MSc Thesis Business Economics

Stochastic simulation model for investment decision making in a new beef cattle production system in Kazakhstan

Askhat Zhanibekov

August 2019

WAGENINGEN
UNIVERSITY \& RESEARCH

Stochastic simulation model for investment decision making in a new beef cattle production system in Kazakhstan

Student name: Askhat Zhanibekov

Registration number: 840131987110
Programme: MSc. Management, Economics and Consumer Studies
Specialisation: Business Economics
Chair group: Business Economics
Emails: Askhat.zhanibekov@wur.nl

Supervisor: Dr. Jaap Sok
Examiner: Prof.dr.ir. AGJM (Alfons) Oude Lansink
Group: Business Economics

Name course: MSc Thesis Business Economics
Number: BEC-80436
Study load: 36 credits
Date: xx-08-2019

Hollandseweg 1 (Building 201)
6706 KN Wageningen, The Netherlands
T: 0317-(4)84065
E: office.bec@wur.nl

DISCLAIMER
This report is written by a student of Wageningen University as part of the master programme under the supervision of the chair Business Economics.
This is not an official publication of Wageningen University and Research, and the content herein does not represent any formal position or representation by Wageningen University and Research. This report cannot be used as a base for any claim, demand or cause of action and. Wageningen University and Research is not responsible for any loss incurred based upon this report.
It is not allowed to reproduce or distribute the information from this report without the prior consent of the Business Economics group of Wageningen University (office.bec@wur.nl)

Abstract

The primary objective of the thesis was to perform economic feasibility analysis of investing in a new beef cattle production system in Kazakhstan, specifically in cow-calf operations. To reach this goal, a stochastic simulation model of a cow-calf operation was developed and used as a research tool. First, a basic deterministic model of the cow-calf operation was constructed with the following major blocks: (i) reproduction, backgrounding and feed production enterprises, (ii) the whole-farm budget, and (iii) the cash flow budget. Second, several variables, such as price for cattle's live weight, calves' average weight and feed costs were turned into stochastic as major factors affecting the economic feasibility of the cow-calf operation. Finally, NPV was used as a measure of economic feasibility of investments. The analysis revealed that investments into the cow-calf operation could be economically feasible in a long term, that is above 10 years, on condition that governmental investment subsidies were reinvested into the project. The study in overall may help investors to understand risks and implications of investing into the beef cattle farming in Kazakhstan. Smallholder farmers may benefit by adopting the developed model as an economic decisions-making tool in their beef cattle farming operations.

Keywords: stochastic simulation, economic budgets analysis, enterprise budget, whole-farm budget, cash flow budget, net present value, beef cattle production system, cow-calf operation

Acknowledgements

First, I would like to thank my family: Saltanat and Assanali for the love, continuous support they have given me throughout my studying.

Second, I am grateful to my research supervisor Dr. Jaap Sok for his academic support, guidance and encouragement through the all period of my thesis writing. I learned a lot from his critical and pragmatic approach towards work, very deep questions and valuable suggestions. I am thankful to the Business Economics Group and my teachers from Wageningen University \& Research for sharing the knowledge and spreading the great ideas about a sustainable world.

I would like to thank the Bolashak International Scholarship program administrator for financing of my education. Without this program my study journey would not happen. My special gratitude goes to Maksut Baktibayev for sparking my interest to the beef cattle farming in Kazakhstan, to Arsen Islamov who was always available to answer my questions on beef farming practises and gave very practical suggestions, to Baurzhan Razak and to many farmers who kindly answered to my questions and told their stories on very practical aspects of beef cattle farming practises.

Lastly, my fellow students and friends need to be acknowledged for making my life in The Netherlands during the thesis writing and study periods in overall truly pleasurable and for the wonderful time we spent together. Their suggestions and recommendations were very much appreciated.

Askhat Zhanibekov
August 2019

I would like to dedicate this work in memory of my Father. He would be happy to see me at this certain point of my life.

Contents

Abstract 4
Acknowledgements 5
Table of tables 8
Table of figures 9
Abbreviations 10

1. Introduction 11
1.1. Background 11
1.2. Research Problem 12
1.3. Objective of the Study 12
1.4. Relevance of the Study 13
1.5. Theoretical framework 13
1.6. Methods of data collection. 14
1.7. Research outlines 14
2. Methodology 15
2.1. General assumptions 15
2.1.1. Beef cattle production system 15
2.1.2. Model structure 17
2.2. Revenue 19
2.2.1. Price for cattle's live weight 19
2.2.2. Calves' weight 20
2.3. Cattle feed costs 22
2.3.1. Cattle's feed requirements and associated costs. 22
2.3.2. Estimations of own feed production costs 23
2.3.3. Variability in feed costs 24
2.4. Other operating costs 26
2.5. Ownership costs 27
2.5.1. Depreciation costs 27
2.5.2. Other fixed costs 28
2.5.3. Opportunity costs of investments 29
2.6. Cash flow budget. 30
2.6.1. General assumptions of the cash flow budget 30
2.6.2. Steps in cash flow construction 30
2.6.3. Net Present Value with uncertainty 31
3. Results 33
3.1. Deterministic model's results 33
3.2. Results of the stochastic simulation 34
3.2.1. The effect of stochastic simulation on economic profit (return to management) 35
3.2.2. The effect of the stochastic simulation on NPV under the different scenarios 36
4. Discussion 38
4.1. Summary 38
4.2. Limitations 39
4.3. Implications for further research 41
5. Conclusion 43
6. References 44
Appendix 1. Input data 48
Appendix 2. Feed costs calculation 49
A2.1. Nutrition costs of bulls 49
A2.2. Nutrition costs of breeding cows 49
A2.3. Nutrition costs of calves before weaning 50
A2.4. Nutrition costs of youngstock cattle after weaning 51
Appendix 3: Whole-farm budget 53
Appendix 4: Cash flow budget 56
Appendix 5: NPV scenario analysis 59

Table of tables

Table 1. General description of beef cattle production stages in the new BCPS in Kazakhstan 15
Table 2: Defaults inputs to the Model 17
Table 3. Calculation of live weight of cattle 19
Table 4. Calf's weight 20
Table 5. Cattle feed costs for reproduction and backgrounding enterprises 23
Table 6. The calculation of land that needs to be cultivated for own feed production 24
Table 7. Stochastic distribution of feed costs 25
Table 8. Other operating costs specific to reproduction and backgrounding enterprises 26
Table 9. Funds investment conditions 28
Table 10. Opportunity costs 29
Table 11. Calculation of the WACC 32
Table 12. Summary of all stochastic variables in the Model 35
Table 13. NPV scenario analysis 36
Table A.2. 1. Nutrition costs of bulls 49
Table A.2. 2. Nutrition costs of breeding cows 50
Table A.2. 3. Nutrition costs of calves until weaning (8 months of age) 50
Table A.2. 4. Average feed requirements for one heifer calf between 9-12 months of age 51
Table A.2. 5. Average feed requirements for one steer calf between $9-12$ months of age 52

Table of figures

Figure 1: Cow-calf operation's enterprises 16
Figure 2: The Model's structure 17
Figure 3: Triangular distribution of market price for the cattle's live weight (KZT per kilogram) 20
Figure 4: Triangular distribution of the yearling steer calves' average weight (12 months of age) 21
Figure 5: Triangular distribution of a yearling heifer calves' average weight (12 months of age) 21
Figure 6: Other operating costs specific to reproduction and backgrounding enterprises 26
Figure 7: Annual depreciation costs distributed by enterprise budgets and the whole-farm 27
Figure 8: Comparison of enterprises budgets and whole-farm budget's structure 33
Figure 9: The cumulative graph and statistics output of the whole-farm's economic profit distribution 35
Figure A.5. 1: Scenarios 1 and 2, NPV in a 15 year planning period with and without subsidies 59
Figure A.5. 2: Scenarios 1 and 2, IRR in a 15 year planning period with and without subsidies 59
Figure A.5. 3: Scenarios 3 and 4, NPV in a 10 year planning period with and without subsidies 60
Figure A.5. 4: Scenarios 3 and 4, IRR in a 10 year planning period with and without subsidies 60

Abbreviations

BCPS	Beef Cattle Production System
KZT	Kazakhstan Tenge
MCS	Monte Carlo Simulation
NPV	Net Present Value
IRR	Internal Rate of Return
WACC	Weighted Average Cost of Capital

1. Introduction

This part introduces the background, then turns to the research problem, study objective and the theoretical framework. The research outline is presented at the end.

1.1. Background

The agricultural sector in Kazakhstan has a high potential of growth and it is a strong diversification driver of the whole country's economy (World Bank, 2017). It is the best prospect industry sector for the country (The International Trade Administration of U.S. Department of Commerce, 2018). According to the recent report of the World Bank (2017): "Kazakhstan is well located geographically to serve growing traditional markets in the Central Asian region as well as new markets in China and the Middle East. This, along with the scale of agricultural resources available, makes Kazakhstan a potentially attractive investment for domestic and foreign investors".

The current beef cattle production industry in Kazakhstan is represented by small households, private smallholder farms, and agricultural enterprises. There is a big difference between these groups in production methods, feeding, animal care, veterinary, application of precision farming technologies, and support measures from the government. Conventional cattle growers in Kazakhstan raise cattle on pastures during summer and feed them in barns the rest of the year. The beef value chain consists of fragmented players that often have a weak resource base of production. The profitability of such operations appears to be questionable and is subject to significant risks. Schmitz and Meyers (2015) concluded that the current beef livestock production business model in Kazakhstan was unstructured and, therefore, the whole supply chain was non-transparent.

The current beef cattle production system (BCPS) in Kazakhstan is based mostly on an extensive pasture grazing approach inherited from the nomadic past. However, raising cattle at pastures is problematic nowadays due to several reasons. First, the country is faced with socio-economic, infrastructural constraints to restore its pasture-lands (Robinson et al., 2000, Brinkert, 2016). Second, livestock mobility is declining globally (Boone et al. 2005). "Kazakhstan is no exception to this pattern and has suffered from a particularly extreme contraction in livestock mobility" (Robinson, Kerven, Behnke, Kushenov \& Milner-Gulland, 2017; Kerven et al., 2006). Third, the costs of moving livestock are not economically sustainable for individual households that predominate in the beef production farms and organisations. Kazakhstan uses only around 30% of its large grazing resources nowadays (Meat Union, 2018). According to Robinson et al. (2017), a distance that cattle needs to cover to reach the areas with the highest forage availability was the main determinant of moving livestock from the farm's surrounding pastures to new grazing lands. For abovementioned reasons, it is challenging to develop the industry within the existing extensive approach of cattle farming. Nevertheless, livestock breeding for the meat production is expected to be one of the top drivers of the country's agricultural development.

Kazakhstan's authorities are not satisfied with "the Status Quo" and have targeted to develop a new BCPS taking into consideration examples of some industry leaders like the USA and Canada. (Ministry of the agriculture of the Republic of Kazakhstan, n.d.). Three phases of the new BCPS according to Maclachlan \& Stringham (2016) are as follows: "cow-calf operations that produce weaned calves, stocker or backgrounding operations that feed calves to maturity by grazing and/or on forage and finishing or feedlot operations that feed cattle intensively to reach slaughter weight". Advantages of Kazakhstan that can contribute to the development of a competitive business model comprise significant land resources for cattle grazing and fodder crop production, geographical location that is close to growing export markets, strong attention from the government, and its readiness to make changes. In view of the above, Kazakhstani cattle industry undergoes substantial structural changes.

1.2. Research Problem

The proposed Kazakhstani new BCPS is developed based on existing knowledge and experience of the main beef production industry-leader countries. Diversified and segmented BCPS operations are common in the US and Canada, however, it is questionable if existing structures are economically viable for Kazakhstan. The fundamentals of BCPS are similar worldwide, but specific management practices differ across the regions, cultures and markets (Herring, 2014). Numerous research studies related in BCPS (Pogue et al, 2018; Sheppard et al., 2015) and economic analysis of beef farming with stochastic simulations have been performed (Khakbazan, 2014; Evans, 2007). The majority of these studies were aimed at regions within developed industries of beef livestock production. Studies of such investments in developing markets are limited (Lanfranco et al., 2018; Evans et al., 2007).

According to the Organisation for Economic Co-operation and Development (2013), bottlenecks of further livestock sector development in Kazakhstan are: low land productivity, feeding quality, fodder supply management, underdeveloped infrastructure and logistics in rural areas. Obviously, the above-mentioned starter point conditions in the development of the new BCPS will result in an increase in the amount of required investments.

Kazakhstan has immense unutilised pastures and grazing land for inexpensive range-based livestock production (Hankerson et al., 2019). The availability of inexpensive feed sources is important because the largest part of beef cattle maintenance costs is associated with nutrition or feed (Herring, 2014). The economic profitability of the new BCPS in Kazakhstan has not been assessed yet by considering the variability of price for cattle's live weight (P), calves' average weight (W), and feed cost (FC). At the same time, critical analysis and assessment of the potential risks are essential to develop a detailed strategy of the new BCPS in Kazakhstan (Meat Union, 2018).

According to Alberta Agriculture and food (2008), cow-calf operation is a low profit and low rate-of-return business even in Canada with long traditions of beef cattle farming and an established supply-chain. One who decides to organize a cow-calf enterprise must expect return on investment only in the long run because of the modest economic profit of this type of an enterprise. Planning of a cow-calf farm requires a diligent concentration on calf harvest ratio or cost per kilogram of a calf weaned. However, new cow-calf-type farmers in Kazakhstan tend to take risks of feeding weaned calves at their farms, while necessary ration cannot be provided in most of the cases due to overgrazing of nearby settlements areas and absence of lowcost high-energy feed for cattle (Robinson, 2000). There are lots of uncertainties in sales prices of cattle in the market. It is also not clear what the costs and benefits of running a backgrounding enterprise at a cowcalf operator's farm are and whether backgrounding should be better performed on a feedlot's side within a new BCPS of Kazakhstan.

1.3. Objective of the Study

The primary objective of this research is to analyse the economic feasibility of investing in the new BCPS in Kazakhstan, specifically in cow-calf farming, by developing a stochastic simulation model of a cow-calf operation (Model) that can be further used as a decision-making tool. The uncertainty in price for cattle's live weight (P), calves' average weight (W) and feed costs (FC) will be taken into consideration as major factors that affect the economic feasibility of a cow-calf operation within a new BCPS. To reach the objective, the following research question must be answered:

How do the changes of price for cattle's live weight, calves' average weight and feed costs affect the economic feasibility of investing in the cow-calf operation within the new BCPS in Kazakhstan?

Specific research questions that will help to answer the main research question are as follows:
a) How will price for cattle's live weight, calves' average weight and feed costs be formed within the new BCPS?
b) What is the Net Present Value of the expected cash flows within the new BCPS?
c) How will the variability in price for cattle's live weight, calves' average weight and feed costs affect the Net Present Value?

1.4. Relevance of the Study

According to Hespos et al. (1965): "Investment decisions that are characterized by a high degree of uncertainty are probably the most significant and hard decisions that confront top management". It is expected that this work will contribute to a more thoughtful understanding of the economic feasibility of a cow-calf operation within the new Kazakhstani BCPS. First, the Model will help to identify risks that should be taken into consideration when making investment decisions into the cow-calf farming in Kazakhstan. Second, the developed Model can be used as a decision-making tool, that helps to understand the effect of uncertainty in price for cattle's live weight (P), calves' average weight (W) and feed costs (FC) on economic profitability of projected investments.

1.5. Theoretical framework

The underlying theory to be used to perform the economic feasibility study is cost-benefit analysis. The theory of cost-benefit analysis, as a part of micro-economic theory, is widely used in scientific studies. "It contributes to the understanding by giving a formal description of the subject and examining theoretical basis for some of the techniques that have become the accepted tools of decision-making around the world" (Drèze \& Stern, 1987).

Budgeting is used to construct a deterministic model by bringing together all economic costs and benefits of a cow-calf operation. According to Kay, Edwards, and Duffy (2008), budgets are planning tools that help to estimate profitability and feasibility of an enterprise after which a decision on implementation will follow. Budgeting is an important step in the decision-making process. The problem is structured by means of different types of budgets: enterprise, whole-farm, and cash flow budgets.

The net present value (NPV) method is used to define how worthwhile capital investments in the new BCPS in Kazakhstan are. The NPV is one of the major tools for appraisal of long-term projects that takes into consideration the time value of money of future cash flows (Brealey, Myers, Allen \& Mohanty, 2012). At the same time studying the feasibility of an investment by using NPV can lead to a misleading result if uncertainties are not considered. Hardaker, Lien, Anderson \& Huirne (2015) defined uncertainty as imperfect knowledge that lead to risks as unfavorable consequences. Beef cattle farming is exposed to many risks due to influence of unpredictable factors including market risks and uncertainty in performance of crops and livestock. Because of aforementioned reasons, uncertainty associated with the cow-calf operation is considered in the Model.

The Monte Carlo simulation (MCS) is a technique used as a research tool to make stochastic simulations in complex decision models and understand the effect of uncertainty inherent in a project. Clemen \& Reilly (2014) defined a simulation model as 'a mathematical model in which a probability distribution is used to represent the possible values of un uncertain variable'. Thus, MCS helps to include variability into a deterministic model for further NPV calculation taking into consideration the uncertainty. Both tools together make the modeling outcomes relevant for feasibility analysis and the results are closer to a reallife situation.

