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Abstract

Background: Copy Number Variations (CNVs) are gain or loss of DNA segments that are known to play a role in
shaping a wide range of phenotypes. In this study, we used two dairy cattle populations, Holstein Friesian and
Jersey, to discover CNVs using the Illumina BovineHD Genotyping BeadChip aligned to the ARS-UCD1.2 assembly.
The discovered CNVs were investigated for their functional impact and their population genetics features.

Results: We discovered 14,272 autosomal CNVs, which were aggregated into 1755 CNV regions (CNVR) from 451
animals. These CNVRs together cover 2.8% of the bovine autosomes. The assessment of the functional impact of
CNVRs showed that rare CNVRs (MAF < 0.01) are more likely to overlap with genes, than common CNVRs (MAF ≥
0.05). The Population differentiation index (Fst) based on CNVRs revealed multiple highly diverged CNVRs between
the two breeds. Some of these CNVRs overlapped with candidate genes such as MGAM and ADAMTS17 genes,
which are related to starch digestion and body size, respectively. Lastly, linkage disequilibrium (LD) between CNVRs
and BovineHD BeadChip SNPs was generally low, close to 0, although common deletions (MAF ≥ 0.05) showed
slightly higher LD (r2 = ~ 0.1 at 10 kb distance) than the rest. Nevertheless, this LD is still lower than SNP-SNP LD
(r2 = ~ 0.5 at 10 kb distance).

Conclusions: Our analyses showed that CNVRs detected using BovineHD BeadChip arrays are likely to be functional.
This finding indicates that CNVs can potentially disrupt the function of genes and thus might alter phenotypes. Also,
the population differentiation index revealed two candidate genes, MGAM and ADAMTS17, which hint at adaptive
evolution between the two populations. Lastly, low CNVR-SNP LD implies that genetic variation from CNVs might not
be fully captured in routine animal genetic evaluation, which relies solely on SNP markers.

Keywords: Copy number variations, Bos taurus, Linkage disequilibrium, Population genetics

Background
Genetic variations exist in various forms in genomes. Al-
though single nucleotide polymorphisms (SNPs) have been
the choice of variants in numerous studies, there is a growing
body of evidence that copy number variations (CNVs) can
have functional impact. Copy number variations are DNA
segments of 1 kb or larger, and are present in varying copy
numbers, compared to a reference genome [1]. Since the ini-
tial discovery of large sub-microscopic CNVs (some hundred

kb) [2, 3], rapid developments in detection platforms and al-
gorithms have advanced knowledge about CNVs, mainly in
humans [4, 5].
In the early phase of their discovery, CNVs were ex-

pected to resolve the missing heritability (significant SNPs
identified from genome-wide association studies (GWAS)
together account small part of the heritability) [6, 7]. It was
because, as in terms of base pairs, they cover a larger pro-
portion of the genome, compared to SNPs. With the accu-
mulation of data and analyses, the occurrence of CNVs in
the genome was shown to be biased outside of functional
elements [5]. Nevertheless, numerous studies have shown
that CNVs play a role in determining a wide range of

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: younglim.lee@wur.nl
1Wageningen University & Research, Animal Breeding and Genomics, P.O.
Box 338, Wageningen, AH 6700, the Netherlands
Full list of author information is available at the end of the article

Lee et al. BMC Genomics           (2020) 21:89 
https://doi.org/10.1186/s12864-020-6496-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6496-1&domain=pdf
http://orcid.org/0000-0003-1182-0197
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:younglim.lee@wur.nl


human health conditions, from obesity to neurodevelop-
mental diseases [8–11]. For instance, high copy numbers
of the CCL3L1 and CYP2D6 genes confer reduced suscep-
tibility to infection with HIV and the development of AIDS
[12]. Also, the role of CNVs in adaptive evolution is further
exemplified by mean copy numbers of the AMY1 gene
(which codes for amylase alpha1, an essential enzyme for
starch digestion). The mean copy number of AMY1 gene
was shown to differ in human populations depending on
dietary starch composition [13]. These findings demon-
strate that CNVs may contribute to adaptive potential, and
thus contain information about population history.
Studies in livestock species also highlighted the role of

CNVs in shaping various phenotypes. For example, several
genes affected by CNVs determine coat colours of specific
breeds. Duplications of the KIT gene in pigs are related to
white coat, which is only shown in domestic pigs [14, 15].
In cattle, serial translocation of the KIT gene was related to
a colour-sidedness phenotype [16]. Moreover, CNVs were
shown to be associated with quantitative traits that are eco-
nomically important in livestock breeding, in various cattle
populations [17–19]. One study investigated whether trait
associated CNVs are in linkage disequilibrium (LD) with,
and thus are tagged by, SNP markers, and revealed that ~
25% of CNVs were not in LD with SNP markers [17]. How-
ever, this study was based on Illumina BovineSNP50 array
data, in which SNP density and CNV resolution were low.
Holstein Friesian (HOL) and Jersey (JER) are the two

main commercial dairy cattle breeds that have been bred
under different breeding schemes. Although there have
been studies investigating the link between CNVs and
individual production traits [17–21], in-depth assess-
ment of functional impacts of CNVs in cattle genomes
has been limited. Also, whether CNVs that have an im-
pact on phenotypes are captured in genomic evaluation,
in other words, whether CNVs are in sufficient LD with
SNPs, is largely unexplored. Furthermore, CNVs have
been shown to be useful in disentangling population his-
tory and provide valuable insights in understanding how
populations have evolved over time [22–25]. However,
population genetics analyses exploring CNVs, with their
main focus on HOL and JER, have been sparse.
Here, we aimed at discovering CNVs in bovine ge-

nomes based on genome assembly ARS-UCD1.2 [26]
using high density SNP array data, in two dairy cattle
populations. Subsequently, we performed in-depth ana-
lyses on the functional impact of CNVs and further ex-
plored the population genetic features of CNVs by
analysing population differentiation index (Fst) and LD.

