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Abstract 13 

Soil salinity increase is a serious and global threat to agricultural production. The only database that 14 

currently provides soil salinity data with global coverage is the Harmonized World Soil Database, but it 15 

has several limitations when it comes to soil salinity assessment. Therefore, a new assessment is 16 

required. We hypothesized that combining soil properties maps with thermal infrared imagery and a large 17 

set of field observations within a machine learning framework will yield a global soil salinity map. The 18 

thermal infrared imagery acts as a dynamic variable and allows us to characterize the soil salinity 19 

change. For this purpose we used Google Earth Engine computational environment. The random forest 20 

classifier was trained using 7 soil properties maps, thermal infrared imagery and the ECe point data from 21 

the WoSIS database. In total, six maps were produced for 1986, 2000, 2002, 2005, 2009, 2016. The 22 

validation accuracy of the resulting maps was in the range of 67-70%. The total area of salt affected 23 

lands by our assessment is around 1 billion hectares, with a clear increasing trend. Comparison with 3 24 

studies investigating local trends of soil salinity change showed that our assessment was in 25 

correspondence with 2 of these studies. The global map of soil salinity change between 1986 and 2016 26 

was produced to characterize the spatial distribution of the change. We conclude that combining soil 27 

properties maps and thermal infrared imagery allows mapping of soil salinity development in space and 28 

time on a global scale. 29 
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1. Introduction 31 

Soil salinity increase is a serious and global threat to agricultural production. It affects an area of more 32 

than 1 billion hectares in more than 100 countries all over the world and these numbers are constantly 33 

growing (Abbas et al., 2013; FAO and ITPS, 2015; Squires and Glenn, 2004; Szabolcs, 1989). Besides 34 

this estimate of the affected area globally, several others exist, which sometimes quite dramatically differ 35 

in the extent of the affected area (IAEA, 1995; Oldeman et al., 1991). Therefore, only a rough 36 

approximation of salt affected area globally can be given. FAO (2018) recognises this issue and stresses 37 

that the divergence of current estimations of the extent of salt affected areas are quite often the result of 38 

differences in methods for collecting and aggregating statistics. They specifically state that there is a 39 

need for data on the rate of change in areas affected by salinization at regional and global level (FAO, 40 

2018). Status of the World’s Soil Resources report by FAO and ITPS (2015) also mentions that 41 

information on the extent and characteristics of salt-affected soils is very scattered. 42 

The only database that currently provides soil salinity data with global coverage is the Harmonized World 43 

Soil Database. This database is an important source of soil data for global studies, but it has several 44 

limitations when it comes to soil salinity assessment. First, the database consists of soil mapping units, 45 

rather than a continuous grid with soil properties’ values unique for each pixel. It has over 15,000 46 

mapping units and have only a single soil salinity value per unit, while some of these units are stretching 47 

for hundreds of kilometres. Although the spatial resolution of the maps produced from this database is 48 

around 1 km, the actual spatial resolution is much coarser. Second, though the database was updated 49 

several times in the past (last time in 2012; version 1.2), most of it relies on the FAO/UNESCO Soil Map 50 

of the World created in 1970-1981, which can be considered outdated given the highly dynamic nature of 51 

soil salinity. Lack of spatial detail and outdated data illustrate the need for an updated global soil salinity 52 

map. 53 

Having up to date information on spatial distribution and severity of soil salinity is crucial for agricultural 54 

management of affected areas. It allows to take necessary measures to reduce, or even avoid, 55 

economical losses and restore the productivity of the soil. Mapping dynamic soil properties like salinity 56 

has challenges compared with other, less dynamic properties. Soil salinity can rapidly change after 57 

irrigation or a rainfall event. Drought, on the other hand, might increase salinity in the course of several 58 

weeks. Therefore, monitoring by traditional methods will require sampling frequently in time, which can 59 

be cost-prohibitive. That is one of the reasons why remote sensing methods are now used more and 60 
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more often for soil salinity monitoring and mapping (Allbed and Kumar, 2013; Hasanlou and Eftekhari, 61 

2019). 62 

Remote sensing is used for soil salinity mapping already for years (Metternicht and Zinck, 2009). 63 

