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Plants and herbivorous insects

Interactions between plants and herbivorous insects have existed for more than 400 
million years (Labandeira, 2007). To combat herbivorous insects, plants have evolved 
two layers of defences, constitutive and induced defences. Constitutive defences are 
always present in the plants, whereas induced defences are elicited in response to 
external stimuli such as chemical, physical or (a)biotic stresses. Induced defences 
can be further categorized into direct and indirect defences. Direct defences are plant 
traits that infl uence the performance of herbivorous insects (Howe & Jander, 2008; 
War et al., 2012). In contrast, indirect defences promote the enemies of herbivores, 
e.g. by the release of a cocktail of volatile compounds, termed volatile organic com-
pounds (VOCs) or herbivore‐induced plant volatiles (HIPVs), that attract natural en-
emies (predators and parasitoids) of the attacking herbivorous insects (Dicke, 2009; 
McCormick et al., 2012; Mithofer & Boland, 2012; Dicke, 2015).

Furthermore, plants perceive herbivorous insects via damage-associated molecular 
patterns (DAMPs) and herbivore associated molecular patterns (HAMPs) (Mithofer & 
Boland, 2008; Heidel-Fischer et al., 2014; Duran-Flores & Heil, 2016; Hilker & Fatou-
ros, 2016). The perception of herbivores can depend on, 1) mode of insect feeding 
and 2) the specifi c eff ectors, derived from insect saliva or eggs (Heidel-Fischer et al., 
2014). Eff ector proteins are produced by herbivorous insects in their saliva that can 
interfere with and regulate the induced plant defences to the benefi t of the herbivores 
(Hogenhout & Bos, 2011; Kant et al., 2015; Giron et al., 2016). Moreover, based on 
the mode of feeding, herbivorous insects can broadly be classifi ed into three major 
groups, 1) chewers like caterpillars, 2) sap feeders like aphids and whitefl ies and 3) 
cell-content feeders like spider-mites and thrips (Stam et al., 2014). Ample knowledge 
on diff erent elements of induced plant defences such as HAMPs (Douglas, 2018), 
eff ector proteins  and resistance genes (Hogenhout & Bos, 2011; Reymond, 2013; 
Douglas, 2018) is available for leaf chewers and phloem feeders, but not for cell-con-
tent feeders.

Induced plant defences against herbivores

Early recognition of an attacking herbivore can be a key factor for a plant’s success 
in defending itself. Induced plant defences against herbivores can be categorized into 
three main phases: recognition, signalling and response (Heidel-Fischer et al., 2014). 
At the plant-insect interface, plants recognize herbivorous insects through specifi c 
insect-infl icted damage or insect-associated specifi c chemical cues (Mithofer & Bo-
land, 2008; Heidel-Fischer et al., 2014; Duran-Flores & Heil, 2016; Hilker & Fatouros, 
2016). Subsequent to herbivore recognition, a series of early and late (in timescale 
of seconds to days) events occurs in plants (Maff ei et al., 2007). The earliest mecha-
nism (timescale of seconds to minutes) is an alteration in plasma membrane potential 
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(Vm), followed by variation in cytosolic Ca2+ concentrations and the biosynthesis of 
H2O2 (Maff ei et al., 2007). Consequently, at a timescale of minutes, kinases and phy-
tohormones are induced, altering the expression of transcripts (timescale of minutes 
to hours) and the biosynthesis of metabolites (timescale of hours to days) (Maff ei et 
al., 2007; Stam et al., 2014). The temporal rearrangements of the transcriptome form 
the basis of extensive changes occurring in plant phenotype through the activation 
and deactivation of various biological processes (Stam et al., 2014). This dynamic 
change in phenotype can infl uence the entire ecology of plants, throughout the sea-
son (Poelman et al., 2010) or over diff erent seasons (Stam et al., 2018) and plant 
interactions with insects at diff erent trophic levels (Stam et al., 2014). 

Plant hormones, such as jasmonic acid (JA), ethylene (ET) and salicylic acid (SA), 
are major players in regulating defences in response to feeding by diff erent insect 
herbivores (Pieterse et al., 2009; Verhage et al., 2010; Pieterse et al., 2012; Stam 
et al., 2014). For example, JA especially mediates responses induced by chewing 
insects like caterpillars (Reymond et al., 2004; De Vos et al., 2005) and cell-content 
feeding insects like thrips (Abe et al., 2008; Abe et al., 2009; Steenbergen et al., 
2018), whereas SA mediates responses to phloem-feeding insects like aphids and 
whitefl ies (Zhu-Salzman et al., 2004; Walling, 2008; Pieterse et al., 2012; Tzin et 
al., 2015; Broekgaarden et al., 2018). Ethylene (ET) often acts synergistically with 
JA to fi ne-tune induced plant defences against herbivorous insects (Pieterse et al., 
2009; Pieterse et al., 2012; Stam et al., 2014). Besides, other plant hormones such 
as gibberllins, abscisic acid (ABA), cytokinins and auxins are known to play a role 
in responses to herbivory. The regulation of induced defences to herbivory by these 
plant hormones extensively shapes the plant phenotype.

Transcriptional responses of plants to herbivore feeding

Several studies have captured whole-genome transcriptional responses of Arabi-
dopsis against diff erent insect herbivores using microarray or RNA-Seq platforms. 
Whole-genome microarray studies have been performed in response to caterpillars 
(Reymond et al., 2004; De Vos et al., 2005; Ehlting et al., 2008; Bidart-Bouzat & Kli-
ebenstein, 2011; Zhang et al., 2013; Appel et al., 2014; Coolen et al., 2016; Davila 
Olivas et al., 2016; Kroes et al., 2017), whitefl ies (Kempema et al., 2007; Zhang et 
al., 2013) and aphid infestation (De Vos et al., 2005; Bidart-Bouzat & Kliebenstein, 
2011; Kroes et al., 2017). Reymond et al. (2004) reported that 67-84 % of the total 
transcriptional response of Arabidopsis to Pieris rapae feeding is regulated by JA. 
Similarly, microarray or RNA-Seq platforms were used to capture whole-transcrip-
tome profi les of non-model plant species in response to feeding by diff erent insect 
herbivores. For instance, wild cabbage response to caterpillars (Broekgaarden et al., 
2011b) or whitefl ies (Broekgaarden et al., 2018), maize response to aphids (Tzin et 
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al., 2015) and tomato, maize, barley and grapevine to spider mites (Martel et al., 
2015; Diaz-Riquelme et al., 2016; Bui et al., 2018). The limitation of these studies 
on diff erent insect herbivores is that the plant transcriptional response assessment is 
based on one or two time points over a period of 24 hours or longer (De Vos et al., 
2005; Ehlting et al., 2008; Bidart-Bouzat & Kliebenstein, 2011; Zhang et al., 2013; 
Appel et al., 2014; Diaz-Riquelme et al., 2016; Kroes et al., 2017; Broekgaarden et 
al., 2018; Tu et al., 2018) with the exception of a study that comprised six time points 
for the response of wild tobacco plants to Manduca sexta oral secretion application, 
over a time span of 13 hours (Durrant et al., 2017).

Several recent studies have shown that a plant dynamically reconfi gures its transcrip-
tome with time (Breeze et al., 2011; Windram et al., 2012; Hickman et al., 2017). 
However, the transcriptional responses captured in response to diff erent insect her-
bivores present low-resolution portraits of transcriptional responses, as the studies 
were performed with limited time points (one or two time points in a period of 24 
hours or longer) (De Vos et al., 2005; Ehlting et al., 2008; Bidart-Bouzat & Klieben-
stein, 2011; Zhang et al., 2013; Appel et al., 2014; Diaz-Riquelme et al., 2016; Kroes 
et al., 2017; Broekgaarden et al., 2018; Tu et al., 2018). Therefore, generation of 
high-resolution time-series transcriptional data in response to insect herbivory will 
result in a more detailed understanding of the temporal transcriptional reprogramming 
of plants. Thorough quantifi cation of transcripts over several time points can elucidate 
the chronology of biological pathways (phytohormones, secondary metabolites or de-
velopmental processes), involvement of major transcription factors (TFs) and building 
a platform to construct gene regulatory networks. In addition, performing comparative 
transcriptomics using the high-resolution transcriptional data of diff erent plant species 
in response to insect herbivory can identify commonalities and specifi cities of induced 
responses on plant-species or plant-family level. Moreover, this comparison can also 
unravel other aspects, such as relative response time of diff erent plant species, com-
plexity of transcriptional response and order of changes in biological events.

JA has been identifi ed as a central player in modulating defences against several 
arthropod herbivores (Pieterse et al., 2009; Verhage et al., 2010; Pieterse et al., 
2012; Stam et al., 2014). Lipoxygenases (LOXs), a multi-gene family, are known to be 
involved in several developmental and defence-related biological processes such as 
fruit ripening, tuber development, seed germination and JA-regulated plant defences 
(Kolomiets et al., 2001; Bailly et al., 2002; Feussner & Wasternack, 2002; Kessler, 
2004; Barry & Giovannoni, 2007; Yan et al., 2013). Upon feeding by many insect 
herbivores, LOXs catalyse oxygenation of polyunsaturated fatty acids (PUFAs) to ini-
tiate the formation of hydro-peroxides such as oxylipins (Shibata & Axelrod, 1995; 
Brash, 1999; Feussner & Wasternack, 2002). Several forms of oxylipins such as jas-
monates, green leaf volatiles (GLVs) and death acids, are known to be involved in 
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defence mechanisms against insect herbivory (Bell et al., 1995; Allmann et al., 2010; 
Yan et al., 2013; Shen et al., 2014; Christensen et al., 2015; Losvik et al., 2017). 
Furthermore, based on positional specifi city to catalyse oxygenation of linoleic acids 
(LAs), LOXs are broadly classifi ed into two major groups, 9- and 13-LOXs (Feussner 
& Wasternack, 2002). Jasmonates and GLVs, involved in direct and indirect defenc-
es, are derived from 13-LOXs, whereas, death acids are derived from 9-LOXs. Fur-
thermore, diff erent numbers of LOXs are reported in diff erent plant species such as 
Arabidopsis (6) (Umate, 2011), tomato (7), kiwifruit (6) (Zhang et al., 2006), olive (4) 
(Padilla et al., 2009, 2012), melon (18) (Zhang et al., 2014), cucumber (23) (Liu et 
al., 2011) and grapevine (18) (Podolyan et al., 2010). Among the LOXs in each plant 
species, one LOX is involved in JA-biosynthesis induced upon insect herbivory or me-
chanical wounding. For example, AtLOX2 in Arabidopsis (Bell et al., 1995), SlLOXD 
(TomLOXD) in tomato (Yan et al., 2013), NaLOX3 in tobacco (Halitschke & Baldwin, 
2003; Kessler, 2004) and StLOXH3 in potato (Royo et al., 1996) are known to code 
for enzymes involved in JA biosynthesis. Therefore, to understand the mechanism of 
JA-regulated defences, identifying the LOX involved in JA pathway is important.

Thrip pests

Thrips (Paraneoptera: Thysanoptera), are pest insects on many commercial and 
ornamental plants worldwide. The order Thysanoptera represents over 5500 spe-
cies. Thrips are tiny (ca 1.5 mm) cell-content feeding insects exerting direct damage 
to plants by inserting their stylets into plant tissue and ingesting the cell contents. 
The pierced tissue turns into silvery scars (Fig. 1C) hindering photosynthetic ability, 
growth, reproduction and yield of plants (Steiner, 1990; Welter et al., 1990; Shipp 
et al., 1998; Steenbergen et al., 2018). The success of thrips as a pest can be at-
tributed to several of its characteristics, such as its short life-cycle, high polyphagy, 
thigmokinetic behaviour, high reproductive rate, and rapid adaptation to insecticides 
(Diaz-Montano et al., 2011; Gill et al., 2015; Steenbergen et al., 2018). 

Besides infl icting direct damage, thrips also cause indirect damage by serving as 
vector to diff erent tospoviruses. For example, western fl ower thrips (WFT; Frankliniel-
la occidentalis) is known to transfer Tomato spotted wilt virus (TSWV) (Maris et al., 
2003), whereas onion thrips (Thrips tabaci) is known to transfer Iris yellow spot virus 
(IYSV) (Bunyaviridae) (Diaz-Montano et al., 2011; Gill et al., 2015). Moreover, al-
though western fl ower thrips is reported to be one of the economically most damaging 
species, several other thrips species, such as onion thrips, avocado thrips (Scitothrips 
perseae), blossom thrips (Frankliniella schultzei) and melon thrips (Thrips palmi) also 
contribute signifi cantly to overall economic losses. The estimation of losses caused 
only by thrips feeding is hard, but the crop losses caused due to combined eff ect of 
thrips feeding and transferring the viral disease is huge. At present, thrips are mostly 
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controlled by using pesticides. Therefore, to develop thrips-resistant crop varieties to 
minimize the damage, exploration and understanding of the genetic basis underlying 
plant defence responses is important. Such crop varieties may be a valuable compo-
nent of integrated pest management, in combination with biological control (Mouden 
et al., 2017).

Figure 1. Different developmental stages of thrips and their infl icted damage on pepper 
plants. (A) Female adult Frankliniella occidentalis (Western fl ower thrips (WFT)), (B) second 
larval instar (L2) of WFT, (C) Silver scars resulting from feeding by thrips, (D) Symptoms of 
Tomato spotted wilt virus (TSWV). Adapted from Steenbergen et al. (2018).

Thrips: Feeding behaviour and virus transmission

Feeding behaviour

For a thorough understanding of how thrips damage plants, it is important to investi-
gate their feeding behaviour in detail. Thrips feed on almost all aboveground parts of 
plants: leaves, fl owers, fruits and stems. While feeding, they insert their stylets into 
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the tissue of a plant and ingest cell contents (Hunter & Ullman, 1992; Mound, 2005). 
During individual probes they can ingest cell contents from multiple cells (Kindt et al., 
2003). Probing comprises of three distinct behavioural phases: (1) piercing into plant 
parts (2) salivation and (3) ingestion of cell contents. When feeding on leaves, thrips 
can only access cell contents of epidermal, mesophyll and parenchymal cells, since 
their stylets are too short to reach vascular tissues. 

Kindt et al. (2003) characterized feeding behaviour of F. occidentalis into six diff erent 
phases: P, Q, R, S, T and U using the electrical penetration graph (EPG) technique 
(Kindt et al., 2003; Kindt et al., 2006). These phases captured all minor behavioural 
activities of thrips during feeding, where each phase is represented by one waveform. 
Waveform P depicts piercing of the leaf surface by the mandibular stylets, waveform 
Q represents maxillary stylet insertion and the beginning of salivation and waveform 
R represents ingestion of the cell contents. Finally, waveforms S and U represent the 
mandibular action and waveform T represents withdrawal of stylets from leaf. Since 
not all these waveforms occur during every probe event, Kindt et al. (2006) proposed 
to discriminate the waveforms into two major phases, i.e. “puncture phase” (P, Q, 
plus S) and “feeding phase” (R, T, plus U) (Kindt et al., 2003; Kindt et al., 2006). 
Thus, with EPG and histological studies, details of the exact feeding mechanism of 
thrips as mediated by its stylets within the plant tissues have been elucidated.

Virus transmission by thrips

Besides direct damage, thrips also cause damage to plants indirectly by transmitting 
plant viruses like Tospoviruses, among which TSWV, that have signifi cant economic 
impact (Maris et al., 2003; Steenbergen et al., 2018). Tospoviruses represent the only 
plant-infecting genus in the family Bunyaviridae, infecting thousands of plant species 
(Whitfi eld et al., 2005). In order to gain broad knowledge on how thrips damage plants 
indirectly, understanding of acquisition and transmission of viruses is important.

Acquisition of tospoviruses by thrips is dependent on thrips developmental stage. 
Viruses are generally acquired by immature fi rst (L1) and second (L2) larval instars 
of thrips while feeding on viruliferous plants. The effi  ciency of acquiring viruses is 
higher at fi rst instars (L1) and decreases as they develop (Rotenberg et al., 2015). 
The acquired viruses then replicate in the host vector and are transmitted to healthy 
plants thereafter (De Assis  et al., 2004). The transmission of TSWV can occur as 
fast as in a single non-ingesting probe. This transmission of TSWV occurs during the 
salivation phase, i.e. Q-waveform of thrips feeding (Kindt et al., 2003). The success 
rate of transmission of TSWV by F. occidentalis in a thrips-TSWV susceptible variety 
was reported to be 0.8 %, i.e. one in 125 probes resulted in successful transmission 
of virus (Kindt, 2004). The probability of virus transmission by a viruliferous thrips 
increases with increasing numbers of probes. Likewise, the effi  ciency of transmission 
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of viruses largely depends on the plant variety the thrips are feeding on. For example, 
virus inoculation effi  ciency was signifi cantly lower on a thrips-resistant pepper acces-
sion during longer inoculation periods but no eff ect was seen in shorter inoculation 
periods (Maris et al., 2003). This indicates that varieties resistant to thrips can provide 
opportunities to control virus spread as well.

Host-plant resistance to thrips

Host-plant resistance to insects is an important component of integrated pest man-
agement (Sharma & Ortiz, 2002). Understanding the mechanisms underlying genetic 
variation in resistance within a population of accessions can help to develop host-
plant resistance against insects in a crop (Broekgaarden et al., 2011a). However, 
linking genetic variation to specifi c traits is a complex task, due to the involvement 
of the number of traits underlying plant-insect interactions. Host-plant resistance is 
regulated by a complex network of genes. As a consequence, the development of a 
reproducible high-throughput method providing information on diff erent components 
of host-plant resistance is important (Kloth et al., 2012). At present, there are two ma-
jor methods to determine host-plant resistance to thrips: (1) end-point assays, and (2) 
detailed observations of insect behaviour. In end-point assays, thrips performance is 
measured based on damage, mortality and reproduction on the host-plant, whereas, 
in behavioural assays, insect preference during the period of an experiment is record-
ed (Thoen et al., 2016). In end-point assays, host-plant resistance to thrips has been 
established from days to weeks post-inoculation. For this type of assays, thrips dam-
age is assessed manually or automatically by using imaging tools. Additionally, other 
parameters of insect performance like survival, reproduction and mortality have also 
been recorded manually (Abe et al., 2008; Abe et al., 2009; Maharijaya et al., 2011; 
Leiss et al., 2013). Such assays are labour intensive and time consuming. Thoen et 
al. (2016) developed a high-throughput phenotyping platform that can screen host-
plant resistance against F. occidentalis, where they considered thrips behaviour as a 
proxy of resistance. The method consists of multiple, simultaneous two-choice setups 
using computerized continuous video-tracking of thrips behaviour throughout a period 
of several hours. In this method, detailed behavioural parameters like time spent on 
either accession, movement (searching), non-movement (feeding) are recorded and 
analysed. With a higher time and resource effi  ciency, this method complements the 
results produced in end-point assays (Thoen et al., 2016). Although these two ap-
proaches produce quite diff erent information on host-plant resistance against thrips, 
combining these methods can be used to effi  ciently fi nd the factors responsible for 
host-plant resistance against thrips. The automated video-tracking method has as 
major advantage that hundred plants can be screened simultaneously per day. Thus, 
this method can be used to screen hundreds of plant samples for narrowing the se-
lection, whereas end-point assays can be used to validate the selection made by the 
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video-tracking method. Recently, the video-tracking system is updated to automation 
(known as T-maze arrays) making it less laborious and time-consuming (Jongsma 
et al., 2019). Therefore, this method can be a reliable and eff ective high-throughput 
phenotyping alternative to the behavioural assays.

Induced plant defences upon thrips feeding

Upon thrips feeding, plants trigger signal transduction pathways that regulate tran-
scriptomic responses and biosynthesis of several processes, such as metabolites 
and defence-related proteins. The plant hormone JA is identifi ed as a pivotal hormone 
in regulating induced defence against thrips (Fig. 2) (De Vos et al., 2005; Abe et al., 
2008; Abe et al., 2009). In plants, such as, Arabidopsis and Chinese cabbage (Bras-
sica rapa subsp. pekinensis), WFT feeding elevated the expression of JA-biosynthet-
ic genes and JA hormonal levels (Abe et al., 2008; Abe et al., 2009). Defenceless1 
(Def1), a JA-defi cient tomato mutant, has reduced resistance to thrips feeding (Li et 
al., 2002; Escobar-Bravo et al., 2017). A full-genome microarray-based study in Ara-
bidopsis showed that 69 % of all diff erentially expressed genes (DEGs) upon thrips 
feeding were JA responsive (De Vos et al., 2005). Exogenous application of JA to 
several plants, such as Arabidopsis, Chinese cabbage (Brassica rapa subsp. pekin-
ensis), tomato, soybean and cotton, enhanced the resistance against thrips (Omer et 
al., 2001; Thaler et al., 2001; Li et al., 2002; Abe et al., 2008; Abe et al., 2009; Selig 
et al., 2016; Escobar-Bravo et al., 2017).

Furthermore, plants produce defensive metabolites to defend themselves against her-
bivores. In response to thrips feeding, phenolic compounds are found to be produced 
by plants (Papadaki et al., 2008; Leiss et al., 2009; War et al., 2012). For instance, 
during pepper (Capsicum annuum) - F. occidentalis and alfalfa (Medicago sativa) - 
Odontothrips loti interactions, levels of phenolic compounds like tocopherols and tan-
nins were elevated, respectively, in resistant varieties of both plant species (Maris et 
al., 2003; Wang et al., 2014). In contrast, in pepper, thrips-induced metabolites such 
as alkanes and fatty acids correlated positively with susceptibility of pepper plants 
(Maharijaya et al., 2012). Furthermore, few studies have shown plants to modify their 
blend of volatile organic compounds (VOCs) in response to thrips infestation and 
attract natural enemies of thrips, thus activating their indirect defences. For instance, 
upon WFT feeding, cucumber plants attracted the predatory mite N. cucumeris and 
predatory bug Orius lavigatus (Venzon et al., 1999). Similarly, during eggplant - T. 
palmi and chrysanthemum (C. morifolium) - F. occidentalis interactions, infested egg-
plant (Solanum melongena) and chrysanthemum plants attracted Orius sauteri and 
Neoseiulus cucumeris, respectively (Manjunatha et al., 1998; Maris et al., 2003).
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Figure 2. Proposed model of induced plant responses upon thrips feeding. During the 
plant-thrips interaction, plants initiate defence responses upon perceiving damage-associated 
molecular patterns (DAMPs) (1a) or herbivore-associated molecular patterns (HAMPs) (1b). 
This results into activation of JA, which further regulates the defences against thrips. Effector 
proteins (2) and egg associated compounds (EACs) (3) derived from thrips can manipulate 
induced plant defences in favour of thrips. Tospoviruses transmitted by thrips can alter plant 
defence by inducing SA, which in turn can supress JA-regulated responses (4) through cross-
talk. Thrips feeding results in the release of a blend of VOCs that attracts natural enemies of 
thrips such as, Orius laevigatus (5). Dashed lines represent unidentifi ed elements in induced 
responses against thrips. Adapted from Steenbergen et al. (2018).

Research objective

The objective of this thesis was to study the whole-genome transcriptional response 
of plants to thrips through a high-resolution temporal analysis and to investigate the 
genetic mechanisms activated in crop plants (sweet pepper and white cabbage) in 
response to thrips feeding. This includes identifying defence-related gene families, 
disentangling functions of genes and elucidating temporal whole-genome transcrip-
tional response of sweet pepper and white cabbage against WFT and onion thrips 
feeding, respectively. 
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Study system

Plant species

1. Sweet pepper

Sweet pepper (Capsicum annuum) [(Mandy variety, Rijk Zwaan (De Lier, The Neth-
erlands))] plants (Fig. 3A) were used to study the transcriptional response to western 
fl ower thrips feeding. Sweet pepper is a diploid and self-pollinating crop belonging 
to the Solanaceae family. This family encompasses several other commercially im-
portant crops such as eggplant, tomato, tobacco, potato and petunia. Pepper has a 
high nutritional quality and provides us with important minerals, vitamins and nutri-
ents. It can be produced for several purposes such as, in pharmaceuticals, organic 
colour, cosmetics and defence repellents. However, in spite of the rising economic 
importance of pepper, information on the underlying molecular mechanisms against 
herbivorous insects including thrips is limited.

Figure 3. Sweet pepper and white cabbage plant varieties used in this thesis. (A) Sweet 
pepper (Mandy) and, (B) White cabbage (W0246) variety.

2. White-cabbage

White cabbage [Brassica oleracea (W0246 variety, Syngenta (Enkhuizen, The Neth-
erlands))] plants (Fig. 3B) were used to investigate the temporal transcriptional re-
sponse against onion thrips. White cabbage is an biennial plant grown as an annu-
al, belonging to the Brassicaceae (Crucifer) family. Brassica oleracea comprises of 
several common food crops such as kale, cabbage, broccoli, caulifl ower, Brussels 
sprouts and kohlrabi. The molecular mechanisms of white cabbage against insect 
herbivores have received limited attention. 
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Thrips species

1. Western fl ower thrips

Western fl ower thrips (Frankliniella occidentalis) (Fig. 4A) were used to infest sweet 
pepper plants (Chapters 1, 2 and 3 of this thesis). In The Netherlands, WFT is a 
major pest on sweet pepper plants in greenhouses. Thrips are cell-content feeding 
generalist insects aff ecting plant productivity and yield by infl icting feeding damage 
and transferring tospoviruses such as, TSWV. In several plants, such as Arabidopsis, 
Chinese cabbage (Brassica rapa subsp. pekinensis) and tomato, they are known to 
elicit JA-regulated defences (Abe et al., 2008; Abe et al., 2009).

Figure 4. Thrips species used in this thesis. (A) Western fl ower thrips (Frankliniella occi-
dentalis) interaction with sweet pepper and, (B) Onion thrips (Thrips tabaci) interaction with 
white cabbage. Photo credits: A modifi ed from Steenbergen et al. (2018) and B adapted from 
Thrips-iD website: http://www.thrips-id.com/en/.

2. Onion thrips

Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae) (Fig. 4B), was used 
in combination with white cabbage plants in Chapter 4 of this thesis. This thrips is a 
serious pest on white cabbage (B. oleracea) plants worldwide (Shelton et al., 2008; 
Fail et al., 2013). It has similar life-history characteristics as WFT, making them dif-
fi cult to control. Onion thrips transmits other tospoviruses than WFT, i.e. Iris yellow 
spot virus (IYSV) (Bunyaviridae) (Diaz-Montano et al., 2011; Gill et al., 2015). To the 
best of my knowledge, no molecular study has been made yet in any plant on the 
response to onion thrips.
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Outline of the thesis

Chapter 2 focusses on the identifi cation and classifi cation of the lipoxygenase gene 
family in pepper. Implementing several approaches such as comparative genomics, 
domain-scan analysis, sequence analysis, phylogenetic analysis, homology model-
ling and transcriptional analysis, the lipoxygenase gene family of pepper (Capsicum 
annuum) was identifi ed.

Chapter 3 focusses on the involvement of one LOX gene, i.e. CaLOX2, in jasmon-
ate-dependent induced defence against western fl ower thrips in sweet pepper. With 
Virus-Induced Gene Silencing (VIGS) of CaLOX2, followed by several bioassays, the 
role of CaLOX2 in sweet pepper defences has been experimentally validated.

Chapter 4 focuses on the temporal whole-genome transcriptional response of sweet 
pepper plants in response to western fl ower thrips herbivory. A high-resolution RNA-
Seq approach was used to unravel the temporal and chronological response of sever-
al hormonal, and secondary metabolite pathways. I also participated in a similar study 
to unravel temporal transcriptomic response of Arabidopsis during its interaction with 
WFT (Steenbergen et al., 2019). A Bi-directional Blast Homologue (BBH) approach 
was implemented to investigate commonalities and specifi cs in sweet pepper and 
Arabidopsis transcriptional responses, both induced upon WFT feeding.

Chapter 5 presents the temporal high-density transcriptional response of white cab-
bage plants in response to onion thrips herbivory and a comparative analysis on 
induced defences (transcriptomics) between WFT-induced Arabidopsis and sweet 
pepper and onion-thrips-induced white cabbage.

Finally, Chapter 6 integrates the key results of this thesis and discusses in the con-
text of the current knowledge of dynamics of plant transcriptional responses to diff er-
ent stresses. 
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Abstract

Lipoxygenases (LOXs) are non-heme, iron-containing dioxygenases playing a pivotal 
role in diverse biological processes in plants, including defence and development. 
Here, we exploited the recent sequencing of the pepper genome to investigate the 
LOX gene family in pepper. Two LOX classes are recognized, the 9- and 13-LOXs 
that oxygenate lipids at the 9th and 13th carbon atom, respectively. Using two main 
in-silico approaches, we identifi ed a total of eight LOXs in pepper. Phylogenetic anal-
ysis classifi ed four LOXs (CaLOX1, CaLOX3, CaLOX4 and CaLOX5) as 9-LOXs and 
four (CaLOX2, CaLOX6, CaLOX7 and CaLOX8) as 13-LOXs. Furthermore, sequence 
similarity/identity and subcellular localization analysis strengthen the classifi cation 
predicted by phylogenetic analysis. Pivotal amino acids together with all domains and 
motifs are highly conserved in all pepper LOXs. Expression of 13-LOXs appeared to 
be more dynamic compared to 9- LOXs both in response to exogenous JA applica-
tion and to thrips feeding. Bioinformatic and expression analyses predict the putative 
functions of two 13-LOXs, CaLOX6 and CaLOX7, in the biosynthesis of Green Leaf 
Volatiles, involved in indirect defence. The data are discussed in the context of LOX 
families in solanaceous plants and plants of other families.