Results
CNV discovery in the genome build ARS-UCD1.2
The data consisted of Illumina BovineHD BeadChip
(Illumina, San Diego, CA, USA) genotypes from two

distinct dairy breeds (Holstein Friesian – HOL (n = 331),
Jersey – JER (n = 115)) and their crossbreds (n = 29). A
previous study using PennCNV on BovineHD data, of
which 47 HOL animals overlapped with our study,
showed high rate of CNV confirmation based on qPCR
validation (91.7% for CNVs found in multiple animals,
40% for singleton CNVs) [24]. Therefore, we chose to
perform CNV detection on bovine autosomes using the
PennCNV software [27]. The Bovine HD SNPs were
aligned to genome assembly ARS-UCD1.2.
We discovered 14,272 CNV calls from 451 individuals

that passed the quality control criteria (31.6 calls/indi-
vidual). Deletion calls were 1.8 times more frequent but
40% shorter (n = 9171, mean length = 44.2 kb) than du-
plication calls (n = 5101, mean length = 74.6 kb; Add-
itional file 2: Table S1 and Additional file 1: Figure S1).
The mean probe density (number of supporting SNPs
per Mb CNV) was 403 SNPs/Mb. The 14,272 CNV calls
were aggregated into 1755 CNV regions (CNVRs), based
on at least 1 bp overlap, following Redon et al. [28].
These CNVRs cover 2.8% of the autosomal genome se-
quence (69.6/2489.4 Mb; Fig. 1; A full list of CNVR is in
Additional file 2: Table S2.). These CNVRs consist of
1125 deletion CNVRs (mean length = 29.2 kb), 513 du-
plication CNVRs (mean length = 36.8 kb), and 117 com-
plex CNVRs (mean length = 152.7 kb). The distribution
of CNVR length is exponential, where the majority
CNVRs are short to medium length (< 100 kb, 93%),
while only a few observations are made for long CNVRs
(> 100 kb, 7%). The CNVRs are non-randomly distrib-
uted over the chromosomes: chromosome-wide CNVR
coverage varies from 0.6% on BTA24 to 4.9% on BTA12
(Additional file 2: Table S3). BTA12 is most densely cov-
ered with CNVR in terms of bp (4.2 Mb), and especially
enriched for complex type CNVRs (2.2Mb). Allele fre-
quency of CNVRs ranges between 0.001 and 0.21.
Since most cattle CNV studies used genome assembly

UMD3.1, we also repeated the CNV detection procedures,
using UMD3.1. Subsequently, we used these calls to assess
our CNV discovery results with other cattle CNV papers.
From the 447 individuals that passed the QC criteria, 24,
264 CNVs were called (54.3 calls/individual) and the mean
probe density was 326 SNPs/Mb. These CNVs were aggre-
gated into 1866 CNVRs (1130 deletions, 593 duplications,
and 143 complex CNVRs). The mean length of deletion,
duplication, and complex CNVRs is 29, 36, and 193 kb, re-
spectively (Additional file 2: Table S1). These CNVRs to-
gether cover 82Mb (3.3%) of bovine autosomes. The
chromosome-wide coverage varies between 1% on BTA24
and 10% on BTA12 (Additional file 2: Table S4 and Add-
itional file 1: Figure S2). Compared to other cattle CNV
studies conducted using the same SNP array and the gen-
ome assembly UMD3.1 [22, 24, 29–32], our CNV discovery
results are in a similar range (Additional file 2: Table S5).
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When we compared to our CNVs discovered based on
UMD3.1 and ARS-UCD1.2, we observed several differ-
ences. Firstly, the number of CNVs called per individual
based on ARS-UCD1.2 is 42% lower than what was ob-
tained using UMD3.1. Also, the mean probe density in-
creased from 326 SNPs/Mb in UMD3.1 to 404 SNPs/
Mb in ARS-UCD1.2, indicating that with ARS-UCD1.2,
CNVs are supported by more SNPs. Lastly, the mean
length of complex CNVRs decreased by 40 kb, from 193
kb in UMD3.1 to 152.7 kb in ARS-UCD1.2. We further
inspected BTA12:70–77MB region where a large change
between UMD3.1 and ARS-UCD1.2 was observed. This
region was reported to have a large number deletion and
duplication calls by other cattle CNV studies based on
UMD3.1, regardless of the studied breeds [24, 29–33]. In
our CNV discovery, we identified 7 CNVRs (total length
of ~ 6.2 Mb) in this region based on UMD3.1, whereas
ARS-UCD1.2 based results revealed 9 CNVRs that cov-
ered ~ 1Mb. We compared the positions of BovineHD
SNPs in UMD3.1 and ARS-UCD1.2 to see whether the

changes in genome assemblies caused this discrepancy.
The results showed that 43% of the SNPs located in
BTA12:70-77Mb based on UMD3.1 were either moved
to unmapped contigs or reference and alternative SNPs
were undefined. The genome-wide ratio of SNPs that
were moved to different chromosomes or contigs was
much lower (2.3%) than 43%. This indeed indicates that
the two genome assemblies differ in this regions, and
thus led to different CNV discovery results.

Functional impact of CNVRs
The expression of genes can be altered by CNVs. Dele-
tions and duplications of a part of and/or complete gene
can disrupt the gene expression and can potentially lead
to changes in various phenotypes [34]. Therefore, identi-
fication CNVRs that coincide with genes can be a pri-
mary step to assess their functional impact. To achieve
this, we explored CNVRs found based on ARS-UCD1.2
further. The overlap of CNVRs with Ensembl annotated
genes were analysed, and among the 1755 CNVRs, 912

Fig. 1 Circular map of autosomal copy number variant regions and their population genetics features. From the outside to the inside of the external
circle: chromosome name; genomic location (in Mb); histogram representing density of deletion CNVRs in 5Mb bin (pink); histogram representing density
of duplication CNVRs in 5Mb bin (purple); histogram representing density of complex CNVRs in 5Mb bin (blue); number of BovineHD BeadChip array SNPs
in 5Mb bin (dark grey); histogram representing density of segmental duplications in 5Mb bin (light grey)
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(52%) are genic and 843 (48%) are intergenic. Genic
CNVRs overlap with 1739 genes out of 27,570 Ensembl
annotated genes (6.3%) and 2936 out of 43,949 gene tran-
scripts (6.7%). Among the 1739 genes that overlap with
CNVRs, 957 (55%) are completely within the CNVRs and
the rest (45%) are partially affected (genic features were in-
side the CNVRs). The following functional impact cat-
egories were assigned to each CNVR depending on types
of overlap between CNVRs and genes (numbers in the
brackets indicate number of CNVRs and genes respect-
ively for each category; see materials and methods for de-
tailed explanation for the classification): 1) intergenic (843
CNVRs; 0 genes), 2) intronic (214 CNVRs; 234 genes), 3)
whole gene (253 CNVRs; 957 genes), 4) stop codon (147
CNVRs; 203 genes), 5) promoter regions (124 CNVRs;
187 genes), and 6) exonic (174 CNVRs; 165 genes). Then,
these functional categories were intersected with other
features of CNVRs such as types (deletion, duplication,
complex), MAF (common, intermediate, and rare; see
methods for detailed explanation), and the populations
(HOL and JER; Fig. 2). The functional consequences of

