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Abstract

Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with

the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational

models of glucose-insulin dynamics have been extended to account for the interplay with

NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose

tissue during a mixed meal challenge test to evaluate the performance and underlying

assumptions of three existing models of adipose tissue metabolism and construct a new,

refined model of adipose tissue metabolism. Our model introduces new terms, explicitly

accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial

influx of glycerol into the adipose tissue, and several physiologically relevant delays in

insulin signalling in order to better describe the measured adipose tissues fluxes. We then

applied our refined model to human adipose tissue flux data collected before and after a diet

intervention as part of the Yoyo study, to quantify the effects of caloric restriction on post-

prandial adipose tissue metabolism. Significant increases were observed in the model

parameters describing the rate of uptake and release of both glycerol and NEFA. Addition-

ally, decreases in the model’s delay in insulin signalling parameters indicates there is an

improvement in adipose tissue insulin sensitivity following caloric restriction.
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Author summary

The adipose tissue is no longer considered a metabolically quiescent tissue. Disturbances

in non-esterified fatty acid (NEFA) metabolism leading to ectopic fat deposition have

been associated with the development of insulin resistance. In recent years, the use of sta-

ble isotope tracers coupled with arteriovenous sampling across tissue depots has greatly

improved our knowledge of postprandial NEFA dynamics. In this study, we make use of

arteriovenous measurements collected across the abdominal subcutaneous adipose tissue

in humans during a high fat mixed meal to evaluate three existing computational models

of adipose tissue metabolism. As the three models included in this study were not capable

of fully describing the measured adipose tissue fluxes, we present a new model of human

in vivo adipose tissue metabolism, introducing novel terms such as the postprandial

uptake of glycerol. We then utilised our refined model to quantify the effect of caloric

restriction on adipose tissue metabolism by fitting the model to mixed meal challenge test

data collected before and after a weight-loss intervention. Parameter estimates indicate an

increase in the rates of glycerol and NEFA release coupled with a decrease in the delay of

insulin signalling for all reactions, suggesting improved insulin sensitivity following calo-

ric restriction.

Introduction

The adipose tissue plays a key role in the regulation of plasma triglyceride and non-esterified

fatty acid (NEFA) concentrations [1, 2]. In the fasting state, lipolysis of triglycerides stored

in the adipose tissue delivers NEFA to the plasma, where it can be taken up by other tissues,

including skeletal muscle, heart, and liver [3]. In the postprandial state dietary derived chylo-

micron-triglycerides are removed from the circulation by insulin stimulated hydrolysis by

lipoprotein lipase (LPL) at the endothelial cell wall [4]. NEFA released by LPL lipolysis is pri-

marily taken up by the adipose tissue and may subsequently be stored as triglyceride [5]. Dis-

turbances in the regulation of lipid metabolism by the adipose tissue can lead to raised plasma

NEFA concentrations resulting in ectopic fat deposition. The accumulation of fat in insulin

sensitive tissues such as skeletal muscle and liver has been related to the development of insulin

resistance and, consequently, increases the risk for developing Type 2 Diabetes and cardiovas-

cular disease [6–9]. The contribution of disturbed NEFA metabolism to the development of

insulin resistance highlights the need to include adipose tissue NEFA metabolism when inves-

tigating disturbances in the glucose-insulin regulatory system during disease development

[10].

Several computational models exist which describe adipose tissue NEFA metabolism; from

smaller models focussing on NEFA dynamics between the plasma and adipose tissue alone

[11, 12] to larger models describing several metabolites across multiple tissues [10, 13, 14].

Typically, these models have been parameterised using values reported in literature and their

performance assessed by comparison with measured plasma metabolite concentrations during

an oral glucose or mixed meal challenge test. However, with traditional venous sampling it is

not possible to differentiate between the contributions of individual tissues (i.e. liver or skeletal

muscle) to the whole body plasma metabolite concentration. Consequently, it is not possible to

fully assess the structure of the model and assumptions upon which the model has been con-

structed. Therefore, more detailed measurements are needed, providing information about

contributions of individual tissues to postprandial changes in plasma NEFA concentrations.
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In recent years, new quantitative knowledge has been gained on human adipose tissue

NEFA dynamics in both the fasting and postprandial state through the use of stable isotope

tracers coupled with arteriovenous sampling [5, 15, 16]. The simultaneous sampling of blood

from an artery (or arterialised hand vein) and a vein draining a specific tissue depot (e.g. the

abdominal subcutaneous adipose tissue) allows for the calculation of metabolite fluxes across

this tissue. In combination with the use of stable isotope tracers, it is now possible to further

untangle postprandial lipid metabolism and to quantify rates of appearance of triglyceride

in the plasma, rates of LPL lipolysis of lipoprotein derived triglyceride, and spill-over of LPL

derived NEFA into the plasma, while also providing insights into the behaviour of secondary

metabolites such as glycerol.

Arteriovenous measurements provide invaluable information in the evaluation and refine-

ment existing models of adipose tissue fatty acid metabolism. One example where such data

has been successfully used is the 2008 study of Kim et al. [12], who modelled adipose tissue

metabolism with a focus on the regulation of lipolysis. However, their model focused primarily

on the fasting state, as well as the effect of an epinephrine infusion, and did not consider the

postprandial state nor the influence of insulin.

In the present study, we used human in vivo measurements of net triglyceride, NEFA, glu-

cose, and glycerol fluxes across the abdominal subcutaneous adipose tissue along with arterial

insulin collected in the fasting and postprandial state during a high fat mixed meal challenge

test to evaluate three existing models of postprandial adipose tissue dynamics. The inclusion of

a palmitate stable isotope tracer in the meal provides a first opportunity to evaluate model terms

describing the postprandial spill-over of LPL derived NEFA on human data. Ultimately, as no

existing model could sufficiently describe the calculated metabolite fluxes, we construct a new

refined model of postprandial adipose tissue metabolism which could be parameterised by data;

introducing novel terms explicitly accounting for the conversion of glucose to G-3-P for use in

re-esterification and the postprandial uptake of glycerol into the adipose tissue. The resulting

model was then used to quantitatively estimate the impact of caloric restriction induced weight

loss on subcutaneous adipose tissue fatty acid dynamics in a population of sixteen overweight

or obese individuals that participated in the Yoyo study [17]. The model also allows for the pre-

diction of the dynamic response of several reactions, which were not directly measured, to the

ingestion of a meal (e.g. uptake and release of NEFA and glycerol by the adipose compartment),

providing additional insights into the alterations in adipose tissue metabolism following caloric

restriction which contribute to the observed changes in the calculated adipose tissue fluxes.