Key words: Pepper, lipoxygenases (LOXs), phylogenetic analysis, gene transcrip-
tion, sequence analyses, defence



2

Genome-wide identifi cation of LOX gene family in pepper

33

Introduction

Lipoxygenases (EC 1.13.11.12) are non-heme, iron-containing dioxygenases ubiq-
uitously present in plants, animals and fungi (Brash, 1999). In plants, lipoxygenases 
(LOXs) are well-known to be involved in several plant processes like tuber develop-
ment, seed germination, fruit ripening and most importantly in plant defences (Kolo-
miets et al., 2001; Bailly et al., 2002; Feussner & Wasternack, 2002; Kessler, 2004; 
Barry & Giovannoni, 2007; Yan et al., 2013). Upon insect or pathogen attack, LOXs 
oxidize polyunsaturated fatty acids (PUFAs) (linoleic acid, α-linolenic acid and ar-
achidonic acid) constituting a (Z,Z)-1,4-pentadiene structural unit and catalyzing it 
into conjugated hydro-peroxides such as oxylipins (Shibata & Axelrod, 1995; Brash, 
1999; Feussner & Wasternack, 2002). Oxylipins such as jasmonates, green leaf vol-
atiles (GLVs) and recently discovered death acids, are known for their roles in de-
fence against herbivorous insects and pathogens (Bell et al., 1995; Allmann et al., 
2010; Yan et al., 2013; Shen et al., 2014; Christensen et al., 2015; Losvik et al., 
2017). Jasmonates and GLVs are 13-LOX-derived products involved in direct and 
indirect defences, respectively. In indirect defence, GLVs play a pivotal role in the 
attraction of natural enemies of the herbivores (ul Hassan et al., 2015). Death acids 
(10-OPDA, 10-oxo-11-phytodienoic acid, and 10-OPEA, 10-oxo-11-phytoenoic acid) 
are 9-LOX-derived products that in maize (Zea mays) accumulate upon southern leaf 
blight (Cochliobolus heterostrophus) infection resulting in the hampering of growth 
of fungi and herbivorous insects (Christensen et al., 2015; Christensen et al., 2016).

Plant LOXs are primarily classifi ed into two major classes, 9- and 13-LOXs, based 
on their positional specifi city to oxygenate linoleic acids (LAs) (Feussner & Waster-
nack, 2002). Moreover, LOXs are also classifi ed as Type-1 and Type-2 based on 
their primary structure and sequence similarity. LOXs having high sequence similarity 
(>75%) among themselves and having no plastidic transit peptide are classifi ed as 
Type-1, whereas LOXs with moderate sequence similarity (>35%) and possessing a 
plastidic transit peptide are classifi ed as Type-2 (Brash, 1999; Feussner & Waster-
nack, 2002). All Type-2 LOXs known at present are 13-LOXs, whereas Type-1 LOXs 
include both 9- and 13-LOXs (Feussner & Wasternack, 2002).

Information on LOXs from several plants has been reported. The Arabidopsis ge-
nome comprises a total of six LOXs (AtLOX1 - AtLOX6) (Umate, 2011). AtLOX1 is 
up-regulated in leaves upon pathogen attack and stress-related hormones (Melan et 
al., 1993); AtLOX2 is involved in jasmonic acid (JA) biosynthesis (Bell et al., 1995); 
AtLOX3 and AtLOX4 are essential for fl ower growth and male fertility (Caldelari et 
al., 2011); AtLOX5 is important for lateral root development and defence responses 
(Vellosillo et al., 2007) and AtLOX6 is expressed in roots and involved in JA synthesis 
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(Grebner et al., 2013). Among solanaceous plants, diff erent numbers of LOXs are 
reported in tomato, potato and tobacco. In tomato, SlLOXA (TomLOXA) and SlLOXB 
(TomLOXB) are induced during fruit ripening (Ferrie et al., 1994; Griffi  ths et al., 1999); 
SlLOXC (TomLOXC) participates in production of fl avour compounds resulting from 
fatty acids (Chen et al., 2004); SlLOXD (TomLOXD) is involved in wound-induced JA 
biosynthesis, enhancing resistance against herbivores and pathogens (Yan et al., 
2013); SlLOXE (TomLOXE) is expressed in breaker fruit (Chen et al., 2004) and Sl-
LOXF (TomLOXF) enhances systemic resistance stimulated by Pseudomonas putida 
BTP1(Mariutto et al., 2011). In tobacco, NaLOX1 codes for a 9-LOX and is specifi cally 
expressed in roots (Allmann et al., 2010); NaLOX2 is involved in biosynthesis of GLVs 
(Allmann et al., 2010; VanDoorn et al., 2010); and NaLOX3 is involved in JA biosyn-
thesis (Halitschke & Baldwin, 2003; Kessler, 2004). Furthermore, in potato, StLOXH1 
mediates the biosynthesis of volatile C6-aldehydes (GLVs) involved in defence (Leon 
et al., 2002) and StLOXH3 is involved in the JA biosynthetic pathway (Royo et al., 
1996). Knowledge on LOXs has also been presented in grapevine (Podolyan et al., 
2010), kiwifruit (Zhang et al., 2006), rice (Umate, 2011), apple (Vogt et al., 2013),  
soybean (Shin et al., 2008), cucumber (Liu et al., 2011), and olive (Padilla et al., 
2009, 2012).

Pepper (Capsicum annuum) is an economically important crop worldwide. It is used 
e.g. as food, spice, and in pharmacology. There are many biotic and abiotic fac-
tors constraining pepper production (Shipp et al., 1998; Pakdeevaraporn et al., 2005; 
Kulkarni & Phalke, 2009; Kurunc et al., 2011). Despite increasing commercial sig-
nifi cance of pepper, the molecular mechanisms underlying diff erent plant processes 
are still unknown. For instance, to develop resistance against pathogens and insects, 
identifying genes involved in diff erent defence mechanisms in pepper is important.

To date, no comprehensive knowledge on the pepper LOX gene family is available. 
One 9-LOX, CaLOX1, involved in defence and cell-death responses against patho-
gens has been reported (Hwang & Hwang, 2010). Recently, a second member of 
the LOX gene family (CaLOX2; Capana03g000103) was identifi ed, playing a role in 
JA-regulated defence against Western fl ower thrips (Frankliniella occidentalis)  (Sarde 
et al., 2018). Therefore, there is a need of a genome-wide survey of the LOX gene 
family of pepper. Here, we performed comparative genomics and domain-scan anal-
yses for identifi cation and classifi cation of the LOX gene family in pepper. To investi-
gate the conservation levels of pepper LOXs compared to known LOXs of other plant 
species, we subjected pepper LOXs to sequence analysis, phylogenetic analysis and 
homology modelling. Furthermore, to investigate the role of pepper LOXs in defence 
mechanisms, we examined their expression upon two treatments: exogenous JA ap-
plication and exposure to feeding by a natural inducer of JA, the cell-content feeding 
insect Western fl ower thrips (WFT). WFT was selected because it is a major pest on 
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pepper and well-known to induce JA signaling (Hickman et al., 2017; Steenbergen et 
al., 2018). The resulting data provide insights into putative functions of these genes 
in pepper.

Materials and Methods 

Sequence acquisition and identifi cation of pepper LOXs

Protein sequences of tomato (Solanum lycopersicum) lipoxygenases were obtained 
from the Ensembl Plants database (http://www.ensembl.org) (Yates et al., 2016). LOX 
sequences from Brassica oleracea, Brassica napus, Brassica rapa, Arabidopsis thali-
ana, Nicotiana attenuata, Nicotiana tabacum, Solanum tuberosum, Zea mays and 
Actindia deliciosa, were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/). Ory-
za sativa and Cucumis melo LOX sequences were retrieved from the Rice Genome 
Annotation Project (http://rice.plantbiology.msu.edu/) and the Melonomics database 
(http://melonomics.net/), respectively. Two main approaches were used for the identi-
fi cation of the pepper LOX gene family. First, BLAST searches were performed locally 
on the Capsicum annuum L. Zunla-1 proteome (Qin et al., 2014) using Tomato LOX 
proteins as queries. Second, the Capsicum annuum L. Zunla-1 proteome was entirely 
analyzed for the presence of lipoxygenase gene family signature domains, LOX and 
PLAT/LH2 (polycystin-1, lipoxygenase, α-toxin domain or lipoxygenase homology) 
using the Pfam database (v27.0) in the CLC Bioworkbench (https://www.qiagenbio-
informatics.com/). 

Sequence alignment of lipoxygenases

Alignment of LOX protein sequences was performed using the MUSCLE tool (Edgar, 
2004) with default settings. Editing and visualization of alignment was produced in 
GENEDOC (Nicholas et al., 1997). Sequence logos of conserved regions in pepper 
LOX proteins were generated by Weblogo 3.3 (Crooks et al., 2004).

Phylogenetic analysis of plant LOXs 

Seventy-two plant LOX protein sequences were analyzed, including one known pep-
per LOX, CaLOX1(L) (L stands for ‘literature’) (Hwang & Hwang, 2010) and eight pep-
per LOXs identifi ed in the present study. A Maximum likelihood tree using WAG-model 
(Hall (2013), with 1000 bootstrap replicates was generated using MEGA 7.0 (Kumar 
et al., 2016). The tree was edited with the Figtree tool (http://tree.bio.ed.ac.uk/soft-
ware/fi gtree/).
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Sequence analysis and identifi cation of conserved sequences 

Conserved sequences and pivotal amino acids were identifi ed by manual obser-
vations on pepper LOX alignments in GENEDOC (Nicholas et al., 1997). Molecu-
lar weight and isoelectric point of pepper LOX proteins were calculated by protein 
isoelectric point calculator (Kozlowski, 2016). Subcellular localization analysis was 
performed using TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/).

Homology modeling of CaLOX1 and CaLOX2 protein

We generated a protein structural model of CaLOX1 and CaLOX2 using the I-TASS-
ER (Roy et al., 2010) database and the resulting model was visualized with YASARA 
(Krieger et al., 2002).

Plant growth conditions, thrips rearing and bioassays

Sweet pepper [Capsicum annuum (Mandy variety, Rijk Zwaan (De Lier, The Nether-
lands))] plants were grown in a greenhouse at 23-25°C, 70±10 % relative humidity 
and 16L:8D photoperiod. Four-week-old plants were used in the experiments for both 
treatments. Western fl ower thrips (WFT; Frankliniella occidentalis) were reared on 
bean pods (Phaseolus vulgaris) in a climate-controlled cabinet (25±2 °C, 70±10 % 
relative humidity, L16:8D photoperiod). For thrips treatment in the gene expression 
experiment, fi ve 2nd instar thrips larvae were placed in clip cages and used for infesta-
tion on one of the fi rst two true leaves. Empty clip cages were used on control plants 
for each time point. Samples were harvested at 0, 2, 4, 6, 8, 10 and 24 hours post 
infestation, frozen in liquid nitrogen and stored at -80°C.

RNA extraction and qRT-PCR

Transcriptional responses of pepper LOXs in response to JA treatment (100 �M) and 
thrips feeding were assessed by qRT-PCR. For JA-treatment, plants were dipped in 
100 �M of JA (treatment) or mock-treated with water (control), both mixed with 0.1% 
of Tween20. One of the fi rst two true leaf samples were harvested at 0, 0.5, 1, 2, 
3, 6, 8, 10 and 24 hours post JA application, frozen in liquid nitrogen and stored at 
-80°C. For both treatments (JA and thrips), control samples were harvested at each 
time point to rule out the eff ect of circadian rhythm on the expression of LOX genes. 
Four to fi ve biological replicates (individual plants) were harvested and analysed for 
each time point and treatment. Each biological replicate comprises one individual 
plant. Bioline kit (ISOLATE II RNA Plant Kit), in accordance to its protocol, was used 
for RNA extraction. cDNA synthesis was executed with 1 μg of total RNA with Bio-
Rad iScript cDNA synthesis kit. For qPCR, a reaction mixture comprising of 12.5 μl 
of SYBR Green (Bioline), 1 μl (10�M) of forward and reverse primers, 5.5 μl RNase 
free-water and 5 μl cDNA was used. The data normalization was performed with a 
reference gene, CaActin. The PCR cycle conditions used were 95°C for 3 mins, fol-
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lowed by 40 cycles of 95°C for 15 s, and 60°C for 45 s. Melt curves for each gene 
were recorded at the end of each cycle. All primers used for qPCR are presented in 
Supplementary fi le S1.

Relative gene expression was studied using the geometric mean of Ct (threshold 
cycles) values (Vandesompele et al., 2002) from the reference gene CaActin using 
the 2–ΔΔCt method (Livak & Schmittgen, 2001).

Statistical analysis

The gene expression data were subjected to a Student’s t-test.

Results and Discussion
Identifi cation of lipoxygenase gene family in pepper

A genome-wide search for lipoxygenase genes in pepper was performed by imple-
menting two main approaches: homology search and scanning of the pepper pro-
teome for the presence of “lipoxygenase” and “PLAT/LH2” domains. Both approach-
es resulted in the identifi cation of eight lipoxygenases in the Capsicum annuum L. 
Zunla-1 proteome (Table 1). Several proteins depicting the presence of either one 
lipoxygenase domain or the PLAT/LH2 domain were excluded from analysis based 
on arguments of Chen et al. (2015).

The total number of LOXs in pepper (8) is similar to that in tomato (7). This number 
is also close to the number in Arabidopsis (6) (Umate, 2011) and kiwifruit (6) (Zhang 
et al., 2006), double the number in olive (4) (Padilla et al., 2009, 2012) and much 
lower than in melon (18) (Zhang et al., 2014), cucumber (23) (Liu et al., 2011) and 
grapevine (18) (Podolyan et al., 2010). This diverse number of LOXs in diff erent plant 
species indicates that this gene family has not been conserved during evolution, de-
spite similarities in biochemical functions of the gene family in diff erent plant species 
(Feussner & Wasternack, 2002).

Genomic and proteomic features of the pepper LOX gene family do not diff er much 
(Table 1). At the genomic level, the number of introns varies between 7 and 9, where-
as, ORF (Open Reading Frame) length ranges from a minimum of 2379 bp to a 
maximum of 2748 bp. Most of the pepper LOXs are located on Chromosomes 1 and 
3, with the exception of CaLOX8 (Capana11g000928) on Chromosome 11. At the 
protein level, LOX length varied between 792 and 915 aa, the predicted isoelectric 
point (PI) ranged between 5.4 and 7.5 and the predicted molecular weight of the pro-
teins ranged from 89959 to 104131 Da. Sequence comparison among pepper LOXs 
at the protein level shows high sequence identity (33 – 70%) and similarity (48 - 77 
%) (Table 2). Taken together, these genomic and proteomic features show a close 
relation among the pepper LOXs, indicative of a gene family.
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Phylogenetic analysis of lipoxygenases

To determine the evolutionary relationship and predict the classifi cation of pepper 
LOXs, a maximum-likelihood phylogenetic tree with 1000 bootstraps was generated. 
For this, we used sixty-four previously known plus eight pepper LOX protein sequenc-
es from twelve diff erent plant species, comprising monocots and dicots. The tree 
explicitly categorizes plant LOXs into 9-LOXs, 13-LOXs and uncharacterized LOXs. 
From the identifi ed eight pepper LOXs, four LOXs (CaLOX1, CaLOX3, CaLOX4 and 
CaLOX5) are characterized, including the previously described CaLOX1(L) (Hwang & 
Hwang, 2010) into the 9-LOX group and four other LOXs (CaLOX2, CaLOX6, CaLOX7 
and CaLOX8) into the 13-LOX group (Fig. 1). Moreover, upon closer examination of 
the 9- and 13-LOXs major clades, explicit sub-clades of monocot and dicot LOXs are 
formed indicating that this gene family has evolved diff erently in monocots and dicots 
(Fig. 1).

In the 13-LOX clade, pepper LOXs group with well-characterized Solanaceae 13-
LOXs like SlLOXD, StLOXH3, NaLOX3, SlLOXF, NaLOX2, StLOXH1 and SlLOXC 
(Fig. 1). These clusters or sub-clusters among known LOXs and newly identifi ed LOXs 
may be useful to predict biochemical features and molecular functions of the newly 
identifi ed pepper LOXs. CaLOX2 clusters with SlLOXD, StLOXH3 and NaLOX3, well-
known to be involved in JA biosynthesis (Royo et al., 1996; Halitschke & Baldwin, 
2003; Kessler, 2004; Yan et al., 2013) suggesting that CaLOX2 has a similar func-
tion. This matches with our recent study experimentally confi rming that CaLOX2 is 
involved in JA biosynthesis upon thrips feeding (Sarde et al., 2018). Virus-induced 
gene silencing of CaLOX2 led to disruption of the jasmonate pathway resulting in en-
hanced performance of thrips.  CaLOX6 clusters with SlLOXF, known to be involved 
in systemic resistance to Pseudomonas putida BTP1 (Mariutto et al., 2011). CaLOX7 
groups with NaLOX2, StLOXH1 and SlLOXC. These three LOXs are involved in the 
biosynthesis of green leaf volatiles (Leon et al., 2002; Chen et al., 2004; Allmann et 
al., 2010; VanDoorn et al., 2010). CaLOX8 seems to be related to AtLOX6, known to 
provide resistance against biotic and abiotic stresses through oxylipin biosynthesis in 
roots (Grebner et al., 2013).



2

Genome-wide identifi cation of LOX gene family in pepper

39

   

Ta
bl

e 
1.

 C
ha

ra
ct

er
is

tic
s 

of
 li

po
xy

ge
na

se
s 

in
 p

ep
pe

r



2

 Chapter 2

40

Table 2. Pepper LOX protein identities and similarities (%). High, intermediate and low sim-
ilarity/identity of genes is shown in green, yellow and red color, respectively.

Figure 1: Phylogenetic analysis of plant lipoxygenases. The evolutionary relationship be-
tween pepper and other LOX proteins. The tree was generated by MEGA 7 using Maximum 
Likelihood method with 1000 bootstraps and viewed in Figtree. The scale bar represents the 
branch length. Different classes of LOXs are depicted in different colors, 13-LOXs in purple; 
9-LOXs in blue; unclassifi ed without color. Identifi ed pepper LOXs are highlighted in red color. 
Species abbreviations used for phylogeny are as follows. At: Arabidopsis thaliana, Bo: Bras-
sica oleracae, Bn: Brassica napus, Br: Brassica rapa, Sl: Solanum lycopersicum, St: Solanum 
tuberosum, Na: Nicotiana attenuata, Nt: Nicotiana tabacum, Ca: Capsicum annuum, Os: Ory-
za sativa, Zm: Zea Mays, Cm: Cucumis melo, Ad: Actindia deliciosa.
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Also in the 9-LOX clade, pepper LOXs cluster with functionally characterized LOXs 
of other plant species such as AtLOX5, AdLOX2, SlLOXA, SlLOXB (Fig. 1). AdLOX2, 
that mediates the generation of C6 aldehydes in kiwifruit (Zhang et al., 2009), clusters 
with CaLOX5, suggesting that CaLOX5 has a similar function. CaLOX3 and CaLOX4 
form a major clade with AtLOX5 and CmLOX09. AtLOX5 is involved in lateral root de-
velopment and defence responses (Vellosillo et al., 2007). Additionally, relatedness 
of CaLOX3 and CaLOX4 to each other, suggests that they may be isoforms mediating 
the same biological process. Furthermore, clustering together of identifi ed CaLOX1 
from Capsicum annuum Zunla-1 proteome (Qin et al., 2014) and known CaLOX-
1(L) refl ects their similarity/relatedness, suggesting them to be the same protein. 
Hwang and Hwang (2010) identifi ed CaLOX1(L) independently from cDNA clones 
and reported it to be involved in defence and cell-death responses against patho-
gens. Furthermore, CaLOX1 identifi ed here and the previously reported CaLOX1(L) 
(Hwang & Hwang, 2010) cluster with LOXs like SlLOXA and SlLOXB, two LOXs that 
are up-regulated in ripening tomato fruits (Ferrie et al., 1994; Griffi  ths et al., 1999). 
Nevertheless, taken together, the predicted functions of pepper LOXs require further 
experimental validation to characterize their molecular functions, as reported for CaL-
OX1(L) and CaLOX2 (Hwang & Hwang, 2010; Sarde et al., 2018).
Finally, the reported uncharacterized LOXs like OsLOX10, CmLOX17 and ZmLOX6 
clearly form an outgroup from the 9- and 13-LOXs (Liu et al., 2011; Zhang et al., 
2014; Cao et al., 2016).

Sequence analysis consolidates phylogenetic classifi cation of pepper LOXs

The lipoxygenase family of pepper (CaLOX1 – CaLOX8) is highly conserved with vari-
able sequence identities and similarities with each other (Table 2). It is known that, 
based on degree of sequence similarity and presence/absence of chloroplast-transit 
peptide, LOXs are classifi ed into Type-1 or Type-2 (Feussner & Wasternack, 2002; 
Porta & Rocha-Sosa, 2002). Type-1 LOXs show high sequence similarity (>75%) in 
the absence of a chloroplast-transit peptide; in contrast, Type-2 LOXs show low se-
quence similarity and the presence of a chloroplast-transit peptide. The pepper LOXs 
CaLOX1 and CaLOX3, CaLOX4 and CaLOX5, exhibit high sequence similarity (>70% 
) and identity (>52%) with each other compared to other LOXs. In contrast, CaLOX2 
and CaLOX6, CaLOX7 and CaLOX8 show low sequence similarity among them-
selves with the exception of CaLOX6 and CaLOX7. CaLOX6 and CaLOX7 show high 
sequence similarity and identity among themselves, but not when compared to the 
rest of the LOXs, suggesting that CaLOX6 and CaLOX7 are isoforms of each other. 
Furthermore, the presence of a chloroplast-transit peptide in sequences of CaLOX2 
and CaLOX6, CaLOX7 and CaLOX8 suggests that they are localized in the chloro-
plast. Collectively, sequence similarity and sub-cellular localization analysis indicates 
classifi cation of CaLOX1, CaLOX3, CaLOX4 and CaLOX5 into Type-1 and CaLOX2, 
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CaLOX6, CaLOX7 and CaLOX8 into Type-2.  

Furthermore, plant LOXs are also classifi ed into 9- and 13-LOXs, based on their po-
sitional specifi city of action on the substrate (Feussner & Wasternack, 2002). The 
presence of Phe608/His608 or Val608 residue predicts LOX activity as 13- or 9-LOX, 
respectively. Multiple sequence alignment of all pepper LOXs clearly shows the oc-
currence of valine in CaLOX1 and CaLOX3, CaLOX4 and CaLOX5 classifying them 
as 9-LOXs and phenylalanine in CaLOX2 and CaLOX6, CaLOX7 and CaLOX8 clas-
sifying them as 13-LOXs (Fig. S1). This agrees with the observation that all Type-2 
LOXs identifi ed so far are 13-LOXs (Feussner & Wasternack, 2002).

Therefore, both classifi cation methods provide consensus on distribution of pepper 
LOXs into diff erent classes, thus consolidating our methodology and predictions. 
Moreover, it also suggests to use the parameters from both approaches in the future 
for classifi cation of plant lipoxygenases.

High conservation of motifs and pivotal amino acids

Lipoxygenases are characterized by the presence of a 38-residue representative se-
quence, a substrate-binding domain, an oxygen binding domain and a C-terminal 
motif (Padilla et al., 2009, 2012). The highly representative 38-residue sequence in 
lipoxygenases is important for stability of lipoxygenases. In addition, the enzymatic 
activity or effi  ciency of lipoxygenases can be severely aff ected if any of the residues of 
this sequence is substituted (Chen et al., 2015). This sequence is highly conserved in 
all the predicted pepper LOXs (Fig. 2A, 2E & 2F). Also, the other motifs like substrate 
binding, oxygen binding and the C-terminal are conserved among all pepper LOXs 
(Fig. 2A-F).

Among the conserved amino acids, the three histidine residues (including two from 
the representative 38-residue sequence) His499, His504, His690 with Asn694 and 
Ile839 are identifi ed to be vital for binding to non-heme iron (Steczko et al., 1992; 
Boyington et al., 1997; Feussner & Wasternack, 2002; Porta & Rocha-Sosa, 2002; 
Padilla et al., 2012).

All these fi ve amino acids appear to be conserved in the pepper LOXs (Fig. S1) with 
an exception for Ile839 in CaLOX7. Substitution of C-terminal isoleucine with any other 
amino acid except valine led to inactivation of lipoxygenases, whereas, substitution with 
valine had positive consequences for enzymatic activity (Chen et al., 1994). Therefore, 
the absence of a C-terminal motif and the presence of Ile839, essential for non-heme 
iron binding, leads us to suggest that CaLOX7 may have an altered enzymatic activity. 
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A. Motif-I

B. Motif-II

D. Motif-IV

C. Motif-III

F. CaLOX2E. CaLOX1

Representative 38-residue

Substrate-binding 

Oxygen binding 

C-terminal 

Motif-I

Motif-II 

Motif-III

Motif-IV 

Val Phe

Figure 2. Conservation of sequence motifs in pepper lipoxygenases (A-D) and protein 
models of CaLOX1 and CaLOX2 (E-F). Highly representative 38-residue motif (A), substrate 
binding (B), oxygen binding (C) and C-terminal (D) motifs are highly conserved. Protein model 
of a 9-LOX CaLOX1 (E) and 13-LOX CaLOX2 (F) depicting conservation of highly represen-
tative 38-residue (red), substrate binding (cyan), oxygen binding (green) and C-terminal motif 
(blue) motifs. 13- or 9-LOX activity determinant Phe or Val residue, respectively are depicted.
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Moreover, the conserved Val608 or Phe608/His608 residue that are indicative for 
9- or 13-LOX activity, respectively (Sloane et al., 1991; Hornung et al., 1999; Padilla 
et al., 2009, 2012), are found highly conserved in pepper LOXs (Fig. 2E-F and Fig. 
S1). The determinant residues for inverse substrate orientation and S-stereospeci-
fi city of LOXs, Arg and Ala, respectively (Hornung et al., 1999; Coff a & Brash, 2004) 
are well-conserved as well in pepper LOXs (Supplemental Fig. S1). Taken together, 
the conservation of motifs and pivotal amino acids suggests that functions of pepper 
LOXs are conserved to their respective homologs in other plant species.

Expression pattern of lipoxygenases upon JA application and thrips feeding

qRT-PCR was performed to investigate the expression dynamics of pepper LOXs 
over time upon thrips feeding or exogenous JA application. Upon thrips feeding, two 
13-LOXs (CaLOX2 and CaLOX7) are up-regulated for most of the analyzed time 
points (Fig. 3). Induction of CaLOX2 occurred after 2h of thrips feeding and remained 
up-regulated. This gene’s  involvement in JA biosynthesis has been experimentally 
supported (Sarde et al., 2018). CaLOX7 is signifi cantly up-regulated at 4h after the 
start of feeding and remained up-regulated throughout the period suggesting that it 
may have a role in defence. CaLOX6 is signifi cantly up-regulated after 10h of feeding. 
In contrast, all other LOXs, i.e. CaLOX1, CaLOX3, CaLOX4 and CaLOX8 did not show 
induction over time (Fig. 3). CaLOX4 and CaLOX8 are signifi cantly down-regulated 
after 8h of thrips feeding. CaLOX5 expression is not shown due to its unstable ex-
pression resulting in a high degree of variation. This instability of CaLOX5 expression 
was also confi rmed by its expression pattern in an RNA-seq dataset (Sarde et al., un-
published data). In Arabidopsis, it is well-known that LOX expression is triggered fol-
lowing application of JA due to presence of a positive feedback loop that amplifi es JA 
responses (Hickman et al., 2017). Upon exogenous JA application, CaLOX2, known 
to be involved in JA biosynthesis (Sarde et al., 2018), shows signifi cant induction 
after 2h which was maintained until 6h after JA application with exception at 3h (Fig. 
4). This instant up- and downregulation of CaLOX2, suggests involvement of some 
feedback mechanism in JA-biosynthetic pathway. CaLOX6 and CaLOX7 are also up-
regulated upon JA application.  Both of them exhibit high expression levels at similar 
time points i.e., 8h and 24h after JA application. In contrast, the other LOX genes, i.e. 
CaLOX1, CaLOX3, CaLOX4 and CaLOX8, were not up-regulated at any time point, 
but exhibited down-regulation at several time points (Fig. 4).



