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Abstract

Arctic Sea Ice has been decreasing for many years, due to climate change. However, climatemodels and especially initialized climate predictions, are unable to accurately capture this.Due to errors and biases with the models, the amount of sea ice drops significantly in the firstyear in the model. This study focused on correcting for this model drift, during post-processingusing statistical methods.
We applied two conventional methods, Quantile Mapping (QM) and Ensemble Model OutputStatistics (EMOS), and a novel correction method (Recurrent Neural Networks or RNNs) tothe first year predictions for anomalies of sea ice extent, of an initialized large ensemble fore-cast (CESM-DP-LE dataset). Using QM, we were able to reduce the error up to some extent.EMOS resulted in a larger reduction, and a better representation of the distribution, comparedwith Quantile Mapping. However, there was much to be desired. RNNs, with Long Short TermMemory nodes, were also used. This type of machine learning network is able to use previoussteps in predictions for next steps, and therefore ideal for time series analysis. These RNNs re-sulted in a reduction of the error, but the distribution of the RNN was largely under-dispersive.However, using more or different data, the correction might be improved.
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1. Introduction

The Arctic sea ice has been slowly melting away for several decades (Walsh and Chapman,2001) due to climate change. A decrease in Arctic sea ice will have an impact on the rest ofthe earth (Budikova, 2009), since the Arctic sea ice influences many global processes. Forexample, sea ice reflects a high fraction of incoming solar radiation and plays an importantrole in the global ocean currents (When forming, it increases the salt content of surroundingseawater. This seawater densifies and sinks)
Furthermore, in the Arctic region, this poses both threats and opportunities. For example, theArctic houses a huge amount of natural resources that can be mined with decreasing seaice (Lindholt, 2006). Shipping also benefits, by using shorter routes between the Atlantic andPacific oceans through the Arctic region (Khon et al., 2010). However, the retreat of sea iceposes a threat to the infrastructure, health and safety of the indigenous people in the region(Cochran et al., 2014). Wildlife will also be affected by the decrease in sea ice (Larsen et al.,2014): some species might go extinct while others migrate from the south.
Because of the consequences of Arctic sea ice melting, the Arctic has received a lot of interestfrom researchers. In climate models, sea ice change has been intensively studied. However,when the model results are compared to observations, the model generally overestimates theamount of sea ice (Stroeve et al., 2007). These models do not use observations as a startingpoint (uninitialized) and follow their own (imperfect) climatology. Later on, models that do useobservations as a starting point have been developed (initialized forecasts). We see that theseinitialized forecasts develop a bias over time: they drift away from the observations, towardsthe climatology it had, when it was not initialized (see Figure 1.1). Although different strategiesto remove this bias have been studied (e.g. Kharin et al., 2012; Krikken et al., 2016), there isstill room for improvement.

Figure 1.1.: Schematic illustration showing how climate predictions drift away from the initialization to their ownlong-term climatology (Kharin et al., 2012). The thick black line shows the observations, from which the forecasts(colored thin lines) are initialized. The thick grey line shows the uninitialized model.
Ensemble models have been used to represent the uncertainty in initial fields in both weatherand climate models. In an ensemble model, different ensemble members are calculated, eachwith a randomly perturbated initial state, thus giving other results. The spread of the (entire)ensemble represents then the uncertainty in the forecast. However, due to different modelerrors, these ensemble members may contain biases. The entire ensemble may also not rep-resent the spread in uncertainty accurately (Wilks and Hamill, 2007).
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Therefore, ensemble calibration techniques need to be applied to correct for these biases andto improve the forecast (Wilks and Hamill, 2007; Kharin et al., 2012; Krikken et al., 2016). Inweather modelling, these calibration techniques are referred to as Ensemble Model OutputStatistics (Ensemble MOS or EMOS). Ensemble calibration techniques generally take either allensemble members, or the ensemble mean and spread as an input. From those inputs, theycalculate a distribution of the variables and adapt the entire ensemble to fit this distribution.
Recently, Yeager et al. (2018) developed a new dataset: CESM-DP-LE. They computed a setof 62 decadal predictions (DP), using the Community Earth System Model (CESM). For eachprediction, a 40 member ensemble was run, each with slightly randomly perturbated atmo-spheric initial conditions. This dataset is thus the output of an initialized forecast, in whichthe ensemble of all members represents the uncertainty in the initial conditions. It representsthe initialized counterpart of the CESM Large Ensemble (CESM-LE; Kay et al., 2015), which hasbeen studied.
1.1. Research Objective

In this study, we want to improve climate predictions for sea ice extent in the Arctic region.Using different ensemble calibration techniques we will analyze the output of a high resolution,fully coupled, initialized, large ensemble climate model: CESM-DP-LE. To obtain this goal, wedefined the following research question.
How can the predictive skill of the outcome of a climate prediction, in the Arctic region, be im-
proved?

To answer this question, we will correct the output of the climate model using three differenttechniques: Quantile Mapping (QM), Ensemble Model Output Statistics (EMOS), and RecurrentNeural Networks (RNN). We will assess the predictive skill of the corrected data, and comparethem against each other, and to the uncorrected model output.
1.2. Background

In this section, we will dive further into the Arctic region and the physical processes involved(Section 1.2.1). We will also discuss briefly the history of Ensemble Calibration Techniques,and why we used Quantile Mapping, Ensemble Model Output Statistics and Recurrent NeuralNetworks (Section 1.2.2). Afterwards, in Chapter 2, we describe how these methods are im-plemented, which pre-processing steps we take and how we define and measure predictiveskill.
1.2.1. The Arctic Region

The Arctic Region is the northernmost part of the Earth (see Figure 1.2 ). It is home to theArctic Ocean as well as parts of the American and Eurasian continents. The region consists ofthe Arctic Ocean, surrounded by land masses. Sea ice covers the ocean through the year, butshows a strong seasonal cycle (Fetterer et al., 2017). In winter, the amount of Arctic sea icegrows, and at its maximum extent (in March) it covers the Arctic ocean completely, as well asparts of surrounding seas (e.g. the Bering Strait, and the Atlantic Ocean) (Fetterer et al., 2017).Since the Arctic Ocean is bordered by land masses, the lateral development of Arctic sea iceis limited by these. In summer, around half of the sea ice melts away, and the sea ice retreatsback into the Arctic Ocean (Parkinson et al., 1999). At it’s minimum extent (in September)shipping through the Arctic ocean is possible (Khon et al., 2010).
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Figure 1.2.: Map showing the Arctic Region, with Arctic Circle (blue, dashed line), and names of the smaller sea’sin the region.

Sea ice forms when the surface layer has been cooled to -1.8°C. It first forms as small crys-tals, which are broken up due to wind and turbulence. When freezing together, these crystalsform a thin (up to 10 cm), transparent sheet of young ice (called nilas). Over time, these nilasthicken to dark young ice (between 10 and 30 cm) and towards first-year ice (thicker than 30cm). When it has survived an ablation (melting) season, it forms old ice (World MeteorologicalOrganization, 2015).
The amount of sea ice in the Arctic can be measured in many different ways. Historically, seaice is measured or estimated in situ: sea ice thickness was measured by drilling ice cores andsea ice concentration by making estimates from ships or aircraft. However, these observa-tions do not provide any information about the spatial distribution of sea ice (Divine and Dick,2006).
Remote sensing techniques (e.g. satellite observations, submarine sonar, radar) made it pos-sible to measure the sea ice concentration per pixel, or data cell. Sea ice extent, which reportsthe area at which (at least some) sea ice is present, can be calculated from these concentra-tions (by using a threshold sea ice concentration or fraction). Sea ice area data is less abun-dantly available (Meier et al., 2014). It only measures the area of the sea ice itself. It can beapproximated by using the sea ice concentration as weight when summing the areas of thedata cells.
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Spatial sea ice thickness measurements are also available (Meier et al., 2014), since the launchof the ICESat (2003) and the Cryosat-2 (in 2010). In theoretical sea ice models (like PIOMAS),sea ice volume is often calculated (Schweiger et al., 2011). This parameter represents sea iceformation the best, however, it is hard to verify with direct observations.
1.2.2. Ensemble Calibration Techniques

