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Abstract 
In this thesis intraday liquidity relations in the soybean crush complex (meal, oil and beans) 
are examined by studying idiosyncratic and cross-market spillovers of liquidity. Liquidity is a 
major determinant of derivative pricing, hedging effectiveness and a key driver of co-
movements of prices and price-volatilities among markets. A comprehensive multidimensional 
liquidity measure is derived from the full limited order book (LOB) of the Chicago Mercantile 
Exchange (CME) for January 2015 to December 2015. A Vector Heterogenous Autoregressive 
(VHAR) model is adapted to estimate high-resoluted idiosyncratic and cross-market liquidity 
spillovers in the short-, medium-, and long-run. Results show that liquidity is mostly 
determined by its own liquidity returns within 30 seconds. Positive cross-market spillovers 
predominantly occur within 5 minutes and negative cross-market spillovers occur in lags from 
5 minutes until one trading day. There is evidence for a so-called ‘flight-to-liquidity’ on a daily 
time window. Each market provides consistent spillovers to all other markets. During the pre-
harvest period the nature of spillovers tends to deviate and the ‘leading’ liquidity role of the 
soybean market is more pronounced in this period. Furthermore, spillovers differ in nature 
between regular and extended trading hours, potentially because of different trading strategies. 

 
Keywords: Liquidity spillovers, limit order book, futures markets, commodity markets, 
multivariate HAR model 
JEL classifications: G13, C22, Q14 
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1. Introduction 
Co-movements in price returns and their volatility significantly impact pricing in commodity 
futures markets, and influence decisions for portfolio and risk management. Since commodity 
futures markets serve both as an asset class for investors and as a risk sharing mechanism for 
hedgers, common factors that influence pricing are strikingly important in commodity futures 
markets. The existence of co-movements of commodity prices have been a topic of debate over 
the last decades. Pindyck & Rotemberg (1990) argue that unrelated raw commodities show co-

movement beyond economic fundamental causes. More recently, Ai et al. (2006) present 

evidence against this excessive commodity price co-movement phenomenon. De Nicola et al. 

(2016) argue that co-movements among major agricultural, energy, and food commodity are 

widely present and have been booming over the last years. While scholars do not agree on this 

topic, these co-movements potentially have great impact. As independence of asset-pricing 

decreases, shocks to one asset could have serious market wide adverse effects. Since the strong 

relationship between price volatility and liquidity in futures markets is well-embodied in the 

literature it is interesting to assess liquidity co-movements (Bessembinder and Seguin, 1993; 

Pastor and Stambaugh, 2003; Acharya and Pedersen, 2005; Szymanowska et al., 2014). Cross-

market liquidity co-movements could potentially explain cross-market price and price volatility 

correlations, as is discussed by Zhang & Ding (2018) who link co-movement of commodity 

price returns and their volatilities to liquidity co-movements.  

A substantial number of studies has focused on co-movements of returns and price 
volatilities between commodity markets but less studies have assessed liquidity commonalities 
and spillovers. Chordia et al. (2001) were the first to refer to commonality in liquidity by 
exploring potential common underlying determinants of microstructure market phenomena. 
The authors show that liquidity of NYSE stocks correlates with market- and industry wide 
liquidity, controlling for well-known individual liquidity influencers such as volatility, volume, 
and price. According to the authors, liquidity commonality indicates that inventory risk and 
asymmetric information both have an effect on the liquidity of one asset.  Hasbrouck and Seppi 
(2001), Huberman and Halka (2001), and Brockman and Chung (2002) further emphasize the 
major role of common factors (e.g. liquidity commonality) on the microstructure of markets. 

Market wide commonalities and potential financial contagion is researched by Rösch and 
Kaserer (2013), who find significant liquidity commonality in the Xetra electronic market of 
Deutsche Börse based on a volume-weighted spread measure for liquidity. Not only do the 
authors find evidence that there is indeed liquidity commonality, they also identify that 
liquidity commonality increases during market downturns, is large during crisis events, and 
becomes weaker the further one digs into the Limit Order Book (LOB). The nature of liquidity 
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relations and their magnitudes are especially interesting for agricultural commodity markets, 
due to potential seasonal production cycle effects and perishability. Furthermore, due to the 
diverse strategies of traders and their activity, liquidity relations may differ from day to night 
trading (i.e. Regular Trading Hours (RTH) vs. Extended Trading Hours (ETH)). Mancini et al. 
(2013) further emphasize liquidity downturns or shocks, as they state that the liquidity on 
individual foreign exchange rate markets are mostly determined by market wide liquidity 
shocks. This damages the positive effect of portfolio diversification and implies a relative high 
risk of liquidity dry-ups in market downturns. 

The scarce literature on liquidity relations and spillovers mainly focuses on stock 

markets and equity derivatives. Other markets are less researched, while their characteristics 
can give interesting insights. For instance, agricultural commodity futures markets are 
important to study given their unique financial relevance as an asset class and hedge 
mechanism. Moreover, due to both physical and financial interrelations among various 
commodity futures markets interesting liquidity dynamics may occur. Our dataset, the soybean 
complex, gives the opportunity to examine liquidity spillovers in a relative stable environment 
given the relative balanced relationship between soybeans and the quantity of meal and oil 
produced (Simon, 1999; Mitchell, 2010). 

The objective of this study is to examine intraday liquidity relations among futures 
markets in the soybean complex and to explore the reaction span and persistence of these 
liquidity spillovers over time. In addition, this study examines differences between liquidity 
spillovers during regular and extended trading hours and discrepancies due to seasonal effects. 
Understanding liquidity dynamics can clarify systematic liquidity crises, for example the 2010 
Flash Crash (Kirilenko et al., 2017). Furthermore, liquidity plays a substantial role in overall 

derivative pricing (Amihud et al., 2006; Acharya & Pedersen, 2005).  
Cespa & Foucault (2014) argue that variations in demand and supply liquidity are 

potential drivers of liquidity spillovers. A framework of liquidity and its implications is 
formalized by Gromb & Vayanos (2010) and Brunnermeier & Pedersen (2008). From the 
liquidity supply side, Kyle & Xiong (2001) state that liquidity suppliers have limited resources 
and hence adverse shocks possibly enhance liquidity spillovers. Furthermore, Kyle & Xiong 
(2001) argue that liquidity transmissions and other financial contagion are of great relevance 
to commodity futures markets as these factors curtail the mitigating effects of portfolio 
diversification and could substantially reduce hedging effectiveness. Furthermore, agricultural 
commodity futures markets are prone to seasonality effects caused by the growth cycle of the 
underlying products and exogenous factors that influence this cycle and overall yield 
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(Sørensen, 2002). Studying potential differences in liquidity spillovers due to seasonality 
contributes to understanding commodity futures dynamics. 

Intraday liquidity spillovers from the soybean complex are studied in this thesis. From 
each market a time series of liquidity is created and compared to the series of the other two 
markets. The data used is high-frequency comprehensive limit-order book (LOB) data obtained 
from the Chicago Mercantile Exchange. The data is structured such that snapshots of the LOB 
are obtained for every 7.5 seconds as the average price duration for soybean contracts is around 
7.6 seconds (Arzandeh & Frank, 2017). In order to capture multiple dimensions of liquidity, a 
comprehensive order weighted average liquidity measure is obtained by calculating the costs 

of a round trip (CRT) trade of a certain dollar value V based on Irvine et al. (2000).  
Since the start of this millennium, high-frequency financial data became more widely 

available. However, tools to retrieve, clean, and analyze the data are limited. In this thesis, 
different methods to analyze high-frequency financial data are combined to give clear and well-
grounded insights to liquidity dynamics in commodity futures markets. To study the actual 
dynamics of liquidity among different commodity markets, a VHAR model as proposed by 
Corsi (2009) is adjusted to a multivariate setting in line with Souček and Todorova (2013). The 
VHAR is generally used to capture the dynamics of second moments of price returns. However, 
in this thesis, the model is adapted to analyze intraday liquidity spillovers. Instead of using 
squared price returns (i.e. realized price variance), intraday estimations of liquidity levels are 
utilized. This is in line with Hasbrouck (2018), where the HVAR technique is used to conduct 
multiple price discovery analyses on high-frequency US equity market data. The main 
advantage of the VHAR over other autoregressive models is the lag structure, which is 
characterized by the separation between short, medium, and long run spillovers effects. From 
these three lag windows, the average liquidities are calculated and used in the model. This 
implies estimation of the effects of short, medium and long run liquidity on current liquidity, 
hence enabling us to capture trading heterogeneity due to information asymmetry (Corsi, 
2009). 

