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Abstract
In this paper we focus on potato late blight control in the Netherlands to analyse the social-ecological 

interactions between farmer behaviour and disease dynamics. An agent-based model was developed 

to analyse the use of crop resistance for sustainable disease control. The framework on farmers’ 

decision-making was based on a behavioural theory and supported by data from literature and 

interviews with Dutch potato farmers. This framework was integrated with a previously developed 

spatially explicit model on potato late blight dynamics. We assumed a scenario where a new resistant 

potato variety was introduced to the market. The model reproduced a boom-and-bust cycle: the 

percentage of farmers growing the resistant variety increased until resistance breakdown occurred 

by emergence and spread of a virulent strain, and in response farmers switched to other potato 

varieties and management strategies. Several factors and processes were identified that could 

contribute to the development of sustainable disease management strategies. 

Keywords: Phytophthora infestans, social-ecological systems, resistance management, Consumat

1 Introduction

One of the main challenges in global food production is to control upcoming pests and diseases 

(Mack et al., 2000). Examples of emerging infectious diseases of crops include Banana Xanthomonas 

Wilt and wheat rust (Vurro et al., 2010). These diseases can have huge impacts on human well-being, 

economy and biodiversity. Control of the disease is the result of an interplay between pathogens, 

hosts and actors (e.g. farmers, governments and researchers). The actors in the system can have 

divergent approaches in disease control as a result of different perspectives and objectives. In this 

paper we focus on potato late blight control to analyse interactions between farmer behaviour and 

disease dynamics. Phytophthora infestans, the causal agent of late blight, first arrived in Europe in 
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1845 where it was responsible for the Irish potato famine in which one million people died and 

another one million people emigrated. P. infestans has a high evolutionary potential and as new 

strains evolve, also new outbreaks of the disease emerge, causing devastating epidemics globally 

(Anderson et al., 2004). Because the disease is dispersed by wind, control strategies should be 

analysed at the landscape level. In this project we focus on the Netherlands which is a large producer 

of seed, ware and starch potatoes (Haverkort et al., 2008). The high potato density and favourable 

weather conditions for the disease (moderate temperatures and high humidity) result in frequent 

outbreaks of the disease. Currently the use of fungicides is the most important control method but 

these are harmful for the environment. The use of resistant varieties could improve sustainability of 

late blight management; however, as a result of pathogen adaptation new virulent strains can 

emerge resulting in resistance breakdown. 

Previously we described late blight management in potato production as a social-ecological 

system which is driven by interrelated social and biophysical processes that interact across multiple 

temporal and spatial scales (Pacilly et al., 2016). Since the disease incidence in the landscape is 

influenced by biophysical processes as well as crop management strategies, it is important to focus 

not only on epidemiological processes but also on decision-making concerning disease management. 

In this system farmers play a key role since they decide on crop management. Their management 

strategies affect the disease pressure in a landscape and the sustainability in terms of environmental 

pollution and breakdown of disease-resistance, which can be considered as a common good. 

Secondly, farmers also respond to conditions, influences and changes in the socio-institutional 

setting (e.g., policies, markets, extension and peer-to-peer communication) and the biophysical 

environment (e.g., soil and weather), and they adapt their management strategies based on past 

experiences. Therefore, to identify effective and sustainable late blight management strategies, it is 

important to consider the social-ecological interactions. 

Previously we described the social-ecological system of potato late blight and used modelling 

for analysing the effect of management strategies on disease control (Pacilly et al., 2016; Pacilly et 

al., 2018). Model scenarios were discussed in workshops with farmers (Pacilly et al., 2019). Section 

1.1 describes the findings from previous work. In this paper we focus on the social-ecological 

interactions by adding the dimension of decision making by multiple, interacting farmers in a 

landscape in the model. Exploring the interactions and feedback mechanisms related to farmers’ 

decision making and late blight dynamics can increase understanding of the system behaviour and 

contribute to the development of effective management strategies and policies. Agent-based 

modelling was used to simulate the social-ecological interactions. Agent-based models have been 

recognized as a useful tool to analyse human decision-making in a spatial environment in which 

biophysical processes occur (An, 2012). Agent-based models consist of heterogeneous entities which 
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interact with each other and the environment and is therefore very suitable for simulating individual 

decision-making agents. This is very relevant in the context of agricultural systems where individual 

households are the main decision makers but can strongly differ. Agent-based modelling can 

therefore contribute to improved understanding of farmers' behaviour in response to changing 

environmental, economic, or institutional conditions (Huber et al., 2018). Furthermore farm 

management includes both short and long term decisions. For example, decisions on crop selection 

are made yearly as a result of annual production cycles while the use of inputs such as fungicides or 

fertilizers are made on a daily basis during the growing season. Also with respect to disease dynamics 

processes occur at different temporal scales. Disease is spread during the growing season but 

breakdown of resistance can take multiple years. Both short and long term processes are important 

characteristics of the system. Agent-based modelling is a useful tool for simulating and analysing 

these complex interactions at different scales.

During the last decades, the number of studies using agent-based modelling to couple social 

and natural systems has rapidly increased. Reviews on the use of models in social-ecological systems 

research are provided by An (2012), Filatova et al. (2013), Matthews et al. (2007), Parker et al. (2003) 

and Schlüter et al. (2012). One of the challenges that was identified includes the integrating of social 

and ecological systems (Parker et al., 2008). The number of models that is able to simulate two-way 

feedbacks between human and environmental subsystems are scarce while this is essential for 

studying non-linear interactions between human and natural systems (Filatova et al., 2016). In this 

study we aim to contribute to this field of research by developing a model framework which 

integrates farmer behaviour and disease dynamics. 

To simulate human behaviour, several methods have been used. When data on decision 

making is scarce or missing, theories can be used and the implications can be confronted with 

empirical data (Groeneveld et al., 2017). The most common theory to simulate human behaviour is 

to assume rational decision making, also referred to as the homo economicus (Groeneveld et al., 

2017; Schlüter et al., 2017). According to this theory agents have perfect knowledge and make 

calculations to identify the optimal decision that maximizes their utility or profit. However, studies on 

farmer behaviour have shown that farmers are also influenced by many other factors such as peer 

networks, individual preferences and culture (Austin et al., 1998; Edwards-Jones, 2006; Willock et al., 

1999). In recent years, agent-based models have become more popular for modelling agricultural 

systems and the impact of policies (Groeneveld et al., 2017, Huber et al., 2017). However, there is 

need for improved representation of farmers’ heterogeneous decision making. For models to be 

relevant tools for policy assessment better understanding of farmers’ decision-making is needed 

(Reidsma et al., 2018). Current European agricultural agent-based models lack consideration of 

values, social interactions, norm consideration, and learning in farmers' decision-making (Huber et 
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al., 2017). Furthermore the representation should consider the socioeconomic and natural 

environment as well as farm household characteristics. In our study we used the Consumat approach 

to simulate farmers’ decision making on late blight management (Jager and Janssen, 2012; Jager et 

al., 2000; Janssen and Jager, 2001). This framework was selected to develop more behaviourally rich 

agents. The Consumat approach includes elements which have been recognized as important factors 

influencing farmers’ decision making such as social interactions through a network. It also allows the 

implementation of a heterogeneous farmer population. The framework was first developed to 

explore consumer behaviour, but is now widely used in many fields of research including farmers’ 

decision making (Malawska and Topping, 2016; Speelman, 2014; Van Duinen et al., 2016). The 

Consumat approach incorporates aspects from a range of behavioural theories such as theories on 

human needs, motivational processes, social comparison theory, social learning theory and reasoned 

action theory. According to the Consumat approach agents engage in different behavioural strategies 

dependent on their level of satisfaction and uncertainty. These behavioural strategies are repetition, 

imitation, optimization and social comparison (Figure 1). The advantage of the Consumat approach is 

that it is a highly formalized theory which allows easy implementation in an agent-based model and 

only few assumptions have to be made. 

The framework was combined with the previously developed ecological model to simulate 

the use of crop resistance in disease control by analysing the adoption of the resistant variety by 

farmers and the durability of resistance over time. Therefore, we assumed a scenario in which a new 

resistant variety is introduced to the market. Previously we described that acceptance of resistant 

varieties is low because these varieties do not yet meet all the requirements of farmers and retailers 

(Pacilly et al., 2016). In the model this was reflected in a lower yield level of the resistant variety. The 

purpose of the model is to explore the social-ecological interactions to identify factors that could be 

important in the development of sustainable disease management strategies. We explored several 

scenarios that could affect the selection of management strategies by farmers and consequently, 

resistance durability. In the following sections we present a more detailed description of the model, 

the scenario analysis and the results. In the discussion we evaluate the model findings, the 

implications for disease management and steps for further research. 

1.1 Previous work

In a previous study, we developed a model to analyse the interactions between late blight 

management strategies, disease dynamics and the abiotic environment at landscape level (Pacilly et 

al., 2018). The model was used to show opportunities and risks related to the use of plant resistance 

in disease control. Growing a resistant variety can reduce disease incidence in the landscape; 

however, in the long run resistance breakdown was observed by emergence of a new virulent strain 
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due to pathogen adaptation. The durability of resistance was affected by the fraction of resistant 

fields in the landscape and it was found that low (<0.2) as well as high (>0.8) proportions of resistant 

fields could increase resistance durability. According to the dispersal-scaling hypothesis disease 

dispersal is affected by habitat size and dispersal distance, where an increase in habitat size is 

described as a ‘positive dispersal force’ and an increase in dispersal distance as a ‘negative dispersal 

force’ (Skelsey et al., 2013). A larger fraction of resistant fields means a lower fraction of susceptible 

fields which results in a lower disease incidence in the landscape and reduces the risk that virulent 

spores emerge. Virulent spores are the result of mutations during spore production in infections in 

susceptible fields. However, with higher fractions of resistant fields virulent spores also have an 

increased chance of arriving in these fields because of a lower dispersal distance between susceptible 

and resistant fields. As a result of the interactions between dispersal distance and habitat size, the 

risk on infections in resistant fields is highest with about equal proportions of susceptible and 

resistant fields in the landscape. 

The previously developed model was adapted and used in workshops with conventional and 

organic farmers to demonstrate and discuss the potential role of resistant varieties for effective and 

sustainable control of late blight (Pacilly et al., 2019). Several scenarios were presented that showed 

the use of crop resistance and fungicide application in disease control at the landscape level. Farmers 

that attended the workshops were able to recognize the processes and patterns emerging from the 

model. The use of model-based scenarios in workshops was very useful to increase farmers’ 

knowledge of the system and served as a good starting point for discussions among participants.

2 Material and methods

An agent-based model was developed to simulate processes on crop growth, disease dynamics and 

farmer interactions and decision-making on disease management in an agricultural landscape over 

time. The model can be described as a so-called midrange model: the aim is neither to exactly model 

the situation in a certain region, nor to make a purely theoretical point (Gilbert, 2008). The purpose 

of the model is to increase understanding of the system behaviour rather than making predictions for 

the future. This study is a first step in the development of a social-ecological model on late blight 

control. In this model version we focus on the integration of model components but the individual 

processes were kept as simple as possible. In future research the model processes could be further 

extended. Steps for further research are described in the discussion (Section 4.6). The model was 

implemented in NetLogo version 5.2.0 (Wilensky, 1999). A version of the model is available on the 

OpenABM website (http://www.openabm.org). Below we present an overview of the model with a 

description of the main model processes. A detailed description of the model following the ODD 

protocol (Overview, Design, Details) can be found in Appendix A (Grimm et al., 2006; Grimm et al., 

http://www.openabm.org
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2010). For detailed information on the epidemiological framework, we refer to Pacilly et al. (2018). 

The framework on farmers’ decision-making was based on the Consumat approach (Jager and 

Janssen, 2012; Jager et al., 2000; Janssen and Jager, 2001) and supported by data from literature and 

interviews with Dutch potato farmers. In total 25 farmers were interviewed including 18 

conventional and 7 organic farmers (Pacilly et al., 2016). Semi-structured interviews were carried out 

on topics such as general farm characteristics, the social network, late blight management strategies 

and the use of late blight resistant varieties. As a result of the semi-structured interviews only 

qualitative data was available. The main results are described in Pacilly et al. (2016). In the model 

description (Section 2.1) we refer to the interviews when the data supports the model framework. 

Furthermore data from the interviews was used to validate the model results which is described in 

the discussion (Section 4).