Over the past decades, many different techniques have been developed, to remove biasesfrom model predictions. Especially in weather forecasting, these techniques are often usedon an operational basis. However, climate predictions are not often corrected using thesetechniques.
In this study, we focus on two different types of Ensemble Correction Methods. The first cat-egory focuses on correcting the distribution of the variable of interest and thereby minimizesthe systematic errors in the prediction of this variable. The other category uses a machinelearning approach, in which the correction is calculated based on many other variables, by acomputer.
Correction techniques, based on the distributionKoenker and Bassett (1978) proposed to use Quantile Regression, or Quantile Mapping (QM) toresolve this problem. Quantile mapping is a relatively simple bias calibration method and hasbeen used extensively to correct for the biasses in climate and hydrology forecasts (Verkadeet al., 2013). This technique compares the distributions of both the observation and predictiontime series. For each quantile, a correction is defined, based on the difference between thedistributions (see also Section 2.4.1). Since it approaches the distribution of the observationdirectly, it does not require that the parameter is distributed normally. It does, however, requirea large amount of data. In this study, we try to correct our ensemble using Quantile Mapping,since QM is a direct way to map our predictions towards the observations, and make sure thedistributions are equal.
Gneiting et al. (2005) developed a framework, called Ensemble Model Output Statistics (EMOS)or non-homogeneous Gaussian regression. This framework parameterizes Quantile Mapping,by defining a distribution to map towards. It uses a normal distribution (or Gaussian distribu-tion), which is fitted to the observations, by applying linear regression to the ensemble meanand variance (see Section 2.4.2). Therefore, it does not require a large dataset, but is alsounable to correct for parameters that are not distributed normally (for example precipitation).Since the introduction of EMOS, it has been implemented in many operational weather fore-casting systems and developed itself as the baseline Ensemble Calibration Technique. There-fore EMOS is also used in this study.
Krikken et al. (2016) used two different types of logistic regression to make an ensemble cor-rection for a climate model for the Arctic region. With this type of regression, an S-shaped lineis fitted through the cumulative distribution figure (CDF) of the data. Both extended logisticregression (ELR) and heteroscedastic extended logistic regression (HELR) were used in thatstudy, but no clear distinction in skill between the two methods was found. Since this methodalso tries to parameterize the distribution of the variables of interest, like EMOS, we did notuse (H)ELR in our study.
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Machine learned Ensemble Correction TechniquesMachine learning is a data analysis method, in which statistical models are built and adjustedby a computer to perform a specific task. These models are created from the data and do notcontain any pre-programmed relations about the data. Machine-learned models are able tosolve classification problems or analyze non-linear relationships between many variables, butdo require huge amounts of training data.
Machine learning algorithms have existed for quite some time (e.g. McCulloch and Pitts, 1943;Quinlan, 1986; Meinshausen, 2006), but computing power was too limited to train these mod-els and outperform regular statistical methods. Recently, these issues have been resolved, andMachine Learning became a feasible method to analyze a wide range of problems, includingatmospheric problems (e.g. Taillardat et al., 2016; Rasp and Lerch, 2018).
An Artificial Neural Network (ANN), is such a machine learning technique and is able to modelnon-linear relationships quite effectively. First proposed by McCulloch and Pitts (1943), thesenetworks exist of multiple layers of interconnected linear regression nodes (see Figure 1.3).Each node calculates the weighted sum of the inputs, passes the result through an activationfunction. This function maps the result of the weighted sum to another result (for regressionproblems, a sigmoid or tanh curve is often used). By adjusting the weights and activationfunctions of each node, regression problems can be solved.

Figure 1.3.: a) Schematic overview of an artificial neural network (here a feed-forward network). Information flowsin from the left and passes to 2 layers with 4 hidden nodes. Names of the components and layers are shown. b)Schematic overview of a simple node in a neural network. The inputs xi are summed, using their weights wi. Theresult of the summation is passed to the activation function σ(x).

Rasp and Lerch (2018) used an ANN to post-process an ensemble weather model for differentstations in Germany. They used a relatively simple network with two layers (one input layer,and one output layer), and a three-layer network (one input layer, one "hidden layer", and oneoutput layer). Their three-layer network out-preformed EMOS for many stations.
In this study we will use Recurrent Neural Networks (RNN). This type of ANN uses nodes inwhich results and node-weights from a previous (time)step can be used in the next step (seeFigure 2.2). These networks are therefore able to store or remember events from previous timesteps and use those event to adjust the predicted value in future steps. Regular ANNs do nottake any info across (time)steps.
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2. Methods

As discussed in Chapter 1, if we aim to improve climate predictions for the Arctic region, wefirst needed to retrieve our dataset. The dataset was then preprocessed, in order to obtaintime series of sea ice extent and average surface temperature at 2 m. These time series werecorrected using three different Ensemble Calibration Techniques. Finally, we compared thepredictive skill of corrected and uncorrected datasets, to see which technique was performingthe best. These steps are visualized in the flowchart below (see Figure 2.1)

Data Retrieval Pre-processing Apply EnsembleCalibrationTechnique
Assesspredictive skill.

Figure 2.1.: Flowchart illustrating the steps in this project.
In this chapter we will introduce our dataset, preprocessing steps, skill assessment and thedifferent Ensemble Calibration Techniques. The mathematical notation used in this chapter,and the rest of the report, are listed in Appendix A.1.
2.1. Data

As mentioned in the introduction, we used the CESM-DP-LE dataset developed by Yeager et al.(2018). They computed a set of 62 Decadal Predictions (DP), using the Community Earth Sys-tem Model (CESM). Each prediction contains a Large Ensemble (LE) set of 40 members, withslightly perturbated initialization conditions. The predictions in this dataset started on Novem-ber 1st of each year between 1954 and 2015, and predicted up to 10 in the future. They hadtime steps of 1 day, and a horizontal resolution of 1×1°.
We used two different variables: sea ice extent and surface temperature (at 2 m above thesurface). To remove some of the larger biases the predictions develop over time, we lookedonly at the first year of each prediction.
Observations of sea ice extent and surface temperature were used to train the ensemble cali-bration methods and to validate the corrected forecast. For sea ice extent, we used the NSIDC(National Snow & Ice Data Center) Sea Ice Index (Fetterer et al., 2017). The Sea Ice Index repre-sents the sea ice extent, since 1979 and is calculated from many different instruments (aboarddifferent satellites) over time. Observations from 1979 to 2015 were used for comparison withthe results. For surface temperature, NCEP/NCAR 40-year reanalysis was used (Kalnay et al.,1996).
2.2. Preprocessing

To reduce the size and dimensionality of our dataset, we integrated our variables over theentire Arctic region, to create simple time series of our variables. This still allowed us to vali-date our Ensemble Correction Methods. Sea ice extent is often defined as the area with a seaice fraction higher than 15% (Vaughan et al., 2013; Sigmond et al., 2013, e.g.). Therefore, wesummed the area of all cells with a sea ice fraction higher than 15 %. The same approach isused for the observations we use, made by Fetterer et al. (2017). For the average temperature,we used the average of all cells above 80°N, weighted by cell area. The Danish Meteorological
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Institute (2019) uses this definition in their reports on arctic weather.
In our study, we were not interested in forecasting the long-term climatological trend or sea-sonal cycle. Krikken et al. (2016) showed that there is also a large monthly component in thelong-term climatological trend (see also Figure 3.4b & e). To make sure our ensemble correc-tion techniques do not fit towards these, we needed to remove these components. Therefore,we first averaged our data to monthly data and afterwards removed the long-term climato-logical trend, for each month separately (thereby we also removed the seasonal cycle). Thelong-term climatological trend was approached linearly, to keep as much variability betweenmembers as possible. We did this with the following formula:

E′ = E − (a ∗ year + b) (2.1)
in which E is the sea ice extent, E′ are the anomalies of the sea ice extent, year ∈ [1954, 2015]is the year and a and b are the linear regression model parameters for slope and intercept(respectively). The parameters a and b were defined for each of the 12 months, separately. Byusing the equation above, we obtained monthly-averaged sea ice extent anomalies. We usedthe same approach for the surface temperature (T ), and the observations for sea ice extentand surface temperature. Since observations for sea ice extent are not available between 1954and 1979, the parameters (a and b) were defined using the data between 1980 and 2015.
2.3. Skill assessment