This study contributes to the literature in several ways. First, to our knowledge it is the 
first study that analyzes multi-dimensional liquidity in a high-frequency framework with data 
derived from the full - instead of top of the book - LOB snapshots of futures contracts. Second, 
whereas most scholars use larger intervals this research examines direct intraday idiosyncratic 
and cross-market liquidity spillovers of related commodity futures markets. Third, seasonality 
and trading hours effects on liquidity spillovers are assessed by creating subsamples of certain 
periods, and subsamples of regular and extended trading hours. Finally, this study demonstrates 
drivers behind potential liquidity crises.  
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2. Liquidity and its Measurement  

Liquidity encloses the ability to trade on a market, it consists of four dimensions: immediacy, 
resilience, width, and depth (Harris, 1990). Immediacy is the speed at which a certain amount 
of assets can be sold or bought. Resilience refers to the time of recovery of the price due to 
liquidity shocks. Width identifies the spread between the best bid and ask price and accounts 
for the cost of the transaction. The last dimension is market depth, which refers to the amount 
of securities tradeable at a certain price and hence to the ability to sustain a certain price level 
after relatively large market orders come in. As early as 1988, Grossman & Miller pointed out 
that the bid-ask spread which captures the width solely, a generally accepted single dimension 

measure for liquidity, is limited due to its negligence of immediacy. A measure which captures 
immediacy as well is preferred in this research as the immediacy demand is high in futures 
markets. Market makers supply immediacy when they trade with hedgers and temporarily take 
up the price risk until final buyers and sellers arrive (Grossman & Miller, 1988).  

The most common measures of liquidity in the literature are either order- or trade-based. 
Trade-based liquidity measures cover trading volume, trading value, the amount of trades, and 
the turnover ratio. A main drawback of trade-based measures is that a real trade is needed to 
materialize. Thus, it is an ex-post measure which gives a delayed estimate of liquidity. An 
advantage of calculating ex-ante liquidity from LOBs is that there is no need for an actual trade. 
However, as LOB data are not widely available, guidance on calculating liquidity from order 
book data is rather limited. Most measures of liquidity can be considered to be proxies instead 
of being based on the genuine liquidity dimensions. For example, Goyenko et al. (2008) wrote 
an influential paper concerning liquidity proxies and they did not discuss LOBs. A problem 
arising with the use of LOBs to obtain a liquidity measure is the opportunity for traders to place 
iceberg orders or hidden-size orders, which essentially are orders that are bigger than the actual 
size they have been placed for. Besides, dark pool trading1 has been on the rise (Gould et al., 
2013), which potentially distorts the estimation of liquidity from LOB data.  

Table 1 shows several market liquidity measures as discussed in the literature. Scholars 

that assessed liquidity beyond the width dimension mostly measure the rise (fall) of the market 
price because of a certain amount of buying (selling) orders coming in, quantified by the price 
impact function which measures the depth dimension of liquidity (Hasbrouck, 2004; Frank & 
Garcia, 2011; Weber & Rosenow, 2006). Other scholars focus on the depth dimension as well 
but base their liquidity measure on quoted depth (Chordia et al., 2001; Coppejans et al., 2001; 

                                                
1 Dark pools vary over different exchanges, mostly, dark pools are LOBs in which all orders are hidden or pools 
where traders can only submit a desired quantity and direction of trade. This order will be executed at the 
market price 
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Kirilenko et al., 2017). The change in inventory holdings, LOBs, and total trading volumes are 
used as proxies for liquidity. Kyle (1985) advocate that depth is the single best estimator for 
liquidity. Hautsch and Huang (2012) propose an impulse response function that captures both 

the short run price effects of a limit order (width, depth, and immediacy dimension) and the 

long run price impact of a limit order (resiliency). Shang et al. (2018) examine the effects of 

USDA announcements on liquidity costs by assessing the bid-ask spread. Aidov and Daigler 

(2015) use depth up to five levels in the limit order book to estimate liquidity. Furthermore, 

Aitken & Comerton-Forde (2003) suggest a liquidity measure that is based on the bid-ask 
spread, order depth and on the probability of the execution of orders in the LOB. This method 
implies that if the probabilities of execution of orders relatively far away from the mid-quote 
price are high, the liquidity is low. 

Irvine et al. (2000) design a Cost-of-Round-Trip (CRT) liquidity measure that captures 
the width, immediacy, and depth dimension of liquidity and above all, does not depend on 
actual trades and is practicable in an intraday framework. The proposed CRT measure 

calculates the costs involved by simultaneously buying and selling an exact equal monetary 
amount V. On both the bid and ask side, an average contract or asset price can be calculated for 
executing that certain monetary amount V, the difference between the two is referred to as the 
liquidity spread. Irvine et al. (2000) find evidence that this CRT method is 
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Table 1. Studies proposing liquidity measures 

Study Publication Market Exchange Measures LOB 
data 

Trade-
based Intraday Dimensions 

Irvine et al. (2000) Working Paper Stocks TMX Cost of Round-Trip trade Yes No Yes Immediacy, depth and 
width 

Chordia et al. (2001) Journal of Financial 
Economics Stocks NYSE Quoted spread, Effective spread, 

Depth No No No Width or Depth 

Coppejans et al. (2001) AFA 2002 Atlanta 
Meetings Stock index futures OMX Market depth Yes No Yes Depth 

Aitken & Comerton-Forde 
(2003)  

Pacific-Basin Finance 
Journal Stocks Jakarta Stock 

Exchange Execution probability  Yes Yes No Immediacy, depth and 
width 

Hasbrouck (2004)  Journal of Financial and 
Quantitative Analysis 

S&P500, Euro, Pound, pork belly 
contracts CME Non-linear price impact function No Yes Yes Depth 

Weber & Rosenow (2006) Quantitative Finance Stocks NASDAQ Virtual non-linear price impact 
function Yes No No Resilience and Depth 

Hachmeister (2007) Springer Stocks Xetra 
Volume-weighted spread based 

on a roundtrip order of monetary 
size V 

Yes No Yes Immediacy, depth and 
width 

Frank & Garcia (2011) American Journal of 
Agricultural Economics Live cattle and lean hogs futures CME Non-linear price impact function No Yes No Depth 

Hautsch & Huang (2012) 
Journal of 

Economic Dynamics and 
Control 

Stocks AEX Impulse Response function Yes No Yes Immediacy, resiliency, 
depth and width 

Rösch & Kaserer (2013)  Journal of Banking & 
Finance Stocks Xetra 

Volume-weighted spread based 
on a roundtrip order of monetary 

size V 
Yes No No Immediacy, depth and 

width 

Lehecka et al. (2014)  Applied Economic 
Perspectives and Policy Corn futures CME Market depth No Yes Yes Depth 

Aidov and Daigler (2015) Journal of Futures 
Markets Multiple Futures CME Market depth Yes No Yes Depth 

Kirilenko et al. (2017) The Journal of Finance E-mini S&P 500 stock index futures CME Inventories for different types of 
traders Yes No Yes Depth 

Shang et al. (2018) Agricultural Economics Corn futures CME Bid-ask spread No No Yes Width 

Zhang & Ding (2018) Quantitative Finance Cattle, Copper, Corn, Oil and Gold 
futures CME Amihud (proxy for price impact) No Yes No Depth 
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the best single estimator for liquidity. The liquidity measure has two major advantages. First, it 
considers ex-ante liquidity unlike ex-post measures (e.g. other general liquidity measures that 
make use of volume measures). Second, the CRT approach calculates the liquidity based on the 
width (actual bid-ask spread) and the depth (adverse price movements as result of orders 
exceeding bid-ask size). According to Hachmeister (2007), the combination of width and depth 
implicitly accommodates the immediacy dimension. Rösch & Kaserer (2013) use a CRT based 
liquidity measure on an electronic order-driven market system Xetra of Deutsche Börse and 
find commonality among individual stock liquidity and market liquidity by regressing the first 
on the latter. Furthermore, they find that liquidity commonality substantially increases during 
times of financial turmoil.    