Materials and methods

Study design and work-flow

The study design and work-flow is visualised in Fig 1 and detailed below. In summary, three

existing models of postprandial adipose tissue glucose, fatty acid, and triglyceride dynamics

were evaluated using arteriovenous measurements across the abdominal subcutaneous adipose

tissue. Subsequently, a refined model was constructed by either selecting the best fitting model

term of the three existing models or, in cases where none of the existing models allowed for an

adequate fit to the data, new or modified physiological mechanisms were introduced. Finally,

model parameters were estimated before and after weight loss in the Yoyo study [17] and com-

pared, taking their confidence intervals into account.

Yoyo study and A-V measurements

The Yoyo study is a dietary intervention study designed to investigate the effect of the

rate of weight loss (fast or slow) on subsequent weight regain [18]. Sixty-one overweight
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(BMI> 25kg/m2) and obese (BMI> 30kg/m2) individuals (BMI 28-35 kg/m2) were randomly

assigned to one of two diet interventions designed to achieve a weight loss of approximately

10%, a low calorie diet of 1250 kcal/day over twelve weeks (slow weight loss) or a very low calo-

rie diet of 500 kcal/day for five weeks (rapid weight loss). Following the diet intervention all

participants underwent a four week weight stabilisation period with a diet based on the energy

requirements of each participant. As part of this study, sixteen individuals underwent a high

fat mixed-meal challenge test (milk shake) containing 100 mg of [U-13C] palmitate tracer at

baseline and following the weight stabilisation period [17]. Fasting samples were collected at

-30 and 0 minutes. The meal was consumed at 0 minutes, participants were asked to consume

the shake within 10 minutes, and samples were collected at 60, 120, 180, 240, 300 minutes post-

prandially from an arterialised dorsal hand vein and the superficial epigastric vein draining the

abdominal subcutaneous adipose tissue. Abdominal subcutaneous adipose tissue blood flow

was measured using the 133Xe washout technique [19, 20].

Fig 1. Work-flow for comparison of existing model terms and construction of refined model. Jelic, Pratt, and Sips model terms are compared for

each metabolite flux separately using the postprandial arteriovenous tracer measurements from the Yoyo study. Existing model terms are first evaluated

based on their ability to describe the experimentally measured data. In addition, as the refined model is constructed with the aim that parameters could

be estimated directly from measured data, existing model terms are also compared using identifiability analysis, using the Profile Likelihood, sensitivity

analysis, and statistical evaluation using Akaike Information Criterion. The refined model of adipose tissue metabolism is constructed either by

selecting the best fitting of the existing model terms, or by introducing modifications and, where necessary, novel physiological mechanisms. The

resulting refined model is then parameterised using data from both the baseline and following weight stabilisation from the Yoyo study, and the values

compared.

https://doi.org/10.1371/journal.pcbi.1007400.g001
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Ethics statement

All subjects gave their written informed consent before participation in the Yoyo Study. The

Yoyo Study was performed according to the Declaration of Helsinki and was approved by the

Medical Ethics Committee of Maastricht University Medical Centre (METC 11-3-066) with

the approval number NL38099.068.11.

Calculations

Individual metabolite fluxes across the abdominal subcutaneous adipose tissue were computed

for NEFA, triglyceride, glucose, and glycerol by multiplying the arterio-venous plasma concen-

tration difference of each measured metabolite by the adipose tissue blood flow [17].

Plasma tracer concentrations in NEFA and TG fractions were computed as described in the

original study [17]. The rate of fractional spill-over of NEFA derived from LPL lipolysis of chy-

lomicron triglyceride was calculated as one minus the rate of fractional extraction as described

by Bickerton et al. [5]

Two indices of insulin resistance were calculated using the arterial metabolite measure-

ments. HOMA-IR is a measure of whole body insulin resistance, and is calculated as fasting

plasma glucose(mmol/l) times the fasting plasma insulin (μU/ml) divided by 22.4 [21]. Several

studied have evaluated appropriate HOMA-IR cutt-off values for determining insulin resis-

tance, with identified cut-off calues ranging from 1.85 to 2.01 depending on the study popula-

tion [22]. ADIPO-IR is a surrogate measure of adipose tissue specific insulin resistance and is

calculated as fasting plasma NEFA concentration (mmol/l) times the fasting plasma insulin

concentration (pmol/l) [23].

Existing models

Models of postprandial lipid metabolism were assessed to identify models that described insu-

lin mediated adipose tissue specific dynamics of glucose, triglyceride, NEFA, and/or glycerol.

Three published models describing complementary aspects of adipose tissue metabolism

were included in the analysis, namely the Jelic [11], Pratt [13], and Sips [10] models. The Pratt

Model is a large, multi-compartmental, computational model describing the dynamics of sev-

eral metabolite species including glucose, NEFA, glycerol, pyruvate, and both endogenous and

dietary triglyceride in the fasting and postprandial states in plasma, skeletal muscle, adipose

tissue, and liver [13]. The Jelic model is a two compartment, physiology-based, mathematical

model describing NEFA dynamics across the plasma and a lumped interstitial adipose space

in the postprandial state [11]. The Jelic model also accounts for two physiologically relevant

delays in insulin signalling not present in the Pratt model. The model parameters for both the

Jelic and Pratt models have been taken from literature and both models have been validated

using oral glucose tolerance test (OGTT) and mix meal challenge test data in lean and abdomi-

nally obese individuals. The Sips model [10] is an extension of the Dalla-Man model [24] of

postprandial glucose-insulin interplay to include NEFA kinetics. Unlike the previous two

models, all parameters in the Sips model have been estimated from data. Where possible

parameter values were maintained at the values provided for the lean healthy individual in the

Dalla-Man model, as these parameters had been validated using gold standard triple-glucose

tracer data [20]. The remaining 21 parameters were estimated from experimental data consist-

ing of plasma measurements of several metabolites from individuals under various clamp con-

ditions [25, 26] and also a frequently sampled oral glucose tolerance test (OGTT) and oral

lipid tolerance test [10].
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Model evaluation and refinement

The three existing models (Jelic, Pratt, Sips) were decomposed into relevant subunits describ-

ing each measured metabolite’s dynamics across and within the adipose tissue using a so-called

divide and conquer approach [27] (Fig 1, S1 Table). These model terms were then evaluated by

comparison to the calculated metabolite flux from the A-V data (average μ = (μ1,. . ., μ7) and

standard deviation σ = (σ1,. . ., σ7)) according to the following error function C(p):

CðpÞ ¼
X7

i¼1

Mðp; iðtiÞÞ � mi
si

� �2

ð1Þ

HereM(p, ti) is the model prediction at time ti, t = (−30, 0, 60, 120, 180, 240, 300), for a param-

eter set p.
Optimal parameter sets for each term were obtained through non-linear regression, by find-

ing the parameter set which best described the measured flux, minimising the error term C(p).