CNVRs differ depending on the type of CNVRs: Complex
CNVRs were skewed towards genic regions (68% are
genic), whereas deletions and duplication CNVRs were
biased away from genic regions (51–52% are genic), and
the difference is significant (chi-square test P < 10− 13).
Also, we observed that MAF have impact on different
types of overlap between genes and CNVRs. Rare CNVRs
tend to be genic more often (60%), whereas common
CNVRs have less overlap compared to it (48%; chi-square
test P < 0.002). However, when seen it separately for dele-
tion CNVRs and duplication CNVRs, we saw a different
pattern. Common deletion CNVRs are more often inter-
genic (61%), yet the common duplication CNVRs are
often genic (68%). When CNVRs between HOL and JER
are compared, common JER CNVRs are more often genic
(51%), than common HOL CNVRs (44%). Subsequently,
we performed permutation tests on overlaps between
CNVRs and autosomal genes, to test whether the overlap
is significantly higher than expected under a neutral sce-
nario. The results show that CNVRs overlap with auto-
somal genes more often than what is expected from

Fig. 2 Functional impact of CNVRs by type, frequency, and population. Functional impact of CNVRs were investigated by type, frequency, and
population. CNVRs were categorized into different types (deletion, duplication, and complex) and frequency (common: 0.05≤MAF in any population,
intermediate: 0.01≤MAF < 0.05, rare: MAF < 0.01 in all populations). The numbers in the brackets indicate the number of CNVRs in each category
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permutation tests with random genomic regions (P <
0.001). Nextly, gene ontology analyses were performed to
understand the functions of the genes that overlap with
CNVRs. Genes overlapping deletions, duplications, and
complex CNVRs were tested for GO enrichment as separ-
ate classes (Table 1). Among the findings, genes overlap-
ping with the complex CNVRs (n = 407) show a
pronounced enrichment in response to stimulus (GO:
0050896; FDR = 1.8 X 10− 6), immune response (GO:
0006955; FDR = 1.9 X 10− 3), and detection of stimulus in-
volved in sensory perception (GO:0050906; FDR = 1.1 X
10− 2). These findings are similar to the findings from earl-
ier cattle CNV studies [30, 33].

Population genetics of CNVRs
Population genetics analyses provide a framework to
understand genetic variation seen in specific (cattle)
populations. Understanding general properties of genetic
variants is important, but further characterization of spe-
cific variants of interest can bring insights in recent
adaptation and genome biology [35]. Although SNPs
have been extensively used in characterizing various cat-
tle populations [36], we explored the population genetic
properties of CNVRs.
We focused our analyses on HOL (n = 315) and JER

(n = 107) animals, derived from distinct origins and with
a different breed formation history [37]. First, we coded
the genotypes of our bi-allelic CNVRs (n = 1154 for
HOL; n = 700 for JER) as “+/+”, “+/−”, and “−/−”. The
CNVR allele frequency was classified as rare (MAF <

0.01), intermediate (0.01 ≤MAF < 0.05) and common
(0.05 ≤MAF). In HOL, the allele frequency ranged from
0.002 to 0.29, and 5, 13, and 82% of the 1154 CNVRs
were categorized as common, intermediate, and rare
CNVRs, respectively. For the JER population, allele fre-
quency ranged from 0.005 to 0.37, and 11, 20, and 69%
of the 700 CNVRs were categorized as common, inter-
mediate, and rare CNVRs, respectively.
We constructed site frequency spectra of CNVRs for

HOL and JER separately (Fig. 3). For both populations,
we observed that deletions and duplications have slightly
different spectra, where deletions were more skewed to-
wards rare CNVs, whereas duplications were observed
relatively more frequent than deletions in each MAF
class. We further explored the allele frequencies by ap-
plying Wright’s fixation index (Fst) [38] to characterize
population structure [39] and detect loci that underwent
selection [40], as done in Yali Xue et al. [41]. Given that
HOL and JER have distinctive origins and breed forma-
tion history [37], we hypothesized that Fst on their
CNVRs can reveal regions that underwent recent popu-
lation differentiation. The Fst distribution followed an
exponential decay pattern, as expected, underlining that
majority of CNVRs have values close to 0, whereas only
a few outliers (~ 3%) that are potentially under positive
selection reached high Fst values (Additional file 2:
Figure S3). We identified 32 highly diverged CNVRs
(Fst > mean + 3 S.D.) of which 15 are genic and 17 are
intergenic (Fig. 4 and Additional file 2: Table S6).
Among the 17 intergenic CNVRs with high population

Table 1 Go enrichment results for different types of CNVR

Type of CNVRs GO Term Size Count Expected
count

Enrichment
value

P-value
(FDR corrected)

DEL Chemical synaptic transmission 278 22 8.3 2.65 0.126

DEL Anterograde trans-synaptic signalling 278 22 8.3 2.65 0.063

DEL Trans-synaptic signalling 279 22 8.33 2.64 0.044

DEL Synaptic signalling 279 22 8.33 2.64 0.033

DUP Positive regulation of adaptive immune response 32 6 0.44 13.76 0.019

DUP Positive regulation of immune response 57 7 0.78 9.01 0.021

DUP Positive regulation of response to stimulus 75 7 1.02 6.85 0.053

DUP Adaptive immune response 108 9 1.47 6.11 0.018

DUP Immune effector process 104 8 1.42 5.64 0.049

COMP Response to stimulus 1718 45 16.63 2.71 0.000

COMP Immune response 298 14 2.88 4.85 0.002

COMP Detection of stimulus involved in sensory perception 477 16 4.62 3.47 0.011

COMP B cell activation 17 4 0.16 24.31 0.013

COMP Detection of chemical stimulus involved in sensory perception 477 16 4.62 3.47 0.014

COMP Detection of stimulus 501 16 4.85 3.3 0.015

COMP Immune system process 322 12 3.12 3.85 0.025

COMP B cell receptor signalling pathway 23 4 0.22 17.97 0.027
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differentiation (Fst = 0.12–0.44), 7 CNVRs had regulatory
elements such as lncRNA and snoRNA within ~ 300 kb
from the CNVRs. Among the genic CNVRs, CNVR 380
(Fst = 0.21; duplication), which is more frequent in JER
(MAF = 0.24) than in HOL (MAF = 0.04), contains three
genes, CLEC5A [42], TAR2R38 [43], and MGAM. The
known functions of these genes include abnormal eating
behaviour, bitter taste perception, and the synthesis of
maltase glucoamylase, a starch digestive enzyme. Fur-
thermore, CNVR 826, 1312, and 1458 overlap with genes
that are known to regulate body size: LRRC49 [44],
CA5A [45], and ADAMTS17 [46–48], respectively. Inter-
estingly, these CNVRs are duplications and have a high
allele frequency in JER (MAF = 0.08–0.37), and a low al-
lele frequency in HOL (MAF = 0–0.06).
Subsequently, we calculated Vst statistic, which is a

widely used statistic in CNV studies [23, 49]. This statis-
tic is analogous to Fst, but using LRR values instead of
allele frequencies [28]. The Vst statistic ranges between
0 and 1, where 1 indicates population differentiation. To
strengthen our confidence in the high Fst outlier regions
we compared Fst and Vst statistics. Firstly, we calculated
Vst for 1464 CNVRs where Fst values are available. The
Pearson correlation coefficient between Fst and Vst was
low (0.22), and many selection candidate CNVRs that
were found privately in Vst were either driven by rare
CNVRs (less than 5 copies), or with a small number of
SNPs (the numbers of average SNPs for top 20 Vst
CNVRs and Fst CNVRs was 3.7 and 20.7 respectively;