To assess liquidity from LOB data the CRT method is preferred over the price-impact 

measures, quoted depth or width measures, the probability-of-execution method, and the 

impulse response function. The price impact function method is particularly useful when data 

is limited and thus a liquidity proxy is utilized (i.e. in pit trading). The probability-of-execution 

method is comprehensive and convenient; however, it relies on probabilities of orders being 

executed which demands extensive data or, at least, time intervals in which sufficient trade 
takes place to set up different bands of execution probabilities. In a high frequency framework, 
determining execution probabilities for every interval requires excessive computing power and 
are not economically explainable, as the execution of limit orders further away from the mid-
quote would have a zero or very low probability. For our analysis, a measure based on total 

depth or the bid-ask spread is not suitable as it omits crucial dimensions of liquidity which are 

significant determinants of liquidity (Black et al., 2016). However, as depth is broadly 

supported as a reliable liquidity measure the total depth is used as liquidity measure to test for 

robustness for the liquidity spread measure (Kyle, 1985; Berkman, 1992; Ahn et al., 2001; 

Kirilenko, 2017).  

The high-frequency of the data grants a very precise estimation of liquidity, which adds 

substantial additional value to the explanation of liquidity compared to lower-frequency 

liquidity proxies (Goyenko et al., 2008). Cao et al. (2009) find that a liquidity measure 

calculated in a CRT framework has additional value over other liquidity measures. On top of 
that, Ernst et al. (2009) empirically compare different liquidity measures and find that the CRT 
liquidity measure is the most accurate of the liquidity measures based on LOB data. The authors 
also find that liquidity measures based on LOB data outperform non-LOB liquidity measures.  
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3. Methodology and Data  
 
3.1. Liquidity measure 
The CRT based liquidity measure is used to compute market liquidity. The liquidity measure 
combines multiple liquidity dimensions into one scalar and resembles the liquidity costs of 
trading on each 7.5 seconds timestamp. In the CRT framework from which the liquidity 
measure is calculated, a certain dollar amount V should be determined to estimate the costs 
occurring when similarly selling and buying this amount V (i.e. the costs occurring when 
‘making a roundtrip’ of the amount of V, hence the name Cost-of-Round-Trip (CRT)) with 
information obtained from the LOB. The liquidity measure is an order-size dependent volume 
weighted spread based on the roundtrip costs of volume V. Based on Rösch & Kaserer (2013) 
the following equation is specified: 
 

!"($) = 	
(
)
(∑ +,-.,01.,02. ∑ 3456,016,0)6

78.9,0
∗ 10,000                              (1) 

 

!"($) represents the liquidity at time t for the CRT of V, =>?4," and @ABC," denote respectively 

the ask price at rank A = (1, . . ,10) and bid prices at rank E = (1, . . ,10) on moment t, in which 

each rank indicates the distance from the mid-quote price (FG45," ). n refers to the number of 

orders which it takes to fulfill a total order with size V.  ∑ =>?4,"4 H4," and ∑ @ABC,"C HC," 

respectively denote the sum of the amount of orders on different levels multiplied with the 

corresponding price for each order subject to the total amount of execution V. The difference 

between ∑ =>?4,"4 H4," and ∑ @ABC,"C HC," is the absolute spread based on the execution of the 

amount of V on both the bid and ask side. This is normalized by dividing by the total orders that 

are executed and ultimately divided by the mid-quote price. Finally, the amount is multiplied 

by 10,000 in order to obtain the liquidity in basis points2. Following Gomber et al. (2015) and 
Hachmeister (2007), the liquidity scalar can be divided in three equations: the normal bid-ask 
spread, and two equations of the adverse price movement (APM) covering the bid and the ask 
side. Respectively, the ask and bid APM equation can be expressed as: 
 

IFJK,"($) =
7LM,0(N)2+,-(,0

78.9,0
∗ 10,000    (2) 

and 

                                                
2 In this research, basis points (bps) are referred as hundredths of one percent 
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IFJO,"($) =
345(,027LP,0(N)

78.9,0
∗ 10,000    (3) 

where FLK,"($) and FLO,"($), respectively, resemble the quantity weighted average execution 

price for volume V on both the ask and the bid side. The difference of the average execution 
price of dollar volume V and the first bid or ask is the exact adverse price change due to depth 
risk. An example of the CRT liquidity measure calculation is given in the appendix. 

A dollar amount of V equal to the complete order book value is preferred in the sense 
that it gives the most complete information. If V exactly equals the total dollar volume on the 
bid and ask side in the LOB, one can calculate the mean price of all orders on different levels 
in the LOB on both the ask and the bid side and hence calculate the spread between those two 
different average bid and ask prices. To assure that sufficient liquidity information from the 
LOB is obtained and that it resembles the total liquidity costs, four different Vs are 
implemented. First, the 0.1% percentile V in terms of dollar volume is identified over all 
‘snapshots’ of the LOBs and used as the first V. Each of these snapshots represent an overview 
of the LOB at the end of 7.5 seconds intervals. Second, two V’s are calculated by taking the 
value of the 25th and 75th percentile of all order books. Finally, the average dollar volume of all 
LOBs is used as the last V. From the four different values of V the Adverse Price Movements 
(APMs) on both the bid and ask side are calculated from which the liquidity scalars are 
obtained. Finally, from the eight-different liquidity scalars the arithmetic mean is obtained 
which equals the liquidity measure used in the analyses. Note that in case V does not exceed 
the first rank dollar depth levels at both sides (i.e. the dollar amount of all orders at the first bid 
and ask), the adverse price movements are zero and the liquidity spread equals the quoted 
spread. In this case, liquidity only consists of width as there is no or hardly any depth risk. 
Furthermore, if V exceeds the total dollar volume of the LOB, the average execution price 
(either bid, ask, or both) is equal to the average price in the total order book.  
 
3.2. Spillovers analysis using a VHAR model 
Considering the frequency properties of the data, a Vector Heterogenous Autoregressive model 
(VHAR) is an adequate method to measure liquidity relations among different futures markets. 
The VHAR is introduced by Corsi (2009) to model realized price returns in an intraday setting. 
The VHAR method captures short, medium, and long run lag effects which are based on moving 
averages retrieved from short, medium, and long run windows. Lags that have an actual effect 
on the variable of interest can increase exponentially in a high-frequency setting. Therefore, a 
VHAR is a simple, yet effective tool, to aggregate lags and yield robust dynamic relations. The 
model includes both a short- and a long-memory component (Corsi, 2009). By this mechanism, 
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the model captures the presence of heterogeneity of trading preferences among traders, which 
is referred to as the heterogenous market hypothesis (Müller et al., 1997). Bubák et al. (2011) 
and Souček & Todorova (2013) were the first to implement multivariate VHAR models to study 
realized volatility spillovers among different markets. However, in contrast to Souček & 
Todorova (2013) and Bubák et al. (2011), in this study, the moving averages of the liquidity 
levels are used to obtain spillover effects based on three different lag windows. This grants us 
insights to the magnitude and persistence of liquidity spillovers. The use of levels is in line with 
Hasbrouck (2018), who investigates price discovery (quotes) from a dataset with timestamps 
up to nanoseconds. The author uses restrictions based on a VHAR model to avoid using a large 
number of lags in a classic VAR model using a very high resoluted dataset. In contrast to this 
thesis, where the lag structures generally have the same order of magnitude compared to model 
proposed by Corsi (2009), Hasbrouck (2018) uses lags from 10 microseconds to 1 seconds (a 
factor difference of 10,000).  