Figure 1. Conceptual overview of the model. Coloured arrows represent model processes and white arrows 
represent variables and frameworks used as input. Four management strategies are distinguished in the model: 
susceptible potato variety without fungicide application (sus-), susceptible variety with fungicide application 
(sus+), resistant variety without fungicide application (res-) and resistant variety with fungicide application 
(res+).
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Figure 2. An example of the model landscape after 50 years of simulation. In this example the 
resistance remained effective. The model consists of farmers that each manage one potato field. 
Green and yellow grid cells represent resistant and susceptible potato fields, respectively. The brown 
area represents arable land with crops other than potato. The colour of the farmers shows if 
fungicides are applied: red = with fungicides, blue = without fungicides. The lines between farmers 
represent the social network among farmers. For the interpretation of the references to colour, the 
reader is referred to the web version of this article.

2.1 Model description

2.1.1 Model Overview

The model represents a square agricultural landscape of 10 km x 10 km(Figure 2). The potato density 

(24%) and the mean field size (±7 ha) were derived from landscape data of an agricultural region in 

the Netherlands (the Noordoostpolder) and these parameters were used as input for the model. The 

grid cells represent a square area of 200 m × 200 m (4 ha), and are clustered in agricultural fields. 

Crop rotation was not included in the model. Crop rotation can affect the number of initial infections, 

however, in the model the fraction of initial infected potato fields was kept constant between years. 

The spatial location of infections were randomly selected, which reflects randomizing the location of 

potato fields as a result of crop rotation. The model is populated by 350 farmers each of whom 

manages one potato field. A network was initialised in which farmers are connected to the closest 
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farmers around them (shortest spatial distance). Farmers use one of the following late blight 

management strategies: they can grow a susceptible or resistant late blight potato variety with or 

without the use of fungicides. These strategies have different effects on field and landscape 

performance. Field performance is analysed for criteria: infection level, yield and income. Landscape 

performance also relates to disease dispersal and resistance durability. A conceptual overview of the 

model is shown in Figure 1. 

We simulate the growing season from May 1 to September 30 for 50 years. Crop growth and 

disease dynamics are updated at a daily time step. At the end of each growing season farmers 

analyse their field performance and select a management strategy for the following year. The 

decision-making framework to select a management strategy is based on the Consumat approach 

(Jager and Janssen, 2012; Janssen and Jager, 2001). Based on their field performance farmers 

determine their satisfaction and uncertainty level which results in one of the following behavioural 

strategies: repetition, imitation, optimisation or social-comparison (see Section 2.1.5). The decision-

making process is influenced by personal characteristics including their need satisfaction and 

uncertainty tolerance level. Four farmer types are distinguished which differ in the weights assigned 

to the criteria (Table 1). The weights represent the importance of the different criteria to the farmer. 

Interaction between farms is related to social interaction with respect to farmers’ decision making 

and spatial interactions related to disease dispersal. 

Crop growth and late blight dynamics are simulated at grid cell level. We consider only one 

susceptible variety and one resistant potato variety (with a single resistance gene). In our model we 

assume the resistant variety has a lower potential yield compared to the susceptible variety, which is 

reflected in the crop growth parameters. Late blight resistant potato varieties currently available on 

the market have a moderate yield level, however the yield potential may increase in the future with 

the introduction of new resistant varieties (Bionext, 2017). At the start of each growing season the 

infection is initialised in a fraction of the potato grid cells, randomly selected. When a grid cell is 

infected, spores are produced that are dispersed to nearby cells up to a distance of 1000 m where 

they can cause infections. Two types of late blight are distinguished: the wild-type and the virulent 

strain. The wild-type can only infect the susceptible variety, while a virulent strain can also infect the 

resistant variety. At the start of the simulation only the wild-type is present. The virulent strain may 

emerge during the growing season as the result of mutations during spore production. The ratio 

between the wild type and virulent strain at the end of the growing season was used to calculate the 

number of initial infections of the wild type and virulent strain in the following year. 

Since late blight development and crop growth are weather dependent, we used measured 

weather data from May 1 to September 30 (152 days) for 36 years (1981-2016) as model input. 

These years represent variable weather conditions for crop growth and late blight dynamics. To 
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simulate crop growth, mean daily temperature and total radiation was calculated and used as input 

for the model. Secondly, based on calculation rules using hourly temperature and relative humidity 

during a 24-hour period, we determined whether a day was suitable for sporangia to cause infection 

(Skelsey et al., 2009). Expansion of existing lesions occurs every time step but new infections as a 

result of spore germination can only occur on so-called ‘blight days’. For more details we refer to 

Pacilly et al. (2018). At the start of each year a dataset is randomly selected out of these 36 years of 

weather data.

Table 1. Overview of farmer types in the model which differ in the weights assigned to 
the criteria on infection level, potato yield and income. The weights represent the 
importance of the different criteria to the farmer. Farmers need satisfaction and 
uncertainty tolerance level are randomly selected between 0 and 1. 

Farmer 
type

Description Need 
satisfaction

Uncertainty 
tolerance 
level

Weight of 
yield criterion 
(wp)

Weight of 
income 
criterion (wy)

Weight of 
infection level 
criterion (wd)

1 Yield maximizer 0-1 0-1 0.8 0.1 0.1
2 Profit maximizer 0-1 0-1 0.1 0.8 0.1
3 Risk averse farmer 0-1 0-1 0.1 0.1 0.8
4 Neutral farmer 0-1 0-1 0.33 0.33 0.33

2.1.2 Late blight management strategies in the model

In the Netherlands the use of fungicides is currently the most widely used method in the control of 

late blight while crop resistance has been identified as an important strategy for more sustainable 

control (Haverkort et al., 2008; Lammerts Van Bueren et al., 2008). Combining these two types of 

disease control results in the following four strategies: growing a susceptible potato variety with 

(sus+) or without fungicide application (sus-), or growing a resistant potato variety with (res+) or 

without fungicide application (res-). In the model farmers select one of these strategies for their 

potato field (Figure 1). The management strategies can be related to current farm practices of 

conventional and organic farmers. In conventional agriculture, mainly susceptible varieties are grown 

combined with fungicide application (sus+). Since chemical control is not allowed in organic potato 

production and not enough resistant potatoes are available to supply the whole market (Bionext, 

2017), organic farmers grow a combination of susceptible and resistant varieties and do not apply 

fungicides (sus- and res-). In years with early outbreaks of the disease, organic farmers can therefore 

suffer high yield losses in susceptible fields, but in years with a low infection pressure farmers can 

make a profit. Combining a resistant variety with (reduced use of) fungicides (res+) has been 

proposed to prevent resistance breakdown and to increase resistance durability (Haverkort et al., 

2016). This strategy has also been described as part of integrated disease management to reduce the 

use of chemical fungicides (Kirk et al., 2005; Mundt et al., 2002; Nærstad et al., 2007). Although we 
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do not distinguish organic and conventional potato production in the model, the late blight 

management strategies represent the different approaches in late blight control. 

In case fungicides are used on susceptible and resistant fields (sus+ and res+), weekly 

application is assumed starting at the day of crop emergence. Weekly application is standard practice 

for many potato farmers, also because it is combined with the application of other chemicals for 

other diseases. Decision support systems (DSS) are available that can help farmers to improve 

efficiency of spraying by optimizing the use and timing of fungicide application. However, many 

farmers do not strictly follow their advice. Over the season farmers use different type of chemicals. 

In the model we distinguish preventive and curative fungicides. We assume preventive fungicides are 

applied at the start of the growing season to reduce the infection efficiency of the spores. When the 

disease severity in potato grid cells reaches 1%, curative fungicides are applied which have a similar 

effect on the infection efficiency, but also reduce the expansion of existing lesions. 

To prevent spread of the disease during the growing season the government has 

implemented a policy that regulates maximum late blight disease thresholds (NVWA, 2008). At an 

estimated disease severity of 5% in the field, the potato haulm has to be destroyed. An inspection 

system was set up, including an anonymous hotline, that could fine farmers in case these regulations 

were not followed. Following these regulations we assume that all farmers in the model destroy the 

potato haulm when the disease severity in potato grid cells reaches 5%. This means that leaf and 

tuber growth stops directly and the disease can no longer disperse to other fields. In case of early 

outbreaks of the disease, this can cause severe yield losses. 

Besides these strategies also other strategies exist that could be used in late blight control 

such as pre-sprouting (to reduce the growing period), soil management and chemicals against 

infections in tubers (Pacilly et al., 2016). However, some of these strategies only have a small effect 

while others are too complex to implement in the model. To allow integration with processes on 

decision-making we only focus on fungicide application and crop resistance in late blight control at 

this stage. As a result of advancements in potato breeding it is expected that new late blight resistant 

varieties will enter the market the coming years. Therefore it is very relevant to analyse the use of 

crop resistance in disease control. 

2.1.3 Analysing field performance

In the model we implemented three criteria to evaluate the field performance of farmers: late blight 

infection level, potato yield and income. Infection level is an important criterion to evaluate the 

effectiveness of the selected management strategy and infection in a field can also reduce potato 

yield and farmer income. Furthermore, late blight management strategies include trade-offs 

between infection level, yield and income. The application of fungicides can reduce the risk of 
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infection and prevent yield losses but causes additional costs. Growing a resistant variety can reduce 

the risk of infection, but has a negative effect on potato yield and income since we assume that the 

resistant variety has a lower potential yield compared to the susceptible variety. In addition, growing 

a resistant variety creates a risk on resistance breakdown by emergence of a new virulent strain. To 

evaluate the field performance in relation to late blight management strategies it is therefore 

important to consider all three criteria. Secondly, the importance of these criteria also differs 

between farmers (Table 1).

Infection level

In the model, late blight severity (percentage of infected leaf tissue) within a field is affected by the 

weather conditions, disease dispersal and late blight management strategies (fungicide use and crop 

resistance). The simulated disease severity ranged from no or very low disease severity to a very high 

disease severity (10-4 % to >5%). Development of the disease at field level is limited since we assume 

that the potato haulm is destroyed when disease severity reaches 5%. In practice in the field disease 

severity is generally estimated visually. Because the human eye can estimate low and high disease 

severity more precisely than mid-range levels, it is proposed to correct this by using a logarithmic 

rather than a linear scale (Cooke, 2006). Taken these factors into account a scale from 1 to 4 was 

developed to analyse the infection level using data on disease severity: 1: < 0.1%, 2: 0.1 -1%, 3: 1-5%, 

4: >5%.

Potato yield

At the end of the growing season the mean potato yield (tonnes/ha) of farmers is calculated. Potato 

yield is affected by the potato variety, weather conditions including temperature and radiation, and 

infection with late blight. In the model we assume that the resistant potato variety has a 20% lower 

potential yield compared to the susceptible variety.

Income

We use a standard approach to calculate farmer income: farmers’ gross margin (€ ha-1) is based on 

the actual potato yield times the price for potatoes minus production costs. With respect to 

production costs we only consider the costs related to fungicide application since we focus on 

comparing late blight management strategies. Costs for fungicides are related to the number of 

applications, the type of fungicides used, machinery, labour and fuel. The mean number of 

applications per farmer was calculated over the year (assuming weekly application) and the costs per 

application (fc) were estimated at €50 ha-1 (Haverkort et al., 2008). The price for potatoes was set on 

€13 per 100 kg which was derived from a dataset on potato prices for conventional ware potatoes in 
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the Netherlands between 2000 and 2017 (WUR, 2018). The same price was used for the susceptible 

and resistant variety. Correlations between potato price and overall potato yield were not included 

because input and output markets are beyond the scope of this reginal study. Crop prices were 

assumed to be constant over time. In reality the crop price is affected by many other factors such as 

market fluctuations and the market farmers produce for (e.g. organic, conventional, frozen and fry, 

table and fresh) (Haverkort et al., 2008; Pavlista and Feuz, 2005). Furthermore to prevent price risks 

most farmers have contracts with trading companies on crop prices. Since we focus on comparing 

differences in income related to late blight management strategies these factors were not included in 

the current model version. As a result of this simplification values on income do not represent actual 

numbers. 

