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 External shocks, agent interactions, and endogenous feedbacks — investigating 1 
system resilience with a stylized land use model  2 

Abstract  3 

Dynamics of coupled Social-Ecological Systems (SES) result from the interplay of society and ecology. To 4 
assess SES resilience, we constructed an Agent-Based Model (ABM) of a land use system as a stereotypical 5 
example of SES and investigated how resilience of the represented system is affected by both external 6 
disturbances and internal dynamics. The model explicitly considered different aspects of resilience in a 7 
framework derived from literature, which includes “resilience to”, “resilience of”, “resilience at”, “resilience 8 
due to”, and “indicators of resilience”. External disturbances were implemented as shocks in crop yields. 9 
Internal dynamics comprised of two types of social interaction between agents (learning and cooperation), 10 
an ecological feedback of soil depletion and an economic feedback of agglomeration benefits. We 11 
systematically varied these mechanisms and measured indicators that reflected spatial, social, and 12 
economic resilience. Results showed that 1) internal mechanisms increased the ability of the system to 13 
recover from external shocks, 2) feedbacks resulted in different regimes of crop cultivation, each with a 14 
distinctive set of functions, and 3) resilience is not a generic system property, but strongly depends on 15 
what system function is considered. We recommend future studies to include internal dynamics, especially 16 
feedbacks, and to systematically assess them across different aspects of resilience.  17 

Keywords: Complex Adaptive Systems; Social-Ecological Systems; human-environment interactions; 18 
path-dependency; nonlinearity; tipping points 19 

1. Introduction 20 

Resilience, defined here as the ability of the system to maintain certain functions, is a potential Social-21 
Ecological System (SES) property that can contribute to sustainable development under conditions of global 22 
environmental change (Folke et al., 2002; Rockström et al., 2009; Turner et al., 2007). Climate change, 23 
soil degradation, land use change, and rural depopulation all challenge important functions of SES such as 24 
food security (Lambin & Meyfroidt, 2011; Pretty, 2008), biodiversity (Barnes et al., 2014; Brady et al., 25 
2012), and rural livelihoods (Gay et al., 2006). The concept of resilience has been proposed as a new 26 
perspective to understand SES (Foley et al., 2005), emphasizing interactions between society and 27 
environmental processes within a complex adaptive systems framework (Bohensky et al., 2015; Dearing 28 
et al., 2010).  29 

In order to assess resilience of SES, certain typical characteristics of these systems need to be considered. 30 
First, Social-Ecological Systems (SES) couple the social sub-system with the ecological sub-system. SES 31 
resilience should therefore be considered as a property of the coupled system instead of one that can be 32 
independently assessed from one of the sub-systems (Adger, 2000; Carpenter et al., 2001; Folke, 2006). 33 
Second, SES processes operate at multiple spatial and temporal scales (Carpenter et al., 2001; Dearing et 34 
al., 2010; Gardner et al., 2013), driven by both exogenous factors (Lambin et al., 2001) and endogenous 35 
feedbacks (Chen et al., 2016). SES resilience is therefore scale dependent and subject to how the system 36 
boundary is defined. Third, macro-level phenomena in SES (e.g. regime shifts, self-organization) emerge 37 
from micro-level behaviors and interactions between scale levels. Resilience of a SES should also be 38 
considered as an emergent property (Gunderson, 2000). Fourth, with the existence of both external and 39 
internal dynamics, SES resilience can be assessed from two perspectives — an ‘engineering perspective’ 40 
focusing on resistance to (or recovery from) external shocks (Holling, 1996), and an ‘ecological perspective’ 41 
focusing on conditions for regime shifts due to changes in the internal dynamics (Gunderson, 2009; Holling, 42 
1973). These characteristics call for approaches in which researchers can better conceptualize, measure, 43 
and synthesize SES resilience.  44 

Although agent-based modeling (ABM) has become an operational tool for representing SES (Helbing & 45 
Balietti, 2012; Matthews et al., 2007), current models do not fully utilize the potential of ABM to include 46 
mechanisms contributing to resilience. In particular, feedbacks between coupled sub-systems and between 47 
scale levels are still under way (Filatova et al., 2013; Folke, 2006). With the lack of models that can explain 48 
what mechanisms result in resilience, existing resilience studies are found to be mostly descriptive (Janssen 49 
et al., 2006; Schlüter & Pahl-Wostl, 2007). This opens up opportunities for ABM to study resilience, as it 50 
is process-based and it simulates system-level emergent phenomena from bottom up.  51 
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We aim to investigate SES resilience with a stylized land use ABM. Land use takes place at the interface of 52 
the social and the ecological sub-system and a land use system can therefore be considered as a 53 
stereotypical example of an SES. The model is constructed by explicitly considering different aspects of 54 
system resilience in a framework derived from literature. In the framework we distinguish (i) 55 
drivers/triggers that may disrupt the system, (ii) system functions to be maintained, (iii) scale of 56 
observation, (iv) system characteristics that potentially cause resilience, and (v) resilience indicators. The 57 
agents are farmers whose land use activities are affected by external shocks in the form of sudden 58 
reductions in crop yield, which is ubiquitous in almost every land use system where perturbations can occur 59 
due to e.g. extreme weather conditions or diseases. The system characteristics that potentially cause 60 
resilience are represented by agent interactions and endogenous feedbacks. Agent interactions are 61 
designed as learning, leading to improvement in production; and cooperation, allowing the transfer of 62 
resources (in the form of loans) between farmers. Endogenous feedbacks are designed as a decrease in 63 
crop yields due to soil depletion (a negative feedback) and an increase in profitability if many land users 64 
grow the same crop due to agglomeration benefits (a positive feedback). Two sets of resilience indicators 65 
are quantified, with one set showing system’s recovery from shocks and the other set showing the absolute 66 
values of state variables. We intend to answer the following research questions: 1) to what extent is system 67 
resilience affected by external shocks, 2) to what extent do agent interactions contribute to system 68 
resilience, and 3) to what extent is system resilience affected by endogenous feedbacks. The next section 69 
describes the resilience framework, the stylized model, and the experimental setup. Model results are 70 
presented in section 3. We explain and interpret results and discuss implications and limitations in section 71 
4, followed by conclusions in section 5.   72 