1.6. Methods of data collection.

Series of inputs were defined before starting of the modelling process. The structure of the beef production system in the Model was reconstructed using existing knowledge of beef cattle husbandry practice from industry specific literature. Available scientific works related to beef farming in Canada and the USA were studied. Inputs related to revenue and expenses of each enterprise were found from market sources and statistical databases. Secondary data sources were reviewed as literature, scientific articles, and statistical databases. In the process of model building, studies on animal nutrition specific to Kazakhstan were used in particular.

1.7. Research outlines

The research is structured as follows.
Chapter 2 Methodology is a central part of the research that introduces the general assumptions of the cowcalf operations model, explains how the cow-calf operation model was constructed and what main building blocks it consisted of. The first section of the Methodology chapter introduces general assumptions used in a model building process. The second section explains how revenues and costs were formed within the enterprise budgets. The third section presents the whole-farm budget as a result of merge of enterprise budgets. The fourth section presents the cash flow budget and explains general assumptions and steps performed for the cash flow budget construction. The last section shows how uncertainty was embedded in variables: price for cattle's live weight (P), calves' average weight (W) and feed costs (FC), and what inputs were used in NPV calculation.

Chapter 3 Results is another important part of the research that presents both the modeling and stochastic simulation outcomes. It is explained at the beginning of the chapter how variability of above mentioned input variables affects the economic profitability of the modeled cow-calf operation and what the distribution of NPV in 10 -year and 15 -year terms was. The chapter gives the summary of findings from the economic feasibility analysis performed.

Chapter 4 Discussion elaborates on the results of the study by answering how the researched results meet the research objective and explains findings. In this chapter the limitations of the modeling process are stated together with implications for further research.

Finally, the study is summarized, and conclusion is made in Chapter 5.
The Appendix section contains the print screens from the Model of the input variables module, enterprises budgets, a whole-farm budget, and a cash flow budget. The detailed calculation of feed costs by type of cattle included in to explain the feed costs numbers in the budgets. Lastly, the figures of stochastic distributions from NPV scenario analysis shown in this part to enlarge understanding of the research results by visual representation of the Model's parts and important findings from stochastic simulation.

2. Methodology

Chapter 2 Methodology is a central part of the research that introduces the general assumptions used in the Model, explains how the Model was constructed and what main building blocks it consisted of. The section 2.1. General assumptions introduce the new beef cattle production system in Kazakhstan, gives overview of the Model's structure, the logic of its construction and states general parameters of the Model. The following sections of the Methodology chapter: 2.2. Revenue, 2.3. Cattle feed costs, 2.4. Other operating costs, 2.5. Ownership costs explicitly discuss how the integral parts of enterprises budgets and the whole-farm budget were built. Complete budgets are presented in Appendix 3. Finally, section 2.6 discusses the cash flow budget that is shown as a whole in Appendix 4.

2.1. General assumptions

2.1.1. Beef cattle production system

According to the classification by Herring (2014), cattle producers can designate their operations to several beef cattle production stages like seedstock, commercial (market animal production) and combination of both seedstock and commercial. Thus, commercial cow-calf farmers are able to purchase high breed animals from one of the local seedstock operators or import from abroad. Production of market cattle involves several stages of beef cattle production like cow-calf, stocker or backgrounder and finishing or feedlot. Operations are separated in relation to different cattle development stages from birth until 20months of age. Beef cattle production stages are highly segmented in countries with developed beef cattle production industries. Two types of commercial operators are likely to emerge according to Meat Union (2018) within a new BCPS in Kazakhstan while the whole supply chain is at the development phase yet. They are cow-calf operators and feedlots. The summary of beef cattle production stages within the new BCPS in Kazakhstan is shown in Table 1.

Table 1. General description of beef cattle production stages in the new BCPS in Kazakhstan

Stages/ operations	Seedstock	Commercial (market cattle production)			Finishing/ Feedlot
		Cow-calf	Backgrounding	Backgrounding	
Operator (EN)	Seedstock	Cow-calf	Cow-calf or Feedlot		Feedlot
Operator (QAZ)	Asyl tukymdy mal sharuashylygy	Fermer		Mal zhemdeu alany	
Characteristic		Smallholder cattle farm		Middle or large-scale farm	
Ownership		family		corporate or cooperative	
Herd size, heads	100-5,000	50-200	50-200	1,000-10,000	1,000-10,000
Definition*	Production of high breed animals for further sale to other seed stockers and cowcalf operators	Concentration on cows' reproductive performance with the goal to produce calves, growing them until weaning and selling at a commercial market.	Purchasing of weaned calves and rising on pastures with supplemental feed.	Purchasing of weaned calf and rising in small lots with supplemental feed. Developing eating habits from a feed bunk and preparation to live in feedlots.	Feeding with high grain concentrate diets with a final goal to produce commercial cattle that is ready to slaughter.
Product	Pure bred cattle (bulls and heifers)	Weaned calves, additional (breeding heifers, *culled cows)	Yearling calves	Steers	Fattened male cattle ready for slaughter
Animal age		7-8 months	12 months	15 months	18-20 months
Average calf weight (in), kg		22	184-250		
Average calf weight (out), $\mathbf{k g}$		184-250	295-390		

Note. *Based on description of beef cattle production stages by Herring (2014).
**Culled cow means a cow or a heifer that was removed or expected to be removed from the herd because of factors as death, slaughter, or sale (Herring, 2014).

The current study has been concentrated on economic performance of a cow-calf operation. A cow-calf operation is defined in this study as economic activities of a smallholder farm with an average herd size of 100 breeding cows. The cattle are kept by a farmer in order to produce calves. The permanent goal is rising newborn calves until weaning at 7-8 months of age with further sale. Alongside this, there is a possibility that a cow-calf operator can perform part of a backgrounding operation at his own cow-calf farm. Backgrounding at a cow-calffarm is an operation of rising calves from weaning until yearling age, namely from 8 until 12 months. Backgrounded calves after weaning experience fewer health problems than those transported after weaning directly to a feedlot with a shrill diet change. A cow-calf operator can be interested in performing backgrounding operations due to additional weight gain of calves at this life period. Thus, calves with more weight can be sold to a feedlot and revenues can be higher.

A cow-calf farm can simultaneously run different types of activities in order to supply calves for sale to the market. These activities can be seen as divisions of a farm's business, identified by a type of product they produce. Each of the activities can be analyzed as a single enterprise (Warren, 1986). Enterprise budgeting technique helps to identify economic profit (return to management) of each single enterprise by allocating revenue, operating and ownership costs to an enterprise.

Activities of the modeled cow-calf farm have been considered from the perspective of three enterprises. (i) A reproduction enterprise cares about breeding cows and production of calves weaned at 7-8 months. Then there is (ii) a backgrounding enterprise that aims to produce yearlings or 12-month old heifer and steer calves. And the last is (iii) a feed production enterprise that is usually run to decrease feed costs due to expectations that own feed is cheaper compared to purchased one. All together reproduction, backgrounding and feed production enterprises form a whole-farm enterprise (Figure 1).

Figure 1: Cow-calf operation's enterprises

Note. The figure illustrates the modeled cow-calf operation with three enterprises, where: reproduction enterprise + backgrounding enterprise + feed production enterprise $=$ whole-farm enterprise.

Enterprise budgets have been constructed to analyse revenues and costs of each of above-mentioned enterprise and to define how economic profit (return to management) is formed. Enterprise budgets serve
as building blocks of a whole-farm budget. Kay, Edwards \& Duffy (2008) defined a whole-farm budget as a detailed projection of costs and returns of enterprises that form together a picture of an organisation.

2.1.2. Model structure

The Model was structured from four main blocks (Figure 2). First, cow-calf operation budgets. These enterprises include: 1) reproduction enterprise's budget (production of calf weaned at 8 months of age); 2) backgrounding enterprise's budget (rising calves from 8 until 12 months of age); 3) feed production enterprise budget (own feed production). All information for enterprises budgets were taken from the linked 'input' spreadsheet. Second, based on the three enterprise budgets a whole-farm budget was built. Third, the cash-flow budget was constructed based on the whole-farm budget and the input data that is specific only to a cash flow enterprise (discount rate, debt repayment schedule, and inflation rate). The last fourth step was application of the Monte Carlo simulation to account the stochastic character of several input variables: price for cattle's live weight (P), calves' average weight (W), and feed costs (FC). The simulation helped to understand an effect of uncertainty in input variables to the NPV of the project in 10-year and 15year terms and, as a result, evaluate the economic feasibility of investing in the new BCPS in Kazakhstan. The basic deterministic model was constructed in Microsoft Excel 2010 (Microsoft Corporation, Redmond, Washington, US), while @Risk add-in program (Palisade Corporation, Ithaca, New York, US) was utilised to deal with stochastic variables. The full production cycle was replicated to forecast a continuous operation of the system.

Reproduction enterprisebudget (Calf 8 month)
Backgrounding enterprisebudget (Calf 12 month)
Feed production enterprisebudget (Own feed)

Cow-calf whole farm budget
Gross revenue
(-) Variable costs, incl.:
Cattlefeed costs
Other variable costs
$(-)$ Ownership costs
$(=)$ Economic profit

Cow-calf cash flow budget
Beginning cash balance
(+/-) Total cash inflow
(+/-) Total cash outflow
(=) Ending cash balance

Stochasticsimulation
Stochastic simulation
model (@RISK, Palisade@)
Effect of variability in:

- market price
- cattle weight
- feed costs
on Net Present Value

Figure 2: The Model's structure

2.1.3. General parameters of the Model

Input parameters of the Model were identified to start building enterprise budgets and the modeling process in general. Each enterprise was built from specific assumptions. First, the herd's performance characteristics were defined from the beef cattle management literature and several assumptions were made. Second, the information about market prices forming revenue streams and critical costs within the modeled cow-calf enterprises budgets were incorporated into the Model. The detailed information on parameters forming revenue and costs were presented in Table 2, Appendix 1 and in the subsequent parts of the Methodology chapter.

Table 2: Defaults inputs to the Model

Parameter	Value	Unit	Reference
Herd size	100	cows	Author's assumption
Calving cows persenatage	80	$\%$ from total exposed cows	Beef Cow-Calf Manual (2008)
Bull-to-cow ratio	$1 / 25$	Head	Herring (2014)
\# of culled cows	8	heads per year	Beef Cow-Calf Manual. (2008)
\# of cow death	2	heads per year	Beef Cow-Calf Manual (2008)
\# of weaned steer calves	40	heads per year	Author's assumption
\# of weaned heifer calves	40	heads per year	Author's assumption
\# of replacements (cull + death)	10	heads per year	Calculated
\# of heifers retained to increase a herd size	0	head	Author's assumption

\# of replacement heifers purchased	0	head		
Subsidies for a head of weaned or yearling calf that is sold to feedlot for fattening	200	$\mathrm{KZT} / \mathrm{kg}$	\quad	Author's assumption
:---				
Subsidies to cover cost of keeping a breeding bull				
Subsidies to cover acquisition costs of imported breeding stock				

Note. The currency used in Model building process is Kazakhstan Tenge (KZT). All monetary operations were conducted in local currency KZT.

The unique characteristic of the Model lies in the possibility for a future user to track costs and benefits from different enterprises within one cow-calf operation. It might be a case that all specific input data are not available to investors. Therefore, the default data that were presented in the Model and constructed links between budgets and modules might be used to build a tailor made budget of a new cow-calf operation project. The income and costs can change considerably and vary across different farms based on a type of cattle breed, initial investments made into a farm, feeding practices, regions, climatic conditions, calf harvest ratio, and many other factors. Multiple cow-calf farming practices are used in the beef industry to produce and deliver one type of product with similar characteristics. However, the parameters of the Model simulate the specific behavior of a cow-calf farm and therefore the economics of this type of operation can be understood from the Model.

2.2. Revenue

The following section explains how revenues were formed within the enterprise's budgets. Revenue estimations and expected range of stochastic variability of price for cattle's live weight (P), calves' average weight (W) are described below.

2.2.1. Price for cattle's live weight

It is possible to calculate an average market price for live weight of cattle from commodity prices for carcass weight. The equations (1) and (2) show formulas of a minimum or maximum market price for live weight of cattle, where dressing percentage is meat and skeletal portion from a live weight of an animal. Dressing percentage varies from 56.5 to 59.8% due to several factors like a frame size of an animal, sex, and grades (Understanding dressing percentage, n.d.). For the modeling reason 59.8% was used since this percentage was applicable for beef purpose cattle on a finishing diet.

$$
\begin{align*}
& \mathrm{P}(\mathrm{~W}) \min =0.598 \mathrm{dp} * \mathrm{HP}(\mathrm{CW}) \min , \tag{1}\\
& \mathrm{P}(\mathrm{~W}) \max =0.598 \mathrm{dp} * \mathrm{HP}(\mathrm{CW}) \max \tag{2}
\end{align*}
$$

Where,
$P(W)$ min and $P(W)$ max - minimum or maximum market price for live weight of a cattle,
$H P(C W)$ min and $H P(C W)$ max - minimum or maximum historical price for carcass weight of a cattle,
$d p$ - average dressing percentage
The Food and Agriculture Organization of the United Nation in its commodities overview (Commodity snapshots, 2019) had stated that "nominal meat prices are expected to start at levels similar to those registered in 2010, and in most cases, with the marginally upward trend. By 2025, prices for beef are projected to increase to around USD $4497 /$ ton carcass weight equivalent (c.w.e.)". The highest price was in 2014 reaching almost USD 5 600/ton carcass weight and the lowest was USD 2 900/ton carcass weight during the period between 2009 and 2019 (Commodity snapshots, 2019). By using equations (1) and (2) it was found that the minimum and maximum prices for cattle's live weight were $664 \mathrm{KZT} / \mathrm{kg}$ and 1283 KZT/kg respectively (Table 3). The most likely value, $850 \mathrm{KZT} / \mathrm{kg}$, was the author's expert elicitation that took into account current market prices for high quality Angus breed calves grown according to industry standards (Calves, n.d.), (Bulls, n.d.).

Table 3. Calculation of live weight of cattle

	$\underline{\text { Carcas weight price }}$	Dressing $\underline{\text { coefficient }}$	Price for		$\begin{aligned} & \underline{\text { Data }} \\ & \text { source } \end{aligned}$
			live weight		
	USD/ ton	-	USD/ ton	KZT/ kg	
Min	2900	0,598	1734	664	Calculated
Max	5600	0,598	3349	1283	Calculated
Most likely				850	Author's estimation

Therefore, market price for the live weight of cattle was expected to be within the minimum, most likely, and maximum values $(664,850,1283)$ in the triangular distribution that is skewed to the left (Figure 3)

Figure 3: Triangular distribution of market price for the cattle's live weight (KZT per kilogram)
Sales price of one yearling heifer cattle was expected to be around 400 thousand KZT per head (Meat Union, 2018) High market price for heifer calves are explained with a growing internal demand for high breed animals that can be used by other farmers to replacements, increase of a herd population or even to startup a new cow-calf farm. Hence, the expected price was $1374 \mathrm{KZT} / \mathrm{kg}$ of live weight of a heifer calf, taking into consideration that the average live weight of a heifer calf was 290 kg . And this value was kept as deterministic in the Model.

2.2.2. Calves' weight

One of the important factors that determines profitability of a cow-calf operator is animal performance from birth until sale to a feedlot. The new BCPS in Kazakhstan is an intensive beef production system, where calf's weight gaining ability in a certain period of time depends on breed type among other factors. One of the popular rears is Aberdeen-Angus cattle (further - Angus). Among other cattle breeds like Hereford, Simental, Kazakh Akbas, Auliekol, Angus is used to produce crossbreds with the local nondescript cattle (further - Crossbreed). Pure Angus breed cattle and crossbreeds of local nondescript and Angus breeds were used to model calves' weight. The average calf's weight in relation to breed type (an underbred, a crossbreed or pure Angus breed) and age is shown in Table 4.

Table 4. Calf's weight

Average calf weight, kg	Underbred Min	Crossbreed		Avg		

Note. Assumptions are based on data from Republican Chamber of Kazakhstan Angus, 2018
It was assumed that an average weight of a calf variated within a certain range. The reason for that could be inherited genetics of each individual animal, health issues, practice of using growth implants. The insufficiency of nutrients was not considered as a factor affecting cattle's weight gain in the Model. The expectations were that feed was assumed to be supplied in the required amount to maintain daily requirements of cattle. Therefore, a triangular statistical distribution was used to capture an inherent variability of animal weight.

According to information from the Republican Chamber of Angus of Kazakhstan on the advantages of angus breed in crossbreeding with other breeds of cattle (2019) and from Schiermiester et al (2015), the average weight of a yearling (12-month-old) steer calf is expected to be within the distribution of [295, 343,

390] (Figure 4) and for yearling (12-month-old) heifer calf between [250, 291, 331] (Figure 5). It is expected that steer calves are heavier in weight than heifer calves. For the modeling reason the average weight of 12 -month-old steer calves was assumed to be 1.15 times from heifer calves' weight of the same age (Bock et al., 1991). The total weight of animals sold also affects significantly on the subsidy amount a farmer can get. According to the governmental decree 200 KZT subsidies can be granted for every kilogram of live weight sold to a feedlot. (Order of the Minister of Agriculture, 2019).