Additional file 2: Figure S4 A-C). To correct for this, we
removed CNVRs with less than 5 CNVs are called from
either HOL or JER population (n = 1154 CNVRs). We ob-
served that this filtering removed outlier CNVRs that were
private to Vst, that were consisting of a small number of
SNPs. After this filter, the 32 high Fst CNVRs were kept
and the correlation coefficient was 0.52 (n = 310 CNVRs;
Additional file 2: Figure S4 D-F). Also, CNVR 1458 which
overlaps with ADAMTS17, showed a high Vst of 0.17
(mean Vst mean = 0.03, Vst S.D. = 0.04). Furthermore,
when the copy number filter was applied to both popula-
tions, and therefore both HOL and JER had more than five
copies of CNVs at each CNVRs (n = 44), the correlation
coefficient increased to 0.81 (Additional file 2: Figure S5).

Linkage disequilibrium of CNVRs
There has been a large number of genome-wide associa-
tions (GWAS) performed using SNPs in livestock spe-
cies, aiming to unravel genomic regions related to
phenotypes of interest [50]. This approach exploits a
large number of tagging SNPs that are in sufficient LD
with causal variants. Under this framework, genetic vari-
ation caused by the causal variants is captured by the
tagging SNPs, without knowing the exact causal variants.
Thus, the genome-wide level of LD between SNP
markers and causal variants is an important foundation
of GWAS [51]. We showed that CNVRs overlap with
genes more often than would be expected by chance,
and that CNVs are thus likely to have an influence on

Fig. 3 Site frequency spectrum of CNVRs. Site frequency spectra of CNVRs in HOL (a) and JER (b) population. Deletion CNVRs (pink) and duplication
CNVRs (blue) are shown separately. Deletions tend to be enriched for rare CNVRs, whereas duplications tend to be enriched in common variants

Fig. 4 Manhattan plot for population fixation index (Fst) of CNVRs between HOL and JER. Population fixation index (Fst) of bi-allelic CNVRs between HOL and JER
is shown in a Manhattan plot. Seventeen intergenic CNVRs (magenta) and 15 genic CNVRs (dark blue) were above the suggestive threshold (0.12; Fst >mean+ 3
S.D.). CNVRs containing candidate genes are marked with arrows
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phenotypes. The important follow-up question is
whether the variations from CNVs are already captured
by SNPs typed on commercial arrays, which are com-
monly used in livestock breeding programmes. We,
therefore investigated pairwise LD between bi-allelic
CNVRs and neighbouring SNPs on the BovineHD SNP
chip. We observed generally low r2, close to zero, re-
gardless of the distance between CNVRs and SNPs (re-
sults not shown). Subsequently, we categorized CNVRs
by their allele frequency and type to investigate whether
these factors influence the degree of LD. Common
CNVRs have markedly higher LD (r2 = ~ 0.1 for deletion
CNVRs at ~ 10 kb distance), compared to other CNVR
categories (Additional file 2: Figure S6). As common
CNVRs had higher LD than the rest, we compared the
LD of common CNVRs with the LD of SNPs in the same
MAF range (0.05 ≤MAF < 0.29 for HOL and 0.05 ≤
MAF < 0.37 for JER). We observed distinctive difference
in LD decay patterns between the CNVR-SNP pairs and
SNP-SNP pairs (Fig. 5a and b). SNP-SNP LD follows a
typical LD decay pattern where strong LD is observed
with SNPs in vicinity and gradual decline as the distance
increases, whereas CNVR-SNP LD does not follow this
pattern. Also, compared to the CNVR-SNP LD (r2 = ~
0.1 at ~ 10 kb distance), the frequency matching SNP-
SNP LD was stronger (r2 = ~ 0.5 at ~ 10 kb distance).
Afterwards, we used another metric, taggability, to assess
LD. Taggability is the maximum r2 among the r2 values
that are obtained from a variant of interest and SNP
pairs. We calculated taggability for SNP-SNP pairs and
CNVR-SNP pairs. For the CNVR-SNP pairs, we consid-
ered common deletion CNVRs only, as they showed the
highest LD in the previous analyses. Then, mean tagg-
ability for each MAF class (bin size = 0.05) was plotted
(Fig. 5c and d). The mean taggability of common dele-
tion CNVRs is low (< 0.1) when MAF is below 0.05, and
it increases as MAF increases. The SNP mean taggability
follows the same pattern as shown in common deletion

CNVRs. However, in spite of the similar pattern, com-
mon deletion CNVRs taggability is below the level of the
SNP taggability. This shows that there is a gap in SNP
taggability and CNVR taggability.

Interesting CNVR
A large number of QTLs has been identified from various
GWAS on a wide range of traits. As most GWAS have
been done using SNP markers, chances are that genetic
variation caused by CNVs could have been captured by
QTLs that are in a high-to-perfect LD (r2 = ~ 1) with the
CNVs. Hence, inspecting CNVRs that are in high LD with
QTLs is a preliminary step to identify potentially causal
CNVs. To identify candidate causal CNVs, we subset the
CNVR-QTL pairs, from the total CNVR-SNP pairs, based
on the QTL information from the animal QTLdb [52].
We then subset the CNVR-QTL pairs further based on r2,
and kept high LD CNVR-QTL pairs only.
In total ~ 100,000 bovine QTLs for various traits have

