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ABSTRACT

There is considerable interest in improving feed 
utilization of dairy cattle while limiting losses to the 
environment (i.e., greenhouse gases, GHG). To breed 
for feed-efficient or climate-friendly cattle, it is first 
necessary to obtain accurate estimates of genetic pa-
rameters and correlations of feed intake, greenhouse 
gases, and production traits. Reducing dry matter take 
(DMI) requirements while maintaining production has 
high economic value to farmers, but DMI is costly to 
record and thus limited to small research or nucleus 
herds. Conversely, enteric methane (CH4) currently has 
no economic value, is also costly to record, and is lim-
ited to small experimental trials. However, breath gas 
concentrations of methane (CH4c) and carbon dioxide 
(CO2c) are relatively cheap to measure at high through-
put under commercial conditions by installing sniffers 
in automated milking stations. The objective of this 
study was to assess the genetic correlations between 
DMI, body weight (BW), fat- and protein-corrected 
milk yield (FPCM), and GHG-related traits: CH4c 
and CO2c from Denmark (DNK) and the Netherlands 
(NLD). A second objective was to assess the genetic 
potential for improving feed efficiency and the added 
benefits of using CH4c and CO2c as indicators. Feed 
intake data were available on 703 primiparous cows in 
DNK and 524 in NLD; CH4c and CO2c records were 
available on 434 primiparous cows in DNK and 656 
in NLD. The GHG-related traits were heritable (e.g., 
CH4c h

2: DNK = 0.26, NLD = 0.15) but were differ-
entially genetically correlated with DMI and feed ef-
ficiency in both magnitude and sign, depending on the 
population and the definition of feed efficiency. Across 
feed efficiency traits and DMI, having bulls with 100 

daughters with FPCM, BW, and GHG traits resulted 
in sufficiently high accuracy to almost negate the need 
for DMI records. Despite differences in genetic correla-
tion structure, the relatively cheap GHG-related traits 
showed considerable potential for improving the accu-
racy of breeding values of highly valuable feed intake 
and feed efficiency traits.
Key words: methane, carbon dioxide, breath gas 
measurement, residual feed intake, feed efficiency

INTRODUCTION

The dairy industry faces major challenges to remain 
profitable while maintaining environmental sustainabil-
ity (i.e., by mitigating greenhouse gas emissions such 
as CH4 and CO2). Feed plays a crucial role in economic 
and environmental performance of dairy production 
units because feed constitutes the highest variable cost 
of production (Hemme et al., 2014), and feed composi-
tion affects CH4 emissions at an individual cow level 
(Hristov et al., 2013). The primary income from milk 
is volatile as milk prices often fail to increase with feed 
prices (Hemme et al., 2014). One promising way to in-
crease profitability is to reduce feed costs by reducing 
feed intake requirements and improving or maintaining 
production in the breeding objective (Veerkamp, 1998; 
de Haas et al., 2012); that is, identifying cows that 
require less feed to give the same levels of production as 
contemporaries, without hampering traits in the selec-
tion index such as health and fertility.

However, feed efficiency is not directly observable; 
rather it is feed intake conditional on a combination 
of production traits or energy sinks; for example, fat- 
and protein-corrected milk (FPCM), BW, and so on 
(Jensen et al., 1992). The most prevalent feed intake 
trait across countries is DMI because this accounts for 
differences in moisture content of feeds (Berry et al., 
2014). The recording of DMI is labor intensive, expen-
sive, and limited to small research or nucleus herds; 
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therefore, the reliability of bull breeding values is low 
(de Haas et al., 2012). This could, in principle, be over-
come by including heritable and correlated indicator 
traits measured on a large scale in commercial herds 
in conjunction with smaller research herds with DMI 
recording (Berry and Crowley, 2013; Manzanilla-Pech 
et al., 2016; Wallén et al., 2017).

Defining feed efficiency is challenging because DMI 
is highly genetically correlated with production traits 
such as FPCM and BW, and these genetic relationships 
can vary across research stations, diets, and parities 
(Tempelman et al., 2015; Li et al., 2017). Feed efficien-
cy traits such as feed conversion ratio and phenotypic 
residual feed intake (RFIp) retain genetic correlations 
with production traits (de Haas et al., 2011; Manafia-
zar et al., 2016). Kennedy et al. (1993) used restricted 
selection indices to define genetic residual feed intake 
(RFIg) as DMI genetically independent of FPCM and 
BW, overcoming the deficiencies of ratio or phenotypic 
regression residual definitions of feed efficiency (Lu et 
al., 2015). However, large numbers of records on cows 
are needed to estimate genetic correlations among 
DMI, FPCM, and BW accurately to compute RFIg. 
Increasing the numbers of records has been achieved by 
combining research herds (Berry et al., 2014). However, 
combining different herds or multiple records within 
and over lactation results in heterogeneity due to diet 
and lactation stage in the relationships between DMI 
and energy sink traits (Tempelman et al., 2015; Li et 
al., 2017; Lu et al., 2017). Given the difficulties in ob-
taining DMI records on large numbers of cows within 
country, the need exists for other easily recorded, large-
scale indicator traits genetically correlated with DMI 
and feed efficiency.

Studies using intensive “gold standard” respiration 
chambers (RC) have shown high phenotypic correla-
tions between mass fluxes of the greenhouse gas traits 
(GHG) CH4 and CO2 (Aubry and Yan, 2015; Difford 
et al., 2018). Furthermore, the caloric value of CH4 has 
been estimated as 2 to 12% of the gross energy intake 
of the cow (Johnson and Johnson, 1995). This has led 
to numerous prediction equations using DMI and feed 
components to predict CH4 production (Ramin and 
Huhtanen, 2013) and genetic parameters for predicted 
CH4 emission from metabolizable energy intake (de 
Haas et al., 2011; Negussie et al., 2014). Furthermore, 
predicted CH4 emission was favorably genetically cor-
related with phenotypic RFI (de Haas et al., 2011). 
Thus, turning this idea around, GHG traits could be 
indicators of DMI and feed efficiency traits. However, 
RC have high capital and labor costs and have mostly 
proven prohibitive to large-scale genetic evaluations, 
with the largest studies using RC reaching approxi-

mately 1,000 individuals in growing beef or mixed sheep 
breeds (Pinares-Patiño et al., 2013; Donoghue et al., 
2016; Jonker et al., 2018). Furthermore, confinement 
within the RC affects natural animal behavior and can 
cause a decrease in DMI, leading many to question the 
extrapolation of these results to intensive commercial 
and grazing systems (Pinares-Patiño and Clark, 2008). 
Thus, the potential of GHG traits recorded using RC as 
indicator traits remains limited.

A cost-effective and high-throughput method of 
recording methane (CH4c) and carbon dioxide con-
centrations (CO2c) in the breath of individual cows 
while milking in commercial automated milking sta-
tions (AMS) has emerged (Garnsworthy et al., 2012a; 
Lassen et al., 2012) with the use of devices collectively 
known as sniffers. Because sniffers record gas concentra-
tions and not mass fluxes, researchers have used scaling 
factors (Garnsworthy et al., 2012b) or predicted CO2 as 
a tracer gas to approximate CH4 mass fluxes (Madsen 
et al., 2010). These approximations have been shown to 
be heritable and genetically correlated with FPCM and 
BW, and they have good concordance (concordance cor-
relation coefficient = 0.65–0.93) with RC (Garnsworthy 
et al., 2012b; Lassen and Løvendahl, 2016; Negussie et 
al., 2016). The direct measures CH4c and CO2c have 
been reported as lowly heritable in dairy cattle: h2 = 
0.11 and 0.12, respectively (van Engelen et al., 2018). 
However, the genetic correlations of CH4c and CO2c 
with feed intake and production traits are currently not 
known, and their potential as indicator traits for DMI 
and feed efficiency traits is under-exploited.

The first aim of this study was to estimate genetic pa-
rameters for feed intake-related traits and GHG-related 
traits in primiparous Holsteins in Denmark (DNK) 
and the Netherlands (NLD). The second aim was to 
assess the use of breath concentration GHG traits as 
large-scale indicators for improving the accuracy of 
DMI and feed efficiency breeding values.

MATERIALS AND METHODS

Design and Animals

Data on individual DMI, BW, FPCM, CH4c, and 
CO2c were collected repeatedly over lactation in pri-
miparous Danish Holstein and Dutch Holstein Friesian 
cows. Primiparous cows were the focus of this study 
to avoid heterogeneity in genetic and phenotypic pa-
rameters due to parity classes. Primiparous cows were 
the largest parity class in both countries. Both coun-
tries have recorded DMI, BW, and FPCM in indoor 
research herds over the last few decades, with numerous 
nutritional trials of various TMR feeds, and expressed 
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these as weekly averages for genetic evaluations. More 
recently, both countries have installed sniffers in AMS 
at research stations and in commercial herds for the 
repeated recording of CH4c and CO2c, expressed as 
weekly averages. Commercial herds were included to 
improve the representativeness of the genetic param-
eters estimated and convergence of multi-trait animal 
models, because these herds had CH4c, CO2c, FPCM, 
and BW. The data collection, editing, and analysis are 
presented below.