Nevertheless, there are still no universally acceptable methods to derive soil salinity parameters from 64 

remote sensing data that can be used for different environments. On field and local scales many studies 65 

proposed conversion models from remote sensing variables to soil salinity levels on the ground. 66 

Nevertheless, these models usually do not demonstrate the same high accuracy in different parts of the 67 

world (Allbed et al., 2014a; Allbed et al., 2014b; Douaoui et al., 2006), which means that scaling up to a 68 

global scale is problematic. 69 

Recently, thermal infrared imagery were used to distinguish between different levels of soil salinity on 70 

agricultural lands (Ivushkin et al., 2017; Ivushkin et al., 2018). The principle behind this approach is that 71 

canopy temperature of the plants grown in affected areas will be higher than of plants growing in non-72 

affected areas (Gómez-Bellot et al., 2015; Urrestarazu, 2013). The approach was tested on regional and 73 

local scales and showed its robustness in different climatic conditions and on areas covered with different 74 

crops. Therefore, it seems promising for use on a global scale. 75 

We foresee, however, that scaling up to a global scale will bring additional challenges like the issue of 76 

different climatic zones. The thermal approach was previously applied on areas small enough to presume 77 

constant air temperature per single image acquisition scene, therefore there was no need to normalise 78 

the values. On a global scale this will be impossible because of the different climatic zones and extreme 79 

temperature differences between regions, and use without normalisation will just lead to characterisation 80 

of climate, rather than soil salinity. But even with some kind of normalisation, using only thermal data on 81 

a global scale will be insufficient because of other factors that will influence the temperature. 82 

Here we propose to tackle this challenge by using auxiliary data. It is known that other soil properties 83 

are correlated with soil salinity. For example, Al-Busaidi and Cookson (2003) described the interrelations 84 

of pH and soil salinity, Setia et al. (2013) studied the influence of soil salinity on the soil organic carbon 85 

content. A connection between cation exchange capacity and soil salinity has also been reported (Saidi, 86 

2012). Moreover, bulk density and soil texture can have some auxiliary information for soil salinity 87 

monitoring. Often saline and alkaline soils are affected by compaction, and lower water retention in 88 

sandy soils will make them less prone to salinity problems. Global maps of properties relevant for soil 89 

salinity mapping are available from the SoilGrids portal1 (Hengl et al., 2017). 90 

                                                 
1 https://soilgrids.org 
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We hypothesize that combining these maps together with thermal infrared imagery and a large set of 91 

field observations on soil salinity indicators, such as electrical conductivity, within a machine learning 92 

framework we can produce a global soil salinity map. Moreover, since the SoilGrids data is static, using 93 

thermal data from different time periods will enable us to assess soil salinity change in an area of interest 94 

over time. Therefore, the overall aim of this study is to investigate if combination of soil properties maps 95 

and thermal imagery will allow us to map the development of soil salinity in space and time on a global 96 

scale and measure how accurate these estimates will be. 97 

2. Methods and materials 98 

Because our study was implemented on a global scale, we decided to use Google Earth Engine (GEE) as 99 

freely available platform specially tailored for analysis and processing of geodata on a global scale. 100 

Among GEE advantages are the extensive library of geospatial datasets, including widely used satellite 101 

imagery, and computational power enough to process these data on a global scale. GEE has already been 102 

used for soil properties mapping. For example for soil moisture mapping (Sazib et al., 2018) or soil type 103 

and soil organic carbon mapping (Padarian et al., 2015). Therefore, it became our platform of choice for 104 

further analysis. 105 

2.1. Ground truth data 106 

As ground truth we used the WoSIS Soil Profile Database (Ribeiro et al., 2015), which is maintained by 107 

ISRIC – World Soil Information and includes over 100,000 georeferenced soil profiles. For our study we 108 

selected the upper layer of soil profiles for which electrical conductivity (ECe) values are available. The 109 

thickness of this layer varied from 0-5 cm to 0-60 cm. In total, 15,188 data points were selected and 110 

used in further analysis. Figure 1 shows the spatial distribution of the data points. It shows that the 111 

distribution is unequal and depends first of all on the geographical location. For example, only few points 112 

are available for higher latitudes, which can be explained by the fact that agriculture is limited at these 113 

latitudes and therefore the demand for soil analyses. The second reason for the unequal distribution is 114 

the willingness of local data holders to make the data publically available. For example, Figure 1 shows 115 

that while there are thousands of samples available in the USA and Mexico, there are hardly any in 116 

