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A B S T R A C T

The use of heavy mobile machinery in agriculture for tillage and harvesting is now indispensable since it fa-
cilitates farming over large areas. However, one of the impacts of regular and prolonged use of heavy mobile
machinery is soil compaction. To help minimize this harmful effect, trafficability of agricultural fields needs to
be determined. Soil moisture acts as one of the dominant controls for field trafficability. Therefore satellites such
as Sentinel-1, which is one source of spatio-temporal soil moisture information, could be useful in assessing
trafficable conditions. One limitation of satellite-derived soil moisture is that only the upper surface layer is
mapped. In this study, we determined the feasibility of Sentinel-1 surface soil moisture to monitor trafficability
over 2016–2017. We first determined coupled conditions when surface soil moisture is a good indicator for
values at the subsurface. We applied a probabilistic approach to determine trafficability using extensive in situ
measurements of penetration resistance and surface soil moisture over a variety of crops. Trafficability is ex-
pressed as the probability that penetration resistance will exceed a threshold, for a given soil moisture value.
Furthermore, we investigated the variability encountered from these measurements to gain insights on other
temporal controls. Our results show coupled conditions for soil moisture ≥0.19 cm3 cm−3 and there is an almost
1:1 correspondence between surface and subsurface values. For decoupled conditions, values at the subsurface
can be two times more than the surface. An increase in penetration resistance variability coincided with the
maturity of crops for cultivated fields. Aside from soil moisture, root growth may have a significant impact on
the temporal variability of soil's penetration resistance. The status of trafficability can be monitored through the
high temporal resolution of Sentinel-1. However, aggregation to coarser resolutions maybe necessary as its
original 10m resolution may be suboptimal, based on validation against in situ measurements. Days favorable
for traffic were observed in early spring. This information can aid farmers in the timing of tillage activities or for
water managers in deciding to adjust water levels to meet agricultural demands.

1. Introduction

Modern agriculture relies on heavy mobile machinery to carry out
farming operations such as tillage and harvesting. Mechanization in-
creases productivity and enables farming activities to be carried out
over larger areas. This is driven both by the high demand for food
production as well as economic factors to make agriculture profitable.
However, one of the negative impacts of using heavy machinery is soil
compaction (Lal, 1991; Raghavan et al., 1990; Hamza and Anderson,
2005; FAO, 2015). As a form of land degradation, soil compaction leads
to structural damages to soil (Baumgartl and Horn, 1991; Eckelmann
et al., 2006). Destruction of soil structure also leads to poor infiltration
(Van Dijck and Van Asch, 2002) which in turn leads to water logging,
run-off and erosion (Ekwue and Harrilal, 2010). Compaction can have

negative consequences for crop root growth and soil ecosystems.
The use of heavy machinery in agriculture is indispensable so a

balance in the timing of farming operations and susceptibility of soils to
compaction must be achieved in order to minimize the harmful and
long-term effects. A way to minimize the exposure to the negative im-
pacts of using heavy machinery is to determine trafficable conditions
for the soil. Assessment of agricultural field trafficability as well as the
operating machinery during periods suitable for traffic can help slow
down the rate at which soils are being compacted so that the use of
heavy machinery can be sustainable in the long term. Trafficability is
defined by Campbell and O’Sullivan (1991) as the ability of soil to (1)
provide adequate traction for vehicles and (2) withstand traffic without
excess compaction or structural damage. This is an extension to earlier
studies for military purposes which were only concerned with vehicle
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mobility (Knight and Freitag, 1961). More recent studies on field traf-
ficability focus on soil–vehicle interaction to quantify the amount of soil
compaction with different vehicle specifications (Keller and Lamandé,
2010; Nawaz et al., 2013; Rücknagel et al., 2015). Two sets of factors
determine whether soils are able to support the weight of overlying
machinery without increased risk for compaction. On the one hand are
soil physical characteristics that dictate the mechanical strength of the
soil. These include texture and bulk density of the soil (Müller et al.,
2011). For soil texture, the strength of aggregated soils increases as clay
content increases. Texture wise, soils with higher bulk density at the
onset of field traffic can withstand higher pressures before undergoing
deformation. Both soil texture and bulk density do not change sig-
nificantly over short time scales (weeks or months) but they are im-
portant controls over the spatial patterns of trafficability. On the other
hand are external factors that affect the grain-to-grain contact of in-
dividual soil particles. Perhaps the most important of these factors is
soil moisture. For any given texture or bulk density, soil strength de-
creases towards wetter soil moisture conditions. Therefore soils become
more prone to compaction with increasing soil moisture. The amount of
overlying pressure that soils can accommodate decreases with in-
creasing soil moisture since the grain-to-grain contact disappears as
water fills up the pore space. Spatio-temporal soil moisture variability is
influenced by atmospheric conditions (Seneviratne et al., 2010), soil
properties (Rawls et al., 1991), and vegetation (Hupet and Vanclooster,
2002). Soil moisture exerts significant temporal control over soil
strength as it varies greatly over short time scales because of changes in
the prevailing atmospheric conditions. Other factors that control com-
paction are the set of vehicle specifications that determine the impacts
of overlying machinery to the soil. Soil–vehicle interaction studies focus
on the influence of tire inflation pressure, wheel and axle load on soil
deformation (Müller et al., 2011).