2

Genome-wide identifi cation of LOX gene family in pepper

45

Figure 3. Quantitative RT-PCR (RT-qPCR) of pepper lipoxygenase genes in sweet pep-
per leaves in response to thrips (F. occidentalis) feeding. Five 2nd  instar thrips larvae in 
a clip cage fed on the fi rst true leaf of four-week-old pepper plants. Clip cages without thrips 
were used on control plants. Expression of the housekeeping gene CaActin was used to 
normalize the expression level of each LOX gene at each time point. Relative expression 
compared to the control for the same time point is presented. Bars represent means ± SE of 
4-5 biological replicates. Bars marked with asterisks indicate signifi cant differences (Student’s 
t-test) to corresponding control samples for the same time point, * P ˂ 0.05, ** P ˂ 0.01. For 
bars without asterisk or P value, the P value is > 0.10.
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Figure 4. Quantitative RT-PCR (RT-qPCR) of pepper lipoxygenase genes in sweet pep-
per leaves in response to exogenous JA application. Pepper plants were dipped in water 
+ Tween20 (control) or 100 μM JA + Tween20 (treatment). Expression of the housekeeping 
gene CaActin was used to normalize the expression level of each LOX gene at each time 
point. Relative expression compared to the control for the same time point is presented. Bars 
represent means ± SE of 4-5 biological replicates. Bars marked with asterisks indicate signifi -
cant differences (Student’s t-test) to corresponding control samples for the same time point, * 
P ˂ 0.05, ** P ˂ 0.01. For bars without asterisk or P value, the P value is > 0.10. 



2

Genome-wide identifi cation of LOX gene family in pepper

47

In general, the 9-LOXs in pepper (CaLOX1, CaLOX3 and CaLOX4) did not show any 
induction, but rather down-regulation at certain time points in both treatments, i.e. 
JA application and thrips feeding. This fi ts to the fact that 9-LOXs are especially in-
volved in functions such as plant–pathogen interactions, storage of proteins and tuber 
development (Feussner & Wasternack, 2002). In contrast, the 13-LOXs were more 
responsive to both treatments, except CaLOX8. Similarity of CaLOX7 to NaLOX2 and 
SILOXC (Fig. 1), both known to be involved in the biosynthesis of green leaf volatiles 
(GLVs) (Chen et al., 2004; Allmann et al., 2010; VanDoorn et al., 2010; Shen et al., 
2014), and it’s up-regulation upon both thrips feeding and JA application (Fig. 3 & 
4) suggest a role of CaLOX7 in the biosynthesis of GLVs in pepper. Additionally, in 
tomato SILOXC-antisense lines, low expression of both SILOXC and SILOXF resulted 
in decreased levels of C5 and C6 leaf volatiles, suggesting a possible synergistic 
involvement of SILOXC and SILOXF in the biosynthesis of these plant volatiles (Shen 
et al., 2014). Therefore, the similarity of CaLOX6 to SILOXF  (Fig. 1) and its induction 
upon both JA application and thrips feeding makes it a potential candidate to test for 
its synergistic role with CaLOX7 in volatile biosynthesis (Fig. 3 and 4).

Conclusion

In conclusion, this study has identifi ed and classifi ed eight LOXs in pepper. Phylo-
genetic analysis classifi ed four LOXs as 9-LOXs (CaLOX1, CaLOX3, CaLOX4 and 
CaLOX5) and four others as 13-LOXs (CaLOX2, CaLOX6, CaLOX7 and CaLOX8) 
with predictions of their putative functions. Pepper LOX proteins are highly conserved 
in all lipoxygenase characteristics. Characterization of CaLOX2 encoding for a LOX 
that is involved in JA biosynthesis is confi rmed by a recent experimental study through 
a combination of in-silico, transcriptional, behavioural, and chemical analyses plus 
silencing of CaLOX2 through Virus-Induced Gene Silencing (Sarde et al., 2018). For 
the other LOXs their function remains to be elucidated. High expression levels of 13-
LOXs in pepper with support of in-silico analysis predict potential candidate genes 
(CaLOX6 and CaLOX7) that code for enzymes involved in GLV biosynthesis in pep-
per. Finally, this comprehensive study provides a pepper LOX genes repository to 
further elucidate their functional roles in respective biological processes.
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Abstract

Insect herbivory can seriously hinder plant performance and reduce crop yield. Thrips 
are minute cell-content-feeding insects that are important vectors of viral plant patho-
gens, and are serious crop pests. We investigated the role of a sweet pepper (Capsi-
cum annuum) lipoxygenase gene, CaLOX2, in the defense of pepper plants against 
Western fl ower thrips (Frankliniella occidentalis). This was done through a combina-
tion of in-silico, transcriptional, behavioral and chemical analyses. Our data show that 
CaLOX2 is involved in jasmonic acid (JA) biosynthesis and mediates plant resistance. 
Expression of the JA-related marker genes, CaLOX2 and CaPIN II, was induced by 
thrips feeding. Silencing of CaLOX2 in pepper plants through virus-induced gene 
silencing (VIGS) resulted in low levels of CaLOX2 transcripts, as well as signifi cant 
reduction in the accumulation of JA, and its derivatives, upon thrips feeding compared 
to control plants. CaLOX2-silenced pepper plants exhibited enhanced susceptibility 
to thrips. This indicates that CaLOX2 mediates JA-dependent signalling, resulting in 
defense against thrips. Furthermore, exogenous application of JA to pepper plants 
increased plant resistance to thrips, constrained thrips population development and 
made plants less attractive to thrips. Thus, a multidisciplinary approach shows that an 
intact lipoxygenase pathway mediates various components of sweet pepper defense 
against F. occidentalis.

Key words: Pepper, CaLOX2, defence, phylogeny, synteny, gene expression, VIGS, 
gene silencing, thrips performance
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Introduction

In nature, land plants and insects have coexisted for more than 400 million years. 
Plants perceive herbivorous insects by the specifi c pattern of tissue disruption and/
or chemical cues originating from insects (Bonaventure, 2012; Heidel-Fischer et al., 
2014). Plants have three main signal-transduction pathways, each involving a major 
plant hormone; i.e., jasmonic acid (JA), salicyclic acid (SA) and ethylene (ET), under-
lying induced defence against attackers such as herbivorous insects (Pieterse et al., 
2012; Stam et al., 2014). JA is well-known to be a key regulator of defense, induced 
by chewing insects and cell-content feeders like thrips (De Vos et al., 2005; Abe et 
al., 2008; Abe et al., 2009; Pieterse et al., 2012), whereas SA is known to mediate 
induced plant defense responses against phloem feeders (Zhu-Salzman et al., 2004; 
Walling, 2008; Pieterse et al., 2012; Tzin et al., 2015). The three major signaling 
pathways may exhibit crosstalk. For instance, JA and SA usually act antagonistically, 
but are also reported to act synergistically, or additively (Pieterse et al., 2012; Thaler 
et al., 2012).

The Western fl ower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: 
Thripidae) is a polyphagous and economically important pest. Thrips insert their sty-
lets into plant tissues and ingest cell contents, resulting in a silvery appearance of the 
damaged area (Steenbergen et al., 2018). They feed on almost all aboveground or-
gans of pepper plants and are considered the most devastating pest in greenhouses, 
worldwide. Their feeding aff ects leaf size and photosynthetic capacity, which eventu-
ally reduces plant growth and productivity (Steiner, 1990; Welter et al., 1990; Shipp 
et al., 1998). Thrips often aggregate in narrow crevices on the plants, such as in the 
fl owers, developing fruits, foliage and buds, making them diffi  cult to control. Moreover, 
they also cause indirect damage by transmitting tospoviruses, such as Tomato spot-
ted wilt virus (TSWV) (Maris et al., 2003). Thus, the development of novel approaches 
to control thrips damage by using knowledge on the molecular mechanisms of plant 
responses is important.

Various studies have addressed induced plant defenses against leaf-chewing and 
phloem feeding herbivores (Walling, 2000; Bonaventure, 2012; Heidel-Fischer et al., 
2014; Stam et al., 2014; Zust & Agrawal, 2016), whereas much less is known about 
plant responses to cell-content feeding thrips. To our knowledge, few studies have re-
ported on the role of JA in regulating induced plant defense responses against thrips 
feeding. In Arabidopsis and Chinese cabbage (Brassica rapa subsp. pekinensis), JA 
is involved in defense against thrips (Abe et al., 2008; Abe et al., 2009). In tomato, the 
JA-signaling mutant, Defenceless1 (Def1), exhibits enhanced susceptibility to thrips 
feeding (Li et al., 2002; Escobar-Bravo et al., 2017) and a decline in thrips abundance 
was observed in tomato upon JA application in fi eld conditions (Thaler et al., 2001). 



3

 Chapter 3

58

Likewise, cotton and soybean plants also show increased resistance against thrips 
upon exogenous JA or MeJA application (Omer et al., 2001; Selig et al., 2016). In 
Arabidopsis, a total of 199 genes were diff erentially expressed (up and down regu-
lated) upon thrips feeding, among which 138 (69%) were JA-responsive genes (De 
Vos et al., 2005). However, in pepper plants, little is known about the mechanisms 
underlying defense against insect herbivores.

Lipoxygenases (LOXs) are enzymes encoded by a multi-gene family functioning in 
diff erent plant developmental and defense processes (Brash, 1999). They are well-
known to oxygenate fatty acids. In plants, the main classes are 9-lipoxygenases and 
13-lipoxygenases that oxygenate lipids at the 9th and 13th carbon atom, respectively 
(Feussner & Wasternack, 2002). In JA biosynthesis, the fi rst oxygenation step of lino-
lenic acid is performed by a 13-lipoxygenase (Brash, 1999; Feussner & Wasternack, 
2002). Disruption of this 13-LOX has been shown to suppress the JA pathway in sev-
eral plant species, resulting in enhanced susceptibility to insect herbivory. 

In Nicotiana attenuata silencing through antisense expression of NaLOX3, involved 
in JA synthesis, suppressed JA synthesis and enhanced herbivore performance (Hal-
itschke & Baldwin, 2003). Similarly, in tomato, overexpression of TomLOXD elevated 
levels of JA and resistance to a caterpillar species (Yan et al., 2013). The 13-LOXs 
have also been identifi ed in Arabidopsis (Bell et al., 1995), potato (Royo et al., 1996), 
rice (Zhou et al., 2009) and Asian ginseng (Rahimi et al., 2017). In pepper, a 9-LOX, 
CaLOX1, has been identifi ed and reported to be involved in defense and cell-death 
responses to pathogens (Hwang & Hwang, 2010). However, to date, no 13-type LOX 
has been characterized in pepper (Capsicum annuum).

The main objective of the present study was to identify and characterize a 13-LOX 
gene specifi cally involved in JA biosynthesis and subsequently elucidate its role in 
JA-regulated defense of a non-model plant, sweet pepper, against thrips. We per-
formed in-silico analysis to identify the pepper 13-lipoxygenase gene that is poten-
tially involved in JA-biosynthesis (termed CaLOX2) and evaluated performance and 
preference of thrips on plants subjected to exogenous application of JA and silencing 
of the CaLOX2 gene by virus-induced gene silencing (VIGS). For this, we initially 
investigated the induction of JA- and SA-regulated genes, upon thrips feeding, and 
long-term eff ects of exogenous JA application on thrips population size, preference of 
thrips between JA-treated and non-treated plants, and plant resistance. Furthermore, 
the consequences of silencing CaLOX2 through VIGS for production of down-stream 
JA-related phytohormones and performance and preference of thrips were studied. 
Thus, this study assesses the role of CaLOX2 in jasmonic acid-dependent signaling 
underlying the defense response to thrips feeding in the non-model plant sweet pep-
per.
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Materials and methods

Plant material and thrips rearing

Sweet pepper (Capsicum annuum; Mandy variety) (Rijk Zwaan, De Lier, The Neth-
erlands) plants were grown in pots of 12 cm diameter in a greenhouse at 23-25°C 
with a 16L:8D photoperiod and 70±10% relative humidity. Four-week-old plants were 
used in the experiments. One day before the experiments, plants were transferred to 
a climate chamber with controlled conditions (24 ± 1°C, 70 ± 10% relative humidity, 
16L:8D photoperiod and light intensity of 70 μmol photons m–2 s–1). Western fl ower 
thrips (WFT; Frankliniella occidentalis) were reared on bean pods (Phaseolus vul-
garis) in a climate-controlled cabinet (25 ± 2°C, 70 ± 10% relative humidity, L16:8D 
photoperiod).

Sequence retrieval, homology search and domain analysis 

Tomato (Solanum lycopersicum) LOX protein sequences were retrieved from the En-
sembl Plants genome browser (http://plants.ensembl.org/index.html). Sequences of 
LOX proteins from other plant species, i.e.  Solanum tuberosum, Nicotiana attenuata, 
Brassica napus, and Arabidopsis thaliana were downloaded from the NCBI repos-
itory. The tomato LOXD (Solyc03g122340) protein sequence was used to identify 
CaLOX2 in pepper. All LOX proteins were subjected to Pfam (v27.0) domain analysis 
(Finn et al., 2014) using CLC Main Workbench (Version 7.6.4). The pepper genome/
proteome subjected to analysis was derived from Capsicum annuum L. Zunla-1 (Qin 
et al., 2014).

Phylogenetic and synteny analysis

Full-length protein sequences were used for alignment with the MUSCLE tool (https://
www.ebi.ac.uk/Tools/msa/muscle/) using the default parameters. The obtained align-
ment was used for construction of a Maximum Likelihood phylogenetic tree with 1000 
bootstrap replicates using MEGA5.1 (Tamura et al., 2011). Synteny analysis of so-
lanaceous LOX genes, specifi cally involved in the octadecanoid pathway, was per-
formed using the Ensembl Plants genome browser (Yates et al., 2016), Mapviewer 
from NCBI (https://www.ncbi.nlm.nih.gov/mapview/) and the Gene database from 
NCBI (https://www.ncbi.nlm.nih.gov/gene).

Plasmid construction 

The pTRV (Tobacco rattle virus)-based VIGS protocol (Wang et al., 2013; Senthil-Ku-
mar & Mysore, 2014) was used to generate CaLOX2-silenced (TRV:CaLOX2) pepper 
plants. For this purpose, the unique coding gene fragment of the Lipoxygenase-2 
gene of Capsicum annuum (CaLOX2, Capana03g000103) was selected and ampli-
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fi ed by PCR. The specifi city of the selected sequence was checked via the VIGS tool 
on the Sol Genomics Network (http://vigs.solgenomics.net/). A gene fragment of 282 
bp (Supplementary fi le 1) was cloned into the TRV2-vector and subsequently trans-
formed into Agrobacterium tumefaciens GV3101 strain via electroporation. Presence 
of the CaLOX2 fragment in the TRV2-vector was verifi ed by restriction digestion and 
sequencing.

Agro-infi ltration and TRV-mediated silencing assays

Agrobacterium tumefaciens GV3101 strains carrying vectors were grown overnight at 
28°C in YEB (Yeast Extract Broth) media with appropriate antibiotics (rifampicin 25 
�g/ml, kanamycin 50 �g/ml). A. tumefaciens cells were centrifuged and resuspended 
in induction medium containing rifampicin (25 �g/ml), kanamycin (50 �g/ml) and ace-
tosyringone (50 �g/ml) antibiotics for 3-4 h, and thereafter for 1h in infi ltration medium 
with acetosyringone (150 �g/ml). The composition of induction and infi ltration medium 
is provided in Supplementary fi le 1. Agrobacterium tumefaciens GV3101 cultures car-
rying pTRV1 and pTRV2:GUS or pTRV2:CaLOX2 or pTRV2:NaPDS were mixed at a 
ratio of 1:1 to a fi nal OD600 of 1.0 and syringe-infi ltrated into cotyledons of two-week-
old pepper seedlings (Wang et al., 2013). Due to high sequence similarity between 
NaPDS and CaPDS, we used pTRV2:NaPDS construct to monitor the proliferation of 
silencing in pepper plants. The plants prior and post Agrobacterium-infi ltration were 
kept in a greenhouse at 23-25°C, 70 ± 10% relative humidity and 16L:8D photoperi-
od. Effi  ciency of CaLOX2 silencing was validated by RT-qPCR.

No-choice and two-choice feeding bioassays post VIGS

To determine the role of CaLOX2 in sweet pepper resistance to thrips, the young-
est fully-grown true leaves of three-week-old Agrobacterium-infi ltrated plants were 
used for no-choice and two-choice thrips bioassays. A no-choice experiment was 
conducted by using one detached leaf of pTRV2:GUS or pTRV2:CaLOX2 plants. 
Each detached leaf was placed in a separate Petri dish (140-mm × 20-mm). The pet-
iole was inserted in a 1% agar solution. Five adult female thrips were placed on each 
leaf in the Petri dish for 6 or 24-h (with 14 replicates) and thrips feeding-associated 
damage was recorded at these time points. In addition, infested leaves were sampled 
for qRT-PCR and phytohormone analyses. In two-choice assays, one leaf each of a 
TRV2:CaLOX2 and a TRV2:GUS plant were placed adjacent to each other in a Petri 
dish (with 14 replicates). Five adult female thrips were placed in the center of the Petri 
dish, equidistant from the leaves, and were allowed to feed on the leaves for two 2-3 
d. The area of feeding scars (on both abaxial and adaxial leaf sides) was measured 
using a light microscope and a transparent grid sheet.
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JA treatment and bioassays

To test the eff ect of the induction of JA signaling on sweet pepper resistance to thrips, 
four-week-old sweet pepper plants were sprayed with 100 �M JA, or mock-treated 
with water, both mixed with 0.1% of Tween20 (detailed protocol in Supplementary 
fi le 1). The treatment was conducted one day before the bioassay. The experiments 
(non-choice and choice assays) were performed in a climate chamber under con-
trolled conditions (24 ± 1°C, 70 ± 10% relative humidity, 70 μmol photons m–2 s–1 light 
intensity and 16L:8D photoperiod). For a non-choice feeding bioassay, 25 female 
adult thrips were placed on each JA-treated and non-treated whole pepper plants 
confi ned in transparent plastic cages covered with mesh on top. After 14 d, the num-
ber of their off spring (fi rst and second-instar larvae) and feeding damage on plants 
was assessed. The experiment was executed twice, one for assessment of off spring 
number (with 10 replicate plants) and one for assessment of feeding damage (with 
12 replicate plants). In preference (choice) assays (with 11 replicates), a JA-treated 
and a mock-treated plant were positioned on either side of a transparent plastic box 
(height: 310 mm, width: 440 mm, length: 710 mm) and 50 adult female thrips were 
placed halfway between them. The boxes were incubated in a climate chamber with 
controlled conditions (24 ± 1°C, 70 ± 10% relative humidity, 16L:8D photoperiod). 
Two d later, the numbers of thrips on each plant were recorded. 

RNA isolation and qRT-PCR

To test the eff ect of thrips feeding on JA and SA-associated defense genes, fi ve sec-
ond instar thrips larvae (L2) were introduced into a clip cage and allowed to feed on 
one of the fi rst two true leaves of four-week-old sweet pepper plants. Plants with clip 
cages without thrips served as controls. At 0, 5, 10 and 24 h after infestation, leaves 
were sampled for gene expression analyses of JA- and SA-associated marker genes. 
For each treatment and time point, 4-5 biological replicates were analyzed, each 
replicate consisting of one individual plant. RNA extraction was executed using the 
Bioline kit, in accordance to the manufacturer’s protocol. cDNA was synthesized from 
1 μg of total RNA with iScript cDNA synthesis kit (Bio-Rad). For qPCR analysis, a 25 
μl reaction mixture, containing 1 μl (10�M) of forward and reverse primers, 12.5 μl 
of SYBR Green Supermix (Bio-Rad) and 5 μl cDNA, was used. The reference gene, 
CaACTIN, was used as normalizer for determining the relative expression of JA-relat-
ed genes (CaLOX2; Capsicum annuum Lipoxygenase 2 and CaPIN II; Capsicum an-
nuum Protease Inhibitor II) and an SA-dependent gene (CaPR1; Capsicum annuum 
Pathogenesis Related 1). The following PCR conditions were used: 3 min at 95°C, 
followed by 40 cycles of 15 s at 95°C, and 45 s at 60°C. At the end of each qPCR, 
the melting curve of each gene was recorded. All primers used for qPCR pre and post 
VIGS are presented in Supplementary fi le 1. Relative gene expression was analyzed 
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using the geometric mean of threshold cycle (Ct) values (Vandesompele et al., 2002) 
for the reference gene CaACTIN with the 2–ΔΔCt method (Livak & Schmittgen, 2001).

Hormone quantifi cation

Leaf samples (100 mg each) from pTRV2:GUS and pTRV2:CaLOX2 plants were 
fl ash-frozen in liquid nitrogen and stored at -80°C. High-performance liquid chro-
matography–mass spectrometry (HPLC-MS/MS) was used to quantify JA (jasmonic 
acid), JA-Ile (jasmonic acid isoleucine) and OPDA (12-oxo-phytodienoic acid) con-
tent, according to the method described in Trapp et al. (2014).

Statistical analysis

Data on gene expression and hormone content were log-transformed prior to statis-
tical analyses. The data on gene expression, thrips feeding, gene silencing effi  cien-
cy post VIGS and hormonal quantifi cation were all subjected to a Student’s t-test. 
Moreover, thrips two-choice preference data were expressed as the proportion of 
thrips detected on either treatment. The data were  analyzed by a t-test within each 
treatment to determine if the proportion of thrips signifi cantly diff ered from 0.5, as 
previously described (Grostal and Dicke (1999). The data of the two-choice feeding 
experiment post VIGS treatment were analyzed by a paired t-test. These analyses 
were performed using software IBM SPSS Statistics for Windows, version 23 (IBM 
Corp., Armonk, N.Y., USA). Biological replicates used for statistics each consist of 
one individual plant.

Results

Identifi cation of CaLOX2 in pepper 

To identify the LOX2 homolog in pepper, all sequences of tomato LOX proteins were 
used as queries in blast searches for a genome-wide search against the protein data-
base of Capsicum annuum L. Zunla-1. This resulted in the identifi cation of several LOX 
proteins in pepper (Sarde et al., 2018). These LOX homologs were further scanned for 
the presence of PLAT/LH2 and LOX domains that are hallmarks of the lipoxygenase 
gene family (Chen et al., 2015), using the Pfam database. To narrow down the selec-
tion towards the specifi c LOX protein induced upon herbivory or wounding in sweet 
pepper, the closest homolog of the tomato LOXD gene, well-known to have a similar 
function (Yan et al., 2013), was selected from pepper (CaLOX2, Capana03g000103) 
and further subjected to phylogenetic and synteny analysis.
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Figure 1. Phylogenetic and synteny analyses of lipoxygenases. (A) Phylogenetic relation-
ship of lipoxygenases of six species from the Brassicaceae and Solanaceae families. The tree 
was generated by MEGA 5.1 using the Maximum Likelihood method with 1000 bootstraps. Ac-
cession numbers or Gene IDs of sequences used to construct the phylogenetic tree are as fol-
lows. Arabidopsis thaliana: AtLOX1, AAA32827; AtLOX2, AAA32749; AtLOX3, AT1G17420; 
AtLOX4, AT1G72520; AtLOX5, AT3G22400; AtLOX6, AT1G67560; Brassica napus: BnLOX1, 
AAO03558, BnLOX2, NP_001303054; Solanum lycopersicum: SlLOXC, AAB65766; SlLOXD, 
AAB65767; SlLOXB, AAA53183; SlLOXE, AAG21691; SlLOXA, AAA53184;  Solanum tu-
berosum: StLOXH2, CAA65268; StLOXH3, CAA65269; StLOX1, AAB67858; Capsicum an-
nuum: CaLOX2, Capana03g000103; CaLOX1, ACO57136; Nicotiana attenuata: NaLOX1, 
AAP83134; NaLOX2, AAP83137; NaLOX3, AAP83138. (B) Syntenic organization of tomato 
(SlLOXD), potato (StLOXH3) and pepper (CaLOX2) LOX genes. Black arrows with and with-
out “+” sign depict genes that are not identical to synteny of tomato or unknown (uncharacter-
ized) genes, respectively.
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Phylogenetic analysis was conducted to analyze the evolutionary relationship be-
tween several LOX proteins across diff erent species of the Brassicaceae and Solana-
ceae families. The phylogenetic tree (Figure 1A) clearly represents two major clades 
of 13-type and 9-type LOX proteins. In the 13-type clade, the related pepper LOX2 
protein is positioned in the sub-clade of LOX proteins within the Solanaceae family 
that are known to be involved in JA biosynthesis. Similarly, this sub-clade appears 
closer to the Brassicaceae sub-clade comprising LOX proteins that have a similar 
function (Figure 1A), suggesting a role of CaLOX2 in JA biosynthesis.

Furthermore, genomic locations and assessments of syntenic maps off er insights into 
the conservation of genes across organisms. In the model plant of the Solanaceae 
family, tomato, the TomLOXD gene, well-known to be induced upon herbivory, is 
fl anked by fi ve genes on one side and seven genes on the other side (Figure 1B). The 
synteny is similar, but in reverse order with some exceptions of additional, uncharac-
terized or unknown genes for its counterpart LOX genes in potato (LOXH3) and pep-
per (CaLOX2). Moreover, localization of this gene is still intact on Chromosome 3 in 
pepper, tomato and potato. Taken together the in-silico analysis suggests a possible 
role of CaLOX2 in the octadecanoid pathway. 

JA and SA-related marker genes are up-regulated upon thrips feeding

We analyzed the expression of JA and SA-related marker genes in sweet pepper 
in response to thrips feeding in order to determine the role of JA in defense against 
thrips. Expression of the in-silico identifi ed CaLOX2 gene was induced upon thrips 
feeding at all three time points sampled (Figure 2A). Similarly, expression of the 
downstream JA-responsive gene, CaPIN II, was also up-regulated upon thrips feed-
ing (Figure 2B). Moreover, upon thrips infestation the SA-responsive gene, CaPR1, 
did not show signifi cant induction after 5h but was up-regulated after 10 and 24h of 
thrips feeding (Figure 2C).

Exogenous JA application negatively aff ects thrips feeding and preference

Because thrips feeding induces the transcription of JA-related genes, we fi rst inves-
tigated the eff ect of exogenous JA application on thrips population build-up and its 
feeding. For this purpose, twenty-fi ve adult females were introduced onto control and 
JA-treated plants. After two weeks, the larvae and adults were counted on each plant. 
The JA-treated plants had signifi cantly fewer larvae and adult thrips compared to con-
trol plants (Figure 3A, B). Control plants had 2.8 times more larvae (fi rst and second 
instars; Figure 3A) and 3.5 times more adults (Figure 3B) than JA-treated plants. This 
indicates that JA underlies pepper defense against thrips.
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Figure 2. Quantitative RT-PCR (RT-qPCR) of JA and SA-related marker genes in sweet 
pepper leaves in response to thrips (F. occidentalis) feeding. (A) CaLOX2 and (B) CaPIN 
II, as marker genes for the JA-pathway and (C) CaPR1, as marker gene for the SA-pathway. 
Five 2nd instar thrips larvae fed locally (confi ned in clip cages) on the fi rst true leaf of four-
week-old pepper plants. Empty clip cages were used on control plants. The expression level 
of each gene was normalized to the expression of the housekeeping gene CaACTIN. Bars 
represent mean ± SE (n = 4-5 biological replicates). Bars marked with asterisks indicate sig-
nifi cant differences (Student’s t-test), *p-value ˂ 0.05, **p-value ˂ 0.01, ***p-value ˂ 0.001.

We subsequently investigated the eff ect of exogenous JA application on thrips feed-
ing, in the same experimental setup. Signifi cantly more feeding damage was record-
ed on control plants (450 mm2) compared to JA-treated plants (216 mm2) (Figure 3C). 
These results further support the involvement of JA in resistance of pepper against 
thrips.

Finally, we investigated the eff ect of JA on host plant preference of thrips. To this end, 
we placed 50 adult females halfway between a control and a JA-treated plant and 
counted the number of thrips on each plant after 2 days; thrips signifi cantly preferred 
control plants over JA-treated plants (Figure 3D).
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Figure 3. No-choice (thrips population and feeding damage) and choice (preference) 
tests of Western fl ower thrips upon exogenous application of JA (100 μM). (A, B) Effect 
of JA application on thrips population and (C) feeding damage. Twenty-fi ve adult females fed 
on 4-week-old sweet pepper plants for two weeks. Water + Tween20 (control) or 100 μM JA 
+ Tween20 (treatment) was applied 1 day before thrips were introduced on pepper plants. 
Number of thrips larvae (A), thrips adults (B) and feeding damage (C) in mm2 caused by 
thrips feeding on plants was assessed after two-weeks. Mean ± SE based on ten and twelve 
biological replicates for thrips population and feeding damage, respectively. Asterisks indi-
cate signifi cant differences (Student’s t test), **p-value ˂ 0.01, ***p-value ˂ 0.001. (D) Effect 
of exogenous JA on host plant preference of thrips (choice experiment). Mean ± SE based 
on eleven biological replicates. Asterisks indicate signifi cant differences (Student’s t test, t= 
7.598); ***p-value ˂ 0.001.