Russia or Central Asia. Nevertheless, with all its limitations, the WoSIS database is the richest available 117 

on a global scale, and therefore used in this research. 118 
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 119 

The ECe values were classified into Non saline (12,160 points), Slightly saline (2,106 points), Moderately 120 

saline (440 points) , Highly saline (232 points) and Extremely saline (250 points) classes according to 121 

widely used classification of Abrol et al. (1988) (Table 1). 122 

Table 1. Soil salinity classification used in this paper. 123 

Salinity class Non-saline Slightly Moderately Highly Extremely 

ECe, ds/m <2 2-4 4-8 8-16 >16 

  124 

2.2. Data processing and analysis 125 

2.2.1. Thermal remote sensing data pre-processing 126 

Two thermal datasets were used. The first one is the USGS Landsat 5 Surface Reflectance Tier 1 127 

collection and second is the USGS Landsat 8 Surface Reflectance Tier 1 collection, both of which are 128 

available from the GEE data catalogue. Both collections provide orthorectified brightness temperature 129 

Figure 1. Distribution of ground truths sampling data 
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acquired in wavelength range from 10.4 to 12.5 micrometres. Landsat 8 data were used in this study for 130 

the year 2016, Landsat 5 data were used for 1986, 2000, 2002, 2005, 2009. For these years, mosaics 131 

from available cloud-free images in the period from March to September were averaged on per-pixel 132 

basis and used in further analysis. The mosaicking was done using capabilities of Google Earth Engine, 133 

where in the first step the whole image collection of interest was filtered based on the date of interest, 134 

using function .filterDate(), and on the second step the average of all images fulfilling the previous 135 

requirement was calculated by applying .reduce(ee.Reducer.mean()), which produced final mosaics used 136 

in the analysis.  137 

As an input variable for our modelling we chose to work with the temperature anomaly instead of the 138 

absolute temperature to harmonise the data for the global analysis. This means that for each pixel the 139 

recorded temperature value was subtracted from the long-term temperature average for this pixel. This 140 

was done for each global layer in our thermal time series. The long term average grid was constructed 141 

from the Landsat 5 GEE dataset mentioned before, by calculating the average in the period from 1999 to 142 

2012 from all available cloud-free images on per-pixel basis.  143 

2.2.2. Data modelling  144 

We used the temperature difference layers together with several SoilGrids layers. SoilGrids is a collection 145 

of global soil class and soil properties maps (Hengl et al., 2017). In our analysis we used seven grids that 146 

contain information indirectly connected with soil salinity: sand content, silt content, clay content, pH in 147 

H2O, cation exchange capacity, bulk density, organic carbon content. These grids are available for seven 148 

depths up to two metres. Here we used the top layer (0 cm). SoilGrids were produced using a large set 149 

of covariates, including relief characteristics derived from a digital elevation model like slope, profile 150 

curvature and others that can affect development of soil salinity. That is why we consider adding these 151 

variables into our analysis as redundant and choose not to do so. The Landsat thermal images have been 152 

resampled during the processing to 250 m by a built-in functionality of GEE to correspond in resolution 153 

with the SoilGrids layers and have a common basis for modelling and prediction. 154 

The Google Earth Engine contains several machine learning classifiers. The three most often used are 155 

Support Vector Machines, Classification and Regression Trees (CART) and Random Forest. For our study 156 

we chose random forest because trial runs of other two showed that these were not suitable for our 157 

purposes well enough. This is described in the ‘Results’ section in more detail. The random forest 158 

classifier was trained using the eight variables mentioned and the ECe data from the WoSIS database. 159 