2.1.4 Farmer population

Many studies have shown the importance of social interactions within networks in decision making 

processes, also with respect to Dutch farmers (Oerlemans and Assouline, 2004; Van Duinen et al., 

2016). According to the Consumat approach agents are influenced through interactions within 

networks when they engage in social comparison or imitation. Unfortunately no empirical data was 

available on social networks among Dutch potato farmers, however, previous results from interviews 

showed that potato farmers influence each other and copy each other’s behaviour (Pacilly et al., 

2016). Since farmers have social interactions (e.g. as neighbours, friends and in study groups) and 

they spend much time on their land they are well aware how surrounding farmers manage their 

crops. Potato late blight disperses by wind so infections in neighbouring fields can increase the risk of 

infection. With respect to social interaction on late blight control we therefore assume farmers are in 

a network with the closest farmers around them (shortest distance between fields). In each model 

run, a network is initialised in which farmers are connected to the closest farmers around them (with 

a mean number of 5 links per farmer), representing a social network of neighbours. We explored the 

effect of alternative network structures (Appendix B). Increasing the mean number of links per 

farmer from 5 to 10 links did not affect the model results, as well as a different network setup in 

which farmers are connected to the closest farmers around them of the same type (assuming that 

you interact more with people who are more similar to you). 

To create a heterogeneous population, characteristics of farmers are varied within a certain 

range. Farmers uncertainty tolerance level and need satisfaction are randomly selected between 0 

and 1. The weights represent the importance of the criteria to the farmer in their decision making. 

Based on these preferences farmers have different objectives resulting in four farmer types: yield 

maximizer, profit maximizer, risk averse farmer and neutral farmer. At the start of the simulation the 

farmer type of each farmer is randomly selected. Profit and yield maximizing farmers are types 
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previously described in the literature (Malawska and Topping, 2016). Furthermore, studies have 

shown that farmers can have different risk attitudes which influences decision making on disease 

control (McRoberts et al., 2011; Willock et al., 1999). Gardebroek (2006) showed that Dutch farmers 

have different risk attitudes, which indicates that farmers manage risk differently. Organic farmers 

are less risk averse than conventional farmers but also within these groups risk attitudes were 

heterogeneous. Risk perception in late blight control can for example be related to the size of 

potential negative impact of infection on yield and income (Pacilly et al., 2016). Risk averse farmers 

would adopt strategies that reduce the risk of infection such as resistant varieties or fungicides, even 

when it comes at the expense of profit (Finger et al., 2017). Risk aversion can also result in the 

overuse of fungicides as was observed in the Netherlands (Skevas et al., 2012; Skevas et al., 2013). In 

the model the risk averse farmers therefore aim to minimize the infection level in their field. Last we 

distinguish a neutral farmer which does not have a preference for one of the criteria and the weights 

for the criteria are set equal (Table 1). For the other farmer types the weight of one of the criteria 

was set at 0.8 depending on their objective and for the other two criteria at 0.1. The weights 

therefore represent clear differences in objectives between farmer types.

2.1.5 Behavioural strategies

According to the Consumat approach, behaviour of agents is affected by the levels of satisfaction and 

uncertainty. To determine farmers’ satisfaction and uncertainty the actual (ai), potential (pi) and 

predicted (ei) performance is calculated for the three criteria: infection level, yield and income. The 

potential field performance is the maximum result which could be achieved in a specific year without 

any losses as a result of yield-limiting and yield-reducing factors (Van Ittersum and Rabbinge, 1997). 

In our model we only consider losses as a result of infection with the disease. The potential yield of 

both potato varieties is output of the model and based on the temperature and radiation in a specific 

year. The potential income is calculated in the same way as the actual income but using the potential 

yield. The potential infection level was set at 1 for all four strategies which represents the lowest 

level of disease severity that could be achieved. 

Farmers also estimate the field performance for the coming year. For each performance 

criterion they calculate the mean value using historical values of their own field for the last five years. 

To create a list of reference values the model is run for five years before the actual simulation starts 

(see Appendix A). In the model, satisfaction is defined as the ratio between the actual and the 

potential performance, and uncertainty as the ratio between the actual and the estimated 

(predicted) performance. For each performance criterion the satisfaction and uncertainty is 

calculated. The overall satisfaction (St) and uncertainty (Ut) is based on the result for each criterion (i) 

influenced by the weights (wi) (Equations 1 and 2).
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(1)𝑆𝑡 = ∑𝑤𝑖𝑎𝑖/𝑝𝑖

(2)𝑈𝑡 = ∑𝑤𝑖𝑎𝑖/𝑒𝑖

Based on the Consumat approach farmers compare their total satisfaction and uncertainty level with 

their personal need satisfaction and uncertainly tolerance level. If the results are below their 

thresholds, farmers are uncertain and/or unsatisfied. Based on these results farmers engage in one 

of the following behavioural strategies (indicated below in italics). The Consumat approach is a highly 

formalized theory which describes very detailed how agents make decisions according to their 

behavioural strategy. The Consumat approach could be easily applied to farmers’ decision-making on 

late blight management strategies. If a farmer is satisfied and certain he will repeat its current 

behaviour and continue using the same management strategy (repetition). If a farmer is uncertain he 

will interact with other farmers in his network to make an informed decision. Agents who are 

uncertain are more likely to engage in strategies that involve interactions, while agents who are 

certain are more likely to rely on their own experiences. If a farmer is uncertain but satisfied he will 

engage in imitation. In this case he will adopt the management strategy that is used by the majority 

of farmers in his network. When farmers are unsatisfied they engage in strategic decision making 

(optimisation or social comparison). This strategy relates to rational decision making in which farmers 

are aiming to optimize their field performance in relation to their preferences. First they select the 

criterion which they want to optimize: infection level, yield or income (See Section 2.1.3 and 2.1.4). 

This is based on the satisfaction level for each criterion, and on the criteria weights (Table 1). In case 

farmers are unsatisfied and uncertain, they engage in social comparison. In this strategy farmers 

analyse the field performance of the farmers in their network and adopt the management strategy of 

the farmer that has the highest score for the specific criteria. When farmers are unsatisfied but 

certain, they engage in optimising behaviour (optimisation). In this case they compare the mean field 

performance of all management strategies of the last year and adopt the management strategy that 

has the highest result for the criteria they want to improve. When the resistant variety with and 

without fungicides have the same score for a criterion it is assumed that farmers select the resistant 

variety without fungicides.

2.2 Scenario analysis

We assumed a situation where a new resistant potato variety was introduced to the market. We 

analysed the effect on disease control by adoption of the resistant variety by farmers and the 

durability of resistance. At the start of the simulation all farmers are growing a susceptible variety 

and the majority applies fungicides (90%). Three scenarios were explored in which we analysed the 
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effect of higher fungicide costs and higher yield or potato price of the resistant variety. These 

changes represent possible future scenarios as a result of actions by stakeholders. 

First we increased the yield potential of the resistant potato variety so it is similar to the 

susceptible variety (yield-scenario). Breeding companies continue to develop new late blight 

resistant potato varieties and it is likely that in the future new resistant varieties will be introduced 

with higher yield levels. Secondly, as a result of stakeholder cooperation, the price for resistant 

varieties could increase in the future. In the standard settings the crop price of resistant and 

susceptible varieties was the same. Recently, the organic sector made an agreement to upscale the 

production of resistant varieties to completely service the organic market over the coming years 

(Bionext, 2017). An increase in demand could also result in a higher crop price. In the price-scenario 

we therefore increased the price of the resistant variety by 25%.

In the third scenario (fungicide-scenario) we doubled the price per fungicide application 

(from € 50 ha-1 to € 100 ha-1). About half of all fungicides applied in the Netherlands are used in the 

control of late blight. The environmental costs are related to the pollution of groundwater, energy 

costs for application and negative effects on human health (Haverkort et al., 2008). Increased 

environmental awareness could possibly lead to higher prices for fungicides, for example, when 

government increases taxes. Economic instruments such as pesticide taxes can contribute to an 

optimal pesticide policy (Finger et al., 2017; Skevas et al., 2013). We analysed how these changes 

could affect the adoption of management strategies by farmers and the control of late blight. 

To analyse the model results a number of output variables were calculated at the end of each 

growing season. We recorded the behavioural strategies and management strategies of farmers as 

well as the mean performance per strategy for the criteria infection level, yield and income. To 

analyse disease dynamics we calculated the disease incidence (the percentage of infected potato grid 

cells with a disease severity ≥ 1%) (Skelsey et al., 2010) and the infected resistant fields (the 

percentage of resistant potato grid cells in the landscape infected with the virulent strain). We also 

recorded the year infections in resistant fields were observed followed by establishment of the 

virulent strain in the population (year of resistance breakdown). This occurs as a result of between 

year survival of the virulent strain resulting in initial infections in the following year. For each 

scenario, simulation runs were repeated 100 times.

3 Results

3.1 Dynamics over time
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3.1.1 Example of two model runs

For the analysis of the results we observed the patterns that emerged from the model. Patterns are 

described as observations of any kind showing non-random structure and therefore containing 

information on the underlying mechanisms (Grimm et al., 2005). After 50 years of simulation we 

observed two different patterns. In the first pattern at some moment during the simulation 

infections in resistant fields were observed and the virulent strain established in the population 

(Figure 3e), while in the second pattern this process was not observed (Figure 3k). So in the first 

pattern resistance breakdown occurred while in the other pattern resistance remained effective 

during the simulation time. To analyse the dynamics over time an example of one model run of both 

patterns is shown in Figure 3. 

From the start of the simulation in both patterns the number of susceptible fields decreased 

and the number of resistant fields increased (Figures 3a and 3g). Susceptible fields without fungicide 

application had a high risk of infection, and yield and income are fluctuating strongly as a result of 

the weather conditions that affect spread of the disease. Fungicide application on susceptible fields 

could not prevent infection completely but no large losses in yield and income were observed. Due to 

infection with late blight farmers were unsatisfied with their field performance which led to 

optimizing behaviour (Figures 3f and 3l). Farmers that optimized on infection level adopted the 

resistant variety since this strategy scored better on infection level as a result of crop resistance 

(Figure 3b and 3h). In the model it was assumed that farmers won’t apply additional fungicides on 

the resistant variety when the resistance is effective so farmers adopted the resistant variety without 

fungicides.

In both simulation runs after a couple of years a small percentage of resistant fields was 

infected by emergence of a virulent strain (Figures 3e and 3k). However, in pattern 2 the virulent 

strain was not able to spread and establish in the population. A small number of farmers responded 

to this event and switched to the resistant variety with fungicide application (Figure 3g). 

In pattern 1 after 8 years the virulent strain was able to establish in the population and the 

percentage of infected resistant fields rapidly increased over time (Figures 3e and 4). As a result of 

the relative high percentage of resistant fields (±20%) the virulent strain could spread fast through 

the landscape which gave farmers a very short time to adapt. When the percentage of infected 

resistant fields reached 55% the percentage of farmers growing a resistant variety without fungicides 

started to decrease. The spread of the virulent strain led to simulated losses in yield and income of 

resistant fields, which resulted in reduced farmer satisfaction and increased uncertainty, and farmers 

switching to other management strategies. Mean yield and income of resistant varieties without 

fungicide application decreased by ±25% (Table 5).
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Example resistance breakdown occurs Example resistance remains effective

Figure 3. Example of two model runs with (a-f) or without (g-l) crop disease-resistance breakdown. In the 
figures we show the management strategies of farmers (a and g), the mean field performance per management 
strategy for the criteria infection level (b and h), yield (c and i) and income (d and j), the spread of the disease 
in the landscape using the disease incidence and the infected resistant fields (e and k) and the behavioural 
strategies of farmers (f and l). 
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Figure 4. Population dynamics of late blight showing the emergence and spread of the virulent strain. The 
figure presents an example of one model run in which resistance breakdown occurred (see also Figure 3) and 
shows the proportion of disease severity caused by infection with the wild-type (solid line) and virulent strain 
(dashed line). 

Social comparison and imitation mainly led to the adoption of the susceptible variety with 

fungicide application since this management strategy is used by the majority of the farmers and 

resulted in a lower infection level and higher yield and income. Optimising behaviour on infection 

level led to the adoption of the resistant variety with fungicide application. However, because the 

virulent strain was already present in the population, additional fungicide application only slowed 

down infection within the field, but could not eradicate the virulent strain from the landscape. As a 

result, the infection level in fields with the initially resistant variety increased, and yield and income 

of resistant fields without fungicides decreased. Since the resistant variety had a lower potential yield 

compared to the susceptible variety at some point the yield of resistant fields without fungicides 

dropped below the yield of susceptible fields without fungicide application. Within five years after 

the first resistant fields were infected almost no farmers were growing the resistant variety without 

fungicides anymore. The majority of farmers adopted the susceptible variety with fungicides and a 

small number of farmers the resistant variety with fungicides (Figure 3a). The resistant variety with 

fungicides had a lower level for yield and income but in some years had a lower infection level. After 

resistance breakdown the disease incidence in the landscape was highly variable per year. A small 

fraction of farmers remained unsatisfied and/or uncertain resulting in social comparing, optimising 

and imitating behaviour. However, no alternative strategies were available that led to a significant 

improvement.

