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Athermal Fracture of Elastic Networks:

How Rigidity Challenges the Unavoidable Size-Induced Brittleness

Simone Dussi,∗ Justin Tauber, Jasper van der Gucht
Physical Chemistry and Soft Matter, Wageningen University,

Stippeneng 4, 6708 WE, Wageningen, The Netherlands

By performing extensive simulations with unprecedentedly large system sizes, we unveil how
rigidity in�uences the fracture of disordered materials. We observe the largest damage in networks
with connectivity close to the isostatic point and when the rupture thresholds are small. However,
irrespectively of network and spring properties, a more brittle fracture is observed upon increasing
system size. Di�erently from most of the fracture descriptors, the maximum stress drop, a proxy for
brittleness, displays a universal non-monotonic dependence on system size. Based on this uncommon
trend it is possible to identify the characteristic system size L∗ at which brittleness kicks in. The
more the disorder in network connectivity or in spring thresholds, the larger L∗. Finally, we speculate
how this size-induced brittleness is in�uenced by thermal �uctuations.

Since the pioneering work of Gri�th on crack nucleation
in ordered materials with isolated defects [1], the last 30
years have witnessed a still-growing interest for fracture
occurring in intrinsically disordered materials [2�9]. The
fracture behavior of a material is intimately related to
its microscopic structure, especially when thermal �uc-
tuations are not relevant. How stress is (re)distributed
during deformation and after bond-breaking events deter-
mines the material mechanical response. Abruptness is
the hallmark of brittle fracture: the mechanical response
of a brittle material subjected to an increasing strain de-
formation suddenly vanishes after reaching a peak. This
is the macroscopic consequence of stress concentration in
the system that induces bond-breaking events and trig-
gers the nucleation of a crack that irremediably propa-
gates throughout the system. For (more) ductile systems,
such catastrophic breaking event is absent or postponed
much after the stress peak. As a consequence, the me-
chanical response of ductile materials persists after the
peak.
Biopolymer networks, such as collagen, are ubiquitous

examples of disordered structures, with a peculiarly low
connectivity that places these materials below the iso-
static point of mechanical stability [10]. At small de-
formation, these networks would not be rigid without
their �ber bending sti�ness, responsible for their small
linear modulus. However, exactly because of their sub-
isostaticity these materials show an extraordinary strain-
sti�ening, i.e. their modulus increases by orders of mag-
nitude when deformed above an onset strain. This me-
chanical response is a consequence of an athermal strain-
driven rigidity transition: beyond the onset strain, the
stretching of the bonds starts to control the network re-
sponse and is su�cient to rigidify the system [11�19]. In
fact, when deformed, these diluted elastic networks ex-
hibit a very heterogeneous stress distribution with emerg-
ing force chains [20�24] (see Fig. 1(a)), similarly to de-
formed granular and porous materials [25�28]. The ef-
fects of these heterogeneous stresses on fracture have
been only partially addressed.

It was recently argued that a continuous breakage and
formation of force chains in sub-isostatic networks leads
to a complete suppression of stress concentration, thereby
preventing crack nucleation at all length-scales [23]. This
conclusion clashes with a recent theory (that does not ex-
plicitly account for material rigidity) that predicts crack
nucleation for any disordered system approaching the
thermodynamic limit (in�nite system size) [8]. This
raises the question whether sparse elastic networks show
fracture behavior that di�ers qualitatively from that of
other disordered materials. Evidence based on simula-
tions of moderate system size [23, 29] and fracture ex-
periments on small meta-materials [29�31] shows that
rigidity cannot be neglected if one wishes to understand
fracture in these materials. More generally, despite re-
cent progress [28, 32�36], a clear link between network
structure and fracture is still missing, even for a corner-
stone such as the central-force spring network model. In
this Letter, by fully characterizing the fracture of such
a model, we aim to demonstrate whether the tuning of
rigidity can actually suppress crack nucleation or not.