To assess the skill of the ensemble calibration methods, we used three different measures.The root mean square error (RMSE) was used to assess the absolute error of the ensemblemean. The continuous ranked probability score (CRPS; Hersbach, 2000) was used to comparethe distribution of the forecast to the observations. The CRPS is defined as
CRPS =

∫ ∞
−∞

(
FY (y)− 1(y ≤ x)

)2
dy (2.2)

where F is the cumulative distribution function (CDF), x and y denote the observed and fore-casted variables respectively, and 1 is a Heaviside step function which results to 1 if y ≤ x,and to 0 otherwise. Both the RMSE and CRPS values have the same unit as the variable ofinterest and both are negatively oriented (a lower score indicates a higher skill).
To compare the different ensemble calibration techniques, we used the continuous rankedprobability skill score (CRPSS), which is defined as

CRPSS = 1− CRPS

CRPS ref
(2.3)

where CRPS is the CRPS of a forecast, and CRPS ref is the CRPS of a reference forecast(uncorrected ensemble). The CRPSS values range between −∞ and 1. Above 0, they de-note that the forecast performs better than the reference forecast. We used the R-package
easyVerification (R Core Team, 2018; MeteoSwiss, 2017) to calculate the CRPS, CRPSS andRMSE.
Since our ensemble calibration techniques were fitted to correct the forecast and bring themcloser to the observations, they are prone to overfitting 1. Therefore, we divided the dataset

1Process in which a model or technique is fitted almost exactly to a particular set of data and fails to generaliseits results to other sets of data. An overfitted model or technique will show no per formance with any dataset,other than the dataset used to train it.

11



into two parts: a training and a validation period. Predictions that started in 1954 until 2002,and the corresponding observations, have been used to train the ensemble calibration tech-niques (e.g. parameter fitting). These trained techniques were then applied to the predictionsstarting in 2003 until 2015 for validation. The RMSE, CPRS and CRPSS were calculated fromthe performance of the trained techniques in this validation period. In that way, we were ableto exclude overfitting and assess the ensemble calibration techniques fairly.
2.4. Ensemble Calibration Techniques

Using three different correction methods, we tried to improve the ensemble of the climatepredictions. In this section we will discus the workings of Quantile Mapping, Ensemble ModelOutput Statistics, and Recurrent Neural Networks.
2.4.1. Quantile Mapping

Quantile Mapping (QM), or Quantile regression, is a method to align the distribution of theforecast to the distribution of an observation series, assuming that a perfect forecast hasthe same distribution as the observations. To implement this, cumulative distribution figures(CDFs; denoted F in our equations) were created for the observations and forecasts. A CDF isdefined as
FA(α) = P(A ≤ α) (2.4)

For every value α in a series A, the CDF FA results in the probability that a random value in Awill be less than or equal to α. The result is called a quantile (θ) and ranges between 0 and 1.
θ = FX (x) (2.5)

With Quantile Mapping, we use the forecast CDF (FX ) to calculate the quantile (θ) of a forecast(x). This quantile is then put into the reverse CDF of the observation (F−1Y ), to obtain a correctedforecast (xcorr ).
xcorr = F−1Y (θ) (2.6)

Since sufficient data points were available to create CDFs empiricaly, we used a simple empir-ical approach to quantile mapping in this study.
2.4.2. Ensemble Model Output Statistics

Ensemble Model Output Statistics (EMOS), or non-homogeneous Gaussian regression, is aregression technique, in which the distribution of the observations (Y ), is adjusted. This wasdone by modelling the distribution as a normal distribution (N ), based the forecast ensemble(X).
Y | X ∼ N (µ, σ2) (2.7)

In the equation above, N (µ, σ2) denotes a normal distribution with a mean µ and variance σ2.Within the EMOS framework, the mean was modelled linearly from the ensemble mean (X).The variance was also modelled linearly from the ensemble variance (s2X ) as shown below.
µ = a+ b ·X
σ2 = c+ d · s2X

Y |X ∼ N (a+ b ·X, c+ d · s2X)

(2.8)

The regression parameters a, b, c, and d were adjusted to minimize the CRPS score on thetraining dataset. Validation was done with the same regression parameters, on the validation
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dataset (as discussed in Section 2.3).
When applying EMOS, one often uses all ensemble members in the equation for µ, such that,

µ = a+ b1 ·X1 + b2 ·X2 + · · ·+ bn ·Xn (2.9)
in which X1..Xn represent the ensemble members, and b1..bn represent their regression pa-rameters. However, this requires the ensemble members to have individually distinguishablecharacteristics (Gneiting et al., 2005). Here, our members came from small perturbations inthe initial conditions in the model and therefore did not have individually distinguishable char-acteristics.
2.4.3. Recurrent Neural Networks

As described in the Introduction, we used Recurrent Neural Networks (RNN), a type of neuralnetwork which is able to use results and node-weights from a previous (time)step, to improvethe performance in the next time step. In our study, we used Tensorflow (Abadi et al., 2016)and Keras (Chollet, 2015) to implement our RNN.
In this section, we will first describe how the model is designed, which components it usesand how it was trained. Afterwards, we describe three different experiments.
RNN designOur RNN model consisted of one to four hidden layers with Long Short Term Memory (LSTM)nodes. Each layer contained 16, 32, 64, 125, or 256 nodes. We assessed the performance ofdifferent setups, to see which setup gives us the best results. A list of all different setups canbe found in Appendix A.3.

Figure 2.2.: A schematic overview of an LSTM node. xt and yt denote the input and output vectors of this node.The cell and hidden states are denoted by ct and ht (or ct−1 and ht−1 when they are calculated in a previous step).The gates f , i, and o use a sigmoid function (σ). A tanh-activation function is used to calculate the candidate cellstate (c̃) and the result of this node (ht and yt).

Long Short Term Memory (LSTM) nodes are able to use events, that happened, a few or many,time steps ago, in the calculation of the current step. Developed by Hochreiter and Schmid-
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huber (1997), each LSTM node passes their result (called the hidden state h), and a cell state(c) along to the next step (see Figure 2.2). Three gates (f , i, and o) determine which compo-nents are included in these states. The forget gate (f ) regulates which components of the cellstate are forgotten. The input gate (i) determines which parts of the candidate cell state (c̃),are passed along to the cell state. Finally, the output gate (o) regulates which componentsof the hidden state and the input are used to compute the final result. The gates (f , i, and o)and candidate cell state (c̃) all use their own set of weights (wf , wi, wo, and wc̃) and biases(bf , bi, bo, and bc̃) in the activation functions. Equation 2.10 shows how these parameters arecalculated for a certain (time)step t. Note that the weights (w) and biasses (b) are equal for alltime steps.

zt =

(
ht−1

xt

)
ft = σ(wf · zt + bf )

it = σ(wi · zt + bi)

ot = σ(wo · zt + bo)

c̃t = tanh(wc̃ · zt + bc̃)

ct = ft � ct−1 + it � c̃t

yt = ht = ot � tanh(ct)

(2.10)

Training processThe model was trained in chunks, or batches of a certain number of time steps. In each train-ing step one batch was passed through the model and the parameters (weights, biasses andactivation functions) were adjusted to minimize the loss function, using the optimizer. After an
epoch (in our study, 100 training batches), the loss function was calculated over the validationdataset. If the network did not improve the validation loss over five epochs, the training wasterminated.
As loss function (L), many different variables can be used (e.g. Root Mean Square Error orMean Absolute Error), as long as they have a negative orientation (a lower loss indicates ahigher predictive value). By changing the loss function, one can train the neural network toperform better at certain tasks. We used the following loss function:

L ≡ 1− R2 =

∑
(Y − xcorr )2∑
(Y − Y )2

(2.11)
This loss function motivated the neural network to approach the distribution of the observa-tions as closely as possible. The loss function was not calculated over all time steps withina batch, since the hidden and cell states of the RNN require some initialization. Therefore wedefined a warm-up period of 12-time steps, which were ignored when calculating the loss.
The loss function was minimized by an optimizer. An optimizer calculates the gradient of theloss, as a function of the parameters (weights, biasses and activation functions). Calculatingthe gradient over all samples in the dataset is, however, computationally challenging. There-fore, one often uses Stochastic Gradient Descent (SGD). SGD is a method to step down thegradient of a loss function, in small steps. It calculates the gradient over a small subset ofthe dataset, assuming that this represents the gradient over the entire dataset. By changinga learning rate (η) one can adjust the sensitivity of the optimizer to the gradient.
In this study, Root Mean Square Propagation (RMSprop; Hinton et al., 2012) was used as anoptimizer. RMSprop is an advanced form of SGD, which uses a moving mean square gradient
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(v), calculated over the last 10 batches (s). The parameters of the neural network (p; weightsand biases) were then adjusted using the square root of v:
vs ≡ 0.9 · vs−1 + 0.1 · (∇L)2

ps = ps−1 −
η
√
vs

∇L
(2.12)

By using a moving mean, RMSprop is quite resilient against rapid changes in the gradient, andit ensures that the descent steps for a certain batch are (approximately) in the same directionas the descent steps of the last batches.
By tweaking our hyper-parameters (e.g. the number of epochs, batches per epoch, data-pointsper batch, and ignored (time)steps when calculating the loss function, and learning rate), weselected the best preforming model. The resulting values of hyper-parameters can be foundin Table 2.1.
Experiments Table 2.1.: RNN settings and hyper-parameters

Setting Value
Node type LSTM
Layers 1, 2, 3, or 4
Nodes per layer 16, 32, 64, 128, or 256
Training Epochs 20
Training steps per epoch 100
Data points per step 240
Loss function 1−R2

Warm-up period 12
Optimizer RMSprop
Learning rate 10−3 to 10−5

With our RNN setup, we ran three different experiments. In this section, we will discuss theiroverlapping aspects, and their induvidual setups, where they are different.
For our three experiments, we used both sea ice extent and surface temperature data. How-ever, our activation functions (sigmoid and tanh) required that the input variables lay between0 and 1. Therefore we normalized these, using these equations:

Ê′ =
E′ + 4.35× 106

6.70× 106
T̂ ′ =

T ′ + 11

22
(2.13)

where E′ and T ′ denote the climatological anomalies of sea ice extend and surface temper-ature (resp.), and E′′ and T ′′ represent their normalized versions. 0 and 1 are also the limitsof the output range, but we did not want to limit the RNN to the minimum and maximum ofthe input. Therefore, we picked the values in the equations in such a way, that we allow smallmargins around the minima and maxima of E′ and T ′ to still fall within the [0, 1]-range.
In contrast to Quantile mapping and Ensemble Model Output Statistics, we did not use theobservations of sea ice extent, to validate our RNN. To train a Neural Network a large datasetis needed. Since the observations were not available for the first 25 years of the CESM-LE-
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Figure 2.3.: Representation of an RNN with recurrence over time.

DP dataset (1954-1978), they limit the amount of data available. Therefore, instead of usingobservations, we picked one of the ensemble members which will act as pseudo-observation,per batch.
Predicting seasonal cycle As a first experiment, we tried to predict the full seasonal cycle ofsea ice extend, to see how well our model was able to learn from these (regular) signals. Wedid not use Ê′ and T̂ ′ in our RNN, but instead we used Ê and T̂ (without applying Equation 2.1).All members (except the pseudo-observation member) were used as input in the RNN model.For the setup, see Figure 2.3
Anomaly correction with recurrence over Time Our second experiment focussed on correct-ing the anomalies (as was done, with Quantile Mapping and Ensemble Model Output statis-tics). Again, all members (except the pseudo-observation member) were used as input in theRNN model, together with some information about the time (month and year). with the recur-rency steps over time (see Figure 2.3).
Anomaly correction with recurrence over Members Our third and last RNN experiment fo-cused also on correcting the anomalies. However in this experiment, we did use the differentensemble members as an input, but used a year of time steps as input. At each followingstep in the RNN, we provided it with the following ensemble member. Thereby not recurringover time, but over the ensemble members. The output was also defined as 12 timesteps of(normalized) sea ice anomalies (see Figure 2.4).
We only wanted to assess the RNN on it’s final output (after analyzing all 39 members). There-fore we used 39 data points per batch (instead of 240), and a warm-up period for the lossfunction of 38 (instead of 12).

Figure 2.4.: Representation of a RNN with recurrence over members.
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3. Results

In this study, we seek to improve the predictive skill of the outcome of a climate prediction inthe Arctic Region, using different Ensemble Calibration Techniques.
In this chapter, we will first explore the data we have (Section 3.1), and show the results ofthe preprocessing steps taken (Section 3.2). We assess its quality before any correction ismade (Section 3.3). Afterwards we apply our three different Ensemble Calibration Techniquesto improve this data. In Sections 3.4 to 3.6 we will discuss how Quantile Mapping, EnsembleModel Output Statistics and Recurrent Neural Networks improved our forecast. Finally, we willcompare different methods with each other, in Section 3.7.
3.1. Data Exploration

The data of the CESM-DP-LE model (Yeager et al., 2018), predicts sea ice concentration spa-tially. Since we calculate sea ice extent, from the sea ice concentration, we will first take alook at the spatial distribution of sea ice concentration and surface temperature in the Arcticregion.

Figure 3.1.: Spatial distribution of the climate prediction for 1980-11-01 (40-member ensemble average). Thisclimate prediction was initialized at 1979-11-01. a) Sea ice concentration. Cells with a concentration higher than15% where used to calculate the sea ice extent, other cells were ignored. The corresponding sea ice extent for thisdate is shown in the lower-left corner. b) Surface temperature. The white circle indicates the 80°N parallel. Theaverage surface temperature north of the 80°N parallel is shown in the lower-left corner.
In general, sea ice concentration is quite homogeneous through space (see Figure 3.1a): largearea’s contain a sea ice concentration higher than 90%. But sea ice does not spread evenlyacross all longitudes. The Arctic basin is fully covered by sea ice (see Figure 1.2 for the locationof the seas within the Arctic Ocean). However, south of the basin (between 80°N and 70°N)sea ice does not fully cover the ocean. The Kara, Barents and Greenland seas, do not containas much sea ice.
Especially in Baffin Bay the concentration is lower farther from the islands. The funnel-shapedChukchi Sea seems to limit the growth of sea ice; due to the landmasses sea ice floats into
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more southern regions, where it will melt due to the higher temperatures.
The surface temperature distribution in the Arctic region (Figure 3.1b), seems to follow thesea ice extent, however over icey landmasses (like Greenland, the Canadian Archipelago andSiberia) it shows even lower temperatures.

Figure 3.2.: Seasonal trend of the climate predictions (40-member ensemble average; daily data). Only the firstyear of a prediction is plotted. Since the predictions start on the 1st of November, a small jump is visible there. Theseasonal trend is plotted for different years, at 5 year intervals, showing the long term trends. a) Sea ice extent. b)Surface temperature, spatial average north of 80°N.
In Figure 3.2, the seasonal trends of sea ice and surface temperature are shown. The seasonaltrend of the surface temperature is quite variable, especially in November until March. Theseasonal trend in sea ice extent however, shows less variability, due to the slower processesinvolved in melting and formation of sea ice. The seasonal cycle of sea ice is thus highlydominant in the signal, and this figure shows the need for the seasonal signal to be removedbefore any other corrections can be made.
Sea ice extent minima fall in September, a few months after the temperature maximum. Thisis expected since even in September, it is warm enough to melt sea ice away. Especially atmore southern latitudes. In April temperatures above 80°N begin to rise, coinciding with thesea ice maxima.
The effects of climate change, are also visible in Figure 3.2. Temperatures are slowly rising andsea ice extend is overall decreasing. From 1990 onwards, this is especially visible. The minimalextend of sea ice (in September) is strongly effected by this change. In March, however, thedifferences are not that pronounced, but still distinguishable. Therefore we need to removethis trend, lead-time dependently.
Please note, that our predictions where initialized in November. Therefore there is a small gapin the lines between October 31st, and November 1st. The spikes in surface temperature inNovember, are probably due to an initialization shock of the CESM-DP-LE model.
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Figure 3.3.: Predictions (40-member ensemble average) for sea ice extent in November; monthly averaged. Thedot (at the beginning of each line) indicates the initialization moment of each prediction, the line connects thefollowing (10) Novembers in that prediction.