2. Conceptual framework and Methods 73 

2.1 A framework of resilience 74 

A conceptual framework based on existing literature was summarized to guide our modeling investigation 75 
(Table 1). As the definition of resilience varies across fields (Adger, 2000; Bennett et al., 2005; Holling, 76 
1973), and resilience assessments are often operationalized based on specific case studies (e.g., see 77 
Hostert et al., 2011; Ojima et al., 2014; Reenberg et al., 2013), there is a need to contextualize resilience 78 
for better communication and understanding. For example, Carpenter et al. (2001) emphasize that 79 
resilience assessments should specify of what system state and to what perturbation the resilience 80 
measures are quantified. These two aspects are considered the first step in the approach proposed by 81 
Bennett et al (2005) to assess SES resilience, in which they further ask modelers to identify feedback 82 
processes, to design a system model that incudes key elements and linkages between them, and to identify 83 
resilience measures. Besides, as systems are complex and evolving, resilience measures are only 84 
meaningful when temporal and spatial scales are defined (Carpenter et al., 2001). These aspects were 85 
summarized into a framework that distinguishes 1) “Resilience to”: drivers/triggers that may disrupt the 86 
system, 2) “Resilience of”: functions of the system that need to be preserved, 3) “Resilience at”: the scale 87 
levels at which resilience is observed, 4) “Resilience due to”: features or mechanisms creating resilience, 88 
and 5) “Indicators of resilience”: measurements that quantify resilience (Bennett et al., 2005; Carpenter 89 
et al., 2001).  90 

Table 1. A framework to study SES resilience — key aspects and their implementations in the model, 91 
based on (Bennett et al., 2005; Carpenter et al., 2001).  92 

Aspects of 
resilience Example or explanation Implementation in the model 

“Resilience to”  
 
Drivers/triggers that 
may disrupt the 
system 

• External shocks (Folke et al., 
2002; Holling, 1973): a sudden 
disruption that is not controlled 
by the system but has impact on 
the functions of the system   

Sudden drops in the yield of crops (at 
random time steps) 

“Resilience of” 
 
Function and identity 
of the system 

• Using land for agricultural 
production and/or other 
ecosystem services (Grashof-
Bokdam et al., 2017; Jarvis et 
al., 2008) 

• Economic viability of farmers 
(Rasch et al., 2016) 

Three functions of the system are monitored 
as system states:  
Spatial resilience — the ability of the system 
to maintain the use of land for both crops 
and the evenness between crops  
• Multi-culture system index; with only 

two land use options A and B, it is 
calculated as: 
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• Continuity of farming (Bernués et 
al., 2011)  

[(1 - | Area_A – Area_B | / ( Area_A + 
Area_B)] * 100 

Social resilience — the ability of the system 
to maintain social integrity of the rural 
community 
• Number of fully active agents 
Economic resilience — the ability of the 
system to sustain the economic viability of 
agents  
• Average wealth (€) 

“Resilience at” 
 
Scales at which the 
system is observed 

• Over what period of time, or at 
certain point of time (Cumming 
et al., 2016; Rogers et al., 2012) 

• At individual, group/network, 
sub-system or system level 
(Milestad & Darnhofer, 2003) 

Temporal: Average of the last ten years 
from each simulation (100 years);  
Spatial: resilience measures are taken at 
system level  

“Resilience due to” 
 
System 
characteristics that 
potentially cause 
resilience 

• Buffer capacity to cope with loss 
(Groot et al., 2016; Speranza, 
2013) 

• Adaptive capacity to learn from 
experience (Cohen et al., 2016) 

• Innovative capacity to develop 
new strategy (Holling, 2001; 
Milestad & Darnhofer, 2003) 

• Interaction between individuals 
(Cumming et al., 2005)  

• Feedbacks that govern the 
internal dynamics of the system 
(Folke et al., 2010; Walker et al., 
2004)  

Two buffer capacities:  
i) Agents’ own financial resources 
ii) Agents’ social network (via social 
interaction) 
 
Agent interactions: 
i) Learning: agents learn from their social 
network to improve their production when 
they suffer from external shocks;  
ii) Cooperation: agents who lack buffer 
capacity ask within their social network for 
help 
 
Two feedbacks: 
i) Soil Depletion Feedback (SDF): soil fertility 
for crops decreases when land use intensity 
increases;   
ii) Agglomeration Benefits Feedback (ABF): 
the production cost of a crop for each agent 
is reduced when area of this crop increases  

“Indicators of 
resilience”  
 
Variables that are 
chosen to measure 
resilience 

• Value of a state variable 
(Carpenter et al., 2001) 

• The ratio of the improved 
performance over the degraded 
performance due to a 
disturbance (Groot et al., 2016) 

• Recovery speed and persistence 
(Donohue et al., 2016)  

• Distance to identified threshold 
of a variable (Bennett et al., 
2005) 

• Recovery from shocks — ratios of state 
variables with shocks to functions 
without shocks 