In the simulation runs in the baseline scenario where resistance was still effective after 50 

years, the percentage of farmers growing a resistant variety stabilized at 19.5% ±3.1 (SD) (Table 2). 

This was also observed in the example shown in Figure 3b. The majority of farmers was growing the 

susceptible variety with fungicide application (79.0% ±2.4). Most farmers were satisfied and certain 
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about their field performance and engaged in repeating behaviour which resulted in a stable 

situation with respect to late blight management strategies. 

After 50 years of simulation no strong spatial pattern in management strategies was 

observed. Clusters of farmers growing the resistant were observed as well as farmers growing a 

resistant variety surrounded by susceptible fields (Figure 2). This shows that besides spatial processes 

including disease spread and the social network also individual characteristics of farmers have a 

strong effect on decision-making. When resistance breakdown occurred the spatial distribution of 

management strategies seemed more random since the majority of farmers (±92%) is using the same 

strategy: susceptible variety with fungicides (Table 2). 

Table 2. Management strategies of farmers (%) at the end of the simulation (year 50) in case resistance 
breakdown occurs and in case the resistance remains effective. Mean values are shown (±SD) based on 100 
runs.

Management strategies of farmers (%)
Sus- Sus+ Res- Res+

Resistance breakdown occurs
Baseline 0.9 ±0.7 92.0 ±3.7 0.2 ±1.4 6.9 ±3.5
Higher fungicide costs 1.1 ±1.2 92.1 ±4.2 0.3 ±2.5 6.4 ±3.7
Higher crop price resistant variety 0.8 ±0.5 90.2 ±4.7 0.8 ±4.3 8.2 ±3.8
Higher yield resistant variety 0.9 ±0.5 88.1 ±4.8 0.1 ±0.6 10.9 ±4.7

Resistance remains effective
Baseline 0.6 ±0.6 79.0 ±2.4 19.5 ±3.1 1.0 ±1.9
Higher fungicide costs 0.5 ±0.5 74.2 ±3.2 25.0 ±3.2 0.2 ±0.6
Higher crop price resistant variety 0.5 ±0.4 74.8 ±3.3 24.5 ±3.4 0.3 ±0.9
Higher yield resistant variety 0.4 ±0.4 72.0 ±3.0 27.0 ±2.9 0.6 ±1.4

Table 3. Year of resistance breakdown as a result of establishment of the virulent strain in different scenarios. 
For each scenario the model was run 100 times. 

Year resistance breakdown
(percentage of runs)

0-10 10-20 20-30 30-40 40-50 >50

Baseline 41 17 5 4 6 27
Higher fungicide costs 44 18 5 5 1 27
Higher crop price resistant variety 46 9 7 2 5 31
Higher yield resistant variety 44 11 4 5 1 35

3.1.2 Time until resistance breakdown

The year of emergence of infections in resistant fields followed by establishment of the virulent 

strain in the population was analysed (Table 3). Resistance breakdown was observed in 73% of the 

model runs. In 42% of the model runs establishment of the virulent strain occurred in the first 10 

years after the introduction of the resistant variety followed by an additional 17% during the ten 

following years. Once this period had passed the risk of establishment decreased. In 27% of the 

model runs the resistance was still effective after 50 years. The first years after introduction of the 

resistant variety a larger number of farmers was growing a susceptible variety without fungicide 
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application. These fields could act as sources of infection and there was an increased risk that the 

virulent strain emerged. In the year the virulent strain established in the population the mean 

percentage of farmers that used a susceptible variety without fungicides was 2.0% ±1.5. After this 

first period the risk of establishment decreased as a result of a lower fraction of susceptible fields 

without fungicides. However, as long as farmers are present that grow the susceptible fields without 

fungicides resistance breakdown can occur, which was also observed in the model after 30 or 40 

years. In a sensitivity analysis we varied the initial fraction of farmers growing a susceptible variety 

without fungicides (Appendix C). The results showed that increasing the initial fraction of farmers 

growing a susceptible variety without fungicides increased the risk on resistance breakdown and 

establishment of the virulent strain mainly during the first ten years of the simulation which shows 

that these fields act as an infection source of the virulent strain. However, no strong affect was 

observed on the management of farmers at the end of the simulation (Appendix C).  

3.1.3 Farmer characteristics

We analysed the personal characteristics of farmers per management strategy at the end of the 

simulation (Table 4). The results show how farmer characteristics affect decision-making and the 

adoption of management strategies during the simulation. Farmers growing a susceptible variety 

without fungicides mainly had a low need satisfaction (0.35) and uncertainty tolerance level (0.31). 

As a result they mainly engaged in repeating behaviour and the farmers growing the susceptible 

variety without fungicides from the start of the simulation were less likely to change their strategy. 

Since this strategy resulted in most years in a higher infection level, lower yield level and lower 

income compared to the other strategies (Table 5), almost no farmers adopted this strategy during 

the simulation. 

Farmers growing a resistant variety with or without fungicides had a relative high need 

satisfaction (0.72-0.75) and also a high value for the weight infection level (0.62), which shows that 

these were mainly risk averse farmers (Table 1). Unsatisfied farmers engaging in optimizing 

behaviour related to infection level would select the resistant variety without fungicide application 

and after infections in resistant fields, the resistant variety with fungicides. However, when both of 

these strategies were not effective anymore to prevent infection they switched back to the 

susceptible variety with fungicides. 

Farmers growing the susceptible variety with fungicides were a large group of farmers. The 

weights for the criteria infection level, yield and income were almost equal and standard deviations 

were high, which indicates that these farmers were a mix of yield optimizers, income maximizers and 

neutral farmers. In the baseline scenario the susceptible variety with fungicide application resulted in 

the highest yield and income (Table 5). Growing the susceptible variety with fungicides did not result 
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in losses in yield and income as a result of infection and therefore many farmers continued using this 

strategy. 

Table 4. Characteristics of farmers per management strategy at the end of the simulation (year 50). Mean 
values are shown (±SD) based on 100 model runs. At the start of the simulation farmers’ uncertainty tolerance 
level and need satisfaction were randomly selected between 0 and 1. The weights represent the importance of 
the criteria to the farmer in their decision making. The weights are dependent on the farmer type shown in 
Table 1.

Management 
strategy

Need 
satisfaction

Uncertainty 
tolerance 

level

Weight 
infection 

level

Weight 
yield

Weight 
income

Sus- 0.35 ± 0.40 0.31 ± 0.24 0.41 ± 0.32 0.21 ± 0.21 0.38 ± 0.31
Sus+ 0.48 ± 0.28 0.51 ± 0.29 0.30 ± 0.27 0.35 ± 0.30 0.35 ± 0.29
Res- 0.72 ± 0.22 0.50 ± 0.28 0.61 ± 0.24 0.19 ± 0.13 0.19 ± 0.15
Res+ 0.75 ± 0.19 0.40 ± 0.26 0.62 ± 0.23 0.19 ± 0.12 0.19 ± 0.12

Table 5. Mean performance per management strategy for the criteria infection level, yield and income per 
scenario: B= Baseline, F=Higher fungicide costs, P=Higher potato price resistant variety, Y=Higher yield resistant 
variety. Mean values (±SD) are shown based on 100 runs. Model results in the baseline scenario are highlighted 
in grey. 

Scenario Sus- Sus+ Res- Res+
Resistance 
breakdown occurs

B 3.8 ± 0.4 1.8 ± 0.3 3.4 ± 0.9 1.7 ± 0.4
F 3.9 ± 0.4 1.8 ± 0.3 3.6 ± 0.8 1.8 ± 0.4
P 3.9 ± 0.3 1.8 ± 0.3 3.6 ± 0.7 1.7 ± 0.4

Infection level (-)

Y 3.9 ± 0.4 1.8 ± 0.3 3.7 ± 0.7 1.7 ± 0.5
B 42.2 ± 15.3 61.9 ± 3.5 37.7 ± 11.9 49.5 ± 2.8
F 41.9 ± 15.5 61.9 ± 3.6 36.4 ± 13.1 49.6 ± 2.9
P 42.2 ± 15.4 62.0 ± 3.5 35.4 ± 13.0 49.5 ± 2.9 

Yield (t ha-1)

Y 42.5 ± 15.4 61.9 ± 3.5 44.3 ± 15.8 61.9 ± 3.3
B 5488 ± 1995 6950 ± 454 4900 ± 1546 5335 ± 362
F 5445 ± 2017 5863 ± 469 4734 ± 1700 4265 ± 382
P 5482 ± 2003 6963 ± 460 5761 ± 2110 6954 ± 470

Income (€ ha-1)

Y 5524 ± 1996 6958 ± 460 5765 ± 2060 6949 ± 430
Resistance 
remains effective

B 3.8 ± 0.5 1.8 ± 0.3 1.0 ± 0.1 1.0 ± 0.0
F 3.7 ± 0.5 1.7 ± 0.3 1.0 ± 0.1 1.0 ± 0.0
P 3.7 ± 0.6 1.7 ± 0.3 1.0 ± 0.0 1.0 ± 0.0

Infection level (-)

Y 3.7 ± 0.6 1.7 ± 0.3 1.0 ± 0.0 1.0 ± 0.0
B 43.3 ± 14.9 61.9 ± 3.5 49.6 ± 2.8 49.6 ± 2.8
F 43.8 ± 14.6 61.9 ± 3.6 49.6 ± 2.9 49.6 ± 2.8
P 44.5 ± 15.0  62.1 ± 3.5 49.7 ± 2.8 49.7 ± 2.7

Yield (t ha-1)

Y 44.4 ± 15.0  61.9 ± 3.5 61.9 ± 3.6 62.1 ± 3.5
B 5623 ± 1934 6960 ± 454 6452 ± 363 5344 ± 365
F 5697 ± 1898 5862 ± 473 6446 ± 377 4249 ± 369
P 5790 ± 1952 6980 ± 458 8071 ± 460  6980 ± 446

Income (€ ha-1)

Y 5775 ± 1957 6958 ± 457 8051 ± 461 6978 ± 461
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3.2 Scenario analysis

To compare the model scenarios, we analysed the management strategies of farmers after 50 years 

of simulation for the two patterns: with and without resistance breakdown (Table 2). Also the year 

resistance breakdown occurred was analysed as well as the mean field performance per 

management strategy (Tables 3 and 5). Overall we observed small effects of higher parameter values 

related to costs for fungicide application, yield level of the resistant variety and crop price of the 

resistant variety with respect to management strategies of farmers. In the situation where resistance 

breakdown occurred the percentage of farmers growing a resistant variety without fungicides 

remained low in all scenarios but the percentage of farmers growing a resistant variety with 

fungicides slightly increased in case of a higher crop price and higher yield level of the resistant 

variety (Table 2). When resistance was overcome by the pathogen the mean field performance of the 

resistant variety was lower or equal compared to the susceptible variety with fungicides in all 

scenarios (Table 5). 

When resistance remained effective the percentage of farmers growing a resistant variety 

without fungicides increased from 19.5% to maximum 27.0%. Increasing the yield level of the 

resistant variety had the largest effect since this resulted in a higher yield and income. In all three 

scenarios the resistant variety without fungicides resulted in a higher income compared to the 

susceptible variety with fungicides (Table 5). However, many farmers who started with the 

susceptible variety with fungicide application continued using this strategy because fungicides 

effectively suppress the disease so stable levels in yield and income are achieved. As a result, farmers 

were satisfied and certain and mainly engaged in repeating behaviour.

Differences in management strategies as a result of higher parameter values related to costs 

for fungicide application, yield level of the resistant variety and crop price of the resistant variety did 

not have a strong effect on resistance breakdown (Table 3). Some variation was observed mainly 

during the first 20 years of the simulation but this was probably the result of random processes such 

as the weather conditions and the allocation of potato fields since no large differences between 

management strategies were observed.