The random forest algorithm constructs an ensemble of decision trees and lets them “vote” for the most 160 

probable class (Breiman, 2001; Strobl et al., 2009). We set the number of trees parameter to 50 and 161 
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mtry parameter (variablesPerSplit argument in GEE) to the square root of the number of variables. This 162 

number of trees was chosen after a set of trial runs during which we established that further increase in 163 

the amount of trees does not bring any significant increase in the map validation accuracy. There are no 164 

widely accepted guidelines in the literature on the selection of the mtry parameter. Conflicting opinions 165 

led to a practice where importance and sensitivity of the mtry parameter in case of each model should be 166 

investigated by modellers. Therefore, we tried different values of this parameter and observed no 167 

significant difference in the results, except for the increase of computation time when a mtry value close 168 

to the maximum number of variables was used. Therefore, we chose the default setting which is the 169 

square root of variables used. 170 

In total six models were trained and six maps at 250 m resolution were produced. These models differ in 171 

thermal image uses: for each model we used thermal imagery from a different year. The maps were 172 

produced for six time steps: 1986, 2000, 2002, 2005, 2009, 2016. These years were selected to 173 

correspond with other studies describing temporal changes in soil salinity with which further comparisons 174 

are made (Fan et al., 2012; Taghadosi and Hasanlou, 2017; Wang et al., 2008).  175 

In the learning stage we used around 3500 points from the WoSIS database. They were selected by 176 

random stratified sampling, preserving the relative salinity class distribution in the ground-truth dataset. 177 

Meaning that the non-saline class will be the most abundant and the highly and extremely saline class 178 

will be less abundant in the training dataset. The final learning dataset consisted of 2,000 points of Non 179 

saline class, 1,000 of Slightly saline, 210 of Moderately saline, 105 of Highly saline and 110 of Extremely 180 

saline classes. The trained classifier was applied to the eight layers mentioned earlier to produce the final 181 

global map of soil salinity. 182 

The map was validated by selecting randomly 100 points of each class from the WoSIS database. The 183 

100 was selected as a maximum because of the limited amount of points in Highly and Extremely saline 184 

classes. A higher number would lead to significant overlap between learning and validation points in 185 

these classes. For the selection of validation points a different randomisation seed was used than for the 186 

learning stage. The equal amount of points for each class ensures that the final validation accuracy 187 

represents the accuracy throughout the entire range of salt affected areas. We expected that the Non-188 

saline class will have the highest classification accuracy and using non-stratified selection of validation 189 

points will unjustly overestimate the accuracy. During the validation we compared the salinity class at 190 

the validation site with the modelled value. The same validation set was used for maps of all years by 191 

using the same seed in the random stratified sampling function. The main accuracy metrics calculated 192 
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are confusion matrix, overall accuracy, user’s accuracy and producer’s accuracy which are provided 193 

further in the results section. 194 

We did not select more than 3500 points because attempts to increase the number of training points lead 195 

to critical errors in most runs, and for runs where the computation did finish the increase in validation 196 

accuracy was not significant. Therefore 3500 has been selected as a number of data points for all further 197 

runs. 198 

The computation times for most of the runs were below ten minutes, depending on the load of the 199 

servers. However, preparation of thermal mosaics took up to five hours for each time step, mainly 200 

because it required export of the mosaics into the Google Earth Engine asset, rather than proceeding 201 

with the analysis directly after computation of a mosaic. 202 

3. Results and discussion 203 

3.1. Global distribution of soil salinity 204 

Figure 2 shows a global map of soil salinity classes using the thermal image of 2016. It highlights main 205 

salt affected areas in North America, Central Asia, Middle East. 206 

 207 
Figure 2. Resulting global soil salinity map for 2016 



9 
 

Global statistics of affected area for all six time steps are presented in Figure 3 and Table 2. Our analysis 208 

shows that the total area of salt affected lands increased with more than 100 Mha between 1986 and 209 

2016, though some natural variation is present. The majority of the increase is the increase in slightly 210 

saline area. This suggests that more and more previously unaffected areas are starting to suffer from soil 211 

salinisation. This is supported by the fact that the total area of affected lands is continuing to increase. 212 

