rate coefficient, T�1;

KF,eq = Freundlich sorption coefficient for the equilibrium
sites, L3 M�1.

KF,ne = Freundlich sorption coefficient for the non-
equilibrium sites, L3 M�1.

[73] We selected parameter values (see Table B1) in such
a way that the cumulative leached fraction was about 0.5%
of the dosage, to obtain a powerful test of the theory. The
total sorption coefficient (i.e., the sum of KF,eq and KF,ne) is
1 L kg�1 in all calculations. For the two-site model, half of
this total sorption coefficient is assigned to equilibrium
sorption, and the other half to non-equilibrium sorption.
The Freundlich exponentsN used were 1.0, 0.9 and 0.8 (N = 1
is linear sorption).
[74] The numerical model described in equations (1) and

(2) was extended with equations (B1), (B2) and (B3) for
numerical simulation with the two sorption models. Numer-
ical calculations were done with 100 layers of 0.01 m and a
time step of 0.1 d. To verify the numerical calculations of the
Freundlich non-equilibrium model, we used the analytical
solution for the flux concentration as a function of time for a
specified depth derived by Toride et al. [1993], which is their
equation (14). This analytical solution assumes a linear
sorption isotherm (N = 1). Figure B1 shows that the
numerical results of the two-site model correspond very
well with their analytical solution. So the numerical solution
was sufficiently accurate.
[75] Figure B1 shows that the arrival time of the solute

pulse below 1 m depth increases with decreasing Freundlich
exponent N, as could be expected. The shapes of the curves
show that the solute dispersal increases with decreasing N.
This solute dispersal becomes larger when non-equilibrium
sorption is included. Most important is that the cumulative
leached fraction after ‘‘infinite’’ time (in practice about 10
000 d) was accurately predicted by equation (15) in all
cases, whereas equation (15) does not contain any sorption
parameter.
[76] Equation (14) of Toride et al. [1993] shows that the

flux concentration for the two-site model (N = 1) is a very
complicated function of time: e.g., it already contains an

Table B1. Parameters Used in the Calculations Shown in

Figure B1

Parameter and Units Symbol Value

Volume flux of water, m3 m2 a�1 Q 0.5
Dispersivity, m Ld 0.05
Volumetric moisture content (�) q 0.25
Bulk density, kg m�3 r 1500
Pesticide dose, g m�2 M0 0.1
Degradation rate coefficient, d�1 k 0.0347
Freundlich equilibrium sorption model

Sorption coefficient equilibrium sites, L kg�1 KF 1
Freundlich non-equilibrium sorption model

Sorption coefficient equilibrium sites, L kg�1 KF,eq 0.5
Sorption coefficient non-equilibrium sites (L kg�1) KF,ne 0.5
Desorption rate coefficient, d�1 kd 0.002
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integral over time of the modified Bessel function of order
one. It seems practically impossible to solve the infinite
time integral of the flux concentration via analytical meth-
ods, so the theory that results in equation (15) seems also to
be very powerful in mathematical terms, as it provides an
analytical solution of the infinite time integral of the
extremely complicated analytical function of Toride et al.
[1993]. Even more surprisingly, our equation (15) provides
an analytical solution for the infinite time integral of the flux
concentration for equilibrium and non-equilibrium Freund-
lich systems for which no analytical expression of the flux
concentration itself is available.
[77] Hence the calculations shown in this appendix sup-

port the hypothesis that the comparatively simple
equation (15) for the infinite integral of the flux concentra-
tion in linear sorption systems is valid in general for all
sorption systems in which degradation occurs in the liquid
phase only.

Appendix C: Sensitivity of Pesticide Leaching to
Sorption Parameters Assuming Degradation Only
in the Liquid Phase for a FOCUS Groundwater
Scenario

C1. Procedure

[78] Calculations were carried out for one of the nine
FOCUS groundwater scenarios which are used for the
assessment of leaching in the pesticide registration proce-
dure in the EU [FOCUS, 2000]. Calculations were done
with the PEARL model for which Boesten [2007] gives a
description of both the model and the calculation procedure
used in the FOCUS scenarios. Two types of models were
used: (A) the standard n of the model used for

regulatory risk assessment (version FOCUS_PEARL
v3.3.3, available at http://viso.ei.jrc.it/focus) which assumes
a degradation rate proportional to the total concentration in
soil, and (B) a modified version of PEARL that assumes
transformation in the liquid phase only. Hence model (A)
was based on the following rate equation:

R ¼ ktot qcþ rKFcr
c

cr

� �N
" #

ðC1Þ

where R is the rate of degradation of the pesticide (M L�3

T�1) and ktot is the rate coefficient for degradation of the
pesticide in the combined liquid and solid phases (T�1).
This coefficient ktot is the product of a rate coefficient at
reference conditions, ktot,ref, and three factors accounting for
effects of soil temperature, soil moisture content and soil
depth. From this ktot,ref the half-life at reference conditions,
DegT50, can be calculated as ln [2]/ktot,ref. The reference
conditions are defined as 20�C, field capacity, and topsoil.
[79] Model (B) was based on the equation:

R ¼ kqc ðC2Þ

where k is the product of a rate coefficient at reference
conditions, kref, and the same three factors as above. From
this kref the half-life at reference conditions in the liquid
phase, DegT50liq, can be calculated as ln [2]/kref.
[80] Calculations were made for the FOCUS Hamburg

scenario (see Boesten [2007] for a detailed description of
the scenario parameters). The top 60 cm of the soil is sandy
loam and it is sand below 60 cm. The organic matter content
decreases from 2.6% in the top 30 cm to 0 below 75 cm
depth. The crop was summer wheat and pesticide was
applied every three year at a rate of 1 kg/ha on 30 March just
before crop emergence. The weather consisted of a 60-year
time series of daily values.
[81] Calculations were made for a range of hypothetical

pesticides with varying values of DegT50, DegT50liq, N and
the organic-matter/water distribution coefficient KOM (de-
fined as KF divided by the mass fraction of organic matter).
Thus KF varies with depth using the organic matter profile.
All other properties (molar mass, water solubility, vapor
pressure etc.) of the hypothetical pesticides were equal to
those described in Table 2 of Boesten [2007]. Only equi-
librium sorption based on a Freundlich isotherm was taken
into consideration. Simulations were made for application
every 3 year using a 66-year simulation period. Results of
the first 6 year (the so-called warming-up period) were not
evaluated, resulting in a 60-year evaluation period. Leach-
ing was characterized by (i) cumulative mass of pesticide
leached at 1 m depth over the 60-year evaluation period and
(ii) flux concentrations at 1 m depth averaged over 3-year
periods. The 3-year averages were characterized by the 80th
percentile concentration from a series of 20 triennial periods
[FOCUS, 2000]. This 80th percentile was calculated by
taking the 17th value of the 20 ranked values and is called
‘‘the FOCUS leaching concentration’’. The cumulative mass
of the dose leached was considered because it is closely
related to the leached fraction. The FOCUS leaching con-
centration was considered because it is used in EU pesticide
registration.

Figure B1. Cumulative leached fraction at 1 m depth as a
function of time calculated with a Freundlich 1-site
equilibrium sorption model and with a Freundlich two-site
equilibrium/non-equilibrium sorption model. The markers
denote numerical calculations for Freundlich exponents N =
1, 0.9 and 0.8. The solid line shows the result of the
analytical solution of Toride et al. [1993] for the two-site
model with N = 1. The dashed horizontal line shows the
total leached fraction calculated with equation (15). Note
the interruption of the horizontal axis (necessary to
demonstrate the convergence of all calculated lines to the
dashed line).
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[82] When assessing the effect of the model choice on the
sensitivity of the Freundlich exponent, the starting point has
to be a single pesticide that has the same leaching concen-
tration for both models. The model substance D as defined
by FOCUS [2000] was considered suitable for that purpose
because its FOCUS leaching concentration is 0.053 mg/L, so
close to the 0.1 mg/L which is the groundwater criterion
within the EU. The DegT50 of substance D is 20 d, its KOM

is 35 L/kg and its N is 0.9. The corresponding DegT50liq
value was estimated by inverse modeling using the model
based on equation (C2) and by requiring that this model
produces the same leaching concentration (0.053 mg/L).
This resulted in a DegT50liq value of 2.7 d.
[83] The effect of the Freundlich exponent N was assessed

by calculations with the model based on equation (C1) using
a DegT50 of 20 d and a variable N. These were compared to
calculations with the model based on equation (C2) using a
DegT50liq of 2.7 d and a variable N. The effect of the KOM

was assessed by calculations with both models using (1)
DegT50 = DegT50 l iq = 2.7 d and (2) DegT50 =
DegT50liq = 20 d.

