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Abstract

This paper presents a two-echelon inventory-routing problem for perishable products. Products

are delivered from a supplier to an intermediary depot, where storage may occur and from which

they are delivered by smaller vehicles to the customer locations. Holding costs are incurred for

storage at the depot. Customer availability is taken into account in the form of customer delivery

patterns. The objective is to minimise the total transportation and holding costs. We formulate the

problem as a mixed integer linear program and solve it by means of an adaptive large neighbourhood

search metaheuristic in combination with the solution of a reduced formulation. Three variants

of the heuristic are compared on a variety of randomly generated instances. Given the two-stage

structure of the problem, computational results show the importance of taking the cost structure

into account when choosing the most suitable solution approach.
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1 Introduction

Last-mile logistics and inventory considerations can play a crucial part in supply chain operations.

In fact, the last mile is often considered to be one of the most costly and least efficient stages of

the whole supply chain (Gevaers et al., 2009). Transporting products to the final customer can be

challenging, especially if these are perishable items, with a limited life span, for which the quality

degrades over time. Storage time and time spent on the road affect the quality of the products

and reduce their life time at the customer location, and may therefore reduce the value of the

product or result in product loss. While perishable products can be found in many areas, the food

sector presents an important example of an environment in which quality and safety aspects play

an important role (Akkerman et al., 2010), and where high perishability leads to considerable losses

and wastage (Yu and Nagurney, 2013). In today’s competitive markets, the quality and freshness

of a product are important aspects influencing the customers’ decision to purchase and hence are

vital for the survival of a business.

Last-mile distribution often arises in two-echelon systems that require intermediary storage of prod-

ucts, and needs to consider customer availability during a given time horizon, thus complicating the

delivery process. Efficient distribution systems and delivery planning for perishable products can

therefore help to avoid spoilage, save costs and positively affect the quality of a product. Periodic

vehicle routing as well as inventory management at the depot play an important role in this context,

by optimising the delivery schedule, the routes, the storage time and the quantity of products at

the depot.

1.1 Literature Review

Problems concerned with the optimal routing of vehicles, to improve delivery operations, have

been extensively studied for decades (Cordeau et al., 2007, Laporte, 2009). Over the course of

time, several variants of the basic vehicle routing problem (VRP) have incorporated other aspects

and more specific requirements related to decision making in the supply chain context (Schmid et

al., 2013). A number of studies can be found on the issues related to the routing of perishable

products. Thus, Tarantilis and Kiranoudis (2001) developed a metaheuristic for the vehicle routing

related to the distribution of fresh milk with a fleet of heterogenous vehicles. In the context of

fresh vegetable distribution, Osvald and Stirn (2008) included perishability into the vehicle routing
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problem with time windows and time-dependent travel times. Amorim and Almada-Lobo (2014)

developed a multi-objective model for the vehicle routing problem with time windows to investigate

different distribution scenarios and the trade-off between cost and product quality. The problem

was solved by using the ε-method for small instances and by applying an evolutionary algorithms

for larger instances. Rabbani et al. (2015) proposed a multi-objective VRP with time windows and

customer selection, assuming a heterogenous fleet of vehicles and considering multiple deteriorating

products. Wang et al. (2016) solved a multi-objective VRP with time windows and perishability

considerations using a two-phase heuristic method based on a variable neighbourhood search and

a genetic algorithm. Rabbani et al. (2016) considered the use of multiple middle depots and

incorporated several aspects, such as product freshness and profit maximisation into the objective

function. They developed a genetic algorithm for the solution of large instances. Considering

perishability in a site-dependent vehicle routing problem with time windows and a heterogeneous

fleet of vehicles, Amorim et al. (2014) developed a neighbourhood search algorithm and applied

it to a real-life case study arising in a Portuguese food distribution company. Hsu et al. (2007)

extended the vehicle routing problem with time windows by adding a stochastic cost component

related to the perishability of products. Song and Ko (2016) proposed a non-linear model with the

objective of maximising customer satisfaction related to the delivery of multi-commodity perishable

products with refrigerated and non-refrigerated vehicles. The problem is solved using a priority-

based heuristic approach.

A number of extensions exist on the integration of other aspects of the planning process into routing

models, such as production, location and inventory decisions. While the focus in the following will

be on the latter aspect, examples related to other features can be found in Farahani et al. (2012),

Govindan et al. (2014) and the review of Amorim et al. (2013).

Nahmias (2011) and Karaesmen et al. (2011) provide reviews related to the management and

modelling of perishable inventory systems. For a more general and extensive overview of the field

of inventory-routing problems (IRP), its variants and associated solution approaches we refer to

the reviews of Bertazzi et al. (2008), Andersson et al. (2010) and Coelho et al. (2013).

In the context of perishable products, Hiassat and Diabat (2011) proposed an integrated model for

a location-inventory-routing problem considering products with a limited life-span. Le et al. (2013)

developed an algorithm for an IRP based on column generation and cutting planes, the problem

is extended in Hiassat et al. (2017), integrating location decisions into the model, and solved

using a genetic algorithm. Coelho and Laporte (2014) applied branch-and-cut to optimally solve
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the perishable inventory-routing problem (PIRP) under general assumptions and consideration

of two different selling policies. Jia et al. (2014) solved an IRP for perishable products with

multiple time windows and loading costs, solving the problem using a two-phase solution algorithm.

Mirzaei and Seifi (2015) considered the impact of lost sales in their inventory-routing problem. The

resulting mixed integer non-linear programming model was solved using a metaheuristic based on

simulated annealing and tabu search. Kande et al. (2015) proposed a tabu search metaheuristic

for a routing problem with inventory and lot-sizing decisions as well as multiple source nodes.

Dealing with uncertain demand in a multi-period IRP model, Soysal et al. (2015) further included

environmental aspects in the form of greenhouse gas emissions and fuel consumption. Rahimi

et al. (2017) developed a multi-objective model for the IRP of perishable products, allowing

for a choice of different vehicles. They incorporated environmental aspects as well as customer

satisfaction considerations on top of the traditional cost minimisation. The problem was solved

by means of a genetic algorithm. Diabat et al. (2016) proposed a new arc-based formulation and

a tabu search algorithm for the inventory-routing problem for perishable products. Azadeh et

al. (2016) considered an inventory-routing problem with transshipments for a perishable product

and apply a genetic algorithm to solve the problem. Li et al. (2016) developed a mixed integer

linear programming model for perishable supply chains, incorporating production decisions in the

inventory-routing problem and maximising profit. In addition, Zhao et al. (2008) proposed a

similar structured two-echelon inventory routing problem without perishability considerations. The

problem was solved using a variable large neighbourhood search. Table 1 provides a summary of

the related scientific literature.
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1.2 Contribution and organisation of this paper

This paper focuses on inventory-routing for perishable products in the context of last-mile city

distribution. Given this focus, it is reasonable to assume a multi-level system, resulting in a two-

echelon routing problem (Hemmelmayer et al., 2012). A survey of two-echelon routing problems

can be found in Cuda et al. (2015). This study, like many others, is about the solution of a

last-mile distribution system in a two-echelon setting. However, our problem differs from most

existing two-echelon problems in two main ways. First, we consider inventory at the depot and not

at the customer locations as is the case in many papers. Second, we are the first to handle multiple

delivery patterns in the context of a two-echelon system. Our aim is to introduce the two-echelon

perishable inventory-routing problem, model it and solve it heuristically through an adaptive large

neighbourhood search (ALNS).

The paper is organised as follows. In Section 2 a formal description of the problem will be given.

Section 3 introduces the mathematical formulation of the model, while Section 4 describes the

heuristic. Computational results follow in Section 5, and conclusions are presented in Section 6.

2 Formal Problem Description

We consider the inventory-routing problem for perishable products within the context of urban

last-mile delivery. We therefore assume a two-echelon system, with a supplier, an intermediary

depot and several customer locations. Fresh products are delivered from the supplier to the depot

and then stored until delivery occurs. Inventory levels are updated at the beginning of each day,

representing a time period. The depot, which belongs to the supplier, receives flower or vegetable

deliveries from producers. The customers, on the other hand, are independent and need to be

served according to their availability and preferences. The availability of a customer is provided in

the form of combinations of visit periods. These delivery day combinations are represented for each

location in the form of a list of combinations of daily time windows, during which deliveries can be

made, as it is the case in the periodic vehicle routing problem (PVRP) presented by Cordeau et al.

(1997). An example of this would be a customer needing to be supplied with fresh produce every

two days and delivery could take place either on days 1, 3, 5 and 7 or on days 2, 4 and 6. The

rationale is that customers will receive a new order of products every couple of days to guarantee

freshness of the product and fulfill the customer demand. This means that the departures of the

vehicles need to be scheduled according to the delivery time windows at the customer location.
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Figure 1: Two-Echelon Delivery System with Periodic Routing

This is because customers will commonly not accept delivery every day but rather follow a certain

delivery pattern. An overview of the system is depicted in Figure 1.

The problem is defined over a limited time horizon of a week and the solution must satisfy the

periodic customer demands. Customer demands are assumed to be deterministic and known for

each period at the beginning of the weekly time horizon. The supplier has enough capacity to

satisfy the demand and can deliver to the depot within a reasonably short-time frame. It is

therefore possible to deliver goods to the depot and thence to different customer locations within

the same day, i.e. a time period. Vehicle capacity, however, is limited and each delivery to the

depot incurs a linehaul travel cost.

Products can be stored at the depot up to a certain capacity or until they are discarded as waste due

to their perishable nature. Perishable products can be generally categorised into two types. The

first type is associated with an expiry date, meaning that the products are suitable for consumption

up until a certain point in time, after which they are discarded (Nahmias, 2011). This is often the

case for dairy products for example. The second type relates to a gradual decrease in product

quality and can be for example observed for salads, fruits and bread (Rong et al., 2011). The focus

in this research will be on the latter type. Thus, the deterioration of a product occurs over time

in relation to the age of the product. The cost of this deterioration is included in the inventory

holding cost. From the depot to the customer, delivery is carried out by a homogeneous fleet of

7



vehicles. Vehicles are readily available at the depot, though limited with respect to their capacity.

The problem consists of the following decisions:

• When and how much to deliver from the supplier to the depot?

• When and how much to deliver from the depot to the customers?

• What is the optimal routing from the depot to the customer locations for the different time

periods?

The aim is therefore to determine an optimal delivery schedule and routing to the customer locations

during each time period, and optimise the storage time of the product at the depot, minimising

both the routing and inventory costs, while accounting for the loss of freshness of the product over

time.