The mechanical strength of the soil can be determined using cone
penetrometers (Kuang et al., 2012; Upadhyaya, 2005). These are widely
used instruments for determining soil's penetration resistance, which is
equivalent to the force per unit base area required to push the cone
penetrometer through a specified increment of soil depth (Bengough
et al., 2000; ASAE EP542, 1999). They also have the advantage of
providing relatively quick and easy measurements in the field. Cone
penetrometer measurements are also referred to as cone index (CI).
Existing field trafficability models have related soil moisture with CI
using a decreasing exponential function (e.g. Henderson et al., 1988;
Ayers and Perumpral, 1982; Sojka et al., 2001; Vaz et al., 2001), with
an increasing CI trend towards drier soil moisture conditions. Several
studies are geared towards monitoring and identifying conditions when
the ground is less susceptible to compaction. For instance, Earl (1997)
and Droogers et al. (1996) related trafficability and workability to soil
hydraulic parameters to determine the number of workable days for a
field. Other studies investigated the spatial variability of soil moisture
and CI which can assist farmers in avoiding less trafficable areas within
an agricultural field (Carrara et al., 2007; Ferrero et al., 2005). These
studies have shown the impacts of soil moisture on field trafficability.
Trafficability determined from soil moisture would be beneficial for
agriculture, but this has been hampered in the past by the lack of
continuous and available soil moisture data. Datasets from satellites are
potential sources of regular and/or frequent soil moisture information
that also cover a considerable spatial extent.

In the last few years, developments in mapping soil moisture using
microwave remote sensing have been reported, with increasing spatial
and temporal resolutions and accuracy (Kornelsen and Coulibaly, 2013;
Vereecken et al., 2014). Techniques using microwave remote sensing
are divided into active and passive methods. Passive microwave remote
sensing measures the intensity of microwave emissions from the Earth's
surface, expressed in terms of brightness temperatures. These mea-
surements are performed with microwave radiometers. Active micro-
wave remote sensing supply their own source of illumination. Active
microwave sensors transmit signals towards a target and measures the

portion scattered back. Synthetic aperture radar (SAR) is an active
microwave sensing technique providing observations with a higher
spatial resolution. SAR backscatter signals depend on the technical
configuration of the sensor as well as the geometric and dielectric
properties of objects on Earth. For soils, dielectric properties are highly
influenced by its moisture content (Cihlar and Ulaby, 1974).

Sentinel-1 satellites, which carry a SAR instrument, are promising
sources of soil moisture information that would be suitable for mapping
and monitoring field trafficability at field scale. Its revisit time can be
up to 2–4 days for certain areas in Europe (Torres et al., 2012), which
makes it highly suitable for monitoring changes in soil moisture. The
acquired images are also freely and operationally available. Sentinel-1
measurements are only sensitive to soil moisture in the upper surface
layer (∼5 cm). However, assessment of trafficability requires soil
moisture values over the topsoil or critical layer (Droogers et al., 1996;
Earl, 1997; Priddy and Willoughby, 2006; Reintam et al., 2016). Al-
though values used in literature vary, this corresponds roughly to the
upper 20–30 cm of the soil layer. This means that surface soil moisture
from Sentinel-1 needs to be translated into subsurface values before it
can be used in certain applications. The vertical variability of soil
moisture may lead to decoupling between surface and subsurface values
(Capehart and Carlson, 1997; Carranza et al., 2018) wherein conditions
in the former no longer represents those at the latter. This complicates
the estimation of depth-average soil moisture needed for assessment of
trafficability. Identifying coupled soil moisture conditions would be
beneficial as it facilitates the use of satellite-derived surface soil
moisture to assess field trafficability.

In this study, our main objective is to assess whether Sentinel-1-
derived surface soil moisture can be used to monitor field trafficability.
For Sentinel-1, several aggregation schemes were tested to determine
the optimal pixel size. The accuracy of these aggregation schemes were
validated against reference in situ measurements from two monitoring
networks (Raam and Twente networks). Given the measurement depth
limitations of Sentinel-1, we first aim to identify conditions when sur-
face soil moisture values are good indicators of those at subsurface. In
addition, the variability encountered from extensive penetration re-
sistance measurements was analyzed in order to gain further insights on
its temporal controls. A probabilistic approach is applied to express
trafficability based on surface soil moisture and to incorporate vari-
abilities encountered from in situ measurements. We demonstrate the
results over a small site within the Raam catchment as an example to
show the potential of Sentinel-1 for monitoring agricultural field traf-
ficability.

2. Study area and datasets

2.1. Raam and Twente soil moisture networks

We utilized several locations within the existing soil moisture
monitoring network in Twente (Dente et al., 2011) and Raam catch-
ment (Benninga et al., 2018) as our study sites. These two networks
contain stations covering the eastern (Twente network) and south-
eastern (Raam network) parts of the Netherlands (Fig. 1). They were
installed previously to serve as validation sites for satellite-derived data
products. Each station contains sensors that continuously monitor soil
moisture over the soil profile. Soil moisture and temperature sensors
(ECH2O EC-TM or 5TM) were installed at discrete depths below the
surface (5, 10, 20, 40, and 80 cm). Measurement loggers store values
every 15min. For this study, we utilized year-long measurements from
2016–2017. In both monitoring networks, stations were installed in
agricultural areas, at the edge or corner of a field to allow continuous
measurements. Installation in the middle of the field was not permitted
because of tillage, harvesting or grazing of animals. From the Twente
network, three out of the 20 stations were utilized; from the Raam
network, six out of the 15 stations were utilized as study sites. These
were chosen to capture the variability in the crops encountered at the
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study sites during the two-year study period. The nine agricultural
fields for this study were either grass or cultivated fields. The most
common cultivated crop encountered was corn, followed by potato,
sugar beet, winter wheat, and chicory (Table 1). The terrain in these
fields was generally flat to gently sloping. Sandy soils were encountered
in most of the fields, except for TW07 where the soil holds slightly
higher loam content.

2.2. In situ surface soil moisture and cone index measurements

Aside from the soil moisture networks, we also collected in situ
surface soil moisture and cone index measurements from the nine
agricultural fields (Fig. 1). These were taken from two growing seasons,
specifically from 26 May 2016 to 09 October 2017. For each growing
season, a field was visited at least twice to collect measurements during
different soil moisture conditions. The number of measurements ranged
from 10 to 30 points per field per measurement day, depending on the

size of the field. The points are 15–20m apart and forms somewhat of a
grid for each field. In addition, measurements were always taken at the
same location for both surface soil moisture and penetration resistance.
The measurement locations were also kept the same during succeeding
measurement days for a growing season. This was not feasible for both
years because the changes in crop planted made it difficult to keep the
locations of existing points. In total, 840 actual measurement points
were collected over all study sites.