 
• To what values do the system functions 

recover — absolute values of state 
variables 

2.2 Description of the model 93 

Following this framework, we designed an ABM for evaluating resilience in a simple SES. We represented 94 
a land use system, which we consider to be a typical example of an SES, as land use is a social-economic 95 
activity that is dependent on but also affects the ecological sub-system. For “Resilience to”, we designed 96 
sudden drops in crop yields. For “Resilience of”, we took the system’s ability to maintain spatial resilience 97 
(the use of land for both crops, thus a so-called multi-culture system, as opposed to a monoculture system), 98 
social resilience (number of farmers who are fully active in agricultural production), and economic resilience 99 
(the maintenance of wealth). For “Resilience at”, system states were observed by the end of each model 100 
run. For “Resilience due to”, the model captured social interactions of learning (to improve production) and 101 
cooperation (to increase financial buffer capacity), a negative feedback between crop productions and soil 102 
fertility, and a positive feedback between the area used for one crop type and reduced production costs 103 
(agglomeration benefits). For “Indicators of resilience”, we first quantified recovery from shocks. In 104 
addition, we quantified the absolute values of state variables.  105 

The represented SES has a number of key properties as identified in scientific literature, see Box 1. Figure 106 
1 displays relationships between the elements in the SES. Due to the Soil Depletion Feedback (SDF), 107 
farmers’ intensive use of land for one crop results in fertility loss, which requires their adaptation in their 108 
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land use activities to maintain the soil fertility. Due to the Agglomeration Benefits Feedback (ABF), the 109 
increasing use of land for one crop results in reduction in production cost, which further encourages the 110 
others to produce this crop. Interactions between agents include learning and cooperation. The learning 111 
mechanism describes that farmers learn from their social network to improve crop production. The 112 
cooperation mechanism affects the system via farmers’ financial resources. When farmers suffer from 113 
financial loss, they can borrow money within their social network. Such social interactions increase the 114 
buffer capacity within a farming community. Loss in financial resources and soil fertility can result in a 115 
change of the farmer’s state depending on how many of his/her land parcels can be used for production. 116 
Each farmer is in one of the three states — fully active, using all their land parcels for agricultural production; 117 
partially active, using part of their land for production; and bankrupted/forced out, leaving their land 118 
abandoned and unmanaged. However, farmers’ land ownership is a static property and therefore land 119 
parcels cannot be overtaken by others in this model.  120 

Box 1. Theoretical principles of land use systems and their implementation in the model 121 

• Land use is a spatial variable (Ricardo, 1817; Veldkamp & Lambin, 2001; von Thünen et al., 1966). 
The system is initialized with 676 farmer agents, who are randomly assigned to 676 (26 by 26) farms 
with a total land area of 10506 hectares (10.2 km * 10.3 km), represented by 10506 patches (100-
meter resolution). 

• Land use is an economic activity, and so the decisions are driven — to at least some extent — by 
profit optimization mechanisms (Ricardo, 1817). Farmers make a living by selling their harvests at 
market prices. Farmers’ decisions on land use activities at each step are driven by profit-maximization 
— they choose the amount of land parcels to be used for each crop that potentially results in the 
highest return. 

• Land uses compete for scarce resources, such as land, labor, and other inputs (Ricardo, 1817). 
Decisions are constrained by factors such as potential yields, production costs, and labor supply 
(Lambin et al., 2000; Simon, 1957). Farmers choose between two land use options (A and B) every 
year. Farmers differ in their costs to produce these two crops, which have different labor requirement. 
The less labor-intensive crop is therefore more attractive to farmers with less amount of labor. The 
profit-maximization process is constrained by the amount of their land-, labor-, and financial 
resources, and takes into account changes in crops yields and production costs. 

• Land users are heterogeneous in terms of personal preferences, economic leeway, demographic 
properties, etc., which affects their decisions (Parker et al., 2003; Valbuena et al., 2008a). Farmers 
differ in their land, labor, and production costs for each land use and their initial financial resources. 

• Land use is affected by past decisions such as tradition, sunk costs, lock-in, and pathway (Brown 
et al., 2005; Ellis et al., 2013). Land use activities result in profits or deficits. At each time step, 
profits (or deficits) are added to (deducted from) their financial resources, which can affect future 
decision making. 

• Land use activities are susceptible to environmental shocks (Lambin & Meyfroidt, 2010) such 
as extreme weather conditions and outbreak of diseases (Rosenzweig et al., 2001). Shocks are 
implemented to affect the system, by reducing the yields of crops by 80% at a random time step, 
after which yields recover. 

• Land use has an effect on the factors (e.g., soil quality, crop price, climate, policies, and 
production costs) that determine its profitability (Foley et al., 2005; Lambin & Meyfroidt, 2011; 
Turner et al., 2007). Harvests are continually updated by the Soil Depletion Feedback (SDF) — the 
intensive use of the land for one crop over time results in reduction in soil fertility and therefore the 
crop yield. Soil fertility can be recovered by letting the land fallow instead of continuously using it. 
Production costs, though individually different, are continuously modified by the Agglomeration 
Benefits Feedback (ABF) — as the area of one land use agglomerates, agents’ production costs are 
lowered. 