3 Mathematical Formulation

This section introduces the notations and parameters used and provides a formal description of

the mixed integer linear programming (MILP) formulation based on the assumptions presented in

Section 2.
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Table 2: Summary of notation

Sets

N set of nodes indexed by i, j, l {depot: 0; customer: 1,...,n}

A set of arcs (i, j): i, j ∈ N, i 6= j

T set periods indexed by t

K set of vehicles indexed by k : k ∈ {1, ...,m}

G set of product ages indexed by g

Ri set of visit combinations of i

Parameters

cij routing costs on arc (i, j) : i, j ∈ {0, ..., n}

C linehaul routing cost supplier-depot-supplier

dti demand of customer i in period t

Qk capacity of vehicle k (k = 0: supplier-depot; k = 1, 2, 3 : depot-customer)

H inventory holding capacity at depot

hg unit inventory holding cost at depot (including deterioration cost) for product age g

art 1 if day t belongs to visit combination r

Variables

xktij 1 if customer j is visited immediately after customer i by vehicle k in period t

ykti 1 if vehicle k visits customer i in period t

zri 1 if visit combination r of customer i chosen

ut number of vehicles supplier-depot in period t

vgkti quantity delivered of age g from depot to customer i in period t by vehicle k

wt quantity delivered from supplier to depot in period t

Igt quantity held of age g at depot in period t

skti position of customer i in the routing of vehicle k in time period t

The problem is then:

Minimise
∑
t∈T

Cut +
∑
g∈G

∑
t∈T

hgIgt +
∑
i∈N

∑
j∈N

∑
k∈K

∑
t∈T

cijx
kt
ij (1)

9



subject to

Igt = Ig−1,t−1 −
∑
i∈N

∑
k∈K

vg−1,k,t−1i g ∈ G\{0}, t ∈ T\{0} (2)

I0t = wt t ∈ T (3)

Igt ≥
∑

i∈N\{0}

∑
k∈K

vgkti g ∈ G, t ∈ T (4)

∑
g∈G

Ig0 = w0 (5)

∑
g∈G

Igt ≤ H t ∈ T (6)

∑
r∈Ri

artdtiz
r
i =

∑
g∈G

∑
k∈K

vgkti i ∈ N\{0}, t ∈ T (7)

wt ≤ H −
∑
g∈G

Ig,t−1 t ∈ T (8)

∑
g∈G

∑
i∈N\{0}

vgkti ≤ Qkykt0 k ∈ K, t ∈ T (9)

wt ≤ Q0ut t ∈ T (10)∑
k∈K

ykti ≤ 1 i ∈ N\{0}, t ∈ T (11)

ykti ≤
∑
j∈N

xktij i ∈ N, k ∈ K, t ∈ T (12)

∑
r∈Ri

zri = 1 i ∈ N\{0} (13)

∑
i∈N

∑
k∈K

xktij −
∑
r∈Rj

artzrj = 0 j ∈ N\{0}, t ∈ T (14)

∑
i∈N

xktij −
∑
l∈N

xktjl = 0 k ∈ K, t ∈ T, j ∈ N (15)

skti − sktj + nxktij ≤ n− 1 i, j ∈ N\{0}, t ∈ T, k ∈ K (16)

vgkti , wt, Igt, skti ≥ 0 (17)

xktij , ykt, z
r
i ∈ {0, 1} (18)

ut ∈ Z. (19)

The objective function (1) minimises the sum of the delivery cost, consisting of linehaul travel

and customer routing cost, and of the inventory cost. Constraints (2) and (3) are inventory con-

straints related to the age of the product. Constraints (4) requires a delivery to update the inventory
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in period zero. Constraints (5) and (6) ensure that inventory levels cover at least the delivery during

the same period while also not exceeding the inventory capacity at the depot. Constraints (7) mean

that the demand at each consumer is met for the chosen delivery pattern. Constraints (8) restrict

the amount that can be delivered to the depot depending on depot capacity and existing inventory.

Constraints (9) and (10) impose a vehicle capacity for delivery to the customer and the delivery

to the depot. Constraints (11) state that delivery to a customer is made by only one vehicle,

while constraints (12) mean that a delivery can only be made by an activated vehicle. Constraints

(13) assign a delivery pattern to each customer and constraints (14) ensure that delivery can only

occur on days belonging to the chosen delivery pattern. Constraints (15) state that each vehicle

that visits a customer also leaves the customer. Constraints (16) are standard subtour elimination

constraints. Constraints (17) to (19) enforce the non-negativity and integrality of the variables.

4 Heuristic

For very small instances, the problem can be solved to optimality by a standard integer linear

programming solver, whereas this is not feasible for larger-size instances. We therefore propose a

two-stage matheuristic, i.e. a ”heuristic algorithm[ ] made by the interoperation of metaheuristics

and mathematical programming techniques” (Boschetti et al., 2010), combining an adaptive large

neighbourhood search (ALNS) with the solution of a MILP formulation, in order to solve the

problem for more realistic instances. This two-stage approach allows the exploitation of the two-

echelon structure of the problem by splitting it into routing and linehaul related decisions. The

overall performance of the heuristic, however, depends on the cost structure of the instances, thus

determining the order in which the different components of the heuristic are solved. As a result,

three variants obtained by altering the structure of the heuristic, are proposed in this research.

4.1 Heuristic Variant 1

In the first variant, the MILP model is solved first, determining optimal customer delivery pat-

terns, linehaul travel and the inventory of products at the depot. Based on this optimal solution,

the ALNS then aims to find good solutions for the second-stage routing problem, delivering each

customer according to the optimal delivery patterns determined in the first stage. The structure

of the approach is described in pseudo-code in Algorithm 1.
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Algorithm 1 General framework: Heuristic 1

1. Solve the MILP model (including delivery pattern selection)

2. Construct initial routing solution s

3. s∗ ← s

4. Start search procedure:

while stopping criteria not met do

4.1. Select destroy and repair operators from list Z based on weighting

4.2. Apply chosen destroy and repair operators to s to obtain s′

if acceptance criteria satisfied then

s← s′

if s better than s∗ then

s∗ ← s

5. Return best solution s∗

4.1.1 Solution of a MILP and construction of an initial routing solution

The MILP formulation used to solve the first stage of the problem is a reduced version of the

mathematical formulation provided in Section 3. Note that while most parameters and variables

remain the same, the variables vgkti are replaced with the variables vgt, and new variables dt are

added to the model in order to determine the aggregated demand for each period t. The detailed

mathematical formulation is provided in the following:

Minimise
∑
t∈T

Cut +
∑
g∈G

∑
t∈T

hgIgt (20)

subject to

dt =
∑
g∈G

vgt t ∈ T (21)

Igt = Ig−1,t−1 − vg−1,t−1 g ∈ G\{0}, t ∈ T\{0} (22)

I0t = wt t ∈ T (23)

Igt ≥ vgt g ∈ G, t ∈ T (24)∑
g∈G

Ig0 = w0 (25)
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∑
g∈G

Igt ≤ H t ∈ T (26)

∑
i∈N\{0}

∑
r∈Ri

artdtiz
r
i =

∑
g∈G

vgt t ∈ T (27)

wt ≤ H −
∑
g∈G

Ig,t−1 t ∈ T (28)

wt ≤ Q0ut t ∈ T (29)∑
r∈Ri

zri = 1 i ∈ N\{0} (30)

vgt, w
t, Igt ≥ 0, zri ∈ {0, 1}, ut ∈ Z. (31)

Once the MILP model is solved, an insertion heuristic (see Algorithm 2) is applied in order to

determine the routing for each period t based on the previously selected customer delivery patterns.

For each day, the customers allocated to the corresponding daily delivery list are chosen randomly

and inserted in the best feasible position under consideration of all the daily routes. If no feasible

insertion can be found due to the capacity restrictions, a new route is created and the customer is

inserted in it.

Algorithm 2 Construction heuristic for the initial solution

1. L← {1, ..., n}

for every customer i ∈ L do

1.1. Consider selected delivery pattern r′ ∈ Ri

for every day t in delivery pattern r′ do

1.2. Insert customer i in daily delivery list Lt

for every day t ∈ T do

while Lt 6= ∅ do

2. Randomly select customer i from daily delivery list Lt

for every customer i do

2.1. Insert customer i in its best feasible insertion place

if no feasible insertion place then

2.1.1. Create new route and insert customer in new route

3. Lt ← Lt − {i}

13



4.1.2 Destroy operators

We have developed a number of different destroy operators, operating at the customer and route

level. The operators remove a percentage Nb of the customers from the current solution.

Random Customer Removal: This is a standard operator in which customers are selected

randomly and removed from their current route.

Worst Customer Removal: For a random day, this operator identifies the worst customer

according to its insertion cost in the current solution. This customer with the largest insertion cost

or savings potential is then removed from the solution.

Related Customer Removal: This operator is based on the related customer removal operators

used by Shaw (1998) and Azi et al. (2014). However, while Azi et al. (2014) build on Shaw (1998)

by defining a proximity measure based on spatial and temporal distance, we apply two variants of

the operator. The first uses a spatial distance measure, so that zil = cil, while the second applies

a distance measure based on the difference in demands between customers, so that zil = |dti − dtl |.

The structure of the operator is described in Algorithm 3.

Algorithm 3 Related Customer Removal

1. Select a customer j at random from the solution

2. Consider the delivery pattern assigned to customer j and select a random day t in the pattern

3. Remove customer j from day t

4. L← {j}

while |L| ≤ Nb do

5.1 Select a random customer i from L

for each customer l in day d do

5.1. Compute distance measure zil

5.2 Sort the resulting zil’s in decreasing order, storing them in a list B

5.3 Choose a random number x between 0 and 1

5.4 pos ← |B|xb

5.5 Select customer l associated with the zil value at position pos and remove it from day t

5.6 L← L ∪ {l}

6. Return L

Parameter b in 5.4 regulates the intensity of the bias towards closer customers. As a result of the

tuning of this parameter, b was set to 10 in our implementation.
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Random Route Removal: For a random day, the operator selects a number of routes at random

and removes them from the solution.

4.1.3 Repair operator

Customers that have been removed during the destruction procedure need to be reinserted using

a repair operator. The operator used for this is based on cheapest insertion and follows the same

insertion procedure as in the construction heuristic. Thus, for each day, customers are selected from

the list of removed customers and reinserted into the solution in the cheapest feasible position. This

process is repeated until, for each day, all of the daily customers are again part of the solution.

4.1.4 Acceptance criterion and adaptive mechanism

The acceptance criteria for candidates is based on a simulated annealing rule, as in Ropke and

Pisinger (2006). The adaptive mechanism is only applied to the destroy operators in this setting,

since the options to repair a solution are limited to the cheapest insertion operator. The heuristic

terminates after a fixed number of iterations.