To illustrate the bias of the predictions developing over time, we show in Figure 3.3 the pre-dictions of sea ice extent for November. Predictions are initialized at the November 1st, withobservations (displayed by a dot). The lines connect the other years in the prediction (onlyNovember values). A striking feature of this figure is, the strong increase in sea ice extent(0.8×106 km2 on average) within the first year, similar to the schematic drawing in Figure 1.1.In following years, the bias develops further, but at a lower rate. Over time this developmentalso slows (form a difference of 1.3×106 km2 to a difference of 0.1×106 km2 over the last9 years). The figure also clearly shows the years 2007 and 2012, in which the sea ice extentreached historic minima. Overall, this indicates that the observations are not correctly fol-lowed by the prediction, and that a correction is needed.
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3.2. Preprocessing

Figure 3.4.: Variations of the monthly averaged sea ice extent (a, b and c) and surface temperature (d, e and f),illustrating how the seasonal cycle and long term climate was removed and the anomalies were created. a & d)Monthly averaged ensemble averages for the first year of each prediction. Each line indicates a different month.b & e) Linear trends of the ensemble averages. These trends were created over the period 1980-2015 (white). Theother periods (in grey; 1954-1980 and 2015-2016) were not taken into account. c & f) Anomalies in sea ice extentand temperature. Created by subtracting the linear trends (from figures b and e) from the monthly averages (figuresa and d).
Figure 3.4 shows the pre-proccessing process. By subtracting the linear trends (3.4b and 3.4e)from the monthly averages (3.4a and 3.4d), we obtained monthly anomalies to the climate(3.4c and 3.4f). As mentioned in Section 2.2, only the period between 1980 and 2015 wasused, to create the monthly linear trends (in white), and the other years (1954–1979 and 2016;in grey) were ignored to create these. The anomalies in 2016 do seem consistent with thosebetween 1980 and 2015. However, the anomalies between 1954 and 1979 show large system-atic deviations, ranging between −2 and 0×106 km2.
From Figure 3.4, one may conclude that the climatological trend is a non linear process, andsubtracting the linear trends from the monthly averages is not an accurate way to remove it.Another way, would be by computing 30-year moving averages for separate month. In thisstudy, however, we choose to approach the trend linearly, to retain as much data as possi-ble.
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3.3. Uncorrected Predictions

Figure 3.5.: Anomalies in sea ice extent; observations are compared with the first years of the uncorrected pre-dictions. a) Sea Ice Extent anomalies over time. The grey, thin lines represent the different ensemble members,the red, thick line the ensemble average and the blue line with dots the observations. b) Cross plot between theobservations and uncorrected predictions. Members are displayed in grey-semitransparent dots, ensemble meansare displayed with red crosses.
To illustrate what our starting point is for our Ensemble Correction methods, we will first diveinto the uncorrected predictions and the observations. In Figure 3.5a, we see the uncorrectedensemble prediction for sea ice extent, and the corresponding observations. The time rangedisplayed is part of our validation dataset (see Section 2.3). In Figure 3.5b however, the entirevalidation dataset is plotted.
In Figure 3.5a, we see that the ensemble members show little variations between Novemberand May. From June onward, the ensemble members diverge up to September, after whichthey converge again. One would expect that ensemble members would keep diverging fromthe ensemble, due to an increase in uncertainty, when making predictions in a chaotic system.However, sea ice has a clear seasonal cycle, and the period which shows the diverging en-semble members is the ablation period (see also Figure 3.2). Here the divergence comes fromuncertainties in the ablation rate, and the magnitude of the minimal sea ice extent. AroundSeptember, the minimum sea ice extent is reached, and the members start to converge again.The ensemble mean (in Figure 3.5), does not deviate much from a sea ice extent anomaly of0×106 km2, except where the CESM-LE-DP model was initialized with a large anomaly (like in2013). The observations fall often within the range of the ensemble, but not always.
To illustrate the accuracy of the prediction ensemble, we show in Figure 3.5b, the observationsagainst the predictions. This figure highlights that many of the predictions and observationslay between −0.5 and 0.5×106 km2, but there is not a high correlation between them. This isalso shown in Table A.1 (in Appendix A.3).
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3.4. Quantile Mapping

Figure 3.6.: a) Cumulative distribution figures (CDFs) of all members (in grey) and the observations (in blue), forthe training period. The dotted line indicates the 50% quantiles or medians. b) Correction applied to each quantile,during Quantile Mapping, for each member. Calculated from the difference between the CDF of a member and theCDF of the observations.
To illustrate how Quantile Mapping was preformed, we show the cumulative distribution fig-ures (CDFs) of all members and the observations during the training period (in Figure 3.6a).When comparing these CDFs, we see that the CDF of almost all members lie lower than theCDF of the observations, above the median. Below the median, almost all members show ahigher probability than the observations. This indicates that the ensemble members have ahigher spread than the observations, and are therefore overdispersive. This can also be seenin the correction that gets applied to the members (in Figure 3.6b). Negative sea ice anomaliesare corrected positively, and positive sea ice anomalies are corrected negatively. Between 0.2and 0.8, the correction is minimal.
The resulting ensemble looks quite squashed (see 3.7a): the peaks of the uncorrected en-semble (in July, August and September) have been limited at a maximum of 1.25 and a mini-mum of −0.88×106 km2. In November to May, the ensemble became also slightly more con-densed and moved closer to 0×106 km2. As a result, the ensemble average of November2013 moved closer to the observations. When we compare the corrected ensemble to theobservations overall, they seem to overlap slightly more. Figure 3.7b illustrates the same fea-tures. The ensemble means are more concentrated around the 1:1-line and the peaks are at−0.88×106 km2.
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Figure 3.7.: Anomalies in sea ice ex tent; observations are compared with the first years of the predictions. Sameas Figure 3.5, displaying here the Quantile mapping-corrected predictions. a) Sea Ice Extent anomalies over time.b) Cross plot between the observations and uncorrected predictions.

3.5. Ensemble Model Output Statistics

Figure 3.8.: Cumulative distribution figures (CDFs) of all members (in grey, thin lines) and the observations (in blue,continuous line) for the training period. The CDF, that follows from the normal distribution of the observations,approximated by the EMOS technique is displayed in green ( dashed-dotted line).
Where Quantile Mapping uses the CDF of the observations directly, Ensemble Model Out-put Statistics (EMOS) approaches the distribution of the observations using a mathematicalmodel (see also Sections 2.4.1 and 2.4.2). This is illustrated in Figure 3.8, which shows theCDFs for the observations and the EMOS approximated distribution, for our training period.Since EMOS assumes a normal distribution (which is adapted using the ensemble mean and
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standard deviation), it is very smooth. In contrast with the CDFs of the members and observa-tions, which are calculated empirically
When we comparing the CDF of EMOS with the CDF of the observations, we see that they de-viate from each other, between a probability of 0.1 and 0.6. A possible explanation for thisdeviation is the loss function: the parameters of EMOS are optimized using the CRPS as aloss function. It seems here that the CRPS awards EMOS primaraly on improving the extremi-ties, and does not motivate EMOS enough to also match the mean of the observations (whichdiffers 0.1×106 km2). The minimum of the EMOS distribution overlaps nicely with the mini-mum of the observations (during the training period), however, the maximum has decreasedby 0.5×106 km2. The kurtosis of the observations is thus larger than the kurtosis of the EMOSdistribution.
In Table A.1, we see the effect of this difference in distribution. The mean of the ensemble de-viates farther form the observations, than with the uncorrected ensemble. However, the stan-dard deviation was lowed by 0.2×106 km2, by the EMOS correction process. For all months,the standard deviation is lower than the standard deviation of the observations, indicating thatthe corrected ensemble is under dispersive