4 Discussion

4.1 Boom-and-bust cycles

Simulating the interactions between farmers’ decision making and late blight dynamics increased 

understanding on the effects of adoption of a resistant potato variety by farmers on disease 

dynamics and resistance durability. Assuming a scenario where a new resistant variety with a single 

resistance gene became available, the model showed a gradual increase of farmers growing the 
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resistant variety. In the majority of model runs resistance breakdown occurred within the first 20 

years of the simulation by emergence of a new virulent strain. The virulent strain spread over the 

landscape and became dominant in the late blight population, decreasing yield and income of 

resistant fields. In the model, farmers responded to this event by switching to other management 

strategies, mainly to growing the susceptible variety with fungicide application. 

This pattern has been described previously as a boom-and-bust cycle because of the often 

rapid rise and fall in the effectiveness of host resistance against pathogen populations in agriculture 

(Brown and Tellier, 2011; Pink and Puddephat, 1999). One cycle includes several stages: a) 

introduction of a resistant variety with a novel resistance gene source, b) increase in use of the 

resistant variety, c) emergence of a new virulent strain, d) a rapid increase of the virulent strain in 

the population, e) the complete loss of resistance in the crop, f) decrease in use of the variety with 

the specific resistance gene followed by g) decline of the virulent strain in the population (assuming 

fitness costs are associated to virulence). The cycle can be repeated multiple times when varieties 

are introduced with new resistance traits. 

For potato late blight, boom-and-bust cycles have been observed after the introduction of 

resistant varieties from earlier breeding programs (Fry 2008). When varieties were introduced 

containing resistance genes from the closely related species Solanum demissum new virulent strains 

emerged that overcame resistance (Malcolmson, 1969). Boom-and-bust cycles are a general 

phenomenon in monocultures with gene-for-gene interactions and have also been described in other 

crops including oilseed rape, wheat and barley (De Vallavieille-Pope et al., 2012; Rouxel et al., 2003; 

Wolfe and McDermott, 1994).

In our model we assumed that no costs are associated with virulence hence the virulent 

strain did not decline in the population when farmers stopped growing the variety with the matching 

resistance gene. According to experimental data no or only few relations between fitness costs and 

virulence have been found (Montarry et al., 2010; Schöber and Turkensteen, 1992). In other crops it 

has been observed that virulent strains rarely revert to their initial frequencies after removal of the 

variety with the corresponding resistance gene (Mundt, 2014). This is relevant information with 

respect to deployment strategies such as gene rotation or stacked resistance with previously 

defeated resistance genes. If virulent strains remain present in the pathogen population these 

resistance management strategies will be less effective because the virulent strains can rapidly 

reproduce after reintroduction of resistance genes, or more easily adapt to varieties with multiple 

resistance genes when one of these genes has already been overcome. 

A number of theoretical models exist that reproduced boom-and-bust cycles by simulating 

host-pathogen interactions at the landscape scale (Brown and Tellier, 2011), but as far as we know 

none of these included the interactions with respect to farmers’ decision-making. By exploring the 
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interactions between farmer behaviour and the spatially explicit evolutionary dynamics of the 

pathogen we identified potential factors and processes that could affect the adoption of a resistant 

potato variety and resistance durability. These factors and the implications for disease management 

are described in the following sections.

4.2 Scenario analysis

The results from this study showed that in the current situation the use of susceptible varieties with 

fungicide application resulted in the highest yield and income which is in line with current 

management strategies of conventional farmers. In all model scenarios almost no farmers were 

growing the susceptible variety without fungicides since this strategy resulted in most years in a high 

infection level and losses in yield and income. The organic sector currently represents about 1% of 

the total potato production area in the Netherlands. Due to severe late blight outbreaks between 

2000 and 2007 and a lack of resistant varieties its acreage decreased by 20%, showing that growing 

susceptible varieties without any effective control is not profitable in years with high disease 

pressure, even with a premium price for organic potatoes (Lammerts Van Bueren et al., 2008).

The scenarios including higher fungicide costs and higher yield or potato price of the 

resistant variety affected the field performance of management strategies, and consequently the 

selection of management strategies by farmers (Tables 2 and 5). When the resistance remained 

effective all three scenarios resulted in a higher yield and income of resistant fields without 

fungicides compared to susceptible fields with fungicides. As a result, more farmers adopted the 

resistant variety in the model and therefore these strategies could contribute to sustainable disease 

control. However, the risk on resistance breakdown was high and when the resistance was overcome 

farmers switched back to the use of fungicides. Farmers in the model were simulated as social agents 

who interacted with each other and the environment. Simulating the social-ecological interactions 

can increase insight in the potential effects of certain policies or changes in the socio-economic 

environment and be used to identify strategies that foster a transition towards more sustainable 

disease management. 

4.3 Regime shifts

The model showed that resistance breakdown did not occur in all simulation runs. Emergence of 

virulent spores as a result of mutation has a low probability. In addition, spread of the virulent strain 

is affected by processes such as the weather conditions and allocation of potato varieties which 

varies between years and model runs. Resistance breakdown as a result of emergence and spread of 

the virulent strain in the late blight population could be described as a regime shift (Filatova et al., 

2016). A regime shift transforms the system resulting in new properties, structure, feedbacks, and 
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underlying behaviour of components or agents. When resistance breakdown occurred in the model 

the system changed with respect to the field performance of management strategies, farmer 

behaviour and the pathogen population (Figures 3 and 4). Regime shifts can occur as a result of 

gradual changes in the system components or from interactions between processes operating at 

different spatial and temporal scales. In the model establishment of the virulent strain occurred 

when the ratio between the wild type and virulent strain exceeded a threshold resulting in initial 

infections of the virulent strain in the following year. This threshold can be reached when the virulent 

strain is able to emerge and spread during the growing season which is affected by the management 

strategies of farmers as well as a number of random processes such as the weather conditions, the 

allocation of farmers and potato fields and the location of infection sources at the start of the 

growing season. 

Predicting critical transitions is often very difficult because the state of the system may show 

little change before the tipping point is reached (Scheffer et al., 2009). With respect to late blight 

control it has been suggested to set up monitoring programmes to yield direct insight in the P. 

infestans adaptation process at population level (Haverkort et al., 2016; Kessel et al., 2018). When a 

virulent strain is detected and the resistance is at risk of being overcome, additional management 

strategies are needed, for example by additional application of fungicides on resistant fields. In the 

model farmers growing a resistant variety started applying additional fungicides but after infections 

in resistant fields were observed. At this point the application of fungicides could only slow down 

spread of the virulent strain but the resistance was already overcome. Monitoring programmes could 

therefore be very useful to inform farmers about the risk on infections in resistant fields so additional 

measures are taken before the virulent strain will spread in the population.

4.5 Implications for late blight control

The model showed that the risk on emergence of new virulent strains and resulting infections in 

resistant fields was mainly high during the first 10 years after the introduction of resistant variety. 

During this period the number of farmers growing the resistant variety gradually increased and 

farmers growing the susceptible variety without fungicides decreased. In this transition period there 

is a higher risk that virulent spores emerge from susceptible fields and spread to neighbouring 

resistant fields. This is relevant information since stakeholders in the Dutch organic potato sector 

recently agreed to upscale the use of late blight resistant varieties (Bionext, 2017). There is currently 

insufficient supply of resistant seed potatoes for the entire organic market so the coming years a 

situation will occur were organic farmers will grow partly susceptible and partly resistant varieties. 

During this transition phase organic farmers must be aware of the risk of resistance breakdown and 

take immediate countermeasures when they observe infections in resistant fields. The model 
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showed that in some years a small fraction of resistant fields was infected but the virulent strain was 

not able to establish in the population. Therefore a strategy that could be used by farmers to 

increase resistance durability includes immediate haulm destruction to prevent spread and 

establishment of the virulent strain in the late blight population.

The results showed that when resistance remained effective only part of the farmer agents in 

the model adopted the resistant variety, even when this resulted in a higher yield and income 

compared to the susceptible variety. We started with a situation in which the majority of farmers 

was growing the susceptible variety with fungicides. The model showed that the effect of habitual 

behaviour is very strong which means that when farmer agents are satisfied and certain, they would 

not change their management strategy. Although fungicides could not prevent infection completely, 

they suppressed the disease so stable levels in yield and income are reached which resulted in a high 

satisfaction and low uncertainty of farmers. As a result, only risk averse farmers with a high need 

satisfaction adopted the resistant variety in the model. These results suggest that when new 

resistant varieties are introduced to the market investments are probably needed to promote these 

to farmers and to increase their adoption. Interviews with conventional farmers showed that they do 

not consider late blight as a big problem because the application of fungicides leads to effective and 

cheap control (Pacilly et al., 2016). These results support this finding. Secondly, to prevent 

emergence and spread of virulent strains additional management strategies are needed to increase 

durability of resistance. The development of sustainable crop protection systems therefore requires 

cooperation between actors in the whole sector to achieve structural transformations in disease 

control.

4.6 Further research

To simulate farmers’ decision making we used the Consumat approach, a well-founded theory on 

human behaviour and previously used to simulate farmers’ decision making. The implementation of 

the framework was supported by data from the literature on farmer behaviour and results from 

interviews with Dutch potato farmers. The model was able to reproduce patterns and trends 

observed in reality (e.g. boom-and-bust cycles) which supports the validity of the model framework 

(Grimm et al., 2005). However, different model structures at the micro-scale can lead to the same 

emergent patterns at the macro-scale (Schulze et al., 2017). Methods to validate processes on 

human behaviour include expert validation and role playing games (Ligtenberg et al., 2010). 

Secondly, alternative models of decision-making could be implemented to analyse the sensitivity of 

the results to different assumption of human decision making (Schlüter et al., 2017). These methods 

are important steps for further research. 
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Besides implementing alternative theories on human behaviour we identified some other 

relevant processes that could be implemented for further research. We made simplifications on 

model components such as management strategies, the farmer population, the network structure 

and market effects. Although the model framework proved to be sufficient considering the purpose 

of this study, these processes could be extended in future research. Additional data collection could 

contribute to the implementation of these processes, for example collecting survey data of the 

farmer population. Secondly, in the current model the landscape consisted of farmers that each 

manage one potato field while in reality farmers can have multiple fields spread over the farm. These 

potato fields can be managed in different ways and farmers usually grow a number of different 

potato varieties, also as a way of risk management. The current model structure represents decision-

making at field level. However, this result in a relatively high number of farmers in the model 

landscape. Thirdly, in the model we included only one susceptible and one resistant variety. 

Currently, a number of different resistant varieties is available with resistance genes from different 

sources. More diversity in crop resistance can potentially reduce the risk on resistance breakdown 

and spread of virulent strains (Lof and van der Werf, 2017; Mundt, 2014). Lastly, since potatoes are 

reproduced vegetatively by the use of seed potatoes it takes some time to increase the production of 

newly introduced potato varieties. The availability of seed potatoes can therefore constrain a rapid 

adoption of new resistant varieties. It would be interesting to implement these factors in the model 

to analyse the effect on the adoption of resistant varieties, the allocation of susceptible and resistant 

fields in the landscape and resistance durability. 

In the model stakeholders such as breeding companies, the government and the market 

were represented as drivers of the system which influenced farmers’ decision making. However, each 

of these stakeholders have their own objectives and interests which leads to various types of 

interactions such as competition, cooperation and trading (Pacilly et al., 2016). Agent-based models 

are very suitable to include multiple types of agents and their interactions. As a next step, it would be 

interesting to explore the interactions between farmers, other stakeholders and late blight dynamics. 

With respect to the use of crop resistance in late blight control it would be mainly interesting to 

focus on the role of breeding companies and the effect of breeding and marketing strategies on late 

blight control. 

5 Conclusion

In this paper we combined a framework on farmer behaviour to an epidemiological framework on 

potato late blight to explore the use of crop resistance in disease control. The framework on farmers’ 

decision making was based on the Consumat approach and supported by data from literature on 

farmer behaviour and interviews with Dutch potato farmers. After introduction of a new resistant 
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variety the model reproduced a so-called boom-and-bust cycle: the percentage of farmers growing 

the resistant variety increased (boom) until resistance breakdown occurred by emergence and 

spread of a virulent strain, and in response farmers switched to other potato varieties and 

management strategies (bust). By exploring the interactions between farmer behaviour and late 

blight dynamics the model increased insights in the factors and processes that could affect the 

adoption of a resistant potato variety and resistance durability. For example, a higher crop price and 

yield of the resistant variety increased the adoption by farmers. However, also a large number of 

farmers continued growing the susceptible variety with fungicides which suggests that cooperation in 

the whole potato sector is needed to achieve structural transformations in disease control. In 

addition, the high risk on resistance breakdown stresses the importance of resistance management 

strategies to increase resistance durability. It was found that emergence and spread of the virulent 

strain is the result of interactions between management strategies of farmers, the weather 

conditions and the allocation of potato varieties.