Data Collection and Editing: Feed Intake Traits

Denmark. A total of 25,109 weekly averaged records 
for DMI, BW, and milk yield (MY) were available 
on 703 primiparous Danish Holstein cows that calved 
from 2000 to 2015 at the Danish Cattle Research Cen-
ter (DCRC, Foulum, Denmark; Li et al., 2017). The 
DCRC barn is a loose-housing system in which cows 
have ad libitum access to feed in individual automated 
feed bins (RIC system, Insentec B.V., Marknesse, the 
Netherlands). Cows also had access to an AMS (DeLa-
val AB, Tumba, Sweden) where they were offered up 
to 3 kg of concentrate per day within the integral AMS 
feed bins. The AMS was fitted with a weighing plat-
form (Danvaegt, Hinnerup, Denmark) to record BW at 
each milking and a device that delivered and recorded 
the amounts of concentrates and refusals.

Cows were entered in numerous nutritional trials 
at DCRC and have remained on a largely unchanged 
control TMR diet in between trials, which consists of 
rolled barley, corn silage, grass clover silage, rapeseed 
meal, and soybean meal. The DM contents of the TMR 
and concentrates in the AMS were determined from 
regular analysis and combined with averaged weekly 
feed intake to obtain DMI per cow per week of lacta-
tion. Although many trials calculated energy contents 
of specific feed treatments, energy intake was largely 
unavailable for most cows. The diets within a specific 
treatment are expected to be the same, whereas dietary 
differences between treatments are expected to change. 
Furthermore, the dietary composition of the control 
diets can be expected to change with the effects of year 
and season on feed ingredients (Nielsen et al., 2003). 
Thus, an experiment × treatment interaction term was 
created, which corresponds to the experimental trial 
and specific treatment in the case of nutritional experi-
ments and a year × season variable for the control diet. 
This method of modeling the changes in ration is con-
sistent with modeling longitudinal intake data in other 
international genetic evaluations such as the global dry 
matter initiative (gDMI; Berry et al., 2014).

Milk composition was determined from every milking 
over a consecutive 48-h period in each week using a 

CombiFoss (Foss, Hillerød, Denmark) operated by Eu-
rofins (Vejen, Denmark). Composition data from each 
milking were used to calculate yields of fat and protein, 
which were smoothed by the moving average method 
to obtain daily yields. The calculated yields were aver-
aged per week so that weekly records were on the same 
time scale as DMI records. The DCRC records for BW, 
MY, and DMI were filtered to remove weekly averages 
where more than 2 days of records were missing. Cows 
that had <5 weekly records during their first lacta-
tion or an age of first calving >36 mo were excluded. 
Although many of the experimental treatments were 
carefully blocked and balanced, these trials often in-
cluded multiparous cows, which were not the focus of 
the present study. Thus, a filter of a minimum of 5 
cows per experimental treatment was added to ensure 
adequate degrees of freedom for effect estimation. The 
records after editing are summarized in Table 1, with 
data set DNK1 corresponding to DCRC.

The Netherlands. In total, 14,015 weekly averaged 
records for DMI, BW, and MY were included in the 
analysis on 721 primiparous Dutch Holstein cows that 
calved from 2000 to 2015. The Dutch data comprised 
multiple nutritional experiments conducted at several 
locations in the Netherlands (e.g., Aver Heino; Bosma 
Zathe, Ureterp; Cranendonck, Soerendonk; ‘t Gen, Le-
lystad; Minderhoudhoeve, Swifterbant; Waiboerhoeve 
Dairy unit 2, 3, Lelystad; Zegveld farm, Zegveld; Hoorn, 
Lelystad; New Waiboerhoeve, Lelystad; Dairy Campus, 
Lelystad). Data from these farms were classified into 
2 data sets based on previous studies (NLD1 and 
NLD2), for which data collection has been described 
(see Table 1; Veerkamp et al., 2000; Beerda et al., 2007; 
Zom et al., 2012; van Knegsel et al., 2014). All herds 
were indoor housing and offered TMR that primarily 
consisted of grass silage, fresh grass, dehydrated grass, 
corn, corn silage, cereal, concentrates, or beet pulp. 
Milking was conducted twice daily for most herds, 
except for the AMS herds where milking frequency is 
based on voluntary milking. Feed intake was recorded 
using individual automated feed bins (RIC system, 
Insentec B.V.). In general, BW was recorded either 3 
times a week using automatic weighing platforms or 
in the AMS integral automatic weighing platforms. As 
with the Danish data set, cows in the Dutch data sets 
were entered in numerous nutritional trials, and the 
assumptions about diets within and between trials are 
the same. The DM composition of diets was used to 
calculate DMI, but the specific dietary composition 
and energy of many diets were not available. Fat and 
protein contents of milk were recorded at least once per 
week in all data sets. Data editing steps included only 
retaining cows with a Holstein breed percentage of 75% 
or greater, a minimum of 5 observations per experimen-
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tal treatment and 5 records per cow, and calving no 
later than 36 mo of age.

Fat- and protein-corrected milk yield was calculated 
for both Denmark and the Netherlands using a single 
standardization equation of 4.0% fat and 3.3% protein 
as recommended in FAO (2010): FPCM (kg) = (0.337 
× milk yield kg) + (11.6 × fat yield kg) + (5.999 × 
protein yield) (CVB, 2008).

Data Collection and Editing: GHG Traits

Denmark. Data on the CH4c and CO2c of indi-
vidual Holstein cows during milking was available on 
232 primiparous cows at DCRC from mid 2013 to 
November 2016, with simultaneous DMI, FPCM, and 
BW records. The nondispersive infrared (NDIR) CH4 
sensor (Guardian NG, Edinburgh Instruments Ltd., 
Livingston, UK) and the NDIR CO2 sensor (Gascard, 
Edinburgh Instruments Ltd.) were installed in each of 
the AMS. The equipment installation, technical speci-
fications, and calibration procedures for the sensors are 
described elsewhere (Difford et al., 2016). The time-
stamped AMS visit data and breath gas concentration 
time series on a 1-s basis were merged using a time-
alignment algorithm (Difford et al., 2016). Gas data 
from AMS milkings <300 s and marked as incomplete 
or interrupted by the AMS were removed. A cow head-
lifting algorithm was used to filter out gas readings 
when the cow’s head is predicted to be outside of the 

feed bin (Difford et al., 2016). The ambient background 
gas concentrations of CH4c and CO2c were estimated 
once daily during the morning cleaning cycle of the 
AMS, when the AMS is free of cows, and subtracted 
from the mean CH4c and CO2c of each milking for that 
day.

Greenhouse gas measurements were also taken in 2 
commercial herds in Denmark from November 2015 
until March 2016 as part of the REMRUM project. 
A portable set of 4 NDIR sensors as above and 1 
portable Fourier transform infrared (FTIR) Gasmet 
DX-4000 sensor (Gasmet; Gasmet Technologies Oy, 
Helsinki, Finland), which registers gas concentrations 
on a 5-s basis, were used. The use of FTIR equipment 
in commercial herds is described elsewhere (Lassen 
and Løvendahl, 2016). The data from commercial 
herds were handled the same as that from the research 
herd described above. Sensors were installed in AMS 
(Astronaut A3, Lely Industries, NV, Maassluis, the 
Netherlands) equipped with weighing platforms. The 
milk components were taken from the national record-
ing scheme (RYK, Skejby, Denmark), and cow FPCM 
yield (CVB, 2008; FAO, 2010) was estimated as in the 
Dutch population.

Data from the research and commercial herds were 
filtered to include only weekly averages with a maxi-
mum of 3 d missing per week of measurement and a 
minimum of 3 weekly measurements per cow (Table 
1). The effect of contemporary group and AMS were, 
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Table 1. Description of available phenotypic records for first-parity Holstein Friesian cows in Denmark and the Netherlands

Data set

Denmark

 

The Netherlands

DNK1 DNK2 NLD1 NLD2 NLD3

No. of experiments 24 1 3 25 1
No. of rations 112 2 16 110 10
No. of locations 1 2 1 3 10
No. of cows with1

  DMI 703 0 123 401 0
  FPCM 702 202 121 578 355
  BW 702 202 123 598 101
  CH4c 232 202 0 274 382
  CO2c 232 202 0 274 382
  Total 703 202 123 598 382
No. of weekly records for1

  DMI 24,996 0 3,241 4,087 0
  FPCM 23,893 615 1,976 8,492 668
  BW 24,551 615 3,205 10,722 679
  CH4c 4,950 615 0 5,503 2,496
  CO2c 4,950 615 0 5,503 2,496
  Total 25,109 615 3,241 10,774 2,326
Weeks in lactation 1–44 1–44 1–44 1–44 1–44
Gas recording 2013–2016 2014–2016 NA2 2013–2016 2014–2016
DMI recording 2000–2016 NA 2000–2005 2000–2016 NA
Published Li et al., 2016 Unpublished Beerda et al., 2007 Zom et al., 2012 van Engelen et al., 2018
1FPCM = fat- and protein-corrected milk yield; CH4c = methane breath concentration; CO2c = carbon dioxide breath concentration.
2NA = not applicable.
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by necessity, confounded at DCRC and were thus also 
confounded with the experiment × treatment interac-
tion described for the feed intake traits. The commer-
cial herds maintained the same diet while gases were 
recorded; a variable of year × season × AMS group 
nested within herd was used in place of the experiment 
× treatment term used in the research herds. Similarly, 
gas traits were filtered to ensure each experiment × 
treatment interaction term had at least 5 cows and a 
minimum of 5 weekly records per cow. The data set 
from DCRC corresponded to DNK1 and that for com-
mercial herds corresponded to DNK2 (Table 1).