Figure 3.9.: Anomalies in sea ice extent; observations are compared with the first years of the predictions. Sameas Figures 3.5 and 3.7, displaying here the EMOS-corrected predictions. a) Sea Ice Extent anomalies over time. b)Cross plot between the observations and uncorrected predictions.
When looking at the results of EMOS correction technique (in Figure 3.9a), we see that the maincorrection took place in the months July, August, and September, like with Quantile Mapping.However, the ensemble members here not squashed as with quantile mapping; the membersare not limited to a maximum, but rather show a curve. This is also visiable in Figure 3.9b.Figure 3.9b also shows that the ensemble members are concentrated more on the 1:1 line,indicating a higher preciesion of the predictions.
In Table A.1, we see that the RMSE and CRPS scores improved compared with the uncor-rected ensemble forecast. Both the RMSE and CRPS for the EMOS corrected ensemble scoredslightly lower, compared with the uncorrected ensemble. However, for May, the EMOS skillscores are higher than those for the uncorrected data. Compared with Quantile mapping,EMOS scored only very slightly better.
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3.6. Recurrent Neural Networks

In this section, we will discuss the results of our RNN experiments. Firstly, we tried to useRNNs to correct the seasonal cycle. Afterwards, we corrected the anomalies in the ensemble(just like with Quantile Mapping and Ensemble Model Output Statistics). We used two differentsetups for this: recurrency over time and recurrency over members (see Section 2.4.3).
3.6.1. Learning the Seasonal Cycle

Figure 3.10.: Sea ice extent over time; the first year of the pseudo-observations and RNN predictions are comparedwith each other for part of the validation period (2006-2011). For this figure, the uncorrected ensemble member 23represented the pseudo-observations.
When we look at the predictions our first RNN made (see Figure 3.10), they follow quite nicelythe seasonal cycle of sea ice extent. The predictions start in November and are able to followthe seasonal cycle almost perfectly untill June. For the months August, September, and Octo-ber, the RNN overestimates the amount of sea ice. Since we devided our training and validationdataset over time (with the later years as validation), the model was not able to learn from theperiod after 2003. Therefore it might have missed the seasonal trend of climate change whenthe sea ice minimum occurs (see also Figure 3.2). Another striking feature of the predictionsis the lack of variation across years. The RNN seems to predict the general seasonal trend.Overall the RNN was able to achieve a R² of 0.96, for the validation set
The seasonal and climatological trends are dominant features in the sea ice cycle. However,the RNN was not able to predict both of them accurately. Therefore, this set up is not opti-mal to use as an ensemble correction method. To solve this issue, we removed these trendsfrom the input data (using Equation 2.1, just like with Quantile mapping and EMOS). The RNNpredictions of those experiments are discussed in the following two sections.
3.6.2. Anomaly correction with recurrence over Time

To find the best RNN to correct the anomalies we tried different setups in the number of nodes(between 16 and 256) and the number of layers (between 1 and 4). In Table 3.1, the R² scoresfor the best and worst preforming RNNs are shown. All R² scores are shown in Appendix A.2(Table A.2).
The table shows high R² scores for November, but they quickly drop. For September the R²score never exceeds 0.1. Due to the divergence in the uncorrected ensemble in the ablationseason, it appears harder for the RNN to predict accurately The loss-function might not moti-
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Table 3.1.: R²-scores for the entire validation period, for the Recurrent Neural Networks, with recurrence over Time.The 5 best and 5 worst preforming RNNs are displayed. All scores are displayed in Table A.2.
Nodes in hidden layer R²-score
1st 2nd 3th 4th Overall Nov Feb May Sept

256 — — — 0.209 0.942 0.413 0.233 0.048
256 256 — — 0.209 0.946 0.405 0.229 0.046
256 256 256 — 0.204 0.963 0.410 0.202 0.044

16 — — — 0.203 0.907 0.331 0.188 0.056
32 — — — 0.199 0.922 0.397 0.215 0.046... ... ... ... ... ... ... ... ...
64 64 64 64 -0.008 -0.183 -0.070 -0.297 -0.002
16 16 16 16 -0.009 -0.278 -0.048 -0.123 -0.013
16 32 64 128 -0.009 -0.240 -0.056 -0.185 -0.010

128 64 32 16 -0.020 -0.122 -0.137 -0.447 -0.002
256 128 64 32 -0.022 -0.112 -0.152 -0.468 -0.002

vate the RNN enough to improve its predictions here. The overall score for the RNNs is alsoquite low, due to the lack of accuracy in the last months. The table also shows that all 4-layer RNNs achieve R² scores below 0.13, often even below 0. In this case, more layers do notimprove the predictions. This could indicate that the dataset used is to small to train thesecomplex models efficiently.
Figure 3.11 shows the predictions for the 1-layer RNN with 256 nodes (denoted 1×256), andthe 3-layer RNN with 256 nodes (denoted 3×256). We show these results since the 1×256 RNNpreformed best overall, while the 3×256 RNN performed even better in November.

Figure 3.11.: Anomalies in sea ice extent; first year of the pseudo-observations and RNN predictions are comparedwith each other for part of the validation period (2006-2011). The RNNs here used the recurrence over time setup.The red line and dots indicate the 1-layer RNN predictions. The green line and crosses display the 3-layer RNNpredictions. Both displayed RNNs had 256 LTSM nodes per layer. a) Sea Ice Extent anomalies over time. Theblue line with dots represent the pseudo-observations (here, uncorrected member 23). b) Cross plot between thepseudo-observations and predictions.
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As shown in Table 3.1, Figure 3.11a also shows that the predictions of our RNNs are quiteaccurate in November, but worsen over time. Furthermore, both RNNs predict close to themean of the pseudo-observations: the lines are quite flat and do not deviate much from a seaice extent anomaly of 0×106 km2. This indicates that the RNNs are not able to accuratelyforecast the pseudo-observations for a certain time step (based on the uncorrected time step,and previous steps), or they are not motivated by the loss-function to learn that behavior.
In Figure 3.11b, we see the RNN predictions for the 1-layer and 3 layer RNN models (with 256nodes per layer) plotted against the observations. Both RNNs show (almost) the same pre-dictions. The bulk of the predictions is around a sea ice extent anomaly of 0.0×106 km2. TheRNN predictions clearly do not have the same distribution as the observations. Even though,there is some correlation visible
The RNNs also show a grouping behavior There are groups of predictions visible around −1.2,−0.8, and −0.5×106 km2. To illustrate this behavior, we show the same plot for 4 differentmonths (see Figure 3.12). In November, the predictions made by the RNN seem to fall withinthree discreet ranges. The years 2007 and 2012 (in which history sea ice extend minima oc-curred) are clearly visible in November. However sea ice growth, quickly diminshes these char-acteristic years. In later months we see mainly that the groups get wider; the observationsspread out, but the predictions do not follow. For Septemer the neural network mainly pre-dicts an ensemble average for each year, without much variation across the ensemble.

Figure 3.12.: Cross plot for the anomalies in sea ice extent, for different months; first year of the pseudo-observations and 1-layer 256 nodes RNN predictions, with recurrence over time.
3.6.3. Anomaly correction with recurrence over Members

In the following experiment, we tried correcting the anomalies, with the RNN recurrency stepover members (instead of time). Since there are only 39 members to recurse over (the 40thmember is used as pseudo-observation), the time in which these RNNs were trained wasshorter, than when we recurred over time.
When we look at the R² scores for the different layer-node setups of this type of RNN (seeTables 3.2 and A.3), we notice the same features as in our last experiments: In November ahigh R² score is reached, but after November the score drops quickly; In September a verylow score is achieved (with a maximum of 0.07); and due to the lack of accuracy in the lastmonths, a low overall score for all RNNs is reached. In contrast with our last experiment, wesee here that more layers and more nodes per layer generally lead to higher R² score. Also, nooverall R² scores below 0.1 are generated. By using this setup, we seem to generate enoughdata to train these models well.
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Table 3.2.: R²-scores for the entire validation period, for the Recurrent Neural Networks, with recurrence over Mem-bers. The 5 best and 5 worst preforming RNNs are displayed. All scores are displayed in Table A.3.
Nodes in hidden layer R²-score
1st 2nd 3th 4th Overall Nov Feb May Sept

256 256 256 — 0.224 0.974 0.413 0.228 0.063
64 64 64 — 0.219 0.952 0.400 0.158 0.062

256 128 64 — 0.215 0.966 0.370 0.197 0.060
256 — — — 0.215 0.950 0.413 0.154 0.056
128 — — — 0.213 0.945 0.408 0.141 0.056... ... ... ... ... ... ... ... ...