Surface soil moisture was measured using a hand held time domain
reflectrometry (TDR) device (TRIME-IMKO) with 5 cm pins. The cali-
bration of TDR for sandy soils at the study sites was performed against
volumetric soil moisture values from undisturbed samples collected
during several occasions within the whole field campaign (Fig. 2). A
total of 127 sample points were used for calibration using linear re-
gression. The calibrated volumetric soil moisture (VWC) is given by the
function:

= +xVWC 0.797 0.114 (1)

Fig. 1. Location of the study sites in Twente (yellow square) and the Raam (yellow triangle) soil moisture networks (inset). The stations utilized from Twente are
plotted on the left while those from the Raam are plotted on the right. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 1
Characteristics of the study sites. The description of soil types are taken from BOdemFysische EenhedenKaart (BOFEK 2012, (Wosten et al., 2013)). For the fields
within Raam, the percentage of mineral components and organic matter content are taken from Benninga et al. (2018) while those from Twente are also from BOFEK
2012.

Station No. Soil description %Silt %Clay %OM Crop 2016 Crop 2017 Size (ha)

RM02 Weakly loamy sandy soil on sub-soil of coarse sand (305) 3.7 2.1 3.8 Sugar beets Winter Wheat 2.96
RM07 Loamy sandy soil with thick man-made earth soil (317) 10.5 5.2 2.2 Corn/Cichory Corn/Potato 4.79
RM08 Weakly loamy podzol soil (304) 1.6 1.4 4.1 Sugar beets Winter Wheat 2.51
RM11 Weakly loamy podzol soil (304) 1.7 1.6 1.9 Corn Corn 3.49
RM13 Weakly loamy soil partly on sub-soil of coarse sand (309) 1.1 0.8 1.4 Corn Grass 8.48
RM15 Weakly loamy sandy soil with thick man-made earth soil (311) 5.5 2.8 3.1 Grass Grass 2.05
TW02 Loamy sandy soil with thick man-made earth soil (317) 21 4 5.2 Grass Grass 4.76
TW07 loamy sandy soil with a clay deck (316) 35 13 2.4 Winter Wheat Corn 4.55
TW10 Weakly loamy podzol soil (304) 13 3 4.1 Corn/Potato Corn 8.88
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where x is the soil moisture measured using the TDR device. The linear
function used adequately fitted the points based on R2= 0.681. In
addition, RMSE=0.067 cm3 cm−3 indicated small differences between
these two measurements and bias=−0.064 cm3 cm−3 indicated that
measurements using the TDR device gave slightly lower readings
compared to those from undisturbed samples.

Penetration resistance measurements were obtained using a hand
held penetrometer (Eijkelkamp Penetrologger) with a 1 cm cone dia-
meter and a 60 degree angle. We referred to the penetration resistance
measurements also as the cone index (CI). The measurements were
taken from the soil surface until 20 cm for every 1 cm-depth interval.

2.3. Sentinel-1 imagery

The SAR instrument on board the Sentinel-1 satellites operates in C-
band (5.405 GHz), which in Interferometric Wide Swath (IW) mode
provides over land images at VV and VH polarization, with pixel spa-
cing of 10m×10m and a reported radiometric accuracy of 1 dB (3σ)
(Torres et al., 2012). Sentinel-1A and Sentinel-1B provide images since
3 October 2014 and 26 September 2016, respectively. The combination
of Sentinel-1A and Sentinel-1B results in a revisit time of 3 days over
the Raam study area and a revisit time of 1.5 days over the Twente
study area. Given the higher sensitivity to soil moisture of backscatter
observations acquired in VV polarization than in VH polarization (e.g.
Baghdadi et al., 2017; Bousbih et al., 2017; Hajj et al., 2017), we used
the observations in VV polarization to retrieve soil moisture. The Sen-
tinel-1 images are freely available via the Copernicus Open Access Hub
(ESA, 2019).

We applied the following operations to convert raw pixel values into
radar backscatter (σ): (1) Range Doppler Terrain Correction (RDTC)
using the tool in the Sentinel Application Platform (SNAP) software,
which includes (a) radiometric calibration, (b) reprojection to correct
for distortions due to topographical variations and tilt of the satellite
sensor, and (c) radiometric normalization with projected local in-
cidence angles, and (2) a 5× 5 median speckle filter to suppress
speckle noise.

Projected local incidence angles of the Sentinel-1 observations vary
between 36.8° and 40.7° for the Raam study area and 31.5° and 46.7°
for the Twente study area. We normalized the backscatter observations
to a reference angle of 40° using a cosine correction (Ulaby et al., 1986):

=σ σ
φ
φ

cos ( )
cos ( )

o o
n

nref
ref

inc (2)

where σo
ref (in m2m−2) is the backscatter observation normalized to a

reference angle φref of 40°, σo is the backscatter observation (in m2m−2)
and φinc is the local projected incidence angle (in degrees). We assumed
a value of n=2, based on C-band SAR observations in previous studies
(Lievens et al., 2011; Van der Velde and Su, 2009; Mladenova et al.,
2013; van der Velde et al., 2015), which corresponds to the assumption
that re-radiation from the soil surface follows Lambert's cosine law
(Ulaby et al., 1986). Sentinel-1 observations that exceed the upper limit
of −2 dB or the lower limit of −22 dB (the maximum noise equivalent
sigma zero) were taken out.

Fig. 2. Plot of volumetric soil moisture measured using TRIME TDR and un-
disturbed soil samples. Calibration of TRIME TDR measurements was per-
formed by fitting a linear function of over the points. The fit is deemed rea-
sonable based on an R2 value of ∼0.7. Values for bias and RMSE are also in
cm3cm−3.