The Netherlands. Data on the CH4c and CO2c of 
individual Holstein cows during milking was available 
on 274 primiparous cows at Dairy Campus Lelystad 
(NLD2) from October 2013 to November 2016, with 
simultaneous FPCM and BW records. The NLD2 cows 
were grouped into 2 AMS groups without access to au-
tomatic feed bins. Thus, cows were tested for 1 to 70d 
for DMI and then moved to the AMS groups, where gas 
recording took place; therefore, no simultaneous week 
of lactation records for DMI and gases were available in 
the Netherlands. The FTIR sensor inlet was installed 
in the integral feed bins of 2 AMS (Astronaut A3, Lely 
Industries NV), where gases were drawn from each of 
the AMS on alternating days. The time-stamped AMS 
visit data and breath gas concentration time series on a 
5-s basis were merged. The air sampled for the first 20 s 
of each visit was discarded to ensure no carryover of gas 
readings from the previous cow’s milking. Data from 
milkings that lasted less than 120 s and data collected 
after 600 s of the start of the milking were excluded. 
Milkings marked as errors by the AMS were also ex-
cluded. The ambient background concentrations were 
estimated in the same manner as those from the Danish 
sniffer data. After editing, 5,503 weekly average records 
were available on 274 primiparous Holstein cows, cor-
responding to data set NLD2 (Table 1).

Data for CH4c and CO2c on 382 primiparous Dutch 
Holstein Friesian cows from 11 commercial herds were 
collected from November 2013 to March 2016 as part of 
the TiFN project “Reduced methane emission of dairy 
cows” (NLD3; Table 1). Four portable NDIR sensors 
(SenseAir LPL 113 CH4/CO2, Rise Acreo, Stockholm, 
Sweden) were installed in the integral feed bin of the 
AMS (Lely, Astronaut A4, Lely Industries NV) with 
twice per second recordings. The sampling strategies, 
installation, and phenotype calculation has been de-
scribed elsewhere (van Engelen et al., 2018). Briefly, 
the time series data were aligned to the AMS data 
by a function that maximizes CH4c and CO2c during 
visits and minimizes CH4c and CO2c between visits. 
Visits shorter than 90 s were removed. The background 

concentration for CH4c was assumed to be 0 ppm and 
that for CO2c 400 ppm; these values were subtracted 
from the mean of 10 minimum recordings per visit and 
subtracted from the mean of the visit to approximate 
background-corrected CH4c and CO2c means per milk-
ing (van Engelen et al., 2018). The CH4c and CO2c 
per milking were combined with the MY per milking. 
Where possible, mean BW per milking was retained; 
however, the majority of AMS were not equipped with 
integral weighing platforms so BW was not available 
from all locations. Records on milk components during 
the sampling periods for each herd were acquired from 
the cooperative cattle improvement organization CRV 
(Arnhem, the Netherlands) to estimate FPCM.

Data from the research and commercial herds were 
filtered using the same steps for weekly measures per 
cow and the same experiment × treatment interaction 
term for feed intake traits and year × season × AMS 
group nested within herd term for GHG traits (Table 
1).

Data Collection and Editing: Pedigrees

Pedigree information of all animals was traced back 
to founder generations, by extracting the Danish 
and Dutch pedigrees from the Nordic Cattle Genetic 
Evaluation Database (NAV, Skejby, Denmark) and the 
cooperative cattle improvement organization (CRV). 
Noninformative individuals in the pedigrees were re-
moved with the DMU Trace program (Madsen, 2012). 
The total DNK pedigree consisted of 9,774 animals and 
the NLD pedigree included 8,042 animals.

Statistical Analysis

Cows had multiple records for CH4c and CO2c per 
day made at different times per day. The starting time 
for each visit in the AMS was converted to 24-h angular 
radians for further modeling of diurnal variation in a 
Fourier series approach (Lassen et al., 2012; Lassen and 
Løvendahl, 2016). A precorrection model within AMS 
group for all herds in all countries was used to estimate 
the daily breath gas concentration free of the effects 
of diurnal variation, sensor drift after calibration, and 
test-day variation between calibrations:

y d b f f c eijklm i j k kk l ijklm= + + + +( )+ +
=∑µ θ θ1 21

3 sin cos ,

� [1]

where yijklm is the natural logarithm of background-
corrected AMS visit means of CH4c and CO2c; di is the 
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fixed effect of test-day i; bj is the fixed effect of the first 
full day after each calibration j; f1k and f2k are harmonic 
pairs of the fixed regression coefficients of Fourier series 
linear covariates of the time of day of measurement. 
Here, θ denotes the time of visit expressed as 24-h an-
gular radians. Term cl is the random effect parameters 
for each cow c NDl c∼ 0 2, , σ( )  where σc

2 is the cow vari-

ance and eijklm is the random residual ∼ ND e0 2, , Iσ( )  

where σe
2 is the residual variance. To correct daily AMS 

visit means, the random residuals for each visit were 
summed with random cow solutions, intercept, calibra-
tion day, and the regression coefficients f1k and f2k mul-
tiplied by the angular radian corresponding to 12:00:00 
(1200 h). Further, CH4c and CO2c in natural log-trans-
formed parts per million, as the average per week of 
lactation, were obtained by taking the corrected means 
of visits weighted by the number of seconds for each 
visit where the cow head was positioned correctly in the 
feed bin.

Univariate repeatability mixed models were con-
ducted in Proc Mixed in SAS (version 9.3, SAS Insti-
tute Inc., Cary, NC), where significance of fixed effects 
was tested using the Kenward-Roger correction for the 
correct denominator degrees of freedom, for all traits 
within country. The residuals were tested for devia-
tions from normality by means of Kolmogorov-Smirnov 
normality tests and visual appraisal of residual diag-
nostic plots. Severe violations were detected for CH4c 
and CO2c, which were best remedied by a natural log-
transformation and henceforth referred to as lnCH4c 
and lnCO2c. The means and variances of lnCH4c and 
lnCO2c from different measuring equipment and AMS 
models (DeLaval and Lely A3 and A4 Astronauts) 
differed significantly. Traits lnCH4c and lnCO2c were 
further standardized within equipment and country to 
a mean of 0 and standard deviation of 1, based on the 
findings of previous work combining GHG measuring 
equipment (Difford et al., 2016).

A 5-trait multi-trait analysis was performed to 
estimate the variance components and the heritabil-
ity within each country; that is, DMI, FPCM, BW, 
lnCH4c, and lnCO2c. All analyses were performed using 
DMU version 6 (Madsen and Jensen, 2014). The model 
used in the Danish data set was as follows:

	 yijklm = μ + Wi + ETCj + al + pel + eijklm,	 [2]

where yijklm is the trait of interest (DMI, BW, FPCM, 
lnCH4c, or lnCO2c), μ is the intercept, W is the ith 
week of lactation, ETC is the jth experiment by treat-
ment contemporary group effect, al is the random addi-
tive effect of the lth animal ∼ ND a0 2, , Aσ( )  where A is 

the pedigree-derived numerator relationship matrix 
and σa

2 is the additive genetic variance, pe is the perma-
nent environmental effect distributed following 
∼ ND pe0 2, , Iσ( )  where σpe

2  is the permanent environmen-

tal variance and e is the random residual ∼ ND e0 2, , Iσ( )  

where σe
2 is the residual variance and I represents iden-

tity matrices. For the feed intake traits (DMI, BW, and 
FPCM), the linear covariate age at first calving was 
significant and included in model [2] as a fixed regres-
sion.

For the Dutch data, it was necessary to place added 
restrictions on the residual covariance between lnCH4c, 
lnCO2c, and DMI because these were recorded at differ-
ent time points such that they were undefined:

	 Var
a
a

A A

A A
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GHG

a aDMIaGHG
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For the Danish data set the models described in [2] 
above were then run without placing any restrictions 
on the covariances between lnCH4c, lnCO2c, and DMI.

The 5 × 5 (co)variance matrices estimated from the 
Danish and Dutch data sets were used to estimate ge-
netic residual feed intake (RFIg) and phenotypic re-
sidual feed intake (RFIp; Kennedy et al., 1993; Shirali 
et al., 2017), in which matrices Ĝ and P̂ are 5 × 5 addi-
tive genetic and phenotypic (co)variance matrices, re-
spectively. Matrices Ĝ and P̂ comprise feed intake (FI) 
traits (i.e., DMI, FPCM, and BW) as well as GHG 
traits (i.e., lnCH4c and lnCO2c). First, the multivariate 
genetic partial regression coefficients b̂g1 and b̂g2  of 
FPCM and BW on DMI were computed using genetic 
(co)variance matrices as follows: 
ˆ ˆ ˆ ,, , ,bgDMI FPCM BW DMI FPCM BW FPCM BW= −G G 1  in which 
ˆ

,GFPCM BW  is a 2 × 2 genetic (co)variance matrix of 
FPCM and BW, and ˆ

,GDMI FPCM BW  is a 1 × 2 covari-
ance vector of FPCM and BW on DMI, resulting in a 1 
× 2 vector of genetic partial regression coefficients. 
Similarly, the phenotypic partial regression coefficients 
b̂p1 and b̂p2  of FPCM and BW on DMI were estimated 
using the phenotypic (co)variance matrices as follows:
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ˆ ˆ ˆ ,, , ,bpDMI FPCM BW DMI FPCM BW FPCM BW= −P P 1  in which 
ˆ

,PFPCM BW is a 2 × 2 phenotypic (co)variance matrix of 
FPCM and BW, and ˆ ,PDMI FPCM BW  is a 1 × 2 covariance 
vector of FPCM and BW on DMI, resulting in a 1 × 2 
vector of phenotypic partial regression coefficients used 
to estimated RFIp.