We perform (o�-lattice) simulations of diluted spring
networks with di�erent connectivity, rupture thresholds,
topologies, and unprecedentedly large system sizes. Here,
we focus on triangular networks made of L× L nodes in
which a fraction 1 − p of the bonds is removed. Results
from other topologies are reported in the Supplemental
Material [37]. All bonds are harmonic springs with unit
sti�ness and unit rest length. A bond breaks irreversibly
when its deformation exceeds the rupture threshold λ
(same for all springs). We deform the networks uniaxially
in the y-direction under athermal and quasistatic loading
conditions, by applying small strain steps and using the
FIRE algorithm [38] to minimize the energy in between
strain steps and breaking events. We characterize the
network response by measuring the stress σ, de�ned as
the yy-component of the virial stress tensor, as a function

of the (engineering) strain ε = (Ly−L(0)
y )/L

(0)
y , where Ly

and L
(0)
y are the system dimension during and before the
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Figure 1. Fracture depends on connectivity and thresholds.
(a) When deforming diluted elastic networks, aligned sets of
load-bearing bonds, called force chains, appear. Line thick-
ness quanti�es spring deformation. (b) Example of stress σ -
strain ε curve and fracture descriptors. (c) Fraction of broken
bonds at failure nf and (d) hidden length exploited in the frac-
ture process, as a function of the connectivity parameter p for
di�erent rupture threshold λ and �xed system size L = 128.

deformation, respectively. We identify the strain εR at
which the network rigidi�es (i.e. when σ exceeds the nu-
merical noise), the maximum stress σc and its associated
strain value εp, and the maximum stress drop ∆σmax, as
illustrated in Fig. 1(b). Furthermore, we calculate the
fraction of broken bonds at �nal failure (de�ned when
the network is broken in two parts) nf = Nf/Nin, with
Nf the number of broken bonds at failure and Nin the
number of intact bonds at rest. Quantities are expressed
in reduced units and averaged over many con�gurations
(see Supplemental Material [37] for details).

In Fig. 1, we show results at �xed system size L = 128.
In panel (c), we observe for small λ a non-monotonic de-
pendence of nf on the network connectivity, with a max-
imum around the isostatic point [10] (piso ' 0.66), con-
sistently with Ref. [23]. Approaching the limit of a fully
connected network (p = 1), the number of broken bonds
drastically diminishes, as expected for a more homoge-
neous material that typically breaks in a brittle fashion
via crack nucleation at the weakest spot followed by a lo-
calized propagation involving only few bonds. Also at the
other extreme of the connectivity range, close to the ge-
ometric percolation limit pg ' 0.347, only few bonds are
needed to break the already loosely connected networks.
Interestingly, when increasing λ, that is the strength of
the individual springs, nf decreases for all p and the
maximum around piso disappears. Therefore, a general
gradual transition to a more localized type of fracture
is observed when the breaking process starts at larger
deformation (larger λ) that corresponds to a larger sys-

tem response (higher stress and modulus). This implies
that a more rigid system breaks in a more brittle fashion.
To further quantify the role of the network architecture
on the fracture process, we plot in Fig. 1(d) the hidden
length emerging during the deformation, de�ned as the
strain interval εp − εR in which the (rigidi�ed) network
reaches the stress peak, normalized by the stretchabil-
ity of the individual elements λ. For small λ, we ob-
serve that (εp − εR)/λ > 1 for networks with p / piso,
meaning that they can be stretched signi�cantly more
than their elements before network fracture occurs. This
is a macroscopic consequence of the underlying complex
and heterogeneous stress (re)distribution during the de-
formation, involving non-a�ne displacements and forma-
tion/breakage of force chains [16, 20, 23, 39]. By con-
trast, for large p and/or for large λ the hidden length
is less than unity, indicating that signi�cant stress con-
centration occurs before exploiting all the possible bonds
stretchability. From our analysis (other quantities are
shown in the Supplemental Material [37]) we can evi-
dently conclude that the fracture process can be tuned
by varying p and λ from brittle (abrupt post-peak re-
sponse, fracture is localized in space and time) to more
ductile (more continuous post-peak response, and dam-
age is larger and more di�use) when L = 128. We con-
�rmed the universality of the observed behavior by simu-
lating two- and three-dimensional diluted networks with
di�erent topologies (see Supplemental Material [37]).
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Figure 2. The role of system size. (a) Size scaling of number
of broken bonds Nf for triangular networks with p = 0.65,
λ = 0.03. Black circles indicate single-run values, red squares
are averages and the dashed line is the power-law �t used to
extract df . (b) Damage fractal dimension df as a function
of p and λ. (c) Single-run stress-strain curve for increasing
system size L, showing that response is abrupt for large L. (d)
Size scaling of the maximum stress σc (log-log plot). Symbols
correspond to averages and the line is the best �t. Data follow
a power-law decay.
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Figure 3. Regimes based on fracture abruptness. (a) Size scaling of fracture abruptness ∆σmax for networks close to the
isostatic point with small λ. A minimum in the trend is evident. (b) Size scaling of maximum stress (empty circles) and
fracture abruptness (�lled squares) for diluted networks (p = 0.75) with all springs with same λi = 0.10 (solid lines), and with
additional disorder in the spring thresholds λi uniformly distributed in the two intervals indicated in the legend (dashed and
dotted lines). The additional threshold disorder shifts the minimum to larger L. (c) For p = 0.90 and λ = 0.30, a third region
is probed for large L where the abruptness scales as the maximum stress. (d) Size scaling of abruptness close to the isostatic
point for di�erent λ, color-coded with the associated damage fractal dimension df (inset). (e) Universal trend for rescaled
abruptness (see also Supplemental Material [37]): at small L force chains dominate the mechanical response but beyond L∗