16 16 16 — 0.130 0.427 0.232 0.062 0.036
16 16 — — 0.113 0.216 0.044 -0.078 0.058

In Table 3.2, we see that the best preforming model in this case is the 3-layer 256-nodes model(3×256). When looking at the predictions of this model over time (see Figure 3.13a), we againsee many of the same features as when we recurred over time. The predictions for Novemberare quite accurate, but with increasing time, the RNN seems to predict more and more the to-wards the ensemble average (around 0×106 km2). The resulting lines are therefore relativelyflat. In the cross plot (Figure 3.13b) we see, again, that many predictions are around a sea iceextent anomaly of 0×106 km2. Also groups of predictions are still visible.

Figure 3.13.: Anomalies in sea ice extent; first year of the pseudo-observations and RNN predictions are comparedwith each other for part of the validation period (2006-2011). The RNN used here used the recurrence over memberssetup. The orange line (in a) and dots (in b) indicate the 3×256 RNN predictions. a) Sea Ice Extent anomalies overtime. The blue line with dots represent the pseudo-observations (here, uncorrected member 23). b) Cross plotbetween the pseudo-observations and predictions.
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3.7. Comparison and skill assessment

After looking at the uncorrected predictions and the corrected sea ice extent predictions (byQuantile Mapping, Ensemble Model Output Statistics and Recurrent Neural Networks), wewant to compare these methods. To determine which method preformed best, we devised3 skill scores (see also Section 2.3). In Table 3.3, we show the skill scores achieved by the(un)corrected sea ice extent predictions, for the validation period. As described in Section2.3, both RMSE and CRPS are negatively oriented (a lower score, indicates a higher skill). TheCRPSS looks at the difference between the uncorrected ensemble and a corrected ensemble.This score ranges between−∞ and 1, where a score larger than 0 indicates that the correctedensemble preformed better.
Since we used real observations to correct the ensemble with Quantile Mapping and Ensem-ble Model Output Statistics, and pseudo-observations when correcting with Recurrent NeuralNetworks, we can not directly compare the skill scores between them. However, we can lookat the relative reduction of the RMSE and CRPS compared with uncorrected forecasts.
Table 3.3.: Skill scores of the predictions, by correction method. (Root Mean Square Error [RMSE], ContinuousRanked Probability Score [CRPS] and the Continuous Ranked Probability Skill Score [CRPSS]). The CRPSS wascalculated with reference to the Uncorrected Predictions.

Correction method RMSE CRPS CRPSS
[×106 km2] [×106 km2] [−]

Compared with observations
Uncorrected 0.4284 0.2305 —
Quantile Mapping 0.3973 0.2162 0.0624
Ensemble Model Output Statistics 0.3929 0.2166 0.0605
Compared with pseudo-observations
Uncorrected 0.5146 0.2491 —
RNN, Recurrence over Time (1×256) 0.4467 0.2894 -0.1619
RNN, Recurrence over Members (3×256) 0.4470 0.2887 -0.1591

In Table 3.3, we see that both Quantile Mapping and EMOS result in a similar overall reductionin RMSE. The correction made by EMOS resulted in a slightly lower RMSE. The CRPS scoresshow the opposite result, indicating that the Quantile Mapping corrected ensemble shows adistribution closer to the observations than the EMOS corrected ensemble. From Figures 3.7and 3.9, we see that EMOS limits the ensemble smoother, but slightly stronger. This results ina distribution that lies further from the observational distribution, resulting in a higher CRPSand lower CRPSS (compared with Quantile mapping).
Both RNN setups (recurrence over time, and recurrence over members) preform very similarly.Both show a reduction in RMSE, but an increase in the CRPS. When looking at the Figures 3.11and 3.13, this was to be expected. The distribution of the RNN predictions is not comparablewith the distribution of the pseudo-observations. When comparing the RNN scores with Quan-tile Mapping and EMOS, we see that the RNN models achieved a higher relative reduction inRMSE.
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4. Discussion & Conclusion

In this study, we tried to improve climate predictions for sea ice extent, using different ensem-ble correction techniques. For this study, however, was a limited amount of time available andtherefore some simplifications needed to be made. This study tries to show the benefit of post-processing these climate projections, but due to these simplifications, it can not be appliedimmediately into operational climate predictions. Instead, our study tries to introduce quan-tile mapping, ensemble model output statistics and recurrent neural networks, to the scientificfield of post-processing climate predictions.
One of the main questions regarding this study could be: "Why would we focus on statisticalpost-processing the model if we know that there are small physical errors in our models, thatcreate the model drift and biasses?". However, as stated, these decadal climate predictionshave a high sociatal and scientific relevance. Users of these models (e.g. water resource man-agers and climate policy makers) depend on these predictions to be accurate These initialisedclimate predictions also allow us, to give users an estimation for the accuracy of our predic-tions and models. It is, therefore, necessary to post-process these climate predictions usingstatistical methods, at this point.
One of the simplifications we made, was using sea ice extent to represent all Arctic sea ice.This allowed us to preform simple time serie analysis on the data and verify the data with longseries of observations. However sea ice forms in three dimensions. Taking the area with a seaice concentration higher than 15% (using a threshold value), is quite a rough approximationfor sea ice growth. Possible solutions for this issue include taking the sea ice area instead.since it takes the sea ice concentration as a weight when calculating the area. More threedimensional measures for sea ice could also be used (e.g. sea ice volume), however, there areno long observational time series for these measures available.
The choice for sea ice extent, also removed all spatial information about sea ice in the Northernhemisphere from our data. However, as was shown in figure 3.1, there is quite some variationvisible. By training our ensemble correction techniques on different regions within the arcticocean, one might be able to more accurately correct the biases within the model. Krikken et al.(2016) showed that another correction technique (Extended Logistic Regression) achieves dif-ferent skill scores in different regions in the Arctic Ocean. One could also use the high resolu-tion output directly, for example using a convolutional neural network (CNN). These CNNs havebeen used for image recognition and excel at pattern detection in spatial grids (Krizhevskyet al., 2012).
Another way to improve our ensemble correction techniques is by using more data. Usingmore (or only) predictor variables to train the RNN might result in better predictions. Alsousing different ensemble forcasts together might improve both our EMOS and RNN results.Quantile Mapping is insensitive to this since it simply fits one variable onto the distribution ofanother.
In this study, we used one CDF for quantile mapping for the entire dataset. In the same way,we used fitted EMOS once for the entire dataset and were the RNNs trained on the entiredataset. However, as we have shown on multiple occasions, do different months show differ-ent properties and distributions. It might, therefore, be advisable to use different distributionsfor different months (or seasons), given that there is enough data available to create goodrepresentations for these distributions.
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Conclusion

During the course of this study, we have successfully implemented and used Quantile Map-ping, Ensemble Model Output Statistics and Recurrent Neural Networks (with Long Short TermMemory nodes) to improve the predictive skill of the outcome of a climate prediction in theArctic region, for sea ice extent. However, the resulting predictions leave much to be desired.EMOS and Quantile Mapping show some improvement in the ensemble, but no large correctionof the bias was found. Our Recurrent Neural Networks also show promising results, but thedistribution of those predictions is largely under-dispersive, compared with the observationsand ensemble members.
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A. Appendices
A.1. Notation

This list describes the symbols and their meaning, which are used in this report.
Variables

E Sea ice extent
T Surface temperature at 2 m
E′ Climatological anomalies of Sea ice extent
Ê′ Normalized climatological anomalies of Sea ice extent
Forecasts

X Forecast series
x A forecast (x ∈ X)

Xt
n Ensemble member n at timestep t of the forecast

X Mean of the ensemble members
s2X Variance of the ensemble members
xcorr Corrected forecast
Observations

Y Observation series
y A observation (y ∈ Y )

Distributions

FA Cumulatice distribution function (CDF) of the series A
F−1A Inverse of the CDF of the series A
N (µ, σ2) Normal distribution with mean µ and variance σ2
θ Quantile
Neural networks

b Biasses
c Cell state of a LSTM node
c̃t Canidate cell state of a LSTM node
f Forget gate (of a LSTM node)
h Hidden state of a LSTM node
i Input gate (of a LSTM node)
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L Loss function
o Output gate (of a LSTM node)
p Parameters (weights and biases)
vs Moving mean square gradient at sample s
w Weights
xt Input vector at time t
yt Output vector at time t
zt Input vector and hidden state appended together
σ(x) Sigmoid function (σ(x) = 1/1+e−x)
tanh(x) Hyperbolic tangent function
Symbols & Operators

a Vector
P Probability
= is equal to
≡ is defined as
∈ is an element of
| is such that
∼ is distributed as
∇ gradient
� element-wise multiplication
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A.2. Statistical values of the different predictions, and observations
Table A.1.: Statistical values showing the distribution, range, correlation and skill of the (corrected) predictions andobservations (observat.) of sea ice extent.