Fig. 3. Flowchart summarizing the methods
applied in this study. The analysis was carried
out in three parts. One section focuses on
translating Sentinel-1 backscatter to soil
moisture values and validating the results with
in situ time series measurements. Another
section focuses on determining coupled soil
moisture conditions. The third section de-
scribes the probabilistic framework applied to
express trafficability using surface soil
moisture and penetration resistance values.
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3. Methods

The analysis carried out for monitoring field trafficability using
Sentinel-1 was divided into three parts (Fig. 3). The first section de-
scribes the soil moisture retrieval from Sentinel-1 backscatter values.
This section also includes the validation of soil moisture retrievals using
time series field measurements. The second section describes the cou-
pling of surface and topsoil soil moisture values by looking at the
variability between the two. This was needed in order to identify which
surface soil moisture values (e.g. derived from Sentinel-1) are re-
presentative for the total soil moisture content within the topsoil. Using
these results, the third section describes the probabilistic framework
applied to express field trafficability using in situ measurements of
surface soil moisture and cone index.

3.1. Soil moisture retrieval – change detection algorithm

The change detection algorithm, developed by Wagner et al. (1999),
linearly relates backscatter (in dB) to a relative soil moisture index Sw of
the surface layer over time:

=
−

−
S t

σ t σ

σ σ
( )

( )
w

o o

o o
40 40 ,Min

40 ,Max 40 ,Min

o o

o o (3)

where σ o
40 ,Mino and σ o

40 ,Maxo are the backscatter observations under dry
and wet soil conditions (in cm3cm−3), respectively. The absolute
minimum and maximum values of σ o

40o are probably outliers due to
radiometric noise, speckle or exceptional surface conditions, such as
wet snow or surface inundation (Pathe et al., 2009; Bauer-
Marschallinger et al., 2018). To exclude these outliers, we estimated the
σ o

40 ,Mino and σ o
40 ,Maxo by the 2.5% and 97.5% percentile of the time

series. For the calculation of σ o
40 ,Mino and σ o

40 ,Maxo we used time series of
two complete hydrological years, between 1 March 2016 and 1 March
2018, resulting in 395 images over the Twente region and 198 over the
Raam catchment. For backscatter observations that exceed σ o

40 ,Mino or
σ o

40 ,Maxo , S t( )w is set equal to 0 or 1, respectively.
The main assumption of the change detection algorithm is that the

parameters, other than soil moisture, are considered time-invariant,
such as surface roughness and vegetation. The change detection algo-
rithm is promising for operational applications of soil moisture re-
trievals from satellite observations, because the model is build only on a
statistical analysis of backscatter time series and no detailed ground
parameters are required (Wagner et al., 1999; Pathe et al., 2009;
Hornacek et al., 2012; Bauer-Marschallinger et al., 2018). Although
Wagner et al. (1999) developed the change detection algorithm for
coarse satellite observations (European Remote Sensing scatterometer
satellites, spatial resolution 50 km), several studies obtained acceptable
correlations with in situ soil moisture measurements using SAR ob-
servations at C-band (Pathe et al., 2009; Hornacek et al., 2012; Bauer-
Marschallinger et al., 2018).

The change detection algorithm results in a relative soil moisture
estimate whereas absolute soil moisture, corresponding to the volu-
metric water content, is needed for mapping field trafficability. This
problem is circumvented here by assuming that soil moisture varies
between the wilting point (θwp) and saturated soil moisture content
(θsat), which allowed us to linearly scale Sw to volumetric soil moisture
θ (in cm3cm−3), as follows:

= − +θ t θ θ S t θ( ) ( )* ( )wsat wp wp (4)

The BOdemFysische EenhedenKaart (BOFEK2012) provides the soil
type classes and associated soil physical characteristics (including van
Genuchten parameters) for the soil units in the Netherlands (Wösten
et al., 2001; Wosten et al., 2013). Then, the van Genuchten equation
(van Genuchten, 1980) gives the soil moisture content at wilting point
and saturated conditions (Table 2). Benninga et al. (2018) showed that
the wilting point and saturated soil moisture content calculated from

BOFEK2012 align with the minimum and maximum soil moisture
measurements at 5 cm depth of the individual stations of the Raam
network.

3.1.1. Validation of Sentinel-1 estimates using in situ measurements
The accuracy of soil moisture retrievals were evaluated against re-

ference soil moisture values at the study sites. We utilized the 5 cm soil
moisture measurements from the nine stations as reference values to
validate the soil moisture retrievals from Sentinel-1. A subset of the
total dataset was obtained based on the common dates for both data-
sets. Aside from the original 10m resolution, we tested four aggregation
methods in order to determine the optimal pixel resolution for Sentinel-
1. The first method employed aggregation to coarser resolutions of all
the pixels in the Sentinel-1 image after masking out those which were
not agricultural lands or low vegetation nature areas. For the second
method, we aggregated only the pixels within each field boundary after
masking out pixels outside each field. For the third method, we ag-
gregated only the surrounding pixels, with the station located at the
center. A circular buffer around each station was created to mask out
the pixels outside the buffer. The fourth method involved calculation of
the field mean. We aggregated the pixels to 50m, 100m, and 150m, for
each of the first three aggregation methods. The choice of upper limit
(150m) for aggregation was based on the size of the smallest field
encountered at the study sites (Table 1) so that it is comparable to area
of the largest pixel size used. The smallest field is at RM15 with an area
of 2.05 ha while a 150×150m pixel size has an area of 2.25 ha.

To select the optimal resolution and aggregation method for
Sentinel-1, we calculated several performance metrics to compare the
results. We computed RMSE, bias, unbiased RMSE, and Spearman's rank
correlation coefficient for the results of aggregation methods used. The
optimal resolution and aggregation method was further utilized to de-
rive the trafficability status at selected fields over 2016–2017.