VIGS of CaLOX2 suppresses CaLOX2 expression 

To study the involvement of CaLOX2 in the JA pathway, we silenced CaLOX2 in 
pepper plants using VIGS. The unique region of 282 bp of the CaLOX2 coding region 
(Supplementary fi le 1) was selected, using CLC bio-workbench and its specifi city was 
confi rmed using the VIGS tool from the Sol Genomics Network.

To assess the effi  ciency of VIGS, CaLOX2 transcript levels were quantifi ed using 
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qRT-PCR in GUS-vector control (TRV:GUS) and CaLOX2-silenced (TRV:CaLOX2) 
pepper leaves infested with thrips. CaLOX2 expression was signifi cantly induced, at 
both time points, in GUS-vector control leaves (Figure S1). In contrast, in CaLOX2-si-
lenced pepper leaves, CaLOX2 transcript levels were signifi cantly decreased com-
pared to GUS-vector control leaves, both experiencing thrips feeding, indicating that 
CaLOX2 silencing was eff ective in suppressing CaLOX2 induction (Figure 4A).

Figure 4. Quantitative RT-PCR (RT-qPCR) of CaLOX2 and phytohormone quantifi cation 
in GUS-vector control and CaLOX2-silenced leaves infested with western fl ower thrips 
for 6 h and 24 h. (A) Silencing effi ciency of CaLOX2. H, healthy leaves; GUS, β-Glucuroni-
dase; CaLOX2, C. annuum Lipoxygenase2. The C. annuum actin gene was used for normal-
ization in qPCR. Data are mean ± SE of 14 biological replicates from two independent exper-
iments. Asterisks indicate signifi cant differences (Student’s t test), ***p-value ˂ 0.001. (B, C, 
D) Quantifi cation of JA and its derivatives. OPDA, 12-oxo-phytodienoic acid; JA, Jasmonic 
acid; JA-Ile, Jasmonic acid isoleucine. Five adult females fed on a detached single leaf of a 
5-week-old plant. Data are mean + SE of 6 biological replicates. Asterisks indicate signifi cant 
differences (Student’s t test), *: p-value < 0.05, **: p-value ˂ 0.01, ***: p-value ˂ 0.001.

Silencing of CaLOX2 compromises jasmonate accumulation

To investigate the eff ect of CaLOX2 silencing on the accumulation of JA and its de-
rivatives in response to thrips attack, we assessed the levels of phytohormones in 
leaves with the GUS-vector and CaLOX2-silenced pepper plants infested with thrips 
(Figure 4). CaLOX2 silencing resulted in lower levels of OPDA, JA and JA-Ile. The 
diff erences were statistically signifi cant at 6 h for all three phytohormones and at 24 
h for OPDA and JA. This indicated that CaLOX2 silencing compromised the induc-
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tion of JA, and its derivatives JA-Ile, and OPDA in CaLOX2-silenced pepper leaves 
subjected to thrips feeding (Figure 4B - D). These results support a role of CaLOX2 
in the octadecanoid pathway leading to the biosynthesis of JA and JA-Ile, as induced 
upon herbivory. 

Suppression of CaLOX2 confers increased susceptibility to thrips feeding 

To assess the consequence of CaLOX2 silencing for thrips feeding and preference, 
we quantifi ed thrips feeding damage on leaves of GUS-vector control and CaLOX2-si-
lenced pepper plants. This was done in no-choice (Figure 5A) and choice (Figure 
5B) tests. Injury resulting from thrips attack was signifi cantly greater on CaLOX2-si-
lenced plants than on non-silenced (GUS) plants, in a no-choice test, at both time 
points, indicating that a functional CaLOX2 reduces the feeding rate of thrips individ-
uals (Figure 5A). Furthermore, when provided with a choice between silenced leaves 
(CaLOX2-silenced) and non-silenced (GUS-vector) leaves, thrips clearly preferred to 
feed on CaLOX2-silenced plants (Figure 5B). Taken together, these results support 
the role of CaLOX2 in the octadecanoid pathway of induced defense.

Figure 5. Effect of CaLOX2 silencing by VIGS in sweet pepper plants on thrips feeding 
in no-choice and thrips preference in choice tests. (A) Area of feeding scars per leaf after 
6 and 24 h of thrips feeding (5 female thrips adults per leaf) in no-choice assay. Mean ± SE, 
based on fourteen biological replicates from two independent experiments. Asterisks indicate 
signifi cant differences (Student’s t test), *p-value ˂ 0.05, **p-value ˂ 0.01. (B) Area of feeding 
scars per leaf after 2 and 3 d of infestation by 5 female thrips adults in choice assay. Mean 
± SE, based on fourteen biological replicates from two independent experiments. Asterisks 
indicate signifi cant differences (paired t-test), **p-value ˂ 0.01, ***p-value ˂ 0.001.

Discussion

Through a combination of an in-silico analysis and transcriptional, behavioral and 
chemical analyses, we show that CaLOX2 (Capana03g000103) is activated by thrips 
feeding, and involved in the octadecanoid pathway, leading to the phytohormone JA 
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and its active conjugate JA-Ile, resulting in induced defense against thrips in sweet 
pepper. Although  jasmonates have been reported as important players underlying in-
duced plant defense against various  herbivorous insect species (Wasternack, 2007; 
Howe & Jander, 2008), most research has focused on defenses against leaf-chewing 
or phloem-feeding herbivores (De Vos et al., 2005; Bonaventure, 2012; Heidel-Fisch-
er et al., 2014; Stam et al., 2014; Zust & Agrawal, 2016). 

By contrast, relatively little is known about induced plant defenses in response to 
cell-content feeders like thrips. Most knowledge on inducible defense against thrips is 
available for model plants, such as Arabidopsis thaliana and tomato, for which spe-
cifi c well-characterized mutants are available (Li et al., 2002; Abe et al., 2008; Abe 
et al., 2009; Abe et al., 2012). Disentangling the molecular mechanisms underlying 
induced defense against thrips in crops will be valuable in the selection of resistant 
varieties. 

Few studies have reported that jasmonates regulate induced defenses against thrips 
(Li et al., 2002; Abe et al., 2008; Abe et al., 2009). Due to the relatively limited avail-
ability of genetic tools and genomic information, little is known about the biosynthe-
sis of JA and the role of jasmonates in modulating defense responses in non-model 
plants, such as pepper. Nonetheless, recent knowledge on genomic information and 
valuable tools like VIGS provides valuable resources to investigate the role of the 
octadecanoid pathway in defense against thrips feeding. We employed these tools to 
identify CaLOX2 as being the LOX gene involved in the JA-pathway and resistance of 
cultivated pepper to F. occidentalis. 

By in-silico analysis, we identifi ed CaLOX2 as the gene involved in the octadecanoid 
pathway. CaLOX2 is a 13-type LOX that is phylogenetically close to functionally simi-
lar orthologues in tomato (SlLOXD), potato (StLOXH3) and tobacco (NaLOX3), which 
are specifi cally involved in the biosynthesis of JA (Figure 1A) (Royo et al., 1996; Kes-
sler et al., 2004; Yan et al., 2013). Moreover, chromosomal locations and compari-
sons of syntenic maps show that fl anking genes are conserved, with some exceptions 
of uncharacterized or additional genes, and that the CaLOX2 gene is positioned on 
Chromosome number 3, across selected plants from the Solanaceae family. This 
supports the evolutionary signifi cance of this gene to the plants and supports a role 
of CaLOX2 in the octadecanoid pathway, as further reinforced experimentally in our 
study.

Our fi ndings clearly show that the JA-related genes, CaLOX2 and CaPIN II, are up-
regulated at all time points upon thrips feeding, as also recorded for respective JA-re-
lated genes in Arabidopsis and Chinese cabbage (Brassica rapa subsp. pekinensis) 
(De Vos et al., 2005; Abe et al., 2008; Abe et al., 2009). Moreover, the up-regulation 
of LOX genes was also recorded in cabbage (Brassica oleracea L.) and tomato, upon 
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feeding by another cell-content feeding herbivore, the spider mite Tetranychus urticae 
(Li et al., 2002; Zheng et al., 2007). In contrast, no up-regulation of CaPR1 (SA-re-
lated) was recorded until 10 and 24 h after initiation of thrips feeding, similar to what 
has been recorded for the SA-related genes PR1 and BGL.2 in Arabidopsis (Abe et 
al., 2008). De Vos et al. (2005) reported  that SA levels were elevated  after 12 h of 
thrips feeding, corresponding with induction of SA-related genes at later time points. 
Possibly, thrips manipulate plant defense by inducing SA, to stimulate antagonistic 
crosstalk with the JA pathway to interfere with plant defense (Abe et al., 2012; Stam 
et al., 2014). 

Both exogenous application of JA and silencing of CaLOX2, which interferes with JA 
induction demonstrate that JA is involved in inducible defense against thrips. JA is 
also involved in inducible defense against another cell-content feeding herbivore, the 
spider mite Tetranychus urticae in Lima bean and tomato plants (Dicke et al., 1999; 
Li et al., 2002; Gols et al., 2003; Ament et al., 2004). Similar induction of resistance 
against thrips, by the application of exogenous JA, was also recorded in  A. thaliana, 
Brassica rapa and S. lycopersicum (Li et al., 2002; Abe et al., 2008; Abe et al., 2009). 

There are several homologs of LOX genes in a wide range of plants (Zhang et al., 
2006; Podolyan et al., 2010; Liu et al., 2011; Umate, 2011; Zhang et al., 2014; Chen 
et al., 2015). They have been thoroughly characterized and reported to be involved in 
several plant biological processes, such as plant defense, tuber growth, germination 
of seeds, and fruit ripening (Kolomiets et al., 2001; Bailly et al., 2002; Porta & Ro-
cha-Sosa, 2002; Barry & Giovannoni, 2007; Abe et al., 2008). 

Usually,  there is at least one LOX homolog induced upon herbivory and involved in 
the biosynthesis of JA (Kessler et al., 2004; Zhou et al., 2009; Allmann et al., 2010; 
Zheng et al., 2011; Yan et al., 2013). These phenomena have been well studied in 
model plants, but little is known in non-model plants. In order to study the role of oc-
tadecanoid pathway in diff erent biological processes in plants, JA-defi cient mutants 
have been generated. In Arabidopsis, the Coi1-mutant is often used; this mutant is 
defective in the JA-Ile receptor (Xie et al., 1998). In tomato, several mutant lines, 
including Def-1, Spr-1, and Spr-2, are available (Howe et al., 1996; Howe & Ryan, 
1999; Li et al., 2002). 

Nonetheless, the genomic target region of JA-defi cient mutants in tomato is still 
unclear. In rice and tobacco, a specifi c homolog of LOX was targeted to generate 
JA-defi cient plants through transformation (Kessler et al., 2004; Zhou et al., 2009). 
Silencing of OsHI-LOX  or Na-LOX3 in rice and tobacco, respectively, interfered with 
the induction of JA upon herbivore feeding (Halitschke & Baldwin, 2003; Zhou et 
al., 2009; Lu et al., 2015). Likewise, in a recent study in barley, overexpression and 
down-regulation of LOX2.2 aff ected the expression of JA-related genes depicting its 
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role in JA-biosynthesis (Losvik et al., 2017). 

The present study used gene silencing of CaLOX2, instead of transformation, and 
demonstrates that CaLOX2 interferes with the production of not only JA and but also 
other jasmonates, such as OPDA and JA-Ile, upon thrips feeding on pepper, under-
lining its role in the octadecanoid pathway. Moreover, our data show that targeting a 
specifi c 13-type LOX gene in a non-model plant can be eff ective to suppress the entire 
jasmonate cascade. 

Silencing CaLOX2 clearly resulted in enhanced feeding and preference of thrips for 
CaLOX2-silenced leaves, compared to control leaves. Furthermore, in Nicotiana at-
tenuata and rice, JA-silenced plants were more vulnerable to herbivorous insects 
(Kessler et al., 2004; Zhou et al., 2009). Moreover, silencing LOX3 in tobacco infl u-
enced herbivore community composition under fi eld conditions (Kessler et al., 2004). 
Such eff ects are likely the consequence of altered plant phenotype in terms of sec-
ondary metabolites or proteinase inhibitors whose biosynthesis is modulated by JA, 
diff erentially aff ecting diff erent members of the plant-associated insect community. 

The possiblity exists that JA also regulates the defense of pepper, indirectly, by infl u-
encing herbivore-induced plant volatiles, thereby mediating the attraction of carnivo-
rous arthropods, such as parasitoids or predators of thrips, since the importance of JA 
in attraction of carnivorous enemies of herbivores has been reported for several plant 
species (Dicke et al., 1999; Gols et al., 2003; Halitschke et al., 2008; Ozawa et al., 
2008). The CaLOX2-silenced plants will be useful to investigate the role of this gene 
in indirect defense of sweet pepper.

Conclusion

This study has shown that gene silencing by VIGS is a useful method to functionally 
characterize candidate genes of pepper for their role in resistance to insects. Through 
a multidisciplinary approach, involving in-silico, transcriptional, chemical, behavior-
al studies and bioassays, to assess plant resistance, this study identifi ed CaLOX2 
as being involved in the JA-biosynthetic pathway. Moreover, JA-dependent signaling 
was shown to be important in defense of pepper plants to thrips. Thus, this method al-
lows for investigating functional roles of C. annuum genes in plant-insect interactions.
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Abstract

Plants respond to insect herbivory with extensively reprogramming their transcrip-
tome. This dynamic process shapes downstream phenotypic changes. To capture the 
details of this dynamic transcriptomic response, high-density RNA-Seq analysis of 
the onset of the response is a powerful tool. We performed a high-density time-series 
RNA-Seq analysis on leaf tissue of sweet-pepper plants at 12 time points within the 
fi rst 9 hours of feeding by the cell-content-feeding Western fl ower thrips (Frankliniella 
occidentalis).Over 3000 pepper genes (~8.6% of the pepper transcriptome) respond-
ed to thrips feeding, representing 23 distinct co-expressed gene clusters, 16 up-reg-
ulated and 7 down-regulated. Up-regulation occurred fast and was predominantly 
associated with defence, while down-regulation was slower and associated with 
developmental processes. The transcription factor families ERF, MYB, NAC, bHLH 
and WRKY emerged as major regulators of the sweet-pepper response. Chronology 
analysis showed sequential activation of genes associated with jasmonic acid and 
ethylene pathways and with the biosynthesis of defence-related phenylpropanoids, 
fl avonoids and terpenoids.Comparative transcriptomic analysis of sweet pepper and 
Arabidopsis responses to F. occidentalis feeding revealed overlapping core and plant 
species-specifi c responses. Activation of JA pathway genes is part of the core re-
sponse, while activation of genes involved in isoprenoid biosynthesis is among the 
sweet pepper-specifi c responses.

Keywords: Pepper, thrips, RNA-Seq, transcriptomics, hi gh-resolution time series, 
defence, phytohormones, secondary metabolites
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Introduction

Since 400 million years, plants and herbivorous insects interact (Labandeira, 2007). 
The total number of herbivorous insect species is estimated to be around three million 
(Schoonhoven et al., 2005). Based on the feeding guild, herbivorous insects can be 
broadly classifi ed into chewers, phloem feeders and cell-content feeders (Stam et 
al., 2014). To protect themselves against herbivorous insects, plants have evolved 
a plethora of direct and indirect defence mechanisms. In direct defence, plant traits 
infl uence the performance of herbivorous insects, e.g. by the production of secondary 
metabolites that infl uence herbivore growth or mortality (Howe & Jander, 2008; War 
et al., 2012). In contrast, indirect defence of plants promotes the eff ectiveness of the 
enemies of herbivorous insects. Indirect defence may include the release of a cock-
tail of volatile compounds, so-called herbivore‐induced plant volatiles (HIPVs), that 
attract predators and parasitoids that attack the herbivores (Dicke, 2009; McCormick 
et al., 2012; Mithofer & Boland, 2012; Dicke, 2015). 

Plants recognize herbivorous insects through herbivore-associated molecular pat-
terns (HAMPs) or damage-associated molecular patterns (DAMPs) (Mithofer & Bo-
land, 2008; Bonaventure, 2012; Heidel-Fischer et al., 2014; Duran-Flores & Heil, 
2016). Upon herbivore perception, signal-transduction pathways are activated that 
underlie the induction of defences. This includes an extensive, dynamic transcrip-
tional reorganisation (Kessler & Baldwin, 2002; De Vos et al., 2005; Howe & Jander, 
2008; Bidart-Bouzat & Kliebenstein, 2011; Bonnet et al., 2017; Hickman et al., 2017). 
This complex transcriptional response includes the up-regulation and down-regula-
tion of large numbers of genes, including genes encoding enzymes of phytohormone 
biosynthetic and response pathways, biosynthetic pathways of primary and second-
ary metabolites, developmental processes, as well as genes encoding transcription 
factors. The transcriptional response consists of a plethora of responses with diff erent 
temporal patterns (Breeze et al., 2011; Windram et al., 2012; Hickman et al., 2017). 
This complex of temporal transcriptional responses orchestrates the activation and 
attenuation of various processes, infl uencing the plant’s phenotype. Important prog-
ress has been made in analysing the temporally dynamic transcriptomic responses 
of Arabidopsis thaliana to insect herbivory (De Vos et al., 2005; Bidart-Bouzat & Kli-
ebenstein, 2011; Coolen et al., 2016; Davila Olivas et al., 2016) but only limited infor-
mation is available for other plant species (Bonnet et al., 2017; Durrant et al., 2017). 
Most of these studies address chewing and phloem-sucking herbivores, whereas in-
formation on cell-content feeders is limited. 

An early component of phenotypic reprogramming in response to attack involves the 
accumulation of and changed sensitivity to phytohormones, such as jasmonic acid 
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(JA), salicylic acid (SA), and ethylene (ET) that regulate plant defence responses 
(Maff ei et al., 2007; Verhage et al., 2010; Erb et al., 2012; Pieterse et al., 2012; Stam 
et al., 2014). For instance, SA is especially induced by phloem-feeding insects like 
aphids (Zhu-Salzman et al., 2004; Walling, 2008; Pieterse et al., 2012; Tzin et al., 
2015), whereas JA is induced by chewers and cell-content feeders like caterpillars and 
thrips, respectively (De Vos et al., 2005; Abe et al., 2008; Abe et al., 2009; Pieterse et 
al., 2012). Moreover, other major phytohormones like abscisic acid, cytokinins, auxin 
and gibberellins are also reported to act in herbivore-induced defence mechanisms 
(Pieterse et al., 2012; Stam et al., 2014). JA is a prominent phytohormone modulating 
induced plant defences against thrips feeding (De Vos et al., 2005; Abe et al., 2008). 
A microarray-based whole-genome transcriptome study of Arabidopsis (3 time points 
over 72 h) showed that 69% of the thrips-responsive genes were JA responsive (De 
Vos et al., 2005). In tomato, reduced resistance was observed in the JA-defective mu-
tant Defenceless1 (Def1) and in and Arabidopsis in the JA-insensitive coi1-1 mutant 
(Li et al., 2002; Escobar-Bravo et al., 2017). In Arabidopsis and Chinese cabbage 
(Brassica rapa subsp. pekinensis), feeding by the cell-content feeding generalist 
insect herbivore Western fl ower thrips (WFT; Frankliniella occidentalis) (Pergande) 
(Thysanoptera: Thripidae) induced the expression of JA-related marker genes, result-
ing in elevated levels of JA (Abe et al., 2008; Abe et al., 2009). Moreover, exogenous 
application of JA on several crops resulted in elevated resistance to thrips feeding 
(Omer et al., 2001; Thaler et al., 2001; Selig et al., 2016). 

Evidence from several whole-genome transcriptome studies shows that plants diff er-
entially respond to diff erent environmental stresses with a high degree of specifi city. 
Several studies have shown how Arabidopsis specifi cally rearranges its transcriptome 
over time against diff erent biotic and abiotic stresses (De Vos et al., 2005; Breeze 
et al., 2011; Windram et al., 2012; Coolen et al., 2016; Davila Olivas et al., 2016; 
Hickman et al., 2017). In plant-herbivore interactions, the majority of transcriptomic 
reconfi gurations occurs early (minutes to hours) during the interaction, shaping the 
subsequent plant response to herbivory (Maff ei et al., 2007; Stam et al., 2014). 

WFT is a devastating pest insect hampering pepper yield worldwide. Thrips are min-
ute cell-content feeding insects exerting direct damage to plants by piercing into epi-
dermal cells and ingesting the contents of mesophyll cells. Their feeding damage 
results in refl ective ‘silver scars’ on plant tissues hampering plant photosynthetic ca-
pacity, growth, reproduction and eventually yield (Steiner, 1990; Welter et al., 1990; 
Shipp et al., 1998; Steenbergen et al., 2018). This herbivore is challenging to control 
with pesticides due to its thigmokinetic life-style and extensive resistance to pesti-
cides. Additionally, WFT causes indirect damage by acting as vector of tospoviruses, 
such as Tomato spotted wilt virus (TSWV) (Maris et al., 2003). Therefore, to develop 
thrips-resistant crop varieties to minimize the damage, exploration and understanding 
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of the genetic basis underlying plant defence responses is vital (Steenbergen et al., 
2018). Such crop varieties may be a valuable component of integrated pest manage-
ment, in combination with biological control (Mouden et al., 2017).

Here, we present an in-depth analysis of the dynamic transcriptomic response of 
sweet-pepper plants to feeding by WFT through a high-resolution RNA-Seq analy-
sis of the early temporal response. We implemented a state-of-the-art bioinformatics 
approach to gain in-depth insights into the transcriptomic response of sweet pepper. 
The key objectives of this study were: (1) To assess the temporal transcriptional 
reprogramming of sweet pepper in response to WFT feeding, (2) to identify co-ex-
pressed gene clusters and their involvement in biological pathways, (3) to identify the 
major transcription factor (TF) families involved and their binding motifs to unravel di-
rectional regulatory connections with downstream regulated genes and their involve-
ment in biological processes, (4) to investigate the chronology of phytohormonal and 
secondary metabolite pathways underlying induced plant defence, (5) to unravel the 
conservation of induced responses to WFT feeding between Arabidopsis and sweet 
pepper. 

Materials and methods

Plants and thrips

Sweet pepper, Capsicum annuum (Mandy variety, Rijk Zwaan (De Lier, The Nether-
lands)), seeds were sown in 12 cm pots in a greenhouse at 23-25°C, 16L:8D pho-
toperiod and 70±10 % relative humidity. Two weeks later, plants were individually 
transplanted into 14 cm diameter pots and transferred to a greenhouse with controlled 
conditions (16L:8D photoperiod, 60 ± 10% relative humidity, 23 ± 5°C diurnal and 
20 ± 5°C nocturnal temperatures). Four-week-old sweet pepper plants were used for 
experiments. Adult females of Western fl ower thrips (Frankliniella occidentalis) reared 
on chrysanthemum plants were collected and transferred to bean pods (Phaseolus 
vulgaris) in glass jars (10 cm diameter). The jars were incubated in a climate-con-
trolled cabinet with 16L:8D photoperiod, 25±2°C and 70±10 % relative humidity to 
produce larvae for the experiments (Sarde et al., 2018a; Sarde et al., 2018b).

RNA-Seq experimental setup

Treatment and sampling

Four-week-old sweet pepper plants (having four fully expanded leaves) were each 
infested with fi ve second instar (L2) WFT larvae, confi ned in a clip cage (3 cm diam-
eter) on one of the fi rst two leaves. Empty clip cages were used as mock treatment. 
For each time point and treatment the leaf area in the clip cage (for both, mock and 



4

 Chapter 4

84

thrips treatment) was harvested using a cork borer (3 cm diameter), snap frozen in 
liquid nitrogen and stored at -80 °C; three biological replicates were collected, each 
biological replicate consisting of one individual plant. Time points of sampling were 0, 
0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 h of infestation.

RNA extraction and library preparation

RNA extraction was performed using the Qiagen RNeasy Plant Mini Kit including 
DNase I treatment, following the company’s instructions. RNA quantity was assessed 
using Nanodrop. RNA quality was assessed using RNA Integrity Number (RIN) with 
Agilent 2100 bioanalyzer. For RNA library preparation, samples with RIN values ≥ 7 
were used. 

For preparation of the RNA-Seq library and subsequent sequencing, samples were 
processed according to the TruSeq Stranded mRNA HT Sample Prep Kit from Illu-
mina (Illumina Inc., San Diego, CA, USA). This protocol allows the identifi cation of 
strand-specifi c transcripts. Samples were sequenced with an Illumina Hi-seq 2000 
platform. Samples were randomly assigned to seven lanes of the Illumina fl ow cells 
within each run.

Analysis of RNA-Seq dataset

Processing of raw RNA-Seq data

The RNA-Seq raw reads were subjected to quality control with the FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) tool. Trimmomatic was used to 
trim the initial 14-basepairs (bp) and Illumina adapters. Reads below 25 bp length 
were excluded from analysis for all samples (Bolger et al., 2014).

Alignment and quantifi cation of RNA-Seq data

Trimmed RNA-Seq reads were aligned to the Capsicum annuum L. Zunla genome 
using TopHat (v2.0.14) (Kim et al., 2013) with the following parameters: ‘p 4’, ‘--min-
intron-length 40’, ‘--max-intron-length 2000’, ‘--bowtie-n’, ‘-N 4’, ‘--read-gap-length 2’, 
‘--read-edit-dist 4’, ‘--no-novel-juncs’. The aligned reads to each C. annuum Zunla 
gene model were summarized using HTSeq-count (v.0.9.1) (Anders et al., 2015) with 
parameters: ‘--stranded no’, ‘-i ID’, ‘–t mRNA’. Principal component analysis (PCA) 
was performed using the DESeq2 package on regularized log2-transformed data 
(Love et al., 2014; Love et al., 2015) in R (https://www.r-project.org/).

Diff erential gene expression analysis

Diff erential gene expression (DEG) analysis was executed with the DESeq2 Biocon-
ductor package (Love et al., 2014; Love et al., 2015) in R. Prior to analysis, raw read 
counts were normalized for sequencing depth across all samples using DESeq2’s 
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median-count normalization procedure. To identify genes that were diff erentially ex-
pressed between mock and thrips-treated plants we used a negative binomial likeli-
hood ratio test (nbinomLRT) considering treatment and time post treatment as factors. 
Genes with Bonferroni corrected P value < 0.01, log2-fold change ≥ 0.5 or ≤ - 0.5 at 
one or more time points and read counts ≥ 20 at least in one sample were considered 
diff erentially expressed.

Clustering of diff erentially expressed genes

Temporal expression profi les of the DEGs were clustered using SplineCluster (Heard 
et al., 2006). For this, log2-fold change profi les of DEGs at each time point (thrips-treat-
ed versus mock), were used with a prior precision stringency of 10-4, cluster reallo-
cation step and the default normalization procedure (Heard, 2011). Default settings 
were maintained for all other optional parameters.

TF family and promoter motif enrichment analyses

To determine which TF families were enriched among the genes diff erentially ex-
pressed in response to thrips feeding, we tested for overrepresentation of genes en-
coding members of diff erent TF families found in sweet pepper. Previously, the C. 
annuum Zunla TF families were determined using C. annuum cv. CM334 TFs (1665 
TFs) from the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/
index.php) using blastp with stringency E-value < 10-4. Overrepresentation of TF fam-
ilies within a set of genes was analyzed using the hypergeometric distribution. P 
values were corrected for multiple testing with the Bonferroni method.

For the promoter motif analysis, characterized Arabidopsis TF DNA-binding motifs 
were retrieved from CIS-DB version 1.02 (Weirauch et al., 2014) and those described 
in Franco-Zorrilla et al. (2014). Promoter sequences defi ned as the 500 bp upstream 
of the translation start site were retrieved for all C. annuum Zunla genes. The occur-
rence of a motif within a promoter was determined using FIMO (Grant et al., 2011), 
where a promoter was considered to contain a motif if it had at least one match with a 
P value < 10-4. Motif enrichment was assessed using the hypergeometric distribution 
against the background of all sweet pepper genes.

Identifi cation of chronology of defence pathways upon thrips feeding

To identify the chronology of defence pathways in sweet pepper leaves upon thrips 
feeding, we performed a pairwise comparison between mock and thrips-treated sam-
ples at each time point to determine the time point at which DEGs were fi rst diff eren-
tially expressed (fi rst time of diff erential expression, P < 0.01, log2-fold change > 0.5 
(up-regulated) and < -0.5 (down-regulated) using DESeq2 (Love et al., 2014; Love 
et al., 2015). For the small number of genes that did not meet these criteria, the time 
point of fi rst diff erential expression was defi ned by minimal P value.
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Gene Ontology (GO) annotation of the C. annuum Zunla variety

For GO annotation of the C. annuum Zunla proteome, we implemented a comparative 
genomics approach on the C. annuum Zunla proteome (Qin et al., 2014) using the 
GO-annotated C. annuum cv. CM334 proteome (Plaza database, https://bioinformat-
ics.psb.ugent.be/plaza/) as query (Kim et al., 2014). 