4.2 Heuristic Variant 2

The second variant integrates the selection of customer delivery patterns within the routing deci-

sion, constructing daily delivery routes before optimally solving the linehaul and inventory part of

the problem. The MILP model is thus integrated into the ALNS framework and solved for each of

the found solutions with alternative delivery patterns. The structure of the approach is described

in pseudo-code in Algorithm 4.
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Algorithm 4 General framework: Heuristic 2

1. Construct initial solution s (including delivery pattern selection and MILP formulation)

2. s∗ ← s

3. Start search procedure:

while stopping criteria not met do

3.1. Select destroy and repair operators from list Z∗ based on weighting

3.2. Apply chosen destroy and repair operators to s to obtain s′

if change in delivery pattern selection then

4. Solve the MILP model and update solution s′

if acceptance criteria satisfied then

s← s′

if s better than s∗ then

s∗ ← s

5. Return best solution s∗

4.2.1 Construction of an initial solution

Whereas in the previous variant, the pattern selection was predetermined by the MILP model, here

the construction heuristic starts by randomly selecting a delivery pattern for each customer. Once

every customer has been assigned a delivery pattern, the procedure is identical to the previous

construction heuristic, with the exception that a MILP model is solved at the end in order to

determine the linehaul and storage component of the problem under consideration of the chosen

delivery patterns. An overview of the construction heuristic can be found in Algorithm 5. The

corresponding MILP model is a simplified version of the model presented in Section 4.1.1, for which

the objective function and most of the constraints remain the same. However, the expressions

dt, representing the daily aggregated demand, are now predetermined by the heuristic and thus

become parameters in the model, while constraints (27) and (30), linked to the pattern selection,

are eliminated from the model, making the notations zri and art irrelevant.
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Algorithm 5 Construction heuristic for the initial solution

1. L← {1, ..., n}

for every customer i ∈ L do

1.1. Randomly select delivery pattern r′ ∈ Ri

for every day t in delivery pattern r′ do

1.2. Insert customer i in daily delivery list Lt

for every day t ∈ T do

while Lt 6= ∅ do

2.1. Randomly select customer i from daily delivery list Lt

for every customer i do

2.2. Insert customer i at its best feasible insertion place

if no feasible insertion place then

2.2.1. Create new route and insert customer in new route

3. Solve the MILP model for the linehaul travel and storage at the depot

4. Lt ← Lt − {i}

4.2.2 Destroy Operators

In addition to the destroy operators of the first heuristic variant, the second variant also includes

an operator at the delivery pattern level to allow for changes in the selection of customer delivery

patterns.

Random Customer and Pattern Removal: The idea is the same as in the standard customer

removal, but in addition to removing a random customer from all the routes, the operator also

removes the record of the customer’s delivery pattern from the solution, storing the customer in a

list of unassigned customers without a selected delivery pattern.

4.2.3 Repair Operators

Similar to the destroy operators, the repair operators consist of those used in the previous variant

and of a number of new operators related to the selection of customer delivery patterns. Note, that

the use of repair operators depends on the preceding destroy operator, i.e. whether the operator

affects solely the customer level or both the customer and the delivery pattern level. If both levels

are affected, the heuristic first chooses an operator to select the delivery pattern and assign the

customer to delivery days before choosing another operator to insert the customer in the routing

17



solution.

Random Pattern Selection: The random pattern selection operates in the same manner as the

pattern selection in the construction heuristic, where a delivery pattern is chosen at random from

the list of customer specific delivery patterns.

Balanced Pattern Selection: This operator takes a more balanced approach for the pattern

selection by applying a customer density measure ρ. Note that two different customer density

scores are considered in this research. The first is based on the sum of the number of customers in

each day of the pattern, while the second is based on the sum of the daily demands of each day in

the pattern. The detailed structure of the operator is described in Algorithm 6.

Algorithm 6 Balanced Pattern Selection

while list of customers without patterns not empty do

1. Randomly select customer j from list of customers without patterns

for pattern ∈ customer patterns Rj do

2.1 Calculate the customer density measure ρ associated with the pattern

3. Select best pattern for customer j based on smallest ρ

4. Remove customer j from list of customers without patterns

4.3 Heuristic Variant 3

We have developed a third heuristic variant consisting of a hybrid of the first two variants. In this

variant, the initial solution is generated in the same way as for variant 1 (i.e. the MILP model of

variant 1 for the linehaul is solved first), while the general structure of the heuristic follows variant

2. This means that variant 3 starts with the optimal cost from the linehaul perspective but allows

for more flexibility since the linehaul problem can be solved for different customer patterns using

the MILP model of variant 2.

4.3.1 Acceptance criterion and adaptive mechanism

We use the same acceptance criterion as in the first variant, with the exception that the adap-

tive mechanism is applied to both the destroy operators and the repair operators used to restore

customer patterns.
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5 Computational Results

We have carried out a number of computational experiments in order to validate the MILP formu-

lation and test the heuristic approaches proposed in this study. The experiments were designed to

investigate the effect of the cost structure on the performance of the three heuristic variants. We

have coded the heuristics in Python3.5 and CPLEX 12.6 running on a single thread. All computa-

tions were executed on a machine equipped with an Intel(R) Xeon(R) X5675 processor running at

3.07GHz.

5.1 Instance description

The heuristics were tested on two sets of instances, each consisting of 90 small-size instances with

up to 150 customers. The two sets differ with respect to the size of the grid in which the customers

are located. In the first set of instances the customers are located in a 2 × 2 square (in km), i.e.

small grid, while in the second set the customers are located in a 25× 25 square (in km), i.e. large

grid. In both cases, the depot is located at (2.5,2.5). The distance for the linehaul travel is set

at one of the following values for both sets: 20 km, 40 km or 80 km. Thus, the two different grid

sizes impact the relations between the cost components of the objective function, as linehaul and

inventory costs remain in the same range. This means, that in the case of the large grid instances,

the routing cost contributes relatively more to the total cost. The calculation of the routing costs

cij is based on the Euclidean distances between the locations in the plane and include fuel, wage

and vehicle costs per km.

Table 3: Routing cost components per vehicle type

Light Duty Vehicle Medium Duty Vehicle

Average speed 30 km/h 70 km/h

Fuel consumption 30 l per 100 km 15 l per 100 km

Fuel cost 0.42 e/km 0.21 e/km

Driver’s wage 9.5 e/h 12.5 e/h

Wage costs 0.3 e/km 0.18 e/km

Truck payment and insurance 0.3 e/km 0.3 e/km

Maintenance and repairs 0.15 e/km 0.15 e/km

Vehicle costs 0.45 e/km 0.45 e/km

Total routing cost per km 1.17 e/km 0.84 e/km
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The inventory costs increase exponentially and are calculated based on the formula hg = price×p×

bt, where the price of the product is randomly selected from the interval [10, 30], p is a percentage

in [0.02, 0.04], b is a positive growth factor set at 2, and t is the time period. The planning horizon

in this research is set for all instances to T = 5. Five delivery patterns consisting of different

combinations of delivery days ({1,3}, {1,4}, {2,4}, {2,5}, {3,5}), are considered and each customer

is assigned two delivery patterns chosen at random. Based on the instances of Song and Ko (2016),

the customer demands are volume based and range between 0.3 m3 and 1.8 m3, the capacity of

the vehicles used for the customer routing is set at 12 m3. The vehicle capacity for the linehaul

travel is 38 m3, which corresponds to the standard size of a small shipping container in Europe.

For the small grid instance structure the capacity at the depot is 50 m3 for instances with up to

40 customers and 150m3 for larger instances. The large grid instance structure features a larger

inventory capacity at the depot of 100 m3 for instances of up to 40 customers and 200 m3 for larger

instances.

5.2 Parameter settings

For the parameter tuning of the two heuristics, two sets of 18 test instances were selected at random,

representing the two different instance structures considered in this research. The tuning for these

two test sets was carried out separately. We executed 10 runs for each parameter setting of the

heuristics, and the setting with the best average deviation from the best found solution was chosen.

The results of the tuning were based on a search consisting of 25,000 iterations and a segment size

of 200 iterations, as this resulted in a good trade-off between run time and solution quality. Three

different intervals for the percentage of destruction (i.e. the percentage of customers to remove

from the solution) were reviewed, namely [10%, 30%], [20%, 40%], [30%, 50%]. All other parameter

values were initially set equal to those of Ropke and Pisinger (2006) and then sequentially altered

in the tuning phase. The resulting best parameter setting for each heuristic variant and instance

structure is shown in Table 4.
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Table 4: Parameter settings

Instance structure 1 Instance structure 2

Parameters Variant 1 Variant 2 Variant 3 Variant 1 Variant 2 Variant 3

Percentage of destruction: 30%–50% 30%–50% 30%–50% 30%–50% 30%–50% 30%–50%

Acceptance criterion:

w 0.001 0.001 0.001 0.001 0.001 0.001

c 0.99976 0.99974 0.99983 0.99976 0.99983 0.99985

Weight adjustment:

σ1 33 22 44 22 44 33

σ2 9 13.5 4.5 13.5 4.5 9

σ3 13 19.5 6.5 19.5 6.5 13

r 0.1 0.1 0.1 0.5 0.5 0.5

5.3 Results

This section presents the results for the two instance structures and three heuristic variants based

on the best parameter settings identified in Section 5.2. For very small instances, of up to ten

customers, these results are compared with the optimal solution values found by the mathematical

model, while for larger instances it is no longer possible to solve the problem to optimality. The run

time for solving the model to optimality differs considerably between the two instance structures,

as well as between individual instances. For the small grid instance structure, the model obtains

an optimal solution for instances with 10 customers on average within 86 seconds, while for the

large grid instance structure the run time is considerably longer, with an average of about 5,800

seconds. In addition, one of the large grid instances could not be solved to optimality, with a

remaining optimality gap of 6.63% after running the model for several days. Increasing the number

of customers to n = 15 for the small grid instances, leads to a considerable increase in the run time,

resulting in an average run time of 7435.5 seconds.

The column headings of Tables 5 and 7 present the linehaul cost structure, the optimal solution

value found by the mathematical model, as well as the performance of the heuristic variants for each

of the small and large grid instances, respectively. The total cost term for the optimal solutions

is broken down into the different cost components, namely the first echelon cost (1stE), consisting

of linehaul (LC) and inventory cost (IC), and the routing cost (RC). For the heuristic variants

the tables provide the best solution values found, as well as the performance of the algorithms
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in terms of time and deviation. Best and average deviations are computed with respect to the

optimal solution values found for each of the instances. The comparison of the optimal solution

values with the three heuristic variants for instances with n = 10 in Table 5 shows that the variants

manage on occasions to find optimal or close to optimal solutions for most small grid instances.