The actual area of Moderately saline lands has decreased, while Highly and Extremely saline are more 213 

volatile in time. 214 

 215 

  216 

Table 2. The world salt affected area as predicted from ground truth data, thermal satellite imagery 217 

and soil property maps for different years, Mha 218 

  Slightly saline Moderately saline Highly saline Extremely saline Total 

May/86 877.9 30.3 2.1 5.2 915.5 

May/00 809.6 27.7 3.8 7.7 848.8 

May/02 919.5 20.0 2.7 4.5 946.7 

May/05 888.3 22.2 2.0 5.8 918.3 

May/09 1,028.2 19.8 2.3 7.4 1,057.7 

May/16 1,036.2 24.8 2.5 5.8 1,069.3 

 219 

We found two sources referring to a global distribution of salt affected lands. Szabolcs (1989) assessed 220 

the total area of salt affected lands globally to be around 955 Mha, which is not far from our assessment 221 

of 914 Mha in 1986. The second source is the review by Squires and Glenn (2004) where the salt 222 

affected area approximately covers 1 billion hectares. We consider correspondence of other studies with 223 
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our assessment quite encouraging, since 68% validation accuracy (Table 3) and unequal distribution of 224 

training and validation data might suggest bigger discrepancy with other assessments that were based 225 

more on field studies. 226 

Another interesting observation from the global map in Figure 2 is that affected areas in Central Asia 227 

have been captured. We had almost no training points in that area (Figure 1), but the region is known to 228 

be one of the most severely affected by soil salinisation. In our opinion, this finding is supporting the 229 

principal validity of the method. However, we acknowledge that comparison with ground truth data from 230 

this area is required to further assess how well the maps produced here represent the spatial soil salinity 231 

patterns in Central Asia. 232 

The map generally captures known hotspots in salinity-affected regions, which we further discuss 233 

towards the end of this section, but also shows overestimation of salt-affected areas. For example, the 234 

map shows that Mexico is almost completely salt affected, which is an overestimation. Szabolcs (1989) 235 

states that 1.65 Mha is the area of salt affected lands in Mexico. This number would increase to this time, 236 

but still would be far from the total area of the country. We supposed that one of the reasons for this 237 

overestimation is an underrepresentation of Non saline class data points in the samples collected in 238 

Mexico. But after scrutinizing the sample dataset this appeared not to be the case. A vast majority of 239 

these samples (77%) belong to the Non saline class, which is comparable with the distribution in the 240 

dataset for the whole world. Moreover, trial maps produced with different seed numbers still had the 241 

same overestimation for Mexico. Therefore, it is not the result of a sampling bias, but probably the 242 

specific combination of values in soil properties maps we used for prediction that lead to this 243 

overestimation. In global affected area assessments this overestimation was probably negated by some 244 

cases of underestimation, like in Australia, where only few patches of salt affected lands are shown.  245 

The validation accuracy of this map is 68%. For different time steps classification is in a range of 67-246 

70%, depending on the date of thermal images used. In general, highest accuracy of 70% has been 247 

achieved when thermal images of 2000-2002 were used. 248 

Most of the classification errors appear in highly and extremely saline classes (Table 3). Those are the 249 

less common classes globally and they represented only a small fraction of WoSIS database, therefore 250 

we presume that using a larger number of highly and extremely saline training points might increase the 251 

accuracy. The influence of the amount of training points is especially visible if you compare the accuracy 252 

of two classes. The highly saline class is even less abundant in WoSIS database than Extremely saline. 253 

Therefore, less training points for the Highly saline class have been used and accuracy for it is less than 254 
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for Extremely saline, though in reality Highly saline areas are more widespread than Extremely saline 255 

ones. 256 

The important result is that when a point is misclassified, in most cases this point is still in a saline class, 257 

though maybe of a different degree, and only rarely it is assigned to the Non saline class. When only two 258 

classes are considered (saline and non-saline) producer’s accuracy raises up to 89%. That suggests that 259 

the approach is quite useful in distinguishing between salt affected and non-affected lands, and only the 260 

definition of the degree of salinity remains challenging.  261 

Table 3. Confusion matrix and accuracy statistics of 2016 map 262 

  Predicted  

 Salinity class Non 
saline 

Slightly 
saline 

Moderately 
saline 

Highly 
saline 

Extremely 
saline 

Total Producer’s 
accuracy, % 

O
b
s
e
rv

e
d
 Non saline 90 10 0 0 0 100 90 

Slightly saline 10 88 1 0 1 100 88 

Moderately saline 11 28 61 0 0 100 61 

Highly saline 15 34 4 47 0 100 47 

Extremely saline 18 29 1 0 52 100 52 

Total 144 189 67 47 53 500  

 User’s accuracy, % 62.5 46.6 91 100 98.1   

Together with random forest algorithm we checked two other classifiers available in GEE that are based 263 

on machine learning principles. The Support Vector Machine did not produce any meaningful results in 264 

our case. Almost the whole map has been classified as non-saline area. Classification and Regression 265 