For each commodity the three different lagged effects of the liquidity measure of the 
commodity itself and another commodity are obtained. Hereby controlling for autocorrelation 
and obtaining the genuine liquidity spillover effects from one market to another market. This 
set-up allows to study both the lead-lag relationship for a market’s own liquidity (idiosyncratic) 
as well as spillovers from other markets (cross-market). This analysis is done for every possible 
combination of the commodities analyzed. This gives the following VHAR specification for 

analyzing the relations of liquidities, !($) of futures contract a and b:  

 

!+," = Q+,R + Q+,T!+,"2T|"2V+WT + Q+,X!+,"2T|"2V+WX + Q+,Y!+,"2T|"2V+WY +
																																	Q3,T!3,"2T|"2V+WT + Q3,X!3,"2T|"2V+WX + Q3,Y!3,"2T|"2V+WY + Z+,"  (4) 
  

In equation (4) the liquidity measure (!+,") depends on a constant (Q+,R), three moving averages 

of the own liquidity (with effects Q+,T, Q+,X, and Q+,Y), and t three moving averages of the 

liquidity of the other market (effects given by Q3,T, Q3,X, and Q3,Y). !+,"2T|"2V+WT is the average 

liquidity over a time window from t-1 until lag 1. To test for significance for the variables a 
Wald test is implemented, the null hypothesis is tested whether the coefficients of the lagged 

liquidity variables of futures contract @ are jointly equal to zero (Q3,T = Q3,X = Q3,Y = 0). If the 

null hypothesis is rejected, the liquidity of futures contract @	does have a significant spillover 

to futures contract a. Additionally, Granger causality tests are performed to study the exact 
causal relations among the markets. To examine the persistence of the spillovers, the regression 
is repeated with a reduced lag structure.  
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To control for possible correlation in liquidities among markets, a two-staged analysis 
with an orthogonalized model is carried out (Souček & Todorova, 2013). First, to get rid of 
possible correlation the lags are regressed on each other as in equation (5): 
 

!+,"2T|"2- = [+ + \3!3,"2T|"2- + ]+,"2T|"2-                           (5) 

 

In this equation the residual (]+,"2T|"2-) describes the variation that is not explained by the 

average liquidity of contract b (!3,"2T|"2V+WT). The ultimate orthogonalized version of the model 

is specified as: 
 

!+," = Q+,R + Q+,T!+,"2T|"2V+WT + Q+,X!+,"2T|"2V+WX + Q+,Y!+,"2T|"2V+WY + Q3,T]3,"2T|"2V+WT +

Q3,X]3,"2T|"2V+WX + Q3,Y]3,"2T|"2V+WY + Z+,"                        (6) 

 
3.3. Data 
Data consists of futures prices from the soybean commodity complex (i.e. soybean, soybean 
meal, and soybean oil) traded at the CME Globex electronic trading system. Two trading 
sessions are distinguished for each day: Regular Trading Hours (RTH) and Extended Trading 
Hours (ETH). ETH sessions start the previous day at 19:00 and close at 07:45, RTH sessions 
start at 08:30 and close at 13:203. An overview of the smoothened (i.e. moving averages of 
almost one day) market depth over the dataset for the first ten stairs of both the bid and ask is 
shown in Figure 1, from this figure it is clear that market depth is significantly lower in the 
summer period.  
The data are snapshots of LOBs with intervals of 7.5 seconds. According to Arzandeh & Frank 
(2017), average price duration of soybean contracts is around 7.6 seconds. This price duration 
is used as proxy to determine optimal spacing in order to obtain sufficient information and not 
include too much noise in the analysis. Arzandeh & Frank (2017) point out that optimal spacing 
for analyzing price returns and variance of highly-liquid contracts, such as S&P e-mini futures, 
is approximately one second. This is in line with the practices of Hasbrouck (2004) and Cao et 
al. (2009), who use intervals of one second to assess highly liquid markets. As the liquidity of 
agricultural commodity markets is significantly lower, 7.5 second spacing is preferred.  

 

                                                
3 Trading hours are in U.S. Central Time 
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In contrast to the lag structure based on days, weeks, and months that is popular in 

VHAR-models, in this research two different intraday lag structures are defined. According to 
Kirilenko (2017), the first four lags of one-minute intervals of inventories of traders show 
significant positive autocorrelation in the E-mini S&P 500 stock index futures market. This 
suggest that traders positively react to liquidity approximately in a time span of four minutes. 
In the corn futures market, Lehecka et al. (2014) find that the incorporation of information takes 
about ten minutes based on the returns after the announcement of USDA reports. Kauffman 
(2013) reports that post-announcement volatility in corn futures markets does not last longer 
than 30 to 60 minutes. Based on these empirical findings, this research examines the liquidity 
dynamic fundamentals by assessing two different lag structures. At first, a lag structure of 5 
minutes, 60 minutes, and 290 minutes is implemented. To cover the short run effect, the first 
lag window is based on 5 minutes. The second lag window is based on one hour to study the 
typical maximum reaction span of traders (Kauffman, 2013). The longest lag window is 290 
minutes long, which exactly equals one RTH trading session.  This window will cover relatively 
long-memory effects. Secondly, a shorter lag structure is implemented which contains lags of 
30 seconds, 5 minutes, and 30 minutes to assess the liquidity spillover persistence in a shorter 

Figure 1. Market depth over the three markets of the first ten ranks on both the bid (green) and 
ask side (red) 
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time frame. To avoid begin- and end-of-day effects, the first and last 15 minutes of each session 
are deleted. This means that all the liquidity relations that are found and assessed stem from 
normal trading behavior.  
 A problem that occurs with large high-frequency data is the potential of a sheer amount 
of noise in the data as a result of relative stable periods with low trading volumes. The data is 
therefore filtered, all sessions that contain more than 95% duplicates of observations are 
removed. The liquidity measure (L) from the three different markets seem to have a skewed 
right tailed distribution, with a high kurtosis. The distributions of liquidity measure are shown 
in Figure 2. From this figure it is clear that the soybean market generally has a lower CRT 
liquidity measure with thinner tails compared to soybean meal and soybean oil market which 
implies a more consistent and a relative high liquidity compared to the other markets. Note that 
a high liquidity scalar 
 
Table 2: Summary statistics for soybean, soybean oil, and soybean meal futures markets 

  Soybean           
Price Orders LS LS Returns Orders Returns 

Mean 946.299 518.190 9.142 0.000 0.000 
Standard deviation 54.027 385.391 3.454 0.116 0.117 
Minimum 844.250 23.000 0.000 -12.274 -2.233 
Maximum 1062.000 8081.000 235.554 11.528 2.958 
Kurtosis -1.150 7.946 76.419 664.818 18.117 
Skewness -0.097 2.029 5.252 -0.165 -0.199 
Observations 2042962 2042962 2042962 2042962 2042962 

      
 Soybean Oil          

Price Orders LS LS Returns Orders Returns 
Mean 3056.557 274.337 12.611 0.000 0.000 
Standard deviation 217.993 167.753 11.545 0.150 0.116 
Minimum 2538.000 24.000 0.000 -12.270 -2.758 
Maximum 3528.000 6020.000 453.146 12.105 3.340 
Kurtosis -0.955 17.615 122.843 301.969 24.173 
Skewness -0.375 2.531 9.457 -0.025 -0.114 
Observations 2042920 2042920 2042920 2042920 2042920 

      
 Soybean Meal          

Price Orders LS LS Returns Orders Returns 
Mean 3203.617 261.397 13.637 0.000 0.000 
Standard deviation 214.670 183.408 9.163 0.122 0.122 
Minimum 2664.000 20.000 0.000 -5.128 -2.312 
Maximum 3878.000 4828.000 277.907 3.917 2.394 
Kurtosis -0.166 12.658 32.873 31.832 19.299 
Skewness 0.088 2.478 4.926 0.069 -0.172 
Observations 2042962 2042962 2042962 2042962 2042962 

Orders refer to the total orders on the first ten stairs in the LOB, LS denotes the liquidity spread, LS returns are the logarithmic 
returns of the liquidity spread, and the orders return refer to the logarithmic returns of the total orders  
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should be interpreted as low liquidity. The number of observations among the markets are not 
similar, this implies that ultimately the number of observations of the actual model is lower as 
it only takes periods into account where the snapshots of all markets are non-zero. Practically 
this means that once a session of a certain market is filtered out (e.g. a trading session that 
contains more than 95% duplicates of snapshots), this session is deleted for all markets.  