Gene Ontology analysis

For Arabidopsis and sweet pepper, GO enrichment analysis was performed using 
Cytoscape (Shannon et al., 2003) and GOAtools (v0.7.9) (python-based library), us-
ing Fisher’s exact test (Klopfenstein et al., 2018), respectively. Overrepresentation of 
the GO categories “biological process”, “cellular component” and “molecular function” 
were determined at P < 0.05. 

Comparative transcriptomics

The Bi-directional Best Hit (BBH) approach was used on TAIR10 Arabidopsis and C. 
annuum Zunla proteome using reciprocal blastp with stringency E-value < 10-4 to de-
termine one-to-one orthologues (Martel et al., 2015). The one-to-one orthologue fi les 
were processed and used to investigate commonalities and diff erences between the 
Arabidopsis (Steenbergen et al., in prep.) and C. annuum transcriptomes as aff ected 
by WTF feeding.

Results

High-resolution transcriptome dynamics in sweet pepper induced by WFT

To comprehensively and accurately capture the dynamics of the full-genome tran-
scriptional response triggered by thrips feeding in sweet pepper plants, RNA-Seq 
analysis was carried out for thrips-infested and non-infested plants. Initially, sam-
ples from 13 time points were sequenced: three replicates of an initial 0h time point 
plus one replicate for the other 12 time points (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 
6.0, 7.0, 8.0, 9.0 h of infestation) after thrips infestation. The dataset generated was 
subjected to sample-to-sample distance analysis and PCA, to capture the transcrip-
tome-level relatedness and variation, respectively, within the samples. The data show 
an increasing diff erence between the samples with increasing time after the start of 
thrips infestation, with exception of the 3h time point (PCA, Fig. S1A). Likewise, the 
sample-to-sample distance heat map (Fig. S1B) clearly shows the close relatedness 
between sequential time points. Both analyses complement each other and show that 
the transcriptional response gradually developed over time. Based on this analysis, 
the 1, 2, 3, 4, 6 and 8 h time points were selected because they captured the full 
dynamic range of the transcriptional response to thrips feeding. 
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To understand the eff ect of the factors treatment and time on the transcriptomic profi le 
of sweet pepper plants, all three replicates of the selected six time points were sub-
jected to PCA (Fig. 1A). Both treatment and time explicitly separated the transcrip-
tomes. The diff erence between mock-treated and thrips-infested plants is small at 
1h since the initiation of thrips infestation and the diff erence gradually increases with 
time. At all six time points the transcriptome of thrips-infested plants is clearly diff erent 
from that of mock-treated plants. The mock-treated samples exhibit a change in tran-
scriptome with time, suggestive of an eff ect of circadian rhythm on the transcriptome 
of sweet pepper plants. Variation within the replicates of thrips-treated samples is 
higher than for mock-treated samples, which may represent diff erences in the intensi-
ty of thrips feeding among replicates. 

Genes that are diff erentially expressed in thrips-infested and uninfested plants at dif-
ferent time points were identifi ed with a generalized linear model (GLM) using the 
DESeq2 (Love et al., 2014). This analysis identifi ed a total of 3062 diff erentially ex-
pressed genes (DEGs) (Supplemental Data Set 1), that represent 8.6% of the to-
tal set of pepper transcripts (35,336) (Qin et al., 2014). The JA-biosynthesis genes 
CaLOX2 and CaAOS, and the JA-regulated genes CaMYC2, CaPIN II are among the 
DEGs. These representative genes of the JA response show a clear up-regulation 
within 1-2 h (Fig. 1B), thus supporting the JA-component of the response of sweet 
pepper to infestation by WFT (Sarde et al., 2018a).

Cluster analysis of DEGs based on expression patterns

To identify and classify clusters of co-expressed genes responding to thrips feeding 
over time, the time-series clustering algorithm SplineCluster was employed. A total 
of 23 clusters, 16 clusters of up-regulated genes and 7 clusters of down-regulated 
genes (Supplemental Data Set 2) was identifi ed. 2060 DEGs (67.3%) are represent-
ed in the sixteen up-regulated clusters (Clusters 1-16) and 1002 DEGs (32.7%) in the 
seven down-regulated clusters (Clusters 17-23) (Fig. 2). This analysis shows that the 
pepper transcriptional response to thrips feeding is highly dynamic over time. Many 
changes are initiated between 1h and 2h after the onset of thrips feeding. The clus-
ters of up-regulated genes show more variation in temporal patterns than the clusters 
of down-regulated genes (Fig. 2).
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Figure 1. Principal component analysis (PCA) of whole-genome transcriptomic re-
sponse at different time points for thrips-infested and mock-infested plants plus ex-
pression profi le of four selected JA-related marker genes of sweet pepper. (A) PCA of 
sweet pepper transcriptome of non-infested (mock) and infested (thrips) plants; samples were 
harvested at six time points. PCA was generated on the regularized log2-transformed data 
within the DESeq2 R package. Colours and symbol shapes indicate time points and treat-
ments, respectively. Variation explained by the two principal components is depicted on both 
axes. (B) Expression pattern of selected JA-related marker genes from RNA-Seq dataset. 
Data represent mean ± SE (n = 3 biological replicates). Red and green colours indicate mock 
and thrips treatment, respectively.

To investigate biological signifi cance of the co-expressed genes per cluster, we ex-
plored overrepresentation of Gene Ontology (GO) terms for the genes per cluster with 
the python-based library GOAtools (v0.7.9) (Klopfenstein et al., 2018). Each cluster 
is overrepresented for several functional terms, including unique and common cate-
gories (Fig. 2B) (Supplemental Data Sets 3 and 4). As predicted, defence-related and 
JA-related functional categories are overrepresented in several up-regulated gene 
clusters. For instance, “response to wounding” is overrepresented in clusters 6 and 
11; “response to JA” is overrepresented in clusters 4 and 7, and “defence response 
to insects” in cluster 11. In cluster 5, “response to salicylic acid” is overrepresent-
ed, suggesting that besides JA-related processes also SA-related processes play 
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a role in the response of pepper to thrips feeding. Moreover, several up-regulated 
clusters also exhibited overrepresentation of more unique functional categories. For 
instance, cluster 1 was specifi cally enriched for the GO term “tryptophan metabolic 
process”, which is associated with the production of defensive secondary metabolites 
(Kang & Back, 2006; Hiruma et al., 2013)and cluster 2 for “terpene/sesquiterpene 
biosynthetic process”, compounds involved in direct and indirect defence against in-
sects (Gershenzon & Dudareva, 2007) (Supplemental Data Set 3). Down-regulated 
clusters were associated with GO annotations like “response to auxin”, “response 
to high light”, suggesting that plant processes related to growth and development 
are down-regulated in response to thrips feeding (Supplemental Data Set 4). Tak-
en together, this analysis shows that up-regulated clusters are enriched with genes 
annotated for being involved in defence-related responses, whereas down-regulated 
clusters are enriched with genes annotated for being involved in developmental pro-
cesses. Some clusters harbour genes that are specifi cally enriched in a biological 
process that is not represented by other clusters, while especially JA-associated pro-
cesses are commonly enriched by several clusters. 

TF family abundance and TF binding motif analysis

TFs are important regulators of transcriptional responses and, thus, of the resulting 
phenotypic change. They bind to DNA-regulatory sequences in the promoter regions 
of target genes contributing to modulation of gene expression. The investigation of C. 
annuum Zunla TF families using 1665 TFs of C. annuum cv. CM334 identifi ed a total 
1424 (unique or non-redundant) TFs in C. annuum Zunla (Supplemental Data Set 5). 
To gain insight in regulators of the pepper transcriptome in response to thrips infesta-
tion, we analysed TF family abundance in all up- (2060) and down-regulated (1002) 
genes. Several TFs belonging to families like ERF, MYB, NAC, bHLH and WRKY are 
signifi cantly overrepresented among the up-regulated genes (Fig. 3A), suggesting a 
pivotal role of these TF families in regulating plant responses in sweet pepper plants 
that are induced upon thrips feeding. Among the down-regulated genes, the TF fam-
ilies HD-ZIP and bHLH are overrepresented. 
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Figure 2. Co-expressed gene clusters of differentially expressed genes in response 
to feeding by Frankliniella occidentalis. SplineCluster analysis was performed using 
log2-transformed expression ratios (thrips / mock). (A) Heat map depicting expression profi le 
of 3062 DEGs over time in each cluster. Cluster numbers are depicted with ‘#’ below the heat 
map. Yellow and blue indicate up- and down-regulated genes, respectively. (B) Twenty-three 
partitioned gene clusters (1-16 up- and 17-23 down-regulated) with selected enriched GO-
terms. The mean expression profi le of each cluster is represented by the blue line. The x-axis 
represents expression pattern of each gene cluster over time (in hours) and y-axis represents 
log2fold change of genes from each cluster.
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Because TF binding specifi cities are typically conserved between related organisms 
(Portales-Casamar et al., 2010), we extended our analysis of transcriptional regu-
lation underlying the pepper response to thrips by utilizing recently identifi ed DNA 
binding motifs for 580 Arabidopsis TFs (Franco-Zorrilla et al., 2014; Weirauch et al., 
2014), and scanned the promoter sequences of the genes in all 23 co-expressed 
clusters for overrepresentation of TF binding motifs. In clusters representing up-regu-
lated genes, promoter regions were especially enriched with binding sites for bHLH, 
ERF, bZIP and WRKY TFs (Fig. 3B). For example, bHLH motifs were particularly 
enriched in clusters 4 and 7, ERF motifs in clusters 14 and 16, bZIP motifs in clusters 
5 and 11 and WRKY motifs in clusters 6 and 16. Motifs that correspond to bHLH 
and WRKY TF binding sites were overrepresented in clusters involved in JA-related 
processes (clusters 4 and 7; Supplemental Data Set 3) and SA-related responses 
(cluster 6; Supplemental Data Set 3), respectively. In down-regulated clusters, Dof, 
MIKC, MYB-related and TCP TF-specifi c binding sites are overrepresented (Fig. 3B). 
In contrast to TF abundance analysis (Fig. 3A), no enrichment of bHLH binding motifs 
was found in genes of down-regulated clusters (Fig. 3B). Collectively, the expression 
profi les of pepper TFs and the enrichment of their binding sites in the thrips-induced 
pepper transcriptome provides important insight into the architecture of the gene reg-
ulatory network of pepper in response to thrips infestation. 

Chronology of sweet pepper defence response upon thrips feeding

The transcriptional response to thrips feeding develops with time (Fig. 1). To un-
derstand the chronology of biological processes activated upon thrips feeding, we 
performed a pairwise comparison (mock versus thrips-treated) for each time point 
on the temporal RNA-Seq dataset (Fig. 4). This analysis highlights the dynamic tran-
scriptome profi le and distinguishes DEGs (up- and down-regulated) that are diff er-
entially expressed for the fi rst time (first time of diff erential expression (ftode)) and 
DEGs that become again diff erentially expressed (ade) (Fig. 4) (Supplemental Data 
Set 6). At 2h after the introduction of thrips ca 10 times more genes are up-regulated 
than down-regulated. The majority of DEGs (up- and down-regulated) became fi rst 
diff erentially expressed within 4h and 8h since the onset of thrips feeding with twice 
as many ftode genes being up-regulated compared to ftode genes being down-reg-
ulated. 
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Figure 3. Overrepresented TF families and enriched TF DNA binding motifs in differen-
tially expressed gene clusters. (A) TF families among up-regulated (red) and down-regulat-
ed (blue) genes upon WFT feeding. Black dotted line represents signifi cance threshold (P < 
0.05). (B) Enriched TF DNA binding motifs in promotors of genes in up- and down-regulated 
gene clusters. The red colour intensity corresponds to raw P value of enriched motifs. Col-
umns and rows represent cluster numbers and enriched motifs, respectively. Clusters 1-16 
are up-regulated and clusters 17-23 are down-regulated.
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Figure 4. Chronology of sweet pepper transcriptome profi le and defence pathways on 
Western fl ower thrips feeding. Number of genes responding at each time point are depicted 
in the legend under the fi gure. Selected GO terms for the fi rst time of differential expression 
(ftode) genes are shown for each time point. Light and dark blue colours depict up-regulated 
fi rst time of differentially expressed (ftode) genes and again differentially expressed (ade) 
genes, respectively. Light and dark orange depicts down-regulated fi rst time of differentially 
expressed (ftode) genes and again differentially expressed (ade) genes.

Among the up-regulated genes at the 2h time point, GO terms are mainly associated 
with hormonal and defence responses, refl ecting the induction phase of the defence 
response to thrips infestation. Likewise, at the 4h time point, genes associated with 
GO terms like “phenylpropanoid biosynthetic process”, “lignin biosynthetic process”, 
“green leaf volatile biosynthetic process” are induced, refl ecting the onset of direct 
(phenylpropanoids, lignin) and indirect (green leaf volatiles, terpenoids) defence acti-
vation. Among the down-regulated genes, GO terms are associated with growth and 
development (“gibberellin metabolic processes”, “response to red or far red light”, 
“photosynthetic electron transport chain”). Overall, this analysis indicates that the 
up-regulation of genes in response to thrips infestation occurs faster and more in-
tensively than the down-regulation of genes. Apparently activation of defence-related 
processes is prioritized over attenuation of growth- and development-related process-
es.
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Figure 5. Expression of genes involved in defence-related hormonal cascades, indirect 
defences and biosynthesis of secondary metabolites. (A) JA pathway, (B) ET pathway, 
(C) SA pathway, (D) Indirect defence, (E) phenylpropanoid and fl avonoid pathways and (F) 
Isoprenoid pathways (MVA and MEP pathways).   indicates signifi cant (P < 0.01) fi rst time 
of differential expression (ftode) of each gene.
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Transcription dynamics of genes involved in hormonal and secondary metabo-
lite pathways 

To dissect the temporal response of several hormonal and metabolic pathways to 
thrips feeding, we focused on the expression of genes involved in these pathways. 
The majority of genes in the JA biosynthetic pathway (CaLOX2, CaAOS, CaAOC, 
CaOPR3, CaJAZ1, CaJAZ3, CaMYC2, CaCYP94, CaPIN II, CaARG1) are signifi -
cantly induced at 2h after the introduction of thrips onto the plant and sustain up-reg-
ulated until the last time point assessed, i.e. 8h after introduction of thrips (Fig. 5A). 
Likewise, several genes associated with the ET pathway (CaSAMS2, CaACO3, 
CaERF1, CaERF5) are up-regulated at the 2h time point (Fig. 5B). SA biosynthesis 
in plants can occur via two pathways: the isochorismate synthase (ICS) and phenyl 
alanine lyase (PAL) pathways; depending on the plant species the induced accumu-
lation of SA can occur primarily through either pathway (Chen et al., 2009). Several 
homologues of CaPAL are up-regulated at the 4h time point, while CaICS and the 
SA-responsive gene CaPR1 are down-regulated at this time point (Fig. 5C). Further-
more, the genes and their homologues involved in phenylpropanoid and fl avonoid 
biosynthesis (Ca4CL, CaC4H), including CaPAL homologs, are up-regulated at 4h 
after thrips introduction (Fig. 5E). For the biosynthesis of terpenoids (isoprenoids), 
an important class of VOCs involved in indirect plant defense in many plant species 
including pepper (Dicke et al., 1990; Van Den Boom et al., 2004), several genes 
involved in the MVA (mevalonate) and MEP (methylerythritol 4-phosphate) pathways 
are signifi cantly induced within 3-4h after introduction of thrips (Fig. 5F). Similarly, 
other genes involved in the production of VOCs, for example, geranyllinalool synthase 
(CaGLS) involved in biosynthesis of terpenes, methyl salicylate (MeSA) (CaSAMT) 
and green leaf volatiles (GLVs) (CaLOX7) were induced after 4h of thrips feeding 
(Fig. 5D). Taken together, the JA and ET pathways were rapidly up-regulated (within 
2h), the SA pathway seems down-regulated, whereas genes involved in secondary 
metabolism and indirect defence are induced at 4h after the onset of thrips feeding.

Conservation of defence responses between Arabidopsis and sweet pepper 
upon WFT feeding

A similar RNA-Seq analysis of the dynamic response to feeding by F. occidentalis has 
been performed for Arabidopsis, identifying in total 2788 DEGs (1820 up- and 968 
down-regulated) for eleven time points distributed over 8 h of thrips feeding (Steen-
bergen et al., in prep). In the present study we have identifi ed 3062 DEGs (2060 
up- and 1002 down-regulated) for six time points distributed over 8 h of thrips feeding 
on pepper. To gain insight in commonalities and diff erences in the transcriptomic 
responses of sweet pepper and Arabidopsis, we compared the DEGs recorded in 
these two studies. In pepper, 981of the 2060 up-regulated genes and 469 of the 1002 
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down-regulated genes, respectively, have Arabidopsis orthologues (Supplementary 
Data Set 7). In Arabidopsis, 652 of the 1820 up-regulated genes and 392 of the 968 
down-regulated genes, respectively, have pepper orthologues. Thus, there is ca 35-
50% overlap in transcriptomic responses of sweet pepper and Arabidopsis to feeding 
by F. occidentalis. The majority of DEGs from both plants having orthologues in the 
other plant species are diff erentially expressed in a species-specifi c manner: 718 
up-regulated plus 405 down-regulated genes in sweet pepper and 393 up-regulated 
plus 324 down-regulated in Arabidopsis (Fig. 6). There was more overlap in orthol-
ogous genes up-regulated in both plant species (232, 24% of up-regulated pepper 
DEGs with Arabidopsis homologues) than in orthologous genes down-regulated in 
both species (37, 8% of down-regulated pepper DEGs with Arabidopsis homologues) 
(Fig. 6). Moreover, there is limited overlap in contrasting responses of orthologous 
genes, i.e. genes that are up-regulated in pepper and down-regulated in Arabidopsis 
(31) and vice-versa genes that are down-regulated in pepper and up-regulated in Ara-
bidopsis (27). Genes from each subset are listed in Supplemental Data Set 7.

GO-term analysis was carried out to assess which processes have similar, specifi c 
or dissimilar regulation in the two plant species (Fig. 6). Common up-regulated DEGs 
(232) are associated with GO terms like “JA biosynthetic process” and several other 
defence-related processes, highlighting the important role of the JA pathway in both 
plants against WFT. DEGs in sweet pepper that have orthologues in Arabidopsis and 
that are up-regulated in pepper and not in Arabidopsis (718) are associated with GO 
terms like “isoprenoid biosynthetic process”, “response to cadmium ion”, whereas 
up-regulated genes in Arabidopsis that have orthologues in sweet pepper (393) are 
associated with GO terms like “response to stress”, “response to biotic stimulus”, 
“response to endogenous stimulus”, refl ecting defence responses that are specifi cally 
up-regulated in Arabidopsis and not in sweet pepper. In pepper, up-regulated DEGs 
not having orthologues in Arabidopsis (1079) exhibit an overrepresentation of the GO 
term “response to jasmonic acid”, suggesting the existence of a unique downstream 
JA response in pepper. Moreover, among the common down-regulated genes (37), a 
high overrepresentation of genes involved in “spindle organization”, “monopolar cell 
growth” and “transpiration” was recorded. Similarly, several common and unique GO 
terms for each subset of down-regulated genes are highlighted (Fig. 6).
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Figure 6. Venn diagram depicting conservation and uniqueness of induced defences in 
Arabidopsis and sweet pepper upon WFT feeding. Selected overrepresented GO terms 
are depicted for each subset of genes. The yellow numbers depicts orthologue number for 
each subset of genes.

Discussion

Through high-resolution temporal RNA-Seq and subsequent in-depth bioinformatic 
analysis, our study presents comprehensive temporal insights into sweet pepper tran-
scriptomic responses to WFT feeding at an unprecedented level. This study shows 
that approximately 10% of the sweet pepper transcripts are involved in temporal tran-
scriptional reprogramming upon thrips feeding. Most of this transcriptional reprogram-
ming is initiated within 4h after the onset of thrips feeding, with up-regulation exhibit-
ing a faster time course than down-regulation. Down-regulated genes are especially 
involved in developmental processes and up-regulated genes are especially involved 
in defence mechanisms. The induced transcriptome depicts a dynamic expression 
pattern over time, consisting of 16 up-regulated gene clusters and comprising genes 
involved in several hormonal and secondary metabolite pathways. The in-depth bioin-
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formatic analysis also provides insight into the underlying regulators (TFs) and chronol-
ogy of the transcriptomic rearrangement and biological processes aff ected. Moreover, 
a comparison with WFT-mediated rearrangement of the Arabidopsis transcriptome, in-
dicates a core thrips response, which is early and involves processes related to JA bio-
synthesis and signalling, and a relatively large plant-species specifi c response, which 
includes isoprenoid biosynthetic process. There overlap in the transcriptomic respons-
es of pepper and Arabidopsis to WFT is especially exhibited in JA-related processes.

Transcriptional analysis of plant responses to insect herbivory

Transcriptional responses to insect feeding have been carried out with microarrays 
and RNA-Seq for various plant species, but especially Arabidopsis. Full-genome mi-
croarray analyses have been carried out for Arabidopsis in response to feeding by 
caterpillars (De Vos et al., 2005; Ehlting et al., 2008; Bidart-Bouzat & Kliebenstein, 
2011; Appel et al., 2014; Davila Olivas et al., 2016; Kroes et al., 2017), aphids (De 
Vos et al., 2005; Bidart-Bouzat & Kliebenstein, 2011; Kroes et al., 2017) or whitefl ies 
(Kempema et al., 2007; Zhang et al., 2013). Full-genome microarray or RNA-Seq 
studies of responses of other plant species to herbivory have been carried out for e.g. 
caterpillars on wild cabbage (Broekgaarden et al., 2011), aphids on maize (Tzin et 
al., 2015) spider mites on tomato, maize, barley and grapevine (Martel et al., 2015; 
Diaz-Riquelme et al., 2016; Bui et al., 2018) or whitefl ies on cabbage (Broekgaarden 
et al., 2018). Caterpillars have a biting-chewing feeding mode, removing sections of a 
leaf. Aphids and whitefl ies have a piercing-sucking feeding mode, and ingest phloem 
contents. Spider mites have delicate piercing stylets, which they insert in the plant to 
pierce mesophyll cells to ingest their contents. Thrips also feed on mesophyll cells. 
They damage a group of cells with their mouthparts and then suck up the contents of 
the opened cells with their stylets (Steenbergen et al., 2018). To the best of our knowl-
edge there are two published studies that have made a full-genome transcriptomic 
analysis of plant responses to thrips: alfalfa response to feeding by Odontothrips loti 
(Tu et al., 2018) (RNA-Seq analysis, only one time point) and Arabidopsis response 
to Frankliniella occidentalis (De Vos et al., 2005) (microarray analysis, two time points 
spread over 24h). Although Arabidopsis also shows a strong representation of genes 
involved in JA-related processes among the up-regulated genes (De Vos et al., 2005). 
The SA pathway seems especially up-regulated in alfalfa (Tu et al., 2018).

Most transcriptomic studies of plant responses to insect feeding have assessed the 
response at one or two time points that often span a time period of 24 h or longer (De 
Vos et al., 2005; Ehlting et al., 2008; Bidart-Bouzat & Kliebenstein, 2011; Zhang et 
al., 2013; Appel et al., 2014; Diaz-Riquelme et al., 2016; Kroes et al., 2017; Broek-
gaarden et al., 2018; Tu et al., 2018). An exception are studies by Coolen et al. (2016) 
who included 4 time points during 24 h of feeding by caterpillars on Arabidopsis and 
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Durrant et al. (2017) who assessed the transcriptomic response of wild tobacco to the 
application of oral secretion of the caterpillar Manduca sexta at 6 time points ranging 
from 0.5 to 13 hours since treatment In the latter study no further feeding damage 
was done throughout the 13 hours of the experiment. The present study is the fi rst to 
provide a detailed high-resolution analysis of the early transcriptional response of a 
plant to a cell-content feeding insect herbivore, and thus provides a valuable resource 
for investigating this complex interaction. Our data show that with 6 time points in the 
fi rst 8 h of thrips infestation a total 23 clusters of transcriptional patterns can be dis-
tinguished, indicative of the complexity of the transcriptional response to continuing 
infl iction of insect herbivory.

Temporal transcriptomic dynamics of sweet pepper to WFT feeding

Most of the temporal transcriptomic plant responses to insect herbivory are studied 
with limited time points and not possessing control or mock samples for each time 
point (De Vos et al., 2005; Ehlting et al., 2008; Bidart-Bouzat & Kliebenstein, 2011; 
Zhang et al., 2013; Appel et al., 2014; Diaz-Riquelme et al., 2016; Kroes et al., 2017; 
Broekgaarden et al., 2018; Tu et al., 2018). To obtain accurate insights into temporal 
transcriptome dynamics, it is not only crucial to harvest more time points, but it is also 
vital to harvest the control or mock samples for each time point (Breeze et al., 2011; 
Windram et al., 2012; Lewis et al., 2015; Hickman et al., 2017). Harvesting at a limit-
ed number of time points will provide a low-resolution temporal transcriptome portrait 
of the plant response. Moreover, when control or mock samples are not included for 
each time point an eff ect of circadian rhythm (Fig. 1A) is not compensated for in the 
temporal diff erential gene expression analysis, generating false positives. Therefore, 
in our study, together with harvesting more time points, inclusion of control samples 
for each time point was an important feature. Furthermore, overall, sweet pepper 
responded with a temporally dynamic transcriptome to WFT feeding, including more 
up-regulated (2060) genes than down-regulated (1002) genes. This temporally dy-
namic transcriptome shows that numbers of genes induced or repressed vary among 
diff erent time points, indicating major switch points for up- and down-regulated de-
fence mechanisms at diff erent time scales. This suggests that harvesting tissue at 
fewer time points bears the risk of missing important temporal dynamics in the tran-
scriptome response. 

Role of phytohormones and secondary metabolites in sweet pepper against 
WFT

Besides the role of JA, relatively little knowledge on other defence components against 
thrips resistance is available (Maharijaya et al., 2012). JA is a major phytohormone 
in regulating induced plant defences against thrips (De Vos et al., 2005; Abe et al., 
2008). For example, 69% of diff erentially expressed genes in Arabidopsis were JA-re-
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lated (De Vos et al., 2005). JA-signaling-impaired tomato and pepper plants show 
enhanced susceptibility to thrips (Li et al., 2002; Escobar-Bravo et al., 2017; Sarde et 
al., 2018a). Induction of the whole JA cascade in our RNA-Seq dataset validates the 
conservation of JA-regulated defences in sweet pepper against thrips (Sarde et al., 
2018a). Some of the JA-regulated proteins like proteinase inhibitors (e.g. encoded by 
CaPIN II) and Arginase (CaARG1) are known for antidigestive eff ects in WFT (Outc-
hkourov et al., 2004) or other arthropods (Chen et al., 2004). Likewise, up-regulation 
of several genes associated with the ET pathway may be indicative of synergism be-
tween the JA and ET pathways in defence of sweet pepper against thrips as has been 
shown for other biotic stresses in Arabiopsis (Pieterse et al., 2009). SA biosynthesis 
in plants occurs either via the PAL or ICS pathway (Chen et al., 2009). Up-regulation 
of several homologues of CaPAL and down-regulation of CaICS and the SA-respon-
sive CaPR1 (Fig. 5C) gene suggest a suppression of SA pathway (at least until 8h), 
upon thrips feeding. PAL genes are also known to be involved in the biosynthesis 
of phenylpropanoids and fl avonoids and their induction does not necessarily mean 
an induction of the SA pathway. Sarde et al. (2018a) also showed that CaPR1 is in-
duced later i.e. post 10h of thrips feeding, suggesting later activation the SA pathway. 
Furthermore, up-regulation of phenylpropanoid and fl avonoid biosynthetic genes and 
their homologs (Ca4CL1, CaC4H), together with CaPAL homologues, suggests a de-
fensive role of these pathways against thrips. Moreover, plants also activate indirect 
defence by emitting VOCs upon herbivory feeding to attract their natural enemies (Mi-
thofer & Boland, 2012; Dicke, 2015). The blend of VOCs emitted mainly comprises of 
GLVs, methyl salicylate (MeSA) and terpenoids (Dudareva et al., 2006; Mumm et al., 
2008). Terpenoid biosynthesis occurs via the cytosolic MVA (mevalonate) or plastidal 
MEP (methylerythritol 4-phosphate) pathways (Vranova et al., 2013). In this study, 
together with many MVA and MEP pathway genes, the genes involved in biosynthe-
sis of MeSA (CaSAMT), GLVs (CaLOX7) (Sarde et al., 2018b) and terpenoids (Fig. 
5D) are induced. This suggests the emission of a VOC blend similar to that induced 
by another cell-content feeder, the spider mite T. urticae in sweet pepper (Van Den 
Boom et al., 2004).