Trees (CART) algorithm showed somewhat better results, but still worse than the Random Forest 266 

algorithm. The accuracy was around 50% and the map unrealistically overestimated highly and 267 

extremely saline areas. 268 

As we mentioned previously in this section, the global maps captured known soil salinisation hotspots. 269 

One of them is Grand Forks county on the border of North Dakota and Minnesota in the United States. It 270 

is a known salt affected area (Seelig, 2000) and it has been depicted on the map we produced (Figure 271 

4). In Seelig (2000) this area is marked as an area of frequent inclusion in productive land, which 272 

correspond to areas marked as Moderately saline in Figure 4. 273 
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 274 

One of a few countries in Europe affected by inland soil salinity problem is Hungary. Our map in Figure 5 275 

shows some slightly affected lands, which is correct for the area where ECe values are just slightly higher 276 

than 2 ds/m (Kovács et al., 2006). Though some areas were correctly identified, the big areas in the east 277 

of Hungary have been missed. The probable cause is that most of the areas with higher salinity are 278 

Figure 4. Soil salinity map of Grand Forks county and surroundings (2016) 
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grasslands and croplands with more tolerant species, therefore our method, which includes crop canopy 279 

temperature metric, did not capture those areas. 280 

 281 

3.2. Local soil salinity change 282 

To verify our hypothesis that integration of thermal infrared imagery from different periods of time will 283 

allow us to asses temporal change in soil salinity, we compared our maps with outcomes of several 284 

studies where such change is assessed. 285 

Figure 6 shows the soil salinity map for study area in Xinjiang Province, China. According to Wang et al. 286 

(2008) this area in a period from 1983 to 2005 suffered an increase in soil salinity due to irrigation and a 287 

rise in the shallow water table. A similar increase is shown by the maps. 288 

 289 

Figure 5. Hungary map of soil salinity (2016) 
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 290 

Another area of interest we found data on is the Bakhtegan Salt Lake region in Iran. According to 291 

Taghadosi and Hasanlou (2017) more that 76% of vegetated areas of this region experienced increase in 292 

soil salinity from 2000 to 2016. This is in accordance with the maps shown in Figure 7, where the map 293 

from 2016 shows significantly more salt affected areas compared with the map from 2000. 294 

Figure 6. Soil salinity maps (upper from 1986 and lower from 2005) of the Fubei region of 
Xinjiang Province, China. According to Wang et al. (2008) soil salinity increased in this area. 
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  295 

The next area we investigated is the Yellow river delta in China. Fan et al. (2012) have researched the 296 

dynamics of soil salinisation in the region for the period from 1985 to 2006. Their results show that while 297 

in 1985 salt affected areas were mostly located in the immediate vicinity of the river, in 2006 the 298 

majority of salt affected areas were mapped around the coast. In general, during those two decades the 299 

area suffered rapid increase in soil salinity.  300 

Figure 7. Soil salinity maps (upper from 2000 and lower from 2016) of the Bakhtegan Salt Lake 
region in Iran. According to Taghadosi and Hasanlou (2017) soil salinity increased in this area.  



16 
 

 301 

On contrary to the cases described previously, our map of the area is not in complete accordance with 302 

the reference. In Figure 8 the map from 1986 shows visibly more salt affected areas compared with the 303 

map from 2005. Nevertheless, some of the changes seem to be captured. For example, from 1986 to 304 

Figure 8. Soil salinity maps (upper from 1986 and lower from 2005) of the Yellow River Delta, 
China. According to Fan et al. (2012) the soil salinity increased in this area. 
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2005 salt affected areas in the immediate vicinity of the Yellow river have decreased. Moreover, some 305 

highly affected spots appeared on the coastal area in the north of the 2005 map. Both of which is in 306 

accordance with the results of Fan et al. (2012). 307 

The probable reason of the discrepancy in this result is the specifics of soil salinity development in this 308 

area. Here the main reason is the seawater intrusion, while in previous cases we looked into the problem 309 

of inland, dryland salinity. Moreover, close proximity of the sea could also influence the thermal data 310 

results. 311 

3.3. Global changes map 312 

To understand the spatial distribution of soil salinity change we produced a soil salinity change map 313 