Figure 3 displays the logarithmic liquidity spread returns over the entire dataset. During 
certain periods the volatility of liquidity seems to be relatively high, for instance during the 
summer months July and August in which generally not much trade takes place. To test the 
(non-)stationarity of the different variables ADF tests are implemented. From these tests it can 
be concluded that the series of the liquidity measure are stationary. The results of the Ljung-
Box test to check for autocorrelation on the liquidity for all three commodities show significant 
autocorrelation of the first 40 lags with a 1% confidence level. The autocorrelation and high 
kurtosis make a VHAR an appropriate tools to analyze liquidity spillovers.  
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Figure 2. Histograms of CRT liquidity in soybean, soybean oil, and soybean meal futures 
markets 

Figure 3. Logarithmic returns of the CRT based liquidity 
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4. Results  
In this section the results of the VHAR analyses are discussed. First, the results of the default 
model are discussed in combination for the Granger causality tests outcomes. Second, to assess 
the persistency of liquidity relations the model with a compressed lag structure is discussed. 
Furthermore, the analysis is replicated for the subsamples of Regular Trading Hours (RTH), 
Extended Trading Hours (ETH), and pre-harvest period. Finally, the robustness checks are 
discussed. 
 

4.1 Lag structure I 
Table 3 shows the F-statistics and corresponding significance of the Granger causality tests. 
The table shows the statistics of sets of independent variables on the dependent variables. For 
example, the highest number in the second column of the left-hand matrix shows a F-statistic 
of 2028.82 from the Granger test whether the liquidity in the soybean meal market has a causal 
effect on the liquidity of the soybean market. It turns out that all markets are intertwined with 
each other considering the liquidity spillovers based on the high significance levels. Especially 
the statistics of the models implied with the first lag structure are highly significant. By reducing 
the lag window, the significance of liquidity spillovers declines. However, the liquidity 
relations are still strongly significant. 
 
Table 3. Granger Causality tests for cross-market liquidity spillovers 

                Lag structure (I)                Lag structure (II)  
    Independent         Independent   
     ZS  ZM  ZL         ZS  ZM  ZL  

D
ep

en
de

nt
   

  

ZS    2028.82*** 716.42***   

D
ep

en
de

nt
   

  

ZS    157.74*** 84.82*** 

ZM  446.30***   948.27***   ZM  121.05***   115.90*** 

ZL  324.46*** 2111.86***     ZL  64.88*** 309.36***   
                      
*, **, and *** represent 10%, 5%, and 1% significance.  
 

In Table 4 the regression results of the six bivariate models are shown. The subscripts j in βa,j 

(j=1,2,3) denote the autocorrelation estimates for the moving average based on 5 minutes, 60 
minutes, and 290 minutes (or one RTH-session) lags. The βa,j parameters in the tables refer to 
the idiosyncratic liquidity spillovers. The βb,j parameters denote the spillovers of the liquidity 
from the opposite market to the first market in the j-th lag window (the cross-market effects). 
In the first model (Soybeans – Soy meal), the βa estimates are the idiosyncratic liquidity effects 
of soybeans on soybeans whereas the βb estimates denote the cross-market effect from the 



20 
 

liquidity of the meal market to the liquidity in the soybean market. Using Wald tests, it is tested 
whether all cross-market lags are equal to zero and hence do not significantly affect the 
endogenous market’s liquidity. 

Table 3 shows the idiosyncratic and cross-market liquidity relations among the three 
futures markets. In all markets it can be seen that especially the first moving average lag of the 
commodity’s own liquidity has a significant effect on the current liquidity. In all markets the 
short run liquidity impact (βa,1) lies between 0.9000 and 0.9500 and strongly deviates from zero. 
In the medium run, effects are positive and strongly significant. In the long run window, the 
idiosyncratic liquidity relations are again strongly positive. The cross-market liquidity relations 
are similarly significant compared to the idiosyncratic effects. All markets are positively 
influenced by the short run liquidity in other markets. Especially the short run (5 minutes) cross-
market effects from beans to both oil and meal (respectively 0.0305 and 0.0216) are strong in 
magnitude compared to the short run cross-market spillovers from meal and oil to soybeans 
(respectively 0.0114 and 0.0051). This implies that the soybean market has a ‘leading’ role in 
terms of liquidity. This leading role holds for the medium run effects from soybean to meal and 
oil as well, although the direction is not similar. Apart from the medium run cross-market effect 
from beans to oil, all medium and long run cross-market effects are negative. This means that, 
within 5 minutes liquidity holds a positive cross-market relation whereas this turns negative on 
a one-hour and one-trading day time span.  
Table 4. Regression results of total sample with normal lag structure 

   Soybeans – Soy meal     Soybeans – Soy oil     Soy oil- Soy meal  
  Soybeans  Soy meal   Soybeans  Soy oil   Soy oil  Soy meal  
β0  0.0994*** 0.0845***  0.1031*** 0.0991***  0.1296*** 0.1175*** 
 (0.004) (0.008)  (0.004) (0.015)  (0.009) (0.005) 
βa,1  0.9045*** 0.9484***  0.9086*** 0.9101***  0.9042*** 0.9468*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,2  0.0451*** 0.0387***  0.0528*** 0.0579***  0.0554*** 0.0382*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,3  0.0371*** 0.0024***  0.0257*** 0.0113***  0.0147*** 0.0042*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βb,1  0.0114*** 0.0305***  0.0051*** 0.0216***  0.0479*** 0.0117*** 
 (0.000) (0.002)  (0.000) (0.003)  (0.001) (0.000) 
βb,2  -0.0018*** -0.0195***  -0.0027*** 0.0200***  -0.0241*** -0.0050*** 
 (0.001) (0.002)  (0.000) (0.004)  (0.002) (0.001) 
βb,3  -0.0078*** -0.0047**  -0.0013*** -0.0242***  -0.0096*** -0.0043*** 
 (0.000) (0.002)  (0.000) (0.003)  (0.001) (0.001) 
         
Adj. R-squared  0.790 0.886  0.790 0.756  0.756 0.886 
Wald-statistic  676.27*** 148.76***  238.81*** 108.15***  703.95*** 316.09*** 

Wald test based on the following null hypothesis: (βb,i(i=1,2,3)  = 0). The standard errors are given in parentheses. *, 
**, and *** represent 10%, 5%, and 1% significance.    
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The results from the Wald test indicate that all markets do influence the other markets in terms 
of liquidity. As both the short run idiosyncratic and cross-market relations seem to explain a lot 
the next section provides a lag structure that zooms in further and assesses liquidity spillovers 
within a total lag structure of 30 minutes.  
 

4.2. Lag structure II 
The results for the shorter lag structure are shown in Table 5. The moving average parameters 
βa,j relates to lags of 30 seconds, 5 minutes, and 30 minutes (for j=(1,2,3)). Based on the 30 
seconds lag, the idiosyncratic impact for all futures contracts is just above 1 and highly 
significant. Considering the magnitude of the short-run effects in the default lag structure in 
combination with the magnitude of the short-run idiosyncratic impact in a 30 seconds span, it 
can be inferred that the short run idiosyncratic liquidity (within 30 seconds) has the strongest 
effect on the current liquidity. Whereas in the default lag structure the short run effects are 
captured in a five-minutes window, in this model the medium-run effects are based on a five-
minute window.  
 
Table 5. Regression results of total sample with shorter lag structure 

   Soybeans – Soy meal     Soybeans – Soy oil     Soy oil- Soy meal  
  Soybeans  Soy meal    Soybeans  Soy oil    Soy oil  Soy meal  
β0  0.0274*** 0.0088**  0.0268*** 0.0092  0.0237*** 0.0184*** 
 (0.002) (0.004)  (0.002) (0.007)  (0.004) (0.002) 
βa,1  1.0056*** 1.0031***  1.0056*** 1.0071***  1.0068*** 1.0032*** 
 (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) 
βa,2  -0.0450*** -0.0353***  -0.0445*** -0.0446***  -0.0451*** -0.0357*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,3  0.0353*** 0.0303***  0.0355*** 0.0328***  0.0323*** 0.0303*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βb,1  0.0002 0.0075***  0.0007*** 0.0014  0.0057*** 0.0005* 
 (0.000) (0.001)  (0.000) (0.002)  (0.001) (0.000) 
βb,2  0.0021*** -0.0002  0.0001 0.0059***  0.0041*** 0.0023*** 
 (0.000) (0.001)  (0.000) (0.002)  (0.001) (0.000) 
βb,3  -0.0015*** -0.0055***  -0.0004*** -0.002  -0.006*** -0.0019*** 
 (0.000) (0.001)  (0.000) (0.002)  (0.001) (0.000)          
Adj. R-squared  0.941 0.963  0.941 0.935  0.935 0.963 
Wald-statistic  52.57*** 40.35***   28.27*** 21.63***   103.12*** 38.63*** 

Wald test based on the following null hypothesis: (βb,i(i=1,2,3)  = 0). The standard errors are given in parentheses. *, 
**, and *** represent 10%, 5%, and 1% significance.    
 