stress concentration leading to abrupt fracture is unavoidable.

Next, we study the e�ect of system size, known to
be crucial in fracture [6, 21, 40, 41], to understand if
the locally inhomogeneous stress (re)distribution still has
macroscopic implications in larger systems. First, we
consider the total number of broken bonds at failure Nf

as a function of the system size L and extract the dam-
age fractal dimension df by �tting Nf ∼ Ldf , as shown
in Fig. 2(a) for p = 0.65, λ = 0.03. In Fig. 2(b), we
plot df for several connectivities and thresholds. We ob-
serve that df is larger close to the isostatic point and for
small λ. When increasing λ and/or moving away from
piso, df gradually decreases and approaches the expected
df = 1 for brittle fracture where a crack propagates al-
most in a straight line, and therefore the number of bro-
ken bonds scales linearly with system size. The upper
bound of df = 2 for which damage is completely delocal-
ized [7] might be expected only when λ→ 0. Secondly, in
Fig. 2(c), we show the stress-strain curve for di�erent sys-
tem sizes of networks close to the isostatic point and with
small λ. Despite the fact that df is maximal for these net-
works, we observe that their response becomes evidently
more brittle for larger L. We also note that the maximum
stress σc, as exemplary shown in Fig. 2(d), decreases
upon increasing system size, as commonly observed in

fracture studies, towards a limiting value σ
(∞)
c 6= 0 that

depends on p and λ. On passing, we note that our data

suggest that σc decays following a power-law, therefore
in a qualitatively di�erent way compared to the scalar
models that have been extensively used so far to de-
scribe fracture of disordered materials [3, 42, 43] (see also
Supplemental Material [37]). Finally, we quantify the
fracture abruptness by looking at the maximum stress
drop ∆σmax. Strikingly, instead of a conventional mono-
tonic decay with increasing system size, we observe a
non-monotonic trend, as shown in Fig. 3(a) for networks
close to piso and with λ = 0.03. For small L, ∆σmax de-
creases upon increasing system size. For a second-order
transition, for which the system response vanishes con-
tinuously, we would expect ∆σmax → 0 for L→∞. How-
ever, the decrease in abruptness stops around L ' 128.
At the same time, the increase of ∆σmax observed for net-
works containing up to a few million bonds (L = 1024)
cannot continue for even larger (computationally inac-
cessible) system sizes since ∆σmax ≤ σc must hold and
we found that σc decreases with increasing L. Indeed,
when simulating networks with p = 0.75 and λ = 0.10,
as shown in Fig. 3(b) (solid lines), we observe a slower
increase of ∆σmax when approaching the limiting value
of σc. A third region where ∆σmax ∼ σc, indicative of
brittle fracture, becomes clear in panel (c) where we show
results for p = 0.90 and λ = 0.30. Therefore, there must
exist a relation between the rigidity-controlled damage,
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quanti�ed via df , and the system size intervals corre-
sponding to the three fracture regimes. Indeed, when
plotting in panel (d) the abruptness for simulations at
�xed p = 0.65 and increasing λ, i.e. decreasing the asso-
ciated df, it seems that each individual curve represents
a di�erent part of a universal response. In fact, we were
able to manually rescale and collapse the data onto a
master curve (see Supplemental Material [37]), schemat-
ically depicted in panel (e). At present, we are unable to
provide an analytical expression for the scaling function.
Nevertheless, the transitions between the three regimes
must re�ect the underlying stress (re)distribution pro-
cesses. For small L, the mechanical response is domi-
nated by breakage and reformation of force chains and
∆σmax initially decreases when more force chains are
present upon increasing L. However, above a certain
length-scale L∗ (either the maximum or the minimum of
the curve) force chains are ine�ective in avoiding stress
concentration and brittle fracture is observed. Both net-
work structure and spring properties control these tran-
sitions. To further prove this statement, we consider ad-
ditional disorder by drawing random thresholds from a
uniform distribution. In Fig. 3(b), we show results for
networks with the same p = 0.75 and average 〈λ〉 = 0.10,
but with individual spring thresholds λi drawn from two
di�erent intervals (as indicated in the legend) and when
no disorder is present (λi = 0.10 ∀i). We observe that the
minimum in ∆σmax shifts to larger L when the threshold
distribution is broader. In short, the larger the (connec-
tivity or threshold) disorder, the larger the system size
L∗ at which brittleness kicks in. We �nd that the non-
monotonic size-scaling of fracture abruptness is univer-
sal, irrespectively of network topology or technical details
regarding boundary conditions and simulation protocols
(see Supplemental Material [37]).