Cluster analysis identifi es major regulators in sweet pepper

Several TF families regulate the transcriptional reprogramming of plants in a 
stress-specifi c manner (Breeze et al., 2011; Windram et al., 2012; Hickman et al., 
2017; Jin et al., 2017). Upon thrips feeding, the TF families ERF, MYB, NAC, bHLH 
and WRKY appeared to be major regulators in modulating the majority of thrips 
up-regulated genes. Recently, Hickman et al. (2017) showed that the ERF, MYB and 
bHLH TF families are major regulators of transcriptome reprogramming in response 
to exogenous MeJA application. This suggests that regulation of JA-signalling in Ara-
bidopsis and sweet pepper is conserved. In contrast, WRKY TFs, known to regu-
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late SA-mediated responses (Pandey & Somssich, 2009; Rushton et al., 2010) are 
overrepresented among the up-regulated genes (Fig. 3A), suggesting an induction 
of SA responses upon thrips feeding. In contrast, the down-regulation of SA biosyn-
thetic (isochorismate synthase (CaICS)) and SA-responsive (CaPR1) gene suggests 
suppression of the SA pathway (at least until 8h) upon thrips feeding. Possibly, the 
up-regulated WRKY TFs regulate phenylpropanoid, fl avonoid or terpene biosynthesis 
(Schluttenhofer & Yuan, 2015) or SA responses independent of the isochorismate 
pathway are activated (Chen et al., 2009). Furthermore, in the TF motif analysis, bind-
ing sites of bHLH TFs, known to be involved in JA signalling (Goossens et al., 2017), 
appeared to be enriched in several clusters (Fig. 3B), suggesting that bHLH TFs 
extensively regulate thrips-induced JA-regulated genes. In contrast, ERFs appeared 
to be enriched in a few clusters suggesting that they regulate only a small component 
of the transcriptional response to thrips. Likewise, enrichment of WRKY TFs in clus-
ters overrepresented with SA-responses consolidates its role as pivotal regulator of 
SA-response pathways (Pandey & Somssich, 2009). 

Sequential activation of phytohormones and secondary metabolites 

In plant-herbivore interactions, phytohormones are induced early (timescale of min-
utes to hours) resulting in an activation and regulation of the downstream transcrip-
tome (Maff ei et al., 2007). Many studies have shown a reprogramming of the tran-
scriptome occurring in plants with time in response to diff erent stresses (Breeze et 
al., 2011; Windram et al., 2012; Bechtold et al., 2016; Hickman et al., 2017). This 
temporal transcriptome reprogramming has consequences for the activation of diff er-
ent metabolic processes (timescale of hours to days) involved in plant defence (Maff ei 
et al., 2007). In the chronology analysis, at the 2h time point, GO terms like “response 
to JA”, and “response to wounding” are overrepresented. Similarly, genes involved in 
JA biosynthesis (CaLOX2, CaAOS, CaAOC, CaOPR3, CaJAZ1, CaJAZ3, CaMYC2) 
and ET biosynthesis (CaSAMS2, CaACO3) (Fig. 4) are diff erentially expressed for the 
fi rst time (ftode) at this time point, indicative of activation of the JA and ET hormonal 
pathways within 2h of thrips feeding. At the 4h time point, overrepresentation of GO 
terms like “phenylpropanoid biosynthetic process”, “GLVs biosynthetic process” and 
activation (ftode) of major genes involved in biosynthesis of MeSA (CaSAMT) and ter-
penoids via MVA and MEP (CaAACT, CaHMGR, CaMK, CaHDR, CaMPDC, CaIPPI, 
CaGLS) pathways indicates that the induced biosynthesis of these secondary metab-
olites is initiated at this time point. The major regulator of the most abundant volatile 
induced in sweet pepper by spider mites, the homoterpene (E,E)-4,8,12-trimethyltri-
deca-1,3,7,11-tetraene (TMTT), CaGGPPS, is activated earlier at 3h time point (Fig. 
5F). This fi ts to the fact that VOCs such as ester methyl salicylate (MeSA), mono-
terpenes myrcene and β-ocimene, the homoterpene TMTT, and the sesquiterpene 
(E,E)-α- farnesene are emitted hours after herbivorous insect infestation (Erb et al., 
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2015; Aljbory & Chen, 2018).

Majority of induced defences are plant-species specifi c against WFT

To gain more insight in conservation and diversifi cation of induced defence mech-
anisms against WFT between Arabidopsis and sweet pepper, we implemented a 
comparative transcriptomic analysis. From this analysis it appears that more genes, 
up- as well as down-regulated DEGs are specifi c for each of the two plant species 
than common for both of them. There was more overlap in up-regulated DEGs (232) 
than in down-regulated DEGs (37), which indicates that up-regulated responses such 
as induced defences are more conserved than down-regulated responses, which con-
cern plant growth and development. The prominent association of a common subset 
of up-regulated DEGs (232) with the GO term “JA biosynthetic process”, comprising 
mainly JA biosynthetic and signalling genes (CaLOX2, CaAOS, CaAOC, CaOPR3, 
CaACX1, CaJAZ1, CaJAZ3, CaMYC2, CaJMT) together with other genes involved 
in ET biosynthesis (CaSAMS2), ET response (CaERF1, CaERF5), phenylpropanoid 
biosynthesis (CaC4H) and indirect defence mechanism (CaSAMT, CaGLS, CaLOX7), 
indicates a prominent conservation of the JA pathway with other defence mechanisms 
in Arabidopsis and sweet pepper. Furthermore, the common up-regulated DEGs 
(232) of pepper are associated with the GO term “JA biosynthetic process”, whereas 
the non-orthologous DEGs (1079) from pepper are associated with the GO term “re-
sponse to JA”. This suggests that the JA biosynthetic pathway is conserved, whereas 
the response to this phytohormone is diverged between the two plant species. One 
of the JA responsive pathways in Arabidopsis is the glucosinolate pathway, resulting 
in secondary metabolites that are specifi c for brassicaceous plants like Arabidopsis 
and not sweet pepper, Moreover, DEGs possessing orthologues in pepper (718 up- 
and 405 down-regulated) and in Arabidopsis (393 up- and 324 down-regulated), that 
are assumed to have similar or identical functions in both plants, are diff erentially 
expressed in only one species. Likewise, the DEGs not possessing orthologues, in 
pepper (1079 up- and 533 down-regulated) and in Arabidopsis (1168 up- and 576 
down-regulated), are also species-specifi cally diff erentially expressed. The spe-
cies-specifi c diff erential expression of orthologues possessing and non-orthologue 
possessing DEGs explicitly indicates that the majority of the transcriptome response 
of Arabidopsis and pepper to WFT feeding is plant species-specifi c. Broadly, similar 
observations were reported to each subset of DEGs between Arabidopsis and tomato 
microarray-based transcriptome data generated in response to another cell-content 
feeder, the spider-mite T. urticae (Martel et al., 2015). Taken together, JA is found to 
be a prominently conserved pathway in Arabidopsis and pepper responses to WFT 
feeding, with the majority of the transcriptome response being species-specifi c.
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Conclusion

In conclusion, this study provides high-resolution information on the temporal tran-
scriptomic response of sweet pepper to WFT feeding. Through in-depth bioinformatic 
analysis, this study captured the temporal transcriptional reprogramming and its reg-
ulators and chronology of underlying defence mechanisms. Moreover, a comparison 
with the WFT-induced Arabidopsis transcriptome shows more commonalities in in-
duced responses, with a prominent involvement of JA biosynthesis and signalling, 
than for suppressed responses. Thus, this detailed, in-depth in-silico analysis pro-
vides important insights into the dynamic and complex response of pepper plants to 
infestation with a cell-content feeding herbivorous insect.
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Supplementary fi gure

Figure S1. PCA and sample-to-sample distance analysis of transcriptome of sweet 
pepper infested (thrips) and non-infested (control/mock) plants. (A) PCA plot of sweet 
pepper non-infested (mock) and infested (thrips) transcriptome. PCA was generated on the 
regularized log2-transformed data with DESeq2 package in R. Colours and shape indicate 
time points and treatments, respectively. Variation in percentage within the samples is de-
picted on both axes. (B) Sample-to-sample plot of sweet pepper non-infested (mock) and 
infested (thrips) transcriptome. It was generated on the regularized log2-transformed data with 
DESeq2 R package.
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Abstract

Temporal transcriptional rearrangements in response to insect feeding underlie a dy-
namically changing plant phenotype. Transcriptional rearrangements in response to 
the same herbivore in diff erent plant species share commonalities but also have spe-
cifi c elements. To elucidate these, comparative transcriptomics using a high-density 
RNA-Seq approach provides a valuable tool. Here, we made a high-density (7 time 
points within 8 h) gene expression analysis of white cabbage leaves in response to 
onion thrips (Thrips tabaci) feeding. One tenth (3790 up- and 2009 downregulated) 
of the white cabbage genome is diff erentially expressed within 8 h of onion thrips 
feeding. Cluster analysis identifi ed 48 co-expressed gene clusters (32 up- and 16 
downregulated) of which the up- and downregulated clusters are broadly associated 
with defence and development-related GO functional categories, respectively. Genes 
associated with phytohormones (JA, ET and SA) and secondary metabolites (phen-
ylpropanoids, fl avonoids, green-leaf volatiles and indolic glucosinolates) were rapidly 
induced, whereas the aliphatic glucosinolate pathway and development-related pro-
cesses were suppressed. Comparative analyses between the onion-thrips induced 
transcriptome of white cabbage and the Western fl ower thrips (WFT)-induced tran-
scriptome of Arabidopsis and sweet pepper revealed that the majority of the full-ge-
nome transcriptional responses against thrips are system-specifi c. More commonal-
ities were found among upregulated genes than among downregulated genes. This 
suggests that the activation of biological processes is more similar among plants 
than the deactivation of biological processes. TF families like MYB, bHLH and WRKY 
were conserved in regulating responses to thrips across three plant species. A prom-
inently conserved element among the three plant species is the JA biosynthesis and 
signalling pathway. The response of white cabbage to onion thrips is faster than the 
response of Arabidopsis and sweet pepper to WFT. This includes genes involved 
in the biosynthesis of phytohormones and secondary metabolites. This high-density 
comparative transcriptomic analysis provides insight into the complexity of the tempo-
rally dynamic response of plants to feeding by cell-content-feeding thrips.

Keywords: white cabbage (Brassica oleracea), onion thrips, time series, RNA-Seq, 
high-resolution, comparative transcriptomics, herbivory, defence
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Introduction

Plants face the attack by a wide range of herbivorous insects. The attack of a plant by 
an insect activates various mechanisms on a timescale of seconds to days. Upon her-
bivore perception, the earliest response is a change in plasma membrane potential 
(Vm) involving fl uctuations of cytosolic Ca2+ concentrations and followed by production 
of H2O2  (Maff ei et al., 2007). Subsequently, kinases and phytohormones are induced. 
The phytohormones jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are cen-
tral players in regulating defences against diff erent herbivorous insects (Pieterse et 
al., 2009; Verhage et al., 2010; Pieterse et al., 2012; Stam et al., 2014). For example, 
the JA signalling pathway is induced by chewing insects like caterpillars (Reymond et 
al., 2004; De Vos et al., 2005) and cell-content-feeding insects like thrips (Abe et al., 
2008; Abe et al., 2012; Sarde et al., 2018a; Steenbergen et al., 2018), whereas the 
SA signalling pathway is induced by phloem-feeding insects like aphids and whitefl ies 
(Zhu-Salzman et al., 2004; Walling, 2008; Pieterse et al., 2012; Tzin et al., 2015; 
Broekgaarden et al., 2018). Moreover, ethylene (ET) often synergises with JA and 
fi ne-tunes JA-regulated defences against herbivorous insects (Pieterse et al., 2009; 
Pieterse et al., 2012; Stam et al., 2014). Phytohormones regulate the activation of 
gene transcription (time scale of minutes to hours) and the biosynthesis of metabo-
lites (time scale of hours to days) (Maff ei et al., 2007; Stam et al., 2014).

Thus, herbivore attack results in a dynamic reconfi guration of their transcriptome. 
Such transcriptional rearrangements result in a temporally dynamic reorganization of 
various biological processes (Windram et al., 2012; Lewis et al., 2015; Hickman et 
al., 2017; Sarde et al., 2019; Steenbergen et al., 2019). The temporal transcriptional 
rearrangements include the induction and repression of transcription factors (TFs) 
that regulate genes and processes involved in the biosynthesis of compounds such 
as phytohormones, primary and secondary metabolites, defence-related proteins or 
development-related pathways. This reorganization of transcriptional and biological 
processes dynamically infl uences the plant phenotype (Stam et al., 2014), subse-
quently altering interactions of the plant with plant-associated organisms. This can 
infl uence plants throughout the season (Poelman et al., 2010) or even over diff erent 
seasons (Stam et al., 2018). Thus, early transcriptional responses of plants to attack 
by herbivorous insects can have extensive impact on plant ecology.

Studies of transcriptional responses to insect feeding usually include one or two time 
points over a period of 24 hours or longer, thus providing a low-resolution repre-
sentation of the interaction (De Vos et al., 2005; Ehlting et al., 2008; Bidart-Bouzat 
& Kliebenstein, 2011; Zhang et al., 2013; Appel et al., 2014; Diaz-Riquelme et al., 
2016; Kroes et al., 2017; Broekgaarden et al., 2018; Tu et al., 2018). To gain compre-
hensive insight into how a plant temporally rearranges its transcriptome in response 
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to attack by an insect herbivore, the collection of early high-density time-series tran-
scriptional data is crucial. Such data are instrumental for unravelling the early phase 
of defence responses to insect herbivores, including the involvement of major TFs, 
phytohormones, sequential activation of biological processes and gene regulatory 
networks.

Furthermore, because high-density transcriptional analyses provide detailed informa-
tion on early events in a plant’s response, the data can be used to compare diff erent 
insect-plant interactions for e.g. speed of response, chronology of gene transcription-
al processes and biological processes activated, and complexity of temporal gene ex-
pression patterns. Recently, we made a high-resolution temporal assessment of Ara-
bidopsis (Steenbergen et al., 2019) and sweet pepper (Capsicum annuum) (Sarde 
et al., 2019) transcriptomes in response to western fl ower thrips (WFT, Frankliniella 
occidentalis) feeding. This was done by detailed analysis of the transcriptome for 12 
and 7 time points within the fi rst 8 hours of attack on Arabidopsis and sweet pepper 
plants, respectively. This has yielded extensive information on similarities and dif-
ferences in how these plants of diff erent families respond to thrips infestation. In the 
present study, we made a high-resolution analysis of a third plant-thrips interaction, 
i.e., between white cabbage (Brassica oleracea) and onion thrips. One of the foci of 
this study is to analyse the expression pattern of white-cabbage genes involved in the 
biosynthesis of the defensive secondary metabolites of brassicaceous plants, such as 
glucosinolates and fl avonoids (Schoonhoven et al., 2005).

Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is a serious pest 
worldwide on various crops including White cabbage (Shelton et al., 2008; Fail et 
al., 2013). The pest status of onion thrips can be attributed to several characteristics, 
such as its short life-cycle, high reproductive rate, polyphagous nature, thigmoki-
netic behaviour and rapid development of resistance to insecticides (Diaz-Montano 
et al., 2011; Gill et al., 2015; Steenbergen et al., 2018). These insects cause direct 
damage to plants by rupturing the epidermal and mesophyll cells and ingesting the 
cell contents. Moreover, they also cause indirect damage on plants by transmitting 
tospoviruses like Iris yellow spot virus (IYSV) (Bunyaviridae) (Diaz-Montano et al., 
2011; Gill et al., 2015). 

In contrast to WFT, molecular responses of plants to onion thrips have not received 
much attention. The main goals of the present study were: 1) to comprehensively in-
vestigate the temporal transcriptomic response of white cabbage to feeding by onion 
thrips through high-resolution transcriptomics, and 2) to compare the response of 
white cabbage plants to onion thrips to the transcriptomic response of  Arabidopsis 
and sweet pepper plants to WFT through comparative transcriptomics to extend our 
knowledge of thrips-induced transcriptional plant responses.
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Materials and methods

Plant material and onion thrips

White cabbage [Brassica oleracea (W0246 variety, Syngenta, Enkhuizen, The Neth-
erlands)] plants were grown in a greenhouse at 22 ± 5°C (day/night), 16L:8D photo-
period, 60 ± 10% relative humidity and 130 μmol photons m-2 s-1 of light intensity. For 
thrips infestation, four-week-old white cabbage plants were used. Onion thrips (Thrips 
tabaci) were reared in jars (10 cm diameter) on leek leaves (Allium ampeloprasum) 
in a climate-controlled room (25 ± 2°C, L16:8D photoperiod and 70 ± 10% relative 
humidity).

Thrips treatment, RNA extraction and library preparation

Five 2nd instar larvae (L2) of onion thrips, confi ned in clip cages (3 cm diameter), were 
used to infest the second true leaf of four-week-old white cabbage plants. One clip 
cage was used per plant. Empty clip cages without thrips served as mock treatment. 
For each time point and treatment, the leaf area underneath the clip cages was har-
vested using a cork borer (3 cm diameter), fl ash frozen in liquid nitrogen and stored at 
-80 °C. Time points of harvesting were 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, and 9 h after 
the introduction of the fi ve thrips larvae. Three biological replicates were collected 
for each time point and treatment. Each individual biological replicate represents one 
single white cabbage plant. Extraction of RNA was executed using the RNeasy Plant 
Mini Kit (QIAGEN), according to the manufacturer’s protocol. DNAase I treatment 
on column was conducted for all the samples during RNA extraction. RNA quantity 
and quality were assessed by Nanodrop and Agilent 2100 bioanalyzer, respectively. 
Samples with RNA Integrity Number (RIN) ≥ 7 were used for RNA library prepara-
tion. Samples were prepared according to the TruSeq Stranded mRNA HT Sample 
Prep Kit from Illumina (Illumina Inc., San Diego, CA, USA). This protocol identifi es 
strand-specifi c transcripts. Sequencing of samples was performed with an Illumina 
Hi-seq 2000 platform. Samples were randomly allocated to seven lanes (Illumina fl ow 
cells) within each run.

Quality control, alignment and diff erential gene expression of RNA-Seq dataset

Quality of raw RNA-Seq reads was assessed using the FastQC (https://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/) tool. Trimmomatic was used to trim the 
initial 14-basepairs (bp) and Illumina adapters. Reads below 25 bp length were ex-
cluded from analysis for all samples (Bolger et al., 2014).

Alignment of RNA-Seq reads was performed using TopHat2 (v2.0.14) (Kim et al., 
2013) using the following parameters: ‘p 4’, ‘--bowtie-n’, ‘--min-intron-length 40’, 
‘--max-intron-length 2000’, ‘-N 4’, ‘--no-novel-juncs’, ‘--read-gap-length 2’, ‘--read-edit-
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dist 4’. The aligned reads to each B. oleracea (v2.1) (Parkin et al., 2014) gene model 
were summarized using HTSeq-count (v.0.9.1) (Anders et al., 2015) with parameters: 
‘--stranded no’, ‘-i ID’, ‘–t mRNA’. Principal Component Analysis (PCA) and sam-
ple-to-sample distance plots were generated in R (https://www.r-project.org/) using 
regularized log2-transformed data using the DESeq2 package (Love et al., 2014; Love 
et al., 2015). 

For analysis of diff erentially expressed genes (DEG), the DESeq2 R Bioconductor 
package (Love et al., 2014; Love et al., 2015) in R was used. Prior to DEG anal-
ysis, raw read counts were normalized for sequencing depths across all samples 
using the DESeq2’s count normalization procedure. A negative binomial likelihood 
ratio test (nbinomLRT) was used to identify DEGs between mock and thrips-infested 
plants. For this analysis, both treatment and time post-treatment were considered as 
factors. Genes with log2-fold change ≥ 0.5 or ≤ - 0.5 at one or more time points, a 
Bonferroni-corrected P value < 0.01 and read counts ≥ 20 at least in one sample were 
qualifi ed as DEGs.

Gene clustering, TF family and promoter motif enrichment analyses

SplineCluster, a time series-clustering algorithm, was used on log2-FC profi les of 
DEGs at each time point, to partition the DEGs into clusters based on temporal ex-
pression profi les (Heard et al., 2006). SplineCluster was used with the following pa-
rameters: a prior precision stringency of 10-4, the default normalization procedure and 
cluster reallocation step (Heard, 2011). Default values were used for all other optional 
parameters.

For TF family abundance analysis, we investigated overrepresentation of TF families 
within DEGs induced upon thrips feeding in white cabbage. Before this analysis, the 
TF families in white cabbage were determined using 4272 TFs of B. oleracea from 
the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/index.php) 
(Jin et al., 2017) using blastp with stringency E-value < 10-4. The hypergeometric dis-
tribution was used to identify overrepresentation of TF families within sets of DEGs. P 
values were corrected for multiple testing with the Bonferroni method.

To identify TF binding motifs in promoters of temporally clustered DEGs, comparison 
was made to 580 characterized Arabidopsis TF DNA-binding motifs from Franco-Zor-
rilla et al. (2014) and CIS-DB (version 1.02) (Weirauch et al., 2014). FIMO (Grant et 
al., 2011) was used to determine the occurrence of particular motifs within the pro-
moter sequences (500 bp upstream to the start codon) of all white cabbage genes. 
A motif was considered to be present in a promoter sequence, if it had at least one 
match with a P value < 10-4. The hypergeometric distribution against the background 
of all white cabbage genes was used to assess motif enrichment in a given cluster.
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Identifi cation of chronology of defence pathways upon thrips feeding

Pairwise comparison between mock and thrips-treated samples at each time point 
was performed using DESeq2 package (Love et al., 2014; Love et al., 2015) in R. 
Genes with log2-fold change ≥ 0.5 or ≤ - 0.5 and a Bonferroni-corrected P value < 
0.01 were considered to be diff erentially expressed. For the small number of genes 
that did not meet these criteria, the time point of fi rst diff erential expression was de-
fi ned by minimal P value. The output fi les were further processed to identify and 
categorize DEGs into two categories: first time of diff erential expression (ftode) and 
again diff erential expression (ade).

Gene Ontology (GO)-term enrichment analysis

For GO-term enrichment analysis, Cytoscape (Shannon et al., 2003) was used for 
Arabidopsis and GOAtools (v0.7.9) (Klopfenstein et al., 2018), a python-based li-
brary, was used for white-cabbage and sweet pepper, using Fisher’s exact test. For 
this, we used the GO-annotated proteome for B. oleracea from the Plaza database 
(https://bioinformatics.psb.ugent.be/plaza/) (Jin et al., 2017). Overrepresentation of 
GO categories like “biological process”, “cellular component” and “molecular function” 
was analyzed at P < 0.05.

Comparative transcriptomics

Comparative transcriptomics was performed between B. oleracea and Arabidopsis 
(TAIR10) and between B. oleracea and Capsicum annuum L. Zunla proteome using 
the Bi-directional Best Hit (BBH) method (Martel et al., 2015). Local blastp with strin-
gency E-value < 10-4 was used to identify one-to-one orthologues in both compari-
sons. The Arabidopsis and pepper transcriptome datasets used in this study relate 
to plants induced by Frankliniella occidentalis (Western fl ower thrips) according to 
methodology very similar to that used in the present study (Sarde et al., 2019; Steen-
bergen et al., 2019).

Results

Temporal transcriptomic response of white cabbage plants upon onion thrips 
feeding

To gain detailed insight into the temporally dynamic transcriptomic response of white 
cabbage plants upon feeding by onion thrips, individual samples from 12 time points 
(0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0 h of infestation) plus 3 sam-
ples of the 0 h time point were sequenced and analysed. The PCA and heat map of 
sample-to-sample distance analysis show a gradual development of the transcriptom-
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ic response with time in the white cabbage plants (Fig. S1). This analysis led to the 
selection of the 1, 2, 3, 4, 6 and 8 h time points for sequencing of additional samples 
and subsequent in-depth analysis. Thus, including the 0 h time point, the time series 
consists of seven time points. The detailed data for these seven time points were 
subjected to PCA to investigate the eff ect of treatment and time on the white cab-
bage transcriptome in response to onion thrips feeding. PCA explicitly discriminates 
the samples for treatments and time points, indicating that both treatment and time 
since infestation are determinants of the transcriptomic response of white cabbage 
(Fig. 1A). The mock-treated samples diff er between time points, suggesting a diur-
nal-rhythm eff ect on the transcriptome. The three replicates per treatment and time 
point exhibit considerable similarity apart from the fi rst time point for thrips-infested 
plants (1h).

Figure 1. Principal component analysis (PCA) of white-cabbage transcriptome of 
mock-treated and onion thrips-infested plants at several time points and expression 
patterns of selected JA-associated marker genes of white cabbage. (A) PCA plot of 
white-cabbage whole-genome transcriptomic response at seven time points for mock-treated 
and thrips-infested plants. Variation between the samples of treatment and time post-treat-
ment is depicted on both axes. Different shapes represent the different treatments and the 
different colours represent the different time points. (B) Temporal expression profi le of JA-re-
lated marker genes from transcriptome dataset. Expression of each gene depicts mean ± SE 
of 3 biological replicates.
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Next, we used the DESeq2 negative binomial log-ratio test with treatment and time 
since start of treatment as factors, to identify 5799 diff erentially expressed genes 
(DEGs) between mock (Supplemental Data Set 1). This accounts for 9.7 % of the to-
tal 59,225 white cabbage genes (Parkin et al., 2014). Because thrips are known to in-
duce the JA pathway (De Vos et al., 2005; Abe et al., 2008; Sarde et al., 2018a; Sarde 
et al., 2018b), the expression profi les of several genes in the JA pathway (BoLOX2, 
BoMYC2, BoVSP2) were specifi cally analysed. Reassuringly, all three genes were 
rapidly up-regulated by thrips feeding (Fig. 1B).

Gene clusters, TF family abundance and TF motif analysis

To identify the predominant dynamic patterns of gene expression in plants during 
thrips feeding, we used the time-series-clustering algorithm, SplineCluster (Heard et 
al., 2006), to cluster the 5799 DEGs based on their expression pattern over time. The 
SplineCluster analysis identifi ed 48 coexpressed gene clusters: 16 down-and 32 up-
regulated clusters. The 16 downregulated (clusters 1-16) and 32 upregulated (clus-
ters 17-48) gene clusters represent 2009 (34.6%) and 3790 (65.4%) DEGs, respec-
tively (Fig. 2A) (Supplemental Data Set 2). Among the upregulated clusters, several 
(clusters 20-29, 35 and 41-48) showed that gene expression is rapidly induced within 
1 h of thrips feeding, whereas in other clusters (cluster 30-34 and 36-40) genes were 
initially downregulated, followed by subsequent upregulation. Similarly, in the clusters 
representing downregulated genes, rapid downregulation is seen in some clusters 
(4-10), while genes in other clusters (1, 2 and 11-16) show a gradual downregulation 
over time (Fig. 2A). To explore the biological processes associated with the dynamic 
expression patterns identifi ed by the SplineCluster analysis, GOATOOLS (Klopfen-
stein et al., 2018) was used to identify signifi cantly overrepresented functional cate-
gories associated with genes in each cluster. Several upregulated clusters (clusters 
42-45 and 48) are enriched with genes associated with GO terms like “Jasmonic acid 
signalling pathway” and “Response to JA” (Fig 2A). Other defence-related pathways 
are overrepresented in other clusters. For example, cluster 27 with “Tryptophan bio-
synthetic process”, cluster 36 with “Anthocyanin-containing compound biosynthesis”, 
cluster 35 with “Defence response to fungus” (Supplemental Data Set 3). Similarly, 
downregulated clusters (clusters 1-16) exhibit GO terms especially associated with 
growth and development (Supplemental Data Set 4). For example, clusters 2 and 3 
with “Photosynthetic electron transport in photosystem I”, cluster 4 with “Photosynthe-
sis, light harvesting”, clusters 12, 13 and 14 with “Protein phosphorylation” and clus-
ter 16 with “Protein ubiquitination”. Cluster 12 is overrepresented with genes involved 
in “Terpenoid biosynthesis”.
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Figure 2. Temporally co-expressed gene clusters and promoter motif analysis of gene 
clusters. (A) Heat map showing mean expression profi les of 48 gene clusters (clusters 1-16 
downregulated and clusters 17-48 upregulated) with selected GO terms. (B) Overrepresented 
TF binding motifs in the 48 gene clusters. Enriched TF family binding motifs in each cluster 
are shown in yellow colour.

To investigate which TF families are involved in regulating the white cabbage re-
sponse to onion thrips feeding, TF abundance was analysed for all up- (3790) and 
downregulated (2009) genes. We identifi ed 2910 non-redundant TFs in the B. oler-
acea (TO1434) proteome (Parkin et al., 2014) using 4272 TFs of Brassica oleracea 
from the Plant Transcription Factor Database (Supplemental Data Set 5). In the 3790 
upregulated genes, several TF families like ERF, WRKY, MYB, HSF, GRAS, bHLH, 
MYB-related, RAV and Trihelix are overrepresented. Similarly, in the 2009 downreg-
ulated genes, the TF families ARF, NF-YA, YABBY, C2H2, MYB_related, CAMTA, 
AP2, G2-like, Nin-like, HD-ZIP, bHLH, TALE and Dof are signifi cantly overrepresent-
ed (Supplemental Data Set 6).