been reported in the animal QTL database, and we identi-
fied 2519 QTLs to be paired with 679 CNVRs within a
distance of 100 kb in the HOL population. Among these,
CNVR 547 (BTA6:84,395,081-84,428,819, deletion, MAF =
0.24) had the highest LD with 13 QTLs (average r2 = 0.59;
max r2 = 0.74). The 13 QTLs were associated with casein
proteins, which constitute four out of six bovine milk pro-
teins. The four genes coding for the casein proteins are
located in the so called casein cluster, which is ~ 1Mb dis-
tant region from CNVR 547 (BTA6:85.4–85.6Mb). Given
the degree of LD for CNVR 547 and the QTLs that is
lower than perfect linkage, it is unlikely that the CNVR
547 is the causal variant for the casein protein traits.
Nevertheless, CNVR 547 was an interesting variant as it
was private to in HOL population with high MAF (0.24),
and was close to the casein cluster that are highly relevant
for dairy production.
Assuming that CNVR 547 is not the causal variant for

the casein traits, a possible explanation for the high

Fig. 5 Linkage disequilibrium properties of CNVRs. Average strength of linkage disequilibrium (mean r2) as a function of distance from a SNP is
shown for HOL (a) and JER (b). Common CNVRs (0.05≤MAF) were used for the calculation; common deletion CNVRs (magenta) and common
duplication CNVRs (blue) are shown together with common SNPs (black) for comparison. Taggability for HOL (c) and JER (d) was expressed as
ratio of variants in high LD (r2 > 0.8) with SNPs within 100 kb distance. Common deletion CNVRs (magenta) and common SNPs (black) are shown
in the figure. Illumina BovineHD Genotyping BeadChip SNP set was used for the LD calculation
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MAF can be selective sweeps. Selective sweeps increase
allele frequencies of neutral variants that are in LD with
the selection target variant, which in this case probably
is the casein cluster. Two studies of Holstein populations
support this hypothesis. Firstly, one selective sweep
study in a German Holstein population revealed an ex-
tended range of LD in haplotypes that contain the casein
cluster [53]. Secondly, GWA study on casein traits in a
Danish Holstein population identified a broad GWAS
peak (BTA6:60–100Mb) that contains the casein cluster
[54]. The broad GWAS peak also indicate high LD in
this regions, that matched with the findings from
Qanbari et al. [53]
Another explanation for the high MAF of CNVR 547

might be the direct selection on the variant itself. For in-
stance, CNVR 547 overlaps with the UGT2B4 gene,
which is involved in the detoxification pathway of ex-
ogenous compounds [55]. To see whether CNVR 547
overlaps with regulatory elements, besides overlapping
with the upstream region of the UGT2B4 gene directly,
we called promoters and enhancers from ChipSeq data
from Villar et al. [56]. CNVR 547 overlaps not only with
the upstream (a start codon and the first two exons), but
also with the enhancer of UGT2B4 (BTA6: 84,413,246-
84,413,740), and is thus likely to disrupt the function of
the UGT2B4 gene. To summarize, our analyses imply
that a high MAF of CNVR 547 might be due the select-
ive sweep in the casein cluster or the consequence of
direct selection on CNVR 547 itself due to the functional
impact of the overlap with UGT2B4 and its enhancer.
Nonetheless, we cannot exclude drift as a possible driver
for the high allele frequency of the CNVR 547.

Discussion
In this study, we discovered CNVs using bovine high
density SNP array data. Using CNVRs that are con-
structed using the CNVs, we reported the functional im-
pact and population genetic features of the CNVRs.
They are further discussed below.

CNV discovery in the genome build ARS-UCD1.2
We observed different CNV discovery results between
UMD3.1 and ARD-UCD1.2. The different results were
to be expected, given the different sequencing platforms
used for the assemblies. Long-read sequencing platforms
are shown to perform better in retrieving repeat regions,
which is considered to be challenging in short-read se-
quencing [57]. Among others, the most intriguing differ-
ence was observed for the BTA12:70–77MB region.
Based on the changes in BovineHD SNPs between
UMD3.1 and ARS-UCD1.2, we postulated that the two
genomes assemblies differ in this regions largely. Subse-
quently, the changes in the genome assemblies led to
different CNV discovery results. We, then, further

postulated that this region (BTA12:70-77Mb in UMD
3.1) might contain repeated sequences, rather than the
reported CNV, for two reasons. Firstly, the SNP density
in this region is a quarter of the genome-wide average
SNP density in UMD3.1 (71 SNPs/Mb and 292 SNPs/
Mb, respectively; Additional file 2: Figure S2). SNP
probes in repeat regions can reduce specificity of
hybridization, and hence are often filtered out during
SNP probe selection [58–60], which can explain why
some regions show a sharp decrease in SNP density. Sec-
ondly, SNP probes in segmental duplications (sequence
identity > 90%) can induce confounded deletion calls
due to cross-hybridization of paralogous sequences [61].
Our data set based on UMD3.1 was indeed enriched for
a large number of deletion calls in this region. We re-
gard this large difference as evidence underlining the im-
portance of the quality of the reference genomes and the
impact this has on CNV calling results.

Functional impact of CNVRs
In our functional impact analyses, we showed that the
overlap between genes and CNVRs is higher than the
overlap in a neutral scenario. This finding is in line with
human and rat CNV studies, which showed that the
overlap between CNVs and genes is significantly higher
than expected by chance [62–64]. These studies were
based on medium-to-large size human CNVs, and rat
CNVs were found from exome arrays (CNV length
ranged between 5 and 256 kb). However, more recent
studies, based on a finer resolution of CNVs, concluded
that CNVs are biased away from genes and functional el-
ements [5, 65–67].
Also, we observed that MAF have impact on different

types of overlap between genes and CNVRs. In our find-
ings, common deletion CNVRs were biased away from
the genic regions, yet the common duplication CNVRs
were skewed toward the genic part. This was contradic-
ting with findings from another study, which showed
both common deletions and duplications are skewed
away from genic part [65].
We assume that these conflicting findings might arise

from a curation of SNP array based CNVs in our dataset,
which is affected by an ascertainment bias. An ascertain-
ment bias of SNPs in commercial arrays can introduce a
two-fold bias in CNV discovery. Firstly, the SNP density
of a given array will constrain the size of CNVs that can
be discovered. Secondly, SNP probes are designed such
that complex regions, such as segmental duplications
(SD), are under-represented [61, 68]. The SNP density of
BovineHD BeadChip array in unique regions is 292
probes/Mb, whereas it drops to 95 probes/Mb in SD re-
gions, showing a 67.5% reduction. Based on this, we
speculate that the uneven genome-wide SNP coverage
might introduce a systematic bias in CNV discovery.
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Taken together, the studies that focused on mid-sized
CNVs [62–64] are in line with our findings, whereas
studies based on tiling oligonucleotide microarrays [65]
and whole genome sequencing data [5, 66], which can
provide rather complete genome-wide coverage with a
various size range of CNVs [4], show different results.
Furthermore, another layer of bias in CNV discovery

using SNP array is that discovery of duplication is less
sensitive than that of deletions. Consequently, most
small CNVs are overwhelmingly deletions, whereas du-
plications usually are discovered based on relatively large
number of SNPs than deletion, which makes duplica-
tions longer than deletions [4]. Indeed, in our CNV
discovery, we found two folds more deletions than dupli-
cations (9171 vs. 4101), and the mean length of duplica-
tion was longer (44.2 kb vs 74.6 kb). This deletion-
duplication bias might explain why common duplication
CNVRs in our dataset are more likely to affect genic re-
gion compared to the rare duplication CNVRs, whereas
it was the opposite in a study mentioned above [65].
The need to re-evaluate the functional impact of