On average, variant 3 performs best with an optimality gap of 1.79%, followed by variant 1 with a

gap of 2.12%, and variant 2 with a gap of 2.48%. In terms of finding optimal or close to optimal

solutions, variant 2 performs best, closely followed by variant 3, and considerably outperforming

variant 1. For instances with 15 customers, the comparison of the optimal solution values with

the three heuristic variants shows that each variant still finds reasonably good solutions. For this

instance size variant 1 performs best on average with an optimality gap of 2.1%, closely followed

by variant 3 with a gap of 2.4%, variant 2 under performs with an average deviation of 5.9%. A

comparison with larger instances is not possible due to significantly longer run times.
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For the large grid instances, the comparison shows that it is harder for the heuristic variants to find

optimal solutions. Variant 2 still performs best at finding good objective values, the best being on

average only 1.45% worse than the optimal ones. Variant 3 closely follows with its best objective

values being on average 1.64% worse than the optimal one, while the cost of the best solutions

found by variant 1 deviate on average by 6.52% from those of the optimal solution. Overall, variant

3 performs best with an average optimality gap of 4.52%, followed by variant 2 with a gap of 4.63%,

and variant 1 with a gap of 8.41%. This underperformance of variant 1 is caused by its structure

which decomposes the problem into the first echelon and a routing problem. Starting by solving the

first echelon problem to optimality, the variant fixes the customer delivery patterns and therefore

restricts the solution space of the ALNS solutions to the conditional routing problem.

To better quantify this behaviour, Table 8 makes a comparison between three algorithmic strategies.

The first one, in the left block, solves the problem optimally by CPLEX. The table reports the

total cost and its decomposition into its various components. The second strategy, in the middle

block, decomposes the problem into its two natural components: the first echelon problem and the

routing problem conditioned by the first-echelon solution. It solves each of these two components

optimally by CPLEX. The solution values obtained by means of this decomposition strategy deviate

on average by 5.97% from the optimal solution values, even though each component is solved

optimally. The third strategy, in the right block, solves the problem by our heuristic variant 1: the

first echelon component is again solved optimally, but the routing component is solved heuristically

by ALNS. The solution costs obtained under this strategy deviate on average by 7.96% from the

optimal solution values, but only by 1.87% from the costs obtained under the second strategy. In

other words, these results show that ALNS yields good solutions when compared with the optimal

values yielded by the second strategy. The deviations observed between variant 1 and the optimal

solutions are mostly a result of the decomposition of the problem into its two components, rather

than a result of the behaviour of the ALNS per se. Our recommendation is to apply variant 3 and

not variant 1 when the cost is relatively important with respect to the total cost.
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The results for larger instances are shown in Tables 9 and 10. The column headings present

the different instance size and linehaul cost for the two instance structures and the performance in

terms of time and deviation for each heuristic variant. The deviations in the table refer to average

percentage deviations from the best solutions found for each of the instances. The percentage in

brackets for variant 2 is the average percentage deviation of the final linehaul cost found by variant

2 from the optimal linehaul solution found by the MILP of variant 1. The best and worst values for

the individual instances of both instance structures are presented in Tables 11 -14 in the appendix.

Overall, heuristic variants 2 and 3 show a significantly longer run time than variant 1 due to the

destruction of customer patterns during the process of the ALNS and the associated resolution of

the MILP formulation. The detailed results in Table 9 show that for the instances with a small grid

size the first variant performs the best in terms of finding good solutions, followed by variant 3.

Both of these variants improve the initial solution by about 30%, with an overall average deviation

from the best found solutions of about 1.7% (variant 1) and 2.93% (variant 3). Breaking down

the results for the different linehaul costs indicates, that both variant 1 and 3 perform better for

instances with higher linehaul cost. Despite improving its initial solution on average also by about

30%, heuristic variant 2 significantly underperforms in comparison to the other two variants with

an average deviation from the best found solutions of about 6.95%. As the cost of the 1st echelon

(i.e the linehaul part) of the problem accounts on average for about 44% of the total cost this

underperformance seems closely related to the inability of variant 2 to reach better first echelon

solutions, with the first echelon solutions found by variant 2 being 8.9% worse than the optimal

solutions found by the MILP model of variant 1.
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Table 9: Average results by heuristic variant for small grid instances

Instance Structure 1 Variant 1 Variant 2 Variant 3

Size Linehaul cost Deviation (%) Time (s) Deviation (%) Time (s) Deviation (%) Time (s)

30 low 2.01 20.15 9.18 (13.84) 256.08 2.89 235.71

medium 1.50 19.76 7.13 (9.29) 273.00 2.81 265.72

high 1.44 20.35 7.53 (7.09) 291.06 1.73 275.43

40 low 2.09 23.42 7.50 (10.28) 215.30 3.16 199.95

medium 1.34 23.58 8.05 (11.15) 226.30 2.33 219.50

high 1.03 23.75 7.67 (7.58) 230.44 1.81 209.62

50 low 3.27 29.55 6.27 (10.99) 208.00 5.56 202.66

medium 1.81 29.48 8.04 (12.31) 219.54 2.52 208.40

high 1.24 30.00 6.94 (8.52) 213.35 2.06 201.29

100 low 2.23 52.66 6.50 (10.59) 201.97 4.45 198.41

medium 1.51 53.07 7.29 (9.07) 209.19 3.35 198.83

high 1.02 53.42 5.69 (5.57) 216.60 2.58 204.91

150 low 1.73 86.90 5.04 (6.16) 196.52 3.14 198.48

medium 1.72 85.14 5.54 (6.94) 200.91 2.87 204.00

high 1.18 84.92 5.88 (6.69) 204.56 2.19 212.45

Low linehaul 2.27 42.54 6.90 (10.37) 215.57 3.84 207.04

Medium linehaul 1.58 42.21 7.21 (9.75) 225.79 2.78 219.29

High linehaul 1.18 42.49 6.74 (7.09) 231.20 2.07 220.74

Overall 1.67 42.41 6.95 (9.07) 224.19 2.90 215.69

The detailed results for the second instance structure with a larger grid size are presented in

Table 10. It can be seen, that the difference in performance between the three heuristic variants

isn’t as large as for the first set of instances. Variant 1 performs best with respect to the quality of

the solutions found, with an average deviation from the best solutions of 4.66%, followed by variant

2 with a deviation of 5.75%. Heuristic variant 2 performs only slightly worse than the other two

variants with an average deviation of 6.43%. The average deviations are higher than for instance

structure 1, but the improvement from the initial solutions is also larger, with an improvement

from the initial solution by all three variants of about 41%. When distinguishing between different

linehaul costs, the results show that all variants perform better for instances with high linehaul

costs. While variant 2 still underperforms in terms of finding good solutions for the first echelon of

the problem (with a deviation of 10.46%), 1st echelon costs only account for about 20% of the total
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costs. Thus, it partly compensates for the larger linehaul cost by allowing for more flexibility and

finding better solutions for the routing part of the problem. This suggests, that the ratio between

linehaul and routing costs impacts the performance of the heuristic variants.

Table 10: Average results by heuristic variant for large grid instances

Instance Structure 1 Variant 1 Variant 2 Variant 3

Size Linehaul cost Deviation (%) Time (s) Deviation (%) Time (s) Deviation (%) Time (s)

30 low 6.44 20.15 8.88 (13.53) 184.92 7.63 179.94

medium 5.00 19.96 5.33 (14.67) 184.08 4.78 183.00

high 4.35 19.89 6.96 (11.70) 193.27 5.68 184.82

40 low 6.40 25.18 6.47 (12.81) 166.42 7.53 174.02

medium 6.85 25.48 7.36 (14.75) 167.12 8.45 174.52

high 3.72 25.30 5.40 (8.27) 182.47 4.77 180.84

50 low 6.16 28.00 6.76 (9.28) 157.69 6.83 163.01

medium 6.20 28.76 6.29 (12.71) 163.82 6.52 167.10

high 4.51 29.41 7.32 (13.81) 166.85 5.42 165.15

100 low 3.41 51.41 6.03 (11.78) 177.38 4.78 175.16

medium 3.50 50.11 6.14 (7.84) 180.20 5.86 176.66

high 2.66 50.16 5.63 (7.42) 179.17 3.81 176.05

150 low 3.34 81.84 4.81 (5.22) 196.83 4.45 198.36

medium 3.94 81.86 7.22 (7.19) 200.69 5.46 202.50

high 3.39 80.50 5.87 (5.87) 203.12 4.31 201.64

Low linehaul 5.15 41.32 6.59 (10.52) 176.65 6.25 178.10

Medium linehaul 5.10 41.23 6.47 (11.43) 179.18 6.21 180.76

High linehaul 3.72 41.05 6.24 (9.41) 184.97 4.80 181.70

Overall 4.66 41.20 6.43 (10.46) 180.27 5.75 180.18

In addition, testing instances (of 30 to 50 customers), in which more delivery patterns are allowed

per customer, has shown that for both instance structures the differences in performance between

the three heuristic variants become more pronounced as the number of delivery patterns increases.

6 Conclusion

We have introduced the two-echelon inventory routing problem for perishable products. The prob-

lem was formulated mathematically and was solved by applying a two-stage matheuristic combining
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an ALNS with a MILP formulation. Three variants of the matheuristic were proposed and tested

on different types of instance structures, varying in grid size and linehaul cost. The results demon-

strate that instances of realistic sizes (involving up to 150 customers) can be solved by means of

the proposed heuristic within reasonable computing times. The three variants of the heuristic differ

greatly on small grid instances, but tend to become more similar on the larger grid instances. It is

also easier to solve the problem optimally on the smaller grids. One limitation of this paper, which

could possibly be overcome in future research, lies in the modelling of perishability. Indeed, we

have assumed in our model that all products deteriorate linearly as a function of time. However,

these phenomena are more complex in practice since not all products deteriorate linearly and at

the same rate. Therefore, a more refined model could be exploited, particularly one that would

take stochasticity into account.
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Appendix 1: Best and Worse Values - Small grid instances

This appendix presents the best and worst values for the instance structure with a small grid size

in Tables 11 and 12 respectively. The column headings present the instance size and linehaul cost

structure for each of the instances, the best known value and the best (Table 11) or worst (Table

12) solutions found by the three heuristic variants. The solutions are provided in terms of the total

cost (TC) as well as broken down into first echelon costs (1stE) and routing costs (RC).