The results in Table 5 show that the medium run idiosyncratic liquidity relations are, for all 
markets, negative. This contrast both to the short run and long run idiosyncratic effects as these 
are, in all markets, positive. It implies that an increase in the liquidity in a five-minutes lag 



22 
 

window leads to a decline in the current liquidity. This contrasts to the outcomes from the 
models with the larger lag structure, where there are strong positive liquidity relations within a 
5-minute span. From this it can be stated that the own market’s spillovers are exceptionally 
short lived. These results are remarkably robust over the three markets and six models. There 
is evidence that within a 30 seconds and 5 minutes lag span, the cross-market liquidity relations 
are positive. On the contrary, the cross-market spillovers on a time span of 30 minutes are 
consistently negative. Together with the outcomes of the model with the normal lag structure, 
it can be stated that positive cross-market spillover effects mostly occur within 5 minutes and 
negative spillovers occur in a time frame over 30 minutes. From the model with the shorter lag 
structure it is clear that the positive idiosyncratic spillovers occur in the very short run and in 
time spans greater than 30 minutes. There is evidence that positive cross-market spillovers seem 
to occur within 30 minutes lag spans. 

By comparing the two lag structures a few observations can be made. First, the liquidity 
is mainly caused by the market’s own liquidity. Second, this positive idiosyncratic liquidity 
effect is very short lived, since the major autocorrelation is captured within 30 seconds and the 
medium idiosyncratic effects are consistently negative. Third, cross-market liquidity relations 
seem to be consistently positive within 30 minutes and negative on a time span longer than 30 
minutes. Finally, liquidity dynamics from beans to oil and meal are more pronounced in terms 
of economic significance than vice versa. 
 
4.3. Regular and Extended Trading Hours 
The Globex trading hours can be divided into two sessions: Regular Trading Hours (RTH) and 
Extended Trading Hours (ETH). During RTH, the trading volumes are significantly higher 
compared to ETH. To assess the effect of variation in trade activity on liquidity dynamics, a 
Chow test is implemented to evaluate a potential difference in the two samples. In all models, 
the Chow test indicates a structural difference between the two subsamples (see appendix). In 
Table 6 and Table 7 the regression results of respectively the day and night sessions are shown. 
The first thing that stands out by comparing the daily subsample to the night sample is that the 
idiosyncratic effects are not consistently positive anymore. In contrast to the total and ETH 
samples, the long run idiosyncratic spillovers are generally negative.  
  What stands out by comparing the two samples is that during ETH, the idiosyncratic 
relations seem to be consistently positive. This does not hold during RTH trading. Furthermore, 
in both the RTH and ETH sample, the short run cross-market spillovers are positive. The 
‘liquidity leading’ role of the soybeans futures market that can be distinguished from the default 
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analysis is more pronounced in the subsample of RTH as the magnitudes of the parameters are 
respectively 0.0407 and 0.0817. 
Table 6. Regression results of sample with Regular Trading Hour (RTH) sessions 

   Soybeans – Soy meal     Soybeans – Soy oil     Soy oil- Soy meal  
  Soybeans  Soy meal    Soybeans  Soy oil    Soy oil  Soy meal  
β0  0.1263*** 0.1129***  0.1270*** 0.1148***  0.1435*** 0.1350*** 
 (0.008) (0.018)  (0.008) (0.02)  (0.010) (0.009) 
βa,1  0.9146*** 0.9926***  0.9298*** 0.9461***  0.9001*** 0.9845*** 
 (0.002) (0.001)  (0.002) (0.002)  (0.002) (0.002) 
βa,2  0.0570*** -0.0055***  0.0535*** 0.0445***  0.0855*** 0.0018 
 (0.003) (0.002)  (0.003) (0.002)  (0.003) (0.002) 
βa,3  0.0060** -0.0029*  -0.0038* -0.0135***  -0.0166*** -0.0037** 
 (0.002) (0.001)  (0.002) (0.002)  (0.002) (0.002) 
βb,1  0.0190*** 0.0407***  0.0129*** 0.0817***  0.0905*** 0.0253*** 
 (0.001) (0.005)  (0.001) (0.005)  (0.002) (0.002) 
βb,2  -0.0133*** -0.0199***  -0.0108*** -0.0619***  -0.0826*** -0.0186*** 
 (0.001) (0.006)  (0.001) (0.007)  (0.002) (0.002) 
βb,3  -0.0030*** -0.0126**  -0.0004 -0.0045  0.0065*** -0.0013 
 (0.001) (0.005)  (0.001) (0.005)  (0.002) (0.002) 
         

Adj. R-squared  0.737 0.879  0.737 0.814  0.815 0.879 
Wald-statistic  318.49*** 34.69***   133.89*** 104.30***   845.69*** 85.29*** 

Wald test based on the following null hypothesis: (βb,i(i=1,2,3)  = 0). The standard errors are given in parentheses. *, 
**, and *** represent 10%, 5%, and 1% significance.    
 
Table 7. Regression results of sample with Extended Trading Hour (ETH) sessions 

   Soybeans – Soy meal     Soybeans – Soy oil     Soy oil- Soy meal  
  Soybeans  Soy meal    Soybeans  Soy oil    Soy oil  Soy meal  
β0  0.1407*** 0.0827***  0.1408*** 0.1147***  0.1318*** 0.1105*** 
 (0.006) (0.011)  (0.006) (0.022)  (0.012) (0.006) 
βa,1  0.9015*** 0.9307***  0.9033*** 0.9060***  0.9030*** 0.9294*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,2  0.0422*** 0.0527***  0.0483*** 0.0556***  0.0529*** 0.0516*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,3  0.0392*** 0.0078***  0.0325*** 0.0186***  0.0184*** 0.0096*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βb,1  0.0079*** 0.0235***  0.0042*** 0.0067**  0.0321*** 0.0093*** 
 (0.000) (0.002)  (0.000) (0.003)  (0.002) (0.000) 
βb,2  0.0012* -0.0174***  -0.0026*** 0.0247***  -0.0107*** -0.0032*** 
 (0.001) (0.003)  (0.000) (0.005)  (0.002) (0.001) 
βb,3  -0.007*** -0.0016  -0.0002 -0.0160***  -0.0064*** -0.0043*** 
 (0.000) (0.002)  (0.000) (0.004)  (0.002) (0.001) 
         

Adj. R-squared  0.757 0.882  0.757 0.740  0.741 0.882 
Wald-statistic  302.38*** 71.97***   128.85*** 34.56***   269.64*** 193.92*** 

Wald test based on the following null hypothesis: (βb,i(i=1,2,3)  = 0). The standard errors are given in parentheses. *, 
**, and *** represent 10%, 5%, and 1% significance.    
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4.4. Seasonality 
Table 8 displays the result of the analysis of the subsample that contains data for May, June, 
and July. This period is characterized as relatively illiquid and unstable as yields can be 
crucially influenced by exogenous factors. In this subsample, the magnitudes of the short run 
cross-market effects from the smaller futures markets (oil and meal) to the soybean market are 
smaller compared to the default model. In contrast, the short-run spillover from soybeans to oil 
is substantially larger, this also holds for the medium run cross-market spillover. This indicates 
a stronger ‘leading’ effect of the soybean market in this period. Surprisingly, the long run cross-
market effects change from consistently significant negative to almost consistently significant 
positive. This indicates that traders tend to move into markets that have shown increased 
activity during that day. Heterogenous and insecure expectations could lead traders to adapt 
their strategies to others’ behavior and hence potentially affect spillovers. Subsequently, during 
this period which is characterized as relative unstable, herd behavior seemed to be relatively 
high. 
 