By exploring the social-ecological interactions related to disease control the model 

contributed to the field of social-ecological system research and agent-based modelling. The number 

of models that tackles two-way feedbacks between social and ecological systems is scarce, also due 

to the inherent complexity of such systems (Filatova et al., 2013; Parker et al., 2008; Schulze et al., 

2017). This study provides a framework for linking decision-making processes of farmers to disease 

dynamics in an agent-based model. Implementing these two-way linkages allowed us to explore non-

linear dynamics and feedback mechanisms within the social-ecological system. This approach could 

be useful for a whole range of systems focusing on management of emerging infectious diseases of 

crops.

Acknowledgements

We would like to thank the strategic research programme ‘Complex Adaptive Systems’ (IP/OP CAS) of 

Wageningen University & Research for financing this research. The contribution of JG was partly 

funded by the CGIAR Research Program on Roots, Tubers and Bananas (RTB) and supported by CGIAR 

Fund Donors.

References

An, L., 2012. Modeling human decisions in coupled human and natural systems: Review of agent-based 
models. Ecological Modelling 229, 25-36.

Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R., Daszak, P., 2004. Emerging 
infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in 
Ecology & Evolution 19, 535-544.



ACCEPTED MANUSCRIPT

29

Austin, E.J., Willock, J., Deary, I.J., Gibson, G.J., Dent, J.B., Edwards-Jones, G., Morgan, O., Grieve, R., 
Sutherland, A., 1998. Empirical models of farmer behaviour using psychological, social and economic 
variables. Part I: linear modelling. Agricultural Systems 58, 203-224.

Bionext, 2017. 25 ketenpartijen ondertekenen convenant voor meer ziekteresistente biologische 
aardappelrassen, https://bionext.nl.

Brown, J.K.M., Tellier, A., 2011. Plant-parasite coevolution: Bridging the gap between genetics and 
ecology, Annual Review of Phytopathology, pp. 345-367.

Cooke, B.M., 2006. The Epidemiology of Plant Diseases. Springer Netherlands: Dordrecht, Dordrecht.

De Vallavieille-Pope, C., Ali, S., Leconte, M., Enjalbert, J., Delos, M., Rouzet, J., 2012. Virulence 
dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. 
Plant Disease 96, 131-140.

Edwards-Jones, G., 2006. Modelling farmer decision-making: concepts, progress and challenges. Animal 
Science 82, 783-790.

Filatova, T., Polhill, J.G., van Ewijk, S., 2016. Regime shifts in coupled socio-environmental systems: 
Review of modelling challenges and approaches. Environmental Modelling and Software 75, 333-347.

Filatova, T., Verburg, P.H., Parker, D.C., Stannard, C.A., 2013. Spatial agent-based models for socio-
ecological systems: Challenges and prospects. Environmental Modelling and Software 45, 1-7.

Finger, R., Möhring, N., Dalhaus, T., Böcker, T., 2017. Revisiting pesticide taxation schemes. Ecological 
Economics, 134, 263-266.

Gardebroek, C., 2006. Comparing risk attitudes of organic and non-organic farmers with a Bayesian 
random coefficient model. European Review of Agricultural Economics, 33(4), 485-510.

Gilbert, N., 2008. Agent-based models. Sage, Los Angeles, CA.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., 
Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M., Müller, B., Pe'er, G., Piou, C., 
Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., 
Stillman, R.A., Vabø, R., Visser, U., DeAngelis, D.L., 2006. A standard protocol for describing individual-
based and agent-based models. Ecological Modelling 198, 115-126.

Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F., 2010. The ODD protocol: 
A review and first update. Ecological Modelling 221, 2760-2768.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.H., Weiner, J., 
Wiegand, T., DeAngelis, D.L., 2005. Pattern-oriented modeling of agent-based complex systems: Lessons 
from ecology. Science 310, 987-991.

Groeneveld, J., Müller, B., Buchmann, C.M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., 
Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., Schwarz, N., 2017. 
Theoretical foundations of human decision-making in agent-based land use models – A review. 
Environmental Modelling and Software 87, 39-48.

Haverkort, A.J., Boonekamp, P.M., Hutten, R., Jacobsen, E., Lotz, L.A.P., Kessel, G.J.T., Visser, R.G.F., 
Van Der Vossen, E.A.G., 2008. Societal costs of late blight in potato and prospects of durable resistance 
through cisgenic modification. Potato Research 51, 47-57.

Haverkort, A.J., Boonekamp, P.M., Hutten, R., Jacobsen, E., Lotz, L.A.P., Kessel, G.J.T., Vossen, J.H., 
Visser, R.G.F., 2016. Durable Late Blight Resistance in Potato Through Dynamic Varieties Obtained by 
Cisgenesis: Scientific and Societal Advances in the DuRPh Project. Potato Research, 1-32.

Huber, R., Bakker, M., Balmann, A., Berger, T., Bithell, M., Brown, C., Grêt-Regamey, A., Xiong, H., Bao 
Le, Q., Mack, M., Meyfroidt, P., Millington, J., Müller, B., Polhill, J.G., Sun, Z., Seidl, R., Troost, C., 

https://bionext.nl


ACCEPTED MANUSCRIPT

30

Finger, R., 2018. Representation of decision-making in European agricultural agent-based models. 
Agricultural Systems, 167, 143-160.

Jager, W., Janssen, M., 2012. An updated conceptual framework for integrated modeling of human 
decision making: The Consumat II, paper for workshop complexity in the Real World@ ECCS, pp. 1-18.

Jager, W., Janssen, M.A., De Vries, H.J.M., De Greef, J., Vlek, C.A.J., 2000. Behaviour in commons 
dilemmas: Homo economicus and Homo psychologicus in an ecological-economic model. Ecological 
Economics 35, 357-379.

Janssen, M.A., Jager, W., 2001. Fashions, habits and changing preferences: Simulation of psychological 
factors affecting market dynamics. Journal of Economic Psychology 22, 745-772.

Kessel, G.J.T., Mullins, E., Evenhuis, A., Stellingwerf, J., Cortes, V.O., Phelan, S., van den Bosch, T., 
Förch, M.G., Goedhart, P., van der Voet, H., Lotz, L.A.P., 2018. Development and validation of IPM 
strategies for the cultivation of cisgenically modified late blight resistant potato. European Journal of 
Agronomy 96, 146-155.

Kirk, W.W., Abu-El Samen, F.M., Muhinyuza, J.B., Hammerschmidt, R., Douches, D.S., Thill, C.A., Groza, 
H., Thompson, A.L., 2005. Evaluation of potato late blight management utilizing host plant resistance 
and reduced rates and frequencies of fungicide applications. Crop Protection 24 (11), 961–970. 

Lammerts Van Bueren, E.T., Tiemens-Hulscher, M., Struik, P.C., 2008. Cisgenesis does not solve the late 
blight problem of organic potato production: Alternative breeding strategies. Potato Research 51, 89-99.

Ligtenberg, A., van Lammeren, R.J.A., Bregt, A.K., Beulens, A.J.M., 2010. Validation of an agent-based 
model for spatial planning: A role-playing approach. Computers, Environment and Urban Systems 34, 
424-434.

Lof, M.E., van der Werf, W., 2017. Modelling the effect of gene deployment strategies on durability of 
plant resistance under selection. Crop Protection 97, 10-17.

Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M., Bazzaz, F.A., 2000. Biotic invasions: 
Causes, epidemiology, global consequences, and control. Ecological Applications 10, 689-710.

Malawska, A., Topping, C.J., 2016. Evaluating the role of behavioral factors and practical constraints in 
the performance of an agent-based model of farmer decision making. Agricultural Systems 143, 136-
146.

Malcolmson, J.F., 1969. Races of Phytophthora infestans occurring in Great Britain. Transactions of the 
British Mycological Society 53, 417-IN412.

Matthews, R.B., Gilbert, N.G., Roach, A., Polhill, J.G., Gotts, N.M., 2007. Agent-based land-use models: 
A review of applications. Landscape Ecology 22, 1447-1459.

McRoberts, N., Hall, C., Madden, L.V., Hughes, G., 2011. Perceptions of Disease Risk: From Social 
Construction of Subjective Judgments to Rational Decision Making. Phytopathology 101, 654-665.

Montarry, J., Hamelin, F.M., Glais, I., Corbi, R., Andrivon, D., 2010. Fitness costs associated with 
unnecessary virulence factors and life history traits: Evolutionary insights from the potato late blight 
pathogen Phytophthora infestans. BMC Evolutionary Biology 10.

Mundt, C.C., 2014. Durable resistance: A key to sustainable management of pathogens and pests. 
Infection, Genetics and Evolution 27, 446-455.

Mundt, C.C., Cowger, C., Garrett, K.A., 2002. Relevance of integrated disease management to resistance 
durability. Euphytica 124, 245-252.

Nærstad, R., Hermansen, A., Bjor, T., 2007. Exploiting host resistance to reduce the use of fungicides to 
control potato late blight. Plant Pathology 56, 156-166.



ACCEPTED MANUSCRIPT

31

NVWA, 2008. Teeltvoorschriften Phytophthora infestans (cultivation requirements for phytophthora 
infestans management). Ministry of Economic Affairs.

Oerlemans, N., Assouline, G., 2004. Enhancing farmers' networking strategies for sustainable 
development. Journal of Cleaner Production 12, 468-477.

Pacilly, F.C.A., Groot, J.C.J., Hofstede, G.J., Schaap, B.F., van Bueren, E.T.L., 2016. Analysing potato 
late blight control as a social-ecological system using fuzzy cognitive mapping. Agronomy for Sustainable 
Development 36 (2), 1-18.

Pacilly, F.C.A., Hofstede, G.J., Lammerts van Bueren, E.T., Kessel, G.J.T., Groot, J.C.J., 2018. Simulating 
crop-disease interactions in agricultural landscapes to analyse the effectiveness of host resistance in 
disease control: The case of potato late blight. Ecological Modelling 378, 1-12.

Pacilly, F.C.A., Lammerts van Bueren, E.T., Groot, J.C.J., Hofstede, G.J., 2019. Moving perceptions on 
potato late blight control: workshops with model-based scenarios. Crop Protection 119, 76-87.

Parker, D.C., Hessl, A., Davis, S.C., 2008. Complexity, land-use modeling, and the human dimension: 
Fundamental challenges for mapping unknown outcome spaces. Geoforum 39, 789-804.

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P., 2003. Multi-agent systems for 
the simulation of land-use and land-cover change: A review. Annals of the Association of American 
Geographers 93, 314-337.

Pavlista, A.D., Feuz, D.M., 2005. Potato prices as affected by demand and yearly production. American 
Journal of Potato Research 82, 339-343.

Pink, D., Puddephat, L., 1999. Deployment of disease resistance genes by plant transformation - A 'mix 
and match' approach. Trends in Plant Science 4, 71-75.

Reidsma, P., Janssen, S., Jansen, J., Van Ittersum, M.K., 2018. On the development and use of farm 
models for policy impact assessment in the European Union–A review. Agricultural Systems 159, 111-
125.

Rouxel, T., Penaud, A., Pinochet, X., Brun, H., Gout, L., Delourme, R., Schmit, J., Balesdent, M.H., 2003. 
A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation 
towards the Rlm1 resistance gene of oilseed rape. European Journal of Plant Pathology 109, 871-881.

Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., Van Nes, 
E.H., Rietkerk, M., Sugihara, G., 2009. Early-warning signals for critical transitions. Nature 461, 53-59.

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M.A., McAllister, 
R.R.J., Müller, B., Orach, K., Schwarz, N., Wijermans, N., 2017. A framework for mapping and comparing 
behavioural theories in models of social-ecological systems. Ecological Economics 131, 21-35.

Schlüter, M., McAllister, R.R.J., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hölker, F., Milner-Gulland, 
E.J., Müller, B., Nicholson, E., Quaas, M., Stöven, M., 2012. New horizons for managing the 
environment: A review of coupled social-ecological systems modeling. Natural Resource Modeling 25, 
219-272.