The RFIg, which has DMI genetically orthogonal of 
FPCM and BW, was estimated using b̂g1 and ˆ ;bg2  and 
the RFIp, which is DMI phenotypically orthogonal to 
FPCM and BW, was estimated using b̂p1 and b̂p2  in the 
following covariance function B:

	 B
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I

I
I

I

I
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− −
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.	

Thus, B is a 7 × 5 identity matrix which is pre- and 
post-multiplied on the 5 × 5 Ĝ and P̂ (co)variance ma-
trices i.e., BGBˆ ′( ) to obtain a 7 × 7 genetic and pheno-
typic (co)variance matrices, including the newly com-
puted RFIg, which has the favorable properties of being 
genetically uncorrelated with FPCM and BW; that is, 

	
ˆ ˆ

ˆ ˆ ,

, ,

, ,

G G

G

RFIg FPCM BW DMI FPCM BW

gDMI FPCM BW FPCM BWb

=

− = 0
 	

as well as RFIp, which has the less favorable properties 
of being phenotypically uncorrelated with FPCM and 
BW; that is,

	
ˆ ˆ

ˆ ˆ .

, ,

, ,

P P

P

RFIp FPCM BW DMI FPCM BW

pDMI FPCM BW FPCM BWb

=

− = 0
	

Additionally, we considered a single-step phenotypic 
RFI (RFIss) to allow for modeling potential heteroge-
neity in phenotypic partial regression coefficients across 
different rations as recommended by Tempelman et al. 
(2015). The multi-trait model described in [2] above 
was rerun for all data sets, with changes to the DMI 
trait to include a fixed regression of FPCM and BW 
on DMI nested within the experiment by treatment 
contemporary (ETC) effect [ETC × (FPCM, BW)]. It 

was not possible to achieve model convergence between 
DMI and RFIss in any of the data sets tested, which 
prohibited us from making inferences on the genetic 
and phenotypic correlations between RFIss and DMI, 
RFIg, and RFIp. Correlations between EBV for RFIss, 
RFIg, RFIp, and DMI were used as proxies for genetic 
correlations.

Selection Index Calculations

Selection index theory was used to evaluate different 
recording strategies with FI and GHG trait combina-
tions (I) on the selection goals (H) defined by DMI or 
RFI traits for bulls with daughter records by calculating 
selection accuracy (rH,I; Falconer and Mackay, 1996):

	 rH I, ,=
′
′
b Pb
v Cv

	

where rH,I is the accuracy of the index, P is the 7 × 
7 matrix of phenotypic (co)variance among records of 
each trait (DMI, FPCM, BW, lnCH4c,LnCO2c, RFIg, 
and RFIp); v is the 7 × 1 vector of relative economic 
values, and C is the genetic (co)variance matrix among 
traits to be improved. Here, b is the 7 × 1 vector of 
weighing factors for each of the records used in making 
selection decisions, calculated as b = P−1Gv, where G 
is the genetic (co)variance matrix among all traits. To 
focus on recording strategies for feed efficiency traits or 
DMI, we arbitrarily assigned a value of 1 to the respec-
tive selection goal and 0 to all other traits in v. Because 
there is a large disparity in the throughput of different 
traits, combinations were evaluated assuming bulls had 
100 daughters with single average weekly records of 
lnCH4c, lnCO2c, BW, and ECM (a realistic assumption 
in AMS herds) and 10 daughters with single weekly av-
erage DMI records (a realistic assumption with research 
and nucleus herds) using the Excel (Microsoft Corp., 
Redmond, WA) macro of van der Werf (2017). The 
above selection index calculations were also conducted 
between FPMC, BW, lnCH4c, lnCO2c, and RFIss to as-
sess the relative merit of recording strategies for RFIss.

RESULTS

Descriptive Statistics

Descriptive statistics of FI- and GHG-related traits 
for DNK and NLD are shown in Table 2. The averages 
for FI-related traits were marginally higher for DNK 
than for NLD, with DMI being 19.5 kg/d in DNK and 
18.8 kg/d in NLD, FPCM being 29.8 kg/d in DNK and 
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28.2 kg/d in NLD, and BW being 607.5 kg in DNK and 
563.2 kg in NLD. The GHG traits were likewise com-
parable between the countries before standardization, 
with CH4c higher in NLD [5.9 ln(ppm/d)] than in DNK 
[5.6 ln(ppm/d)]. In contrast, CO2c was higher in DNK 
[8.5 ln(ppm/d)] than in NLD [8.3 ln(ppm/d)].

Genetic Parameters

The estimated genetic variances, heritability, and 
repeatability for Danish and Dutch data sets are shown 
in Table 3. In general, all estimates were markedly dif-
ferent between countries and higher for traits in DNK 
compared with NLD. The FI-related traits had higher 
heritability and repeatability than GHG-related traits.

FI-Related Traits. Estimated heritability for DMI 
was 0.43 in DNK and 0.16 in NLD, with SE ranging 
from 0.05 to 0.06. The repeatability of DMI was more 
consistent: 0.65 in DNK and 0.55 in NLD. Heritability 
estimates for FPCM followed a similar pattern as DMI 
across data sets, with the highest estimate in DNK 
of 0.48 and 0.11 in NLD. Body weight was the most 
heritable trait in all data sets: 0.52 in DNK and 0.63 
in NLD.

GHG-Related Traits. The h2 estimates of lnCH4c 
and lnCO2c were more similar across data sets, com-
pared with FI traits. The heritability of lnCH4c was 
0.27 in DNK and 0.15 in NLD. Similarly, heritability 
of lnCO2c was 0.26 in DNK and 0.13 in NLD. The 
standard errors of heritabilities were high in both coun-
tries such that only lnCH4c in DNK did not include 0 
in the 95% CI. Both lnCH4c and lnCO2c were highly 
repeatable in DNK (0.81 and 0.75) and in NLD (0.47 
and 0.43), respectively.

Feed Efficiency Traits. The genetic and pheno-
typic partial regression coefficients of FPCM and BW 
on DMI from the feed efficiency traits RFIg, RFIp, and 
RFIss are given in Table 4. The genetic partial regres-
sion coefficients for FPCM and BW on DMI differed 
between countries: 0.307 and 0.016 in DNK and 0.163 
and 0.013 in NLD. In contrast, phenotypic regression 
coefficients were more similar across data sets. The 
phenotypic heterogeneous partial regression coefficients 
differed across feed rations over trials and seasons, 
with estimates ranging from 0.113 to 0.249 for FPCM 
on DMI and from 0.07 to 0.020 for BW on DMI. The 
h2 of feed efficiency traits differed considerably across 
data sets and trait definitions. In general, h2 was higher 
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Table 2. Descriptive statistics of feed intake–related traits and greenhouse gas–related traits for each country

Trait1   Unit

Denmark

 

The Netherlands

Weekly 
records Mean SD Minimum Maximum

Weekly 
records Mean SD Minimum Maximum

DMI   kg/d 24,946 19.5 3.1 6.6 30.7 7,536 18.8 3.2 5.0 31.9
FPCM   kg/d 23,398 29.8 5.8 3.0 54.0 11,736 28.2 5.2 2.9 44.1
BW   kg 25,066 607.5 64.9 398.9 867.1 14,754 563.2 59.6 321.2 851.6
lnCH4c   ln(ppm) 5,465 0 0.99 −4.4 3.4 7,829 0 0.99 −7.4 5.0
lnCO2c   ln(ppm) 5,465 0 0.99 −3.7 3.9 7,829 0 0.99 −4.5 3.9
1FPCM = fat- and protein-corrected milk yield; lnCH4c = natural logarithm of methane breath concentration; lnCO2c = natural logarithm of 
carbon dioxide breath concentration.

Table 3. Estimated genetic σa
2( ) variances, heritability (h2) and repeatability of weekly averages (t2) with corresponding standard errors in 

parentheses from Denmark and the Netherlands

Trait1

Denmark

 

The Netherlands

σa
2 h2 (SE) t2 (SE) σa

2 h2 (SE) t2 (SE)

DMI 2.78 0.43 (0.05) 0.67 (0.02)   0.64 0.14 (0.06) 0.55 (0.02)
FPCM 18.31 0.48 (0.02) 0.81 (0.01)   1.97 0.11 (0.03) 0.68 (0.01)
BW 1,695.9 0.52 (0.01) 0.91 (0.00)   1,522 0.63 (0.00) 0.85 (0.00)
CH4c 0.27 0.26 (0.11) 0.81 (0.01)   0.15 0.15 (0.15) 0.47 (0.03)
CO2c 0.26 0.23 (0.12) 0.75 (0.02)   0.13 0.13 (0.13) 0.43 (0.03)
RFIg 0.48 0.14 (0.05) 0.45 (0.02)   0.27 0.09 (0.07) 0.43 (0.01)
RFIp 0.64 0.21 (0.05) 0.43 (0.02)   0.29 0.10 (0.07) 0.34 (0.03)
RFIss 2.38 0.43 (0.06) 0.67 (0.01)   0.67 0.16 (0.08) 0.59 (0.02)
1FPCM = fat- and protein-corrected milk yield; CH4c = methane breath concentration; CO2c = carbon dioxide breath concentration; RFIg = 
genetic residual feed intake; RFIp = phenotypic residual feed intake; RFIss = single-step residual feed intake.
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in DNK than NLD, and h2 was highest for RFIss and 
RFIp, followed by RFIg across countries. Finally, RFIss 
(0.43 in DNK and 0.16 in NLD) was higher than RFIp 
(0.21 in DNK and 0.10 in NLD) and RFIg (0.14 in 
DNK and 0.09 in NLD) (Table 3).