The variability in weight of weaned or 7-month-old calves was not included in the Model because it had been assumed that the revenue stream came from the sale of 12-month-old calves to the market. The revenue of the reproduction enterprise came from the sale of 7-month-old calves to the Backgrounding enterprise. Then at the backgrounding enterprise budget the purchased calves' costs were included as a variable cost. The reproduction and backgrounding enterprise budgets will complement at the whole-farm budget level. Therefore, the assumption about the static weight of 7-month-old calves does not affect farm's budget on the whole-farm level.

The weight of culled and non-fertile cows was assumed to be between the range of triangle distribution in pounds $(1194,1374,1394)$ or kilograms $(542,623,632)$. These data were taken from the American Angus Association's database (Genetic trend EDP, 2019) of registered Angus cows phenotypic cow weight during the expected lifetime of ten years.

Yearling steer calves' average weight (12 month) / Stocha...
Comparison with Triang $(295 ; 343 ; 390)$

	Yearling steer calves' average weight (12 month) /	$\begin{aligned} & \text { Triang } \\ & (295 ; 343 ; 390) \end{aligned}$
Cell	Cash flow bu..	
Minimum	297,094	295,000
Maximum	387,892	390,000
Mean	342,667	342,667
90\% Cl	$\pm 1,01$	
Mode	344,433	343,000
Median	342,724	342,749
Std Dev	19,400	19,392
Skewness	-0,0102	-0,0103
Kurtosis	2,4016	2,4000
Values	1000	
Errors	0	
Filtered	0	

Figure 4: Triangular distribution of the yearling steer calves' average weight (12 months of age)
Yearling heifer calves' average weight (12 month) / Stocha...

	Yearling heifer calves average weight (12 month) /	Triang $(250 ; 291 ; 331)$
Cell	Cash flow bu..	
Minimum	251,094	250,000
Maximum	329,401	331,000
Mean	290,667	290,667
$90 \% \mathrm{Cl}$	$\pm 0,861$	
Mode	290,546	291,000
Median	290,731	290,749
Std Dev	16,544	16,534
Skewness	$-0,0124$	$-0,0121$
Kurtosis	2,4031	2,4000
Values	1000	
Errors	0	
Filtered	0	

Figure 5: Triangular distribution of a yearling heifer calves' average weight (12 months of age)

2.3. Cattle feed costs

Operating costs (also: variable costs, direct costs) occur when operating activities are performed at a farm. The amount of operating costs is under control of a decision maker and can be reduced to zero if production is stopped (Kay, Edwards, and Duffy, 2008). Operating costs in the Model were grouped into two main parts: cattle feed costs and other operating costs. Cattle feed costs are one of the largest expenditures in cattle farming.

The following parts of the study introduce how cattle feed costs were defined in the Model. First, the herd's feed requirements for one budgeted year were calculated, based on cattle's daily nutritional needs and market prices for feed components. Second, feed components were separated into home-grown and purchased feed. The allocation of home-grown feed was made because the study aimed to calculate the budget for own feed production enterprise next to reproduction and backgrounding enterprise budgets. Finally, the effect of uncertainty of both total purchased feed costs and operating costs in own feed production enterprise budget were modeled.

2.3.1. Cattle's feed requirements and associated costs

Feeding formulas differentiate significantly and based on knowledge of cattle's nutritional needs and ability of a farmer to provide necessary feed components. A farmer has to obtain high-quality feed for the lowest possible cost to ensure a cost-effective beef cattle farming. It is essential to supply farm's cattle with a recommended amount of feed units all year around. The feed of high quality is also needed to reach the genetic potential of an animal in weight gain.

Kazakh beef cattle industry utilizes hay, hay-silo or hay-silage types of feeding. The forage and supplemented additives are provided during the period of cold days which is almost 185 days in a year. Peculiarities of local natural-climatic conditions, vegetation cover, composition and nutrition of local forage are important considerations. Therefore, feed rations of beef cattle in this study were based on the locally available feed components according to Kazakhstani researchers (Zhazylbekov et al., 2008). Costs were calculated based on local market prices for feed components. The detailed calculation of feed costs for bulls, breeding cows, calves before weaning, young stock cattle after weaning was implemented (Appendix 2).

The total cattle feed costs were calculated separately for reproduction and backgrounding enterprises, after that estimations of feed costs for different cattle in the herd were made. The reproduction enterprise included three types of diets: feed for bulls, feed for breeding cows including replacement heifers at the age above 12 months, and supplemental feed for calves before they reach the weaning age. At the same time, the backgrounding diets consist of feed for heifer and separately feed for steer calves between 9 months to 12 months of age. The total cattle feed costs were also divided into home-grown feed and purchased feed in order to calculate costs associated with the feed production enterprise. Home grown feed included hay, haylage, corn silo as well as naturally grown and seeded pastures. The total volume required was 1,002 thousand kg per year with the estimated cost of 4,918 thousand KZT for the reproduction enterprise and 168 thousand kg per year with the cost of 1,459 thousand KZT for the backgrounding enterprise respectively. It was anticipated that a farmer used naturally grown pastures and, therefore, had not carry any directly associated costs on pasture grass. Purchased feed included stock feed (cereals), straw, concentrates, protein-vitamin and mineral supplements, phosphate supplements and salt blocks. The total volume of purchased feed for the reproduction enterprise made 1,174 thousand kg per year with the total market cost of 9,893 thousand KZT per a farming year and 199 thousand kg per year with total costs of 1,688 thousand KZT for the backgrounding enterprise respectively. The total summary of necessary volume of cattle feeds and associated costs can be found in Table 5 where the feed costs are divided by the type of enterprises and by source, whether the feed is home-grown or purchased.

Table 5. Cattle feed costs for reproduction and backgrounding enterprises

Feed type	Reproduction enterprise		Backgrounding enterprise	
	KZT	ton/ year	KZT	ton/ year
Hay	1,123,367	103	551,830	50
Haylage	1,275,000	85	362,400	43
Corn silo	2,520,000	168	544,800	74
Pasture grass	-	555	-	-
Seeded grass	-	92	-	-
Total home-grown feed	4,918,367	1,003	1,459,030	167
Stock feed (cereals)	-	-	180,000	12
Straw	990,000	90	-	-
Concentrates	3,069,360	73	6,384	18
Protein-vitamin and mineral supplements	609,600	6	-	-
Phosphate supplements	42,240	0.4	21,296	0.4
Salt blocks	263,824	2,3	21,296	0.4
Total purchased feed	4,975,024	172	228,976	31
$\underline{\text { Total cattle feed costs }}$	9,893,391	1,175	1,688,006	198

2.3.2. Estimations of own feed production costs

It was defined above that in order to run a cow-calf farm with 100 breeding cows and produce 80 yearling (12-month-old) calves each year with 70 heads for sale, a farmer would need the calculated amount of feed over other farm's costs (Table 5). From all required types of feed there were several feed components that assumed to be grown at the modeled farm. Hence, the major activity of the feed production enterprise would be supply of hay, haylage, corn silo and maintaining of the pastures in the required amount for reproduction and backgrounding enterprises. An assumption was made for the Model simplification reasons that the amount of feed produced at the farm would be equal to the amount of the type of feed required by the farm's cattle. Therefore, under- or overproduction of home-grown feed was not expected. Another assumption was that the revenue of the feed production enterprise was equal to the sum of spending of reproduction and backgrounding enterprises for purchase of home-grown feed. The visual representation of this equality can be seen from the whole-farm budget's table in Appendix 3.

In order to produce the required amount of feed, it is important to determine the structure and the size of seeding areas with particular crop types. For this purpose, it was necessary to know not only the yield of a fodder crop, but also the conversion rate of green mass into hay, silage and/or haylage. The calculated yearly volume of the on-farm produced feed for 180 heads of cattle comprised 153 tons of hay, 128 tons of haylage, 242 tons of corn silage, and 647 ton of pasture and seeded grass. The size of the land used for cultivation by a cow-calf farmer was found by multiplication of the three following variables: the required feed amount, the conversion coefficient of green biomass to green feed, and the average crop yield from a hectare of land. It was found that the winter-feed from hay and haylage required cultivation of grass on 485 ha of land having yield of 2 ton/ ha (Isabekov, Nurmanov \& Turganbekova, 2012) and noting conversion coefficient of biomass into feed as $4: 1$ (Zhazylbekov et al., 2008). The same type of calculation technique was applied to corn silage considering corn yield at the level of 8.0 ton/ ha (Lunik, 2015) and conversion coefficient of biomass into feed at $1: 1,16$ ratio (Zhazylbekov et al., 2008). The result showed that it was necessary to sow 35 ha of land to cover one-year requirement of cattle in corn silo. The total cultivated land should be around 926 ha to support own feed requirements of the reproduction and backgrounding enterprises (Table 6). However, the size of the land can variate significantly and depends on different factors, such as yield of cultivated plants, climate, soil potential, quantity of inputs, and applied variable costs. The size of a farm and access to cheap resources may have effect to variable cost per hectar of a cultivated land. Sustaining high yields from year to year while keeping the lowest possible cost of production is the main challenge of the feed production enterprise.

Table 6. The calculation of land that needs to be cultivated for own feed production

	Total	Green biomass required per 1 ton of green feed*	Average yield**	Cultivated land
	ton/ year	conversion coefficient	ton/ Ha	$\underline{\text { Ha }}$
Hay	153	4,00	2,0	306
Haylage	128	2,80	2,0	179
Corn silo	242	1,16	8,0	35
Pasture grass	555	1,00	1,5	370
Seeded grass	92	1,00	2,6	36
Total home grown feed	1170	=	16,1	926

$\overline{\text { Note. *Conversion coefficients of biomass into feed for hay, haylage, corn silo was taken from the study of Zhazylbekov et al (2008). }}$ **The average yields of grass on lands dedicated to hay and haylage, pasture and seeded grass production in Kazakhstan are taken from the study of Isabekov, Nurmanov \& Turganbekova (2012). Corn yields ranged from approximately 5 to 15 tons per hectare according to the study of Lunik \& Langemeier (2015) and taken as 8 ton/Ha for Kazakhstan as in countries with similar crop management practice like Russia and Ukraine.

Knowledge of the amount of land that needs to be cultivated at the modeled cow-calf farm allowed to estimate operating and ownership costs of the feed production enterprise budget. The ownership costs in the Model's enterprise budgets are costs associated to the machinery and equipment used at the farm, they are as follows: depreciation and amortization, interest expenses on capital expenditure loans, property taxes, housing, and repair costs. The details of the calculation are given in section 2.5 Ownership costs.

For simplification reason the operating costs of the feed production enterprise in deterministic model were assumed to be 30% from the total revenue value. This assumption was made due to several reasons given bellow:

1) The operating costs can differentiate significantly from a farm to a farm due to numerous factors, such as soil nutrient potential, type of soil, quality and quantity of inputs needed to be used to grow crops, climate conditions, costs of prepared feed storage, and grazing practices. Moreover, prices for inputs can change the operating costs in a short and long run (Plastina, 2018). Therefore, a deterministic value of variable operating costs in the feed production enterprise cannot give a precise estimation of the necessary spending.
2) The theoretical nature of the budgeting is that a whole-farm budget consists of enterprise budgets. The assumption was made that all feed produced within the feed production enterprise of the modeled farm was for the sole purpose to feed own cattle. By this reason, the Model does not presume any excess or deficit of production and sale of own feed: hay, haylage, corn silo, and pasture grass. As a result, economic profit of the feed production enterprise budget tends to zero, because profit is not a goal. Any change in revenue of the feed production enterprise will change a budget value of other two enterprises to the same amount. This value is named as "the total costs of home grown feed". It can be expected that the amount of operating costs will not affect the economic profit of the modeled cow-calf farm at the whole-farm level. Therefore, making assumption on the amount of operating costs of the feed production enterprise for simplification reasons can be a reasonable solution to achieve the study goals without distortion of the wholefarm budget.
3) The total operating cost of feed production enterprise used for NPV calculation is assumed to be a stochastic variable.

2.3.3. Variability in feed costs

Operating costs of a cow-calf farmer associated with animals feeding differentiate significantly and depend on many factors. One of the hardships is how to find an optimal balance between a high-quality diet and the lowest possible cost. And that is a difficult task to accomplish even for an experienced farmer. There are several factors that should be considered before a farmer decides to allocate budget on feeding. Feed costs are influenced by feed sources, feedstuff combinations, market prices for feed components, associated
preparation and delivery costs, feeding strategies, climate zones, and seasons. Farmers can use different pasture management practices to improve natural hayfields and pastures and apply land rotation. In the regions where cattle grazing practice is new, a farmer is advised to care about creation of seeded hayfields. The land reclamation can be an issue if saline land is used for farming. Application of an intensive production of fodder might be required on floodplains, estuaries. Finally, the local climate conditions can differentiate significantly in different parts of the country (Isabekov, Nurmanov, and Turganbekova, 2012). On this account it is important to understand the effect of variability in feed costs. All the above mentioned factors made finding the average value of the feed costs quite challenging. Therefore, the values of the total purchased feed and the total operating expenses of the feed production enterprise were assigned to be stochastic. It helped to capture the uncertainty in feed costs in the Model.

A uniform distribution was applied both to total purchased feed and total operating costs of own feed production. In the uniform distribution a value can be distributed equally between minimum and maximum levels. It is hard to predict the value since a lot of factors affect formation of feed costs. This turns the discussion onto the necessity to define the range of uniform distribution. The assumption was made that minimum and maximum boundary parameters of distributions were 30% from the mean value. It can be an effect of, for example, different feed costs decreasing strategies or increase in prices for feed components. The total purchased feed costs equated to 6005 thousand KZT per year and operating costs of own feed production enterprise made 2170 thousand KZT per year, according to the whole-farm budget. Therefore, the stochastic distribution of values for the total purchased feed and total operating costs of own feed production fell between the range of maximum and minimum levels, as it is shown in Table 7.

Table 7. Stochastic distribution of feed costs

Feed costs	Distribution $\frac{\text { from the }}{\text { mean }}$	$\underline{\text { Min }}$	$\underline{\text { Mean }}$	$\underline{\text { Max }}$	Type of the distribution	$\underline{\text { Source }}$

2.4. Other operating costs

Other operating costs specific to reproduction and backgrounding enterprises include bedding costs, expenses associated with veterinary, medicine, and breeding. Additionally, there are costs for cattle insurance and fuel for equipment used by reproduction and backgrounding enterprises. The data on other operating costs specific to reproduction and backgrounding enterprises are shown in Table 8 in calculated value (KZT) and Figure 6 in percentage to the total operating costs.

Table 8. Other operating costs specific to reproduction and backgrounding enterprises

Item, in thousands KZT	Total Annual Cost	Total annual costs per the enterprise		
		reproduction	backgrounding	
Grain stalks and straw for bedding	658		470	188
Total veterinary, medicine and breeding costs	1,005	825	180	
Cattle insurance	1,800		1,600	200
Fuel (cattle machinery)	839	587	252	
Total	4,302	3,482	820	

Figure 6: Other operating costs specific to reproduction and backgrounding enterprises
Cattle needs grain stalks and straw for bedding in a winter-stall housing period that lasts 185 days. The herd from 100 cows plus 80 heifer and steer calves require $1,000 \mathrm{~kg} /$ year per head. With the price of $4,700 \mathrm{KZT} /$ ton, the total spending for bedding is 658 thousand KZT/ year. Veterinary, medicine and breeding expenses were taken from Angus Kazakhstan Association (Cost of production in breeding farm, 2014), corrected for the inflation rate and comprised in total 1,005 thousand KZT/ year for the modeled farm. Cattle insurance premiums are offered in the range of 1-5\% from market price of an animal and cover loss of insured cattle as a result of a disease or an accidence (Republican Chamber of Kazakhstan Angus, 2019). An insurance premium of 10,000 KZT per head was taken for the modeling purposes. Fuel costs were calculated based on the assumption of spending 10 liters per day during the whole year with the average price of 230 KZT per liter.

Other operating costs specific to the feed production enterprise are farmers' expenses to grow and prepare several feed types, such as hay, haylage, corn silo and pasture grass at the farm. The main operating costs include fuel, seeds, fertilizers, crop protection agents as well as pastures maintenance, harvest transportation and storage costs. The details of assumptions used to calculate the operating costs specific to the feed production enterprise is shown in the previous section 2.3 Cattle feed costs.

2.5. Ownership costs

According to Kay, Edwards, and Duffy (2008), ownership costs (also indirect costs, fixed costs) are associated with costs that cannot be avoided once a machinery or equipment is purchased. Ownership costs of the modeled cow-calf farm consisted of three main blocks: depreciation costs, other fixed costs and opportunity costs. The depreciation costs included the depreciation of machinery, equipment, and constructions on the farm's territory. Other fixed costs included interests on loans, taxes, insurance, costs for equipment and machinery housing, repair and maintenance. Opportunity costs presented by estimations of own labor cost and alternative use of own capital. The calculation of the ownership costs in the Model can be found below.