Optimisation of parameters was performed using lsqnonlin (MATLAB 2014b, The MathWorks

Inc., Natick, Massachusetts, United States) a local, gradient-based least square solver. The

parameter values supplied in the original model studies were used as initial values for the

parameter search. Parameterisation of the final, refined model for comparison of baseline and

following weight stabilisation was performed using a combination of a global and local search

algorithm. Controlled Random Search [28] with 250 randomly selected initial parameter sets

was utilised to search the parameter space in order to provide a good initial value for lsqnonlin.

Terms describing the uptake and release of metabolites from tissues other than the adipose

tissue, for example appearance from the gut and insulin secretion, are not described in this

model. Available measured arterial concentrations of insulin, glucose, NEFA, triglyceride, and

glycerol are supplied as dependent inputs to the model terms [29].

In the cases when the existing models were not capable of describing the experimentally

estimated fluxes, underlying assumptions and model terms were evaluated based on existing

biological knowledge and modified accordingly to provide an improved description of post-

prandial metabolite dynamics across the adipose tissue.

Additionally, all model terms were examined statistically, using the Akaike Information

Criterion (AICc) corrected for small sample sizes [30], to select the most parsimonious model

that is both biologically sound and can adequately describe the measured flux data.

The above procedure was performed to evaluate terms describing the triglyceride, glucose,

glycerol, and NEFA fluxes across the adipose tissue. Terms describing the fractional spill-over

of NEFA by LPL lipolysis could also be assessed for the first time using the [U-13C] palmitate

tracer data.

Parameter identifiability

Model terms were also evaluated for the identifiability of parameters, as a primary objective

of this study was to provide a model which could be parameterised by experimental data and

could therefore be used to quantify adipose tissue metabolism from meal challenge test data.

Identifiability of model parameters was evaluated using Profile Likelihood Analysis [31],

whereby one parameter was varied iteratively from its optimal value and the remaining

parameters were re-estimated. For an identifiable parameter the error measure C(p) would be

expected to increase as the parameter value deviated from its optimum [31, 32]. 95% confi-

dence intervals for the estimated parameter values have been estimated using the parameter

value covariance matrix approximated using the Jacobian matrix provided as output of the

lsqnonlin algorithm used in the parameter estimation procedure.
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Results

The three existing models of postprandial adipose tissue metabolism implemented in this

study were not capable of describing the calculated postprandial adipose tissue metabolite

fluxes. Consequently, a refined model of adipose tissue postprandial metabolism was con-

structed. The refined model is formulated as a two compartment model consisting of a blood

plasma compartment and a lumped interstitial adipose compartment reflecting the sampling

method used in the arteriovenous data (Fig 2). In the following, we show the results of the

Fig 2. Structure of refined mathematical model of adipose tissue metabolism. The refined model of adipose tissue

metabolism consists of a two compartmental model, describing dynamics between the plasma and a lumped interstitial

adipose space. The insulin stimulated LPL lipolysis of circulating triglycerides releases glycerol and NEFA. The

hydrolysed NEFA passes into the adipose space, with an insulin-dependent fraction spilling over into the plasma. The

insulin inhibited lipolysis of the triglycerides stored within the adipose tissue releases NEFA and glycerol. It is assumed

that this glycerol cannot be recycled within the adipose space and enters the plasma for transportation to the liver.

Glucose passes into the adipose space at an insulin dependent and independent rate. Glucose is converted to G-3-P

and provides the glycerol backbone necessary for re-esterification of NEFA for storage as triglyceride within the

adipose space. Novel model terms, introduced in this analysis, are shown in red, existing models are shown in black.

Reactions that are stimulated by insulin are depicted with a green insulin symbol. Reactions that are inhibited by

insulin are shown with a red insulin symbol.

https://doi.org/10.1371/journal.pcbi.1007400.g002
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model evaluation and refinement separately for each measured metabolite using the adipose

tissue flux data before the weight loss intervention.

Triglyceride flux

Circulating plasma triglyceride is hydrolysed by LPL at the endothelial wall releasing NEFA

and glycerol. The Pratt model describes this reaction as being proportional to the concentra-

tion of triglyceride present in circulating lipoproteins (both chylomicron and VLDL) and

occurring at a basal and insulin stimulated rate using linear terms [13], with the plasma insulin

concentration having an instantaneous effect. The Jelic model accounts for the saturation of

enzyme mediated LPL lipolysis using Michaelis-Menten kinetics, with the rate of hydrolysis of

circulating triglyceride being dependent on the plasma triglyceride concentration and stimu-

lated by a delayed insulin effect [11]. The transcription of LPL and subsequent secretion of the

LPL protein to the endothelial wall are known to be stimulated by insulin, however, these pro-

cesses take some time [4]. As a result, the Jelic model introduced a three-fold insulin delay

term, with the time delay parameter set to 240 mins [11]. The Sips model makes use of the Jelic

model term and parameters [10].

Using the parameter values as specified in the original publications, neither the Jelic nor Pratt

models are capable of describing the mean measured triglyceride flux across the adipose tissue

(Fig 3A). Allowing the parameters to be estimated from the data, the Jelic model provides an

improved fit. A more detailed investigation demonstrated that the insulin delay is the essential

component missing in the Pratt model (S2 and S3 Figs). As a result, the optimised triglyceride

flux term ([TG]flux) shown below was derived, making use of the insulin dependent linear

approximation from the Pratt model while introducing the insulin delay term of the Jelic model.

TGflux ¼ Kad½TGart�½ILPL� ð2Þ

Where Kad is the rate parameter for LPL lipolysis, [TGart] is the arterial triglyceride concentra-

tion and [ILPL] is the delayed insulin signal, modelled with a three compartmental delay (Eq 12)

with a time delay parameter τLPL also estimated from data.(Fig 4)

Fractional spill-over

NEFA released by LPL lipolysis of circulating triglyceride is taken up by the adipose tissue.

However, this process is inherently leaky with a proportion of the released NEFA spilling-over

directly into the plasma [33, 34]. Arteriovenous studies combined with NEFA stable isotope

tracers have previously demonstrated that the fractional spill-over of NEFA from LPL lipolysis

increases later in the postprandial period [5, 33].

The Jelic model does not describe the spill-over of NEFA derived from LPL lipolysis [11].

The Pratt model describes fractional spill-over at a constant rate of 25% [13]. The Sips model

describes the fractional spill-over of LPL derived NEFA as occurring at a basal and insulin

inhibited rate, using the same delayed insulin signal as LPL lipolysis with a 240 min time delay

parameter [10].