Schöber, B., Turkensteen, L.J., 1992. Recent and future developments in potato fungal pathology. 
Netherlands Journal of Plant Pathology 98, 73-83.

Schulze, J., Müller, B., Groeneveld, J., Grimm, V., 2017. Agent-Based Modelling of Social-Ecological 
Systems: Achievements, Challenges, and a Way Forward. Journal of Artificial Societies and Social 
Simulation 20, 8.

Skelsey, P., Kessel, G.J.T., Rossing, W.A.H., Van Der Werf, W., 2009. Parameterization and evaluation of 
a spatiotemporal model of the potato late blight pathosystem. Phytopathology 99, 290-300.



ACCEPTED MANUSCRIPT

32

Skelsey, P., Rossing, W.A.H., Kessel, G.J.T., Van Der Werf, W., 2010. Invasion of Phytophthora infestans 
at the landscape level: How do spatial scale and weather modulate the consequences of spatial 
heterogeneity in host resistance? Phytopathology 100, 1146-1161.

Skevas, T., Stefanou, S.E., Lansink, A.O., 2012. Can economic incentives encourage actual reductions in 
pesticide use and environmental spillovers?. Agricultural Economics 43(3), 267-276.

Skevas, T., Lansink, A. O., Stefanou, S. E., 2013. Designing the emerging EU pesticide policy: A 
literature review. NJAS-Wageningen Journal of Life Sciences 64, 95-103.

Speelman, E.N., 2014. Gaming and simulation to explore resilience of contested agricultural landscapes. 
Wageningen University, Wageningen.

Van Duinen, R., Filatova, T., Jager, W., van der Veen, A., 2016. Going beyond perfect rationality: 
drought risk, economic choices and the influence of social networks. Annals of Regional Science 57, 335-
369.

Van Ittersum, M.K., Rabbinge, R., 1997. Concepts in production ecology for analysis and quantification of 
agricultural input-output combinations. Field Crops Research 52, 197-208.

Vurro, M., Bonciani, B., Vannacci, G., 2010. Emerging infectious diseases of crop plants in developing 
countries: Impact on agriculture and socio-economic consequences. Food Security 2, 113-132.

Wilensky, U., 1999. NetLogo. Center for Connected Learning and Computer-Based Modeling, 
Northwestern University, Evanston, IL., http://ccl.northwestern.edu/netlogo/.

Willock, J., Deary, I.J., McGregor, M.M., Sutherland, A., Edwards-Jones, G., Morgan, O., Dent, B., Grieve, 
R., Gibson, G., Austin, E., 1999. Farmers' attitudes, objectives, behaviors, and personality traits: The 
Edinburgh study of decision making on farms. Journal of Vocational Behavior 54, 5-36.

Wolfe, M.S., McDermott, J.M., 1994. Population genetics of plant pathogen interactions: The example of 
the Erysiphe graminis-Hordeum vulgare pathosystem. Annual Review of Phytopathology 32, 89-113.

WUR, 2018. Prijsontwikkeling consumptieaardappelen en uien, http://www.agrimatie.nl.

http://ccl.northwestern.edu/netlogo/
http://www.agrimatie.nl


ACCEPTED MANUSCRIPT

33

Appendix A Model description 

The model description follows the ODD (Overview, Design concepts, Details) protocol for describing 

agent-based models (Grimm et al., 2006; Grimm et al., 2010). In the model description we focus on 

the processes related to farmers’ decision-making. For more details on the epidemiological 

framework, we refer to Pacilly et al. (2018).

A.1 Model purpose

The aim of the model is to simulate the interactions between farmers’ decision making and late 

blight dynamics in an agricultural landscape with potato fields. The model is used to simulate the use 

of crop resistance in disease control by analysing the adoption of the resistant variety by farmers and 

the durability of resistance over time. 

Table A.1. Overview of late blight management strategies implemented in the model. 

 Fungicide application

Potato variety No Yes

Susceptible Sus.- Sus.+ 

Resistant Res.- Res.+ 

 
Figure A.1. Overview of behavioural strategies in relation to farmers satisfaction and uncertainty according to 
the Consumat approach.

A.2 Entities, state variables and scales

The model includes three types of entities: farmers, grid cells and agricultural fields. The model 

represents an agricultural landscape of 10 x 10 km2 and the grid cells are 200 × 200 m2 (4 ha). The 

model is populated by farmers each of whom manages one potato field which consists of one or 

more grid cells. A network was initialised in which farmers are connected to the closest farmers 

around them (shortest distance) which represents a network of neighbours. An overview of farmer 
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variables is shown in Table A.2. For the state variables and model parameters related grid cells we 

refer to Pacilly et al. (2018).

In the model farmers select one of four late blight management strategies for their field 

(Table A.1). Farmers can choose between a susceptible or late blight resistant potato variety with or 

without the use of fungicides. These strategies have different effects on field and landscape 

performance. Field performance was analysed for criteria including yield, income and infection level. 

To calculate farmers’ income the crop price (pm) was set at €13 per 100 kg-1 and the fungicide costs 

(fc) at €50 per application. For the decision making processes we used behavioural strategies 

according to the Consumat approach (Jager and Janssen, 2012; Jager et al., 2000; Janssen and Jager, 

2001). To evaluate their field performance farmers calculate the actual, estimated (predicted) and 

potential performance per criterion. These results are used to determine farmers satisfaction and 

uncertainty levels which leads to one of the following behavioural strategies: repeating, imitating, 

optimizing and social-comparison (Figure A.1). The decision making process is influenced by personal 

characteristics including farmers need satisfaction and uncertainty tolerance level. We distinguish 

four farmer types in the model which differ in the weights assigned to the criteria (Table 1). Weights 

represent farmer preferences related to the criteria infection level, yield and income.

Processes on crop growth and disease dynamics are simulated at grid cell level. The grid cells 

are characterised by location, field number, potato variety (susceptible or resistant), fungicide use 

and variables and parameters for crop growth and late blight infection (Pacilly et al., 2018). We 

consider only one type of susceptible and resistant variety (with one resistance gene). We assume 

the resistant variety has a 20% lower potential yield compared to the susceptible variety, which is 

reflected in the crop growth parameters. Two types of late blight are distinguished in the model: the 

wild-type and the virulent strain. The wild-type can only infect the susceptible variety, while a 

virulent strain can also infect the resistant variety. At the start of the simulation only the wild-type is 

present. The virulent strain can emerge during the growing season as the result of mutation. To 

simulate disease dispersal we used an aged-structured population model (Skelsey et al., 2010). When 

spores germinate lesions first enter a latent phase of five days after which they become infectious 

and produce spores. After the infectious phase, lesions are added to the pool of no longer infectious 

tissue. A fraction of the produced spores is dispersed by wind to nearby cells where they can cause 

infections. Since late blight development and crop growth is weather dependant, we used measured 

weather data as input for the model. 
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Table A.2. Overview of farmer variables and parameters. For each farmer the parameters were randomly 
selected based on a mean value (µ) or within a range (see also Table 1).

Symbol Description (unit) Value
Farmer parameters
FS Field size (ha) µ = 7
L Network links (no) µ = 5
Ft Farmer type (-) 1-4
Uf Uncertainty tolerance level (-) 0-1
Sf Need satisfaction (-) 0-1
wd Weight of infection level criterion (-) 0-1
wp Weight of income criterion (-) 0-1
wy Weight of yield criterion (-) 0-1

Farmer variables
BS Behavioural strategy (-)
MS Management strategy (-)
fn Fungicide applications (mean no year-1) 
ed Estimated infection level (-)
ep Estimated income (€ ha-1)
ey Estimated yield (tonnes ha-1)
ad Actual infection level (-)
ap Actual income (€ ha-1)
ay Actual yield (tonnes ha-1)
pd Potential infection level (-)
pp Potential income (€ ha-1)
py Potential yield (tonnes ha-1)
Sd Infection level satisfaction (-)
Sp Income satisfaction (-) 
Sy Yield satisfaction (-)
St Total satisfaction (-)
Ud Infection level uncertainty (-)
Up Income uncertainty (-)
Uy Yield uncertainty (-)
Ut Total uncertainty (-)

A.3 Process overview and scheduling

The time step in the model is one day and we simulate the potato growing season from May 1 to 

September 30 for 50 years. Processes in the model include (Figure A.2): 1) Crop growth and disease 

dynamics (grid cells), 2) Update field performance (farmers), 3) Calculate relative satisfaction and 

uncertainty (farmers), 4) Select behavioural strategy (farmers), 5) Select management strategy 

(farmers) and 6) Predict field performance (farmers). Processes on crop growth and late blight 

dispersal are updated on a daily step. Decision-making processes of farmers (2 to 6) are executed at 

the end of the growing season. Within each submodel grid cells and agents are processed in a 

random order. A detailed description of model processes can be found in Section A.7.
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Figure A.2. Flow chart of the model processes focussing on farmers’ decision making. 

A.4 Design concepts

Basic principles 

The model is a spatial representation of the social-ecological system of potato late blight 

management. We focus on the interactions and feedbacks mechanisms between farmers’ decision 

making and disease dynamics in an agricultural landscape. For the epidemiological processes we used 

the previously developed model (Pacilly et al., 2018) and we added a social dimension of decision 

making on late blight control. The framework on farmers’ decision making was based on the 

Consumat approach (Jager and Janssen, 2012; Janssen and Jager, 2001) and results from interviews 

with Dutch potato farmers (Pacilly et al., 2016). 
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Emergence

Both social and ecological dynamics are emerging from the model as a result of interactions between 

farmers’ decision-making and disease dynamics including: farmers behavioural strategies, farmers 

late blight management strategies, field performance for the criteria infection level, yield and income 

and disease dispersal at landscape level. 

Adaptation

During the simulation farmers can change their late blight management strategy. Four late blight 

management strategies are implemented in the model (Table A.1). At the end of each year farmers 

analyse their field performance and based on the results for the criteria on infection level, yield and 

income their satisfaction and uncertainty is calculated. According to the Consumat approach one of 

four behavioural strategies is selected (Figure A.1): repetition, imitation, social comparison and 

optimisation. Based on their behavioural strategy farmers continue using the same late blight 

management strategy or select one of the other three strategies (see Section A.7 for more details).

Objectives

When farmers are unsatisfied and/or uncertain one of the following behavioural strategies is 

selected according to the Consumat approach: imitation, social comparison and optimisation. In the 

case of social comparison and optimisation farmers aim to select a management strategy that results 

in a higher satisfaction by improving their field performance related to the criteria infection level, 

yield and income. 

Prediction

Based on observed results farmers predict their field performance (expected values) for the three 

criteria: infection level, yield and income. The expected values are calculated by taking the mean 

value using historical values of their own field of the last five years.

 

Sensing

Farmers can sense the field performance of the farmers in their network as well as their late blight 

management strategy. In the case of optimising behaviour farmers have information about the mean 

field performance per management strategy of the last growing season. 
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Interaction

Agents interact by sensing the state variables of other agents in their network. Secondly, the field 

performance of farmers is affected by the management strategies of other farmers in the landscape 

as a result of spatial interactions related to disease dispersal. 

Stochasticity

At the start of the simulation the landscape is initialised in which farmers and potato fields are 

randomly allocated in the landscape. Management strategies are randomly divided over the farmers. 

Secondly, for a number of farmer characteristics the values are randomly selected to create a 

heterogeneous population including: the number of contacts (links), uncertainty tolerance level (0-1), 

need satisfaction (0-1) and farmer type. Farmer types differ in the weights which represent farmer 

preferences for the different criteria (Table 1). With respect to disease processes, at the start of each 

year the infection is initialised in a fraction of the potato grid cells, randomly selected. Weather data 

is used as input for the model and each year data of one year is selected from a dataset of 36 years. 

During the growing season spores are dispersed by wind and every time step the wind direction is 

randomly selected (northeast, southeast, southwest and northwest).

Collectives

Each field is a collective of one or more grid cells which is managed by a farmer. Farmers select a 

management strategy for their field and they evaluate their field performance by using the mean 

value of the grid cells belonging to the field.  

Observation

At the end of each year data on landscape level was recorded including behavioural strategies and 

management strategies of farmers as well as variables related to disease dispersal in the landscape. 