2.5.1. Depreciation costs

Annual depreciation costs of fixed assets were calculated as the difference between market price and estimated salvage value with further dividing of useful life before replacement by years. The Salvage value is an estimate of the asset's market price that a farmer can receive at the end of an asset's useful life. The market prices were taken as those recommended by the Order of the Deputy Prime Minister (2018) as budgeting costs for machinery and equipment to run a beef cattle farm. The comparison with classifier marketplaces demonstrates a compatibility with the existing market prices for the commercial equipment and machinery. Edwards (2015) in his work on farm machinery costs proposed to use salvage value as a percentage of the new list's price calculated by American society of agricultural and biological engineers. Thus, by taking 15 years of useful life, the salvage values on average were as follows: 25% for a tractor with 600 hours of work per year, 17% for a forage harvester with 100 hours of work per year, 22% for a rake, 21% for a hay baler, 25% for a hay mover, 36% for a maize seeder, 21% for a maize shredderhaymaker. Salvage values of other machinery and equipment were assumed to be 15%. These percentages were used to calculate the depreciation costs of machinery and equipment of the modeled farm. As a result of calculations performed, the total annual depreciation costs made 2301 thousand KZT while the total cost of assets amounted to 43900 thousand KZT. The exhaustive information on the ownership costs can be found from the budgets in Appendix 3. And Figure 7 below visually represents how depreciation costs are allocated among enterprises and types of fixed assets. It should be noted that winter stables and shed together with the equipment for cattle check and water supply for grazing cattle were not allocated to Feed production enterprise. Therefore, its depreciation cost comprised 100% from machineries depreciation.

Figure 7: Annual depreciation costs distributed by enterprise budgets and the whole-farm

2.5.2. Other fixed costs

Other fixed costs of the cow-calf production enterprise cover interest payments on capital investment loans, taxes, insurance premiums, housing and repair costs for machinery and equipment. The approach used in building of other fixed costs is described below:

1) Interest payments on bank loans; the assumptions made at this part of the study allowed to construct sources of project's finance and forecast later on the debt repayment schedule. Loans for beef farming development purpose in Kazakhstan are provided by a governmental financial organization JSC "KazAgro" (further - Kazagro) within the "Sybaga" beef purpose livestock lending program (n.d.). This program became very popular among small cattle farmers in Kazakhstan due to low interest rate and affordable collateral conditions. Therefore, it was assumed that the modeled cowcalf farm was funded partially by Kazagro, besides capital inflows from an investor or an owner. The modeled investments conditions of own and borrowed funds are presented in Table 9. The total required investment into a new cow-calf farm operation is 83900 thousand KZT. 52% of investments is necessary to purchase an equipment, machinery, and winter stables with sheds. Another part or 48% from total required amount is dedicated to purchase of breeding cattle. It is important to note that an investor invested 15% from the total required amount, while 33% comes as reinvestment subsidies for machinery and cattle from the Kazakh government and remaining 52% comes as debt finance.

Table 9. Funds investment conditions

	Unit measure	$\frac{\text { Investments into }}{\text { fixed assets }}$	$\frac{\text { Investments }}{\text { into cattle }}$
Total required investments	thousand KZT	43900	40000
Share from total required investments	\%	52\%	48\%
Own capital investments	thousand KZT	6585	6000
*Loan amount, \% from total value	\%	85,0\%	85,0\%
Investment subsidies	thousand KZT	12025	15400
Loan amount, KZT from total necessary investments	thousand KZT	25290	18600
*Interest rate	\%	6,4\%	4,4\%
*Loan maturity	month	180	84
*Grace period for principal's repayment	month	24	24
Principal repayment (equal distribution)	KZT/ year	1945	3720
Interest repayment in the first year	KZT/ year	1619	818
Total repayment in the first year	KZT/ year	3564	4538

Note. *Loan financing conditions are taken from "Sybaga" beef purpose livestock lending program (n.d.).
2) Taxes; basic tax rates on agricultural lands are established per one hectare and are differentiated by soil quality based on a soil fertility indicator. For the modeling purposes the Base tax rate of 166 KZT was taken for a soil with soil quality index around 45 points (Tax Code of the Republic of Kazakhstan, Article 503). The calculated land tax amount comprised 153 thousand KZT for 926 ha of land. Together with calculated machinery and property tax rates, the total payment to tax authorities amounted 417 thousand KZT.
3) Insurance premiums; insurance companies in Kazakhstan offer coverage of machinery and equipment damage or loss due to unforeseen events. Insurance premiums were taken from internet sources as 2.5% per year for machinery and 0.5% for equipment.
4) Housing and repair costs for machinery and equipment; housing is a sheltering cost for farm's equipment and tools available at a farm for machinery maintenance. These costs can vary significantly and for the modeling purposes were taken as 0.2% charge from average value of machinery and equipment. Repair costs made a significant portion of other fixed costs (29\%) and total ownership costs (11%) and calculated based on operation and maintenance cost factors for agricultural machinery and equipment proposed by Kay, Edwards, and Duffy (2008)

2.5.3. Opportunity costs of investments

Opportunity costs of an investment is an important consideration when economic costs are calculated. Assessment of opportunity costs can be done by comparing two alternative investment opportunities or conducting a utility study to find the value of the second-best use of an investment. (Palmer \& Raftery, 1999). Opportunity costs contain expenses that farmers do not usually bear because they don't pay for themselves. (Hughes et al., 1989) Therefore, opportunity costs include estimates of utilisation of these assets (Table 10). Two types of opportunity costs were considered in the Model and presented below: an opportunity cost of own labour and an opportunity cost of funds invested into assets, such as machinery, equipment and cattle.

1) Opportunity cost of own labour included in the Model is 4,700 thousand KZT per year or 391 thousand KZT per month. That is the expected earning of a cow-calf farmer according to Meat Union of Kazakhstan (2018) and 2.2 times of the average salary in Kazakhstan, which was 173 thousand KZT per month as of May 2019 (Average monthly salary, 2019). This amount can be an attractive income assuming that a farmer can use his own labor by performing a paid work as the best alternative to farming (Kay, Edwards, and Duffy, 2008).
2) Opportunity cost of funds invested into assets, such as machinery, equipment and cattle were calculated based on the cost of equity of 11.3%. The section 2.6 . discusses explicitly the calculation method of the cost of equity rate. It appeared that the opportunity cost of investing own funds in the amount of 12585 thousand KZT could potentially bring an income of up to 1853 thousand KZT per year. After that the opportunity cost of equity of 11.3%, was compared with the interest rate on saving accounts in Kazakhstani banks. This second assessment was useful to understand the profitability of the alternative use of funds avoiding high-degree risks associated with investments. According to National Bank of Kazakhstan (2019) interest rates of Kazakh banks on attracted deposits in KZT currency for terms above 5 years were 10,9\% as of May 2019. Therefore, opportunity cost of investing in the equity capital can be around $10.9-11.3 \%$. However, the rate of 11.3% was remained for use in the Model following more conservative approach to costs formation.

Table 10. Opportunity costs

Opportunity cost, in thousands KZT	Total	Allocation to		
		reproduction	backgrounding	feed production
Own labor	4700	2350	1175	1175
Assets (all), including:	1853	1135	130	587
- machinery, equipment	969	251	130	587
- assets (cattle)	883	883	-	-
Total	$\underline{6552}$	$\underline{3485}$	1306	$\underline{1762}$

2.6. Cash flow budget

2.6.1. General assumptions of the cash flow budget

The next step in the budget's construction was the identification of cash and non-cash items for building a cash flow budget. This financial analysis tool is used to determine feasibility of planning, sufficiency of capital in certain time periods in the future, forecast financial gaps, and plan borrowings with respective repayments. In other terms, it is a summary of all cash flows and outflows with projection over certain periods in the future (Kay, Edwards, and Duffy, 2008). In comparison with the whole-farm budget the cashflow budget is characterized by including, firstly, all farm's sources of cash income (from operational activities, subsidies, assets sale) and, secondly, timing of cash flows. The cash flow can be a useful management tool because it helps to foresee if a farm generates enough income to meet all cash obligations in upcoming periods and plan loan injection requirements and repayment opportunities. By using cash flow, a cow-calf farmer would be able to plan the proper use of invested capital.

All farm's activities are repetitive with a year-round cycle, therefore the estimates in the cash flow budget were made for the period up to ten years with one-year long cycle. A forecast based on more than ten years was expected to be unfeasible since many external and unforeseen factors could affect the financial planning. All cash flows were corrected to an inflation rate of 4% according to the National Bank (2019).

Since the Model constitutes three probability distributions ($\mathrm{P}, \mathrm{W}, \mathrm{FC}$), there is a logical question about possible relationship between stochastic variables. The assumption was made that the explanatory variables were probabilistically independent. Literally it means that there was almost no causal relationship assumed between market price of calves, weight of animals on sale and feed costs. There might be some dependent relationship between a minimum price offer and feed costs of one particular cow-calf farm. However, it does not necessarily mean that changes in feed costs in one smallholder cow-calf farm cause an effect on the beef prices on the free commodities market.

2.6.2. Steps in cash flow construction

The whole-farm budget was a base to calculate all cash inflows and outflows. The construction of the cashflow budget for the modeled cow-calf farm was performed in several steps recommended by the studies of Kay, Edwards, and Duffy (2008), Edwards W. (2014). The major steps are highlighted below.

1. Drawing of a whole-farm plan including livestock and crop production plans. By maintaining a constant herd size of 100 cows it is expected to produce 80 calves, where half of the calf crop is males and the other half is females respectively. Tentative plans are to produce each year for sale in average 30 heads of yearling heifer cattle; 30 heads of yearling steer cattle, and 8 cull cows open heifers as a result of the replacement. Crop production plan includes preparation of winter forage containing 153 ton of hay, 128 ton of haylage, 242 ton of corn silo, and maintaining a pasture for summer grazing with the capacity of 667 ton of grass in total.
2. Inventory planning. Since the modeled cow-calf farm is a new startup farm, the livestock inventory consists of 100 cows in a late gestation period. They are to be purchased and delivered to the farm close to the expected calving period in spring. Feed is purchased for the first year before own crop is grown to cover partially the feed requirements. The amount of the purchased feed is as follows: 12 ton of cereals, 90 ton of straw, 90 ton of concentrates, 6 ton of protein-vitamin and mineral supplements, 2.7 ton of salt blocks and phosphorus supplements.
3. Estimation of feed requirements was performed and described in part 2.3. Cattle feed costs of Methodology chapter.
4. Estimation of a cash flow income is based on Revenue figures of the whole-farm budget and described in the part 2.2 Revenue. Some variables, such as price for cattle's live weight and animal
weight are taken as stochastic. They formed a base of cash flow income calculation. The uncertainty is assigned to these values in the cash flow in order to capture the variability.
5. The model and specifically the cash flow budget do not take into consideration any additional income from sales of nonfeed crops and feed excess.
6. Estimation of a cash flow income from other sources. The Model includes assumption that a cowcalf farmer will get an additional income in the form of subsidies paid by the government for yearling calves sold to a feedlot and subsidies for maintenance of rented bulls (Order of the Minister of Agriculture, 2019). A new farm can also benefit from investment subsidies from the government in the amount of 35% from the initial investments made (Order of the Deputy Prime Minister, 2019). Sale of the machinery and equipment is expected after 15 years from the purchase date as a result of replacement. However, the income for the salvage value is not a part of the 15 years planning horizon of the projected cash flow. The same goes for the purchase of new machinery and equipment because substitution is not projected in the last year of planned time horizon.
7. Projection of farm's operating expenses is performed and described in the part 2.4 Other operating costs.
8. Estimation of Capital purchases is performed and described in the part 2.5 Ownership costs.
9. Summary of debts payment. It is assumed that the modeled cow-calf farm will be financed partially from debt sources, investment subsidies and own sources (Table 9 Funds investment conditions). The loan allocated for the equipment and machinery purchasing purpose has 6.4% of the interest rate and it is expected to be repaid in 180 months with a grace period of 24 months. The second investment is allocated to the purchase of breeding cattle. It can be taken for 84 months with a grace period of 24 months and with the interest rate of 4.4%. Among debt sources of finance, the farmer assumed to invest own capital and cover part of the investments with the governmental subsidies. All these assumptions formed a base to build financing activities of the cash flows.
10. Estimation of non-farm expenditures. It is assumed that a farmer will not spend cash from farms resources, unless it is non-farm expenditures covered by family living expenses included in the cash outflows.
11. Estimation of net cash flow. It is possible to find net cash flow by simply netting cash inflows and cash outflows. Since certain variables of the cash flow projection are stochastic the net cash flow also variates. The net cash flows from the ending cash balance for each projected period and serve as a starting balance for the next period.

The summary of the completed cash flow budget of the modeled cow-calf farm is shown in Appendix 4. The cash flow budget is a base to the Economic Feasibility Analysis based on the Net Present Value calculation.

2.6.3. Net Present Value with uncertainty

The purpose of constructing the cash flow budget was to come to calculation of the Net Present Value (NPV). NPV is a metric used to assess the feasibility of investing in the cow-calf operation within the new BCPS in Kazakhstan. The NPV is defined as the sum of the expected future discounted cash flows from a project less the initially invested amount of capital. The calculation formula is taken from Damodaran (2012) and can be expressed in the following general equation (3):

$$
\begin{equation*}
\mathrm{NPV}=(-) I I+\mathrm{PV} \text { FCF } \tag{3}
\end{equation*}
$$

Where:
II - Initial investments
PV FCF -Present value of future cash flows
The present value of future cash flow is found by discounting each future year's cash flow to the discount rate. The discount rate has been estimated by using the Weighted Average Cost of Capital (WACC) method.

WACC is the sum of cost of equity and cost of debt weighted against shares in the total amount of investments. (Kumar, 2015). According to Brealey, et al., (2012), WACC is a blended measure of the company's cost of capital that can be found by using the equation (4)

$$
\begin{equation*}
W A C C=\frac{(1-T) R \triangleright \mathrm{D}}{\mathrm{~V}}+\frac{R e E}{V} \tag{4}
\end{equation*}
$$

Where:

T - marginal tax rate,
$R \mathrm{D}$ - cost of debt,
$R \mathrm{e}$ - cost of equity,
D - debt amount
E - equity amount,
V - total amount of capital (debt and equity)
The WACC for the modeled cow-calf can be found by using the equation (4) and by application of the appropriate data specific to the studied case (Table 11). First, the cost of debt was calculated in a straightforward way by adjusting weighted average of interest rates of loans 5.6% (Sybaga beef purpose livestock lending program., n.d.) to the marginal tax rate of 3.0% (Tax Code of the Republic of Kazakhstan, article 313., n.d.). The cost of debt after tax shield was 5.4%. Secondly, the cost of equity was compounded from the Risk-free rate which is the US treasury 10 years bonds with the yield of 2.12% (US Generic Govt 10 Year Yield, USGG10YR., 2019) and the Market risk premium of 9.0% for Kazakhstan (Estimating Country Risk Premiums, 2019). The sum of risk free rate and the market risk premium gives 11.1% cost of equity rate. And finally, WACC of 8.3% is found by weighting cost of equity and cost of debt against share of debt or equity in total investments amount and finally adding these two values. Afterwards the WACC of 8.3% was used as the discount rate in NPV calculation.

Table 11. Calculation of the WACC

Cost of debt	Rate	Source
Cost of debt (RD)	5,6\%	Sybaga beef purpose livestock lending program (n.d.)
Marginal tax rate (T)	3,0\%	Tax Code of the Republic of Kazakhstan, article 313 (n.d.)
Cost of debt after tax shield ($(1-T) R \mathrm{D})$	5,4\%	Calculated
Cost of equity	Rate	Source
Risk free rate	2,1\%	US Generic Govt 10 Year Yield, USGG10YR (2019)
Market risk premium (Kazakhstan)	9,0\%	Estimating Country Risk Premiums (2019).
Cost of equity (Re)	11,1\%	Calculated
Capital structure	\% Weight	Market value (in thousand KZT)
Net debt (D)	49,5\%	43890
Equity (E)	50,5\%	44710
Total (V)		88600
Weighted average cost of capital (WACC):	8,3\%	Calculated

It is worthwhile to calculate the Internal Rate of Return (IRR) for a scenario analysis in order to understand better the NPV. IRR is widely used in addition to NPV in investments analysis. According to Brealey, et al (2012), IRR is a discount rate that gives a zero NPV. It is a profitability measure that is calculated based on a projected cash flow. The NPV value is zero when the discount rate is equal to IRR. Thus, the investment into the cow-calf operation is considered as profitable if IRR is higher than the discount rate of 8.3%. Another situation is when an investor is expected to return the invested amount, but the project cannot be as attractive as alternative investments at the market. This situation occurs when IRR is less than 8.3%, but at the same time NPV is positive. For example, an alternative investment can be into a saving account at a Bank. NPV and IRR are used in scenario analysis and results are presented in the following chapter.

3. Results

In this chapter the results of the modeling and stochastic simulation are presented. The Model output gives a measure of the profitability of investing in a cow-calf operation through the NPV calculated for 10 year and 15 year terms.

3.1. Deterministic model's results

The budgeting technique gave the opportunity to look "inside" of the cow-calf operation by modeling economic budgets for every enterprise. Thus, by comparing revenues and costs of the enterprises it became possible to find out lines of operations where a farmer should pay attention to improve economic profitability. The comparison of economic budgets of reproduction, backgrounding, and feed production enterprises and the whole-farm budget is presented in Appendix 3 and summarized in Figure 8.