CNVs, as CNV detection resolution became finer, along
with the advancement in assay technologies and detec-
tion algorithms, was already pointed out [68]. Moreover,
a recent study exploiting long-read sequencing data
detected 237 and 34% more insertions and deletions, re-
spectively, compared to known variants detected from
short-read sequencing data [69]. Taken together, the
CNVs discovered in our dataset (> 1 kb) were shown to
be biased towards genic regions. However, we stress the
need of re-visiting CNVs with finer resolution and un-
biased genome-wide coverage, to fully comprehend their
functional consequences in cattle genomes.

Population genetics of CNVRs
We explored the population genetics of CNVRs by
examining the site frequency spectra and Fst. The fre-
quency spectra differed for deletion CNVRs and duplica-
tion CNVRs. Given the skewed number of rare deletions
and common duplications, we corroborate that deletions
might be under stronger purifying selection. Neverthe-
less, as explained earlier, inherent bias in CNVs from
SNP array (deletion discovery is more sensitive than du-
plication discovery), we cannot entirely exclude a possi-
bility that the differed frequency spectra might be an
artefact.
Furthermore, we used Fst to identify CNVRs that are

highly diverged. Among the 32 CNVRs that pass the
threshold, of which 7 intergenic CNVRs had regulatory
elements in neighbouring regions. This finding under-
lines that potential recent positive selection probably
acted on regulatory elements. Among the 17 genic
CNVRs, we identified CNVRs that overlap with inter-
esting candidate genes. The CNVR 380 overlaps with

CLEC5A, TAR2R38 and MGAM gene that are related
to taste perception and a digestion enzyme, maltase.
One selective sweep study revealed that a region con-
taining TAR2R38 and MGAM is highly diverged be-
tween dogs and wolves. Dogs produce a longer form of
maltase than wolves, due to a 2 bp deletion that dis-
rupts the stop codon, and the same mutation was also
seen in herbivore species (rabbits and cows) [70]. The
longer form of maltase might be the consequence of
adaptive evolution in response to a starch-rich diet dur-
ing dog domestication. Given that the partial duplica-
tion of MGAM can lead to increased length of maltase,
a high duplication frequency seen in the JER population
(MAF = 0.24) might be a hint that feed related adaptive
evolution occurred in the JER population. Also, we
identified genes related to body size (LRRC49 in CNVR
826, CA5A in CNVR 1312, and ADAMTS17 in CNVR
1458). Among these genes, ADAMTS17 has been re-
ported as one of the height determining genes in vari-
ous species, such as cattle, horse, and human [46–48].
Also, a deletion variant overlapping with ADAMTS17
was shown to be highly diverged between HOL and JER
in a previous study [66]. Given that CNVR 1452 we
found is a duplication locus, it might be a different mu-
tation than the one found by Mesbah-Uddin et al. [66].
Nonetheless, our and the previous findings revealed
that CNVs overlapping with ADAMTS17 gene to be
diverged between HOL and JER. This supports
ADAMTS17 gene as a candidate gene that can explain
the phenotypic differences (i.e. body size) between the
two breeds.
Additionally, we used Vst analyses to confirm the se-

lection candidate CNVRs based on Fst analyses. The
preliminary results from Vst statistic from 1464 bialleleic
CNVRs showed that extreme Vst could be obtained
from very rare CNVs (less than 5 CNVs observed) and
short-sized variants. We consider correcting for these
factors in analysing Vst statistic is crucial, as it could re-
duce falsely derived selection signal from false positive
singletons [24]. We have seen that overall concordance
between Vst and Fst was 0.52, when rare CNVRs (num-
ber of CNVs < 5) were filtered out in either of the popu-
lations. Furthermore, when rare CNVs were filtered for
both of the populations, which means CNVRs were
present in both populations with more than 5 copies,
the correlation coefficient was 0.81. This number is
slightly lower than 0.9, which was shown in human
CNV study [49]. These findings underline high concord-
ance of Fst and Vst when CNVRs are present in both
populations with sufficient MAF. Thus, although we
could obtain Vst confirmation for CNVR 1458, which
overlaps with ADAMTA17, we could not obtain such
confirmation for CNVRs that are at low MAF in either
of the two populations.
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Linkage disequilibrium of CNVRs
To summarize our findings on LD properties of CNVRs,
CNVRs are generally in low LD with SNPs, and CNVR
taggability is lower than SNP taggability, which indicates
a taggability gap. However, findings on the taggability
are conflicting. Although some studies reported high
CNV taggability [65, 68, 71–73], as high as SNP-SNP
taggability, some studies reported low CNV taggability
[28, 61, 68, 74, 75] as shown in our results. The taggabil-
ity gap can be explained by three factors. Firstly, LD is
affected by allele frequency. High LD can be obtained
when the allele frequencies of the two loci match [76].
Van Binsbergen et al. (2014) empirically showed that
SNP-SNP pairs with small MAF difference (< 0.05) had
high predicted LD (r2 > 0.8) using WGS data [77]. In our
dataset, the majority of CNVRs is at low allele frequency
(88 and 95% of CNVRs in JER and HOL are at MAF ≤
0.05), whereas BovineHD SNPs are biased away from
rare MAF (10% of SNPs are at MAF ≤ 0.05). Thus, the
allele frequencies of CNVRs and SNPs were largely un-
matched, which can be explain the low LD. Secondly,
deletions are tagged better than duplications. Even stud-
ies that found high taggability for common deletions,
only found relatively poor taggability for duplications [5,
65, 71]. This might be due to dispersal duplications [78],
which relocate the duplicated segment of DNA in a dif-
ferent haplotype background than the “parental locus”
[79]. Thus, the LD of duplications might be lower than
that of deletions. Lastly, local SNP density can influence
the level of LD. Redon et al. [28] and Locke et al. [75]
suggested that a paucity of SNPs in repeat-rich regions
to serve as potential tags can be an explanation for the
taggability gap. Indeed, Cooper et al. [61] and McCarroll
et al. [68] used different SNP sets in their CNV LD ana-
lyses. The first SNP set was HapMap phase 2 SNP set,
which is known to cover the whole genome uniformly
(~ 3.1 M probes). Next to this, they used SNP sets ob-
tained from commercial SNP arrays, which have uneven
SNP density along the genome (550 K ~ 1M probes).
They found that ~ 80% of CNVs are in high LD (r2 > 0.8)
when HapMap phase 2 SNP set was used, whereas ~
50% of CNVs were in high LD with the commercial
array SNP sets.
Based on our and previous findings, we postulate that