(Figure 9). That is a difference map between 1986 and 2016 maps. In accordance with the statistics 314 

presented earlier (Table 2, Figure 3) the map shows mainly an increase in soil salinity. Yellow colours, 315 

representing the increase, are prevalent, while only few areas of the decrease can be seen. The majority 316 

of the salt affected areas experienced a change to a neighbouring class (i.e. from Non saline to Slightly 317 

saline or from Extremely saline to Highly saline) that is why only two colours are shown in the map. 318 

However, there are some areas of interest where more dramatic changes appeared. Those are marked 319 

by circles on the map. The area in Kazakhstan experienced an increase in soil salinity of up to 3 classes 320 

and areas in the North of the US have experienced a decrease of up to two classes. 321 
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 322 

3.4. Discussion of the method and implications 323 

The trend in soil salinity increase over time we showed was in most of the cases in accordance with other 324 

studies (Taghadosi and Hasanlou, 2017; Wang et al., 2008). However, a comparison with studies that 325 

describe soil salinity decrease over time would provide better validity of the method. Though areas where 326 

soil salinity decreased in time might exist, they definitely would not be widespread. Overall consensus 327 

among experts is that soil salinisation is expanding on a global scale, probably at a rate of 2 Mha per 328 

year (Abbas et al., 2013). As a result, we could not find a study describing soil salinity decrease through 329 

time. Without it, the trend might also represent general trend of global warming. Interestingly enough, 330 

even if so, our change maps still might be valid. Climate change is promoting soil salinisation through 331 

more frequent drought events, seawater intrusion in coastal areas and general increase in temperature 332 

(Dasgupta et al., 2015; Várallyay, 1994). Therefore, we can assume that many areas suffering from 333 

climate change would be prone to soil salinisation. 334 

The basis of thermal infrared imagery approach we used is described in Ivushkin et al. (2017); Ivushkin 335 

et al. (2018); Ivushkin et al. (2019). In those studies certain pre-processing was done to ensure that the 336 

thermal infrared data used in the analysis were coming from cropped areas vegetated above a specified 337 

Figure 9. Global soil salinity changes map from 1986 to 2016 (yellow shades show soil salinity 
increase and green shades show soil salinity decrease). 

The area of 

significant decrease  
The area of 

significant increase 
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threshold. Therefore, thermal infrared data used in these studies could be related to canopy 338 

temperature. In our case we did not do such a pre-processing because of issues that are the 339 

consequence of a global scale study, like vegetation season spanning all year round. Nevertheless, since 340 

increase in canopy temperature is a universal response to salt stress for a vast majority of plants 341 

(Munns, 1993, 2002), we assume that it will hold for other vegetation covers. In case of extremely saline 342 

areas where no vegetation is present, the surface temperature will be affected anyway, because open 343 

soil at a day time will have higher temperature than vegetated areas. Though we may presume that 344 

applying some comprehensive algorithm to select the thermal signal of vegetated areas only would 345 

increase validation accuracy, this will complicate the thermal analysis. As we described earlier, absolute 346 

temperature will not be a suitable indicator by itself, therefore some normalisation is required. That 347 

would be hardly possible if different parts of the single scene would have thermal information captured in 348 

different time of the year (because of several vegetation seasons, crop rotations, etc.). One solution 349 

might be using the deviation from air temperature, instead of the deviation from the long term mean 350 

surface temperature, which we used. But this will require global air temperature dataset of 351 

unprecedented detail, both temporal (30-60 minutes) and spatial, and synchronisation of this dataset 352 

with remote sensing observations. 353 

The thermal infrared data used was obtained by Landsat 5 and 8 satellites. While there are other sensors 354 

exist, our choice was deliberate. The main requirement that ruled out almost all other sensors is the time 355 

span of the research. There were only few openly available satellite sensors in 80s, even few capable of 356 

capturing images in thermal infrared band. Therefore, taking into account requirement for global 357 

coverage, Landsat program satellites are an obvious choice.  358 

Soil salinity is a quite dynamic soil property, both spatially and temporally, and it can vary on the scale of 359 

few meters. Therefore, high spatial resolution of remote sensing data is desirable for soil salinity 360 

assessment. While for visible bands such resolution is achievable (though mainly in commercial sensors), 361 

acquiring thermal images in high resolution is hindered by much lower signal intensity in the thermal 362 

infrared band. Moreover, other covariates in our study have spatial resolution of 250m. Therefore, having 363 

thermal images with resolution higher than 250m will bring only limited improvement for the final map. 364 