• Land users are social beings who share information, social norms, and common resources (Conley 
& Udry, 2001; Manson et al., 2016) among their social network (Wasserman & Faust, 1994), which 
is often formed based on spatial proximity. Each farmer is connected to their nearest five other 
farmers to form a local social network. When farmers face an external shock, they learn from their 
network to improve their production; when farmers suffer from financial loss, they can borrow money 
within their social network. A transfer of financial resources takes place when one can and is willing 
to provide the loan.  
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 122 

Figure 1. A stylized land use system with internal dynamics. The system evolves due to the existence of 123 
exogenous drivers and endogenous dynamics (interaction between agents and feedbacks) under which 124 
heterogeneous farmer agents choose between land use options (A, B, and uncultivated) to maximize their profits 125 
on a yearly base. Processes illustrating the main endogenous dynamics are depicted in (a), with all arrows 126 
indicating causal relationships. Descriptions of each process can be found in the supplementary material. In (b), 127 
an overview on input-process-output is provided. 128 

The model was implemented in NetLogo 5.0.4 (Wilensky, 1999). Each step of a model run represents a 129 
cycle of crop production, see Figure 2. A complete and detailed description of the model following an ODD 130 
protocol (Grimm et al., 2006; Grimm et al., 2010) can be found in the supplementary materials. 131 
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 132 

Figure 2. Flowchart of procedures in a time step. SDF is Soil Depletion Feedback and ABF is Agglomeration 133 
Benefits Feedback. 134 

2.3 Experimental design  135 

External shocks were implemented as three shocks in a row to disturb the system, with the onset of these 136 
shocks determined by a random seed. A shock represented 80% reduction in crop yields, which returned 137 
to their original values in the next time step. For internal dynamics, we implemented two types of agent 138 
interactions and two types of feedbacks, and defined strength levels for each of them, see Table 2. Each 139 
scenario (i.e. unique combination of external shocks and internal mechanism) was run 10 times, to account 140 
for stochasticity in timing of shocks and in assigning initial properties to the agent population.      141 

Table 2. Experimental design on the internal dynamics. SDF is Soil Depletion Feedback and ABF is 142 
Agglomeration Benefits Feedback.  143 

Mechanism How the mechanism is varied Number of 
variations 

Agent 
interactions 

No interaction 

9 
Learning 

(type: random or target) 
Cooperation 

(type: likelihood or always) 
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Both learning and cooperation (and the 
combination of their types) 

Feedbacks 

No feedback 

16 

SDF (Low, medium, or high strength level) 
ABF (Low, medium, or high strength level) 

Both feedbacks (and the combination of 
their strength levels) 

For agent interactions, we implemented learning and cooperation within a farmer’s social network. Learning 144 
was implemented as farmers improving production by interacting with other famers after they were 145 
affected by an external shock. We distinguished two types: 1) random learning, each farmer compared 146 
production costs against another farmer randomly selected from the social network and learned to achieve 147 
the same production costs if the other farmer performed better; and 2) target learning, each farmer first 148 
searched for the best performer in the social network, and then learned to achieve the same production 149 
costs as the best performer. Cooperation was implemented as the transfer (as a loan) of financial resources 150 
to an agent with insufficient resources. A farmer with deficit asked another farmer who had the largest 151 
amount of resources. Two types of cooperation were considered: 1) farmers had heterogeneous likelihoods 152 
to provide help, and 2) farmers were always willing to provide help if they were able to.  153 

For feedbacks, we implemented Soil Depletion Feedback (SDF) and Agglomeration Benefits Feedback (ABF). 154 
We considered the following scenarios: 1) the system was not affected by neither feedback, therefore 155 
having fixed soil fertility and unchanged individual production costs, 2) soil fertility was regulated by the 156 
SDF but production costs remained unchanged, 3) individual production costs were regulated by ABF but 157 
crop yields remained fixed; and 4) the system was affected by both feedbacks. Each feedback was 158 
implemented with three levels of strength: low, medium, or high (see Figure 3).  159 

 

a. Soil Depletion Feedback  
                 (SDF) 

 

b. Agglomeration Benefits Feedback 
(ABF) 

Figure 3. The implementation of SDF and ABF in the model.  For a), land use intensity index is the 160 
accumulated time of continuous production of one crop on the same land; soil fertility index is the percentage of 161 
the original fertility. As SDF strength increases from low to high, the slope decreases — an increase in land use 162 
intensity for one crop results in more reduction in soil fertility. For b), the benefit of increase in the area of one 163 
land use is the amount of production cost that can be reduced. As ABF strength level increases from low to high, 164 
the slope increases — an increase in the area of a land use results in more benefits for individual farmers.  165 

2.4 Measuring resilience 166 

For each model run, we took the mean value of each state variable (multi-culture system index, fully active 167 
farmers, and wealth) from the last ten steps to represent various system functions. Specifically, multi-168 
culture system index represented spatial resilience, fully active farmers represented social resilience, and 169 
wealth represented economic resilience. The effect of external shocks was quantified by comparing each 170 
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state variable under shocks to those in absence of shocks. Such comparison revealed the extent to which 171 
each function recovered, hence the ‘engineering perspective’ of resilience. The effect of internal 172 
mechanisms was investigated by quantifying the absolute values of state variables over these mechanisms 173 
and their strengths. We hypothesized that differences in these internal mechanisms result in regime shifts 174 
and therefore allowed us to gain insights into the ‘ecological perspective’ of resilience. Statistical analyses 175 
were performed to test if internal mechanisms resulted in significantly different resilience measures in 176 
comparison to model runs without these internal mechanisms, using t-test. To better explain model results 177 
and understand the relationships between model inputs and model outputs (Schulze et al., 2017), we 178 
measured the sensitivity to a model input as the proportion of the output variance that can be explained 179 
by changes in the model input (ten Broeke et al., 2016), using the effect size measure eta squared 180 
(Richardson, 2011).    181 