Table 11: Best Solutions Found - small grid instances

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3
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Table 11: Best Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

16 30 low 223.7 133.5 90.2 223.7 133.5 90.2 230.4 138.9 91.5 226.4 * 92.9

17 30 low 188.1 87.1 101.0 188.1 87.1 101.0 206.6 100.1 106.5 190.1 * 103.0

18 30 low 211.0 101.4 109.5 211.0 101.4 109.5 224.3 116.1 108.3 211.8 * 110.4

19 30 low 196.3 88.0 108.2 197.0 88.0 108.9 206.4 100.4 106.0 196.3 * 108.2

20 30 low 203.1 102.9 100.2 203.8 102.9 100.9 206.7 103.1 103.6 203.1 * 100.2

21 30 medium 267.7 176.4 91.3 267.7 176.4 91.3 283.0 182.6 100.5 269.8 * 93.4

22 30 medium 240.0 139.1 101.0 240.0 139.1 101.0 247.3 145.3 102.0 242.0 141.6 100.4

23 30 medium 223.7 124.4 99.3 225.3 118.9 106.4 223.7 124.4 99.3 227.1 122.2 104.8

24 30 medium 272.0 173.6 98.4 272.0 173.6 98.4 297.3 195.2 102.2 274.1 * 100.5

25 30 medium 237.4 138.2 99.2 237.7 136.8 100.9 238.5 147.0 91.6 237.4 138.2 99.2

26 30 high 374.9 279.8 95.1 374.9 279.8 95.1 391.9 292.9 99.0 378.2 * 98.4

27 30 high 350.0 262.3 87.7 350.0 262.3 87.7 370.9 274.8 96.1 351.4 * 89.1

28 30 high 357.3 256.1 101.2 357.3 256.1 101.2 371.5 268.3 103.2 361.2 * 105.1

29 30 high 347.0 245.8 101.2 347.5 245.8 101.7 365.8 261.3 104.5 347.0 * 101.2

30 30 high 344.0 250.8 93.2 344.0 250.8 93.2 359.6 262.1 97.5 344.7 * 93.8

31 40 low 238.0 119.2 118.8 238.0 119.2 118.8 249.1 130.5 118.6 238.5 * 119.4

32 40 low 238.7 131.2 107.5 239.1 131.2 107.9 258.5 141.3 117.2 238.7 * 107.5

33 40 low 214.3 89.0 125.3 214.3 89.0 125.3 223.3 92.9 130.4 218.4 * 129.4

34 40 low 301.1 167.8 133.3 301.1 167.8 133.3 304.8 176.7 128.2 304.8 * 137.0

35 40 low 246.9 107.8 139.1 248.1 107.8 140.3 248.1 119.3 128.8 246.9 * 139.1

36 40 medium 311.9 187.8 124.2 311.9 187.8 124.2 332.7 205.5 127.2 312.8 * 125.0

37 40 medium 295.9 166.7 129.2 296.6 166.7 130.0 302.4 174.7 127.7 295.9 * 129.2

38 40 medium 307.5 183.7 123.8 308.6 183.7 124.9 331.6 196.9 134.7 307.5 * 123.8

39 40 medium 285.8 163.5 122.4 285.8 163.5 122.4 292.2 172.1 120.1 285.9 * 122.4

40 40 medium 336.2 203.8 132.4 336.2 203.8 132.4 346.1 213.8 132.3 341.0 * 137.1

41 40 high 428.8 312.1 116.7 428.8 312.1 116.7 445.3 321.4 123.9 432.0 * 119.9

42 40 high 364.7 249.5 115.2 365.8 249.5 116.3 368.2 253.8 114.5 364.7 * 115.2

43 40 high 446.0 328.7 117.3 446.0 328.7 117.3 457.1 333.5 123.5 446.5 * 117.8

44 40 high 428.3 302.1 126.2 428.3 302.1 126.2 446.1 308.3 137.8 429.0 * 127.0

45 40 high 413.4 298.1 115.4 413.4 298.1 115.4 429.3 306.0 123.3 413.9 * 115.9

46 50 low 303.0 158.9 144.2 315.6 148.7 166.9 303.0 158.9 144.2 319.7 * 171.0

47 50 low 331.3 181.7 149.6 335.3 169.4 165.8 331.3 181.7 149.6 340.5 181.7 158.9

48 50 low 256.6 110.1 146.5 256.6 110.1 146.5 271.0 122.2 148.8 263.3 * 153.2

49 50 low 236.6 81.1 155.5 236.6 81.1 155.5 243.5 90.8 152.6 244.1 91.5 152.6

50 50 low 277.6 117.5 160.1 277.6 117.5 160.1 283.5 124.7 158.8 285.8 * 168.3
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Table 11: Best Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

51 50 medium 364.6 204.7 160.0 366.7 204.7 162.0 379.5 215.5 164.1 364.6 * 160.0

52 50 medium 326.1 161.1 165.0 327.8 161.1 166.7 334.1 162.7 171.4 326.1 * 165.0

53 50 medium 303.8 151.1 152.7 303.8 151.1 152.7 314.0 158.4 155.6 304.6 157.0 147.7

54 50 medium 351.9 203.2 148.7 351.9 203.2 148.7 355.5 212.3 143.2 355.6 * 152.4

55 50 medium 359.3 204.0 155.3 359.3 204.0 155.3 371.1 220.8 150.3 361.1 * 157.1

56 50 high 410.6 256.4 154.2 410.6 256.4 154.2 422.9 261.0 161.9 413.1 * 156.7

57 50 high 428.8 270.7 158.1 428.8 270.7 158.1 447.6 286.9 160.7 429.4 * 158.7

58 50 high 437.2 287.0 150.2 437.2 287.0 150.2 457.2 300.3 156.9 439.6 * 152.6

59 50 high 433.2 267.6 165.6 434.2 267.6 166.6 438.0 280.3 157.7 433.2 * 165.6

60 50 high 411.9 268.6 143.3 411.9 268.6 143.3 443.6 301.4 142.2 415.0 * 146.4

61 100 low 482.9 171.7 311.2 482.9 171.7 311.2 498.1 185.5 312.7 488.5 * 316.9

62 100 low 514.6 200.9 313.7 514.6 200.9 313.7 521.1 219.2 301.9 533.6 217.8 315.8

63 100 low 496.1 189.5 306.6 496.1 189.5 306.6 514.3 201.5 312.8 502.5 * 313.0

64 100 low 457.3 165.5 291.8 457.3 165.5 291.8 480.8 185.0 295.8 471.6 * 306.1

65 100 low 522.6 226.5 296.2 522.6 226.5 296.2 542.0 243.3 298.8 532.0 * 305.5

66 100 medium 597.4 294.2 303.2 597.4 294.2 303.2 645.7 321.3 324.4 600.8 * 306.6

67 100 medium 581.9 281.2 300.7 581.9 281.2 300.7 604.2 293.4 310.8 587.3 * 306.2

68 100 medium 541.3 256.9 284.4 541.3 256.9 284.4 561.6 261.8 299.7 543.8 * 286.9

69 100 medium 634.9 334.9 300.0 634.9 334.9 300.0 668.7 356.7 312.0 637.0 * 302.1

70 100 medium 569.5 281.3 288.2 575.9 281.3 294.7 596.9 298.5 298.5 569.5 * 288.2

71 100 high 928.2 641.9 286.3 928.2 641.9 286.3 975.6 670.4 305.2 933.7 * 291.8

72 100 high 783.1 491.4 291.7 783.1 491.4 291.7 796.2 507.8 288.5 785.2 * 293.8

73 100 high 811.7 502.7 309.1 811.7 502.7 309.1 835.7 514.4 321.4 812.2 * 309.5

74 100 high 887.5 589.7 297.8 887.5 589.7 297.8 916.7 615.4 301.3 899.3 * 309.5

75 100 high 834.6 543.1 291.5 834.6 543.1 291.5 864.0 560.0 304.1 844.9 * 301.8

76 150 low 829.5 357.7 471.7 829.5 357.7 471.7 853.8 374.5 479.3 841.0 * 483.3

77 150 low 748.3 282.0 466.3 749.5 282.0 467.5 776.7 315.6 461.1 748.3 * 466.3

78 150 low 885.7 424.7 461.0 885.7 424.7 461.0 922.9 441.5 481.4 894.7 * 470.0

79 150 low 867.9 424.9 443.0 870.0 424.9 445.1 895.4 441.7 453.8 867.9 * 443.0

80 150 low 981.1 525.3 455.9 981.1 525.3 455.9 989.7 542.1 447.6 983.1 * 457.9

81 150 medium 965.4 481.0 484.4 965.4 481.0 484.4 1012.6 514.6 498.0 979.2 * 498.2

82 150 medium 922.5 460.5 462.0 922.5 460.5 462.0 936.0 480.9 455.1 929.7 * 469.2

83 150 medium 932.2 483.2 449.0 932.2 483.2 449.0 951.2 488.6 462.6 937.8 * 454.7

84 150 medium 947.6 496.7 450.9 947.6 496.7 450.9 1003.8 530.3 473.5 962.6 * 465.9

85 150 medium 882.3 426.4 456.0 882.3 426.4 456.0 926.3 460.0 466.4 890.6 * 464.3

86 150 high 1180.2 731.9 448.2 1180.2 731.9 448.2 1255.3 799.1 456.2 1188.7 * 456.8
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Table 11: Best Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

87 150 high 1158.3 680.3 478.0 1163.9 680.3 483.6 1239.6 747.5 492.1 1158.3 * 478.0

88 150 high 1242.9 783.1 459.8 1242.9 783.1 459.8 1261.8 794.4 467.3 1251.3 * 468.2

89 150 high 1363.3 917.4 445.9 1363.3 917.4 445.9 1415.9 952.7 463.2 1367.7 * 450.3

90 150 high 1193.21745.7 447.4 1193.2 745.7 447.4 1206.2 761.8 444.3 1195.7 * 449.9

Total # of best known solutions found: 56 3 16

* optimal solution MILP model if linehaul is solved first

Table 12: Worst Solutions Obtained - small grid instances

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

16 30 low 223.7 133.5 90.2 231.9 133.5 98.4 257.6 150.3 107.3 245.6 148.1 97.4

17 30 low 188.1 87.1 101.0 196.8 87.1 109.7 216.1 101.5 114.6 199.3 * 112.2

18 30 low 211.0 101.4 109.5 219.7 101.4 118.3 235.1 122.6 112.5 218.8 106.7 112.1