The Sips term could not describe the increasing postprandial fractional spill-over measured

in the Yoyo Study data (Fig 3B). The 240 min insulin time delay served to over-damp the insu-

lin signal. As a result, the insulin delay was removed. Further analysis of the Sips term with use

of the Akaike Information Criterion led to the removal of the basal fractional spill-over rate,

yielding the following optimised fractional spill-over term.

%spill-over ¼
1

100
Dspill

IB
½Iart�

� �

ð3Þ
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Here IB is the basal plasma insulin concentration, [Iart] the arterial insulin concentration and

Dspill an estimated constant (Fig 4B).

Glucose flux

Glucose enters the adipose tissue along the concentration gradient facilitated by insulin depen-

dent (GLUT4) and insulin independent (GLUT1) transporters [35]. Within the adipocyte,

glucose is quickly converted to glucose-6-phosphate (G-6-P) which serves to trap the glucose

within the adipocyte. Glucose is the primary source of the glyceraldehyde-3-phosphate (G-

3-P) backbone needed for re-esterification of adipocyte NEFA [36].

Both the Pratt [13] and the Sips model [10] describes the uptake of glucose by the adipose

tissue as occurring at an insulin dependent and independent rate. However, the Pratt model

uses direct plasma insulin stimulation rather than accounting for a delay in the effect of insulin

signalling which induces the translocation of GLUT4 transporters from the transport vesicles

of the cell to the membrane. The Jelic model does not account for glucose dynamics.

Fig 3. Comparison of the Jelic, Pratt, Sips, and refined model fit to baseline flux data from the Yoyo study. The fit of the refined model to the

baseline adipose tissue flux data from the Yoyo Study is shown along with the terms from the Jelic, Pratt, and Sips models simulated using the parameter

values provided in the respective publications. (A) Model terms from the Pratt (green), Jelic (blue), Sips (yellow), and refined model (red) describing the

postprandial LPL mediated lipolysis of circulating triglycerides are shown. (B) Terms describing the fractional spill over of LPL derived NEFA from the

Pratt, Sips, and refined adipose tissuse models are shown. The mean fractional spill over values, calculated using the postprandial palimate [U-13C]

tracer included in the meal (black crosses ± standard error of mean). (C) Model terms describing the uptake of glucose into the adipose tissue from the

Pratt and refined model are shown. (D) Depicts terms describing the postprandial efflux of glucose from the Pratt and refined models. (E) Model terms

describing the efflux NEFA from the abdominal subcutaneous adipose tissue from the Pratt, Sips, Jelic, and refined models are shown. Metabolite fluxes

are calculated as the arteriovenous difference in a metabolite across the adipose tissue multiplied by the rate of postprandial adipose tissue blood flow.

The mean calculated adipose tissue fluxes are shown with the black crosses ± the standard error of the mean. Negative flux values indicate a net release

of the metabolite from the adipose space, positive values indicate a net uptake.

https://doi.org/10.1371/journal.pcbi.1007400.g003
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With the introduction of a time delay in insulin stimulation the linear term from the Pratt

model was capable of describing the glucose flux. In addition, it was necessary to explicitly

account for the conversion of glucose to G-6-P in order to remedy an erroneous prediction of

a postprandial glucose efflux from the interstitial adipose space (S3C Fig).

Gflux ¼ � GLUT1½Gart� � GLUT4½Gart�½IAT� ð4Þ

Where [Gart] is the arterial glucose concentration, [IAT] is the adipose tissue delayed insulin

signal described using a threefold delay with a time delay parameter τAT(Eq 12), GLUT1 and

GLUT4 are constants estimated from the data (Fig 4C).

Glycerol flux

Glycerol is released into the plasma by LPL lipolysis of circulating triglyceride at the endothe-

lial wall [35]. Glycerol is also released by lipolysis of triglyceride stored within the adipose

tissue (denoted as ATL lipolysis [37]). It is commonly assumed tht due to the inactivity of

Fig 4. Fitting of the refined model to adipose tissue flux data measured at baseline and following caloric restriction from the Yoyo study.

The refined model was fit to postprandial adipose tissue flux measurements of (A) LPL mediated lipolysis of circulating triglycerides, (B) the

fractional spill over of LPL derived NEFA, (C) infflux of glucose, and efflux of both (D) glycerol, and (E) NEFA to the adipose tissue at baseline

and following a period of caloric restriction. Blue crosses indicate the mean adipose tissue flux at baseline, the red crosses show the mean flux

following caloric restriction, error bars indicate the standard error of the respective means. Refined model prediction at baseline is shown in blue,

and the model fit following the diet intervention is shown in red. Negative flux values indicate a net release of the metabolite from the adipose

space, positive values indicate a net uptake.

https://doi.org/10.1371/journal.pcbi.1007400.g004
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glycerol kinase in the adipose tissue [38], all glycerol released by ATL lipolysis enters the

plasma for transportation to the liver. Postprandial glycerol dynamics are not accounted for in

the Jelic [11] nor Sips models [10]. The Pratt model accounts for the release of glycerol by ATL

lipolysis within the adipose tissue which appears directly in the liver compartment [13]. Glyc-

erol release into plasma by LPL lipolysis is not described in this model.

Analysis of the postprandial glycerol and triglyceride fluxes from the YoYo Study indicate

the uptake of glycerol into the interstitial adipose space in the postprandial state (Fig 5). As a

result, the Pratt glycerol term was extended to account for the concentration gradient diffusion

of plasma glycerol into and from the interstitial adipose compartment.

GLYflux ¼ Kad½TGart�½ILPL� þ pGLYð½GLYAT� � ð½GLYart� þ Kad½TGart�½ILPL�ÞÞ ð5Þ

d½GLYAT�
dt

¼ � pGLYð½GLYAT� � ½GLYart� þ Kad½TGart�½ILPL�Þ þ BATL þ
ATLmax
1þ

½IAT �
KATL

ð6Þ

Where ATL lipolysis is described as occurring at a basal (BATL) and saturable insulin inhib-

ited rate using terms from the Jelic model (ATLmax, KATL) [11]. Where [IAT] is the delayed

interstitial adipose compartment insulin signal as described for the glucose flux above. (Figs

3D and 4D)

NEFA flux

In the fasting state NEFA is released by the lipolysis of stored triglyceride within the adipocyte

and passes into the plasma for delivery to other tissues. The lipolysis of stored triglyceride is

inhibited by increasing insulin concentration in the postprandial state [39, 40] which also

Fig 5. Postprandial uptake of glycerol by adipose space. A) Mean postprandial triglyceride influx (blue) (equivalent to the release of glycerol by LPL

lipolysis (red)) and total glycerol efflux (yellow) across the abdominal subcutaneous adipose tissue at baseline in the Yoyo study (± standard error of the

mean). B) Mean (± standard error of the mean) of glycerol flux minus triglyceride flux in postprandial phase measured at baseline in the Yoyo study

indicating a net uptake of glycerol by the abdominal subcutaneous adipose tissue in the postprandial condition (green shaded region). This is in

contradiction to the commonly held assumption that the glycerol efflux equals the direct sum of glycerol released by LPL lipolysis of circulating

triglyceride and glycerol released by ATL lipolysis within the adipose tissue.

https://doi.org/10.1371/journal.pcbi.1007400.g005
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stimulates the rate of re-esterification of free NEFA within the adipocyte for storage as triglyc-

eride [41]. In addition, insulin stimulates the LPL lipolysis of circulating triglyceride, removing

excess dietary triglyceride from the plasma. While the majority of NEFA released by LPL lipol-

ysis passes into the adipocyte for re-esterification a fraction spills-over directly into the plasma

[33, 34].