Per Month
ECT Measure Unit Overall Nov Feb May Sept

Obs
erv

at. Mean [×106 km2] -0.1117 -0.0614 -0.0502 -0.0484 -0.3083
Std.Dev [×106 km2] 0.3712 0.3243 0.1721 0.3044 0.5930
Minimum [×106 km2] -1.3773 -0.4686 -0.2838 -0.7454 -1.3773
Maximum [×106 km2] 0.5422 0.4232 0.1997 0.3030 0.4507

Unc
orre

cte
d

Mean [×106 km2] -0.1250 -0.3623 -0.1232 -0.0060 -0.1447
Std.Dev [×106 km2] 0.5043 0.4909 0.2331 0.2581 0.9411
Minimum [×106 km2] -3.0173 -1.4507 -0.8344 -0.8299 -2.8524
Maximum [×106 km2] 2.3493 0.3273 0.5856 0.8514 2.3493
R² [−] 0.0001 0.3451 0.0244 0.0684 0.0676
RMSE [×106 km2] 0.4586 0.4979 0.2531 0.2877 0.7319
CRPS [×106 km2] 0.2486 0.3652 0.1322 0.1553 0.4106
CRPSS [−] — — — — —

Qua
ntil

eM
app

ing

Mean [×106 km2] -0.0763 -0.2485 -0.0938 0.0075 -0.0350
Std.Dev [×106 km2] 0.3618 0.3200 0.2098 0.2228 0.6061
Minimum [×106 km2] -0.8799 -0.8799 -0.6846 -0.6024 -0.8799
Maximum [×106 km2] 1.2498 0.3277 0.5593 0.7935 1.2498
R² [−] 0.0009 0.3988 0.0269 0.0761 0.0750
RMSE [×106 km2] 0.4237 0.3267 0.2347 0.2855 0.6989
CRPS [×106 km2] 0.2307 0.2475 0.1248 0.1543 0.3965
CRPSS [−] 0.0720 0.3222 0.0559 0.0065 0.0342

EM
OS

Mean [×106 km2] -0.0322 -0.1747 -0.0518 0.0400 -0.0062
Std.Dev [×106 km2] 0.2993 0.2688 0.1769 0.2046 0.4853
Minimum [×106 km2] -0.8631 -0.7195 -0.4808 -0.4529 -0.8631
Maximum [×106 km2] 0.7472 0.3506 0.4996 0.6036 0.7472
R² [−] 0.0007 0.3843 0.0213 0.0828 0.0833
RMSE [×106 km2] 0.4149 0.2774 0.2140 0.2914 0.6920
CRPS [×106 km2] 0.2278 0.2221 0.1171 0.1548 0.3981
CRPSS [−] 0.0834 0.3917 0.1144 0.0031 0.0302
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A.3. RNN Results

A.3.1. Anomaly correction with recurrence over Time

Table A.2.: R²-scores for the entire validation period, for the Recurrent Neural Networks, with recurrence over Time.
Nodes in hidden layer R²-score
1st 2nd 3th 4th Overall Nov Feb May Sept
16 — — — 0.203 0.907 0.331 0.188 0.056
32 — — — 0.199 0.922 0.397 0.215 0.046
64 — — — 0.198 0.904 0.366 0.176 0.045

128 — — — 0.176 0.877 0.318 0.128 0.036
256 — — — 0.209 0.942 0.413 0.233 0.048

16 16 — — 0.180 0.826 0.243 0.139 0.045
32 32 — — 0.184 0.818 0.324 0.185 0.039
64 64 — — 0.193 0.885 0.355 0.168 0.045

128 128 — — 0.190 0.813 0.365 0.129 0.056
256 256 — — 0.209 0.946 0.405 0.229 0.046

16 16 16 — -0.003 -0.289 -0.056 -0.079 -0.006
32 32 32 — 0.105 0.121 0.192 0.168 0.020
64 64 64 — 0.130 0.259 0.166 0.146 0.030

128 128 128 — 0.168 0.802 0.305 0.145 0.029
256 256 256 — 0.204 0.963 0.410 0.202 0.044

16 16 16 16 -0.009 -0.278 -0.048 -0.123 -0.013
32 32 32 32 -0.005 -0.197 -0.051 -0.249 -0.005
64 64 64 64 -0.008 -0.183 -0.070 -0.297 -0.002

128 128 128 128 0.008 -0.184 -0.026 -0.084 -0.004
256 256 256 256 0.126 0.345 0.247 0.087 0.025

16 32 64 — 0.127 0.258 0.335 0.157 0.030
32 64 128 — 0.186 0.829 0.302 0.179 0.050
64 128 256 — 0.152 0.683 0.242 0.044 0.044
16 32 64 128 -0.009 -0.240 -0.056 -0.185 -0.010
32 64 128 256 -0.006 -0.232 0.133 -0.112 -0.030
64 32 16 — 0.004 -0.240 -0.026 -0.119 -0.002

128 64 32 — 0.143 0.694 0.161 -0.021 0.036
256 128 64 — 0.171 0.831 0.349 0.124 0.038
128 64 32 16 -0.020 -0.122 -0.137 -0.447 -0.002
256 128 64 32 -0.022 -0.112 -0.152 -0.468 -0.002
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A.3.2. Anomaly correction with recurrence over Members

Table A.3.: R²-scores for the entire validation period, for the Recurrent Neural Networks, with recurrence over Mem-bers.
Nodes in hidden layer R²-score
1st 2nd 3th 4th Overall Nov Feb May Sept
16 — — — 0.152 0.589 0.273 0.011 0.041
32 — — — 0.192 0.932 0.190 0.062 0.054
64 — — — 0.203 0.875 0.275 0.098 0.061

128 — — — 0.213 0.945 0.408 0.141 0.056
256 — — — 0.215 0.950 0.413 0.154 0.056

16 16 — — 0.113 0.216 0.044 -0.078 0.058
32 32 — — 0.169 0.777 0.396 0.099 0.023
64 64 — — 0.208 0.937 0.323 0.122 0.059

128 128 — — 0.208 0.966 0.395 0.218 0.046
256 256 — — 0.204 0.972 0.323 0.173 0.054

16 16 16 — 0.130 0.427 0.232 0.062 0.036
32 32 32 — 0.170 0.894 0.197 -0.076 0.046
64 64 64 — 0.219 0.952 0.400 0.158 0.062

128 128 128 — 0.204 0.972 0.233 0.087 0.062
256 256 256 — 0.224 0.974 0.413 0.228 0.063

16 16 16 16 0.147 0.524 0.154 -0.065 0.053
32 32 32 32 0.188 0.804 0.217 0.218 0.050
64 64 64 64 0.202 0.815 0.299 0.071 0.071

128 128 128 128 0.204 0.848 0.292 0.169 0.065
256 256 256 256 0.185 0.853 0.155 -0.070 0.062

16 32 64 — 0.198 0.634 0.439 0.158 0.065
32 64 128 — 0.209 0.935 0.296 0.154 0.066
64 128 256 — 0.184 0.891 0.219 0.015 0.057
16 32 64 128 0.188 0.931 0.196 0.091 0.065
32 64 128 256 0.198 0.763 0.293 0.027 0.071
64 32 16 — 0.177 0.762 0.267 -0.108 0.059

128 64 32 — 0.196 0.938 0.173 0.065 0.060
256 128 64 — 0.215 0.966 0.370 0.197 0.060
128 64 32 16 0.178 0.846 0.202 -0.058 0.062
256 128 64 32 0.205 0.814 0.417 0.186 0.064
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