Figure 8: Comparison of enterprises budgets and whole-farm budget's structure
From Appendix 3 and Figure 8 it is evident how revenue of every enterprise is distributed between economic profit, ownership costs and operating costs. The cumulative result of the cow-calf operation can be seen from the whole-farm budget's bar. However, it should be noted that the values show a snapshot of a cow-calf firm based on the deterministic model. For this very reason variables of price for cattle's life weight (P) and calves' average weight (W) are fixed on their most likely value and the feed costs (FC) variable is taken as a mean value of their stochastic distribution range as it is shown in Table 12. From the results of economic budgets construction it is evident that:

1) At the whole-farm level the cow-calf operation has economic profit of 13% or 4117 thousand KZT from 31037 thousand KZT of revenue. Almost 14% of revenue comes from sale of culled cows and open heifers as a result of replacement, 76% comes from sale of yearling steers with heifers and 10% comes in form of subsidies for calves sold to a feedlot and subsidies paid for maintenance of invited bulls during mating periods. Operating and ownership costs comprise 40% and 47% of the budget respectively.
2) Feed production enterprise has the economic loss of (-) 17%. This fact can be explained by several factors that influence the feed production enterprises budget. First, the assumption is made that operating costs are 30% of revenue. At the same time the ownership costs and revenue are calculated figures. The revenue of the feed production enterprise is formed from theoretical sale of the feed produced at the feed production enterprise to reproduction and backgrounding enterprises. Another specificity of the feed production enterprise is high ownership costs. Almost 87% of the funds coming from the feed's sale are spent to cover depreciation costs and other fixed costs associated mostly with operation and maintenance of the feed production equipment. From the total value of farm's machinery and equipment over 60% are allocated to the feed production enterprise. The feed production enterprise is the most intensive user of machinery and equipment at the cowcalf farm.
3) Backgrounding enterprise has the highest economic return of 18% or 4727 thousand KZT from 26801 thousand KZT of revenue to management in comparison with other enterprises. At the same time the backgrounding enterprise has the uppermost operating costs of 74% and the smallest ownership expenses of 8% from the revenue.
4) Reproduction enterprise has a very small economic profit of 3% or 610 thousand KZT from the revenue of 19960 thousand KZT. It is quite low in comparison with the backgrounding enterprise.

To conclude, the deterministic model revealed the results of the budgets construction, where cow-calf operation is economically profitable at the whole-farm level. At the same time the backgrounding enterprise generates the biggest revenue and economic profit, whereas the reproduction enterprise is balancing on a low economic profitability level. Regarding the feed production enterprise, it has an economic loss in the modeled conditions.

3.2. Results of the stochastic simulation

The problem with economic feasibility analysis by using a deterministic model is that the result represents a snapshot of the farm's economic activities without consideration of changes that always take place in real life. Therefore, judging the cow-calf investment project based on a single-output result might bring investors to unfavorable decisions. In reality, investors estimate their return based on different scenarios of market prices, animal's performance characteristics, costs associated with running a farm and many others. Although an accurate result cannot be predicted the stochastic simulation indicates how uncertainty in input variables changes the economic profitability and feasibility of the investment in general.

Several steps were taken before stochastic simulation of the Model was possible. Studies of Kay, Edwards \& Duffy (2008) were used in order to build the enterprise, whole-farm and cash flow budgets, while methods described in the work of Clemen \& Reilly (2014) were followed to run Monte Carlo simulation and to see how variability of price for cattle's live weight (P), calves' average weight (W) and feed costs (FC), affect the NPV. The following three consecutive major blocks were constructed to build the deterministic model of the cow-calf operation with 100 breeding cows: (i) reproduction, backgrounding and feed production enterprises, (ii) the whole-farm budget (Appendix 3), and, finally, (iii) the cash flow budget (Appendix 4). After that the probability distributions to input and output variables were assigned. The stochastic input variables include market price for life weight of cattle (P), calves' average weight (W), and feed costs (FC): the total purchased feed and operating costs of own feed production enterprise. The following step was sequential simulation of the Model with 1000 iterations. Finally, the feasibility of investing into the cow-calf operation within the new BCPS in Kazakhstan was examined. The output variable, that is NPV served as an indicator of feasibility of investments. The stochastic variables used for simulation are shown in Table 12.

Table 12. Summary of all stochastic variables in the Model

Stochastic variables:	Value	$\underline{\text { Parameters of distribution }}$			Type of the distribution
		Min	Most likely	Max	
Price for live animal weight of 1) cull cows/ open heifers and 2) steer calves	968	664	850	1283	Triangular
Steer calf average yearling weight (12 months)	298	295	343	390	Triangular
Heifer calf average yearling weight (12 months)	306	250	291	331	Triangular
Cull cows' and open heifers' weight	622	542	623	632	Triangular
		Min	Mean	Max	
Total purchased feed, in KZT		3002792	6005584	9008376	Uniform
Total cash operating expenses of own feed production, in KZT		1085130	2170259	3255389	Uniform

Note. Methodology chapter shows how parameters of distributions are formed.
The analysis shows how variability of above mentioned values affects the economic profitability and the Net Present Value calculated for 10 year and 15 year terms. The stochastic simulation demonstrates the following distribution of economic profit of the whole-farm budget (Figure 9) and the Net Present Value for 10 years and 15 years (Appendix 5 and Table 13). It should be noted that the results might be slightly different each time when the simulation runs. The reason behind this is that in each simulation values from a given range are chosen randomly by the program (@RISK).

3.2.1. The effect of stochastic simulation on economic profit (return to management)

The distribution of the economic profit/loss at the whole-farm budget's level in the histogram demonstrates that possible outcomes can be between the range of 102 thousand KZT and 11072 thousand KZT (5% and 95% confidence interval). The mean of the distribution is 5449 thousand KZT with the standard deviation from the mean of 3257 thousand KZT. There is a 95.7% chance that the economic profit of the modeled cow-calf enterprise is above zero (Figure 9).

Figure 9: The cumulative graph and statistics output of the whole-farm's economic profit distribution

3.2.2. The effect of the stochastic simulation on NPV under the different scenarios

However, the enterprises and whole-farm budgets do not consider several important factors for investment decision making. These factors include time value of money, principal debt repayments, benefits and costs over projected period on a cumulative basis and availability of investment subsidies from the government. Therefore, the cash flow budget is used to define the Net Present Value of future cash flows from operation of the Modeled cow-calf farm. The Stochastic simulation of the NPV was performed with the following scenarios:

- Scenario 1: investment period 15 years, with subsidies;
- Scenario 2: investment period 15 years, without subsidies;
- Scenario 3: investment period 10 years, with subsidies;
- Scenario 4: investment period 10 years, without subsidies;

The assumptions made for scenario analysis are as follows:

1) Projected investment periods: 10 years and 15 years. 10 year period is chosen because it is the most common and convenient middle point used to summarize results of investments. At the same time another period of 15 years is chosen because at this future time point useful life period of most of the machinery and equipment will expire and maturity of the investment loan will finish.
2) Subsidies in the current study are type of financial support from Kazakhstani government to new cattle farmers in form of incentives and/or financial aids aimed to develop the new BCPS. According to the Order of the Deputy Prime Minister (2019) two types of investment subsidies for beef cattle farmers are considered. The first one is subsidies in the amount of 154 thousand KZT per head of cattle paid when pedigree breeding cattle is acquired. A cow-calf farmer gets 15400 thousand KZT for 100 cattle purchased. The second type of investment subsidies is a refund of money spent by a cow-calf farmer for purchase of machinery and equipment. According to the estimate in the Model, from 43900 thousand KZT invested in fixed assets the return in form of subsidies comprises 12025 thousand KZT. Therefore, a cow-calf farmer gets refund of 27425 thousand KZT all together. This amount is assumed to be invested into the project and covered part of the required own capital investments, which is 44710 thousand KZT.
3) The required own capital investments amount is 44710 thousand KZT. However, only 17285 thousand KZT can be invested into the project if subsidies are reinvested. It is uncertain if the investment subsidies in the calculated amount of 27425 thousand KZT can be received and reinvested into the project. Therefore, if the larger amount of the initial investment is made it means that the farmer does not get subsidies and he is reluctant to invest more from his own sources of finance.
4) The discount rate is 8.3% according to calculations performed and presented in the previous chapter and summarized in Table 11.
The results of the stochastic simulation of NPV in four different scenarios are shown in Table 13.
Table 13. NPV scenario analysis

Scenarios*	$5 \% \mathrm{CI}$	Mean	$95 \% \mathrm{CI}$	$\underline{\underline{S D}}$
Scenario 1, NPV 15 years, with subsidies, thousands KZT	35949	47367	59090	7301
Scenario 2, NPV 15 years, without subsidies, thousands KZT	8524	19942	31665	7301
Scenario 3, NPV 10 years, with subsidies, thousands KZT	14894	26267	37979	69
Scenario 4, NPV 10 years, without subsidies, thousands KZT	-12530	-1157	10554	69
Scenario 1, IRR, \%	$18,3 \%$	$29,5 \%$	$43,1 \%$	$7,6 \%$
Scenario 2 IRR, \%	$2,0 \%$	$5,4 \%$	$9,0 \%$	$2,1 \%$
Scneario 3, IRR, \%	$14,2 \%$	$27,3 \%$	$42,1 \%$	$8,6 \%$
Scenario 4, IRR, \%	$-5,9 \%$	$-0,6 \%$	$4,6 \%$	$3,2 \%$

Note. *The cumulative graphs showing the range of possible outcomes of NPV and IRR simulations are in the Appendix 5

The results of NPV scenario analysis can be summarized out several patterns from the Table 13. Thus, the longer period of cash flow projection is taken the higher NPV and IRR are. According to Scenarios 1,2 and 3 the NPV is between two positive values. This means that with 90% probability the investor will return his investments. The project is less attractive according to Scenario 4 because the mean value of the NPV distribution is negative. The picture of investment's feasibility is more complete if IRR is considered along with NPV. It has been discussed earlier in the section 2.6 .3 that the investment into the cow-calf operation is worthwhile investment if IRR is higher than the discount rate of 8.3%. The distribution of the IRR in Scenarios 2 is between -5.9% and 4.6% and in Scenario 4 the IRR value falls into the range between 2.0% and 9.0%. In both scenarios 1 and 3 the calculated IRR exceeds the value of the opportunity cost of capital. In overall, the results of the scenario analysis suggest that subsidies are crucial factor affecting the feasibility of investments into the cow-calf operation. Scenario 3 and 4 with NPV of 10 years and 15 years respectively can be suggested as the most feasible options to consider on condition that subsidies are available to reinvest into the project.

4. Discussion

This chapter aims to discuss and critically elaborate the results of the study by giving summary of the main findings, limitations of the model building and the analysis process and by suggestion of implications for further research.

4.1. Summary

There are several important outcomes for those investors who consider investing into the cow-calf operation within the new BCPS in Kazakhstan. The economic profitability of a cow-calf farm can vary considerably due to inherited uncertainty in factors as market price, calves' live weight and feed costs. The feasibility analysis using stochastic simulation revealed that reinvesting of the investment subsidies was an important factor to run a profitable cow-calf operation. The biggest part of this work was the construction of the stochastic simulation model. Scenario analysis was performed, and conclusions were made based on the modeling results.

Summary on the model construction; the Model considers a cow-calf farmer who kept 100 breeding cows, gets yearly calves, and rise them until yearling (12-month-old) age. The cattle breeding activities are supported by producing partially own feed at the modeled farm. Enterprise budgets were used as "building blocks" for the whole-farm and further cash flow budgets development. The benefit of the whole-farm budget analysis was that changes in feed costs of reproduction and backgrounding enterprises offset the same changes in the revenue of the feed production enterprise at the whole-farm level. Therefore, the economic profit (return to management) at a whole-farm level increases or decreases to the amount of operating costs of the own feed production enterprise while the ownership costs are constant. In overall, constructing budgets requires a large amount of appropriate data. The research was performed by using combination of methods from cost benefit analysis, budgeting, excel modeling, and economic feasibility analysis by application of stochastic simulation using @RISK (Palisade). The stochastic simulation model was designed to examine the research question on how several factors like market price for cattle's life weight, calves' average weight and feed cost would affect the economic feasibility of investing in a cowcalf operation within the new BCPS in Kazakhstan. The Net Present Value of the expected cash flows was used as an indicator of profitability of investments that included not only economic profit but also return of investments. Finally, the stochastic simulation model of the cow-calf farm was constructed that could be used further by industry stakeholders for investment decision making into the beef cattle farming in Kazakhstan.

Control of production costs; the cost of rising feed for livestock should be clear for a farmer to understand true cost of production. It is easy to be trapped with high cost of production, therefore diligent cost benefit analysis is required. At the same time a farmer might not have control over revenue as it was found out during the analysis that animal weight and market price had a big effect on profitability of cow-calf farm's operations.

High ownership costs; the ownership costs can be in average 10-15 \% annually from the cost of machinery and equipment (Kay, Edwards, and Duffy, 2008). The total ownership costs in the Model, excluding the opportunity costs, made up 7918 thousand KZT or 18% from the initial investment in the amount of 43900 thousand KZT into machinery and equipment. Therefore, the Model might be conservative in comparison with recommended industry norms. Another expectation is that the calculated ownership costs might be higher than competitors' who specialized in feed production, has a fleet of machinery and can produce feed in big amounts and sale it to the market. The economy of scale can play a certain role making the production of the same type of feed more efficient in terms of costs. It brings another assumption that a cow-calf farmer
might consider concentration solely on cattle farming, having pastures only if a feed producer is located nearby. Thus, forage can be purchased for a reasonable market price.

Low profitability of cow-calf operation; traditional cow-calf farms usually are low profitable businesses organized in abundant lands where other economic activities do not take place in Canada (Sheppard et al., 2015). Beef production industry is characterized with low economic profitability of cow-calf operations. Thus, for example, study of Pendel \& Herbel (2018) stated that over 42 years between 1975 and 2016 average return over total costs were positive only 14% times with the average of -96.5 USD per cow for a farm that are a part of Kansas Farm Management Association. The average cow-calf producer operating in Iowa, Illinois, the US during 1996-1999 had a negative return to labor and management. And the feed cost was a major factor affecting profitability (more than 50% in profit variation) followed by depreciation and operating costs (Miller, 2002). Cow-calf producers' income is very vulnerable to the output and input prices and is not stable. Most of cow-calf farmers in the US have additional income from off-farm sources like salaries, retirement income or from other farming activities (McBride \& Mathews, 2011).

The stochastic simulation of the economic profit (return to management) demonstrated that possible outcomes could be between the range of 102 thousand KZT and 11072 thousand KZT (5\% and 95\% confidence interval) for a cow-calf farm operation based in Kazakhstan. This earning might be sustainable for a Kazakh cow-calf farmer, but rather low for a North American cow-calf farmer. The budgeting results based on the deterministic figures suggests that the reproduction is low profitable enterprise in comparison with backgrounding. The calculated economic profit of the reproduction enterprise was 3% against 18% profit of the backgrounding enterprise. However, feed production might be expensive to a small cow-calf farmer in Kazakhstan due to many associated risks to run a profitable feed production enterprise. However, feeding weaned calves until yearling age might bring additional income if the problem with feed is solved. It is expected that cow-calf farms will tend to apply any possible practices to decrease cost while preserving high yield of crops in their feed production enterprises. Then the backgrounding operation until yearling age can be profitable at the cow-calf farm level. In general, the results of the analysis are in line with the expectations about low profitability and cost intensive character of cow-calf farming.

The results of the stochastic simulation on NPV under the different scenarios revealed that investments into the cow-calf farming within the new BCPS in Kazakhstan without support from the government might be not feasible even in a 15 year term. It might be an important consideration for an investor to place his funds into the profitable business. Due to this reason opportunity cost of investment should be considered along with NPV. Thus, IRR can be compared with the discount rate that is also a measure of the opportunity cost of investment. Following these criteria, a good investment has positive NPV with IRR more than 8.3%. An investor is suggested to invest into the modeled type of the cow-calf farm operation considering that return of funds is expected after 10 years and the governmental subsidies are paid and reinvested into the project at the time when the project is started. This recommendation is consistent with the scenario 3 where 90% confidence interval of NPV is between 14897 thousand KZT and 37979 thousand KZT and IRR with 90% confidence interval falls between 14.2% and 42.1%. The Scenario 1 has a 15 year investment period with subsidies and by default it is another feasible option to consider.

4.2. Limitations

The constructed budgets and stochastic simulation tool helped to understand the level of economic profitability and return on investment based on the Net Present Value of future cash flows supplemented with internal rate of return. The model included stochastic factors, such as price for cattle's life weight (P), calves' average weight (W) and feed costs (FC) to better understand their effect on the NPV. However, methods used for the analysis have a number of limitations that are observed in the current section. They include limitations of the model building process, validation of the Model's results, variables that affect the NPV, lack of local scientific researches.

The limitations of the model building process were as follows:

1) The calculation of variable costs of own feed production was optimized in the deterministic model by making assumptions on total variable cost as a percentage from total revenue. This simplification was expected to have minor effect on prediction power of the final model since this value was assumed to be stochastic.
2) All together the total opportunity cost was 6523 thousand KZT or 45% from the value of the total ownership costs and 24% from all budgeted costs of the modeled cow-calf operation farm. Therefore, opportunity cost made a considerable portion of the budgeted costs and influenced highly on the economic profit estimates of the whole-farm.
3) Different farmers have different machinery and equipment. Thus, the total value of fixed assets might change from case to case as all related expenses.
4) Miscellaneous and overhead expenses were not included in other fixed costs to simplify the Model and to avoid a conservative approach. However, unexpected extra costs can run a farm out of cash if occurred and therefore by planning this budget line a financial cushion can be made.
5) One of the problems with budgets construction is that they require lots of data and time investments.
6) The majority of the information used in the Model has a deterministic character. However, inserting a lot of stochastic variables added complexity into the model building process. The results can be vague and therefore useful for practical use in investment decision making.