Our study shows that the fracture process of truly
large (L > L∗) elastic networks is always dominated by
stress concentration leading to unavoidably abrupt frac-
ture when the critical deformation (εp, σc) is reached. In
contrast with the conclusions of Ref. [23], we have shown
that also sub-isostatic networks break via crack nucle-
ation when su�ciently large. Our results are consistent
with the idea of crack nucleation as limiting fracture be-
havior for disordered materials [8]. However, di�erently
from the �nite-size criticality of Ref. [8] that manifests
itself as a smooth cross-over in exponents associated to
(avalanche or crack size) distributions, the size-induced
brittleness studied here gives rise to a non-monotonic
size-dependence of ∆σmax. The extreme point(s) of such
a trend can be used to de�ne a characteristic size L∗ cor-
responding to the transition from ductile to brittle crack
nucleation. Despite the abrupt nature of fracture, we
have also shown that the damage can be delocalized in
space due to the inhomogeneous network structure. In
fact, the damage zone spans the entire system with a
distinct fractal dimension df > 1, as illustrated in the

left post-mortem snapshot of Fig. 4. This is reminiscent
of some fracture modes investigated using �ber bundle
models [44], where however the range of stress redistri-
bution is an imposed parameter instead of an emerging
structure property.

Finally, we conclude this Letter by showing an un-
expected dependence on the tolerance parameter FRMS

used in the energy minimization protocol employed in
our simulations. [37, 38] FRMS is the maximum force per
node allowed in the system after a deformation step or
breaking event. Typically, FRMS is chosen small enough
to ensure that the system is in its energy minimum, or
equivalently in mechanical equilibrium, and therefore the
simulation is in the athermal (energy-dominated) limit.
In Fig. 4, we plot the size scaling of Nf for di�erent
FRMS and we observe that for the huge system sizes in-
vestigated here a great number of additional bonds are
broken when a larger FRMS is used. Correspondingly, a
more ductile response is obtained due to the formation
of multiple macro-cracks. Therefore, we remark that (i)
to reach the athermal limit when a large df is expected,
an increasingly smaller FRMS might be needed to simu-
late increasingly larger networks; (ii) since using a larger
FRMS corresponds to push the system close but not at
its energy minimum, FRMS could be a proxy for temper-
ature. According to this interpretation, thermal �uctua-
tions would couple with large rigidity �uctuations around
the isostatic point, giving rise to ductile behavior even for
large system sizes. Further studies are needed to con�rm
the latter intriguing speculation.
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Figure 4. Athermal limit and macroscopic cracks. Main
graph: size scaling of broken bonds for simulations performed
with di�erent energy minimization tolerance FRMS. Larger L
requires lower FRMS to perform simulations in the athermal
limit, where fracture occurs due to a single macro-crack (see
post-mortem snapshot on the left, where only broken bonds
are shown). For larger FRMS and huge system sizes, multiple
macro-cracks are observed (right snapshot) and the network
response shows a large ductile interval ∆εduct (bottom right).