3.2. Soil moisture and cone index variability

3.2.1. Vertical soil moisture variability
As the first step to relate satellite-derived surface soil moisture to

field trafficability, we investigated when surface soil moisture is a good
indicator of subsurface soil moisture conditions. We utilized the time
series measurements at 5 cm and 20 cm from the selected study sites
within Twente and Raam monitoring networks. The 5 cm values re-
present surface soil moisture measurements as they approximate the
depths at which most satellites are able to extract soil moisture in-
formation. The 20 cm values correspond to measurements at the topsoil
depth which carries the weight of overlying machinery. Several studies
have also referred to such depths as the critical layer (Knight and
Freitag, 1961; Paul and de Vries, 1979; Priddy and Willoughby, 2006).
We referred to vertical variability as the irregularity between soil
moisture values between 5 cm and 20 cm depths.

Using the time series soil moisture datasets from the Raam and

Table 2
Values of θsat and θwp derived from BOFEK 2012. These parameters were used to
linearly scale relative SW values and derive absolute soil moisture values (see
Eq. (4)).

Station No. BOFEK code θsat θwp

RM02 305 0.43 0.03
RM07 317 0.45 0.05
RM08 304 0.43 0.03
RM11 304 0.43 0.03
RM13 309 0.43 0.03
RM15 311 0.43 0.03
TW02 317 0.45 0.05
TW07 316 0.40 0.12
TW10 313 0.45 0.05
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Twente monitoring networks, we applied residuals analysis to look at
(de)-coupling between surface and topsoil moisture conditions.
Carranza et al. (2018) inferred that there is lower vertical variability
during coupled soil moisture conditions. The analysis involved fitting a
non-parametric loess function to relate surface and topsoil values. After
which, residuals from the fitted loess function were used to calculate
the residuals variance. This showed the vertical variability throughout
the whole soil moisture range encountered at the study sites. To de-
termine whether coupling or decoupling is present given any soil
moisture value, the cumulative residuals variance line was plotted. This
allowed us to observe changes in the variance of residuals as they were
reflected as changes in the slope of the cumulative variance line. The
soil moisture range with flatter slopes indicated lower variability or
coupled range, and vice versa.

To get an impression of the similarity in soil moisture at 5 cm and
20 cm during coupled and decoupled conditions, the ratio between two
was computed as a simple quantitative measure of correspondence. A
Bayesian approach, developed and explained in detail by Kruschke
(2013), was applied to determine the probabilistic mean of these ratios.
The mean of 5–20 cm ratio is the parameter of interest that will be
estimated. Briefly, the method involved Monte Carlo Markov Chain
(MCMC) to generate a large representative sample (100,000 samples) to
approximate the posterior distribution of the parameter of interest.
From the posterior distribution, the mean as well as the high density
interval (HDI), where 95% of the estimates lie was calculated. MCMC
sampling was performed separately for the coupled and decoupled
range.

3.2.2. Cone index seasonal variability
We also investigated if there is a trend in CI values over a growing

season using the median and interquartile range (IQR) of CI over the
topsoil (upper 20 cm values). This was performed for four fields where
the most frequent measurements were made. These fields are RM07,
RM08, TW02, and TW10. TW02 is a grass field while the other three are
cultivated fields (see Table 1). We accounted for differences in soil
moisture by correcting CI values to a single soil moisture value based on
the method of Busscher et al. (1997). Visual assessment of the median
and IQR for different dates was performed to compare CI values and to
identify if there are trends over the growing seasons of 2016 and 2017.

3.3. Probabilistic framework to model field trafficability

A probabilistic approach was applied in identifying trafficable
conditions, This allowed for the variabilities encountered in the in situ
measurements to be incorporated in the analysis. First, we determined
the joint empirical probability density function (pdf) for cone index and
surface soil moisture using kernel density estimation (KDE). The pdf's
were then utilized to calculate the conditional probabilities to express
field trafficability.

3.3.1. Estimating joint probability density function (pdf) for CI and surface
soil moisture

We selected a subset of the in situ measurement points using the
coupled range identified in Section 3.2.1. At this range, surface soil
moisture can be directly related to CI as it is a good indicator of values
for the whole topsoil. In situ measurement points that belong to the
decoupled range were discarded.

Initial visual inspection of the measurement values revealed that
those collected from grass fields tend to have higher cone index values
than those in cultivated fields. The probabilistic method in Section
3.2.1 was applied and extended to test whether these measurements
indeed form two separate groups, and merited separate analyses. This
method is similar to a t-test with the main goal of determining whether
the CI values are distinct from each group. The posterior distributions of
grass and cultivated field were estimated using MCMC, also using
100,000 representative samples. To test the similarity between these

two groups, the difference of means between every combination of
representative values was obtained. Two groups were deemed similar if
the difference between the means between their posterior distribution
were close to or equal to zero.

kernel density estimation (KDE) was applied afterwards to de-
termine the empirical bivariate distribution of surface soil moisture and
cone index. This is a non-parametric method to estimate the underlying
probability density function (pdf) of a random variable (Parzen, 1962;
Rosenblatt, 1956) using kernels. It is a suitable method for datasets with
complicated distribution since no assumption is made on the shape of
the underlying density function. Density estimation is carried out by
centering a kernel at the location of each data point. The overall density
estimate is obtained by summing all the densities estimated at each
point. Points that plot closer to each other will have more kernels
centered nearby which yields higher density estimates.

In the bivariate case, the data points were represented by two
vectors x1= [x11, x12, x13, …, x1n] and x1= [x21, x22, x23, …, x2n]
where xi=(x1i, x2i) was a sample from a bivariate distribution f. These
two vectors represent the datasets collected for surface soil moisture
and CI. The bivariate kernel density estimator f was given by:

∑= −
=

f x
n

K x xHˆ ( , ) 1 ( )
i

n

iH
1 (5)

where KH is a non-negative kernel function and H is the kernel band-
width that controls the amount of smoothing.