Subsequently, we searched for TF binding motifs in the promoter sequences of the 
genes in all 48 clusters. For this, we used FIMO (Grant et al., 2011) and 580 character-
ized Arabidopsis TF DNA-binding motifs from CIS-DB (version 1.02) (Franco-Zorrilla 
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et al., 2014; Weirauch et al., 2014). In clusters of upregulated genes (clusters 17-48), 
motifs that correspond to bHLH, bZIP, ERF and WRKY TFs are overrepresented (Fig. 
2B), suggesting expression of genes in these clusters is regulated by members of 
these TF families. The motif enrichment also matches the coordinated up-regulation 
of genes encoding members of these TF families following thrips feeding.. Clusters 
22, 25, 28, 42 and 44 are enriched with binding sites of bHLH and bZIP TFs, clusters 
17, 19 and 33 with binding sites of ERF TFs and clusters 20, 28 and 42 with binding 
sites of WRKY TFs. In clusters with downregulated genes (clusters 1- 16), binding 
sites for bHLH, bZIP, MYB-related and MIKC TFs are overrepresented (Fig. 2B). 

Chronology of phytohormone induction

The phytohormones JA, ET and SA regulate induced defences against insect herbi-
vores. To investigate how these phytohormonal pathways are involved in the response 
of white cabbage plants to onion thrips, we examined the temporal expression dy-
namics of genes involved in these pathways. Several of the JA-biosynthetic (BoLOX2, 
BoAOS, BoAOC3, BoOPR3, BoACX1) and JA-signalling (BoJAZ1-3, BoJAZ5-9) 
genes are signifi cantly upregulated within 1h of thrips feeding (Fig. 3A). Downstream 
JA-responsive genes like BoMYC2 and BoVSP2 are signifi cantly induced at 2 h and 
3 h since the start of thrips feeding, respectively. Similarly, many ET-related genes 
are induced within 1-2 h of thrips feeding (Fig. 3B). SA biosynthesis may occur via 
the phenylalanine (PAL) or isochorismate pathway (ICS). Yet, the ICS pathway is 
crucial for the production of SA that is involved in plant defence against pathogens 
(Wildermuth et al., 2001). We analysed the transcriptional responses of PAL and ICS 
genes. Several homologs of PAL genes are upregulated within 2h of thrips feeding. In 
contrast, BoICS is downregulated at the 3h time point. The downstream SA-respon-
sive gene, BoPR5 (Ali et al., 2017), is signifi cantly induced for the fi rst time at the 6 h 
time point. This indicates downregulation of SA via the ICS pathway, upregulation of 
the phenylalanine (PAL) pathway and late upregulation of SA-responsive genes (Fig. 
3C). In conclusion, this analysis suggests an induction of all three major defence-re-
lated hormones in white cabbage upon thrips feeding, albeit at diff erent time scales.

Induction of secondary metabolites

To evaluate if feeding by onion thrips induces secondary metabolites such as phen-
ylpropanoids, fl avonoids, green leaf volatiles (GLVs) and glucosinolates (GLS), the 
temporal expression pattern of genes involved in these pathways was analysed. The 
majority of phenylpropanoid and fl avonoid biosynthetic genes (BoPAL, BoC4H, Bo-
4CL, BoF3H, BoFLS) (Onkokesung et al., 2014) show signifi cant upregulation at the 
2 h time point, with the exception of BoCHS, BoCHI and a few homologs of Bo4CL, 
which are downregulated at this time point (Fig. 4A).
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Figure 3. Temporal expression of genes involved in JA, ET and SA hormonal path-
ways differentially expressed upon onion thrips feeding. (A) JA pathway, (B) ET pathway 
and (C) SA pathway. Expression of genes represents log2-fold change between mock- and 
thrips-infested plants for each time point. ‘+’ indicates signifi cant (P < 0.01) fi rst time of differ-
ential expression (ftode) for each gene.
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Glucosinolates (GLS), are broadly divided into three groups: aliphatic, aromatic and 
indolic glucosinolates (Halkier & Gershenzon, 2006; Ishida et al., 2014; Frerigmann 
et al., 2016). Among the DEGs in our dataset, we found major regulators of indolic 
glucosinolates (BoMYB34, BoMYB122, BoMYB51) (Frerigmann et al., 2016) and 
several downstream genes (BoASA1, BoTSA1, BoCYP83B1, BoGSTF9, BoGSTF10, 
BoSUR1, BoUGT74B1, BoSOT16) (Tytgat et al., 2013) to be induced within 1-2 
h of thrips feeding (Fig. 4B). In contrast, the major upstream regulator of aliphatic 
GLS (BoMYB28) (Halkier & Gershenzon, 2006) was suppressed within 2 h of thrips 
feeding (Fig. 4C). In addition, the expression of various other major genes involved 
in the biosynthesis of aliphatic GLS, such as BoMYB29, BoMYB76, BoBAT5 and 
BoMAM1-3 (Tytgat et al., 2013) did not alter upon thrips feeding. This suggests that 
specifi c induction of indolic GLS and suppression of aliphatic GLS occurs upon onion 
thrips feeding. Both homologues of the hydroperoxide lyase (HPL) gene, known to 
break down lipid hydroperoxides to produce green leaf volatiles (Bate et al., 1998), 
are upregulated within 1 h of thrips feeding (Fig. 4D).

Chronology of biological processes altered in response to thrips feeding

To gain in-depth understanding of how white cabbage plants reconfi gure their tran-
scriptome over time and sequentially activate diff erent biological processes, we per-
formed a pairwise comparison for all individual time points between mock treatment 
and thrips treatment. This analysis showed progressive transcriptional reconfi guration 
over time and partitioned both up- and downregulated DEGs into the classes first time 
of diff erential expression (ftode) and again diff erentially expressed (ade) (Supplemen-
tal Data Set 7). The major transcriptional burst in both up- and downregulated genes, 
occurred rapidly, i.e. within 1-2 h of thrips feeding (Fig. 5). The majority of DEGs 
in this study are diff erentially expressed within 2 h since the start of thrips feeding. 
Approximately 650-800 of the upregulated genes at 3-8 h were also upregulated at 
earlier time points. In contrast, only few downregulated genes at 3-8 h since the start 
of thrips feeding are again upregulated, suggesting that the upregulation of genes is 
more pronounced than the downregulation. Thus, this analysis illustrates temporal 
reconfi guration of the white-cabbage transcriptome and its initial transcriptional burst 
in response to thrips feeding occurring within 1-2 h of thrips feeding.
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Figure 4. Temporal expression of genes involved in the biosynthesis of secondary me-
tabolites . (A) phenylpropanoid and fl avonoid pathways, (B) Indole glucosinolates (GLS), (C) 
Aliphatic glucosinolates (GLS), and (D) green-leaf volatiles. Expression of genes represents 
log2-fold change between mock- and thrips-infested plants for each time point. ‘+’ indicates 
signifi cant (P < 0.01) fi rst time of differential expression (ftode) for each gene.
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To analyse the chronology of biological processes activated upon thrips feeding, we 
investigated the GO terms associated with genes showing fi rst time of diff erential 
expression (ftode) at each time point. At 1h after the start of thrips feeding, the GO 
terms overrepresented among upregulated genes are mainly associated with func-
tional categories like “Jasmonic acid mediated signalling pathway” and “Response to 
ethylene”, indicating rapid induction of these phytohormonal pathways (Fig. 5). At the 
2 h time point, GO terms like “Regulation of systemic acquired resistance”, “Aromatic 
amino acid family biosynthetic process” are overrepresented, refl ecting induction of 
resistance and biosynthesis of aromatic amino acids (Phe, Tyr, Trp), which act as pre-
cursors for several secondary metabolites in plants (Tzin & Galili, 2010). Among the 
downregulated genes, GO terms associated with plant development like “Response 
to auxin”, “Photosynthesis”, and “Photosynthetic electron transport in photosystem-I” 
are overrepresented. 

Figure 5. Chronology of white cabbage biological processes reorganized in response 
to onion thrips feeding. Number of fi rst time differentially expressed (ftode) and again dif-
ferentially expressed (ade) genes for both up- and downregulated genes are depicted above 
and below pictures of cabbage leaves, respectively. Light green and light blue boxes show 
selected GO terms for ftode up- and downregulated genes, respectively.
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Comparative transcriptomics: white cabbage vs Arabidopsis and white cab-
bage vs sweet pepper

Recently, similar high-density time series data were generated for Arabidopsis 
(Steenbergen et al., 2019) and sweet pepper (Capsicum annuum) (Sarde et al., 
2019) plants in response to WFT feeding. These studies identifi ed a total of 2788 
(1820 up- and 968 downregulated) DEGs in Arabidopsis and 3062 (2060 up- and 
1002 downregulated) DEGs in sweet pepper over a span of 8 hours of thrips feeding. 
To gain insight into the commonalities and specifi cs of whole-genome transcriptional 
responses on plant-family and plant-species level upon feeding by diff erent thrips 
species, we compared onion thrips induced white-cabbage DEGs (5799; 3790 up- 
and 2009 downregulated) with WFT-induced Arabidopsis (Steenbergen et al., 2019) 
and sweet pepper DEGs (Sarde et al., 2019). 

In the comparison of DEGs between white cabbage and Arabidopsis, 1938 of 3790 
upregulated genes and 1093 of 2009 downregulated genes from white cabbage have 
Arabidopsis orthologues. Likewise, 1420 of 1820 upregulated genes and 708 of 968 
downregulated genes from Arabidopsis have white cabbage orthologues (Fig. 6). In 
the comparison of white cabbage vs sweet pepper, we identifi ed that 1126 of 3790 
upregulated genes and 730 of 2009 downregulated genes of white cabbage possess 
sweet pepper orthologues. Likewise, 986 of 2060 upregulated genes and 468 of 1002 
downregulated genes of sweet pepper possess white cabbage orthologues (Fig. 7). 
The relatively high number of orthologues between white cabbage and Arabidop-
sis compared to the comparison of white cabbage and sweet pepper, refl ects their 
shared brassicaceous identity. Furthermore, in both comparisons, large numbersof 
genes [in white cabbage vs Arabidopsis, 1225 up- and 970 downregulated in white 
cabbage and 754 up- and 538 downregulated in Arabidopsis; in white cabbage vs 
sweet pepper, 779 up- and 602 downregulated in white cabbage and 624 up- and 
355 downregulated in sweet pepper] have orthologues in the other plant species, but 
those orthologues are not diff erentially expressed. Thus, a large proportion of DEGs 
show diff erential expression in a species-specifi c manner (Fig. 6 and 7). This indicates 
that the majority of  the transcriptomic responses in each plant species is distinct. It is 
interesting to note that more commonalities exist in the subset of upregulated genes 
than in the subset of downregulated genes: 622 of the 1938 (32%) upregulated white 
cabbage genes that have Arabidopsis orthologues are also upregulated in Arabidop-
sis, compared to 79 out of 1093 (7%) downregulated white cabbage genes with or-
thologous Arabidopsis genes that are downregulated in both species. Moreover, this 
is similar for the white cabbage vs sweet pepper comparison: 315 upregulated genes 
out of 1126 (27%) diff erentially regulated sweet pepper genes that are upregulated in 
sweet pepper and cabbage versus 81 out of 730 (11%) downregulated genes. This 
suggests that the activation of biological processes is more similar among plants than 
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the deactivation of biological processes.

Figure 6. Venn diagram depicting the numbers of genes and biological processes that 
are similarly or differentially regulated during feeding by western fl ower thrips on Ara-
bidopsis and by onion thrips feeding on white-cabbage plants. Selected overrepresented 
GO terms are depicted for each subset of genes. Brown and blue colours represent white 
cabbage and Arabidopsis DEGs, respectively. Dark blue and dark brown segments represent 
genes with orthologues in the other plant species, light blue and light brown represent genes 
without orthologues in the other plant species. Yellow numbers depict total numbers of genes 
with orthologues in the other plant species for each subset of genes.

GO term analysis for each subset of genes  was performed for both comparisons 
(white cabbage vs Arabidopsis and white cabbage vs sweet pepper) (Fig. 6 and 7). 
Common upregulated genes (622 in white cabbage vs Arabidopsis and 315 in white 
cabbage vs sweet pepper) from both comparisons are associated with JA-related GO 
terms, such as “JA mediated signalling pathway” and “Response to JA”. This exhibits 
the conservation and importance of the JA pathway in all three plant species against 
thrips feeding. Moreover, in the white cabbage vs sweet pepper comparison, the 
sweet pepper DEGs (624) with orthologues in white cabbage, that are species-spe-
cifi cally induced in sweet pepper are associated with the GO term “Isoprenoid (ter-
penoid) biosynthesis”, indicating that this pathway is especially important in sweet 
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pepper. In downregulated genes for both comparisons, GO terms are largely asso-
ciated with development-related processes, such “Photosynthesis”, “Photosynthetic 
electron transport in photosystem I”, “Photosynthesis, light harvest”, “Chlorophyll bio-
synthetic process” (Fig. 6 and 7). This indicates that downregulation of developmental 
processes occurs in all three plant-thrips interactions.

Figure 7. Venn diagram depicting the numbers of genes and biological processes 
that are similarly or differentially regulated during feeding by western fl ower thrips 
on sweet pepper plants and by onion thrips feeding on white cabbage plants. Selected 
overrepresented GO terms are depicted for each subset of genes. Dark blue and dark brown 
segments represent genes with orthologues in the other plant species, light blue and light 
brown represent genes without orthologues in the other plant species. Yellow numbers depict 
total numbers of genes with orthologues in the other plant species for each subset of genes.

Discussion

In the present study, we aimed to gain comprehensive insights into the temporally 
dynamic full-genomic transcriptional response of white cabbage plants to feeding by 
onion thrips and to elucidate the level of conservation in induced defences in diff erent 
plants, induced by two thrips species. We recorded that 9.7% (5799/59225) of the 
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white cabbage genes is diff erentially expressed within 8 h of onion thrips feeding 
and that the transcriptional patterns of these 5799 genes can be categorized into 48 
co-expressed gene clusters (32 up- and 16 downregulated).  The up- and downregu-
lated gene clusters are broadly associated with defence and development-related bio-
logical processes, respectively. The majority of transcriptional reprogramming occurs 
already within 2 h after the start of exposure to thrips. Processes induced include the 
biosynthesis of phytohormones (JA, ET and SA) and secondary metabolites (phen-
ylpropanoids, fl avonoids, GLVs and indolic GLS), whereas developmental processes 
and the aliphatic GLS pathway are suppressed.

Through a similar protocol, we have previously also analysed the full-transcriptom-
ic responses of Arabidopsis and sweet pepper plants to WFT (Sarde et al. 2019; 
Steenbergen et al. 2019). A comparative transcriptomic analysis between the on-
ion-thrips-induced white cabbage transcriptome and the WFT-induced Arabidopsis 
and sweet pepper transcriptomes showed 1) that the induction of JA biosynthesis and 
signalling is conserved in all three plant species, 2) that white cabbage responds rap-
idly with a relatively complex temporal transcriptional response (48 clusters), whereas 
the sweet pepper and Arabidopsis responses are somewhat slower and character-
ized by approximately half the number of clusters, i.e. 23 and 20 clusters respective-
ly, 3) that TFs like MYB, bHLH and WRKY are conserved as major regulators of the 
response to thrips feeding, and 4) that the majority of the full-genome transcriptional 
responses against thrips are system-specifi c.

Majority of transcriptomic responses to thrips are system-specifi c

In both transcriptomic comparisons (white-cabbage vs Arabidopsis and white cab-
bage vs sweet pepper), a similar pattern in terms of the distribution of orthologous 
genes over the three categories (a) similarly regulated, (b) oppositely regulated and 
(c) diff erentially regulated in only one of the two species, was observed (Fig. 6 and 
7). The emerging pattern is that: 1) there is more overlap in upregulated orthologous 
genes than in downregulated orthologous genes and 2) the majority of DEGs from 
each plant species shows species-specifi c diff erential expression. A similar conclu-
sion was drawn for a comparison of Arabidopsis vs tomato  plants upon infestation by 
the spider mite Tetranychus urticae, another cell-content feeder (Martel et al., 2015) 
and the comparison of the Arabidopsis and sweet pepper transcriptomes in response 
to WFT feeding (Sarde et al., 2019; Steenbergen et al., 2019). Moreover, in the com-
parison between white cabbage (Brassicaceae) and Arabidopsis (Brassicaceae) a 
larger number of orthologues and common genes for each subset were found than in 
the comparison between white cabbage (Brassicaceae) and sweet pepper (Solana-
ceae). This suggests that the transcriptional responses are mostly plant-family spe-
cifi c, irrespective of diff erent thrips species feeding. Moreover, the common subset 
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of upregulated genes from both comparisons represents GO terms associated with 
JA-related biological processes (“JA mediated signalling pathway” and “Response 
to JA”), validating conservation of JA-regulated defences in Arabidopsis, white-cab-
bage and sweet pepper, although elicited by two diff erent thrips species. Overall, this 
analysis suggests a conservation of the JA pathway in all three plants, the presence 
of more commonalities in induced defences than suppressed processes and the ma-
jority of induced responses against thrips being system-specifi c.

Conserved activation of hormonal and secondary metabolite pathways upon 
thrips feeding

In plant-insect interactions, phytohormones are central players in plant responses 
to feeding damage (De Vos et al., 2005; Pieterse et al., 2009; Verhage et al., 2010; 
Pieterse et al., 2012; Stam et al., 2014). For example, JA is conserved in mediating 
responses against chewing caterpillars (Reymond et al., 2004; De Vos et al., 2005) 
and cell-content feeding insects like thrips (Abe et al., 2008; Abe et al., 2012; Sarde 
et al., 2018a; Steenbergen et al., 2018), whereas SA mediates responses against 
phloem-feeding insects like aphids and whitefl ies (Zhu-Salzman et al., 2004; Wall-
ing, 2008; Pieterse et al., 2012; Tzin et al., 2015; Broekgaarden et al., 2018). In the 
present study, through comparative analysis, we show that both JA and ET hormonal 
pathways are induced in all three plant species (Table 1). This suggests conservation 
of synergism between the JA and ET hormonal pathways in fi ne tuning the responses 
to thrips. Moreover, several studies have shown induction of the SA pathway upon 
thrips feeding, but at later time points (Abe et al., 2008; Sarde et al., 2018a). In our 
studies, the SA pathway is also induced later in the brassicaceous plants Arabidopsis 
and white cabbage and supressed in sweet pepper during the fi rst 8 h of thrips feed-
ing. The relatively slow transcriptional response of sweet pepper may imply that the 
SA pathway is induced at later time points beyond the 8 h time window of the study 
(Sarde et al. 2019). The phenylpropanoid and fl avonoid pathways are induced in all 
three plant species upon thrips feeding (Table 1), suggesting that these pathways 
may be involved in plant defence against thrips, as reported for defences against 
other insect herbivores (Mallikarjuna et al., 2004; Misra et al., 2010; Onkokesung et 
al., 2014).

Potential defensive role of indolic GLS in white cabbage against onion thrips 

Although the role of glucosinolates in plant defence responses against herbivory is 
well studied, relatively little is known about their role against cell-content feeders, 
such as thrips. Glucosinolates, are a Brassicaceae-specifi c group of secondary me-
tabolites. Upon herbivore feeding, the production of GLS is induced, resulting in in-
terference with the performance of herbivorous insects. Diff erent types of GLS are in-
duced upon herbivory by diff erent species, subsequently aff ecting their performance. 
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For example, indolic GLS aff ect the performance of phloem feeders (Elbaz et al., 
2012; Markovich et al., 2013; Zust & Agrawal, 2016), whereas, aliphatic GLS aff ect 
the performance of chewing insects (Schweizer et al., 2013). Our transcriptional data 
show that all genes involved in the regulation and biosynthesis of indolic GLS are 
induced. In contrast, the main upstream regulatory gene of aliphatic GLS biosynthe-
sis, BoMYB28, is downregulated and none of the genes involved in biosynthesis of 
aliphatic GLS showed diff erential expression upon thrips feeding. A similar pattern of 
induction in indolic GLS and suppression of aliphatic GLS is seen in the WFT-induced 
Arabidopsis transcriptome (Fig. S2). This suggests specifi c induction of indolic GLS 
in brassicaceous plants by thrips feeding and indicates their potential role in defence 
against them. Similar observations of specifi c induction of indolic GLS and their de-
fensive role are reported in Arabidopsis in response to another cell-content feeder, 
the two-spotted spider mite Tetranychus urticae (Zhurov et al., 2014). These data 
suggest that the induction of indolic GLS upon damage by cell-content feeders and 
their potential defensive role is conserved in diff erent brassicaceous species. 

Rapid and complex transcriptional response of white cabbage to onion thrips 
feeding

Plants respond to diff erent stresses by dynamically reprogramming their transcrip-
tome (Windram et al., 2012; Lewis et al., 2015; Hickman et al., 2017; Sarde et al., 
2019; Steenbergen et al., 2019). In plant-insect interactions, the speed and complex-
ity of the transcriptional response of plants depends on many characteristics of the 
attacking herbivore, such as feeding guild, density of herbivores and timing of attack 
(Heidel-Fischer et al., 2014; Stam et al., 2014). Until now, several studies on plant 
transcriptomic responses to diff erent herbivore species analysed the response at only 
one or two time points spread over a period of 24 h or longer (De Vos et al., 2005; 
Ehlting et al., 2008; Bidart-Bouzat & Kliebenstein, 2011; Zhang et al., 2013; Appel et 
al., 2014; Diaz-Riquelme et al., 2016; Kroes et al., 2017; Broekgaarden et al., 2018; 
Tu et al., 2018). The main focus of these studies was to understand the overall re-
sponse to feeding by the respective herbivore. In the present study, by comparing the 
high-density whole-genome transcriptional response of three plant species (Arabidop-
sis, sweet pepper and white cabbage) to thrips feeding, we show that white cabbage 
is relatively fast in its overall transcriptional response (Table 1). In white cabbage, the 
majority of the DEGs are induced within 1-2 h (Fig. 5 and 8), whereas in Arabidopsis 
and sweet pepper this is later than 2-3 h of thrips feeding (Fig. 8) (Sarde et al., 2019; 
Steenbergen et al., 2019). The rapid response of white cabbage comprises genes 
involved in the biosynthesis of phytohormones and secondary metabolites (Fig. 3, 4 
and Table 1). Whether this is a plant-specifi c characteristic or a thrips-specifi c charac-
teristic remains to be investigated. If it is a thrips-specifi c characteristic, the relatively 
rapid response of white cabbage against onion thrips compared to Arabidopsis and 
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sweet pepper against WFT feeding might be due to two main reasons: 1) onion thrips 
eff ectors are less eff ective in suppressing the initial defence response of white cab-
bage or, 2) onion thrips feed faster than WFT. Moreover, we found more temporally 
dynamic transcriptional patterns (genes in clusters with similar expression pattern) 
among the DEGs of white cabbage (48 clusters), compared to Arabidopsis (20 clus-
ters) (Steenbergen et al., 2019) and sweet pepper (23 clusters) (Sarde et al., 2019). 
The larger number of temporally dynamic transcriptional patterns may be indicative 
of the complexity of the transcriptional response of white cabbage to onion thrips 
feeding. This relatively complex transcriptional response of white cabbage could be a 
result of its evolution from multiple ancestral polyploidy events or from an overall larg-
er number of genes (Parkin et al., 2014). Taken together, this comparative analysis 
suggests that white cabbage responds rapidly with a complex transcriptional pattern 
to onion thrips feeding.

Figure 8. Whole-genome transcriptional response of Arabidopsis, white cabbage and 
sweet pepper in response to thrips feeding. 100% is 2788 (1820 up- and 968 downregulat-
ed) genes for Arabidopsis, 3062 (2060 up- and 1002 downregulated) genes for sweet pepper 
and 5799 (3790 up- and 2009 downregulated)  genes for white cabbage.
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Conservation of bHLH, MYB and WRKY TFs as major regulators upon thrips 
feeding

TFs modulate the transcriptional reprogramming of plants in response to diff erent 
stresses (Breeze et al., 2011; Windram et al., 2012; Jin et al., 2017; Sarde et al., 
2019; Steenbergen et al., 2019). In the white cabbage transcriptomic response to 
onion thrips and in the Arabidopsis and sweet pepper transcriptomic responses to 
WFT, we found TF families such as bHLH, MYB and WRKY being overrepresented in 
all three plant species. Moreover, MYB and bHLH TFs are also found to be overrep-
resented in the Arabidopsis transcriptomic response to exogenous MeJA application 
(Hickman et al., 2017). This suggests that these TF families are conserved in all 
three plant species in regulating the defences against thrips species mediated by JA. 
Additionally, in all three plant species, through motif enrichment analysis, bHLH TFs 
are found to be enriched in gene clusters overrepresented in JA-related biological 
processes (Sarde et al., 2019; Steenbergen et al., 2019). This supports the role of 
the bHLH TF family in regulating JA signalling processes (Goossens et al., 2017).

Conclusion

High-density transcriptomic analysis of the onset of plant-thrips interactions reveals 
the complexity of responses of three plant species to feeding by these herbivores. 
Almost a tenth of a plant’s genome changes transcription level in with many groups 
of genes that share their dynamic expression pattern. The transcriptional response 
is highly specifi c for each plant-thrips interaction. More similarities were recorded 
among upregulated genes than among downregulated genes. The three major phy-
tohormones, JA, SA and ET show similar expression patterns albeit at diff erent tem-
poral scales. Similarities among upregulated genes were especially related to JA 
biosynthesis and responses.  This detailed  comparative transcriptomic analysis of 
early molecular processes underlying plant-thrips interactions underlines the complex 
choreography of induced plant responses to insect feeding.
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Supplementary fi gures

Figure S1. PCA and sample-to-sample distance analysis of transcriptome of white-cab-
bage infested (thrips) and non-infested (control/mock) plants. (A) PCA plot of sweet 
pepper non-infested (mock) and infested (thrips) transcriptome. PCA was generated on the 
regularized log2-transformed data with DESeq2 package in R. Colours and shapes indicate 
different time points and treatments, respectively. Variation in percentage within the samples 
is depicted on both axes. (B) Sample-to-sample plot of sweet pepper non-infested (mock) and 
infested (thrips) transcriptome. It was generated on the regularized log2-transformed data with 
DESeq2 package in R.
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Figure S2. Expression pattern of Arabidopsis genes involved in biosynthesis of hor-
monal, secondary metabolites and indirect defences. (A) JA pathway, (B) ET pathway, (C) 
SA pathway, (D) phenylpropanoid and fl avonoid pathways, (E) Indole glucosinolates (GLS), 
(F) Aliphatic glucosinolates (GLS), (G) Green-leaf volatiles (GLVs). ‘+’  sign indicates signifi -
cant (P < 0.01) fi rst time of differential expression (ftode) of each gene. Based on data from 
Steenbergen et al. (2019).
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Introduction

Due to their sessile nature, plants constantly face attack from mobile herbivorous 
insects. In comparison to other biotic stresses, insect herbivores are the most spe-
cies-rich group of plant attackers (Schoonhoven et al., 2005). To defend themselves, 
plants have evolved constitutive (always present) and induced defences (elicited by 
attack). Upon herbivore recognition, a plant induces defence mechanisms by activat-
ing signal transduction pathways that initiate the transcriptional responses. Subse-
quently, the transcriptional responses are dynamically reprogrammed resulting in the 
dynamic activation or deactivation of several biological processes (Windram et al., 
2012; Hickman et al., 2017; Sarde et al., 2019; Steenbergen et al., 2019). This reor-
ganization of  transcriptional and biological processes causes extensive reprogram-
ming of plant phenotype (Stam et al., 2014), that impacts the ecology of plants during 
the season (Poelman et al., 2010) or over seasons (Stam et al., 2018). Thus, unrav-
elling transcriptional responses of plants in response to insect herbivory can shed 
light on the mechanisms underlying the dynamics of plant phenotype expression. 
In this thesis I have focussed on cell-content feeding thrips as insect herbivores. To 
unravel the details of thrips-inducible defence mechanisms, in this project I focused 
on elucidating the underlying mechanisms and temporal transcriptional responses of 
plants to thrips feeding. 