19 30 low 196.3 88.0 108.2 204.6 88.0 116.6 215.6 101.4 114.2 203.1 * 115.0

20 30 low 203.1 102.9 100.2 212.1 102.9 109.3 233.4 122.2 111.2 215.5 * 112.6

21 30 medium 267.7 176.4 91.3 274.6 176.4 98.2 305.9 207.8 98.1 284.5 185.2 99.3

22 30 medium 240.0 139.1 101.0 247.6 139.1 108.5 262.5 148.5 114.0 248.5 140.3 108.2

23 30 medium 223.7 124.4 99.3 229.7 118.9 110.8 242.6 130.0 112.6 240.0 122.4 117.6

24 30 medium 272.0 173.6 98.4 279.9 173.6 106.3 309.1 209.0 100.1 280.9 173.6 107.3

25 30 medium 237.4 138.2 99.2 245.8 136.8 109.0 260.8 153.4 107.4 250.4 * 113.6

26 30 high 374.9 279.8 95.1 383.2 279.8 103.4 414.9 312.6 102.4 396.6 299.8 96.8

27 30 high 350.0 262.3 87.7 360.8 262.3 98.6 397.3 288.5 108.8 363.3 * 101.0

28 30 high 357.3 256.1 101.2 368.3 256.1 112.1 398.8 275.1 123.7 373.5 263.4 110.2

29 30 high 347.0 245.8 101.2 365.6 245.8 119.8 386.1 269.5 116.6 354.3 * 108.5

30 30 high 344.0 250.8 93.2 350.2 250.8 99.4 370.9 267.0 104.0 351.6 * 100.8

31 40 low 238.0 119.2 118.8 246.2 119.2 127.1 259.7 130.5 129.2 266.7 134.1 132.7

32 40 low 238.7 131.2 107.5 252.9 131.2 121.7 268.0 147.0 121.0 252.5 * 121.3

33 40 low 214.3 89.0 125.3 225.6 89.0 136.6 249.0 103.5 145.5 225.4 * 136.4

34 40 low 301.1 167.8 133.3 311.0 167.8 143.2 323.1 176.7 146.4 315.3 * 147.5

35 40 low 246.9 107.8 139.1 254.6 107.8 146.8 265.4 119.3 146.1 259.7 * 151.9

36 40 medium 311.9 187.8 124.2 324.1 187.8 136.4 352.0 214.9 137.2 334.4 214.9 119.6

37 40 medium 295.9 166.7 129.2 301.5 166.7 134.8 325.9 195.8 130.1 320.0 182.4 137.6

38 40 medium 307.5 183.7 123.8 315.1 183.7 131.4 350.9 211.8 139.1 318.2 * 134.5

39 40 medium 285.8 163.5 122.4 293.2 163.5 129.7 316.9 185.4 131.6 294.8 * 131.3

40 40 medium 336.2 203.8 132.4 348.7 203.8 144.9 367.3 231.8 135.5 352.3 * 148.5

41 40 high 428.8 312.1 116.7 440.8 312.1 128.7 476.3 341.7 134.5 449.5 319.1 130.4
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Table 12: Worst Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

42 40 high 364.7 249.5 115.2 369.5 249.5 120.0 402.4 273.1 129.3 374.6 251.4 123.2

43 40 high 446.0 328.7 117.3 454.2 328.7 125.5 488.8 360.2 128.6 462.8 * 134.1

44 40 high 428.3 302.1 126.2 439.4 302.1 137.3 504.9 363.9 141.0 444.4 315.5 128.9

45 40 high 413.4 298.1 115.4 423.6 298.1 125.6 453.7 321.7 131.9 427.6 * 129.6

46 50 low 303.0 158.9 144.2 333.4 148.7 184.7 331.9 156.6 175.4 328.3 158.9 169.4

47 50 low 331.3 181.7 149.6 343.3 169.4 173.9 354.2 181.7 172.5 361.9 181.7 180.2

48 50 low 256.6 110.1 146.5 269.7 110.1 159.6 289.2 128.9 160.3 286.6 121.4 165.2

49 50 low 236.6 81.1 155.5 249.2 81.1 168.2 258.0 96.8 161.2 257.6 95.5 162.1

50 50 low 277.6 117.5 160.1 290.4 117.5 172.9 302.9 132.8 170.1 294.6 130.1 164.5

51 50 medium 364.6 204.7 160.0 375.2 204.7 170.6 406.6 239.2 167.4 380.7 * 176.0

52 50 medium 326.1 161.1 165.0 336.8 161.1 175.7 362.1 193.8 168.3 337.7 * 176.6

53 50 medium 303.8 151.1 152.7 319.6 151.1 168.5 329.1 168.6 160.5 323.2 157.4 165.9

54 50 medium 351.9 203.2 148.7 362.7 203.2 159.5 404.6 238.8 165.8 365.0 * 161.8

55 50 medium 359.3 204.0 155.3 372.4 204.0 168.4 401.9 246.8 155.1 383.2 224.1 159.1

56 50 high 410.6 256.4 154.2 421.2 256.4 164.8 446.0 278.5 167.5 424.7 * 168.3

57 50 high 428.8 270.7 158.1 439.9 270.7 169.2 485.0 318.6 166.5 463.8 297.0 166.8

58 50 high 437.2 287.0 150.2 445.8 287.0 158.8 496.8 339.6 157.2 450.2 * 163.3

59 50 high 433.2 267.6 165.6 439.5 267.6 171.9 460.8 306.0 154.7 474.5 288.3 186.2

60 50 high 411.9 268.6 143.3 420.0 268.6 151.5 469.3 306.0 163.3 425.1 * 156.5

61 100 low 482.9 171.7 311.2 500.3 171.7 328.6 523.2 201.2 322.0 511.5 190.2 321.3

62 100 low 514.6 200.9 313.7 528.5 200.9 327.6 553.3 225.0 328.3 573.2 222.8 350.4

63 100 low 496.1 189.5 306.6 522.1 189.5 332.6 538.8 211.3 327.4 523.6 205.2 318.4

64 100 low 457.3 165.5 291.8 479.9 165.5 314.3 508.4 184.5 323.9 500.0 186.9 313.1

65 100 low 522.6 226.5 296.2 544.6 226.5 318.1 580.1 263.7 316.3 557.2 248.2 309.1

66 100 medium 597.4 294.2 303.2 620.1 294.2 325.9 662.1 340.0 322.1 664.6 334.8 329.8

67 100 medium 581.9 281.2 300.7 602.0 281.2 320.8 634.1 316.5 317.5 633.4 311.0 322.4

68 100 medium 541.3 256.9 284.4 556.6 256.9 299.7 593.9 278.6 315.4 578.5 263.5 315.0

69 100 medium 634.9 334.9 300.0 650.8 334.9 315.9 696.5 377.2 319.3 678.0 354.9 323.1

70 100 medium 569.5 281.3 288.2 587.3 281.3 306.0 624.1 317.4 306.7 602.8 * 321.5

71 100 high 928.2 641.9 286.3 946.7 641.9 304.8 1066.8 721.7 345.1 994.8 * 352.9

72 100 high 783.1 491.4 291.7 802.0 491.4 310.6 821.5 506.2 315.3 830.7 * 339.3

73 100 high 811.7 502.7 309.1 825.2 502.7 322.5 861.4 528.8 332.7 869.3 538.2 331.1

74 100 high 887.5 589.7 297.8 907.0 589.7 317.3 976.4 656.8 319.6 932.3 614.0 318.4

75 100 high 834.6 543.1 291.5 850.7 543.1 307.6 933.3 578.7 354.6 896.7 581.6 315.0

76 150 low 829.5 357.7 471.7 860.4 357.7 502.7 889.9 393.7 496.2 899.2 * 541.5

77 150 low 748.3 282.0 466.3 770.2 282.0 488.2 814.2 315.1 499.1 810.5 315.6 494.9
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Table 12: Worst Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

78 150 low 885.7 424.7 461.0 922.3 424.7 497.5 948.1 441.5 506.5 934.3 441.5 492.8

79 150 low 867.9 424.9 443.0 905.8 424.9 480.9 920.9 441.7 479.2 927.5 441.7 485.9

80 150 low 981.1 525.3 455.9 1018.8 525.3 493.6 1031.6 544.4 487.2 1028.6 552.4 476.2

81 150 medium 965.4 481.0 484.4 1000.2 481.0 519.2 1035.3 521.7 513.6 1016.4 * 535.3

82 150 medium 922.5 460.5 462.0 948.8 460.5 488.3 965.4 494.1 471.3 975.7 494.1 481.6

83 150 medium 932.2 483.2 449.0 964.2 483.2 481.1 997.8 516.8 481.0 977.3 509.3 468.1

84 150 medium 947.6 496.7 450.9 976.1 496.7 479.4 1029.3 530.3 499.0 1018.3 532.4 485.8

85 150 medium 882.3 426.4 456.0 911.7 426.4 485.3 946.5 467.2 479.3 941.1 459.9 481.2

86 150 high 1180.2 731.9 448.2 1207.4 731.9 475.4 1284.4 799.1 485.2 1216.7 747.6 469.1

87 150 high 1158.3 680.3 478.0 1191.5 680.3 511.2 1274.2 747.5 526.7 1250.4 747.5 502.9

88 150 high 1242.9 783.1 459.8 1277.0 783.1 493.9 1306.1 814.2 491.9 1323.4 799.8 523.6

89 150 high 1363.3 917.4 445.9 1381.7 917.4 464.3 1501.5 1028.3473.2 1416.9 959.3 457.5

90 150 high 1193.2 745.7 447.5 1219.3 745.7 473.6 1253.8 779.1 474.6 1229.2 * 483.5

* optimal solution MILP model if linehaul is solved first

Appendix 2: Best and Worse Values - large grid instances

This appendix presents the best and worst values for the instance structure with a large grid size in Tables 13 and

14 respectively. The column headings present the instance size and linehaul cost structure for each of the instances,

the best known value and the best (Table 13) or worst (Table 14) solutions found by the three heuristic variants.

The solutions are provided in terms of the total cost (TC) as well as broken down into first echelon costs (1stE) and

routing costs (RC).