Table 8. Regression results of pre-harvest period sample (May, June, and July) 

   Soybeans – Soy meal     Soybeans – Soy oil     Soy oil- Soy meal  
  Soybeans  Soy meal    Soybeans  Soy oil    Soy oil  Soy meal  
β0  0.1071*** -0.0483***  0.1417*** -0.2062***  -0.1400*** 0.0790*** 
 (0.011) (0.017)  (0.011) (0.042)  (0.024) (0.011) 
βa,1  0.8938*** 0.9064***  0.8930*** 0.8744***  0.8713*** 0.9052*** 
 (0.002) (0.002)  (0.002) (0.002)  (0.002) (0.002) 
βa,2  0.0277*** 0.0610***  0.0261*** 0.1135***  0.1135*** 0.0647*** 
 (0.003) (0.002)  (0.003) (0.002)  (0.002) (0.002) 
βa,3  0.0606*** 0.0211***  0.0593*** -0.0116***  -0.0127*** 0.0227*** 
 (0.003) (0.002)  (0.003) (0.002)  (0.002) (0.002) 
βb,1  0.0055*** -0.0112***  0.0011** 0.0377***  0.0484*** 0.0046*** 
 (0.001) (0.003)  (0.000) (0.006)  (0.004) (0.001) 
βb,2  -0.0046*** 0.0138***  -0.0030*** 0.0369***  -0.0661*** -0.0072*** 
 (0.001) (0.005)  (0.001) (0.011)  (0.006) (0.001) 
βb,3  0.0029** 0.0206***  0.0060*** -0.0176*  0.0550*** 0.0044*** 
 (0.001) (0.004)  (0.001) (0.010)  (0.005) (0.001) 
         

Adj. R-squared  0.692 0.827  0.693 0.768  0.768 0.827 
Wald-statistic  23.71*** 36.41***   53.47*** 63.03***   151.24*** 19.44*** 

Wald test based on the following null hypothesis: (βb,i(i=1,2,3)  = 0). The standard errors are given in parentheses. *, 
**, and *** represent 10%, 5%, and 1% significance.    
 
 
 
4.5. Robustness checks 
To check the robustness of the results three alternative approaches are implemented. Results 
can be found in the appendix. Overall, it can be concluded that the spillover estimates are 
substantially robust.  
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 First, an orthogonalized model as described in the methodology section is used to 
control for possible correlation among the liquidity scalars. Controlling for potential correlation 
effects has minimal effects on the parameter estimates. There are some minor changes in the 
magnitudes of the idiosyncratic spillovers. In contrast, the cross-market spillovers hardly 
differentiate between the default and orthogonalized model. These observations further 
establish the findings that cross-market liquidity relations are present and that it is not the effect 
of an unobserved external driver.  

Second, following Kirilenko et al. (2017) a more general liquidity measure is used: the 
total depth at the first ten ranks of the order book. Although depth is widely accepted as liquidity 
measure, it only comprehends a single dimension of liquidity in contrast to the 
multidimensional CRT liquidity measure. The overall spillover effects with this alternative 
liquidity measure are less pronounced compared to the base model. However, the Wald 
statistics show consistent robust cross-market spillover effects. The decrease in explanatory 
value is not a surprise. Multiple dimensions in the liquidity spread measure potentially have a 
relatively uniform effect on each other component compared to a one-dimensional depth 
measure. Most of the parameters have similar values and significance levels. Most striking is 
the consistency of positive short run cross-market liquidity relations. It seems that the medium 
run idiosyncratic effects consistently turn negative. This implies that traders tend to increase 
(decrease) trading activity in a market where in the time span of 30 minutes until 5 minutes 
before trading decreased (increased). The introduction of depth as liquidity measure further 
confirms the existence of cross-market liquidity spillovers.  

Third, price volatility is an important factor for traders to decide whether a market is 
interesting to enter as the high volatility potentially leads to high payoffs for immediacy 
providers. To control for this, the model is extended with variables for realized price variances 
over the lag windows of 5 minutes, 60 minutes, and one trading day. The realized price 
variances are based on the sums of the squared price returns over the three windows, as these 
values are relatively high, they are normalized by dividing them with 100. The corresponding 
parameters denote the impact of the realized price variances in the three different lag windows 
on the current liquidity. From the results it is clear that all idiosyncratic and cross-market effects 
are consistent while taking into account the price variance as control variables. Despite the 
additional explanatory variables, the actual liquidity spillovers hardly change in coefficient and 
significance.  
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5. Conclusions and Discussion 
Using a unique data set that contains the full LOB of the futures markets within the soybean 
crush complex (soybean, soymeal, soy oil) significant intraday idiosyncratic and cross-market 
liquidity interrelations are identified. Short, medium, and long run lag windows are created that 
aggregate liquidity in the three markets. Additionally, the lag windows are compressed to study 
the span of the idiosyncratic and cross-market liquidity relations. To assess potential differences 
in magnitudes of liquidity spillovers during RTH and ETH, and during pre-harvest and non-
pre-harvest months the sample is divided in subsamples and the results are compared. Firstly, 
this gives strikingly interesting insights in traders’ behavior during active trading hours. 
Secondly, the distinction between the pre-harvest and non-pre-harvest period indicate traders’ 
sensitivity to insecurity of market forecasts and hence potential herd behavior.  

Not surprisingly, liquidity faces heavy positive autocorrelation, this holds for the models 
with the normal and compressed lag structure. By reducing the lag structure, it is clear that the 
heavy short-run idiosyncratic positive autocorrelation is strongest and persists within a 30 
seconds span. Consistent over the markets, the medium-run and long-run idiosyncratic effects 
are both positive. This implies that a market’s liquidity is heavily determined by its own lags. 
In a market in which liquidity is on the rise, it is expected that within 30 seconds the liquidity 
intensifies. In the meantime, within time spans of 5 minutes the idiosyncratic liquidity relation 
is negative.  The consistency of the short run idiosyncratic liquidity relations does hold for the 
cross-market effects as well. However, positive cross-market spillovers occur within 5 minutes. 
Compared to the idiosyncratic effects, cross-market liquidity spillovers are relatively delayed. 
This implies that traders tend to base trading decisions in market a mainly on very short run (30 
seconds) developments in market a while shocks in other markets are mainly incorporated in 
market a over a time span of 5 minutes. Overall, it can be concluded that the liquidity in 
commodity markets in the soybean complex positively influence the liquidity in a span of 30 
seconds. The cross-market spillovers seem to be present although more pronounced in a span 
of 5 minutes.  

The default model indicates consistently positive short cross-market spillovers while the 
medium- and long-run cross-market spillovers tend to be negative. Taken into account the 
strong and significant positive coefficients of the short-, medium-, and long-run idiosyncratic 
liquidity effects it seems that, in a long-run daily window, traders tend to prefer to trade in 
markets with high liquidity. If the liquidity has been relatively high the last day in one market, 
the current liquidity of that market tends to be high as well while the last day’s liquidity of one 
market has consistently negative effects on the liquidity of other markets. In other words, in the 
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long-run traders tend to be active in markets were liquidity has been relatively high at the 
expense of other markets which is called a ’flight-to-liquidity’. This effect holds for all markets.      
 This research finds evidence for deviating liquidity relations between Regular Trading 
Hours (RTH) compared to Extended Trading Hours (ETH). Idiosyncratic relations tend to be 
less pronounced and deviating during RTH compared to the ETH and total sample which could 
mean that intra-market herd behavior is stronger during ETH. Increased algorithmic trading 
during ETH which potentially implies a greater presence of similar trading strategies could 
explain this. It is also clear that during the pre-harvest months liquidity relations deviate. During 
the period of this subsample exogenous factors influencing the commodity yields have the 
strongest effect. In general, the ‘leading’ effect of the soybean market in terms of liquidity is 
relatively stronger. As the soybean growth is crucial for all three markets and most sensitive 
during that period, it is not a surprise that this market’s liquidity has strong spillovers to the 
other (smaller) markets.  