3. Results  182 

Resilience was assessed as the recovery of state variables from external shocks (Table 3) as well as the 183 
absolute values of state variables (Table 4). The systematic investigation following Table 2 resulted in 184 
thousands of model runs in which the effects of each mechanism and their interactions were explored. To 185 
avoid unnecessary complexity, we only presented the results from each individual mechanism, and the 186 
interaction between the two feedbacks. A complete overview of results that accounted for the complex 187 
interactions effects between various mechanisms can be found in Figure 4. We found that (1) overall the 188 
presence of internal mechanisms increased the ability of the system to recover from external shocks, and 189 
that (2) these internal mechanisms resulted in different regimes, each with a distinctive set of functions. 190 
Details of these two findings are presented below.  191 

Table 3. Resilience as recovery from shocks. Results are average values. Recovery is a relative term, with 192 
values < 1 indicating a lack of recovery and values > 1 indicating improvement. Recovery was calculated as the 193 
ratio of the absolute values of the state variable with shocks to those without. ABF is Agglomeration Benefits 194 
Feedback and SDF is Soil Depletion Feedback. ABF x SDF represents interaction between feedbacks. Indicators 195 
from the 2nd row onwards were compared against the indicators in the 1st row using t-test. Significant difference 196 
on the mean was marked by * (0.05 < p.value < 0.1) or ** (p.value < 0.05).  197 

Internal 
mechanism 

Recovery of 
spatial 

resilience 
(multi-culture 
system index)  

Recovery of 
social 

resilience      
(fully active 

farmers) 

Recovery of 
economic 
resilience 
(wealth) 

No internal 
mechanism 0.87 0.94 0.91 

Learning 
(random) 0.95** 0.97** 0.91* 

Learning 
(target) 0.93* 0.98** 0.91* 

Cooperation 
(likelihood) 0.96** 0.94* 0.90* 

Cooperation 
(always) 0.96** 0.93* 0.89** 

ABF Low 1.14** 1.00** 0.93 

ABF Medium NA 1.00** 0.95** 

ABF High NA 1.00** 0.95** 

SDF Low 0.98** 1.46** 0.91* 

SDF Medium 1.00** 1.10* 1.14* 

SDF High 0.98** 1.77** 1.70** 

ABF x SDF 
(average of all 
strength 
levels) 

1.06** 2.60** 0.84** 
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We observed the following effects concerning recovery from shocks. (1) Without any internal mechanism, 198 
external shocks resulted an overall decrease of resilience — all functions showed a lack of recovery. (2)  199 
Learning resulted in significant increases on the recovery of multi-culture system index (for random 200 
learning) and fully active farmers (for both learning types) but had no significant effect on the recovery of 201 
wealth. (3) Cooperation resulted in a significant increase on the recovery of multi-culture system index 202 
(for both cooperation types), no significant effect on the recovery of fully active farmers, and a significant 203 
decrease in the recovery of wealth (for always cooperation). (4) The positive feedback ABF resulted in a 204 
complete recovery on fully active farmers (for all ABF strengths) and a significant increase on the recovery 205 
of wealth (for ABF Medium and High). The recovery of multi-culture system index could not be calculated 206 
for ABF Medium and High. This was because the multi-culture system totally disappeared in these cases. 207 
(5) The negative feedback SDF resulted in significant increases on the recovery of multi-culture system 208 
index, fully active farmers (for SDF Low and High), and the recovery of wealth (for SDF High). (6) Under 209 
both feedbacks, there were improvements on the recovery of multi-culture system index and fully active 210 
farmers, but the recovery of wealth was significantly lower. (7) Due to ABF (Medium and High), 211 
monoculture was observed without external disturbance, resulting in a multi-culture index of 0. 212 
Consequently the recovery of this state variable cannot be calculated, see “NA” in Table 3.  213 

Cases exist in which external shocks resulted in improvements on certain functions, indicated by a recovery 214 
value greater than 1. For example, when the internal mechanism was set as ABF Low, external shocks 215 
improved the multi-culture system index. This was because the positive feedback favored the 216 
agglomeration of one land use, which moved the system towards a mono-culture. However, external 217 
shocks reduced the favorable conditions for the dominant land use, which made room for the alternative 218 
land use to grow and therefore improved the multi-culture system index. We also found that external 219 
shocks improved social resilience and economic resilience when the system was controlled by SDF. This 220 
was because SDF required farmers to put aside land to recover soil fertility, which hampered their ability 221 
to fully use their land and gain profits. However, external shocks resulted in many farmers putting aside a 222 
lot of land, the resulting recovery of soil fertility benefited farmers’ wealth and allowed more of them to be 223 
fully active.  224 

Though resilience was reflected by recovery of each state variable from shocks, such a relative indicator 225 
did not show at what absolute values these states recover to and weather these values are distinctive due 226 
to different internal mechanisms. These absolute values of state variables were shown in Table 4. We found 227 
they changed significantly with feedbacks. This became more apparent as we plotted model results in 3-228 
dimensional graphs, labelled by the type of feedback, see Figure 4. In Figure 4a (graphical illustration of 229 
Table 4), four clusters of system states emerged. Conveniently, we refer to these clusters as regimes, 230 
which change with feedbacks. The system was under regime I with no internal mechanism, with learning, 231 
and with cooperating (see the red circles in Figure 4a): there was a high level of multi-culture system 232 
index, the majority of farmers were fully active, and farmers’ wealth was abundant. Within regime I, 233 
learning significantly increased resilience, as the system showed higher multi-culture index (for target 234 
learning), more fully active farmers and wealth (for both learning types) as compared to the scenario with 235 
no internal mechanism; cooperation was found to significantly increase the multi-culture system index (for 236 
both cooperation types), but to reduce wealth (when agents always liked to help).  237 