Table 13: Best Solutions Found - large grid instances

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

16 30 low 707.8 97.9 609.9 727.0 93.4 633.5 707.8 97.9 609.9 719.8 * 626.4

17 30 low 660.3 131.7 528.5 705.6 119.1 586.5 660.3 131.7 528.5 693.6 128.2 565.4

18 30 low 626.0 83.6 542.4 626.0 83.6 542.4 655.4 95.6 559.8 635.7 * 552.1

19 30 low 689.6 110.6 578.9 696.1 106.0 590.1 706.2 115.8 590.4 689.6 110.6 578.9

20 30 low 631.4 88.1 543.3 631.4 88.1 543.3 673.7 106.8 566.9 636.7 91.8 544.9

21 30 medium 823.6 204.9 618.7 823.6 204.9 618.7 852.0 241.6 610.4 831.6 * 626.8

22 30 medium 777.1 222.1 555.0 795.3 193.3 602.0 777.1 222.1 555.0 788.8 * 595.4

23 30 medium 736.3 160.3 576.1 763.5 160.3 603.2 773.3 183.9 589.4 736.3 * 576.1

24 30 medium 690.5 131.7 558.9 699.1 111.9 587.2 690.5 131.7 558.9 696.0 130.6 565.5

25 30 medium 766.0 171.5 594.5 789.7 145.5 644.1 782.3 167.5 614.8 766.0 171.5 594.5

26 30 high 738.3 189.1 549.3 738.3 189.1 549.3 760.0 218.0 542.0 740.6 * 551.6
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Table 13: Best Solutions - large grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

27 30 high 715.6 178.6 537.1 715.6 178.6 537.1 754.4 202.2 552.2 763.2 * 584.6

28 30 high 827.2 233.0 594.2 831.2 233.0 598.2 851.3 256.0 595.3 827.2 * 594.2

29 30 high 753.2 189.4 563.8 782.0 175.0 607.0 753.2 189.4 563.8 757.2 177.4 579.8

30 30 high 799.5 266.9 532.6 837.7 251.0 586.8 804.0 264.1 539.9 799.5 266.9 532.6

31 40 low 854.0 177.4 676.6 913.1 162.8 750.3 854.0 177.4 676.6 881.6 167.2 714.3

32 40 low 868.6 138.4 730.2 868.6 138.4 730.2 879.9 154.9 725.0 872.0 146.2 725.8

33 40 low 825.3 134.9 690.4 825.3 134.9 690.4 839.4 154.2 685.2 842.2 * 707.3

34 40 low 832.5 120.4 712.0 832.5 120.4 712.0 847.9 141.7 706.2 849.4 141.7 707.8

35 40 low 881.8 112.3 769.6 881.8 112.3 769.6 882.2 128.5 753.7 920.2 * 807.9

36 40 medium 822.3 187.8 634.5 873.9 168.1 705.8 822.3 187.8 634.5 856.3 * 688.2

37 40 medium 853.6 186.5 667.1 853.6 186.5 667.1 883.0 219.8 663.2 867.6 * 681.1

38 40 medium 872.0 167.9 704.1 912.5 155.1 757.5 872.0 167.9 704.1 925.7 * 770.6

39 40 medium 863.7 169.3 694.3 863.7 169.3 694.3 914.5 191.0 723.5 925.5 * 756.2

40 40 medium 836.1 170.4 665.7 836.1 170.4 665.7 867.8 195.5 672.2 864.2 * 693.8

41 40 high 995.0 277.3 717.6 998.7 274.1 724.6 1005.9 295.4 710.4 995.0 277.3 717.6

42 40 high 976.1 234.6 741.5 976.1 234.6 741.5 992.6 246.4 746.3 978.2 240.5 737.7

43 40 high 875.9 187.0 689.0 875.9 187.0 689.0 901.6 223.1 678.5 878.2 * 691.2

44 40 high 962.2 249.3 712.9 983.9 245.6 738.3 977.4 259.4 718.0 962.2 249.3 712.9

45 40 high 1012.8 223.7 789.1 1012.8 223.7 789.1 1026.9 233.2 793.7 1034.4 223.8 810.6

46 50 low 1003.6 185.1 818.5 1052.8 174.0 878.8 1003.6 185.1 818.5 1050.0 * 876.0

47 50 low 982.0 134.0 847.9 991.4 134.0 857.4 989.8 144.5 845.3 982.0 * 847.9

48 50 low 1030.6 168.2 862.4 1109.4 145.9 963.5 1068.7 157.9 910.8 1030.6 168.2 862.4

49 50 low 1049.0 139.1 909.9 1049.0 139.1 909.9 1101.6 154.7 947.0 1081.0 * 942.0

50 50 low 971.6 127.4 844.2 971.6 127.4 844.2 997.4 144.2 853.2 986.9 * 859.5

51 50 medium 1146.6 242.9 903.7 1146.6 242.9 903.7 1159.3 246.8 912.5 1168.4 * 925.5

52 50 medium 1058.6 204.1 854.5 1076.6 180.4 896.2 1058.6 204.1 854.5 1083.3 * 903.0

53 50 medium 979.1 144.1 835.0 979.1 144.1 835.0 998.8 165.0 833.7 993.0 * 848.9

54 50 medium 1039.8 160.2 879.6 1083.7 148.4 935.3 1039.8 160.2 879.6 1115.6 * 967.2

55 50 medium 1009.9 143.7 866.1 1009.9 143.7 866.1 1030.4 159.2 871.2 1041.5 155.2 886.3

56 50 high 1204.4 341.2 863.2 1204.4 341.2 863.2 1328.4 419.2 909.2 1260.8 * 919.6

57 50 high 1165.1 283.8 881.4 1198.5 283.8 914.8 1203.0 330.0 873.1 1165.1 * 881.4

58 50 high 1124.4 285.8 838.7 1127.1 260.5 866.6 1124.4 285.8 838.7 1151.7 * 891.3

59 50 high 1074.4 240.8 833.6 1074.4 240.8 833.6 1116.5 265.5 851.0 1106.2 247.5 858.7

60 50 high 1163.7 283.2 880.5 1167.8 283.2 884.6 1200.3 309.9 890.4 1163.7 * 880.5

61 100 low 1988.6 147.9 1840.7 1988.6 147.9 1840.7 2086.2 168.5 1917.7 1989.0 * 1841.0

62 100 low 1881.5 167.7 1713.9 1881.5 167.7 1713.9 1933.1 177.0 1756.1 1925.9 * 1758.2
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Table 13: Best Solutions - large grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

63 100 low 2012.8 204.3 1808.5 2012.8 204.3 1808.5 2057.5 237.1 1820.4 2029.6 233.4 1796.2

64 100 low 2212.6 359.3 1853.3 2212.6 359.3 1853.3 2284.7 411.5 1873.2 2266.6 * 1907.3

65 100 low 2059.1 286.8 1772.3 2087.8 257.2 1830.6 2059.1 286.8 1772.3 2074.4 * 1817.3

66 100 medium 2066.8 284.5 1782.3 2066.8 284.5 1782.3 2074.4 305.2 1769.2 2159.8 * 1875.3

67 100 medium 2002.3 305.1 1697.2 2002.3 305.1 1697.2 2044.2 337.6 1706.7 2038.6 * 1733.5

68 100 medium 1950.1 257.8 1692.3 1950.1 257.8 1692.3 2026.4 272.6 1753.8 1996.4 * 1738.6

69 100 medium 2071.3 351.4 1719.8 2071.3 351.4 1719.8 2163.5 359.6 1803.9 2141.5 * 1790.1

70 100 medium 2088.0 285.9 1802.1 2088.0 285.9 1802.1 2149.1 299.3 1849.8 2134.0 * 1848.1

71 100 high 2232.6 532.0 1700.7 2232.6 532.0 1700.7 2244.9 542.9 1701.9 2240.9 * 1708.9

72 100 high 2310.4 567.4 1743.1 2312.0 567.4 1744.7 2354.1 618.5 1735.6 2310.4 * 1743.1

73 100 high 2036.1 439.6 1596.4 2036.1 439.6 1596.4 2076.7 486.4 1590.4 2039.7 * 1600.1

74 100 high 2311.4 468.4 1843.0 2311.4 468.4 1843.0 2372.8 501.2 1871.6 2328.9 * 1860.5

75 100 high 2280.5 508.8 1771.7 2306.3 466.3 1839.9 2280.5 508.8 1771.7 2284.2 * 1817.9

76 150 low 3032.6 306.0 2726.6 3032.6 306.0 2726.6 3115.3 322.8 2792.4 3071.8 * 2765.8

77 150 low 3118.1 397.3 2720.8 3125.0 380.5 2744.5 3118.1 397.3 2720.8 3149.1 * 2768.5

78 150 low 2930.5 286.4 2644.2 2930.5 286.4 2644.2 2966.8 303.2 2663.6 2966.5 * 2680.1

79 150 low 3246.2 440.6 2805.5 3246.2 440.6 2805.5 3266.2 457.4 2808.7 3338.6 * 2897.9

80 150 low 3178.5 422.3 2756.2 3178.5 422.3 2756.2 3233.6 439.1 2794.6 3211.9 * 2789.6

81 150 medium 3006.7 429.3 2577.5 3006.7 429.3 2577.5 3161.4 476.0 2685.4 3052.1 * 2622.8

82 150 medium 3167.9 574.7 2593.2 3167.9 574.7 2593.2 3306.7 608.3 2698.4 3201.9 * 2627.1

83 150 medium 3177.1 418.7 2758.5 3177.1 418.7 2758.5 3323.0 439.1 2883.9 3199.9 * 2781.2

84 150 medium 3118.9 505.8 2613.0 3118.9 505.8 2613.0 3214.1 532.3 2681.7 3205.2 * 2699.4

85 150 medium 3195.6 531.9 2663.7 3195.6 531.9 2663.7 3316.1 565.5 2750.6 3289.6 565.5 2724.1

86 150 high 3457.4 783.2 2674.3 3493.6 713.6 2780.0 3531.6 747.4 2784.2 3457.4 783.2 2674.3

87 150 high 3623.2 802.9 2820.3 3623.2 802.9 2820.3 3657.7 862.5 2795.2 3638.2 * 2835.3

88 150 high 3417.9 803.5 2614.4 3417.9 803.5 2614.4 3492.6 841.1 2651.5 3465.2 * 2661.7

89 150 high 3643.0 848.4 2794.6 3699.4 848.4 2850.9 3787.5 917.8 2869.7 3643.0 * 2794.6

90 150 high 3374.4 784.9 2589.5 3374.4 784.9 2589.5 3536.5 821.0 2715.5 3443.0 * 2658.1

Total # of best known solutions found: 46 15 14

* optimal solution MILP model if linehaul is solved first
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Table 14: Worst Solutions Obtained - large grid instances