In summary, our results demonstrate that athermal
networks unavoidably break in a brittle fashion when ap-
proaching the thermodynamic limit, i.e. when increasing
the system size beyond a characteristic length-scale L∗.
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We have shown that L∗ can be controlled by tuning in-
dividual elements or their assembly, with larger disorder
increasing L∗. Furthermore, we found that the fractal
dimension of the damage zone df is coupled with L∗ and
can be very large close to the isostatic point [23, 29],
which can be interpreted as a critical point for fracture.
These considerations are relevant not only for metama-
terials (for which L is small and λ or the network geom-
etry can be easily tuned) but also for biological samples,
since they are also often far from the thermodynamic
limit. For example, biopolymer networks between two
cells should have sizes well below L∗ to prevent catas-
trophic failure, and even reconstituted collagen networks
inside a rheometer have shown size-dependent fracture
behavior [45].
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SUPPLEMENTAL MATERIAL FOR

�ATHERMAL FRACTURE OF ELASTIC

NETWORKS:

HOW RIGIDITY CHALLENGES THE

UNAVOIDABLE SIZE-INDUCED BRITTLENESS�

SIMULATION METHODS

We generate networks by diluting regular lattices con-
sisting of L×L nodes with spacing l0 and di�erent topolo-
gies. A fraction p of all possible nearest-neighbor bonds
is present. The associated average network connectivity
is therefore 〈z〉 = p zmax, with zmax depending on net-
work topology (see also Fig. S6). All bonds are harmonic
springs with sti�ness µ and rest length l0 and break ir-
reversibly when exceeding the threshold λ (same for all
springs). By setting l0 = 1 and µ = 1, we can express
all quantities in reduced units, and λ can be equivalently
considered as deformation or force threshold. The energy
of the system reads H = µ

2l0

∑
〈ij〉 (lij − l0)

2
, where 〈ij〉

indicates bonded pairs of nodes and lij the distance be-
tween them. We deform the networks uniaxially under
athermal and quasistatic loading conditions, using the
FIRE algorithm for the energy minimization [38]. The
tolerance FRMS is typically set at 10−5 for L ≤ 256, but
it is varied for larger sizes as discussed in the text. In our
case, FRMS is the maximum numerical tolerance for both
the system root-mean-square force [38] and the maxi-
mum force on each single node. The networks are de-
formed uniaxially in the y-direction by employing a very
small strain increment ∆ε = 0.001, after which the en-
ergy minimization procedure is performed to obtain the
equilibrium (o�-lattice) node positions. Based on the
mechanically equilibrated con�guration, we identify the
bonds that exceed λ (if any) and remove the weakest
bond de�ned as the one that exceeds the threshold the
most, i.e. the one with the largest (lij − l0)/λ. In most
of the simulations, we additionally allow the strain in-
crement to be reduced by up to two order of magnitude
(∆ε = 0.00001) if the most stressed bond is very close to
λ, to ensure that we are in the quasistatic condition and
only one bond at a time can be broken. Typically, we
use periodic boundary conditions in all directions. How-
ever, following Ref. [23], we also perform simulations in
which the nodes on the top and bottom boundaries are
free to move only in the x-direction and move a�nely in
the y-direction, without noticing any appreciable qual-
itative di�erence. Furthermore, as detailed below, we
also perform simulations by employing di�erent bound-
ary conditions in the x-direction. We con�rmed that the
conclusions of our study are robust with respect to all
the variations on the simulation protocol.

OBSERVABLES AND DATA ANALYSIS

We de�ne the mechanical response of the network by
considering the stress along the direction of the deforma-
tion. In particular, we use the yy-component of the virial
stress tensor σ ≡ σviryy = 1

dV

∑
〈ij〉 fij,y rij,y , where the

sum runs over all the bonded pairs of nodes 〈ij〉, fij is the
force acting on node i due to j, rij is the vector connect-
ing the two nodes, d is the dimensionality of the network
and V is its (instantaneous) volume. Using a di�erent
de�nition for the macroscopic stress (e.g. σvirxx+σviryy ) does
not change the conclusions of the paper. A network is de-
�ned rigid if σ is greater than a small value (10−4) and εR
is the �rst strain for which this condition is satis�ed. σc
is the maximum in the stress response and εp the associ-
ated strain. The work of extensionWf is calculated as the
integral of the stress-strain curve until fracture (network
broken in two parts). ∆σmax is the maximum stress drop
and it is calculated following a procedure highlighted in
Ref. [36]. It consists of (i) calculating the derivative of
the stress-strain curve; (ii) identifying the strain interval
for which the derivative is greater than a certain thresh-
old (here we use zero, but we checked that our results are
robust using di�erent thresholds); (iii) for each strain in-
terval, calculate the stress drop as the di�erence in the
stress associated to the extremal values of the interval;
(iv) the maximum stress drop is ∆σmax. In most of the
cases, this procedure gives exactly the same result as just
considering the di�erence in stress between two consecu-
tive strains; whereas in few cases the values are slightly
di�erent but the overall trends are consistent with both
de�nitions.