However, using higher resolution images in further studies would be undoubtedly beneficial due to the 365 

dynamic nature of soil salinity. 366 

One of the limitations of the WoSIS dataset we used is the spatially unequal sample distribution. That 367 

might be one of the reasons why the amount of salt affected lands in Mexico is overestimated. On the 368 

other hand, our approach was able to map salt affected areas in regions where training data were 369 
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absent, like Central Asia. Therefore, we conclude that the unequal spatial distribution of training points 370 

did influence the results, but did not influence them significantly. 371 

Though the thermography approach is more universal compared with other remote sensing techniques 372 

for soil salinity assessment, it still has some drawbacks. One of them is the different degree of the 373 

thermal response among plants. More salt tolerant plants would exhibit less increase in canopy 374 

temperature compared with not tolerant plants. Therefore, in the areas where more and less salt tolerant 375 

plants are growing in vicinity of each other, an assessment error is possible. Though in reality such a 376 

situation can rarely be encountered. 377 

Though Google Earth Engine is a powerful tool that provides access to the biggest library of open earth 378 

observation data and computational power to process it, the scientific community is quite cautious in 379 

adopting it. The main reason is that exact implementation of different functions, including random forest 380 

we used, is not always known. Moreover, these implementations can be changed at any moment, leading 381 

to different results even if you use the same functions to compute these results later. We recognise this 382 

issue. Nevertheless, its free of charge access and rich earth observation data archive makes GEE a useful 383 

tool for global assessments of different kinds. 384 

One of the directions for a further research might be the application of different machine learning 385 

algorithms, numerous selection of which exists. We intentionally limited ourselves to three main 386 

algorithms present in Google Earth Engine and, after discovering that two of them are not useful for our 387 

dataset/model combination, we continued the analysis using random forest. 388 

As we mentioned before, existing assessments of salt affected soils on a global scale are quite limited 389 

and approximate. Though the knowledge about the total affected area and its change would be an 390 

important information to improve global food security. The economic costs of soil salinity are also 391 

impressive. For example, just 2 million hectares of salt affected lands are costing Uzbekistan about US 392 

$1 billion annually (UNDP, 2009; World Bank, 2007). On a global scale the economic losses are just 393 

tremendous. A proper inventory of the affected lands would allow proper mitigation measures to be 394 

applied and cut the losses to the minimum. We hope that our study will contribute to this cause. 395 

4. Conclusions 396 

The results show that GEE random forest classifier is a useful tool for the global assessment of soils 397 

salinity. The resulting global soil salinity maps have a validation accuracy of up to 70% with several 398 

known hotspots captured. The assessment of global area affected is comparable with the assessments of 399 

other authors. The addition of thermal infrared imagery into the analysis can act as a dynamic variable 400 
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that allows to capture the trend of soil salinity change. That was confirmed in 2 out of 3 investigated 401 

cases. The one case where our results were different from the referred study had soil salinity of a 402 

different origin and we suspect that this might be the reason why the method did not perform well in this 403 

case. The method we applied allowed to predict affected areas even in the regions where training data 404 

were unavailable. Moreover, even in cases of misclassification in Highly and Extremely saline classes, 405 

misclassified points were still attributed to a saline class and only rarely to Non-saline, which means that 406 

areal extent of salt affected lands can be successfully mapped, and only definition of degree of salinity 407 

still represents a challenge. Therefore, we conclude that a combination of soil properties maps and 408 

thermal infrared imagery can allow mapping of soil salinity development in space and time on a global 409 

scale. 410 

The code and data used to produce the global soil salinity maps can be accessed by registered Google 411 

Earth Engine users at https://code.earthengine.google.com/d43e5a92ae1deed32a0929f57b572756. 412 
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