Table 4. Resilience as the absolute values of state variables. Results are average values. The multi-culture 238 
system index is dimensionless (highest value as 100, a multi-culture with even crop compositions, and lowest 239 
value as 0, a monoculture). The fully active farmers is a count (highest value as 676, and lowest value as 0). 240 
Wealth takes the unit of euro.  ABF is Agglomeration Benefits Feedback and SDF is Soil Depletion Feedback. ABF 241 
x SDF represents interaction between feedbacks. Indicators from the 2nd row onwards were compared against 242 
the indicators in the 1st row using t-test. Significant difference on the mean was marked by * (0.05 < p.value < 243 
0.1) or ** (p.value < 0.05).  244 

Internal 
mechanism 

Spatial 
resilience  

(multi-culture 
system index) 

Social 
resilience      

(fully active 
farmers) 

Economic 
resilience 
(wealth) Regime 

No 
shocks 

With 
shocks 

No 
shocks 

With 
shocks 

No 
shocks 

With 
shocks 

No internal 
mechanism 82 71 633 594 27620 25255 I 
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Learning 
(random) 74** 70 669** 651** 30909** 28177** 

Learning 
(target) 91** 85** 674** 663** 33307** 29930** 

Cooperation 
(likelihood) 82 79** 638 594 27599 24654* 

Cooperation 
(always) 83 79** 634* 593 27418 24557** 

ABF Low 16** 17** 674** 672** 51378** 47831** 

II ABF Medium 0** 0** 674** 675** 68875** 65213** 

ABF High 0** 0** 675** 675** 82814** 78680** 

SDF Low 98** 96** 71** 103** 2056** 1864** 

III SDF Medium 95** 95** 121** 133** 2066** 2351** 

SDF High 96** 95** 86** 153** 2333** 3950** 

ABF x SDF 
(average of 
all strength 
levels) 

52** 58** 5** 13** 10408** 8760** IV 

 
 

 
(a) Excluding model runs with between-mechanism 

interactions, except for ABF x SDF 

 
 

 
(b) All model runs, including between-mechanism 

interactions 

Figure 4. Resilience indicators (absolute values of each state variable) under different types of 245 
feedback. The change of feedback suggested that the system changed its functions distinctively. In (a), the 246 
graph contains model simulations in which between-mechanism interactions are not considered. Therefore, (a) 247 
corresponds to results in Table 4: the red cluster is regime I, the black cluster is regime II, the purple cluster is 248 
regime III, and the green cluster is regime IV. In (b), the graph contains all model simulations, including all types 249 
of between-mechanism interactions, e.g. between learning/cooperation and the feedbacks.  250 

With the presence of feedbacks, the system showed very different land use dynamics, which we illustrated 251 
in Figure 5. The positive feedbacks ABF resulted in regime II (see the black circles in Figure 4a): the system 252 
was found to have a dominant crop (very low multi-culture system index) or even to be a monoculture 253 
(multi-culture system index at 0), see Figure 5a; almost all of the farmers were fully active; and their 254 
wealth was substantially increased compared to regime I. Within regime II, increase in ABF strength 255 
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resulted in increase of social and economic resilience but at the cost of a complete loss of spatial resilience 256 
(Table 4). The reason why land use B became dominant was because it required less labor input than land 257 
use A.   258 

 
(a) ABF Low. The system shows: dominance of crop B 

over crop A over space and time 

 

(b) SDF Low. The system shows: co-existence of crops 
over space and time 

 
(c) ABF x SDF, both at low strength level. The system 

shows: each crop takes turns to dominate the space for 
about 9 time steps  

Figure 5. Land use dynamics under the control of different feedbacks. ABF is Agglomeration Benefits 259 
Feedback and SDF is Soil Depletion Feedback. ABF x SDF represents interaction between feedbacks. 260 

The negative feedback SDF resulted in regime III (see the purple circles in Figure 4a): land use activities 261 
resulted in a very high level of multi-culture system index due to the coexistence of both crops (Figure 5b), 262 
only a small amount of farmers were fully active, and farmers’ wealth was substantially reduced compared 263 
to regime I and II. Within this regime, an increase in SDF strength led to increase of fully active farmers 264 
and wealth.  One may find this counter-intuitive as stronger soil depletion should result in less wealth. 265 
However, farmers adapted to soil depletion by constantly putting aside some land to recover soil fertility 266 
and by changing between crops. A stronger SDF resulted in a faster response of farmers and therefore a 267 
quicker adaptation. 268 

Finally, the system entered regime IV when both feedbacks were present (see the green circles in Figure 269 
4a): multi-culture system index can take any value within the full range (higher when SDF controls the 270 
system, and lower when ABF controls the system), very few farmers were fully active, and accumulated 271 
limited amount of wealth. This was because under this regime, crops were found to rotate (Figure 5c). 272 
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Agglomeration benefits allowed one crop to dominate for a while, then taken over by the other crop due 273 
to the soil depletion. Even for the dominance period, farmers had to put aside land for fertility recovery.  274 

These four regimes (clusters of state variables) persist, even when we included all types of between-275 
mechanism interactions, see Figure 4b. However, the range of the different regimes increases when 276 
between-mechanism interactions are included. As each cluster grew in size from Figure 4a to Figure 4b, it 277 
shows that system functions were affected by between-mechanism interactions. These effects were 278 
nevertheless much smaller, comparing to the effect of feedback. The change of feedback was the most 279 
important cause: as we found feedbacks to have an average effect size of 89% in explaining the variance 280 
in state variables.  281 