All quantities are averaged over many con�gurations
to ensure proper statistical sampling of the disorder. Er-
rors are calculated as standard deviation divided by the
number of sampled con�gurations (standard error on the
mean) and are shown when they are larger than the sym-
bols displayed in the graphs. For example, for the size
scaling analysis for networks close to the isostatic point
(p = 0.65 and p = 0.70) and for small λ we employ more
than 2000 con�gurations for small system sizes (L ≤ 32);
1000 for L = 50; 500 for L = 64; 200 for L = 128, 256; 50
for L = 512; and ∼ 10 con�gurations for larger system
sizes (L = 640, 768, 1024) that are statistically su�cient
due to the self-averaging nature of the fracture process
in such large systems. In general, for all networks we
average quantities over at least 200 con�gurations when
L = 128 and a larger number (typically 500) for L = 64
or smaller sizes. Results for di�erent network geometries
are also averaged over approximately 200 con�gurations
for 2D networks and over 20 to 100 con�gurations for 3D
networks, depending on system size.
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ADDITIONAL RESULTS

Fixed system size

In Fig. S5, some additional results for triangular net-
works with �xed system size L = 128 and di�erent p
and λ are shown. In particular, we note in Fig. S5(a)
that for �xed λ the work of extension Wf , i.e. the
energy needed to break the material (calculated as the
integral of the stress-strain curve), shows a maximum
around the isostatic point (piso ' 0.66) for small λ, anal-
ogously to the trend for nf (shown in Fig. 1(c) of the
main text). This has been observed also in Ref. [23]
and implies that networks close to the isostatic point can
be counterintuitively considered tougher than networks
with more bonds (when λ ≤ 0.10). However, as shown
in Fig. S5(b), when considering the maximum stress σc
as a function of connectivity we observe that there is no
maximum and the more intuitive monotonic dependence
on p� the more the bonds, the stronger the material �
is observed. This discrepancy between the dependence
on connectivity of two quantities describing resistance
to fracture is an e�ect of the size-dependent brittleness
demonstrated in this study: at moderate system size, the
networks are ductile and signi�cant energy is dissipated
in bond-breaking events occurring after the peak stress.
To further quantify the tunability of the fracture process
by varying p and λ at �xed system size, we show the
peak strain εp in panel (c) and the maximum stress drop
in panel (d).

Di�erent topologies

In Fig. S6, we show nf as a function of the network
average connectivity 〈z〉 = pzmax for di�erent network
topology and dimensionality, and small λ. We observe
that the position of the maximum in nf depends not
only on dimensionality but also on topology and orien-
tation. For example, despite the fact that the diluted
square (SQ) and the 2D diamond (D2) networks have the
same connectivity properties, SQ is more brittle (fewer
bonds are broken) because it features more bonds already
aligned with the direction of deformation. Analogously,
because of geometric e�ects (a large number of system-
spanning bonds at small connectivity) in the honeycomb
(HC) and in the 3D diamond (D3) networks, a larger
number of bonds is broken when approaching the limit
of undiluted lattices. Only for the diluted triangular
(TR) and face-centred-cubic (FCC) networks, that are
su�ciently isotropic, the maximum of nf roughly corre-
sponds to the isostatic point ziso. Our results enrich the
data reported in Refs. [23, 29, 30]. We can summarize
that damage is maximized close to rigidity points, either
of isostatic or geometric nature, when λ is small.

Size scaling

In Fig. S7, additional results from the size scaling are
shown. To extract the damage fractal dimension df and
generate the plot of Fig. 2(b) of the main text, we simu-
late at least six di�erent system sizes (typically seven, up

to L = 256) and we �t Nf ∼ Ndf/2
in where Nin is the num-

ber of intact initial springs. This is analogous toNf ∼ Ldf
but sometimes better �ts are obtained with the previous
expression since the values on the x-axis span more or-
ders of magnitude. As shown in the main text, we notice
that the fractal dimension df is (much) greater than 1
for a large range of p and λ. This is a distinct feature of
our elastic network model compared to the scalar random
fuse models [6] or models assuming linear elasticity [46],
where the number of broken bonds at peak load scales at
most linearly with the system size. In our case df refers
to the exponent of the total broken bonds at failure and
not to the exponent of broken bonds at peak load. How-
ever, since the fracture becomes more brittle (i.e. bonds
break only before and at peak load) the exponent for the
broken bonds at peak load is actually larger than df . We
also show how the maximum stress σc and peak strain εp
decrease with increasing system size. Inspired by previ-
ous works [3, 42, 43], we �tted the decay of σc with three
functional forms: (i) logarithmic decay ∝ 1/ ln(L); (ii)
Duxbury-Leath-Bale (DLB) [3, 42] ∝ 1/