Genetic and Phenotypic Correlations

Genetic and phenotypic correlations between FI-
related traits and GHG-related traits within DNK and 
NLD data sets are presented in Table 5. In general, the 
genetic correlations (rg) between FI and GHG traits 

were inconsistent across data sets, as discussed below. 
Furthermore, the standard errors of genetic correlations 
were quite variable, ranging from 0.00 to 0.44, and must 
be considered carefully during interpretation.

FI-Related Traits. Dry matter intake was moder-
ately to highly genetically and phenotypically corre-
lated with FPCM and BW, albeit inconsistently across 
countries. Genetic correlations for FPCM were 0.83 ± 
0.04 in DNK and 0.47 ± 0.28 in NLD. Genetic correla-
tions between DMI and BW were also different across 
data sets: 0.45 ± 0.08 in DNK and 0.71 ± 0.16 in NLD. 
Genetic correlations between FPCM and BW ranged 
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Table 4. Estimated genetic partial regression coefficients for genetic residual feed intake and phenotypic 
partial regression coefficients for phenotypic residual feed intake and single-step residual feed intake (RFIss) of 
fat- and protein-corrected milk (FPCM) and BW on DMI

Trait1

Denmark

 

The Netherlands

DMI|FPCM DMI|BW DMI|FPCM DMI|BW

RFIg 0.3069 0.0162   0.1626 0.0129
RFIp 0.2162 0.0137   0.2731 0.0115
RFIss2 0.113 ± 0.02 0.008 ± 0.002   0.249 ± 0.02 0.020 ± 0.001
1Feed efficiency restricted indices: genetic residual feed intake (RFIg), phenotypic residual feed intake (RFIp), 
single-step residual feed intake (RFIss).
2Range of estimated partial regression coefficients for different experimental rations (estimate ± SE).

Table 5. Genetic (below diagonal) and phenotypic (above diagonal) correlations (SE in parentheses) between feed intake–related traits,1 
greenhouse gas–related traits,2 and feed efficiency restricted indices3 for Denmark and the Netherlands

Trait

Denmark

DMI FPCM BW RFIg RFIp RFIss lnCH4c lnCO2c

DMI   0.59 (0.02) 0.35 (0.03) 0.54 (0.02) 0.75 (0.01) NC4 0.33 (0.04) 0.25 (0.04)
FPCM 0.83 (0.04)   0.08 (0.04) −0.26 (0.05) 0.00 (0.02) 0.61 (0.02) 0.31 (0.05) 0.17 (0.05)
BW 0.45 (0.08) 0.06 (0.11)   −0.09 (0.02) 0.00 (0.02) 0.32 (0.03) 0.12 (0.05) 0.08 (0.05)
RFIg 0.38 (0.13) 0.00 (0.17) 0.00 (0.16)   0.96 (0.00)  NE5 0.07 (0.04) 0.12 (0.04)
RFIp 0.79 (0.06) 0.48 (0.13) 0.18 (0.13) 0.86 (0.04)   NE 0.16 (0.04) 0.17 (0.04)
RFIss 0.90* 0.79 (0.05) 0.34 (0.11) 0.476 0.786   0.31 (0.05) 0.22 (0.05)
lnCH4c 0.60 (0.13) 0.37 (0.15) 0.34 (0.16) 0.42 (0.23) 0.59 (0.19) 0.69 (0.15)   0.96 (0.00)
lnCO2c 0.42 (0.13) 0.20 (0.16) 0.19 (0.17) 0.48 (0.24) 0.54 (0.19) 0.43 (0.14) 0.97 (0.03)  

  The Netherlands

DMI   0.59 (0.02) 0.35 (0.03) 0.89 (0.01) 0.77 (0.01) NC 0.01 (0.07) −0.01 (0.07)
FPCM 0.47 (0.28)   0.18 (0.03) 0.27 (0.02) 0.00 (0.03) 0.62 (0.21) 0.10 (0.03) 0.10 (0.03)
BW 0.71 (0.16) 0.29 (0.23)   0.01 (0.03) 0.00 (0.03) 0.33 (0.36) 0.06 (0.04) 0.08 (0.04)
RFIg 0.65 (0.38) 0.00 (0.44) 0.00 (0.27)   0.96 (0.00) NE −0.06 (0.09) −0.08 (0.09)
RFIp 0.56 (0.19) −0.26 (0.41) 0.02 (0.26) 0.96 (0.02)   NE −0.08 (0.09) −0.11 (0.09)
RFIss 0.516 0.51 (0.27) 0.66 (0.18) 0.676 0.666   0.11 (0.11) 0.07 (0.11)
lnCH4c −0.09 (0.38) 0.61 (0.32) 0.16 (0.25) −0.55 (0.41) −0.69 (0.38) 0.46 (0.36)   0.87 (0.00)
lnCO2c −0.08 (0.37) 0.58 (0.31) 0.10 (0.23) −0.48 (0.41) −0.62 (0.38) 0.36 (0.36) 0.96 (0.03)  
1Feed intake–related traits: DMI, fat- and protein-corrected milk yield (FPCM), and BW.
2Greenhouse gas–related traits: natural logarithms of methane (lnCH4c) and carbon dioxide (lnCO2c) breath concentrations.
3Feed efficiency restricted indices: genetic residual feed intake (RFIg), phenotypic residual feed intake (RFIp), single-step residual feed intake 
(RFIss).
4NC = not converged.
5NE = not able to be estimated.
6Correlations between EBV as proxy for genetic correlations.
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from close to zero (0.06 ± 0.11) in DNK to lowly posi-
tive (0.29 ± 0.23) in NLD, and estimates of 0 fell well 
within the 95% CI. The phenotypic correlations be-
tween FPCM and BW were very similar, ranging from 
0.08 ± 0.02 in DNK to 0.18 ± 0.03 in NLD.

GHG-Related Traits. The rg between GHG traits 
and FI traits were very different across data sets. Dry 
matter intake was strongly genetically correlated with 
lnCH4c in DNK (0.60 ± 0.13) but close to zero in NLD 
(−0.09 ± 0.38). Similarly, for lnCO2c, estimates ranged 
from 0.42 in DNK to −0.08 in NLD, with large stan-
dard errors similar to those for lnCH4c. The GHG traits 
also showed similar inconsistency patterns for rg with 
FPCM and BW in both countries, where rg with FPCM 
ranged from 0.20 to 0.61 and with BW from −0.08 to 
0.34. The genetic and phenotypic correlations between 
lnCH4c and lnCO2c were, however, consistently very 
high across countries, with rg ranging from 0.96 – 0.97.

Feed Efficiency Traits. The rg between feed ef-
ficiency traits and components traits (DMI, FPCM, 
and BW) were highly varied across countries and trait 
definitions of RFI (Table 5). In general, RFI traits 
were strongly and positively genetically correlated with 
DMI; however, the range of estimates was large (rg = 
0.38–0.79) and even higher for the correlation between 
EBV for DMI and RFIss as a proxy for rg (0.95). By 
definition, RFIp was phenotypically uncorrelated with 
component traits FPCM and BW in both countries, 
and RFIg was genetically uncorrelated with FPCM 

and BW in both countries; RFIss was both genetically 
and phenotypically correlated with FPCM and BW. 
Despite very different partial regression coefficients, the 
rg between the 2 restricted selection index phenotypes 
RFIp and RFIg were consistently close to unity: rg = 
0.86 ± 0.04 in DNK and rg = 0.96 ± 0.02 in NLD. It 
was not possible to estimate rg between RFIp and RFIg 
with RFIss, but the correlations between their EBV as 
a proxy, were moderate with RFIg (0.46–0.67) and high 
with RFIp (0.66–0.82) in both countries.

The rg between feed efficiency traits and GHG traits 
were inconsistent across countries and trait definitions 
of feed efficiency. In Denmark, lnCH4c was moderate to 
strongly positively genetically correlated with feed effi-
ciency traits RFIg (rg = 0.42 ± 0.23), RFIp (rg = 0.59 ± 
0.19), and RFIss (rg = 0.69 ± 0.15). In the Netherlands, 
however, lnCH4c was negatively correlated with RFIg 
(rg = −0.55 ± 0.41) and RFIp (rg = −0.69 ± 0.38), 
but positively correlated with RFIss (rg = 0.46 ± 0.36), 
although the standard errors were large. The genetic 
correlations between lnCO2c and feed efficiency traits 
were very similar to that of lnCH4c across countries and 
feed efficiency trait definitions.