4. Discussion 282 

4.1 Engineering perspective vs. Ecological perspective 283 

We assessed resilience both in relative and absolute terms. The relative term corresponds to the 284 
‘engineering perspective’ of resilience, for which we calculated resilience as recovery from shocks. Other 285 
indicators exist such as the ratio of system performance before and after disturbance (Groot et al., 2016), 286 
stability (whether a system returns asymptotically to its equilibrium), variability (coefficient of variation of 287 
a variable over time or across space), persistence (length of the time a system maintains the same state), 288 
resistance (similar to Groot et al), and speed of recovery (Donohue et al., 2016). These measures add 289 
more dimensions to resilience particularly by capturing different aspects of how a system responds to 290 
external shocks. Many of these indicators are based on the ‘engineering perspective’, they usually focus 291 
on stability near equilibrium (Holling, 1996) and ignore how internal dynamics change system behavior. 292 
By systematically combining disturbances and internal dynamics we identified different regimes, which 293 
allowed us to explore the more holistic 'ecological perspective' of resilience (Gunderson, 2009) focusing on 294 
behavior change and regime shifts (Holling, 1973). We found that recovery from external shocks can 295 
change due to internal mechanisms (Table 3), but the interpretation of a system being more or less resilient 296 
is limited. For example, the recovery of wealth was found the same for both learning and SDF Low (all 297 
were 0.91 in Table 3), however, the maintenance of wealth was totally different given these two internal 298 
mechanisms, by looking at the absolute values on this state variable. The difference in the absolute values 299 
of the state variable resulted from the change of internal dynamics. By showing the absolute values, we 300 
demonstrated that different regimes existed due to various internal mechanisms. A typical ‘ecological 301 
perspective’ of resilience investigates the amount of disturbance to shift regimes, where the internal 302 
dynamics change as well. We implemented the change of internal dynamics in different model runs instead 303 
of changing it within a model run, as this remains challenging (Polhill et al., 2016).  304 

4.2 Resilience-causing mechanisms 305 

Our model included two types of agent interactions and two feedbacks as the internal dynamics of the 306 
system. Through agent interactions farmers were able to share or transfer resources which can increase 307 
their capacity to cope with change. We found that both learning and cooperation increased the ability of 308 
the system to recover from shocks (Table 3) and increased the absolute values (Table 4) of state variables 309 
that represented different system functions. Specifically, target learning showed more profound effects on 310 
each state variable (Table 4), compared to random learning, indicating the importance of information within 311 
the social network. There was not much difference between the two cooperation types. This was because 312 
cooperation required not only willingness but also ability. With extra analysis, we found the number of 313 
transfers (loans) was constrained by their ability for both cooperation types. In other land system studies, 314 
agent interactions are usually implemented as farmers imitating the behavior of others depending on 315 
spatial proximity (Bert et al., 2011) or social-economic similarity (Le et al., 2012). However, the effect of 316 
agent interactions on system resilience is mostly unreported (Rindfuss et al., 2008). A recent study (this 317 
special issue) aims at bridging the gap in the context of common-pool resource systems (ten Broeke et al., 318 
2018). We also found that the effects due to agent interactions (both learning and cooperation) were less 319 
pronounced compared to the effects due to feedbacks — regimes changed with feedbacks but not with 320 
agent interactions (Table 4). This can be explained by how they affected the system. Learning took place 321 
when the system was under shocks and it allowed farmers to reduce their production costs by learning 322 
from a better performing farmer; cooperation took place when agents were not financially viable and it 323 
allowed them to increase their resources by asking a loan from a richer farmer. However, neither interaction 324 
was able to change land use dynamics when feedbacks were present — under the control of ABF, one land 325 
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use became more and more economically attractive and the system shifted to the monoculture, 326 
agglomeration benefits resulted in wealth growth and farmers did not need help from others; under the 327 
control of SDF, farmers had to put aside land and rotate between crops, regardless of conditions in their 328 
production costs and financial resources. More importantly, feedbacks continuously affected the system 329 
over the entire model run. Their effects were accumulated over time. As a result, the extent to which 330 
system functions were maintained is more determined by feedbacks than by agent interactions in this 331 
study. Real-world examples can be found for the implemented feedbacks. The positive correlation between 332 
farm size, productivity, and cost reduction in the US corn belt between 1982 and 2012 (Key, 2018) reflects 333 
the Agglomeration Benefits Feedback; while the existence of Soil Degradation Feedback is well observed 334 
across the world (Barão et al., 2019; Parihar et al., 2018; Wiesmeier et al., 2018), with crop rotation as 335 
one of the adaptive farming strategy.  336 

4.3 Resilience is not generic but specific to each function 337 

Resilience assessment should be specific on the function of the system (Bennett et al., 2005; Carpenter et 338 
al., 2001). One may reach different conclusions when multiple functions (Fleskens et al., 2009; Jacobi et 339 
al., 2015; Wilson, 2010) are under concern. To illustrate this argument, we make use of the absolute 340 
values of state variables presented in Table 4. If we focus on the economic resilience of the system, we 341 
found the system more resilient when it was under the control of ABF. However, ABF resulted in a shift of 342 
the system to a monoculture regime, in which spatial resilience decreased. The system showed higher 343 
spatial resilience (with very high multi-culture system index) when it was under the control of SDF. Such 344 
dichotomy suggests that one function can conflict with another (Wiggering et al., 2003; Willemen et al., 345 
2010). Therefore, it becomes very important to identify and assess the key functions of a system 346 
(“resilience of” in the framework) as they might result in different interpretations of system resilience. 347 
Moreover, the detection of trade-offs between functions implies the need for a multidimensional view to 348 
evaluate and optimize objectives in SES management (Donohue et al., 2016). For example, an agricultural 349 
land use system as a SES provides not only food and income security but also other non-marketed 350 
ecosystem services such as soil fertility and biodiversity (Deguines et al., 2014; Swinton et al., 2007). The 351 
monoculture regime (resulting from ABF in our model result) may be providing economic benefits at the 352 
expense of hampering the ecological objective such as to maintain biodiversity (Deguines et al., 2014). 353 
Real-world SES management therefore requires the know-how to balance between production and 354 
conservation.   355 