√
ln(L2); (iii)

power-law decay ∝ 1/Lβ . We found that the power-law
decay �ts our data the best, with an exponent β that
clearly depends on p and λ. For example, we obtain
β = 0.73 for p = 0.65, λ = 0.03 (Fig. 2(d) of main text)
and β = 0.89 for p = 0.70, λ = 0.03 (Fig. S7(d)). Di�er-
ently from previous models where it is assumed that the
material strength (i.e. σc) is zero in the thermodynamic
limit [6], in our case we have an o�set value correspond-

ing to a �nite network strength σ
(∞)
c 6= 0 that depends

on p and λ. Our data suggest that the spring network
model studied here is qualitatively di�erent from scalar
models that have been so far considered as the golden
standard for statistical physics studies of fracture.

Universality of fracture abruptness trend

In Figs. S8 and S9, we show that the non-monotonic
size-dependence of fracture abruptness ∆σmax is univer-
sal with respect to network topology and robust with re-
spect to the simulation procedure. In Fig. S8(a), we com-
pare the trend for the same set of initial con�gurations
simulated with a protocol where the small strain incre-
ment is kept �xed at ∆ε = 0.001 and one where it can be
adjusted to much smaller values (up to ∆ε = 0.00001) if
the most stressed bond is very close to λ. A minimum is
observed in both cases for similar values of L. A slightly
smaller ∆σmax is observed for large L when ∆ε can be
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reduced by two orders of magnitude. Next, we check
if the choice of boundary conditions in the x-direction,
transverse to the deformation direction, has some quali-
tative e�ect on the fracture abruptness. We tested three
di�erent boundary conditions: (i) periodic (mimicking
an in�nitely large system); (ii) free, i.e. without bonds
crossing the x-direction (the system is �nite in that direc-
tion); (iii) with periodic bonds and with adjustable size
in the x-direction such that the area is kept constant dur-
ing the uniaxial deformation. As shown in Fig. S8(b), the
qualitative trends are robust and independent of the fun-
damentally di�erent boundary conditions employed (the
�rst one was chosen for the rest of our study since it
seems the most computationally e�cient). Furthermore,
we con�rm that the non-monotonic trend persists when
changing network topology. As already highlighted in the
main text, the minimum and the maximum of ∆σmax as a
function of L depend on network properties. This can be
appreciated in Fig. S8(c) where we report selected cases
for various 2D and 3D networks. Finally, preliminary re-
sults con�rm the non-monotonic trend also for shear de-
formation, supporting the conclusion that it is a universal
size-dependent behavior of diluted networks. As shown
in Fig. S9, we also succeeded in manually collapsing the
curves of ∆σmax obtained for networks close to (just be-
low and slightly above) the isostatic point and various
λ into a single master curve. The rescaling L → αL
and ∆σmax → β∆σmax was performed by imposing that
the di�erent curves approximately share the same x-value
for the minimum. We obtained values for α that are in-
versely proportional to λ, suggesting that the �critical�
system size L∗ ∼ 1/α at which brittleness kicks in de-
creases by making the springs stronger. On the other
hand, β increases more than linearly with λ, consistently
with the idea that due to inhomogeneous stress distribu-
tion, the increase of the springs strength has non-linear
consequences on the overall network.

E�ect of tolerance in energy minimization

Finally, in Fig. S10 we report the size scaling of the
ductility interval ∆εduct, de�ned as the strain di�erence
between εp and the strain corresponding to the maxi-
mum stress drop, for two di�erent values of the toler-
ance FRMS and various networks. Brittle fracture (van-
ishing ∆εduct) is observed in the athermal limit, whereas
a non-monotonic size-dependence of the ductility inter-
val is observed for larger FRMS. The system size at which
ductility is increasing again (the minimum in ∆εduct as
a function of L) does strongly depend on λ and there-
fore seems to be coupled with the network rigidity. If
a variation of the tolerance in the energy minimization
protocol FRMS is interpreted as a variation of the ther-
mal e�ects in the system (that would keep the system
not exactly at the energy minimum), these results might