The results of this research are robust for a different liquidity measure, potential 
correlation between liquidity estimations among markets, and the effect of the realized price 
variance in the different lag structures on liquidity. However, certain drawbacks occur while 
using LOB data and a VHAR approach. First, LOB data does not always reflect all committed 
liquidity. As mentioned before, iceberg orders and dark trading can possibly affect liquidity 
while this is not taken into account in the CRT liquidity calculation. Second, the decision to use 
time periods of 7.5 seconds based on the average price duration is only a proxy for ‘liquidity 
duration’. Third, heterogenous trading behavior may be different from the chosen lag windows. 
The evidence for very short liquidity spillovers (i.e. faster than 30 seconds) could be an 
interesting follow-up research. Fourth, the CRT liquidity measure does not comprehend the 
resiliency dimension of liquidity. However, the CRT method is widely approved in literature. 
Finally, as the dataset comprehends one year (2015), there might be risks involved concerning 
external validity as external factors might have influenced traders’ behavior particularly in that 
year.  

Further research may examine the drivers behind particular liquidity transmissions and 
the seasonal effects. Researching liquidity spillovers in the family of grain contracts (corn, 
wheat, and soy) would be a very interesting start. This could give insights in the impact of the 
degree of similarities among commodities and the intensity of cross-market liquidity spillovers. 
Furthermore, it would be interesting to apply the VHAR method with more granular time 
intervals to explore liquidity spillovers in a very high resolute environment and hence to reveal 
the effects of algorithmic trading. 
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Appendix 
 
 
To illustrate the liquidity measure with an example, assume a liquidity scalar based on one dollar volume V that 
equals the dollar volume size of the 0.01 percentile of the dollar volumes of all markets. Furthermore, in a certain 
time frame, the 0.01 percentile market in terms of market depth has a dollar depth of $15,000 and hence the first 
V equals $15,000. The liquidity scalar of the volume class of $15,000 needs to be calculated with a LOB as given 
in Figure A1. As can be seen Figure A1, first the normal bid ask spread is calculated with the quoted bid and ask 
to capture the market’s width (I>?T − `ABT/mid-quote). In Figure A1 the relative bid-ask spread is ((416.5 −
416.0)/416.25), which equals a percentage spread of 0.12%, or 12 basis points (bps). Furthermore, the average 
order price for the execution of an $15,000 order on both the ask and bid side is calculated. In the LOB of Figure 
A1 the execution of a V of $15,000 requires orders further in the LOB than the quoted depth. On the bid side, this 
means that orders up and until the third rank are taken into account for the calculation of the average bid price 
FLO,"($). Using equations (2) and (3), the difference between the average price of the executed amount V and the 
best bid and ask price, divided by the mid-quote price, reflects the APM. In the example of Figure A1 the adverse 
price movement of the bid price is (416.00 − 415.3974 = 0.6026) which equals the relative value of (R.iRXi

jTi.Xk
=

14.5	@l>). By summing the bid-ask spread and the relative APMs of the ask and bid side, the liquidity metric is 
calculated for each snapshot, which equals a liquidity scalar of 64.0 bps in this example (for this V).  

 
 

Figure A 1 Example of Cost-of-Rountrip liquidity measure calculation 
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Table A1. Results of ADF and Ljung-Box tests 

The p-values are given in parentheses.  
 
 
 
Table A2. Chow tests on subsamples 

 
 
 
 
 
 
 
 

 

 

*, **, and *** represent 10%, 5%, and 1% significance.   

   Soybeans  Soybean Oil  Soybean Meal 
    LS LS returns   LS  LS returns   LS LS returns  
           
ADF  -72.757 -294.197  -66.045 -294.924  -46.399 -296.038 
   (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) 
Ljung-
Box 

 51426000 247230  53187000 217230  59857000 230770 

   (0.000) (0.000)  (0.0000) (0.000)  (0.000) (0.000) 
          

   RTH vs. ETH   
Pre-harvest vs. 
non-pre-harvest 

       
Soy oil - Soy meal   90.50***  256.68*** 

      

Soy oil - Soybeans   104.91***  180.25*** 
      

Soy meal - Soybeans   301.56***  169.66*** 
      

Soy meal - Soy oil   303.63***  173.02*** 
      

Soybeans - Soy oil   148.19***  158.33*** 
      

Soybeans - Soy meal   100.83***   68.68*** 
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Table A3. Regression results of the orthogonalized model 
   Soybeans – Soy meal     Soybeans – Soy oil     Soy oil- Soy meal  
  Soybeans  Soy meal    Soybeans  Soy oil    Soy oil  Soy meal  
β0  0.1244*** 0.1307***  0.1122*** 0.2415***  0.2897*** 0.1320*** 
 (0.004) (0.005)  (0.004) (0.008)  (0.008) (0.005) 
βa,1  0.9205*** 0.9541***  0.9146*** 0.9125***  0.9267*** 0.9544*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,2  0.0421*** 0.0348***  0.0493*** 0.0606***  0.0416*** 0.0347*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,3  0.0239*** 0.0015**  0.0239*** 0.0077***  0.0086*** 0.0012** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βb,1  0.0114*** 0.0305***  0.0051*** 0.0216***  0.0479*** 0.0117*** 
 (0.000) (0.002)  (0.000) (0.003)  (0.001) (0.000) 
βb,2  -0.0018*** -0.0195***  -0.0027*** 0.0200***  -0.0241*** -0.0050*** 
 (0.001) (0.002)  (0.000) (0.004)  (0.002) (0.001) 
βb,3  -0.0078*** -0.0047**  -0.0013*** -0.0242***  -0.0096*** -0.0043*** 
 (0.000) (0.002)  (0.000) (0.003)  (0.001) (0.001) 
         
Adj. R-squared  0.790 0.886  0.790 0.756  0.756 0.886 
Wald-statistic  676.29*** 148.77***   238.79*** 108.15***   703.96*** 316.09*** 

Wald test based on the following null hypothesis: (βb,i(i=1,2,3)  = 0). The standard errors are given in parentheses. *, 
**, and *** represent 10%, 5%, and 1% significance.    
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Wald test based on the following null hypothesis: (βb,i(i=1,2,3)  = 0). The standard errors are given in parentheses. *, 
**, and *** represent 10%, 5%, and 1% significance.    
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Table A5. Regression results with three lags of realized price variances as control variables 

   Soybeans – Soy meal     Soybeans – Soy oil     Soy oil- Soy meal  
  Soybeans  Soy meal    Soybeans  Soy oil    Soy oil  Soy meal  
β0  0.1001*** 0.0847***  0.1031*** 0.1014***  0.1334*** 0.1175*** 
 (0.004) (0.008)  (0.004) (0.015)  (0.009) (0.005) 
βa,1  0.9045*** 0.9484***  0.9086*** 0.9101***  0.9042*** 0.9468*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,2  0.0451*** 0.0387***  0.0529*** 0.0579***  0.0554*** 0.0381*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βa,3  0.0370*** 0.0024***  0.0256*** 0.0113***  0.0147*** 0.0042*** 
 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 
βb,1  0.0114*** 0.0306***  0.0052*** 0.0217***  0.0479*** 0.0117*** 
 (0.000) (0.002)  (0.000) (0.003)  (0.001) (0.000) 
βb,2  -0.0018*** -0.0196***  -0.0027*** 0.0198***  -0.0241*** -0.0050*** 
 (0.001) (0.002)  (0.000) (0.004)  (0.002) (0.001) 
βb,3  -0.0078*** -0.0046**  -0.0013*** -0.0242***  -0.0097*** -0.0043*** 
 (0.000) (0.002)  (0.000) (0.003)  (0.001) (0.001) 
m,1  0.4061** -0.5732***  0.3996** -0.9016  -0.9711 -0.5720*** 
 (0.173) (0.163)  (0.173) (0.593)  (0.593) (0.162) 
m,2 0.0723 -0.0455  0.1100** -0.1597  -0.1905 -0.0208 
 (0.055) (0.052)  (0.055) (0.190)  (0.190) (0.052) 
m,3 -0.0463* 0.0133  -0.0310 -0.0173  -0.1234 0.01040 

 (0.024) (0.023)  (0.024) (0.084)  (0.084) (0.023) 

         
Adj. R-squared  0.790 0.886  0.790 0.756  0.756 0.886 

Wald-statistic  675.92*** 148.75***  239.03*** 106.72***  704.52*** 315.51*** 

Wald test based on the following null hypothesis: (βb,i(i=1,2,3)  = 0). The standard errors are given in parentheses. *, 
**, and *** represent 10%, 5%, and 1% significance.    
 