To capture transcriptional responses of plants to insect herbivory, microarray and 
RNA-Seq analyses are extensively used. Nowadays, due to the decrease in the price 
of sequencing, the RNA-Seq technique is gaining popularity over microarray analysis 
(Heidel-Fischer et al., 2014). Moreover, RNA-Seq has several advantages over mi-
croarray analysis, such as 1) no background information on the genome is needed, 2) 
it off ers high depth coverage in sequencing, 3) less complex normalization methods, 
4) high accuracy and 5) detection of gene-splicing variants (Wang et al., 2009; Ozso-
lak & Milos, 2011; Van Verk et al., 2013). A growing body of studies have analysed 
transcriptomic responses of plants against diff erent insect herbivores (De Vos et al., 
2005; Ehlting et al., 2008; Bidart-Bouzat & Kliebenstein, 2011; Zhang et al., 2013; 
Appel et al., 2014; Coolen et al., 2016; Davila Olivas et al., 2016; Diaz-Riquelme et 
al., 2016; Kroes et al., 2017; Broekgaarden et al., 2018; Tu et al., 2018). These stud-
ies were performed for a limited number of time points since the start of herbivory, 
because they aimed mainly at elucidating the overall transcriptional responses and 
associated secondary metabolites, thus providing a low-resolution temporal repre-
sentation of plant transcriptomic responses. To gain more insight into how plants 
temporally reprogram their transcriptome, performing high-density time-series exper-
iments of transcriptional responses to insect herbivory is crucial.

6
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This project was part of a research programme which aimed to elucidate underlying 
genetic mechanisms of responses of sweet pepper to Western fl ower thrips (WFT) 
feeding and dynamics of transcriptional responses of Arabidopsis and sweet pepper 
to WFT feeding and white cabbage to onion thrips feeding. Several approaches, such 
as genomics, phylogenetics, high-density transcriptomics and behavioural studies 
were used in this thesis. To gain a high-resolution portrait of sweet pepper and white 
cabbage transcriptomic responses to thrips feeding, a state-of-the-art next generation 
transcriptomics/bioinformatics approach was implemented.

Prominent role of LOX-mediated JA pathway in defence response against thrips

In response to insect herbivory, plants activate phytohormonal pathways that regulate 
a suite of responses, including the biosynthesis of secondary metabolites and de-
fence-related proteins. Based on the feeding mode of insects, plants trigger diff erent 
phytohormonal pathways, such as the jasmonic acid (JA), ethylene (ET) and salicylic 
acid (SA) pathways, that regulate specifi c defences against diff erent types of insect 
herbivory (Pieterse et al., 2009; Verhage et al., 2010; Pieterse et al., 2012; Stam et 
al., 2014). For example, responses to chewing insects like caterpillars (Reymond et 
al., 2004; De Vos et al., 2005) and cell-content feeding insects like thrips (Abe et al., 
2008; Abe et al., 2009; Steenbergen et al., 2018) are mediated by the JA pathway, 
while responses to phloem-feeding insects like aphids and whitefl ies are mediated by 
the SA pathway (Zhu-Salzman et al., 2004; Walling, 2008; Pieterse et al., 2012; Tzin 
et al., 2015; Broekgaarden et al., 2018). 

JA biosynthesis occurs via several enzymatic steps, among which oxygenation of 
linolenic acid is the critical step to initiate the biosynthesis of oxylipins, such as jas-
monates and green leaf volatiles (GLVs) that are known to be involved in defence re-
sponses against insect feeding (Brash, 1999; Feussner & Wasternack, 2002; Allmann 
et al., 2010; Yan et al., 2013; Losvik et al., 2017). The lipoxygenase (LOX) gene fam-
ily mediates several biological processes, such as fruit ripening, tuber development, 
seed germination and plant defences (Brash, 1999; Feussner & Wasternack, 2002). 
By oxygenating linolenic acid (Kolomiets et al., 2001; Bailly et al., 2002; Feussner 
& Wasternack, 2002; Kessler, 2004; Barry & Giovannoni, 2007; Yan et al., 2013), 
plants activate JA-regulated defences in response to insect feeding. Information on 
this gene family has been reported for several plant species, such as Arabidopsis 
(Umate, 2011), tomato, kiwifruit (Zhang et al., 2006), olive (Padilla et al., 2009, 2012), 
melon (Zhang et al., 2014), cucumber (Liu et al., 2011) and grapevine (Podolyan et 
al., 2010). In chapter 2, the lipoxygenase (LOX) gene family from pepper (Capsicum 
annuum) has been identifi ed and classifi ed. In addition, based on in-depth in-silico 
and expression analysis, the functions of identifi ed pepper LOXs were predicted. 



6

General discussion

149

From the reported multiple LOXs in diff erent plant species, usually one 13-LOX is 
involved in induced resistance of plants to insect herbivory via biosynthesis of JA 
and thus activating the JA signalling pathway. Several plant species show reduced 
resistance to insects, when the expression of that specifi c 13-LOX was disrupted; for 
example, AtLOX2 in Arabidopsis (Bell et al., 1995), SlLOXD (TomLOXD) in tomato 
(Yan et al., 2013), NaLOX3 in tobacco (Halitschke & Baldwin, 2003; Kessler, 2004) 
and StLOXH3 in potato (Royo et al., 1996). In chapter 3, through in-silico analysis, I 
narrowed down the LOX  genes to a specifi c 13-LOX gene (CaLOX2) in pepper, and 
experimentally characterized its functional role in the JA-biosynthetic pathway, by si-
lencing it through the Virus-Induced Gene Silencing (VIGs) technique. I subsequently 
showed that knocking down CaLOX2 made the plant more susceptible to WFT. Data 
presented in chapters 4 and 5, on the induction of the whole JA cascade including 
13-LOXs in sweet pepper and white cabbage upon WFT and onion thrips feeding, 
respectively, consolidates the prominent role of lipoxygenase-mediated JA pathway 
in the response of diff erent plant species to thrips feeding.

Extensive transcriptional reprogramming of host plants upon thrips feeding 

One of the global quantifi able measures of plant responses to insect herbivory is 
to capture the set of diff erentially expressed genes (Heidel-Fischer et al., 2014). 
Plants extensively reprogram their transcriptome with time in response to several 
biotic and abiotic stresses (Breeze et al., 2011; Windram et al., 2012; Hickman et 
al., 2017). So far, several studies have captured transcriptomic responses of plants 
to insect herbivory limited to one or two time points (De Vos et al., 2005; Ehlting et 
al., 2008; Bidart-Bouzat & Kliebenstein, 2011; Zhang et al., 2013; Appel et al., 2014; 
Diaz-Riquelme et al., 2016; Kroes et al., 2017; Broekgaarden et al., 2018; Tu et al., 
2018), with a focus on the identifi cation of the diff erentially expressed genes and their 
involvement in the biosynthesis of diff erent metabolites, but not the dynamics of the 
transcriptional reprogramming. In the studies presented in chapters 4 and 5, I unrav-
elled the temporally diff erential expression of large numbers of genes in sweet pepper 
and white cabbage plants upon WFT and onion thrips feeding, respectively. A similar 
pattern of transcriptional reprogramming was observed in Arabidopsis in response to 
WFT feeding (Steenbergen et al., 2019). The diversity of temporal expression pat-
terns of numerous genes in all three plants is an indication of the extensive transcrip-
tional reprogramming that occurs in plants upon thrips feeding.

Speed, intensity and complexity of transcriptional response is plant- and 
stress-specifi c

Transcriptional reprogramming forms the basis of plant response to insect herbivory 
(Heidel-Fischer et al., 2014). Apart from overall identifying diff erentially expressed 
genes in a plant’s transcriptomic response, the dynamics of transcriptional respons-
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es can also be assessed in several other ways, such as the speed, intensity and 
complexity of the response. The speed of transcriptional response can be measured 
based on the number of genes showing diff erential expression at diff erent time points 
since the onset of the stress, whereas intensity and complexity can be determined by 
the overall number of diff erentially expressed genes (DEGs) and the number of ex-
pression patterns observed among all DEGs, respectively. Although several studies 
have performed transcriptomic studies in response to insect herbivory, not much is re-
vealed about temporal transcriptional reprogramming as the studies were performed 
for only a few time points (De Vos et al., 2005; Ehlting et al., 2008; Bidart-Bouzat 
& Kliebenstein, 2011; Zhang et al., 2013; Appel et al., 2014; Diaz-Riquelme et al., 
2016; Kroes et al., 2017; Broekgaarden et al., 2018; Tu et al., 2018). To our knowl-
edge, few studies have performed high-density time-series experiments to capture 
the temporal transcriptional reprogramming of plants against biotic and abiotic stress-
es. For example, leaf senescence in Arabidopsis (22 time points over a period of 39 
days) (Breeze et al., 2011), response of Arabidopsis to Botrytis cinerea  infection 
(24 time points over a period of 48 hours)  (Windram et al., 2012) and Arabidopsis 
response upon exogenous JA application (15 time points over a period of 16 hours) 
(Hickman et al., 2017) have been studied. 

In chapters 4 and 5, I investigated the diff erences in transcriptional responses be-
tween WFT-infested Arabidopsis (Steenbergen et al., 2019) and sweet pepper as 
well as onion-thrips-infested white cabbage plants. In these studies, I observed that 
the transcriptional response of white cabbage plants is characterized by a higher 
speed, intensity and complexity compared to the response of Arabidopsis and sweet 
pepper plants to thrips feeding. The transcriptional response of Arabidopsis to B. 
cinerea infection showed a higher magnitude (9838 DEGs representing ca 30 % of 
the CATMA v3 microarray) and complexity (44 gene clusters) in transcriptional re-
sponse, but a slow speed of response (Windram et al., 2012). Similar observations 
(6323 DEGs representing ca 22 % of the CATMA v3 microarray and 48 clusters) 
were reported during leaf senescence of Arabidopsis (Breeze et al., 2011). Moreover, 
upon exogenous JA application to Arabidopsis, the transcriptional response was rel-
atively rapid, but less intense (3611 DEGs representing ca 10 % of the Arabidopsis 
genome (TAIR version 10) ) and complex (27 clusters) (Hickman et al., 2017) than 
for Arabidopsis in response to thrips feeding. The high magnitude and complexity 
of the transcriptional response of Arabidopsis to leaf senescence and B. cinerea in-
fection could be due to the slow speed of these stresses. In contrast, exogenous JA 
application and thrips feeding, both relatively fast inducers, show relatively rapid and 
less intense transcriptional responses in plants. Nevertheless, the response of white 
cabbage plants against onion thrips was relatively rapid, intense and complex com-
pared to the responses of Arabidopsis and sweet pepper to WFT. Taken together, 
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comparative investigations of the speed, intensity and complexity of transcriptional 
responses will be interesting to gain understanding of the repertoire of plant respons-
es to environmental stresses.

Majority of transcription factors activated by JA are plant and stress-specifi c 

In response to diff erent biotic and abiotic stresses, plants activate signal-transduction 
pathways that regulate defence responses. This includes induction of transcription 
factors (TFs), secondary metabolites and defence-related proteins. Phytohormones 
such as JA, SA and ET are central players in modulating defence responses against 
insect herbivory and pathogens (De Vos et al., 2005; Verhage et al., 2010; Erb et al., 
2012; Pieterse et al., 2012; Stam et al., 2014), whereas abscisic acid is important in 
responses to abiotic stresses such as heat, drought and cold (Yamaguchi-Shinozaki 
& Shinozaki, 2006; Kilian et al., 2007; Huang et al., 2008).

In chapters 4 and 5, I document conservation and specifi cities of TF families in Arabi-
dopsis (Steenbergen et al., 2019) and sweet pepper (chapter 4) induced upon WFT 
feeding and white cabbage (chapter 5)  induced upon onion thrips feeding. We found 
TF families such as bHLH, MYB and WRKY being overrepresented in all three plant 
species, with several others TF families specifi cally induced in each plant species. 
This suggests that, although JA is a prominent phytohormone regulating defence re-
sponses against thrips feeding, the majority of TF families activated by JA are diff er-
ent in Arabidopsis, sweet pepper (chapter 4) and white cabbage plants, regulating 
diff erent defence mechanisms. Furthermore, in Arabidopsis, few studies showed sig-
nifi cant induction of certain TF families in response to leaf senescence (Breeze et 
al., 2011), B. cinerea  infection (Windram et al., 2012) and exogenous JA application 
(Hickman et al., 2017). Leaf senescence is known to activate several stress-related 
phytohormones, such as JA, SA and ABA (Weaver et al., 1998; Morris et al., 2000; 
He et al., 2002) whereas, B. cinerea  activates the JA/ET signalling pathway (Thom-
ma et al., 1998; Rowe et al., 2010). Surprisingly, more common TF families were 
induced in leaf senescence and B. cinerea stresses (WRKY, NAC, AP2-EREBP, and 
C3H) compared to exogenous JA application (bHLH, ERF, and MYB). In contrast, TF 
families induced upon exogenous application of JA are also induced in Arabidopsis 
(bHLH and MYB) (Steenbergen et al., 2019), sweet pepper (bHLH, ERF, and MYB) 
and white cabbage plants (bHLH, ERF, and MYB). Taken together, although JA is a 
central player in regulating transcriptional responses against B. cinerea, thrips feed-
ing and leaf senescence, apart from a few TF families, the majority of TF families 
are induced in a plant or stress specifi c manner suggesting JA activates diff erent TF 
families in diff erent plant species to regulate specifi c defence responses. 
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Selection of time points for assessing transcriptional response of plants to her-
bivore feeding

In the past decade, considerable progress has been made to quantify plant transcrip-
tional responses to feeding by herbivorous insects. In plants, the fi eld of transcriptom-
ics has made much progress with advanced technologies such as whole-genome mi-
croarray or RNA-Seq, since the early use of a microarray which elucidated diff erential 
transcription of 45 transcripts in Arabidopsis (Schena et al., 1995). Nowadays, due 
to low costs of next generation sequencing technologies (RNA-Seq), transcriptional 
profi ling of non-model plant species can be carried out for responses to any insect 
species. Several studies have captured transcriptional responses of plants against 
diff erent insect herbivory, but the selection of time points seems to have usually been 
done without extensive knowledge of temporal patterns in transcriptional responses. 
This random selection of time points may lead to missing a signifi cant number of 
transcripts or missing the temporal dynamics of the transcriptional response, which 
may fl uctuate especially at the onset of the plant’s response. Therefore, to enhance 
the insight into the transcriptional responses of plants, it is not only important to make 
a high-density temporal assessment, but also to select the most relevant time points. 
Selection of the most relevant time points can help to capture the maximum tran-
scriptional response in terms of number of diff erentially expressed genes as well as 
the dynamics of the complex response. In chapters 3 and 4, due to monetary con-
straints we employed a strategy to select the most representative time points from a 
total of 13 time points within a period of the initial 9 hours of thrips herbivory. Based 
on initial sequencing of one replicate from 12 time points (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 
4.0, 5.0, 6.0, 7.0, 8.0, 9.0 hours of infestation) and subsequent in-silico analysis, six 
time points (excluding the 0 h time point) were selected and fi nalised to capture the 
transcriptomes of sweet pepper and white cabbage. Therefore, to capture maximum 
transcriptional responses of plants against insect herbivory, implementation of selec-
tion of time points in an experimental setup is of utmost important.

Future perspectives

Thrips are serious pests on various ornamental and food crops (Steenbergen et al., 
2018), signifi cantly reducing yield. There is considerable literature on induced de-
fences in response to chewing and phloem-feeding insects compared to cell-content 
feeders. Likewise, several R-genes were successfully identifi ed in diff erent plants 
mostly against phloem feeders (Broekgaarden et al., 2011).  High-resolution tran-
scriptional data presented in this thesis can be explored to build gene-regulatory net-
works (GRNs), to select potential regulators (TFs) of or candidate genes providing 
resistance against thrips feeding, that can be further tested for functional analysis 
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through overexpression or silencing. Those genes that are involved in the expression 
of the relevant phenotype can be used by breeders to develop thrips-resistant vari-
eties. In addition to feeding damage, thrips also infl ict indirect damage to plants by 
transmitting tospoviruses (Steenbergen et al., 2018). Thrips feeding elicits especially 
JA-regulated defences  (Li et al., 2002; Abe et al., 2008; Abe et al., 2009; Sarde et 
al., 2018) (chapter 4 and 5), whereas, contrastingly, TSWV elicits SA-regulated de-
fences (Abe et al., 2012). The antagonistic relation between the JA and SA pathways 
is well-known (Pieterse et al., 2012). Therefore, it would be interesting to compare 
the thrips-induced transcriptional response to the transcriptional response induced by 
viruliferous thrips. This can lead to understanding of the dynamics of transcriptomic 
response under more relevant conditions that can be a fi rst step towards thrips and 
tospovirus-resistant crop varieties.

Furthermore, in the natural environment, plants encounter diff erent biotic and abiotic 
stresses that occur in sequence or simultaneously. Few studies have investigated 
plant responses to combination of insect herbivory are diff erent from plant respons-
es to single insect herbivory (Pieterse & Dicke, 2007; Dicke et al., 2009; Utsumi 
et al., 2010). Recent studies reported diff erences in phenotypic and transcriptomic 
plant responses to combined and single biotic and abiotic stresses (Coolen et al., 
2016; Davila Olivas et al., 2016). Therefore, to understand and develop crop variet-
ies possessing resistance to several stresses, studying transcriptional responses to 
combinations of stresses is important. Moreover, recent evidence shows how plant 
ontogeny infl uences the resistance level of plants, and especially the transition from 
vegetative stage to the fl owering stage may alter plant resistance responses (Boege 
& Marquis, 2005; Barton & Koricheva, 2010; Diezel et al., 2011). It will be interesting 
to compare the whole-genome transcriptional responses of plants to thrips feeding in 
the vegetative and fl owering stages. This may yield insights into the switch that oc-
curs in plant defence mechanisms from vegetative to fl owering stage including core 
TFs, and specialized metabolites. 

Conclusion

In this thesis, I have elucidated underlying genetic mechanisms of sweet pepper in 
response to WFT feeding. By identifying and functionally characterizing the role of 
CaLOX2, I consolidated the importance of JA-regulated defences against thrips in 
sweet pepper. Furthermore, through high-density time-series RNA-Seq analysis of 
leaf tissue at 12 time points within the fi rst 9 hours, I captured the dynamics of the 
early transcriptional response of sweet pepper and white cabbage plants to WFT 
and onion thrips feeding, respectively. Overall, the data represent a conservation of 
induction of JA, ET and phenylpropanoid and fl avonoid pathways in sweet pepper and 
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white cabbage. Furthermore, the genes involved in the biosynthesis of indolic gluco-
sinolates were induced in white cabbage, whereas genes involved in biosynthesis of 
isoprenoids (terpenoids) were induced in sweet pepper. Comparative transcriptomics 
of the WFT-induced response of Arabidopsis and sweet pepper and the onion-thrips 
induced response of white cabbage plants suggests that the majority of transcriptomic 
responses against thrips are system-specifi c. Moreover, in comparison to Arabidopsis 
and sweet pepper, the transcriptomic response of white cabbage is more rapid and 
complex. This thesis provides a fi rst impression of the complexity of early molecular 
aspects of thrips-plant interactions. The information generated will help to understand 
how plants defend themselves against these cell-content feeding insect herbivores.
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Introduction

Due to their sessile nature, plants constantly face attack from mobile herbivorous 
insects. In comparison to other biotic stresses, insect herbivores are the most spe-
cies-rich group of plant attackers (Schoonhoven et al., 2005). To defend themselves, 
plants have evolved constitutive (always present) and induced defences (elicited by 
attack). Upon herbivore recognition, a plant induces defence mechanisms by activat-
ing signal transduction pathways that initiate the transcriptional responses. Subse-
quently, the transcriptional responses are dynamically reprogrammed resulting in the 
dynamic activation or deactivation of several biological processes (Windram et al., 
2012; Hickman et al., 2017; Sarde et al., 2019; Steenbergen et al., 2019). This reor-
ganization of  transcriptional and biological processes causes extensive reprogram-
ming of plant phenotype (Stam et al., 2014), that impacts the ecology of plants during 
the season (Poelman et al., 2010) or over seasons (Stam et al., 2018). Thus, unrav-
elling transcriptional responses of plants in response to insect herbivory can shed 
light on the mechanisms underlying the dynamics of plant phenotype expression. 
In this thesis I have focussed on cell-content feeding thrips as insect herbivores. To 
unravel the details of thrips-inducible defence mechanisms, in this project I focused 
on elucidating the underlying mechanisms and temporal transcriptional responses of 
plants to thrips feeding. 

To capture transcriptional responses of plants to insect herbivory, microarray and 
RNA-Seq analyses are extensively used. Nowadays, due to the decrease in the price 
of sequencing, the RNA-Seq technique is gaining popularity over microarray analysis 
(Heidel-Fischer et al., 2014). Moreover, RNA-Seq has several advantages over mi-
croarray analysis, such as 1) no background information on the genome is needed, 2) 
it off ers high depth coverage in sequencing, 3) less complex normalization methods, 
4) high accuracy and 5) detection of gene-splicing variants (Wang et al., 2009; Ozso-
lak & Milos, 2011; Van Verk et al., 2013). A growing body of studies have analysed 
transcriptomic responses of plants against diff erent insect herbivores (De Vos et al., 
2005; Ehlting et al., 2008; Bidart-Bouzat & Kliebenstein, 2011; Zhang et al., 2013; 
Appel et al., 2014; Coolen et al., 2016; Davila Olivas et al., 2016; Diaz-Riquelme et 
al., 2016; Kroes et al., 2017; Broekgaarden et al., 2018; Tu et al., 2018). These stud-
ies were performed for a limited number of time points since the start of herbivory, 
because they aimed mainly at elucidating the overall transcriptional responses and 
associated secondary metabolites, thus providing a low-resolution temporal repre-
sentation of plant transcriptomic responses. To gain more insight into how plants 
temporally reprogram their transcriptome, performing high-density time-series exper-
iments of transcriptional responses to insect herbivory is crucial.
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In nature, plants continuously face the attack from insect herbivores. To defend them-
selves, plants have evolved a plethora of direct and indirect defence mechanisms 
that are present either constitutively or induced upon insect herbivory. In response to 
insect herbivory, plants activate phytohormonal signal-transduction pathways, tran-
scriptional responses and biological processes. These changes in transcriptional and 
biological processes level infl uence the plant’s phenotype and consequently plant 
ecology during the current season or over seasons. To gain more insight into the dy-
namics of plant phenotype, elucidating transcriptomic responses to insect herbivory 
is critical. Nowadays, to capture transcriptional responses against insect herbivory, 
RNA-Seq technology is used extensively. Various studies have investigated whole-ge-
nome transcriptional responses of plants against diff erent insect herbivores, but only 
few have reported on responses to cell-content feeding thrips. Thrips (Thysanoptera) 
are minute cell-content feeding insects and are serious pests on many commercial 
and ornamental plants. Thrips species such as western fl ower thrips (WFT) and onion 
thrips are among the most devastating pests on e.g. sweet pepper and white cabbage 
plants, respectively. Therefore, using a high-density time-series approach, the focus 
of this thesis was to investigate whole-genome transcriptional responses of sweet 
pepper and white cabbage plants upon WFT and onion thrips feeding, respectively, 
and the underlying genetic mechanisms. In addition, I focussed on one particular 
gene family, the lipoxygenases and a gene in this family that is involved in thrips-in-
duced crop resistance.

Chapter 2 focused on the identifi cation of the lipoxygenase gene family in pepper 
(Capsicum annuum). Lipoxygenases (LOXs) are non-heme, iron-containing diox-
ygenases involved in several developmental and defence-related plant processes, 
such as seed germination, fruit ripening, tuber development and JA-regulated plant 
defences. To identify this multi-gene family, several approaches were implemented, 
such as comparative genomics, sequence analysis, domain-scan analysis, phyloge-
netic analysis, homology modelling and transcriptional analysis. This approach result-
ed in the identifi cation of a total of eight LOX genes in pepper classifying four LOXs 
(CaLOX1, CaLOX3, CaLOX4 and CaLOX5) as 9-LOXs and four (CaLOX2, CaLOX6, 
CaLOX7 and CaLOX8) as 13-LOXs. Furthermore, these approaches also showed 
high conservation of pivotal amino acids and dynamic expression profi les of 13-LOXs 
compared to 9-LOXs upon exogenous JA application and WFT feeding. From the 
results, the putative functions of two 13-LOXs, CaLOX6 and CaLOX7, in the biosyn-
thesis of Green Leaf Volatiles (GLVs) were predicted.

Chapter 3 further narrowed down the LOX gene-family to one lipoxygenase (CaLOX2) 
gene through in-silico analysis and functionally characterized its involvement in jas-
monate-dependent induced defence against WFT. Here, I implemented a multidisci-
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plinary approach which includes in-silico, transcriptional, behavioural and chemical 
analyses. The expression of JA-related marker genes (CaLOX2 and CaPIN II) was 
induced upon thrips feeding. Silencing of CaLOX2 in sweet pepper plants through 
virus-induced gene silencing (VIGS) signifi cantly hampered the biosynthesis of the 
phytohormone JA and its derivatives. Subsequently, this resulted into reduced resis-
tance and increased preference of thrips for these sweet pepper plants. Furthermore, 
thrips feeding ability, preference and population development were hampered upon 
exogenous JA application. Overall, this chapter shows that CaLOX2 is involved in 
JA-mediated plant resistance to thrips feeding.

In response to insect feeding, temporal transcriptional reprogramming forms the ba-
sis of dynamically changing plant phenotype. Therefore, in Chapter 4, I focused on 
elucidating the dynamics of transcriptional reprogramming of sweet pepper leaf tis-
sue in response to WFT feeding. For this, leaf tissue of sweet pepper plants that 
were subjected to WFT infestation was harvested at 12 time points within the fi rst 
9 hours of WFT feeding for RNA-Seq analysis. Approximately 8.6% (2060 up- and 
1002 down-regulated) of the pepper genes were diff erentially expressed upon WFT 
feeding. Subsequent in-depth analysis of a selected set of 6 time points categorized 
the 3062 DEGs into 23 gene clusters (16 upregulated and 7 downregulated), each 
possessing a unique temporal expression pattern. Clusters of upregulated genes 
were associated with defence-related biological processes, whereas clusters of 
downregulated genes were associated with developmental processes. The transcrip-
tion factor families ERF, MYB, NAC, bHLH and WRKY emerged as pivotal regulators 
in response to WFT feeding. The data show a chronological order in the activation 
of hormonal (JA, ET) and secondary metabolite (phenylpropanoids, fl avonoids and 
terpenoids) pathways. Eventually, the comparative analysis of the WFT-induced tran-
scriptional responses of Arabidopsis and sweet pepper plants to WFT feeding shows 
a conservation in the induction of the JA-pathway in both plants, whereas the majority 
of transcriptional responses are plant-specifi c. In addition, it also showed that rela-
tively more similarities exist in upregulated genes compared to downregulated genes. 

Chapter 5 focused on 1) elucidating whole-genome transcriptional reprogramming 
of white cabbage plants in response to onion thrips feeding and 2) comparative tran-
scriptomics to disentangle similarities and diff erences in transcriptional responses be-
tween WFT-induced Arabidopsis and sweet pepper as well as onion-thrips-induced 
white cabbage. The data for all three plant species were collected through a similar 
approach. Approximately 9.7 % of the white cabbage genes show diff erential expres-
sion within 8 h of onion thrips feeding. Forty-eight (32 upregulated and 16 down-
regulated) gene clusters with similar expression patterns were detected among the 
DEGs, with upregulated clusters associated with defence and downregulated clus-
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ters with development-related biological processes. Phytohormone-related processes 
(JA, ET and SA) and secondary metabolite (phenylpropanoids, fl avonoids, green-leaf 
volatiles and indolic glucosinolates) biosynthesis genes were induced, whereas ali-
phatic glucosinolate biosynthetic genes were suppressed. Comparative analysis of 
the transcriptional responses of Arabidopsis and sweet pepper to WFT and of white 
cabbage to onion thrips showed 1) conservation of the JA biosynthesis and signalling 
pathways, 2) conservation of involvement of TF families, such as MYB, bHLH and 
WRKY in regulating responses, 3) that the majority of the transcriptional responses 
to thrips are system-specifi c, 4) that genes involved in indole glucosinolate biosynthe-
sis are upregulated, whereas genes involved in aliphatic glucosinolate biosynthesis 
are downregulated in both brassicaceous plants Arabidopsis and white cabbage, 5) 
that the white-cabbage transcriptomic response to onion thrips is relatively rapid and 
complex compared to the WFT-induced Arabidopsis and sweet pepper transcriptomic 
responses.

Finally, in Chapter 6, I discuss the dynamics of plant transcriptional responses to sev-
eral stresses. This includes the importance of the LOX-mediated JA pathway against 
thrips feeding and several aspects of plants transcriptional reprogramming to thrips 
and other stresses. The advantages of the selection of time points in a high-density 
time series approach, as implemented in this project are discussed. Furthermore, I 
make recommendations to enhance our knowledge of induced defences in plants. In 
conclusion, this thesis highlights the intensity and complexity of plant transcriptional 
responses to thrips feeding through a comparative approach, while focussing on the 
details of one important gene involved in induced defence against thrips.
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Appendix 
The supplementary data of all chapters are available via the link below,

https://www.dropbox.com/sh/ae4su5khxozrglj/AAAj7VAG-Z14j8MfnC0o3SXga?dl=0

The data is organised chapter wise. 
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