LD between common deletion CNVRs and SNPs is not
necessarily low. However, we could not obtain high LD
with our CNVRs, because our CNVRs were skewed to-
wards rare MAF. The MAF difference between CNVRs
and SNPs can explain lower LD shown in rare CNVRs,
compared to common CNVRs. However, as shown in
another study [24], singletons found from PennCNV
software could be false positives, which could lead to
low LD as well. Thus, we could not exclude the possibil-
ity that the low LD in rare CNVRs was partly caused by

false positive singleton CNVs driving low LD. Also,
BovineHD SNPs were underrepresented in SD regions,
where SNP probe design is difficult due to high se-
quence identity. Deprivation of SNPs in these regions
probably led to lack of markers that can serve as tagging
markers. Follow-up research using a SNP set that uni-
formly covers the whole bovine genome might unravel
more complete LD properties of CNVs.

Interesting CNVR
Furthermore, in search of CNVRs that are causal vari-
ants of traits, we investigated CNVRs that are in high
LD with known QTLs. CNVR 547 was shown to be in
high LD with casein QTLs, although it was below perfect
linkage, thus unlikely to be the causal variant. However,
this opened up an interesting avenue to see the CNVR
547 in light of LD and selection. We proposed three pos-
sible explanation for CNVR 547 to reach high MAF:1)
selective sweeps, 2) direct selection on CNVR 547 that
affects the enhancer of UGT2B4 gene, and 3) drift. Al-
though we could not unravel how CNVR 547 has
reached high MAF in the current study, we deem it as
an interesting case, which a CNVR can be understood in
population genetics theories, such as selective sweeps
and drift. Also, we had a limited number of CNVRs
obtaining high LD with QTLs. This was partially due to
because most CNVRs were rare, thus predisposed to
have low LD. Therefore, re-visiting CNVR-QTL pairs,
based on CNVs that are detected from a different plat-
form (i.e. WGS) might reveal more candidate CNVs that
might be the underlying causal variants of traits.

Conclusions
In this study, we discovered CNVs in bovine genomes
and explored their functional impact and population
genetics features. Using commercial high-density SNP
arrays, we identified 14,272 CNVs, that built 1755
CNVRs (cover ~ 2.8% of the bovine autosomes), and the
CNVRs were further used as genetic loci this study. In
the functional impact analyses, we showed that CNVRs
are likely to have functional impact based on their over-
lap with genes. Also, we investigated CNVRs in light of
population genetics. We identified 32 highly differenti-
ated CNVRs between HOL and JER based on Fst values.
Two of the highly diverged CNVRs overlapped with the
ADAMTS17 gene and MGAM gene, which are involved
in body size and starch digestion enzyme, respectively.
In the LD analyses, CNVR-SNP LD was lower than
SNP-SNP LD, mainly due to low MAF in CNVRs and
uneven SNP density.
These findings together impose several implications

for future CNV studies. The first implication is about
the functional impact of CNVs. SNP based GWAS is a
commonly used design to find functional SNPs that are
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associated with traits. Given the low CNVR-SNP LD,
SNP based GWAS are unlikely to detect CNVRs with
functional impact. Consequently, GWA studies that as-
sociate CNVRs and traits directly can add valuable in-
sights into understanding economically important traits.
Secondly, the low CNVR-SNP LD implies that the ma-
jority of CNVRs in our study is probably not captured in
the current genomic prediction, where SNP markers are
used. Thus, we underline the importance of follow-up
studies on investigating methods to include CNVs in
genomic prediction and evaluating the usefulness of
CNVs in improving the accuracy of genomic prediction.

Methods
Animal samples and ethics
The study population consisted of two dairy cattle
breeds, 331 Holstein Friesian (HOL), 115 Jersey (JER), as
well as 29 crossbreds of HOL and JER. Among these, 18
HOL and 17 JER animals were cows and the rest were
bulls. All samples were genotyped using an Illumina
BovineHD Genotyping BeadChip (Illumina, San Diego,
CA, USA), which contains 777,692 SNPs. All of these ge-
notypes are owned by commercial dairy breeding com-
pany CRV (Arnhem, the Netherlands). The Genotype
data was provided by CRV.

Identification of CNVs
We identified CNVs using PennCNV software [27]
which exploits a Hidden Markov Model algorithm. For
each individual, log R ratio (LRR) and B allele frequency
(BAF) per SNP were inferred using the Illumina Genome
Studio software package (Illumina, San Diego, CA,
USA). Autosomal SNPs of BovineHD Genotyping Bead-
Chip (n = 735,965; Illumina, San Diego, CA, USA) were
used, and their positions were based on the genome as-
sembly ARS-UCD1.2. We called CNVs in 29 Bovine au-
tosomes. The waviness in LRR values caused by GC
contents were adjusted afterwards. We chose PennCNV
software, together with BovineHD Genotyping Bead-
Chip, as this method showed high confirmation based
on qPCR validation in a previous study (91.7% for CNVs
found in multiple animals and 40% for singleton CNVs)
[24]. After the initial CNV detection, poor quality indi-
viduals (n = 13) were filtered out with the default criteria
suggested by the developer of the PennCNV software
(LRR standard deviation > 0.30, BAF standard deviation
> 0.001 and Waviness factor > 0.05). Afterwards, the dis-
tribution of the number of CNVs per individual was
inspected using QQ plots (Additional file 2: Figure S7).
The distribution was continuous until 100, and individ-
uals with more than 100 CNVs largely deviated from the
distribution (n = 10). The same filter on the distribution
of the total length of CNVs per individual was applied
and identified outlier samples (n = 11). These two filter

steps identified 11 outlier individuals (among the 11 out-
lier animals identified in the second filter, 10 were iden-
tified as outliers in the first filter), and subsequently
these individuals were removed to prevent the introduc-
tion of a large number of possible false positive CNVs.
Lastly, we merged two adjacent CNVs that have the
same copy number state, when the gap between the two
CNVs was less than 10% of the total length, using the
clean_cnv.pl script provided by PennCNV software,
which resulted in 451 individuals with 14,272 CNVs in
the combined dataset of the two breeds.