suggest that by increasing temperature it is possible to
observe a more ductile fracture occurring via many large
cracks. Future research should further investigate the
intriguing possibility that the minimum temperature at
which such ductile behavior is �rst observed, and the ma-
terial rigidity are strongly coupled. However, to precisely
assess the role of temperature, more traditional simula-
tion methods for thermal systems should be employed.
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Figure S5. Additional results for triangular networks with L = 128 as a function of p and various λ (see legend in panel (b)).
(a) Work of extension Wf, de�ned as the integral of the stress-strain curve. (b) Maximum stress σc. (c) Strain εp corresponding
to the stress peak as a function of p for various λ. Inset: strain εR at which the network is rigid upon uniaxial extension as a
function of p. (d) Maximum stress drop ∆σmax versus p for di�erent λ.
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Figure S6. Fraction of broken bonds as a function of averaged network connectivity 〈z〉 for (a) 2D and (b) 3D networks with
the di�erent architectures shown on the right, same λ and similar system size. Maxima are observed close to rigidity points
that depend on topology, geometry and dimensionality.
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Figure S7. (a) Number of broken bonds at failure Nf as a function of number of initial intact springs Nin for various combination
of p and λ. Dashed lines are best power-law �ts from which the damage fractal dimension df is extracted. (b) Size scaling
of broken bonds for triangular network close from above to the isostatic point with small λ. Black circles indicate single-run
values, red squares averages and dashed line best power-law �t. (c) Size scaling of strain at peak stress εp for networks in the
proximity of the isostatic point with small λ = 0.03. Symbols represent averages and lines are best �ts. Data are well �tted by
a power-law decay with an o�set εp = ε

(∞)
p + A/Lβ , with ε(∞)

p the strain at peak in the thermodynamic limit. For p = 0.65,
we obtain ε(∞)

p = 0.050 and β = 0.47. For p = 0.70, we obtain ε(∞)
p = 0.016 and β = 0.24. (d) Size scaling of the network

strength σc (log-log plot). Symbols correspond to averages, error bars show the standard deviations and lines are the best �ts.
Three functional forms were used: logarithmic decay (dotted black line), DLB decay (dashed red line), and power-law decay
σc = σ

(∞)
c +A/Lβ (green solid line). The latter �ts the data the best, we obtain σ(∞)

c = 0.0053 and β = 0.89.
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Figure S8. (a) Size scaling of maximum stress drop for two di�erent simulation protocols. Black circles represent data from
simulations where the strain step can be adjusted (reduced) to smaller steps when there are bonds very close to their thresholds
(see section on simulation methods); whereas blue squares are data from simulations where the strain step is kept �xed at a
small value. (b) Size scaling of maximum stress drop for four networks with p and λ as indicated in the legend, and three
di�erent simulation protocols for which periodic boundary conditions in the x direction (normal to the deformation direction)
are present (solid lines) or not (dashed lines), or for which the x direction is adjusted to keep the system area constant (dotted
lines). (c) Size scaling of fracture abruptness for diluted 2D honeycomb (HC), 2D square (SQ) and 3D FCC (inset) networks
with averaged connectivity 〈z〉 and λ as indicated.
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Figure S9. Rescaled maximum stress drop ∆σmax as a function of rescaled system size L for (a) p = 0.65 (see also Fig. 3(d) of
main text) and (b) p = 0.70, color-coded according to λ. Symbols represent averages and error bars are standard deviations.
(c) Both data sets combined (circles for p = 0.65, squares for p = 0.70). The values used for the rescaling parameters α and β
are shown in the insets as a function of λ. β grows (more than linearly) with increasing λ. α is related to the transition system
size L∗ discussed in the main text and decreases by two order of magnitudes in the simulated range of λ.
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Figure S10. Size scaling of the ductility interval ∆εduct = ε∆σmax − εp, where ε∆σmax is the strain at which the maximum stress
drop is observed (see also Fig. 4 of the main text), for simulations with (a) FRMS = 10−5 and (b) FRMS = 10−6 for di�erent p, λ
as indicated in the legend. For small FRMS (panel (b)), it is evident that fracture becomes more brittle upon increasing system
size. For larger FRMS (panel (a)), that are nevertheless three orders of magnitude smaller than λ, a non-monotonic trend is
observed and networks with large L reacquire ductility. At a �rst glance, the minima in ∆εduct seem to roughly correspond
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