To calculate the joint pdf of soil moisture and CI using KDE, we
utilized a Gaussian kernel with bandwidths (represented by h for a
univariate case) obtained using Scott's rule (Scott, 1992). For cultivated
fields, we obtained a value of hSM=0.022 cm3 cm−3 and
hCI=0.138MPa; and for grass fields, we obtained
hSM=0.001 cm3 cm−3 and hCI=0.184MPa. From the joint pdf of CI
and soil moisture, we generated 500 random samples from a multi-
variate normal distribution using the bandwidth matrix derived
(Gentle, 2009). The random samples were drawn with replacement
along the length of x(total number of paired data points), and then
adding random noise or perturbations to the sampled values using
bandwidth matrix H. These random samples were used to calculate the
conditional probabilities.

3.3.2. Determining conditional probabilities for CI to express trafficability
For a given soil moisture, we calculated the cumulative conditional

probability that the corresponding CI will take a value less than or equal
to a known threshold. Higher probability values indicated poor traf-
ficability. We used a value from Droogers et al. (1996) who applied
0.70MPa as the threshold for conditions suitable for agricultural traffic.
Using the randomly generated points, trafficability is evaluated using
the conditional cumulative distribution function (ccdf) given by FX|A.
This expressed the cumulative probability of a random variable X
conditioned on the occurrence of an event A:

= ≤F x P X x A( ) ( | )X A| (6)

In this case, we determined the cumulative probability that a cone
index value X will less than or equal to x=0.7MPa given a soil
moisture value A. Higher probability values indicate conditions not
favorable for traffic, vice versa. Based on the results obtained in Section
4.1, soil moisture from Sentinel-1 images were transformed into its
corresponding probability values for trafficability.

4. Results and discussion

4.1. Surface soil moisture from Sentinel-1

Fig. 4 shows the calculated accuracy metrics for using the four ag-
gregation methods applied. The plot shows improvement in accuracy in
all four metrics when larger pixel sizes are used compared to the
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original 10m pixel size of Sentinel-1. Values for RMSE, bias, and un-
biased RMSE are lower while Spearman's correlation is higher for larger
pixel sizes compared to the original 10m Sentinel-1 pixel size. From the
four resolutions tested, using 150m pixel resolution provides the best
results. Furthermore, aggregation of all the pixels in a scene results in
slightly higher accuracy values for all the study sites. We observed
smaller variability for each metric calculated when aggregating all the
pixels in a scene compared to the other methods. Radiometric un-
certainties at the field scale, which affect the soil moisture retrieval
accuracy, may be influenced by speckle effects (Ulaby et al., 1986).
Aggregation of the original Sentinel-1 observations to larger pixels sizes
implies a larger number of independent samples that leads to the sup-
pression of speckle effects; this is critical for improving σo uncertainties.
Our results are in line with other studies who showed that aggregation
of SAR pixels produced better results. For instance, Pierdicca et al.
(2013) obtained higher soil moisture retrieval accuracy when ag-
gregating pixels to field scale using synthetically generated σo re-
presenting Sentinel-1 observations of bare soil. Pathe et al. (2009)
found that retrieval errors may be dominated by noise in SAR mea-
surements, even when assuming high model parameter errors to ac-
count for the neglect of vegetation effects. They further suggested that
several pixels should be averaged to decrease the noise level, even at
the expense of the spatial resolution of the soil moisture maps.

For the different land cover types, we see no apparent trend in the
results. For instance, points in Fig. 4 for grass (green points) and cul-
tivated fields (brown points) do not reveal any clustering from the plots;
which implies that the accuracy of soil moisture retrievals from Sen-
tinel-1 is comparable for grass and cultivated fields.

Aside from soil moisture, a component of the total radar backscatter
is due to the influence of surface roughness and vegetation. In culti-
vated fields, tillage activities at the beginning of a growing season effect
changes to surface roughness. Based on field measurements, Callens
et al. (2006) showed that after the onset of the first rainfall events,
surface roughness remains fairly stable. A sensitivity analysis performed
by Joseph et al. (2010) on soil moisture retrieval across the corn growth
cycle also came to a similar conclusion. In grass fields and meadows,
surface roughness may be considered invariable over longer periods of
time; an assumption frequently adopted in soil moisture retrieval
methods (e.g. Álvarez-Mozos et al., 2006; van der Velde et al., 2012).
The magnitude of vegetation effects on the total backscatter depends on
sensor specifications (e.g. frequency, incidence angle, polarization) and
vegetation type. Effects of grass on σo is generally expected to be weak
because the dimensions of scatterers (i.e. leaves and stems) are small in
comparison to the SAR wavelength (e.g. Van der Velde and Su, 2009).
However, the effects may be significant in cultivated fields. For ex-
ample, Joseph et al. (2010) quantified the effect of corn across its
growth cycle on C- and L-band backscattering at incidence angles of
15°, 35° and 55°. They showed that throughout the corn growth cycle,
both an attenuated soil return and vegetation scattering can dominate
the measured σo. However, the measured σo still displayed some sen-
sitivity to soil moisture even at peak biomass. Despite the known im-
pacts of surface roughness and vegetation, previous studies have shown
that change detection method can reasonably track changes in soil
moisture using multi-temporal satellite imagery (e.g. Moran et al.,
2000; Baghdadi et al., 2007; Pathe et al., 2009) since it tries to over-
come the difficulties in applying bare soil and vegetation backscatter

Fig. 4. Plots of four accuracy metrics used to compare the aggregation schemes and resolutions tested. RMSE, bias, unbiased RMSE, and Spearman's rank correlation
coefficient were computed to compare the results. All metrics are in cm3cm−3, except for Spearman's rank correlation coefficient which is unitless. (For interpretation
of the references to color in the text, the reader is referred to the web version of this article.)
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models by only interpreting changes in backscatter rather than absolute
backscatter levels.