Constructing CNVRs
The CNVs were aggregated into CNV regions (CNVR)
based on 1 bp overlap, following Redon et al. (2006)
[28]. CNV regions that exclusively contain deletions or
duplications were classified as deletion CNVRs and du-
plication CNVRs and treated as bi-allelic loci. In case of
CNVRs that consisted of both deletions and duplica-
tions, we defined them as complex CNVRs. The CNVRs
were compared together with SD and SNP density in.
The SDs detected by Feng et al. [80] based on UMD3.1
were remapped to ARS-UCD1.2 using NCBI Genome
Remapping Service. Afterwards, the density of SDs and
SNPs were calculate for 5Mb bin using BEDtools [81].
Circos software [82] was used to visualize CNVRs, SD
density, and SNP density. The length of CNVRs and SD
was log transformed for the circular plot.

Assessment of CNV discovery results
We repeated the same CNV calling steps using 735,293
autosomal SNPs based on the genome assembly UMD3.1.
After the initial CNV detection, the same quality control
filters were applied as explained above. The default criteria
filtered out 18 individuals, and another 11 outliers de-
tected from QQ plots of the number of CNV per individ-
ual and the total length of CNV per individual were
removed (Additional file 2: Figure S7). Subsequently, split
CNVs that have small gaps in between were merged as de-
scribed for ARS-UCD1.2. From the 447 individuals that
passed the quality control criteria, 24,264 CNVs were
called, and 1866 CNVRs were constructed as explained
above. Finally, we compared the CNVs and CNVRs be-
tween the two different genome assemblies, UMD3.1 and
ARS-UCD1.2, in terms of number and length.

Functional impact of CNVRs
The CNVRs were overlapped with gene annotations
using Ensembl Variant Effect Predictor [83] (Cow release
95) to explore their functional impact. Subsequently,
CNVRs were classified depending on their functional
impact, as done in Conrad et al. [65]. First, we identified
intergenic CNVRs, which did not overlap with genes,
and genic CNVRs which overlapped with genes. Among
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the genic CNVRs, ones containing a complete gene or
genes were classified as “whole gene”. Genic CNVRs that
overlapped with some part of genes were further classi-
fied as “intronic”, when CNVRs overlapped with introns
exclusively; as “stop codon”, when CNVRs overlapped
with stop codon; as “promoter region”, when CNVRs in-
cluded promoter region (500 bp from transcription start
site). The remaining CNVRs that overlapped with an
exon or exon(s) and intron(s) were considered as “ex-
onic”. In the case of CNVRs overlapping with more than
one gene, and thus having more than one category
assigned, (i.e. that contains a complete gene and also a
promoter region of another gene), we assigned one
unique category in the following order: 1) whole gene, 2)
stop codon, 3) promoter region. With the steps ex-
plained above, each CNVR was assigned a unique cat-
egory. Then, we investigated whether the functional
impact classes were influenced by type of CNVRs (1125
deletion, 513 duplication, 117 complex CNVRs). Also, the
influence of allele frequency on the functional impact clas-
ses were analysed and the allele frequency classes were de-
fined as common (MAF ≥ 0.05 in any population, 56
CNVRs), intermediate (0.1 >MAF ≥ 0.01, 267 CNVRs),
and rare (MAF < 0.01 in HOL and JER, 115 CNVRs). To
see whether the functional impact category differs signifi-
cantly depending on type of CNVRs and MAF classes,
Pearson’s Chi-square tests were performed. Afterwards,
CNVRs were classified depending and type and allele fre-
quency in HOL and JER separately and the overlap with
functional classes were analysed. Afterwards, we per-
formed permutation tests to understand whether the ob-
served overlap between CNVRs and a genomic feature is
high or low, compared to random genomic regions. The
permutation tests were performed with the R package
“regioneR” [84]. We generated a random set of regions in
the genome, with the same number and length of genomic
features, and did this 1000 times. For each permutation,
the number of overlaps between random CNVRs and the
genomic features was recorded and then used to estimate
the expected number of observations. The observed and
the expected numbers of overlaps were then tested for sig-
nificance (z-test). Subsequently, the PANTHER classifica-
tion system [85] was used to perform gene ontology
enrichment tests for the genes that overlapped with
CNVRs. All known bovine genes (Ensembl release 95)
were used as a reference set to test whether the CNVR
overlapping genes were enriched for or deprived of a spe-
cific biological process, cellular composition, and molecu-
lar function, with False Discovery Rate correction (α <
0.05) for multiple tests.

Population genetics of CNVRs
We explored bi-allelic CNVRs in HOL and JER in light
of population genetics. We genotyped bi-allelic CNVRs

in HOL and JER into “+/+”, “+/−”, and “−/−”, following
McCarroll et al. [72]. These genotypes were used to cal-
culate the allele frequency of each CNVR locus. Subse-
quently, we constructed site frequency spectra in HOL
and JER to understand selection pressure on CNVRs.
Wright’s population differentiation index (Fst) [38] was
used to investigate recent divergent selection in HOL
and JER populations. Fst was calculated for 1471 bi-
allelic CNVRs, using PLINK (version 1.9., http://pngu.
mgh.harvard.edu/purcell/plink/) [86].

Linkage disequilibrium of CNV
We estimated the degree of LD between bi-allelic CNVRs
and SNPs by calculating r2 in the JER and HOL popula-
tions, respectively. To have a reference, we also estimated
SNP-SNP LD, limited to SNPs with the same MAF range
as common CNVRs (0.05 <MAF < 0.30 for JER and
0.05 <MAF < 0.24 for HOL). The SNPs inside the CNVRs
were masked to prevent a bias introduced during the
phasing step, as done in Conrad et al. [65]. SNPs with low
minor allele frequency (MAF < 0.001), with low call rates
(< 90%), or with deviations from the Hardy–Weinberg
equilibrium (P < 1e− 9) were removed. For CNVRs, the
same filters were applied, except the call rate criteria.
Phasing was done with Shapeit [87] and the r2 values of
CNVR-SNP pairs within a 100 kb distance were calculated
in PLINK (version 1.9., http://pngu.mgh.harvard.edu/pur-
cell/plink/) [86]. Afterward, QTLs that were shown to be
significant in association studies were downloaded from
Animal QTLdb [52] (release 37) and intersected with the
CNVR-SNP pairs to see whether CNVRs are in high LD
with known QTLs. To overlap the CNVR 547 and func-
tional elements in bovine genomes, we used the data from
Villar et al. [56]. We downloaded the ChipSeq data and
aligned them to ARS-UCD1.2 using BWA-MEM (0.7.15)
[88], and called the enhancers and promoters as explained
in the original paper.
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