Terms describing the fractional spill-over, LPL and ATL lipolysis have previously been

derived. Terms describing the rate of re-esterification were compared using the Yoyo study

NEFA flux. The Pratt model describes the rate of re-esterification as a linear term, directly

stimulated by plasma insulin and adipose glucose concentration [13]. The Jelic model uses

saturable kinetics coupled with a delayed insulin stimulation [11]. Both models used passive

diffusion of NEFA between the plasma and interstitial adipose compartment. The Sips

model does not explicitly describe the adipose compartment, instead using a linear term

which accounts for net lipolysis and re-esterification of NEFA within the adipose tissue

[10].

While the Jelic term could produce a good describtion of the NEFA flux when fit to the

data (S2 Fig), it assumed an unlimited supply of G-3-P and required the estimation of five

parameters from the data (S1 Table). The linear re-esterification term of the Pratt model was

modified to include the delayed interstitial adipose compartment insulin signal. In addition,

terms explicitly accounting for the production of the G-3-P backbone necessary for re-esterifi-

cation from glucose taken into the adipose tissue were introduced, providing a sufficient

description of the measured postprandial NEFA flux (Figs 3E and 4E).

NEFAflux ¼
3

100
Dspill

IB
½Iart�

� �
Kad½TGart�½ILPL� � pNEFA ½NEFAPL� � ½NEFAAT�ð Þ ð7Þ

d½NEFAAT�
dt

¼
3

100
1 � Dspill

IB
½Iart�

� �
Kad½TGart�½ILPL� þ pNEFA ½NEFAPL� � ½NEFAAT�ð Þ

þ 3 BATL þ
ATLmax
1þ
½IAT �
KATL

� �

� 3 Kreester½IAT�½NEFAAT�½G-3-PAT�ð Þ

ð8Þ

With ½NEFAPL� ¼ ½NEFAart� þ 3

100
Dspill

IB
½Iart �

� �
Kad½TGart�½ILPL�.

Where the adipose tissue concentration of G-3-P ([G-3-PAT]) calculated using the following

equations.

d½G-3-PAT�
dt

¼ ½G-3-Ppro� � Kreester½IAT�½NEFAAT�½G-3-PAT� ð9Þ

d½G-6-P�
dt

¼
1

tG� 3� P
2fracuseðGLUT1½Gart� þ GLUT4½Gart�½IAT�Þ � ½G-6-P�ð Þ ð10Þ

d½G-3-Ppro�
dt

¼
1

tG� 3� P
½G-6-P� � ½G-3-Ppro�
� �

ð11Þ

Re-esterification occurs at an insulin stimulated linear rate Kreester dependent on the available

concentrations of G-3-P and NEFA. A portion of the glucose taken up by the adipose space

(fracuse) is converted to G-6-P and then to adipose tissue G-3-P ([G-3-PAT]) which will be

available for use in re-esterification, the remaining glucose leaves the system for use by other

cellular functions which are not explicitly described here. The production of adipose tissue G-

3-P is described by the term [G-3-Ppro] with a two compartmental delay governed by the delay

constant τG-3-P.
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Insulin delays

Insulin stimulates the translocation, secretion, and in some cases transcription of several

enzymes and transport proteins involved in adipose tissue metabolism. These processes occur

over time spans of several minutes to several hours. The effectiveness of the measured plasma

insulin signal may be further damped by the presence of insulin resistance, a condition where

the responsiveness of tissues to plasma insulin is reduced. Rather than describing the full

sequence of reactions involved the dampening of the plasma insulin signal is approximated

using a three compartmental delay, as in the Jelic model [11].

d½I1�
dt
¼

1

t
ð½Iart� � ½I1�Þ ð12Þ

d½I2�
dt
¼

1

t
ð½I1� � ½I2�Þ ð13Þ

d½Idelay�
dt

¼
1

t
ð½I2� � ½Idelay�Þ ð14Þ

Where [Iart] is the measured arterial insulin concentration and τ is the respective time delay

parameter. Two insulin time delays are simulated, a long time delay for LPL lipolysis (τ = τLPL)

and a shorter interstitial adipose compartment time delay (τ = τAT). The structure of the insu-

lin delay terms are not altered from the original model [11]. However, the time delay parame-

ters are not fixed, as in the Jelic and Sips models, and are estimated from the data.

Application of adipose model—Quantification of caloric restriction

The resulting refined model was then used to quantify the effect of caloric restriction using

meal challenge test data collected before and after a diet intervention as part of the Yoyo study.

Parameter values before and after caloric restriction. Parameter sets were estimated

from data collected at baseline and after a weight stabilisation period following caloric restric-

tion (Table 1, the complete parameter sets are provided in S2 Table). The rate parameters for

both glycerol and NEFA concentration gradient based diffusion from the plasma to the adi-

pose space (PGLY and PNEFA) increase significantly following caloric restriction, indicating an

Table 1. Parameter values estimated for data collected at baseline and following caloric restriction.

Parameters Role/Function Baseline Following caloric restriction

Kad Linear kinetic parameter LPL lipolysis. 0.0096

(0.0068, 0.0213)

0.0087

(0.0057, 0.0117)

τLPL LPL insulin delay 156.92

(68.3, 245.5)

112.76

(27.05, 198.48)

τAT Adipose insulin delay. 21.19

(-16.28, 58.66)�
17.13

(-10.34, 44.61)�

PGLY Rate parameter for uptake/release of glycerol. 0.249

(0.109, 0.389)

17.13

(0.283, 0.566)

PNEFA Rate parameter for uptake/release of NEFA. 0.0444

(0.0316, 0.0571)

0.0803

(0.041, 0.13)

Parameter values estimated by fitting the refined model to the calculated adipose tissue metabolite fluxes at baseline and following weight stabilisation for a selection of

parameters are shown, 95% confidence intervals for parameter estimates are displayed in parentheses below the estimated value. The complete set of parameter values

can be found in S2 Table.