For the performance of linear transformation applied (see Eq. (4)),
the accuracy might vary depending on the actual soil moisture dis-
tribution. At the study sites, the range of soil moisture encountered span
from dry to wet conditions, which are close to the θwp and θsat para-
meter values applied. However, in regions where soil moisture dis-
tribution is skewed (e.g. very dry or very wet climates), the linear
transformation method might not be the optimal choice if the range of
soil moisture values encountered is limited, and σMin and σMax are not
measured under conditions of θwp and θsat. In such cases, another

transformation may be more appropriate. For instance, cumulative
distribution function (cdf) matching (Reichle and Koster, 2004) can be
applied as this method allows to incorporate the soil moisture dis-
tribution in scaling Sw values.

4.2. Soil moisture and cone index variability

The scatterplot in Fig. 5(left) shows a general linear trend across the
soil moisture range. The variability across the soil moisture range is not
constant based on the length of the standard deviation bars. However, it
is not very easy to visualize trends in variability from the scatterplot

Fig. 5. Left: Scatterplot of 5 cm and 20 cm soil moisture values. 5 cm values represent surface soil moisture while 20 cm values represent the topsoil. A loess function
is fitted for the overall trend while standard deviation bars indicate the variability across the whole soil moisture range. Center: Plot of the residuals from the fitted
loess function over the surface soil moisture range. The variance from the residuals for every 0.01 cm3 cm−3 interval is given by the vertical bars at the bottom of the
plot. The cumulative variance of residuals is plotted as a black line. A change in the slope of the line at 0.19 cm3 cm−3 separates the decoupled range
(< 0.19 cm3 cm−3) from the coupled range (≥0.19 cm3 cm−3). Right: Posterior distributions of 5 to 20 cm soil moisture ratio has a mean of 1.03 cm3 cm−3 for
coupled range compared to 0.55 cm3 cm−3 for decoupled range. The distributions also show the range corresponding to the 95% high density interval of the ratios
calculated.

Fig. 6. Profile CI values at four selected fields where most measurements were collected. The top panel shows the median CI per depth per measurement date
(mm–dd) while the bottom panel shows the interquartile range (IQR). Dates when the measurements are collected are indicated in the bottom panel. For 2016 and
2017, a slight increase in both median and IQR of CI is observed up to mid-growing season (brown colors). These values decrease towards the end or after harvesting
(blue colors). This pattern is observed for the three sites which are cultivated fields, with exception of TW02 which is a grass field. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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alone. Further examination of the variance of residuals from the fitted
loess function (Fig. 5, center) reveals that for dry conditions, variance is
consistently higher compared to those during wet conditions. A change
from higher to lower variance occurs at 0.19 cm3 cm−3 based on the
change in slope in the cumulative variance line. From this, we de-
termine that values from<0.19 cm3 cm−3 corresponds to a decoupled
soil moisture range while those ≥0.19 cm3 cm−3 corresponds to the
coupled range (Carranza et al., 2018).

For assessment of trafficability, wetter soil moisture conditions are
of primary interest since soils are generally more susceptible to com-
paction. During wet conditions, we found coupling between surface and
topsoil soil moisture values, therefore the former is a good re-
presentative of the total soil moisture within the latter. This is further
confirmed by the probabilistic mean calculated. A value equal to
1.036 cm3 cm−3 for the 5–20 cm ratio (Fig. 5, right) indicates an almost
1:1 correspondence between the two. This implies that surface soil
moisture, for instance those derived from Sentinel-1, can already be
used as a proxy for topsoil values without the need for a separate
analysis to convert surface values to topsoil soil moisture content. For
the decoupled range, the probabilistic mean is 0.547 cm3 cm−3, which
means that subsurface values can be twice as much as the surface.

CI plots over the topsoil for four fields show the variability over a
growing season Fig. 6. CI values in cultivated fields increase in median
and IQR towards mid-growing season and then decreases at the end or
after harvest. This shows that CI becomes higher and more variable
mid-growing season when the crops are mature. However, this trend
was not observed in the grass field (TW02). Aside from soil moisture,
we hypothesize the root growth affects the temporal variability of CI for
cultivated fields. For the grass field, the lack of trend observed is still
inconclusive since we only had one site. Several studies have already
looked at importance of roots in increasing soil strength, but has been
investigated mainly in relation to erosion and hazards (De Baets et al.,
2008; Fan and Su, 2008; Mickovski et al., 2009). Studies investigating
the impact of root growth on soil hydraulic properties and field traf-
ficability is still rare in literature (e.g. Wieder and Shoop, 2017).

4.3. Probabilistic modeling of field trafficability

The calibrated values plotted in Fig. 7(left) show that grass fields
have higher CI values compared to those in cultivated fields. These two
groups also show different probabilistic mean CI, which warrants

separate analysis for trafficability (Fig. 7, right). Grass fields have a
probabilistic mean CI of 1.74MPa while cultivated fields have
0.709MPa. The posterior distribution of the mean CI for cultivated and
grass fields do not overlap and differ by at least 1MPa. This difference
can be attributed to the type of land management in these fields. For
cultivated fields, yearly tillage loosens the soil so that CI values become
lower at the beginning of the growing season. For grass fields, regular
mowing and trampling of animals results in higher CI. Fields which
remain as grass fields become more compacted over time as they are not
being tilled. Faunal activities (e.g. from burrowing animals) may alle-
viate soil compaction to a certain degree but based on our measure-
ments, these are not enough for grass fields to have similar CI values to
cultivated fields.

Fig. 8 shows the bivariate pdf's obtained and random samples gen-
erated for cultivated and grass fields. Aside from having generally
higher values, grass fields also have higher variability as seen from the
spread of points in the scatterplot (Fig. 7) and bivariate pdf's (Fig. 8).
The variability observed in the pdf's implies that CI values does not
depend on soil moisture alone. Aside from soil moisture, bulk density
also controls CI values but was implicitly incorporated when we sepa-
rated the analysis for cultivated and grass fields. The differences in CI
for cultivated and grass fields already indicate their differences in bulk
densities.