Prediction Accuracy of Selection Indices  
for DMI and Feed Efficiency

The accuracy of bull selection goals for DMI and feed 
efficiency traits based on the DNK and NLD estimated 
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Table 6. Selection accuracies for bulls for DMI, genetic residual feed intake (RFIg), phenotypic residual feed 
intake (RFIp), and single-step interaction phenotypic residual feed intake (RFIss) using differing recording 
schemes with feed intake–related traits1 and greenhouse gas–related traits2

Selection index accuracy3 DMI RFIg RFIp RFIss

Denmark        
  DMI10 0.75 0.18 0.57 NE4

  lnCH4c100 + lnCO2c100 0.54 0.51 0.48 0.78
  BW100 + FPCM100 0.77 0 0.48 0.70
  DMI10 + lnCH4c100 + lnCO2c100 0.79 0.50 0.70 NE
  DMI10 + BW100 + FPCM100 0.85 0.21 0.59 NE
  BW100 + FPCM100 + lnCH4c100 + lnCO2c100 0.97 0.89 0.92 0.94
  DMI10 + BW100 + FPCM100 + lnCH4c100 + lnCO2c100 0.97 0.89 0.93 NE
The Netherlands        
  DMI10 0.65 0.37 0.30 NE
  lnCH4c100 + lnCO2c100 0.07 0.46 0.57 0.35
  BW100 + FPCM100 0.71 0 0.25 0.62
  DMI10 + lnCH4c100 + lnCO2c100 0.66 0.57 0.63 NE
  DMI10 + BW100 + FPCM100 0.79 0.42 0.47 NE
  BW100 + FPCM100 + lnCH4c100 + lnCO2c100 0.78 0.53 0.58 0.64
  DMI10 + BW100 + FPCM100 + lnCH4c100 + lnCO2c100 0.83 0.60 0.63 NE
1Feed intake–related traits: DMI, fat- and protein-corrected milk yield (FPCM), and BW.
2Greenhouse gas–related traits: natural logarithms of methane (lnCH4c) and carbon dioxide (lnCO2c) breath 
concentrations. 
3Subscripts denote the number of daughters with a single weekly average record for a given trait within a 
selection index.
4NE = not able to be estimated.
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G and P (co)variance matrices for several recording 
strategies using different combinations of FI and GHG 
traits are presented in Table 6. For DMI and feed effi-
ciency traits, including the DMI daughter records gave 
higher accuracies than indices that included only GHG 
or FPCM and BW, and the highest accuracies were 
achieved when all sources of information were included.

For DMI, in both countries, bulls having 100 daugh-
ters with lnCH4c and lnCO2c alone gave the lowest 
accuracies for all recording scenarios. However, having 
100 daughters with BW, FPCM, lnCH4c, and lnCO2c 
gave higher accuracies (0.97 DNK and 0.78 NLD) than 
having 10 daughters with DMI records (0.75 DNK and 
0.65 NLD) and comparable accuracies to the scenario 
including all traits (0.97 DNK, 0.83 NLD). For RFIg 
and RFIp, bulls having lnCH4c and lnCO2c on 100 
daughters gave higher or comparable accuracies (0.48–
0.51 in DNK, 0.46–0.57 in NLD) than having 10 daugh-
ters with DMI records (0.18–0.57 in DNK, 0.30–0.37 
in NLD). For RFIg, bulls with 100 daughters having 
FPCM and BW records gave accuracies of 0, whereas 
for RFIp, accuracies were lower or comparable to the 
GHG indices (0.48 in DNK and 0.25 in NLD). Models 
including RFIss and DMI did not converge, so we could 
not assess the use of DMI on RFIss selection index 
accuracies; however, having 100 daughters for FPCM, 
BW, lnCH4c, and lnCO2c resulted in high accuracies 
across countries (0.94 in DNK, 0.64 in NLD).

DISCUSSION

Genetic Parameters

FI-Related Traits. Investigations into the FI-
related traits DMI, FPCM, and BW have been an area 
of intense research in DNK and NLD, with both being 
members of international collaborative consortia such 
as the global dry matter initiative (Berry et al., 2014). 
The heritability estimated for DMI in DNK (0.43) was 
slightly higher than reported previously for Nordic Hol-
steins (0.20–0.40) by Li et al. (2016). However, Li et al. 
(2016) estimated h2 for 1 to 24 wk of lactation, with an 
increasing trend from 0.20 to 0.40, whereas we reported 
entire lactation h2 from wk 1 to 44. Similarly, the h2 
estimate for DMI in NLD was lower than the range 
of reported values from previous studies (0.15–0.41; 
Koenen and Veerkamp, 1998; Vallimont et al., 2010). 
However, DMI data in NLD were recorded in lactation 
wk 1 to 10 for most cows (77%) that calved since 2000. 
Thus, for both countries, restricting the use of older 
historical data and differences in the length of record-
ing over lactation has resulted in changes in heritability 
estimates for DMI compared with previous studies in 

each country. In the present study, parameters were es-
timated in repeatability animal models over the course 
of the entire first lactation, recognizing that previous 
findings from both populations demonstrate that the 
genetic parameters of DMI, FPCM, and BW change 
over the course of lactation (Manzanilla Pech et al., 
2014; Li et al., 2016).

The h2 estimate for FPCM in DNK (h2 = 0.48) was 
larger than those reported for ECM in DNK (0.27–0.39; 
Søndergaard et al., 2002; Lassen and Løvendahl, 2016). 
This could be due to the differences in temporal dis-
tribution of data through years and through lactation 
as discussed above for DMI. It is also important to 
recognize that the trait definitions for ECM and FPCM 
differ, as different linear combinations of milk, fat, 
and protein yields, with FPCM scaled to 1.9% MY, 
64.7% fat yield, and 33.4% protein yield (CVB, 2008), 
and ECM scaled to 1.2% MY, 60.5% fat yield, and 
38.2% protein yield (Sjaunja et al., 1991). The choice 
of FPCM was driven by the need to make findings of 
this study comparable to international research efforts 
for GHG mitigation (FAO, 2010). The h2 estimate for 
FPCM in NLD was 0.11, well below the range of pre-
vious findings in NLD (0.22–0.43; Manzanilla Pech et 
al., 2014). The lower heritability could be due to using 
cows that have calved since 2000 instead of 1990, as 
was reported by Manzanilla Pech et al. (2014). It is 
also important to note that heritability estimates were 
generally lower in NLD than in DNK, and lower than 
previously reported NLD estimates. The NLD data set 
included cows from 4 research herds and an additional 
10 commercial AMS milking herds, which may have 
contributed to increased residual variation and reduced 
heritability, whereas only a single research herd and 2 
commercial AMS milking herds were included in DNK. 
Last, the heritability estimates for BW were within the 
reported ranges in DNK for multiparous Nordic cattle 
breeds (0.52–0.77; Søndergaard et al., 2002; Sloniewski 
et al., 2005) and primiparous Dutch Holstein Friesian 
cows (0.22–0.74; Koenen and Veerkamp, 1998; Manza-
nilla Pech et al., 2014).

GHG-Related Traits. The heritability estimates of 
lnCH4c and lnCO2c were consistently moderate across 
data sets with h2 of 0.27 and 0.26 in DNK and 0.15 and 
0.13 in NLD, respectively. These estimates are larger 
than those reported for primi- and multiparous Dutch 
Holsteins Friesians in commercial herds: lnCH4c (h

2 = 
0.11 ± 0.02) and lnCO2c (h

2 = 0.12 ± 0.02; van Engelen 
et al., 2018), of which the primiparous cows were part 
of this study. However, the estimates of van Engelen 
et al. (2018) were based on mean lnCH4c and lnCO2c 
per milking, whereas we used an average per week of 
lactation and thus had many more repeated measures 
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per cow, which is an effective error reduction tech-
nique with sniffers and a benefit of high-throughput 
measures (Difford et al., 2016). Although lnCH4c and 
lnCO2c are short-term breath concentration measures, 
the h2 estimates are comparable to that of 24-h total 
mass flux CH4 production from respiration chambers 
in over 1,000 growing Aberdeen Angus (h2 = 0.22 ± 
0.06; Donoghue et al., 2016), 1,225 dual-purpose mixed 
and composite sheep (h2 = 0.29 ± 0.05) using portable 
accumulation chambers (Pinares-Patiño et al., 2013), 
and lambs in respiration chambers (h2 = 0.23 ± 0.04; 
Jonker et al., 2018).

Genetic Correlations

FI-Related Traits. Genetic correlations between 
FPCM and BW were close to zero in both countries, 
ranging from low (0.06 ± 0.11) in DNK to moderate 
(0.29 ± 0.23) in NLD, following the large range of esti-
mates in literature (ranges reported in square brackets; 
ECM and FPCM, rg = [−0.36, 0.60]; Manzanilla Pech 
et al., 2014; Lassen and Løvendahl, 2016; Lu et al., 
2017).

Dry matter intake was differentially genetically 
correlated with FPCM and BW in DNK and NLD. 
In DNK, DMI was highly genetically correlated with 
FPCM (rg = 0.83 ± 0.04), and moderately correlated 
with BW (rg = 0.45 ± 0.08), which is comparable to 
the ranges reported for Nordic Holsteins between DMI 
and ECM (rg = [0.24, 0.80]) as well as DMI and BW 
(rg = [0.3, 0.7]; Li et al., 2018). Conversely, in NLD, 
DMI was moderately correlated with FPCM (rg = 0.47 
± 0.28) and highly correlated with BW (0.71 ± 0.16), 
which are lower than full-lactation repeatability models 
in NLD of 0.86 for FPCM and 0.45 of BW with DMI 
(Manzanilla Pech et al., 2014). However, most DMI 
records in NLD were recorded within the first 70 DIM, 
and our genetic correlation estimates are comparable 
to the ranges reported from random regression models 
from 1 to 70 DIM for DMI and FPCM (rg  = [−0.55, 
0.8]) and DMI and BW (rg = [0.38, 0.6]; Manzanilla 
Pech et al., 2014).