Secondly the mean performance of each management strategy was calculated for the criteria 

infection level, yield and income. In the model interface several graphs are presented to observe the 

output over time. 

A.5 Initialization

The model represents an agricultural landscape of 10 km x 10 km with a potato density of ±24%. The 

model consists of 50 x 50 grid cells which represent a squared area of 200 m x 200 m. At the start of 

the simulation the landscape is initialised with 350 farmers that each manage one potato field with a 

mean size of 7 ha. These parameters were derived from landscape data of a Dutch agricultural 

region. A network is initialised in which farmers are connected to the closest farmers around them, 
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with a mean number of 5 links per farmers. At the start of the simulation we assume that all farmers 

grow a susceptible variety and the majority applies fungicides (90% of the farmers). Before the actual 

simulation started, the model was first run for five years without decision-making processes of 

farmers to create a list of reference values related to farmers’ field performance. An overview of 

initial values of crop growth and late blight can be found in Pacilly et al. (2018). To create a 

heterogeneous population farmer characteristics were selected randomly (See Table 1 and Section 

A.4 Stochasticity). 

A.6 Input data

Meteorological data was used as input for the model to simulate crop growth and late blight 

dispersal during the growing season (May 1 to September 30). Data from two Dutch weather stations 

was used: Eelde (1981-1993) and Marknesse (1994-2016). In this way a dataset of 36 years of 

weather data was created. Mean daily temperature and total radiation was calculated and used to 

simulate crop growth. Secondly, based on calculation rules using hourly temperature and humidity 

during a 24-hour period, we determined if a day was suitable for sporangia to cause infection 

(Skelsey et al., 2009). On a so-called ‘blight day’ newly produced spores can cause infections as a 

result of spore germination. See Pacilly et al. (2018) for more details.

A.7 Submodels

Below the model procedures as shown in Figure A.2 are described in more detail. 

1. Crop and disease dynamics (grid cells): At the start of each year late blight infections are 

initialised in a fraction of the potato fields, randomly selected. During the growing season (May 

till September), processes related to crop growth and disease dynamics are simulated with a 

daily time step. According to governmental regulations the potato haulm is destroyed when the 

disease severity in a field reaches 5%. As a result crop growth stops directly and the disease can 

no longer disperse to other fields. For a detailed description of these model processes we refer 

to Pacilly et al. (2018).

2. Update field performance (farmers): At the end of each year the actual and potential field 

performance is determined for farmers for each performance criterion (i): infection level, yield 

and income. 

a. Actual field performance

i. Yield (ay): The mean potato yield is calculated (tonnes per ha) which is affected 

by the potato variety, weather conditions and infection with late blight. 
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ii. Income (ap): Income (€ ha-1) is based on the actual yield and the price for 

potatoes minus costs for fungicide application (Equation A.1). The crop price Pt is 

set at €13 per 100 kg-1. This value was derived from a dataset on potato prices in 

the Netherlands from 2000 to 2017 (WUR, 2018). For the susceptible and 

resistant varieties the same value is used. Costs for fungicides are related to the 

mean number of applications (fn) and the costs per application (fc), set at €50.

(A.1)𝒂𝒑 = 𝒂𝒚 ∗ 𝑷𝒕 ∗ 𝟏𝟎 ― 𝒇𝒏 ∗ 𝒇𝒄 

iii. Infection level (ad): to analyse the infection level a scale from 1 to 4 was 

developed using results on disease severity (the percentage of infected leaf 

tissue), where high values represent a high disease severity: 1: < 0.1%, 2: 0.1-1%, 

3: 1-5%, 4: >5%. 

b. The potential performance is the maximum result which could be achieved in a specific 

year without any losses caused by the disease. 

i. Potential yield (py) is determined by calculating the maximum yield that could be 

achieved for susceptible and resistant fields based on the weather conditions in 

that year (temperature and radiation). 

ii. The potential income (pp) is calculated in the same way as the actual income but 

using the potential yield (Equation A.2).

(A.2)𝒑𝒑 = 𝒑𝒚 ∗ 𝑷𝒕 ∗ 𝟏𝟎 ― 𝒇𝒏 ∗ 𝒇𝒄

iii. The potential infection level was set at 1 for all management strategies which 

represents no or a very low infection level. 

3. Calculate relative satisfaction and uncertainty (farmers): Farmers calculate the relative 

uncertainty and satisfaction for each performance criterion (i). The overall uncertainty and 

satisfaction is influenced by the weights. Weights represent farmer preferences for the different 

criteria.

a. Satisfaction is defined as the ratio between the actual field performance (ai) and the 

potential field performance (pi) for each performance criterion (i). The total satisfaction 

is based on the satisfaction level for each criterion and their weights (wi) (Equation A.3). 

(A.3) 𝑺𝒕 = ∑𝒘𝒊𝒂𝒊/𝒑𝒊

b. Uncertainty is defined as the ratio between the actual field performance and the 

estimated value (ei). The total uncertainty is based on the uncertainty for each criterion 

(i) influenced by the weights (Equation A.4).

(A.4)𝑼𝒕 = ∑𝒘𝒊𝒂𝒊/𝒆𝒊



ACCEPTED MANUSCRIPT

41

4. Select behavioural strategy (farmers): Farmers compare their relative satisfaction and 

uncertainty level (St and Ut) to their personal need satisfaction (Sf) and uncertainty tolerance 

level (Uf). Based on the Consumat framework farmers select one of four behavioural strategies 

(Figure A.1):

a. If unsatisfied and uncertain (St < Sf and Ut < Uf): Social comparison

b. If unsatisfied and certain (St < Sf and Ut > Uf): Optimisation

c. If satisfied and uncertain (St > Sf and Ut < Uf): Imitation

d. If satisfied and certain (St > Sf and Ut > Uf): Repetition

5. Select management strategy (farmers): According to their behavioural strategy farmers select a 

management strategy. 

a. Social comparison: Farmers select the criterion they want to improve: infection level, 

yield or income. Therefore farmers compare the results of their field for each 

performance criterion (i) by calculating the weighted satisfaction (Oi) which is based on 

the satisfaction level and the weights ) (Equation A.5).

(A.5)𝑶𝒊 = 𝑺𝒊(𝟏 ― 𝒘𝒊)

The criterion with the lowest score is selected by farmers which represents the criterion 

they want to optimize. For this criterion, farmers compare the performance of the other 

farmers in their network and take over the management strategy of the farmer with the 

best result. 

b. Optimisation: Farmers select the criterion they want to optimize similar to social 

comparison. Farmers compare the mean performance of all four management strategies 

based on the results of the previous year and adopt the management strategy that has 

the best result for the criterion the farmer wants to optimize. If management strategies 

were not used by farmers the results of the previous year are used. Since the 

management strategies including the resistant variety with and without fungicides are 

not used by farmers at the start of the simulation, the potential values are used which 

represents the mean field performance of these two strategies. When the resistant 

variety with and without fungicides have the same highest score it is assumed that 

farmers select the resistant variety without fungicides. 

c. Imitation: Farmers adopt the management strategy which is used by the majority of 

farmers in their network. If this includes two or more strategies one of these strategies is 

randomly selected.

d. Repetition: Farmers don’t change their management strategy. 
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6. Predict field performance (farmers): Farmers estimate the value (ei) for each performance 

criterion (i) for the coming year. Therefore they calculate the mean value using historical values 

of their own field of the last five years.

Appendix B Results alternative network structure

Table B.1.  Year of resistance breakdown as a result of establishment of the virulent strain. The effect of farmer 
network structure was analysed. Standard settings: Mean number of links per farmer = 5 and farmers are 
connected to the closest farmers around them (shortest distance), Higher number of links: Mean number of 
links per farmer = 10 and farmers are connected to the closest farmers around them, Connecting farmer types: 
Mean of links per farmer = 5 and farmers are connected to the closest farmers around them of the same 
farmer type. For each scenario the model was run for 100 times.

Year resistance breakdown
(percentage of runs)

Network structure 0-10 10-20 20-30 30-40 40-50 >50
Standard settings 41 17 5 4 6 27
Higher number of links 41 14 5 2 10 28
Connecting farmer types 44 14 10 4 6 22

Table B.2. Management strategies of farmers (%) at the end of the simulation (year 50) in case resistance 
breakdown occurs and in case the resistance remains effective. The effect of farmer network structure was 
analysed. Standard settings: Mean number of links per farmer = 5 and farmers are connected to the closest 
farmers around them (shortest distance), Higher number of links: Mean number of links per farmer = 10 and 
farmers are connected to the closest farmers around them, Connecting farmer types: Mean of links per farmer 
= 5 and farmers are connected to the closest farmers around them of the same farmer type. Mean values are 
shown (±SD) based on 100 runs.

Management strategies of farmers (%)Network structure
Sus- Sus+ Res- Res+

Resistance breakdown occurs
Standard settings 0.9 ±0.7 92.0 ±3.7 0.2 ±1.4 6.9 ±3.5
Higher number of links 0.9 ±0.6 91.8 ±3.6 0.2 ±1.2 7.0 ±3.6
Connecting farmer types 1.0 ±0.9 89.3 ±5.0 0.6 ±3.2 9.1 ±4.6
Resistance remains effective
Standard settings 0.6 ±0.6 79.0 ±2.4 19.5 ±3.1 1.0 ±1.9
Increasing the number of links 0.7 ±0.7 79.3 ±3.4 19.7 ±3.0 0.3 ±0.6
Connecting farmer types 0.4 ±0.4 74.2 ±3.2 24.9 ±3.2 0.5 ±1.2
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Appendix C Model initialisation: fraction of farmers growing a susceptible variety without 

fungicides

Table C.1.  Year of resistance breakdown as a result of establishment of the virulent strain. The fraction of 
farmers growing a susceptible variety without fungicides at the start of the simulation was varied. For each 
parameter value the model was run 100 times.

Year resistance breakdown
(percentage of runs)

Initial fraction of farmers growing a 
susceptible variety without 
fungicides (sus-) 0-10 10-20 20-30 30-40 40-50 >50
0.00 0 0 0 0 0 100
0.05 32 9 7 4 3 45
0.10 41 17 5 4 6 27
0.15 56 14 3 2 1 24
0.20 67 13 7 2 3 8
0.25 76 8 6 1 1 8
0.30 82 11 4 0 3 0

Table C.2. Management strategies of farmers (%) at the end of the simulation (year 50) in case resistance 
breakdown occurs and in case the resistance remains effective. The fraction of farmers growing a susceptible 
variety without fungicides at the start of the simulation was varied. The other farmers are growing a 
susceptible variety with fungicide application. Mean values are shown (±SD) based on 100 runs.

Management strategies of farmers (%)Initial fraction of farmers growing a 
susceptible variety without 
fungicides (sus-)

Sus- Sus+ Res- Res+

Resistance breakdown occurs
0.00 - - - -
0.05 0.5 ±0.5 92.6 ±3.4 0.1 ±0.5 6.8 ±3.3
0.10 0.9 ±0.7 92.0 ±3.7 0.2 ±1.4 6.9 ±3.5
0.15 1.1 ±0.6 90.9 ±4.0 0.0 ±0.1 8.0 ±3.9
0.20 1.5 ±0.7 90.2 ±3.8 0.0 ±0.1 8.3 ±3.7
0.25 1.9 ±0.7 89.6 ±4.2 0.0 ±0.2 8.5 ±4.1
0.30 2.1 ±0.9 89.1 ±4.0 0.0 ±0.1 8.8 ±4.0
Resistance remains effective
0.00 0.0 ±0.0 81.1 ±2.6 18.9 ±2.6 0.0 ±0.0
0.05 0.4 ±0.4 79.9 ±2.2 19.5 ±2.3 0.3 ±0.6
0.10 0.6 ±0.6 79.0 ±2.4 19.5 ±3.1 1.0 ±1.9
0.15 1.0 ±0.5 77.0 ±3.5 20.7 ±4.1 1.3 ±2.1
0.20 1.3 ±0.8 75.7 ±3.6 22.9 ±4.0 0.2 ±0.4
0.25 1.7 ±1.0 74.6 ±2.1 23.4 ±2.2 0.4 ±0.5
0.30 - - - -
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Article highlights:
 A spatially explicit model was developed on potato late blight control
 We analysed the use of crop resistance in disease control
 We simulated the interactions between farmer behaviour and disease dynamics
 The model showed a regime shift in the control of potato late blight
 Resistance management is needed to increase resistance durability