C2. Results

[84] Figure C1 shows that the calculated FOCUS leach-
ing concentration is very sensitive to the Freundlich expo-
nent N for the model based on equation (C1) but that this
sensitivity disappears completely for the model based on
equation (C2). This is important because N is currently an
important parameter in the leaching risk assessment whereas
it seems to become almost irrelevant when the degradation
process is restricted to the liquid phase. Figure C2 shows
that also the sensitivity to the KOM is much less for the
model based on equation (C2) than for the model based on
equation (C1). The line for DegT50 = 20 d coincides with
the line for DegT50liq = 20 d when the KOM is zero. This
could be expected because then equation (C1) reduces to
equation (C2), so the models become identical. Similarly
the line for DegT50 = 2.7 d coincides with the line for

DegT50liq = 2.7 d when the KOM is zero. The line for
DegT50liq = 20 d (upper dashed line) shows almost no
sensitivity to the KOM whereas the line for DegT50liq = 2.7 d
(lower dashed line) shows sensitivity between KOM = 0
and KOM = 10 L/kg but again hardly any sensitivity above
KOM = 10 L/kg. Only few pesticides will have KOM values
below 10 L/kg, so in practice also the sensitivity to the
KOM has disappeared almost completely. Analysis of the
calculated cumulative masses of pesticide leached over
the 60-year evaluation period showed that these masses
could be described well as a function of the FOCUS
leaching concentrations by assuming that the masses were
directly proportional to the concentrations. Hence graphs
with the cumulative masses on the vertical axes showed
the same shapes as those in Figures C1 and C2. The
results in Figures C1 and C2 are of course of exploratory
nature. However, they indicate that using equation (C2)
may be a very promising scientific innovation in the risk
assessment of leaching to groundwater.

Notation

c concentration in the liquid phase, M L�3

cr reference concentration in the liquid phase, M L�3

C dimensionless concentration, 1
D hydrodynamic dispersion coefficient, L2 T�1

F leached fraction, system without dispersion, 1
Fd leached fraction, system with dispersion, 1
k degradation rate coefficient, T�1

KF Freundlich sorption coefficient, L3 M�1

L reference distance, e.g., distance to groundwater
table, L

Ld dispersivity, L
M areic mass, M L�2 (‘‘areic’’ means divided by area)
M0 initial areic mass, M L�2

Figure C1. The FOCUS leaching concentration as a
function of the Freundlich exponent for the FOCUS
Hamburg scenario. The solid line was calculated with the
model that simulates degradation in the combined liquid and
solid phases using equation (C1) and a DegT50 of 20 d. The
dashed line was calculated with the model that simulates
degradation in only the liquid phase using equation (C2)
and a DegT50liq of 2.7

Figure C2. FOCUS leaching concentration as a function
of the organic-matter/water distribution coefficient KOM for
the FOCUS Hamburg scenario. Solid lines were calculated
with the model that simulates degradation in liquid and solid
phase using equation (C1). Dashed lines were calculated
with the model that simulates degradation in the liquid
phase only using equation (C2). Lines with squares were
calculated with DegT50 = DegT50liq = 20 d and lines with
circles were calculated with DegT50 = DegT50liq = 2.7 d.
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Mc dimensionless areic mass, 1
ML,1 dimensionless areic mass passing reference

distance L after infinite time, 1
Mu dimensionless areic mass scaled to retardation, 1

Mu,0 initial mass, scaled to retardation, 1
N Freundlich power, 1
q pesticide content sorbed to the solid phase, M M�1

t time, T
T dimensionless time, 1
S dimensionless sorption coefficient, 1
u dimensionless concentration, 1
v flow velocity of pore water, L T�1

w Damköhler number (dimensionless degradation
rate coefficient), 1

x distance, L
X dimensionless distance, 1
h similarity variable
q volume fraction of liquid in the soil, L3 L�3

l similarity variable
m* first spatial moment of the dimensionless system:

center of mass, 1
r dry bulk density of the soil, M L�3
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