The present NLD data differ from that of Manzanilla 
Pech et al. (2014), because only cows calving since 
2000 were retained to limit genetic heterogeneity due 
to selection over time. The recent recording strategy in 
NLD includes DMI recording for the first 1 to 10 wk 
of lactation, and continuous recordings of FPCM and 
BW are made through wk 1 to 44. The relative differ-
ences in genetic correlations for FI traits between DNK 
and NLD as well as the differences between previously 
reported genetic correlations in NLD suggest lactation 
stage genetic heterogeneity in FI-related traits. Manza-

nilla Pech et al. (2014) reported patterns of heterogene-
ity between the first 48 DIM (7 wk) of lactation and 
the remainder of lactation for DMI, FPCM, and BW. 
Similarly, genetic heterogeneity was observed between 
the first 8 wk of lactation and the remaining weeks of 
lactation in FI-related traits in 3 Nordic dairy cattle 
breeds (Li et al., 2018), suggesting that the genetic re-
lationships between FI-related traits and feed efficiency 
traits can vary greatly between early and mid to late 
lactation (Li et al., 2017; Løvendahl et al., 2018).

GHG-Related Traits. These are the first reported 
genetic correlations for breath gas concentration mea-
sures and FI-related traits, which makes comparisons 
with the literature challenging. Recently, genetic cor-
relations have been reported for CH4 production using 
the SF6 method in 314 multiparous Australian Hol-
steins under grazing conditions (Breider et al., 2018). 
The genetic correlations between CH4c and mass flux 
CH4 production is not currently known and is needed 
to assess the merit of CH4c as an indicator trait for CH4 
production. The phenotypic correlation (rp) between 
CH4c and CH4 production is unlikely to be unity, based 
on R2 values from comparisons using the artificial refer-
ence cow, GreenFeed (C-Lock Inc., Rapid City, SD), 
or sniffers (Huhtanen et al., 2015; Difford et al., 2018; 
Wu et al., 2018). However, it is positive and in the 
range of 0.29 to 0.97, depending on extraneous factors 
such as cow muzzle position from the sniffer inlet and 
wind speed (Huhtanen et al., 2015; Wu et al., 2018). 
Moreover, the correlation between CH4 production 
and FI-related traits can provide some insight into the 
expected nature of CH4c and FI traits. Breider et al. 
(2018) found CH4 production to be moderately geneti-
cally correlated with DMI (rg = 0.34 ± 0.22), MY (rg 
= 0.26 ± 0.27), and BW (rg = 0.42 ± 0.16). Similarly, 
Lassen and Løvendahl (2016) reported genetic correla-
tions between CH4 production and FPCM (rg = 0.43 ± 
0.10) and BW (rg = −0.18 ± 0.08), suggesting that the 
genetic correlations we report for CH4c and FI-related 
traits are within the ranges reported in literature.

Interestingly, genetic and phenotypic correlations 
between lnCH4c and lnCO2c were close to unity (0.97 
and 0.96, respectively, in DNK, and 0.96 and 0.87 in 
NLD). Studies using RC have reported phenotypic cor-
relations as high as 0.96 between CH4 production and 
CO2 production (Aubry and Yan, 2015). Jonker et al. 
(2018) reported genetic parameters for lambs in RC 
and found a similarly high genetic correlation of 0.84 
± 0.04 between CH4 production and CO2 production. 
This would suggest the relationship between the 2 gases 
is highly conserved. Some prediction equations for CH4 
production are premised on the relationship between 
CH4 and CO2 (Madsen et al., 2010). Validation of these 
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high correlations between CH4 and CO2 are needed 
across multiple methods of gas measurement.

Feed Efficiency Traits

Because feed efficiency is not directly observable and 
is defined as feed intake conditional on a combination 
of production traits or energy sinks (component traits), 
it is dependent on the genetic relationships between 
these traits. The genetic and phenotypic correlations 
between DMI and components traits have previously 
been shown to be influenced by lactation stage hetero-
geneity (Manzanilla Pech et al., 2014; Li et al., 2018) 
or possible genotype by environment interactions due 
to different research stations and energy density of ra-
tions (Tempelman et al., 2015; Lu et al., 2017; Yao et 
al., 2017). There are a multitude of trait definitions in 
literature with a wide range of heritability estimates 
(h2 = 0–0.38; Berry and Crowley, 2013), the definitions 
most closely aligned to breeding practices are the re-
stricted selection index approaches (RFIg and RFIp; 
Kennedy et al., 1993; Veerkamp et al., 1995). However, 
these approaches assume fixed and estimable genetic 
or phenotypic partial regression coefficients between 
DMI and components traits and do not directly ac-
count for heterogeneity in partial regression coefficients 
due to lactation stage or different energy densities of 
rations. Tempelman et al. (2015) proposed the use of 
RFIss, allowing for heterogeneity in phenotypic partial 
regression coefficients due to different energy densities 
in rations at different research stations, this was later 
extended to genetic partial regression coefficients in 
a Bayesian approach (Lu et al., 2017). Currently, no 
definitions of RFI account for both heterogeneity in 
lactation stage and energy density of rations.

The current study estimated RFIg, RFIp, and RFIss, 
which showed a trend of increasing heritability toward 
that of DMI (RFIg = 0.14, RFIp = 0.21, and RFIss = 
0.43 in DNK; RFIg = 0.09, RFIp = 0.10 and RFIss = 
0.16 in NLD), although in NLD, only the RFIss esti-
mate was significant. Similarly, RFIg has been reported 
to be smaller than RFIp (Veerkamp et al., 1995; Shirali 
et al., 2018), which, in turn, has been reported to be 
smaller than RFIss (Tempelman et al., 2015).

The trend of heritability among RFI traits appears 
to follow the trend of the magnitude of genetic rela-
tionships with DMI and component traits. By defining 
RFIg, it was possible to express DMI as genetically 
independent of both traits, which resulted in the lowest 
feed efficiency h2 estimate. Thus, despite very different 
genetic (co)variances between the 2 countries, it was fea-
sible to identify cows that genetically require less DMI 
without affecting changes to FPCM and BW. However, 

the standard errors of these correlations were still large, 
and higher numbers of cows are needed to estimate 
these parameters with higher levels of certainty needed 
for implementation. Interestingly, the phenotypic cor-
relations between FI-related traits were very similar in 
both countries and defining RFIp similarly resulted in 
phenotypic correlations with FPCM and BW of zero. 
However, nonzero genetic correlations between RFIp 
and FPCM and BW remain in both countries (FPCM 
rg = 0.48 ± 0.13, BW rg = 0.18 ± 0.13 in DNK; FPCM 
rg = −0.26 ± 0.41, BW rg = 0.02 ± 0.26 in NLD). 
The genetic correlations between RFIg and RFIp were 
strongly positive in both countries (0.86 ± 0.04 in DNK 
and 0.96 ± 0.02 in NLD) in agreement with Lu et al. 
(2017). Shirali et al. (2018) estimated RFIg, RFIp, and 
FCR in 3,724 growing pigs and found a genetic correla-
tion of 0.92 ± 0.04 between RFIg and RFIp and 0.89 ± 
0.04 between RFIg and FCR. Although direct and cor-
related responses of selection for RFIg were consistent, 
direct and correlated responses to selection for RFIp 
and FCR were inconsistent, and unexpected responses 
in feed intake, ADG, and lean meat percentage were 
observed, suggesting nonequivalence between RFIp and 
RFIg (Shirali et al., 2018).

To test for heterogeneity due to energy density 
changes in rations over seasons and from different re-
search trials, we estimated RFIss (Tempelman et al., 
2015). Despite significant interaction terms between 
ETC and partial regression coefficients of FPCM and 
BW on DMI in both countries, the h2 and additive 
genetic variation estimates were the same or very close 
to that of DMI, with similar genetic and phenotypic 
correlations to component traits. It is challenging to as-
sess the goodness of fit and genetic equivalence or lack 
thereof for RFIss and DMI, because models including 
DMI and RFIss failed to converge in both countries, 
preventing further estimation of matrices needed for 
the computation of RFIg and RFIp and their corre-
lations with RFIss. This is a limitation of the 2-step 
and single-step RFI methodologies previously reported 
(Tempelman et al., 2015). We computed the correlation 
between EBV for RFIss, DMI, RFIg, and RFIp as a 
proxy to genetic correlations and found very similar 
correlations between RFIss with RFIg and RFIp as 
were found for DMI with RFIg and RFIp. The largest 
discrepancy was in correlations between EBV for DMI 
and RFIss in the 2 countries. In DNK, it was strong 
and positive (0.90), indicating minimal heterogeneity 
due to different energy densities of rations. However, 
the correlation between DMI and RFIss in NLD was 
substantially lower (0.50), indicating that heterogene-
ity due to different energy densities of diets had an 
effect in NLD. In the presence of heterogeneity between 
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component traits and DMI, it is necessary to estimate 
either RFIss (phenotypic adjustment; Tempelman et 
al., 2015) or RFIg using hierarchical Bayesian multi-
trait models (Lu et al., 2017) or subset the data further 
and make use of multitrait genotype by environment 
interactions models defined by diet.