Validation of the model's results; another limitation of the analysis is that validation of the modeling results was not performed. The beef cattle production system is a complex continuous process with simultaneous change of many factors in a real life situation. The study analyzed one type of operation (cow-calf farming) within the new BCPS in Kazakhstan. Validation of results requires testing on many farms of the same type. Since the new BCPS is an innovative way of traditional beef cattle farming in Kazakhstan it might be difficult to find the necessary number of cow-calf farms rising calves until yearling age with own feed production for validation reasons.

The study revealed how the stochastic input variables affected the NPV, but not which input variable affected most. The common variability effect on the Net Present Value of the stochastic variables was studied. However, it has not been defined what factors from price for cattle's life weight (P), calves' average weight (W) and feed costs (FC) had more effect on the NPV. However further research might investigate how different variables specifically affect the economic profit and NPV of the cow-calf operation. It would be also interesting to investigate how the above mentioned stochastic variables affect cash flow's output variables of every enterprise.

Lack of the local scientific researches; another problem was a limited number of scientific researches related to the economics of cattle farming in Kazakhstan. The available information is limited mainly to the sources that cannot be considered as scientific and therefore can be biased.

To sum up, it has been found how several input variables all together affect the profitability of a cow-calf operation within the new BCPS in Kazakhstan by constructing the stochastic simulation model. Whereas the answer to the research question has been given, the Model itself and the methods used for its construction have several limitations presented above. The majority of these limitations are common to chosen analysis methods while others are specific to the performed analysis. However, further research might take into consideration the limitations stated above, adjust the Model to specific needs and to improve the prediction power of the Model. The results of the study might not be summarized to the whole cow-calf production in Kazakhstan within the new BCPS. The conclusion is rather a demonstration of how the stochastic simulation model works and an attempt to point out where attention of investors should be paid if they consider making investments into the new BCPS in Kazakhstan.

4.3. Implications for further research

The final goal of the Model was to define how uncertainty of several variables affected the feasibility of investments into the cow-calf operation within the new BCPS in Kazakhstan. The constructed enterprises budgets, whole-farm and cash-flow budgets can be used in further research and by farmers, investors and other beef production industry stakeholders in numerous ways.

The results of this cow-calf operation's feasibility analysis cannot be applied to all cow-calf operations in Kazakhstan. Firstly, the assumptions made in the model are not equal for all farms within the new BCPS. Industry stakeholders interested in evaluation of economic feasibility of investing into a cow-calf operation within the new BCPS in Kazakhstan by using this model should apply their own data specific to every situation, considering besides economic also climatic and biological factors. Secondly, the Model can be used as a starting point and a tool for further calculations and applied research rather than a source of direct reference for summaries about economic feasibility of cow-calf operations within the new BCPS in Kazakhstan.

It is advisable to conduct future economic researches on similar type of cow-calf operators in Kazakhstan and regions with the same cattle management practice and conditions. These types of research scope can reveal very practical primary data on cattle farming practice in Kazakhstan that is not present in statistical databases and scientific literature yet.

The investors might be interested to compare the economic profitability and the NPV of investing in a cowcalf farm with production and sale of weaned calves against the cow-calf farm with additional backgrounding and selling at yearling age. Partial budgets might be a useful tool to measure necessary adjustments to the Model and conduct an appropriate research and analysis. Real options approach might be used because it allows to count the value of flexibility of an investment. It is of great interest to investors to understand what conditions should be set to meet profitable operations in every enterprise before investing and establishing a cow-calf operation.

Another point for further research is feed cost formation. There is a certain dilemma that needs to be studied on how to provide animals with required energy, protein sources from local feedstuff sources while maintaining the lowest possible costs. The analysis has shown that a big portion of spending goes to the purchase of protein concentrates and preparation of own feed, such as corn silage and haylage. Potential decrease in feed production cost might be reached by using by-products of cash crops production rather than feeding with more expensive own produced feed and protein concentrates.

The relationship among several phenomena needs to be studied in order to make more accurate predictions. It is required to understand how stochastic variables, such as price for cattle's life weight (P), calves' average weight (W) and feed costs (FC) will affect the NPV of the Modeled cow-calf farm.

Turning specifically to the constructed model, the correlation between market prices for beef and production cost factors was not considered in the Model. That might lead to a scenario when the market price for cattle's live weight soared while cost of production remained considerably low. Such situation might have a place. Therefore, the relationship between these two variables needs to be understood and the correlation effect to be introduced into any further research based on the developed Model.

Several strategies can be considered to increase farm's income and to decrease costs. These strategies might be different and can include increase of income from additional farm activities and adding another nonfarm income to reduce spending on family leaving expenses. It is thought-provoking to consider reduction of external financing from debt sources, restructure a debt by amortization of payments of principal and interest; reduce feed costs as the main source of cash outflows and at the same time without affecting quality and quantity of necessary feed; sharing with other neighboring farmers the ownership and investments into capital assets like machinery and equipment. Therefore, further research might concentrate
on cattle management practices in Kazakhstani conditions that will increase profitability of cow-calf operators and BCPS in general. As a result, valuable practical recommendations can be made to cattle farmers on how to sustain a profitable operation and avoid risks.

5. Conclusion

This study has been aimed to analyse the economic feasibility of investing into the new beef cattle production system in Kazakhstan. Economic budgets of a cow-calf operation were developed to construct the model and the stochastic simulation technique was applied to understand the effect of uncertainty in variables, such as price for cattle's life weight, calves' average weight and feed costs on the Net Present Value. The results of the study suggest that the backgrounding can be a profitable enterprise and can be supplementary fit to reproduction enterprise. Investments into the cow-calf operation can be economically efficient in a long run above 10 years on condition that the governmental subsidies are reinvested.

Expectations of the study have been partially met. The stochastic simulation model was developed and used to measure economic feasibility of investments. The total effect of uncertain variables to NPV has been measured but not each separately.

The developed stochastic simulation model can be used in future researches and for commercial purposes as a decision support tool in a new beef cattle production system in Kazakhstan. The study in overall may bring benefits to smallholder cattle farmers in Kazakhstan if results are adopted to every specific case.

6. References

Average monthly salary (2019). Retrieved from http://stat.gov.kz/
Brealey, R. A., Myers, S. C., Allen, F., \& Mohanty, P. (2012). Principles of corporate finance. Tata McGraw-Hill Education.

Boone, R. B., BurnSilver, S. B., Thornton, P. K., Worden, J. S., \& Galvin, K. A. (2005). Quantifying declines in livestock due to land subdivision. Rangeland Ecology \& Management, 58(5), 523-532.

Brinkert, A., Hölzel, N., Sidorova, T. V., \& Kamp, J. (2016). Spontaneous steppe restoration on abandoned cropland in Kazakhstan: grazing affects successional pathways. Biodiversity and conservation, 25(12), 2543-2561.

Bock, B. J., Hannah, S. M., Brazle, F. K., Corah, L. R., \& Kuhl, G. L. (1991). Stocker cattle management and nutrition. Cooperative Extension Service, Kansas State University.

Beef Cow-Calf Manual. (2008). Alberta agriculture and food. Retrieved from:
https://www.alberta.ca/livestock.aspx
Bulls. (n.d.). Retrieved June 4, 2019 from https://market.kz/zhivotnye/selhoz-zhivotnye/k-\�\�\�\�\�\�\�\�\�\�/

Calves. (n.d.). Retrieved June 4, 2019 from https://www.olx.kz/zhivotnye/selskohozyaystvennye-zhivotnye/q-\�\�\�\�\�\�\�\�\�\�\�\�/

Clemen, R., \& Reilly, T. (2014). Making Hard Decisions with Decision Tools: An Introduction to Decision Analysis. Stamford CT: Cengage.

Cost of production in breeding farm (2014). Republican Chamber of Angus of Kazakhstan. Retrieved from http://angus.kz/

Cow-calf industry manual (2013). The Foreign Animal Disease Preparedness and Response Plan (FAD PReP)/National Animal Health Emergency Management System (NAHEMS) Guideline. Retrieved from https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/emergency-
management/ct_fadprep_industry_manuals
Damodaran, A. (2012). Investment valuation: Tools and techniques for determining the value of any asset (Vol. 666). John Wiley \& Sons.

Dijkhuizen, A. A., Renkema, J. A., \& Stelwagen, J. (1991). Modeling to support animal health control. Agricultural Economics, 5(3), 263-277.

Drèze, J., \& Stern, N. (1987). The theory of cost-benefit analysis. In Handbook of public economics (Vol. 2, pp. 909-989). Elsevier.

Evans, J. R., Sperow, M., D'Souza, G. E., \& Rayburn, E. B. (2007). Stochastic simulation of pastureraised beef production systems and implications for the Appalachian cow-calf sector. Journal of sustainable agriculture, 30(4), 27-51.

Edwards, W. (2015). Estimating farm machinery costs. [PDF file]. Retrieved from
https://www.extension.iastate.edu/agdm/crops/html/a3-29.html
Edwards, W. (2014). Twelve Steps to Cash Flow Budgeting [PDF file]. Retrieved from https://www.extension.iastate.edu/agdm/wholefarm/html/c3-15.html

FAO (2018), OECD-FAO Agricultural Outlook 2018-2027. Retrieved from
http://www.fao.org/publications/oecd-fao-agricultural-outlook/2018-2027/en/

Galyean, M. L., Ponce, C., \& Schutz, J. (2011). The future of beef production in North America. Animal Frontiers, 1(2), 29-36.

Genetic trend EDP/ \$Value by Birth year (2019), American Angus Association. Retrieved from http://www.angus.org/Nce/GeneticTrends.aspx

Hardaker, J. B., Lien, G., Anderson, J. R., \& Huirne, R. B. (2015). Coping with risk in agriculture: Applied decision analysis. CABI.

Hankerson, B. R., Schierhorn, F., Prishchepov, A. V., Dong, C., Eisfelder, C., \& Müller, D. (2019). Modeling the spatial distribution of grazing intensity in Kazakhstan. PloS one, 14(1), e0210051.

Hespos, R. F., \& Strassmann, P. A. (1965). Stochastic decision trees for the analysis of investment decisions. Management Science, 11(10), B-244.

Herring, A. D. (2014). Beef cattle production systems. CABI.
Hughes, H., Aakre, D. G., Toman, N., \& Boyles, S. (1989). Preparing and understanding a beef cow-calf enterprise budget.

Isabekov K. I., Nurmanov K. K., Turganbekova B. K. (2012). Methodical recommendations on production and procurement of fodder for a farm. Kazagromarketing

Kazakhstan - Agricultural sector. (2019, June 1). The International Trade Administration of U.S.
Department of Commerce. Retrieved June 1, 2019 from https://www.export.gov/article?id=Kazakhstan-Agricultural-Sector

Kay, R. D., Edwards, W. M., \& Duffy, P. A. (2008). Farm management sixth edition.
Kazakhstan - The Economy Has Bottomed Out: What's Next? (2017) The World Bank. Retrieved from https://www.worldbank.org/en/country/kazakhstan/publication/economic-update-spring-2017

Kumar, R. (2015). Valuation: theories and concepts. Academic Press.
Kerven, C., Alimaev, I. I., Behnke, R., Davidson, G., Malmakov, N., Smailov, A., \& Wright, I. (2006). Fragmenting pastoral mobility: changing grazing patterns in post-Soviet Kazakhstan. In In: Bedunah, Donald J., McArthur, E. Durant, and Fernandez-Gimenez, Maria, comps. 2006. Rangelands of Central Asia: Proceedings of the Conference on Transformations, Issues, and Future Challenges. 2004 January 27; Salt Lake City, UT. Proceeding RMRS-P-39. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 99-110 (Vol. 39).

Khakbazan, M., Carew, R., Scott, S. L., Chiang, P., Block, H. C., Robins, C., ... \& Huang, J. (2014). Economic analysis and stochastic simulation of alternative beef calving and feeding systems in western Canada. Canadian Journal of Animal Science, 94(2), 299-311.

Kormovik.kz feed additives. (n.d.). Retrieved from http://www.kormovik.kz
Lanfranco, B., Ferraro, B., \& Rava, C. (2018). Assessing competitive position of Uruguay's beef sector. Journal of Agribusiness in Developing and Emerging Economies, 8(2), 288-302.

Land Code of the Republic of Kazakhstan 2019, LC, art. 48, c. 7.
Lunik, E. \& Langemeier, M. (2015) International Benchmarks for Corn Production. Retrieved from https://ag.purdue.edu/commercialag/Documents/Resources/Mangagement-Strategy/InternationalBenchmarks/2015 0601 Lunik International Benchmarks Corn.pdf

Livestock and Poultry: World Markets and Trade. (2019). United States Department of Agriculture.
Retrieved from: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf

Maclachlan, I. R. \& Stringham, E. (2016, December 16) Beef Cattle Farming. The Canadian Encyclopedia, Historica Canada.

McBride, W. \& Mathews, K. (2011). Beef Cow-Calf Production a Lifestyle Choice among many farmers. US Department of Agriculture. Retrieved from https://www.ers.usda.gov/amber-waves/2011/june/beef-cow-calf-production/

Miller, A. J., Faulkner, D. B., Knipe, R. K., Parrett, D. F., Berger, L. L., \& Strohbehn, D. R. (2002). Critical control points for profitability in the cow-calf enterprise.

Meat Union (2018). The concept of the implementation of the investment industry program for the development of animal husbandry in Kazakhstan to the Y2018-2027. Retrieved from https://www.meatunion.kz/images/nationalni.pdf

Ministry of agriculture of the Republic of Kazakhstan. (n.d.) The concept of the implementation of the investment industry program for the development of animal husbandry in Kazakhstan. Program for beef cattle industry development to the period 2018-2027. Retrieved from: http://mgov.kz/ru/o-deyatelnosti/zhivotnovodstvo/

Oecd review of agricultural policies (2013). Organisation for Economic Co-operation and Development. (Vol. 2013, kazakhstan, Oecd review of agricultural policies). Paris: OECD.

Order of the Minister of Agriculture of the Republic of Kazakhstan (March 15, 2019) № 108 "On approval of the Rules for subsidizing the development of livestock breeding, increasing productivity and quality of livestock products" (as amended on 06.06.2019). (n.d.). Retrieved May 15, 2019 from https://online.zakon.kz/document/?doc_id=32302766\&doc_id2=32302766\#activate_doc=2\&pos=1;$315 \& \operatorname{pos} 2=1 ;-315$

Order of the Deputy Prime Minister of the Republic of Kazakhstan - Minister of Agriculture of the Republic of Kazakhstan (December 27, 2018) No. 540 "On Amendments to the Order of the Acting Minister of Agriculture of the Republic of Kazakhstan dated July 23, 2018 No. 317 "On Approval of the Rules of Subsidies to reimburse part of the costs incurred by the subject of agro-industrial complex for investment". (n.d.). Retrieved May 15, 2019 from
http://base.spinform.ru/show doc.fwx?rgn=113364\#A5EQ0R3AM5 doc.fwx?rgn=113364\#A5EQ0R3A M5

Palmer, S., \& Raftery, J. (1999). Opportunity cost. Bmj, 318(7197), 1551-1552.
Peel, M. C., Finlayson, B. L., \& McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions, 4(2), 439-473.

Pendell, D. L. \& Herbel, K. (2018). Differences Between High, Medium, and Low Profit Cow-Calf Producers: An Analysis of 2010-2016 Kansas Farm Management Association Cow-Calf Enterprise. Unpublished manuscript, Department of Agricultural Economics, Kansas State University. Retrieved from https://www.agmanager.info/sites/default/files/pdf/DifferencesBetweenHighMediumLowProfitCow-CalfProducers_2012-2016_12-28-17.pdf

Pogue, S. J., Kröbel, R., Janzen, H. H., Beauchemin, K. A., Legesse, G., de Souza, D. M., ... \& McAllister, T. A. (2018). Beef production and ecosystem services in Canada's prairie provinces: A review. Agricultural systems, 166, 152-172.

Plastina, A. (2019). Estimated cost of Crop production in Iowa-2019. Ag decision maker. Retrieved from https://store.extension.iastate.edu/product/Estimated-Costs-of-Crop-Production-in-Iowa-2019

Prices and indices for agricultural products in the Republic of Kazakhstan. (2019). Retrieved June 2, 2019 from http://stat.gov.kz

Risk Analysis and Simulation Add-In for Microsoft® Excel (2015). Palisade Corporation. Retrieved from https://palisade.com/downloads/documentation/7/EN/RISK7_EN.pdf

Robinson, S., Kerven, C., Behnke, R., Kushenov, K., \& Milner-Gulland, E. J. (2017). Pastoralists as Optimal Foragers? Reoccupation and Site Selection in the Deserts of Post-Soviet Kazakhstan. Human Ecology, 45(1), 5-21

Robinson, S. (2000). Pastoralism and land degradation in Kazakhstan. Pastoralism and land degradation in Kazakhstan.