�All parameters are bound below by zero during parameter estimation.

https://doi.org/10.1371/journal.pcbi.1007400.t001
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increase in the rate of glycerol and NEFA transport in and out of the adipose tissue. A large,

although not significant, decrease can be seen in the insulin delay parameter for LPL lipolysis

of circulating triglyceride, τLPL, (157 mins at baseline to 113 mins following weight stabilisa-

tion) which is not accompanied by a strong change in the value for Kad, the rate parameter

for that term. In addition, there is a four minute decrease in the adipose tissue insulin delay

parameter τAT. The reduction in the insulin delay parameters indicates a less damped response

to insulin signalling following caloric restriction, indicative of improved insulin sensitivity.

Decomposition of glycerol and NEFA model predictions. The estimated values for PGLY
and PNEFA increased significantly following caloric restriction, but it remained unclear if the

observed differences in the glycerol and NEFA fluxes following caloric restriction (Fig 4) could

be entirely attributed to these increases in the rates of uptake and release of both metabolites.

In Fig 6, our refined model’s predictions are used to decompose the calculated adipose glycerol

and NEFA fluxes over the duration of the mixed meal challenge test into their constituent reac-

tions. This allows for visualisation of how the rates of specific, unmeasured reactions change

following caloric restriction. The model predicts an increase in the rate of ATL lipolysis within

the adipose tissue following caloric restriction (Fig 6B and 6E, red lines), with a predicted 56%

increase in the rate of lipolysis of stored triglyceride (0.229 μmol/100 ml tissue/min at baseline

to 0.359 μmol/100 ml tissue/min following caloric restriction), resulting in the observed

increase in efflux of both NEFA and glycerol from the adipose tissue in the fasting state (Fig

6A and 6D, purple lines). An increase in ATL lipolysis would be expected following such a

Fig 6. Decomposition of model glycerol and NEFA flux predictions into constituent reactions. Comparison of model predictions of rates of

reactions contributing to the (A) glycerol flux in the plasma compartment, (B) rates of glycerol rate of reactions in adipose compartment, (C) plasma

and adipose compartment glycerol concentrations, (D) NEFA flux in the plasma compartment, (E) rates of NEFA reaction in adipose compartment,

and (F) plasma and adipose compartment NEFA concentrations. Solid lines represent baseline estimates and dashed lines represents estimates

following weight stabilisation.

https://doi.org/10.1371/journal.pcbi.1007400.g006
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period of caloric restriction as the triglyceride stores in the adipose tissue are hydrolysed to

supply NEFA for use in other tissues. In the later postprandial phase, the lower concentrations

of circulating triglyceride follow caloric restriction (total AUC 642.2 μmol a baseline to just

463 μmol following the diet intervention), results in the reduced efflux of glycerol and NEFA

from LPL lipolysis after 120 minutes (Fig 6A and 6D, yellow lines).

Interestingly, the peak in the rate of LPL occurs approximately 40 mins earlier (230 mins

at baseline versus 190 mins following caloric restriction) reflecting the estimated decrease in

τLPL (Fig 6A and 6E, yellow lines). Note, there is no decrease in the peak time of measured

arterial insulin (S4E Fig), however there is a decrease in both the fasting and postprandial

plasma insulin concentrations (total AUC 6821.5 μU of insulin at baseline to 5291.8 μU fol-

lowing caloric restriction). Despite the decrease in circulating concentrations of insulin the

postprandial inhibition of ATL lipolysis and stimulation of re-esterification by insulin occur

at faster rates. The magnitude of slope describing the rate of postprandial inhibition of ATL

lipolysis increases from 0.019 at baseline to 0.0023 following caloric restriction. Concur-

rently, the rate of stimulation of re-esterification increases from 0.0055 at baseline to 0.0078

following the diet intervention. These increases are indicative of improved responsiveness

to circulating insulin, as reflected with the decrease in the estimated values for both insulin

delay parameters.

Alternative measures of insulin resistance. Both whole body and adipose tissue specific

insulin resistance were assessed using the HOMA-IR and ADIPO-IR indices respectively.

HOMA-IR values decreased significantly from a mean values of 2.27 at baseline, which would

be considered insulin resistant, to 1.51 following the diet intervention (p = 0.036). ADIPO-IR

values also decreased significantly from 47.27 at baseline to 28.90 following caloric restriction

(p = 0.006). Supporting the model prediction of an improvement in insulin sesntivity.

Discussion

We present a refined mathematical model of postprandial adipose tissue insulin mediated

dynamics of glucose, NEFA, triglyceride, and glycerol. Our refined model elucidates the strong

effect of insulin on adipose tissue lipid metabolism, building on the work of Jelic [11], Pratt

[13], and Sips [10], with all measured adipose tissue metabolite fluxes being stimulated or

inhibited by insulin. Our model also introduces several novel terms. We explicitly account

for the conversion of glucose to G-3-P, which serves to trap glucose within the adipose space.

Thereby, counteracting the erroneous predictions of a postprandial efflux of glucose from the

adipose compartment in the existing models due to glucose accumulation. We also introduce a

term accounting for the concentration gradient dependent uptake and release of glycerol. This

mechanism had been postulated by Coppack et al. in their 2005 model [42], but has not been

accounted for in the three subsequently published models that we have compared. Moreover,

inclusion of a [U-13C] palmitate stable isotope tracer in the ingested meal allowed us to esti-

mate the postprandial fractional spill-over of LPL derived NEFA into the plasma. The corre-

sponding model term has, to the best of our knowledge, not previously been validated using

experimental data.