Relationship Between GHG Traits  
and Feed Efficiency

Both GHG traits had moderate to high genetic corre-
lations with all feed efficiency traits in both countries, 
and the magnitude of the genetic correlations increased 
from 0.42 with RFIg in DNK to −0.69 with RFIp in 
NLD. Crucially, the sign of genetic correlations between 
GHG traits and feed efficiency traits differed between 
countries for RFIg and RFIp, being positive in DNK 
and negative in NLD. Furthermore, the sign of genetic 
correlations for RFIss and GHG traits was positive in 
both countries. These results highlight the complexity 
of the relationships between feed efficiency traits and 
GHG traits in the presence of possible lactation stage 
and dietary heterogeneity.

The relationship between CH4 emission and feed effi-
ciency is contentious, with inconsistent results between 
RFIp and CH4 production. Positive phenotypic correla-
tions (rp = 0.10–0.56) between residual energy intake 
and CH4 production predicted from energy intake and 
the ratio of CH4c/CO2c from sniffers in concentrate 
feeders were reported for 412 lactating Nordic red 
cattle (Negussie et al., 2014). Similarly, a study using 
the GreenFeed system found efficient RFIp groups to 
have significantly reduced DMI, CH4, and CO2 produc-
tion compared with inefficient RFIp (Hailemariam et 
al., 2016). All of these methods require supplemented 
concentrate to attract the cow to the instrument and, 
in the case of sniffers installed in AMS, concentrate 
supplementation is based on individual milk produc-
tion. In contradiction, a separate study in respiration 
chambers found efficient RFIp groups to have reduced 
DMI but increased CH4 and CO2 production compared 
with inefficient RFIp groups (Olijhoek et al., 2018). 
To date, only a single genetic correlation (rg = 0.72) 
between CH4 production predicted from gross energy 
intake and phenotypic RFI has been reported (de Haas 
et al., 2011). Breider et al. (2018) investigated the 
responses to selection in DMI, MY, BW, and CH4 pro-
duction from SF6, using restricted selection indices in 
Australian Holsteins on pasture. However, the index 
for reducing DMI and restricting MY and BW (RFIg) 
showed a correlated increase in CH4 production, indi-
cating that efficient RFIg cows have higher CH4 pro-
duction. Using the estimated parameters from Breider 

et al. (2018) and the methods described in Kennedy 
et al. (1993), it is possible to estimate the genetic cor-
relation between RFIg and CH4 production, which was 
small (rg = −0.004; Breider et al., 2018).

Inconsistencies in identifying genetic correlations 
between GHG traits and feed efficiency in the afore-
mentioned studies could be due to differences in en-
vironment and diet (grazing vs. TMR), concentrate 
supplementation based on individual milk production, 
trait definitions (RFIg vs. RFIp), and CH4 emission 
phenotype (CH4 production vs. CH4c), as well as CH4 
measurement methods (sniffers, GreenFeed, and SF6). 
Within the present study, however, the differences in 
genetic correlations between GHG traits with RFIg and 
RFIp in DNK and NLD are likely a result of genetic 
heterogeneity due to lactation stage or energy density 
of different diets, particularly whether concentrate was 
supplemented based on individual milk production. 
In DNK, 434 primiparous cows had repeated weekly 
records for GHG traits, 47% of which had full-lactation 
concurrent records for GHG traits and FI traits. In 
NLD, 654 primiparous cows had repeated weekly re-
cords for GHG traits for part of lactation, 42% of which 
had DMI records in the first 70 DIM; as a result, no 
cows had concurrent GHG and FI traits in NLD. In 
NLD, feed efficiency is largely estimated for the first 
70 DIM and correlated with GHG traits from 70 to 305 
DIM. Both GHG traits and feed efficiency change over 
the course of lactation, particularly between early and 
mid to late lactation, thus their genetic correlations 
with each other at different lactation stages are likely 
to differ as well (Li et al., 2017; Pszczola et al., 2017).

Within NLD, the genetic correlations between feed 
efficiency traits, which assumed constant partial regres-
sion coefficients (i.e., RFIg and RFIp) and GHG, were 
opposite in sign to RFIss, which allowed for heterogene-
ity due to ration. However, standard errors of these 
genetic correlations in NLD were large. Heterogeneity 
in feed efficiency traits due to different experimental 
rations is well established (Tempelman et al., 2015) 
and there is evidence for heterogeneity in regression 
coefficients between CH4c and milk yield in herds using 
different feeding regimens, as well as different levels 
of concentrate supplementation in AMS based on in-
dividual milk yield (Bell et al., 2014). Importantly, in 
DNK, all GHG traits and FI traits are recorded on 
cows in AMS supplemented with concentrate based 
on milk production. In contrast, in NLD during the 
DMI recording period, cows are fed TMR (1–70 DIM) 
without additional concentrate supplementation and 
then fed a partial mixed ration and concentrate supple-
mented in the AMS based on individual milk produc-
tion (71–305 DIM) when GHG traits are recorded. 
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Increasing the concentrate-to-forage ratio reduces 
CH4 production relative to DMI (Bell et al., 2014); a 
shortcoming of using DMI to calculate feed efficiency 
traits is that energy and feed composition are not ac-
counted for and individual forage-to-concentrate ratios 
for cows are ignored. As a result, cows with higher milk 
production are fed a more energy dense diet, with a 
higher concentrate-to-forage ratio, which reduces CH4 
production. By expressing feed efficiency as RFIss and 
accounting for heterogeneity due to different rations, 
differences in feed composition and energy density 
might be better accounted for in NLD, resulting in 
consensus positive genetic correlations between GHG 
traits and RFIss in DNK and NLD. Because most DMI 
records are recorded in small-scale research herds in 
which numerous dietary trials are conducted and there 
is large variation in dietary rations across commercial 
herds (Bell et al., 2014), and the sniffer method requires 
AMS herds which supplement additional concentrate 
based on milk production, further research is needed to 
evaluate possible genotype by environment interactions 
due to diets.

Prediction Accuracy of Selection Indices  
for DMI and Feed Efficiency

When assessing the potential of a large-scale indica-
tor trait to a scarcely recorded and expensive breeding 
goal trait, it is important to account for the genetic 
correlations and the value of increased records of the 
indicator trait. The accuracy of selection indices for 
DMI and feed efficiency traits was assessed for bulls 
using different combinations of FI and GHG traits 
based on the estimated genetic and phenotypic (co)
variances and numbers of daughters with single weekly 
averaged records. For DMI, including only GHG traits 
had limited gains compared with including FPCM and 
BW in both countries. However, using GHG traits as 
well as FPCM and BW for a bull with 100 daughters 
gave high accuracies in both countries, almost negating 
the need for DMI records on daughters (0.97 in DNK 
and 0.83 in NLD).

The accuracy of RFIg using only FPCM and BW was 
zero, as compared with the accuracy using GHG traits 
(0.51 in DNK and 0.46 in NLD). The accuracy of RFIp 
only using FPCM and BW was modest (0.48 in DNK 
and 0.25 in NLD) and similar to that for GHG traits 
(0.48 in DNK and 0.57 in NLD). Similarly, Manzanilla-
Pech et al. (2016) found accuracies for DMI and RFIp 
using conformation traits (stature, chest width, and 
body depth) along with BW and milk energy output in 
the US and NLD Holstein populations. Bull accuracies 
for DMI using conformation traits were 0.43 in NLD 

and 0.63 in the United States and further increased to 
0.79 in NLD and 0.97 in the United States with the 
addition of BW and milk energy output (Manzanilla-
Pech et al., 2016). Although the accuracies were low 
for RFIp in NLD (0.17) but substantial in the United 
States (0.97), the 2 populations had very different ge-
netic correlations between RFIp and predictor traits 
(Manzanilla-Pech et al., 2016).

Across all 3 feed efficiency traits and DMI, having 
100 daughters with FPCM, BW, and GHG traits re-
sulted in sufficiently high accuracies to almost negate 
the need for DMI records. This highlights the potential 
of high-throughput automated indicator traits in the 
AMS to improve bull EBV accuracies for scarcely re-
corded traits if genetic parameters are known. However, 
much larger studies are required to elucidate whether 
and how potential sources of heterogeneity in the rela-
tionships between FI and GHG traits (such as lactation 
stage or different diets) can influence the genetic rela-
tionships between feed efficiency and GHG.

CONCLUSIONS

This study demonstrated genetic variation for feed 
efficiency traits and the concentration of CH4 and CO2 
in the breath of lactating Holstein cattle. However, 
feed efficiency traits were differentially genetically cor-
related with breath concentration GHG traits in both 
magnitude and sign, depending on the population and 
the trait definitions of feed efficiency, which may be 
due to the influence of lactation stage and diet-induced 
heterogeneity. Despite differences in the sign of genetic 
correlations between GHG traits and feed efficiency 
traits, the magnitude of correlations resulted in the 
relatively cheap GHG traits improving the accuracies 
of highly valuable feed efficiency traits. Across all 3 
feed efficiency traits and DMI, having 100 daughters 
with FPCM, BW, and GHG traits resulted in suffi-
ciently high accuracies to almost negate the need for 
DMI records. These findings open the possibility for 
using GHG traits as large-scale indicator traits for ge-
netically improving the accuracies of feed efficiency in 
dairy cows.
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