Republican Chamber of Kazakhstan Angus (2019). Sales volumes of Angus breeding stock in nine months of 2018. Retrieved from https://angus.kz/

Schmitz, A., \& Meyers, W. H. (Eds.). (2015). Transition to agricultural market economies: The future of Kazakhstan, Russia and Ukraine. CABI.

Salnikov, V., Turulina, G., Polyakova, S., Petrova, Y., \& Skakova, A. (2015). Climate change in Kazakhstan during the past 70 years. Quaternary international, 358, 77-82.

Sheppard, S. C., Bittman, S., Donohoe, G., Flaten, D., Wittenberg, K. M., Small, J. A., ... \& Amiro, B. D. (2015). Beef cattle husbandry practices across Ecoregions of Canada in 2011. Canadian Journal of Animal Science, 95(2), 305-321.

Schiermiester, L. N., Thallman, R. M., Kuehn, L. A., Kachman, S. D., \& Spangler, M. L. (2015). Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle. Journal of animal science, 93(1), 46-52.

Sybaga beef purpose livestock lending program (n.d.). Retrieved from
https://kazagro.kz/web/fond/sybaga
System. (2019). oxforddictionaries.com. Retrieved from
https://en.oxforddictionaries.com/definition/system
Tax Code of the Republic of Kazakhstan, Article 697
The advantages of angus breed in crossbreeding with other breeds of cattle (2019). Retrieved from http://info.angus.kz/\#awards_1

Understanding Dressing Percentage of Slaughter Cattle. (n.d.). Retrieved from
https://www.alberta.ca/understanding-dressing-percentage-of-slaughter-cattle.aspx
Warren, M. F. (1986). Financial Management for Farmers: The Basic Techniques of'money Farming'. Hutchinson.

Wand C. \& Heeg A. (2016). Alternative Forages and Sample Wintering Rations for Beef Cows. Retrieved from http://www.omafra.gov.on.ca/english/livestock/beef/facts/16-051.htm

Zhazylbekov, N. A., Kineev, M. A., Torekhanov, A. A., Ashanin, A. I., Myrzakhmetov, A. I., Seydaliev, B. S., et al (2008). Nutrition of livestock, poultry, and technical preparation of fodder. 2nd ed. Kazakh Ministry of Agriculture K, editor. Almaty: Bastau Publishing House.

Appendix 1. Input data

INPUT DATA						To change model add 1 or 2 in the cell:	
	Unit	Value	\%	Benchmark	Source	Model	1
Breeding cattle						Deterministic	1
\# of breeding cows \& heifers at the farm (herd size)	cows	100	100\%		Author's assumption	Stochastic	2
Av. market value of breeding cows	KZT/ head	450000			MeatUnion (2018)		
Cow herd total value (all breeding cows \& heifers at the farm)		45000000			Calculated		
Calving cows persenatage	\# from total expos	80	80,0\%	85\%	Orey, D., \& King, C. (Eds.) (2008)		
Bull-to-cow ratio	head	4	1/25		Herring (2014)		
\# of culled cows	\# per year	8	8,0\%		Beef Cow-Calf Manual. (2008)		
\# of cow death	\# per year	2	2,0\%	$\max 4 \%$	Orey, D., \& King, C. (Eds.) (2008)		
\# of weaned steer calves	\# per year	40	50,0\%		Author's assumption		
\# of weaned heifer calves	\# per year	40	50,0\%		Author's assumption		
\# of replacements (cull + death)	\# per year	10	10,0\%		Beef Cow-Calf Manual. (2008)		
\# of heifers retained to increase a herd size	head	0			Author's assumption		
\# of replacement heifers purchased	head	0			Author's assumption		
Cull cow price for kg of live weight	KZT/ Kg	850	664, 850, 1283	850	Stochastic variable		
Cull cow average weight	Kg	623	542, 623,632	623	Genetic trend EDP (2019)		
Calves		Crossbreed	Distribution range	Deterministic	Type of the distribution		
Calves average birth weight (BW), kg	Kg	28			Republican Chamber of Kazakhsta	Angus (2018)	
Steer calf average weaning weight (SWW) (7 month)	Kg	220			Republican Chamber of Kazakhsta	Angus (2018)	
Heifer calf average weaning weight (HWW) (7 month)	Kg	200			Republican Chamber of Kazakhsta	Angus (2018), Bock at al (1991)	
Steer calf average yearling weight (SYW) (12 month)	Kg	$343{ }^{\text {² }}$	295, 343, 390	343	Trangular		
Heifer calf average yearling weight (HYW) (12 month)	Kg	$291{ }^{\text {² }}$	250, 291, 331	291	Trangular		
Weaned steer calf price for kg of live weight	KZT/ Kg	850	664, 850, 1283	850	Calculated		
Weaned heifer calf price for kg of live weight	KZT/ Kg	- 1374			Calculated		
Yearling steer cattle price for kg of live weight	KZT/Kg	850	664, 850, 1283	850	Calculated		
Yearling heifer cattle price for kg of live weight	KZT/Kg	1374			Calculated		
Subsidies					https://moa.gov.kz/ru/documents/52		
paid for a head of weaned and yearling calf sold to feedlot for fattening	KZT/ Kg	200			Order of the Deputy Prime Minister	18)	
farms) in mating season	KZT/head	100000			Order of the Deputy Prime Minister		
to cover costs of acquisition of imported breeding stock	KZT/ head	200000			Order of the Deputy Prime Minister	18)	
\# of days cattle is on feed	\# of animals on feed per year	\# of days cattle is on feed					
Bulls	4	60			Author's assumption		
Cows in dry period	10	185			Author's assumption		
Cows in first half of lactation period (up to 4 month after giving birth)	80	0			Author's assumption		
Cows in second half of lactation period \& after weaning	80	185			Author's assumption		
Calf (1-8 month)	80	150			Author's assumption		
Steer calf (9-12 month)	40	120			Author's assumption		
Heifer calf (9-12 month)	40	120			Author's assumption		
All breeding cows (including replacing heifers <12 month)	100	365			Author's assumption		

Note. The outline of the stochastic simulation model. Input data module

Appendix 2. Feed costs calculation

A2.1. Nutrition costs of bulls

It is assumed that bulls are rented from feedlots to a maximum of 60 days between the end of spring and the end of summer. The bulls feed ration contains green fodder, hay, and concentrates. Bulls graze on pastures and additional supplementation of hay and concentrates will be provided. a farmer with 100 cows needs about 4 bulls given the $1: 25$ ratio (Herring, 2014). It is assumed that in a summer grazing period a bull's diet structure in average consists of $38-40 \%$ of green fodder, $25-28 \%$ of hay, and $35-40 \%$ of concentrates. According to Zhazylbekov et al (2008, p. 161), average feed requirements per bull per day are 12 kg of green fodder, 4.5 kg of hay, 4.5 kg of concentrates, 0.4 kg of protein-vitamin and mineral supplements and 0.06 kg of mineral salt (Table A.2.1) Prices for feed items are calculated based on actual market data. Green fodder is available from farmland and therefore comes for free. Market price for hay is taken as 10,949 KZT per ton based on statistical data (Prices and indices for agricultural products in the Republic of Kazakhstan (2019), prices for concentrates taken as $42 \mathrm{KZT} / \mathrm{kg}$ and for protein-vitamin and mineral additives as $100 \mathrm{KZT} / \mathrm{kg}$ (Kormovik.kz feed additives., n.d.).

Table A.2. 1. Nutrition costs of bulls

Item	Quantity used per day per head		$\begin{aligned} & \frac{\text { Cost }}{\text { per }} \\ & \frac{\text { item, }}{\mathrm{K} 7 \mathrm{~T}} \end{aligned}$	$\frac{\text { Cost per one bull, }}{\text { KZT }}$		Cost, KZT		
	Kg	\%		$\begin{aligned} & \frac{\text { per }}{\text { day }} \\ & \text { den } \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { per } \\ \text { season } \end{array} \end{gathered}$	Total	$\frac{\text { per }}{\text { cow }}$	$\frac{\text { per cwt of }}{\text { calf sold }}$
Green fodder	12	56\%	0	0	0	0	0	0
Hay	4.5	21\%	11	49	2,956	11,825	118	1
Concentrates	4.5	21\%	20	90	5,400	21,600	216	1
Protein-vitamin and minerals	0.4	2\%	100	40	2,400	9,600	96	1
Salt blocks	0.06	0\%	110	7	396	1,584	16	0
Total	21	100\%		186	11,152	44,609	446	3

Note.
Quantity used per day per head is according to Zhazylbekov et al (2008)
Information on cost of Protein-vitamin and minerals and salt blocks according to the source: Kormovik.kz feed additives. (n.d.). Retrieved from http://www.kormovik.kz, information on green fodder, hay according to market data, on hay cost according to Prices and indices for agricultural products in the Republic of Kazakhstan. (04.2019)

A2.2. Nutrition costs of breeding cows

More than half of the feed costs can be associated to breeding cows since breeding cows constitute the majority of the herd's population at a cow-calf farm. Cow's ration depends on different factors, such as : current state of a cow (live weight, age, period of pregnancy and lactation, body condition score), management practice (free grazing or keeping in a stable), and external factors (season, region of a country, nutrition quality and structure in pastures). An assumption has been made that there are 100 breeding cows on feed during a year. According to Zhazylbekov et al (2008, p. 171), an average feed requirement for one cow per day is 2.5 kg of hay, 2.5 kg . of straw, 3.8 kg of silo, 2.3 kg . of haylage (grainage), 1.6 kg of concentrates, 0.2 kg of protein-vitamin and mineral supplements and 0.05 kg of mineral salt. Also, cows consume pasture grass and seeded grass with the average daily intake of 13.2 kg and 2.2 kg respectively. Feed cost calculations have been made for 100 dairy cows for one year. Prices for feed items are calculated based on actual market data. Green fodder is available on farmlands and therefore comes free of costs. (Table A.2.2).

Table A.2. 2. Nutrition costs of breeding cows

Item	Quantity used per year per head		$\begin{aligned} & \frac{\text { Cost }}{\frac{\text { per an }}{}} \\ & \frac{\text { item, }}{\text { KZT }} \end{aligned}$	$\frac{\text { Cost per one cow, }}{\text { KZT }}$		Cost, KZT		
	Kg	\%		per year	per day	Total	per cow	$\begin{aligned} & \underline{\mathrm{Kg} \text { of }} \\ & \text { calf sold } \end{aligned}$
Hay (miscellaneous)	900	9\%	11	9,854	27	985,410	9,854	77
Straw	900	9\%	11	9,900	27	990,000	9,900	77
Silo	1,400	14\%	15	21,000	58	2,100,000	21,000	163
Haylage (grainage)	850	8\%	15	12,750	35	1,275,000	12,750	99
Concentrates	600	6\%	20	12,000	33	1,200,000	12,000	93
Protein-vitamin and mineral supplements	60	1\%	100	6,000	16	600,000	6,000	47
Salt blocks	20	0\%	110	2,200	6	220,000	2,200	17
Pasture grass	4,800	46\%	0	0	0	0	0	0
Seeded grass	800	8\%	0	0	0	0	0	0
Total	10,330	100\%		73,704	202	7,370,410	73,704	572

Note.
Data on quantity of feed per year per head is according to Zhazylbekov et al (2008). Information on cost of Protein-vitamin and minerals and salt blocks according to the source: Kormovik.kz feed additives. (n.d.). Retrieved from http://www.kormovik.kz, information on green fodder, hay according to market data, on hay cost according to Prices and indices for agricultural products in the Republic of Kazakhstan. (04.2019)

Calving cows' percentage at the level of 80% was used. Therefore 80 newborn calves are under care on a modeled farm each year. For the purpose of the analysis calves are divided into two groups: sucking calves before weaning at 7-8 months of age and backgrounded calves between 8-12 months that require a specially balanced diet.

A2.3. Nutrition costs of calves before weaning

During the period from birth until 7-8 months of age a calf is grown near a mother on a free suckling. So, the growth and development of a calf depend on the cow's milk productivity in addition to other factors like month of birth, weight at birth, size and quantity of supplementary feeding. The optimal calving time for Kazakhstan is an early spring, that is also used as an assumption for the model. Therefore, a calf can benefit from a summer grazing period when consumption of large quantities of green fodder stimulates the increase of cow's milk by $15-20 \%$. A calf, who is suckling milk in combination with good pasture grazing, gives a gain between $0.6-1.4 \mathrm{~kg}$ per day (Beef Cow-Calf Manual, 2008). For the purpose of the analysis feed requirements for a calf are used from the study of Zhazylbekov et al (2008, p. 176). Feed composition differentiates every two months of a calf during the first 9 months of life. According to the estimation, a calf gaining 0.9 kg of live weight per day consumes on average 1.0 kg of hay, 2.3 kg of silo, 1.0 kg of concentrates, 0.06 kg of phosphate supplements with mineral salt, and 1.0 kg of concentrates. During free grazing days a calf consumes regularly 6.0 kg of pasture grass, 1.0 kg of seeded grass together with suckling mother's milk in the amount of 5.4 kg per day. (Table A.2.3).

Table A.2. 3. Nutrition costs of calves until weaning (8 months of age)

Item	$\begin{aligned} & \frac{\text { Quantity of feed }}{\text { consumed until } 8} \\ & \text { months } \end{aligned}$		Cost per an item	Cost per one animal, KZT		Cost, KZT		
	$\underline{\mathrm{Kg}}$	\%	KZT	$\begin{aligned} & \frac{\text { Total in }}{\underline{8}} \\ & \text { months } \end{aligned}$	per day	Total	per cow	$\frac{\mathrm{Kg} \text { of calf }}{\text { sold }}$
Hay	144	5\%	11	1,577	11	126,132	1,261	10
Silo	350	12\%	15	5,250	35	420,000	4,200	33
Concentrates	150	5\%	20	3,000	20	240,000	2,400	19
Phosphate supplements	5	0\%	110	528	4	42,240	422	3
Salt blocks	5	0\%	110	528	4	42,240	422	3
Pasture grass	900	30\%	0	0	0	0	0	0
Seeded grass	150	5\%	0	0	0	0	0	0

| Milk | 1,300 | 43% | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total | $\underline{3,004}$ | $\underline{100 \%}$ | $\underline{266}$ | $\underline{10,883}$ | $\underline{73}$ | $\underline{870,612}$ | $\underline{8,706}$ | $\underline{68}$ |

Note.
Quantity of feed consumed until 8 months of age is according to Zhazylbekov et al (2008)
Information on cost of Protein-vitamin and minerals and salt blocks according to the source: Kormovik.kz feed additives. (n.d.). Retrieved from http://www.kormovik.kz, information on green fodder, hay according to market data, on hay cost according to Prices and indices for agricultural products in the Republic of Kazakhstan. (o4.2019)

In practice many stallholder farms do not consider additional feeding of suckling calves during the period until weaning. While in intensive beef production systems, calves require feeding with supplementary nutrition in order to meet additional protein and energy requirements and grow to their genetic potential. In these circumstances mother's milk alone is not sufficient and creep feed can be economically advantageous because it gives 10-15\% of additional calf's live weight (Beef Cow-Calf Manual, 2008). However, the costs and benefits of creep feed should be taken into consideration in order to ensure that gains from additional weight will cover the costs of supplementary feed and administrative expenses.

A2.4. Nutrition costs of youngstock cattle after weaning

Calves' reaching 7-8 months of age coincides with the beginning of a stall period. After weaning, animals enter a post-weaning development period that lasts 40-45 days. It is characterized by restructuring of a young cattle's organism due to the transition from milk-pasture grass to hay-silo-concentrates type of feeding. In case of inadequate feeding and maintenance during this time, animals significantly reduce their growth intensity that ultimately affects their development and future productivity.

The model calculates costs of feed for 9-12 months of age heifer calves (Table A.2.4) and steer calves (Table A.2.5). The assumptions have been made that after weaning a modeled farm has 40 heifer calves and 40 steer bulls on a special diet for 120 days before being sold to feedlots or retaining of some heifer calves for herd replacement. The diet of heifer calves and steer calves differentiate. Therefore, two different feeding schemes are considered. They are appropriate for winter feeding and target weight gain of cattle up to 1.0 kg per day. The diet is formatted according to the data from Zhazykbayev et al (2008).

Table A.2. 4. Average feed requirements for one heifer calf between 9-12 months of age

Item	Quantity of feed per day per head		Cost per an item, KZT	Cost per one animal, KZT		Cost, KZT		
	$\underline{\mathrm{Kg}}$	\%		$\begin{gathered} \begin{array}{c} \text { per } \\ \text { season } \end{array} \\ \hline \end{gathered}$	\%	Total	per cow	$\frac{\mathrm{Kg} \text { of calf }}{\text { sold }}$
Hay (cereals)	5,50	27\%	11	7226	20\%	289054	2891	22
Haylage	5,00	24\%	15	9000	26\%	360000	3600	28
Corn silo	7,50	36\%	15	13500	38\%	540000	5400	42
Stock feed (cereals)	2,50	12\%	15	4500	13\%	180000	1800	14
Phospate supplements	0,04	0\%	110	528	1\%	21120	211	2
Salt blocks	0,04	0\%	110	528	1\%	21120	211	2
Total	20,58	100\%	276	$\underline{35282}$	100\%	1411294	14113	$\underline{110}$

Notes.
Quantity used per day per head is according to Zhazykbayev et al (2008)
Information on cost of minerals and salt blocks according to the source: Kormovik.kz feed additives. (n.d.). Retrieved from http://www.kormovik.kz, information on green fodder, hay according to market data, on hay cost according to Prices and indices for agricultural products in the Republic of Kazakhstan. (04.2019)

According to the estimation, a heifer calf consumes on average 5.5 kg of cereals hay, 5.0 kg of haylage, 7.5 kg of corn silo, 2.5 kg of stock feed, and 0.08 kg of phosphate supplements with mineral salt. Feeding of one heifer calf between 9-12 months of age requires spending of 14113 KZT per cow or 110 KZT per kg . of calf sold.