Arteriovenous measurements in the fasting and postprandial conditions across the

abdominal subcutaneous adipose tissue were employed to evaluate three existing models of

postprandial adipose tissue metabolism and the assumptions upon which they have been

constructed. While the existing models included in this analysis perform well in describing

dynamics between triglycerides, NEFA, and glucose at the whole-body level, none of the

existing models could describe the adipose tissue specific fluxes well, leading to the construc-

tion of our refined model.
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Methods such as area under the curve (AUC) are most often employed to compare time

series of metabolite concentrations during challenge tests, with each metabolite evaluated

independently of the others. However, AUC fails to capture the dynamic properties of the

postprandial metabolite curves. It is possible for several different response curves to have the

same AUC value. With computational models the dynamic responses of all measured metabo-

lites are used to parameterise a model in a physiologically meaningful way. Consequently,

computational models could also prove to be a powerful tool for the interpretation and quanti-

fication of dynamic time series of data, as in the case of meal challenge test data. Our refined

model was applied to time series data collected before and after a weight loss intervention

study [17] to investigate the effects of caloric restriction on adipose tissue metabolism. Com-

parison of parameter values estimated from data collected before and after caloric restriction

indicated a significant increase in the rate coefficient for the concentration gradient based

transport of both glycerol and NEFA in and out of the adipose compartment. Use of the model

to decompose the glycerol and NEFA flux predictions into their constituent reactions pre-

dicted an increase in the rate of ATL lipolysis within the adipose tissue following caloric

restriction, resulting in the measured increased efflux of NEFA from the adipose tissue in the

fasting state. This would be expected following a period of caloric restriction as triglyceride

stored in the adipose tissue is hydrolysed and the resulting NEFA is transported for use in

other tissues. A large, but non-significant, decrease was observed in the insulin time delay

parameter for LPL lipolysis of circulating triglyceride, τLPL, from 157 minutes at baseline to

113 minutes following caloric restriction, the effect of which can be observed with the peak in

the rate of LPL lipolysis occurring approximately 40 minutes earlier following weight stabilisa-

tion. This is accompanied by a non-significant four minute decrease in the general adipose tis-

sue insulin delay τAT. These reductions indicate a less damped response to insulin stimulation

following the diet intervention, which is in line with previous studies reporting a reduction

in whole body insulin resistance following prolonged caloric restriction [43]. Whole body

insulin sensitivity for the sixteen individuals, measured using HOMA-IR, decreased signifi-

cantly following caloric restriction, from a mean of 2.27 at baseline to 1.51 following the diet

intervention (p = 0.036). In addition, adipose tissue specific insulin resistance, assessed using

ADIPO-IR, decreased significantly following the diet intervention, further supporting our

model’s prediction of improved insulin sensitivity following caloric restriction. It is also of

note that the LPL time delay estimates are more than one, and close to two hours, shorter than

the fixed 240 minutes time delay proposed by Jelic et al. [11] and subsequently used in the Sips

model [10]. While changes could be observed in several other parameter values before and

after caloric restriction, these differences were not significant. Previous analysis of the Yoyo

study data using more traditional techniques (incremental area under the curve) found only a

significant decrease in the fasting and postprandial triglyceride flux, however this was accom-

panied by reduced arterial triglyceride concentration [17]. Thus, we see the additional insights

which can be gained through the fitting of computational models in the quantification of

dynamic time series data [44].

Multiple arteriovenous studies have used the glycerol flux to infer information regarding

rate of ATL lipolysis under the assumption that glycerol release by LPL lipolysis, equivalent

to the instantaneous triglyceride flux, remains within the plasma, and due to the negligible

activity of glycerol kinase within the adipose tissue [38], all glycerol relased by ATL lipolysis

enters the plasma for transport to the liver. Thereby, the rate of ATL lipolysis can be estimted

as the difference between the measured glycerol and triglyceride fluxes [45, 46]. However,

analysis of the postprandial glycerol and triglyceride fluxes from the Yoyo Study indicates

that there is an influx of glycerol into the interstitial adipose space in the postprandial state,

in contradiction with this assumption (Fig 5). The introduction of a term accounting for the
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concentration gradient dependent uptake and release of glycerol by the adipose tissue, which

was first proposed by Coppack et al. [41], allows the model to described the measured post-

prandial influx of glycerol. In addition, in order to achieve the best fit of the flux data, in par-

ticular the measured postprandial influx of glycerol from the plasma to the adipose tissue, it

was necessary to introduce a sink term in adipose tissue glycerol which cannot be accounted

for with current biological understanding. In future work it may be possible with the integra-

tion of adipose tissue specific measurements of other omics data to determine the cause of

the glycerol disappearance.

In combination with arterio-venous measurements, the use of stable isotope tracers allow

for the quantification of reactions that are not directly measurable, such as rates of appearance

and turn over. The meal administered in the Yoyo study includes 100mg of [U-13C] palmitate

stable isotope tracer which allows for the estimation of the rate of fractional spill-over of NEFA

from LPL lipolysis of dietary triglycerides using the method as described by Bickerton et al.

[5]. As the Yoyo study utilizes a single tracer we do not have the data to evaluate chylomicron

and VLDL triglyceride separately. Therefore, we have grouped the terms and used the available

measurements of fractional spill-over of chylomicron derived NEFA to be representative of

fractional spill-over from total circulating triglyceride pool. Moreover, we assume the dynam-

ics of palmitate is representative for the generic NEFA pool. Incorporation of additional fatty

acid tracers under different challenge conditions would allow for the extension of our model

to describe the complex systemic interplay between different lipoprotein classes and NEFA

species. Inclusion of a palmitate stable isotope tracer in a meal has been shown to label dietary

derived triglycerides and NEFA for approximately the first 120 to 180 minutes [5, 47]. Due to

recycling of NEFA both within the adipose tissue and eventual incorporation of labelled NEFA

into VLDL, estimates of fractional spill-over become less reliable beyond this time. This is

reflected with the increases in the measured standard error of mean for later time points in

part B of Fig 3. To this end, error measurements have been weighted by the standard deviation

within the 16 individuals such that a time point with a larger standard deviation will have a

lower priority when estimating parameter values.

In order to produce a model which could be parameterised from data, certain model terms

were simplified from those presented in the original models, e.g. use of a linear term in place

of Michaelis-Menten dynamics to describe LPL lipolysis of circulating triglycerides. A linear

approximation is sufficient in this situation to describe this reaction, as saturation is not

expected to occur given the measured arterial triglyceride concentrations within the Yoyo

study. The use of Profile Likelihood Analysis indicates that six of the fourteen model parame-

ters are identifiable given the data, with a further six having upper or lower bounds (S3 Fig).

For future implementation of the model, fixation of parameter values for which reliable experi-

mental estimates are available would improve the estimation of parameters of interest for the

biological questions being asked. As with previous computational models of adipose tissue

metabolism, we have considered whole body adipose tissue as one homogenous unit. While

the arteriovenous sampling of the abdominal subcutaneous tissue technically restricts our

model evaluations to a single adipose tissue depot, we believe that our model sufficiently cap-

tures postprandial adipose tissue dynamics given that the measured depot, the abdominal sub-

cutaneous adipose tissue, is considered the primary site for the storage and release of NEFA

into systemic circulation.

Arteriovenous measurements across other tissue depots, such as skeletal muscle, presents

an opportunity to further evaluate and, where necessary, refine existing model terms describ-

ing contributions of other tissues to glucose and NEFA homeostasis, as in the case of adipose

tissue metabolism in this study. In this study we present a work-flow where, through the use of

dependent inputs in combination with a divide and conquer approach, the model evaluation
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procedure can be reduced to a non-linear regression problem, greatly reducing the computa-

tional time.