4.4 Design choices and limitations 356 

The exploration of resilience was based on the stylized land use model. Obviously, real-world land use 357 
systems are also affected by factors that are not included in the model. They include, amongst others, 358 
technological development (Ellis et al., 2013), market dynamics (Lambin et al., 2003), and policy 359 
interventions (van Zanten et al., 2014). Whether or not such factors function as an external driver or 360 
endogenous feedbacks (Lambin & Meyfroidt, 2010; Meyfroidt, 2013) can greatly affect the underlying 361 
system resilience. Agent interactions can take other forms such as the formation of norms (Matthews et 362 
al., 2007) and coordination (Lansing & Kremer, 1993). Modelers still face the challenge to identify possible 363 
interactions and emphasize on the most relevant ones, as little knowledge exists on their relative 364 
importance in models (Rindfuss et al., 2008). Besides, the model does not include the process in which 365 
new agents enter the system. This process can greatly affect system resilience as measured by us and 366 
even how we should define resilience, as the replacement of existing or forced out agents by new ones 367 
directly increases the resilience of the system.  368 

System resilience can also be affected by characteristics such as diversity (or heterogeneity), including 369 
diversity in human decisions (Leslie & McCabe, 2013) and diversity in landscape (Schippers et al., 2015). 370 
Though diversity was captured in this study by implementing agents as heterogeneous in many aspects 371 
such as available labor, financial resources, production costs, the effect of diversity on system resilience 372 
was not explored. Also, diversity follows different distributions. Real-world systems can be composed of 373 
agents whose characteristics are far from the normal distributions, which were assumed in the model. The 374 
assumptions that decision-making is profit-oriented and that agents produce crops for a market ignore 375 
other goals of agents and lack the consideration on the topology of farmer agents (Bakker & van Doorn, 376 
2009; Valbuena et al., 2008b). For example, short-term profit maximization is more often seen among 377 
land tenants while ecologically beneficial land use is found typical for land owners (Bert et al., 2011). 378 
Though in the model profit-maximization was assumed for individual decision-making, in reality farmers 379 
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can be risk averse (Aka et al., 2018) and opt for cost minimization (Zereyesus & Featherstone, 2017), for 380 
example through optimized crop allocation.   381 

The scale at which resilience is measured is also important to be defined (Cumming et al., 2016). In this 382 
study the resilience indicators were measured at the system level and by the end of each model run. One 383 
can reach different results by e.g. looking at an individual level and by e.g. assessing resilience right after 384 
a shock. This is because measurements at individual level may neglect how individuals interact with each 385 
other and how they are affecting and being affected by system properties. However, measuring resilience 386 
right after shocks runs the risk of overlooking if the measures represent stable states. Due to the large 387 
amount of model runs used in this study, we did not show how resilience indicators change over time, 388 
which may improve our understanding on the temporal dynamics of resilience (Rogers et al., 2012). 389 
Instead, we calculated each state variable as the mean of the last 10 steps from 100-step model runs. 390 
Such measures were only representative if there were no strong spatial-temporal nonlinearities within 391 
these 10 steps. We found that the positive feedback resulted in rapid transition, and by the time the mean 392 
values were taken, the system already reached extreme states and stayed there with no change in spatial 393 
distribution of crops (Figure 5a); and that the negative feedback resulted in dynamic equilibrium (Figure 394 
5b). Therefore, our measures in both cases represented the states of the system. However, it became 395 
more complex when the system was under the influence of both feedbacks, as we found different spatial-396 
temporal dynamics (Figure 5c). These model runs require measuring windows of different lengths to 397 
capture the ‘true’ state of each system function, which would make the experimental design much more 398 
complex. We addressed this issue by repeating the model runs for many times to avoid measuring the 399 
system at a specific phase.  400 

Despite the limitations, model results imply the importance of including both external disturbances and 401 
internal dynamics in studying resilience. Particularly for the internal dynamics, feedback mechanisms 402 
should be considered and well designed. Future studies may also consider to extend the types of agent 403 
behaviors and their interactions, to include other important processes in SES, and to consider the effects 404 
of initial conditions and path-dependency on resilience (Brown et al., 2005).  405 

5. Conclusions 406 

Resilience is better assessed by considering both external disturbances and internal dynamics. Our model 407 
represents a simple land use system as a coupled SES since both ecological and economic feedbacks are 408 
incorporated to affect socially interacting farmer agents. By comparing resilience indicators under different 409 
internal mechanisms, we found that (1) the presence of internal mechanisms increased the ability of the 410 
system to recover from external shocks, (2) these internal mechanisms, particularly feedbacks, resulted 411 
in different regimes, each with a distinctive set of functions, and (3) resilience of one system function may 412 
be at the cost of the resilience of another function. The first finding corresponds to the ‘engineering 413 
perspective’ of resilience — how does the system recover from external shocks. The second finding 414 
suggests the need to further explore the ‘ecological perspective’ of resilience — the maintenance of 415 
functions is affected by internal dynamics. It also implies the importance to design and assess feedbacks 416 
carefully. The last finding implies the risk of a partial understanding of system resilience, e.g., by only 417 
looking at one specific function of the system.  418 
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