Table A.2. 5. Average feed requirements for one steer calf between 9-12 months of age

Item	$\begin{aligned} & \text { Quantity of } \\ & \text { feed per day } \\ & \text { per head } \end{aligned}$		$\frac{\frac{\text { Cost per }}{\text { an item, }}}{\frac{\text { KZT }}{\text { K }}}$	Cost per one animal, KZT		Cost, KZT		
	Kg	\%		$\begin{gathered} \begin{array}{c} \text { per } \\ \text { season } \end{array} \end{gathered}$	\%	Total	per cow	$\frac{\mathrm{Kg} \text { of calf }}{\text { sold }}$
Hay (legume and cereals)	5,00	24\%	11	6569	14\%	262776	2628	20
Haylage	4,00	19\%	15	7200	15\%	288000	2880	22
Corn silo	8,00	38\%	15	14400	30\%	576000	5760	45
Concentrates	3,80	18\%	42	19152	40\%	766080	7661	59
Phospate supplements	0,04	0\%	110	528	1\%	21120	211	2
Salt blocks	0,04	0\%	110	528	1\%	21120	211	2
Total	20,88	100\%	303	48377	100\%	$\underline{1935096}$	$\underline{19351}$	150

Notes.
Quantity used per day per head is according to Zhazykbayev et al (2008)
Information on cost of Protein-vitamin and minerals and salt blocks according to the source: Kormovik.kz feed additives. (n.d.). Retrieved from http://www.kormovik.kz, information on green fodder, hay according to market data, on hay cost according to Prices and indices for agricultural products in the Republic of Kazakhstan. (o4.2019)

The average feed requirements for steer calves between 9-12 months of age are calculated. Assumptions have been made that one steer calf consumes on average 5.0 kg of legume and cereals hay, 4.0 kg of haylage, 8.0 kg of corn silo, 3.8 kg of concentrates, 0.08 kg of phosphate supplements with mineral salt. Feeding of one steer calf between 9-12 months of age requires spending of 19351 KZT per cow or 150 KZT per kg. of calf sold.

Appendix 3: Whole-farm budget

Whole farm budget

Income	Reproduction enterprise, KZT	Backgrounding enterprise, KZT	Feed production enterprise, KZT	Whole farm budget, KZT	Per one cow unit, KZT	Per one kg of calf sold, KZT	$1 \text { EUR= }$ Whole farm budget, EUR	428 KZT	
								Per one cow unit, EUR	Per one kg of calf sold, EUR
Weaned heifers (8 month calf)	8244000	-	-	-			-	-	-
Weaned steers (8 month calf)	7578472	-	-	-			-	-	-
Cull cows/ open heifers (= \# of repl-ts by weaned heifers)	T4150526	-	-	4150526	41505	190	9697	97	0,44
Yearling heifer cattle (12 month)	* -	13027631	-	13027631	130276	598	30438	304	1,40
Yearling steer cattle (12 month)	1	10608202	-	10608202	106082	487	24786	248	1,14
Subsidies for bulls maintenance	,	400000	-	400000	4000	18	935	9	0,04
Subsidies for yearling calf sold to feedlot	1	2463615	-	2463615	24636	113	5756	58	0,26
Home grown feed	-	-	- - -	-			-	-	-
Hay (cereals)	1	-	$1 \overline{675197}$	-			-	-	-
Heylage	1	-	1923000	-			-	-	-
Corn silo		-	3636000	-			-	-	-
Pasture grass		-	-	-			-	-	-
Seeded grass	-	- -	-	-			-	-	-
Total Revenue	19972998	1 26499448	7234197	30649974	306500	1406	71612	716	3,29
		1	/				-	-	-
Expenses		1					-	-	-
Operating (variable) costs	-	1	-	-			-	-	-
Calves costs	-	,	1	-			-	-	-
Weaned heifers (8 month calf)	-	8244000	* -	-			-	-	-
Weaned steers (8 month calf)	-	7578472	/	-			-	-	-
Total calves costs	-	$15 \overline{822} 4772$		-			-	-	-
Cattle feed costs	-	-	/	-			-	-	-
Hay (cereals)	$112 \overline{3} 3 \overline{67}$	$55 \overline{1} 8 \overline{30}$	* -	-	-	-	-	-	-
Heylage	1275000	648000	/ -	-	-	-	-	-	-
Corn silo	2520000	1116000	- -	-	-	-	-	-	-
Pasture grass	-	-	-	-	-	-	-	-	-
Seeded grass	-	-	-	-	-	-	-	-	-
Total home grown feed	4918367	2315830	-	-	-	-	-	-	-
Stock feed (cereals)	---	180000	-	180000	1800	8	421	4	0,02
Straw	990000	-	-	$720119{ }^{\text {¹ }}$	7201	33	$1683{ }^{\text { }}$	17	0,08
Concentrates	3069360	766080	-	$2276048{ }^{\text { }}$	22760	104	$5318{ }^{\text {¹ }}$	53	0,24
Protein-vitamin and mineral supplements	609600	-	-	$519771{ }^{\text { }}$	5198	24	$1214{ }^{\text {* }}$	12	0,06
Phospate supplements	42240	42240	-	84480	845	4	197	2	0,01
Salt blocks	263824	42240	-	306064	3061	14	715	7	0,03
Total purchased Feed	4975024	1030560	-	4086482	40865	187	9548	95	0,44
Total cattle feed costs	9893391	3346390	-	4086482	40865	187	9548	95	0,44
							-	-	-

Appendix 4: Cash flow budget

Cow-calf farm's enterprises budgets Inflation rate, \%		4,0\%		4,0\%	4,0\%	4,0\%	4,0\%	4,0\%	4,0\%	4.0\%	4.0\%	4,0\% \|	4,0\%	4.0\%	4,0\%	4,0\%	4,0\%	
Cash flow budgeting								Projected Annual Forecast										
Year		20200	2021		22	23	2024	2025	2026	2027	2028	29	2030	2031	2032	2033	2034	2035
Year\#				3177435	9995455				32971172	41222448	50092144	10	11	12	13	14	117962651	
BEGINING CASH BALANCE	A	0	4700000			19740715	23255591	28867255				62795676	68457985	78959324	91382572	104511285		
\# of heads for sale:																		
Yearling heifer cattle (12 month)			30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	
Yearing steer cattle (12 month)			40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	
Subsidies for yearing calf sold to feedlot			40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	
Cull cows/ open heifers (=\# of repl-ts by weaned heifers)			8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
Average weight:																		
Yearling heifier cattle (12 month) $\quad \begin{gathered}\text { min } \\ \text { mostlikely } \\ \text { max }\end{gathered}$			315	297	281	274	289	277	297	286	272	266	318	296	268	266	296	
			250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	
			291	291	291	291	291	291	291	291	291	291	291	291	291	291	291	
			331	331	331	331	331	331	331	331	331	331	331	331	331	331	331	
Yearling steer cattle (12 month) Subsidies for yearing calt sold to a feedlot $\begin{array}{c}\text { m } \\ \text { most like) } \\ \text { mat }\end{array}$			348	324	364	360	333	325	360	335	361	341	354	339	353	370	346	
			295	295	295	295	295	295	295	295	295	295	295	295	295	295	295	
			343	343	343	343	343	343	343	343	343	343	343	343	343	343	343	
			390	390	390	390	390	390	390	390	390	390	390	390	390	390	390	
			314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	
Subsidies for yearling calf sold to a feedlot Cull cows/ open heifers (= \# of repl-ts by weaned heifers)			600	601	623	621	627	580	616	${ }^{623}$	618	621	586	590	557	599	615	
min			542	542	542	542	542	542	542	542	542	542	542	542	542	542	542	
mostlikely			623	623	623	623	623	623	623	623	623	623	623	623	623	623	623	
max			632	632	632	632	632	632	632	632	632	632	632	632	632	632	632	
Price per (KZT/ kg of live weight):																		
Yearling heifer catlle (12 month) Yearing steer catle (12 month) \& Cull cows/ open heifers			1374 738	1429 721	1486 1155	1546 845	1607 934	1672 873	1739 928	1808 834	1880 1090	1956 771	2034 778	2115 1006	2200 1058	2288 1062	2379 947	
min			664	664	664	664	664	664	664	664	664	664	664	664	664	664	664	
mostlikely			850	850	850	850	850	850	850	850	850	850	850	850	850	850	850	
max			1283	1283	1283	1283	1283	1283	1283	1283	1283	1283	1283	1283	1283	1283	1283	
Subsidies for yearing calf sold to feedlotCASH INLLOW CALCULATION:			200	208	216	225	234	243	253	263	274	285	296	308	320	333	346	
Yearing heifer cattle (12 month)			12991914	12711920	12515761	12714179	13951063	13907278	15494263	15503316	15337578	15576698	19398852	18777414	17654024	18225459	21120599	
Yearing steer cattle (12 month)			10262183	9339147	16790985	12159878	12455298	11352234	13371936	11184804	15728347	10527966	11005510	13630591	14929260	15739987	13118674	
Subsidies for yearing calf sold to feedlot			2511702	2612170	2716657	2825323	2938336	3055869	3178104	3305228	3437437	3574935	3717932	3866649	4021315	4182168	4349455	
Total operating receipts:	B1	-	25765799	24663237	32023402	27699380	29344697	28315381	32044303	29993348	34503363	29679598	34122294	36274655	36604599	38147614	38588728	
Cull cows/ open heifers (= \# of repl-ts by weaned heifers)			3540298	3466430	5754941	4200313	4681320	4048449	4567826	4155045	5385121	3833275	3645782	4743204	4711906	5095668	4658724	
Total capital receipts:	B2		3540298	3466430	5754941	4200313	4681320	4048449	4567826	4155045	5385121	3833275	3645782	4743204	4711906	5095668	14037724	
Investment subsidies		27425000																
Equity capital investments		17285000																
Debt capital investments: CAPEX Ioan Debt capital investments: WC loan		43890000																
Debt capital investments: WC loan	B3	8860000																
total cashinfow	B	88600000	29306097	28129668	37778344	31899693	34026017	32363829	36612128	34148394	39888483	33512874	37768076	41017858	41316505	43243282	52626452	
TOTAL CASH INFLOW (including BEGINNING CASH BALANCE)	$C=A+B$	88600000	34006097	31307103	47773799	51640408	57281607	61231085	69583300	75370842	89980627	96308550	106226060	119977182	132699077	147754566	170589103	

Capital expendidures (CAPEX)																	
Autonomus mobile house		2000000															
Tractor + loadertrailer		13600000															
Rake/hipper for hay		200000															
Feeder wagon Hay baler		3500000															
Hay baler Hay mower		2500000 70000															
Pneumatic precision air seeder (maize)		4000000															
Trailed shredder, for maize and haymaking		6000000															
Total CAPEX on Machinery	11	32500000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mobile equipment for cattle check		1400000															
Wells at a pasture (50m)		1000000															
Wind water pump		3500000 50000															
	12	500000 6400000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wintering stables + winter shed	13	5000000															
Land (grazing pastures, feed grow)	14																
Breeding cows		40000000															
${ }_{\text {Sulls }}^{\text {Total CAPEX on cattle }}$		40000000															
Tolal Total casth CAPEX	1	${ }_{83} 9000000$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other fixed cost and other cash expenditures																	
Taxes			419522	436302	453755	471905	490781	510412	530829	552062	574144	597110	620994	645834	671668	698534	726476
Insurance			1022313	1063205	1105733	1149963	1195961	1243799	1293551	1345294	1399105	1455069	1513272	1573803	1636755	1702225	1770314
Housing			118823	123575	128518	133659	139006	144566	150348	156362	162617	169121	175886	182922	190239	197848	205762
Repair costs			1619200	1683968	1751327	1821380	1894235	1970004	2048805	2130757	2215987	2304626	2396812	2492684	2592391	2696087	2803931
Miscellaneous Overhead expenses																	
Total other fixed costs			3179857	3307051	3439333	3576906	3719982	3868782	4023533	4184474	4351853	4525927	4706965	4895243	5091053	5294695	5506483
Family living expenses			4700000	4888000	5083520	5286861	5498335	5718269	5946999	6184879	6432275	6689566	6957148	7235434	7524851	7825845	8138879
Income tax			346287	360139	374544	389526	405107	421311	438164	455690	473918	492874	512589	533093	554417	576593	599657
Other non farm expenses																	
Other non farm expenses																	
Total other cash expenditures	J	0	5046287	5248139	5458064	5676387	5903442	6139580	6385163	6640570	6906192	7182440	7469738	7768527	8079268	8402439	8738536
Scheduled debt payments																	
Current debt-principal					-												
Current debt- interest		-	-	-	-												
Noncurrent debt principal		-			5665385	5665385	5665385	5665385	5665385	1945385	1945385	1945385	1945385	1945385	1945385	1945385	1945385
Noncurrent debt interest		-	2436960	2436960	2148775	1860591	1572406	1284222	996037	871532	747028	622523	498018	373514	249009	124505	${ }^{(0)}$
Scheduled debt payments	k	0	2436960	2436960	7814160	7525975	7237791	6949606	6661422	2816917	2692412	2567908	2443403	2318898	2194394	2069889	1945385
TOTAL CASHOUTRLOW	L=H+l+J+K	83900000	30828662	21311647	28033084	28384817	28414352	28259913	28360852	25278698	27184951	27850566	27266736	28594610	28187792	29791915	29889761
TOTAL CASH AVALLABLE	M=C-L	4700000	3177435	9995455	19740715	23255591	28867255	32971172	41222448	50092144	62795676	68457985	78959324	91382572	104511285	117962651	140699342
New borrowings																	
Current																	
${ }^{\text {Noncurrent }}$ Tel																	
Total new borrowings:	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Payment on new current debt																	
Principal																	
Total payment on new current debt	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
ENOING CASH BALANCE	$\mathrm{P}=\mathrm{M}+\mathrm{N}-\mathrm{O}$	4700000	3177435	9995455	19740715	23255591	28867255	32971172	41222448	50092144	62795676	68457985	78959324	91382572	104511285	117962651	140699342
Summary of debt outstanding																	
Current																	
Total debt outstanding																	

Appendix 5: NPV scenario analysis

Figure A.5. 1: Scenarios 1 and 2, NPV in a 15 year planning period with and without subsidies

	NPV1	NPV1
Cell	Cash flow bu..	Cash flow bu..
Minimum	19385922,34	-8 039077,66
Maximum	75592 127,04	48167 127,04
Mean	47367 253,77	19942 253,77
90\% Cl	$\pm 380132,28$	$\pm 380132,28$
Mode	43307956,74	15882 956,74
Median	47466 456,64	20041 456,64
Std Dev	7301380,55	7301380,55
Skewness	0,0469	0,0469
Kurtosis	3,5062	3,5062
Values	1000	1000
Errors	0	0
Filtered	0	0
Left X	35949 349,61	35949 349,61
Left P	5,0\%	98,4\%
Right X	59090 302,97	59090 302,97

Where,
NPV1 (left side cumulative curve) - is the Net Present Value for a 15 year period, with subsidies
NPV1 (right side cumulative curve) - is the Net Present Value for a 15 year period, without subsidies.

Figure A.5. 2: Scenarios 1 and 2, IRR in a 15 year planning period with and without subsidies

Where,
IRR1 (left side cumulative curve) - is the Internal Rate of Return for a 15 year period, with subsidies IRR1 (right side cumulative curve) - is the Internal Rate of Return for a 15 year period, without subsidies.

Figure A.5. 3: Scenarios 3 and 4, NPV in a 10 year planning period with and without subsidies

	NPV1	NPV1	
Cell	Cash flow bu..	Cash flow bu..	
Minimum	365798,44	-27059	201,56
Maximum	50588	261,61	23
163	261,61		
Mean	26267376,43	-1157	623,57
$90 \% \mathrm{Cl}$	$\pm 362313,67$	$\pm 362313,67$	
Mode	22013885,21	$-5411114,79$	
Median	26170319,20	$-1254680,80$	
Std Dev	6959129,94	6959129,94	
Skewness	$-0,0181$	$-0,0181$	
Kurtosis	3,0710	3,0710	
Values	1000	1000	
Errors	0	0	
Filtered	0	0	
Left X	14894021,93	14894021,93	

Where,
NPV1 (left side cumulative curve) - is the Net Present Value for a 10 year period, without subsidies NPV1 (right side cumulative curve) - is the Net Present Value for a 10 year period, with subsidies.

Figure A.5. 4: Scenarios 3 and 4, IRR in a 10 year planning period with and without subsidies

Where,
IRR1 (left side cumulative curve) - is the Internal Rate of Return for a 10 year period, without subsidies IRRI (right side cumulative curve) - is the Internal Rate of Return for a 10 year period, with subsidies.