Given the association of ectopic fat deposition with the development of several metabolic

disorders, such as Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes, the study of the

dysregulation of adipose tissue metabolism has garnered much attention in recent years. Our

refined model is capable of simulating in silico the dynamics of human in vivo adipose tissue

metabolism in both the fasting and postprandial state. Through the variation of model parame-

ters or modulation of dependent inputs, such as the arterial insulin concentration, it is possible

to simulate the dynamics in adipose tissue metabolism in response to different external stimuli

and gain insight into potential sources of dysregulation in adipose metabolism. Furthermore,

embedding our refined adipose tissue model into a larger whole body model, with terms

describing the contributions of other tissues, would allow for the investigation how the model

simulated dysregulation in adipose tissue metabolism would impact on the glucose and NEFA

dynamics in other tissues and whole body metabolism.

In conclusion, we present a refined physiology-based computational model of adipose

tissue metabolism which has been shown, using arteriovenous measurements across the

abdominal subcutaneous adipose tissue, to outperform several existing models of adipose tis-

sue metabolism. Our model elucidates the strong influence of insulin signalling on adipose tis-

sue dynamics, particularly the cycling between storage and release of NEFA in the fasting and

postprandial states. Application of our model to data collected before and after a diet interven-

tion allows for quantification of the effect of caloric restriction on adipose tissue metabolism.

Estimated parameter values indicate that the delays in insulin effectiveness in the system are

not fixed, with the estimated time delays in insulin signalling not only differing from the values

used in previous models, but also decreasing following the diet intervention suggesting an

improvement in adipose tissue insulin sensitivity following caloric restriction.

Supporting information

S1 Fig. Results of Profile Likelihood Analysis for each parameter of the refined model. The

parameter values estimated from the baseline data are shown with a red cross and the value of

C(p) resulting from iteratively adjusting the parameter value and re-estimating the parameter

values indicated by the blue line. A parabola with the parameter estimate at it’s base (as in the

case of Kad, τLPL, Dspill, τAT, PGLY, and PNEFA) indicates an identifiable parameter. Profile likeli-

hood for several other parameters (GLUT1, GLUT4, BATL, ATLmax and τG3P) indicate the exis-

tence of an upper bound, these parameters have been bound below by zero in the parameter

estimation procedure for physiologically relevant reasons. Similarly the parameter describing

the fractional usage of glucose to for G-3-P production in re-esterification is bound above

by one. Finally two parameters (KATL, and Kreester) appear to be practically non-identifiable.

Given the product of Kreester and the model predicted concentration of G-3-P in the adipose

tissue are equal to the maximum rate of G3P production it is unsurprising that the parameter

Kreester in non-identifiable. Any change in the value of Kreest in compensated for by a corre-

sponding change in the model predicted concentration of adipose G-3-P.

(TIF)

S2 Fig. Results of fitting the Jelic, Pratt, Sips and refined models to the baseline adipose tis-

sue flux data. Model simulation of available fluxes using parameter values estimated by fitting

of each model to the the measured adipose (A) triglyceride flux, (B) fractional spill over of LPL

derived NEFA, (C) glucose influx, (D) glycerol efflux, and (E) NEFA efflux are shown, Jelic

(blue), Pratt (green), Sips (blue), and the refined model (red). Mean baseline calculated adipose

tissue flux values ± the standard error of the mean from the Yoyo study are shown in black. The
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Jelic model is capable of producing quite a good fit of the triglyceride and NEFA fluxes. How-

ever, the Jelic model does not include terms to describe the frational spill over, glucose or glyc-

erol fluxes. While the Pratt model can produce a qualitatively good fit of the glucose, NEFA,

and glycerol fluxes it cannot produce a good fit of the triglyceride flux (A). The Jelic, Sips, and

refined model descibed LPL lipolysis as being dependent on insulin, with a delayed insulin sig-

nal. The Pratt model also includes a term describing the stimulation of LPL lipolysis by insulin.

However, it does not account for any delay in insulin signalling, with LPL lipolysis being directly

stimulated by plasma insulin. The Pratt model also assumes that the contribution of insulin

dependent lipolysis to the overall lipolysis of circulating triglyceride is neglible, consequently,

the rate of LPL lipolysis is primarily determined by the circulating triglyceride concentration.

(TIF)

S3 Fig. Increasing the influence of insulin dependent LPL lipolysis in the Pratt model. In

the above figure we increase the weight of the contribution of insulin dependent LPL lipolysis,

such that insulin dependent LPL lipolysis accounts for 1% (blue line) and 10% (yellow line) of

the total adipose tissue triglyceride flux while maintaining the other parameters at the values

provided in the original publication. As the Pratt model uses direct plasma insulin stimulation

rather than accounting for delays in insulin signalling, as in the Jelic, Sips, and refined models,

the model simulated triglyceride flux begins to peak too early under the influence of plasma

insulin. The refined model makes use of the LPL lipolysis term from the Pratt model, but intro-

duces the three compartmental delay from the Jelic and Sips models. With this delay in the

insulin signalling, the refined model can produce a good fit to the triglyceride flux data at base-

line and following weight stabilsation (red line).

(TIF)

S4 Fig. Mesured arterial metabolite concentrations at baseline and following caloric

restriction. Comparison of measured arterial concentrations of triglyceride, glucose, glycerol,

NEFA, and insulin colected during consumption of a high fat mixed meal at baseline (blue)

and after a period of weight stabilisation following prolonged caloric restriction (red). Mean

values for the sixteen participants are shown, with error-bars indicating the standard error of

the mean.

(TIF)

S1 Table. Comparison of terms from the Jelic, Pratt, Sips, and refined adipose tissue mod-

els. Terms describing individual metabolite fluxes across the adipose tissue were extracted

from the Jelic, Pratt, Sips, and refined model and compared.

(PDF)

S2 Table. Parameter values estimated for data collected at baseline and following caloric

restriction. Complete set of parameter values estimated by fitting the refined model to the

calculated adipose tissue metabolite fluxes at baseline and following weight stabilisation. 95%

confidence intervals for parameter estimates are displayed in parentheses below the estimated

value. The coloured boxes indicate the model term, or terms, in which each parameter appears.
�All parameters were bound below by zero during parameter estimation, however the method

for calculating the confidence intervals assumes the confidence interval is symmertric about

the estimated parameter values. † terms that decribe a fractional value were also bound above

by 1 during parameter estimation.

(PDF)

S1 File. Sensitivity analysis for refined model.

(PDF)
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S2 File. Complete model equations.

(PDF)

S3 File. Matlab implementation of refined adipose tissue model.

(ZIP)
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