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

16 30 low 707.8 97.9 609.9 758.4 93.4 665.0 782.1 109.5 672.6 766.2 * 672.8

17 30 low 660.3 131.7 528.5 762.1 119.1 642.9 757.1 139.8 617.3 743.4 * 624.2

18 30 low 626.0 83.6 542.4 670.6 83.6 587.0 721.2 93.0 628.2 697.1 * 613.5

19 30 low 689.6 110.6 578.9 740.2 106.0 634.2 815.0 118.7 696.4 785.3 * 679.2

20 30 low 631.4 88.1 543.3 723.5 88.1 635.4 734.2 101.5 632.7 743.1 91.7 651.5

21 30 medium 823.6 204.9 618.7 854.2 204.9 649.3 893.3 242.1 651.2 865.9 * 661.1

22 30 medium 777.1 222.1 555.0 854.1 193.3 660.8 843.5 226.6 617.0 835.5 * 642.2

23 30 medium 736.3 160.3 576.1 819.8 160.3 659.6 830.0 178.0 652.0 793.8 * 633.6

24 30 medium 690.5 131.7 558.9 768.5 111.9 656.7 721.2 140.5 580.7 767.7 * 655.8

25 30 medium 766.0 171.5 594.5 831.3 145.5 685.8 830.1 167.4 662.7 832.8 * 687.3

26 30 high 738.3 189.1 549.3 805.6 189.1 616.5 830.0 217.2 612.9 812.4 192.8 619.6

27 30 high 715.6 178.6 537.1 758.5 178.6 579.9 837.2 191.6 645.6 817.5 187.9 629.7

28 30 high 827.2 233.0 594.2 859.5 233.0 626.6 956.0 273.6 682.5 864.3 * 631.3

29 30 high 753.2 189.4 563.8 825.6 175.0 650.6 797.6 198.3 599.3 835.5 176.5 659.0

30 30 high 799.5 266.9 532.6 877.3 251.0 626.3 861.2 256.4 604.8 891.3 * 640.4

31 40 low 854.0 177.4 676.6 982.3 162.8 819.5 947.5 177.4 770.1 1001.3 * 838.5

32 40 low 868.6 138.4 730.2 953.4 138.4 815.0 968.3 154.9 813.4 968.3 * 829.8

33 40 low 825.3 134.9 690.4 904.3 134.9 769.4 917.5 152.2 765.3 931.2 148.2 783.1

34 40 low 832.5 120.4 712.0 906.7 120.4 786.3 926.1 141.7 784.4 917.0 * 796.6

35 40 low 881.8 112.3 769.6 960.7 112.3 848.4 987.4 121.0 866.5 978.0 * 865.8

36 40 medium 822.3 187.8 634.5 924.0 168.1 755.9 940.6 179.0 761.6 932.9 * 764.8

37 40 medium 853.6 186.5 667.1 911.2 186.5 724.7 924.3 219.5 704.8 927.9 * 741.4

38 40 medium 872.0 167.9 704.1 1015.1 155.1 860.0 992.9 169.7 823.2 1016.8 * 861.7

39 40 medium 863.7 169.3 694.3 958.5 169.3 789.1 976.1 208.6 767.5 989.9 202.7 787.1

40 40 medium 836.1 170.4 665.7 914.1 170.4 743.7 931.4 194.1 737.3 934.0 186.0 748.0

41 40 high 995.0 277.3 717.6 1046.9 274.1 772.7 1114.4 311.8 802.6 1074.1 285.4 788.7

42 40 high 976.1 234.6 741.5 1034.7 234.6 800.1 1046.9 243.2 803.7 1037.8 * 803.2

43 40 high 875.9 187.0 689.0 928.9 187.0 741.9 953.5 205.1 748.4 936.7 * 749.8

44 40 high 962.2 249.3 712.9 1047.9 245.6 802.3 1059.8 256.2 803.6 1052.2 * 806.6

45 40 high 1012.8 223.7 789.1 1099.7 223.7 876.0 1097.7 231.0 866.7 1123.1 225.5 897.7

46 50 low 1003.6 185.1 818.5 1097.0 174.0 923.1 1117.5 185.1 932.3 1120.7 * 946.8

47 50 low 982.0 134.0 847.9 1068.0 134.0 934.0 1067.5 148.7 918.8 1054.5 * 920.5

48 50 low 1030.6 168.2 862.4 1160.6 145.9 1014.7 1126.5 157.9 968.5 1194.3 * 1048.4

49 50 low 1049.0 139.1 909.9 1146.5 139.1 1007.5 1189.2 154.7 1034.5 1191.8 * 1052.7

50 50 low 971.6 127.4 844.2 1067.9 127.4 940.6 1128.3 144.2 984.1 1070.5 143.1 927.4

51 50 medium 1146.6 242.9 903.7 1225.3 242.9 982.4 1239.8 269.5 970.3 1238.7 * 995.9
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Table 14: Worst Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

52 50 medium 1058.6 204.1 854.5 1144.8 180.4 964.4 1189.1 212.8 976.3 1146.1 * 965.8

53 50 medium 979.1 144.1 835.0 1071.9 144.1 927.8 1086.7 157.2 929.5 1072.0 156.7 915.3

54 50 medium 1039.8 160.2 879.6 1198.9 148.4 1050.4 1192.9 178.6 1014.3 1172.4 * 1023.9

55 50 medium 1009.9 143.7 866.1 1095.7 143.7 951.9 1123.0 161.1 961.9 1104.2 * 960.4

56 50 high 1204.4 341.2 863.2 1290.4 341.2 949.2 1420.2 420.6 999.6 1308.6 * 967.4

57 50 high 1165.1 283.8 881.4 1240.6 283.8 956.8 1337.8 324.8 1013.0 1259.3 * 975.6

58 50 high 1124.4 285.8 838.7 1190.1 260.5 929.6 1228.1 295.5 932.6 1226.6 286.1 940.4

59 50 high 1074.4 240.8 833.6 1248.0 240.8 1007.1 1144.7 247.7 897.0 1166.6 249.3 917.3

60 50 high 1163.7 283.2 880.5 1251.7 283.2 968.4 1283.9 338.6 945.3 1273.7 292.1 981.6

61 100 low 1988.6 147.9 1840.7 2154.6 147.9 2006.7 2280.1 161.3 2118.7 2151.9 169.8 1982.1

62 100 low 1881.5 167.7 1713.9 2082.6 167.7 1914.9 2037.2 179.1 1858.1 2058.4 * 1890.8

63 100 low 2012.8 204.3 1808.5 2162.0 204.3 1957.7 2155.1 239.7 1915.4 2181.1 233.1 1947.9

64 100 low 2212.6 359.3 1853.3 2340.9 359.3 1981.6 2457.1 416.5 2040.5 2416.0 400.8 2015.2

65 100 low 2059.1 286.8 1772.3 2206.9 257.2 1949.8 2263.8 284.5 1979.3 2255.3 288.1 1967.2

66 100 medium 2066.8 284.5 1782.3 2166.0 284.5 1881.5 2201.0 305.5 1895.5 2256.3 291.4 1964.9

67 100 medium 2002.3 305.1 1697.2 2160.1 305.1 1855.0 2274.3 348.4 1925.9 2224.7 322.9 1901.8

68 100 medium 1950.1 257.8 1692.3 2088.9 257.8 1831.1 2148.7 285.4 1863.3 2146.2 * 1888.3

69 100 medium 2071.3 351.4 1719.8 2200.0 351.4 1848.5 2251.5 373.6 1877.9 2238.9 373.2 1865.7

70 100 medium 2088.0 285.9 1802.1 2215.9 285.9 1930.0 2299.5 320.2 1979.3 2260.2 334.5 1925.6

71 100 high 2232.6 532.0 1700.7 2361.0 532.0 1829.0 2449.7 548.0 1901.7 2398.3 548.1 1850.3

72 100 high 2310.4 567.4 1743.1 2414.0 567.4 1846.6 2590.7 607.8 1982.9 2483.5 620.7 1862.8

73 100 high 2036.1 439.6 1596.4 2202.6 439.6 1763.0 2362.5 517.0 1845.4 2276.2 479.9 1796.4

74 100 high 2311.4 468.4 1843.0 2444.9 468.4 1976.6 2490.7 486.4 2004.4 2517.3 505.4 2011.8

75 100 high 2280.5 508.8 1771.7 2455.1 466.3 1988.8 2492.8 506.3 1986.5 2454.5 475.2 1979.4

76 150 low 3032.6 306.0 2726.6 3265.4 306.0 2959.4 3409.5 322.8 3086.7 3303.4 * 2997.4

77 150 low 3118.1 397.3 2720.8 3300.0 380.5 2919.5 3316.1 405.6 2910.5 3264.2 403.5 2860.6

78 150 low 2930.5 286.4 2644.2 3146.5 286.4 2860.1 3173.9 312.5 2861.4 3192.2 * 2905.8

79 150 low 3246.2 440.6 2805.5 3542.6 440.6 3101.9 3515.2 457.4 3057.7 3483.1 457.4 3025.6

80 150 low 3178.5 422.3 2756.2 3330.4 422.3 2908.1 3464.3 439.1 3025.2 3424.9 455.9 2969.0

81 150 medium 3006.7 429.3 2577.5 3202.0 429.3 2772.7 3337.0 484.7 2852.2 3308.4 * 2879.1

82 150 medium 3167.9 574.7 2593.2 3358.0 574.7 2783.2 3429.9 609.5 2820.4 3411.9 * 2837.2

83 150 medium 3177.1 418.7 2758.5 3399.3 418.7 2980.6 3439.2 434.5 3004.7 3435.8 * 3017.1

84 150 medium 3118.9 505.8 2613.0 3386.6 505.8 2880.8 3582.6 539.4 3043.2 3440.3 * 2934.5

85 150 medium 3195.6 531.9 2663.7 3461.9 531.9 2930.0 3563.1 565.5 2997.5 3514.2 548.9 2965.2

86 150 high 3457.4 783.2 2674.3 3669.6 713.6 2956.0 3715.1 780.8 2934.3 3756.2 790.7 2965.5

87 150 high 3623.2 802.9 2820.3 3811.2 802.9 3008.2 3878.8 855.4 3023.4 3862.7 872.0 2990.7
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Table 14: Worst Solutions - small grid instances (continued)

Instances Best known Heuristic 1 Heuristic 2 Heuristic 3

# Size Linehaul TC 1stE RC TC 1stE* RC TC 1stE RC TC 1stE RC

88 150 high 3417.9 803.5 2614.4 3609.8 803.5 2806.3 3748.0 840.6 2907.4 3693.6 * 2890.1

89 150 high 3643.0 848.4 2794.6 3849.9 848.4 3001.5 4149.7 956.8 3192.8 3962.9 972.8 2990.1

90 150 high 3374.4 784.9 2589.5 3613.1 784.9 2828.2 3744.0 822.1 2921.9 3755.4 855.3 2900.0

* optimal solution MILP model if linehaul is solved first
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