The distribution of random samples closely approximate the original
measurement data distribution CI but not for soil moisture (Fig. 8,
bottom panel). However, the soil moisture values from the random
samples generated seem to approximate the realistic range and dis-
tribution of soil moisture. This was confirmed by also plotting the 5 cm
time series measurements from both Raam and Twente networks (plot
not shown). In addition, our measurements might also be incomplete
since we were not able to encounter all possible soil moisture values.
From Fig. 7, we lack measurements beyond 0.4 cm3 cm−3 for grass and
between ∼0.35–0.4 cm3 cm−3 for cultivated fields. Nevertheless, we
were still able to generate random samples from the underlying dis-
tribution of soil moisture with the bandwidths used (see Section 3.3.1).

The pdf's generated over the study two-year period only reflect
average/normal weather conditions in the Netherlands, which is char-
acterized by having moderate rainfall over the whole year. Similar to
our measurements (Fig. 8), intermediate soil moisture values
(20–30 cm3 cm−3) are the most frequent while very dry and very wet
conditions occur less frequently. Therefore, the pdf's obtained are more

Fig. 7. Left: Scatterplot of in situ measurements of surface soil moisture and penetration resistance. Colored points are within the coupled soil moisture range while
grey points are in the decoupled range. Right: Distribution of the probabilistic mean CI for grass and cultivated fields. The difference in mean CI for these two groups is
given in the bottom panel. The probability that the difference between these two sets of mean CI is zero is also equal to zero. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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suitable for predicting trafficability during average weather years. Since
the shape of the pdf used is not universal, the results of the analysis may
be suboptimal for periods when or areas where very wet or very dry
weather conditions are prevalent. Modeling trafficability for such
conditions can be done if the appropriate bivariate pdf's can be selected.

As for the trend in soil strength values over the whole soil moisture
range, we observed that it is consistent with previous studies
(Henderson et al., 1988; Vaz et al., 2011). They have shown as in-
creasing CI trend towards drier conditions. Our findings are similar
despite using only surface soil moisture values. This further strengthens
the potential for using satellite-derived surface soil moisture for mon-
itoring field trafficability.

4.4. Monitoring trafficability with Sentinel-1

A small area around the vicinity of RM07 in the Raam catchment is
selected as a test site to demonstrate monitoring of trafficability in grass
and cultivated fields Fig. 9 (top panel). Here we show the plots at four
locations (2 in grass and 2 in cultivated fields). A 150m pixel resolution
was used based on the results in Section 4.1. The time series plots in
Fig. 9 show soil moisture at the center of each selected field. Changes in
the status of trafficability is easily observed from the high temporal
resolution of Sentinel-1. Although in 2016, available Sentinel-1 imagery
was lesser compared to 2017. Probability values for cultivated fields are
much higher compared to grass fields even though the range of soil
moisture encountered for both types of fields were the same. Soil
moisture at the four selected locations all show seasonality but inter-
field variability is larger for cultivated fields compared to grass fields.
We also observed the same inter-field variability for other locations
(both grass and cultivated fields) in this selected area (plot not included
here).

From the time series plots in Fig. 9, we can identify time periods
with lower probability values which translates to good trafficability

conditions. For the two cultivated fields, this is observed in early spring
(around April) of 2017. This also coincides with the timing of tillage for
some fields in the Netherlands. For spring of 2016, however, the traf-
ficability conditions between these two cultivated fields vary. For C1,
soil moisture conditions indicate good trafficability, while for C2 it is
the opposite case. The soil moisture in C2 did not decrease, so the
trafficability conditions did not improve over the spring period. This
difference may due to types of crops grown as well as how these fields
were managed in previous years.

Grass fields always appear to be trafficable given the threshold
value used. This is not the case for cultivated fields where there are
more pronounced fluctuations in trafficable conditions. However, the
results for grass fields may not always hold true, especially for tractors
with very heavy weights. In principle, these vehicles are legally allowed
to reach up to 21 tons per axle (EU Regulation 167/2013). In contrast to
our results for grass fields, the soil may not be trafficable for very heavy
vehicles during saturated conditions. The threshold value we used may
be a more reasonable indicator of trafficability using average tractor
weights ranging from 6-8 tons.

These results could potentially be used by farmers and water man-
agers alike. For farmers, the results can be used to identify periods
suitable for traffic and to aid in deciding when to initiate tillage ac-
tivities. Although in practice, this might still be difficult to apply since
farmers still need to work on their fields despite conditions unfavorable
for traffic. Nevertheless, the results can help in increasing awareness as
to when soils are more susceptible to compaction. For water managers,
the results could aid in their decisions to adjust water levels in channels
and/or canals in order to meet the water demands of farmers.

5. Conclusion

In this paper, we demonstrated how Sentinel-1 can be used to
monitor trafficability status in agricultural fields. Our findings show

Fig. 8. Top: Plots of the joint pdf's of surface soil moisture and cone index generated by kernel density estimation for cultivated (left) and grass fields (right). Colored
points are measurement data while grey points are random samples drawn using the joint pdf's. Contour lines indicate the density of points. Bottom: Histograms and
cumulative distribution function (cdf's) of in situ measurements and random samples drawn are plotted for comparison. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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that by identifying coupled conditions, satellite-derived surface soil
moisture can be directly related with cone index values. Since we fo-
cused only on soil moisture as the dominant temporal control, expres-
sing trafficability as probability values is advantageous because un-
certainties are already incorporated. However, further attention should
be given to the impacts of root growth as it may also act as a significant
temporal control for cone index. Finally, we showed that the high
temporal resolution of Sentinel-1 is suitable for tracking the changes in
agricultural field trafficability. However, our results show that ag-
gregation to coarser resolution may be necessary, which may also
preclude identifying the spatial variability within a field.
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