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”The big artist keeps a sharp eye on Nature [. . . ]

learns what she does with light (the biggest tool),

then the colour and then the form,

and appropriates the knowledge to his own use.”

Thomas Eakins (1867), American realist painter
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1 Introduction

Nitrogen dioxide (NO2) is a highly important air pollutant that can be monitored from

space. Figure 1.1 is an example of global NO2 measurements made during 2005 by the

Ozone Monitoring Instrument (OMI)1. NO2 in the atmosphere has a clear signature in

the light measured by the satellite, which makes it an ideal candidate to be monitored

from space. However, NO2 measured from space is an indirect measurement with multiple

assumptions and error sources, so one of the main goals of this thesis is to improve NO2

satellite measurements and the errors associated with them (Chapter 2, 3 and 4). NO2

has a relatively short lifetime (i.e. it does not stay in the atmosphere for more than 2-12

hours), so fresh emissions have a strong imprint in the atmosphere and appear clearly in

the satellite measurements. This is key for using satellite measurements to estimate the

underlying emissions, as we do in Chapter 5 to quantify the emissions from urban areas

like Paris.

Figure 1.1: Mean NO2 amount in 2005 measured from OMI averaged in a 0.04◦× 0.08◦

latitude - longitude grid.

1Satellite instruments like OMI measure NO2 vertical column density (in molecules per cm2), which
is the amount of NO2 integrated vertically along the atmosphere.



2 Introduction

In this first chapter we introduce the composition of the atmosphere and discuss the

relevance of NO2 (and other atmospheric constituents) for Earth’s climate system and for

global and local air pollution and its harmful health effects. We also highlight the im-

portance of monitoring atmospheric composition from space and its various applications.

Finally, we give a brief introduction on the remote sensing measurement principles (Sect.

1.2) and radiative transfer in the atmosphere (Sect. 1.3).

1.1 Trace gases in the atmosphere

Trace gases are the gases that are found in very small concentrations in the atmosphere,

which typically constitute less than 1% of the Earth’s total atmospheric composition.

Some of these gases are carbon dioxide (CO2), methane (CH4), ozone (O3), nitrogen ox-

ides (NOx = NO + NO2) and volatile organic compounds (VOCs). Despite the small

concentration of these trace gases, they play an important role in the Earth’s climate

because among them the main agents of Earth’s radiative forcing (i.e. the perturbation

of the Earth’s energy budget) are found. The different components of the radiative forc-

ing based on emitted gases, aerosols and precursors are shown in Figure 1.2. Short-life

species like NOx and VOCs are essential in the atmospheric photochemical processes that

affect the main forcing agents (Myhre et al., 2013). Ozone and aerosols are defined as

Essential Climate Variables (ECV) by the World Meteorological Organization (WMO)

Global Climate Observing System (GCOS), and in 2011 NO2 and formaldehyde (HCHO,

a main VOC oxidation product) were included as precursors of these ECVs (together

with sulfur dioxide (SO2) and carbon monoxide (CO)). They were included in the ECV

framework because they contribute to the characterisation of Earth’s past, present and

future climate and they can be monitored from existing observation systems (Bojinski

et al., 2014).

Short lived gases like NOx and non-methane (NM) VOCs contribute to the radiative

forcing because they affect the production and losses of the main forcing agents CO2,

CH4 and O3 (Myhre et al., 2013). This results in NMVOCs having an overall positive

(i.e. warming) effect in the radiative forcing. NOx is key in O3 production, therefore NOx

emissions also result in positive radiative forcing. Apart from this, NOx is key in the

production of the hydroxyl radical OH, which is the main oxidant in the troposphere and

the main sink of CH4. Therefore, NOx indirectly reduce the levels of CH4 and leads to a

negative radiative forcing (i.e. cooling) (Shindell et al., 2009) (see Fig. 1.2). NOx have

also an indirect effect on radiative forcing because it influences the formation of secondary

aerosols, which scatter part of the solar radiation back to space, thus contributing further

to the negative forcing. Solomon et al. (1999) showed that NO2 can also affect local

instantaneous radiative forcing by absorbing solar radiation under polluted conditions and
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when NO2 is produced by lightning in electrically active storms. All the non-linearities

in the physical and chemical processes in which NOx is involved make it very difficult to

estimate the net NOx radiative forcing. The latest IPCC report estimated that the net

effect due to anthropogenic NOx emissions is a negative radiative forcing of -0.15 W/m2

(Myhre et al., 2013).

CO2 and CH4 are the main contributors to climate radiative forcing, and their positive

forcing of about 2.5 W/m2 results in an enhanced greenhouse effect. O3 is photochemically

produced in the atmosphere (i.e. not directly emitted) and it constitutes a relatively short-

lived gas compared to CO2 or CH4. The radiative forcing for tropospheric O3 (about

0.5 W/m2) is attributed to anthropogenic emissions of CH4, NOx, CO and NMVOCs.

The radiative forcing of ozone in the stratosphere (-0.15 W/m2) is attributed to ozone

depletion by halocarbons (see Fig. 1.2). For O3, there is a strong regional variability

on how its precursor emissions contribute to its radiative forcing. Naik et al. (2005)

found that the O3 radiative forcing is more sensitive to changes in precursor emissions

over East and Southeast Asia. This is because in these tropical regions, O3 and its

precursors are transported to the upper troposphere, where O3 production efficiency is

higher. Tropical regions are characterized by high photochemical activity, which together

with high VOCs emissions from natural vegetation and biomass burning leads to a more

efficient O3 production compared to mid-latitude regions (Naik et al., 2005).

Trace gases are not only relevant for radiative forcing and climate, they also affect the

quality of the air that we breathe, which impacts human health and ecosystems. The

European Union sets limits to concentrations of several pollutants that should not be

exceeded to guarantee a good air quality. Among these pollutants are fine and coarse

particles (i.e. particulate matter (PM) with diameters smaller than 2.5 µm and 10 µm,

respectively), SO2, NO2, CO, O3, benzene and several toxic metals. For PM and O3 the

EU limits are less strict than the World Health Organization (WHO) air quality guidelines

(see Table 1.1), which are set to protect human health. The last ”Air Quality in Europe”

report by the EEA estimated that in 2016, 8% of the EU urban population was exposed

to harmful levels of NO2, 8% and 19% was exposed to harmful PM10 and PM2.5 levels

and 30% to O3 levels above the limits. These percentages increase to 85%, 52% and

98% respectively if the WHO guidelines are considered (EEA, 2018) and these statistics

applied globally result in 91% of the world’s population living in places with poor air

quality (WHO, 2016). These numbers show that severe measures are still required to

clean up the air further and show the relevance of monitoring the pollutants at high

temporal and spatial resolution to control where and when the highest concentrations

occur. This allows to assess the effectiveness of the control strategies to improve air

quality, and NO2 satellite measurements offer a unique perspective for this purpose due

to the possibility of having daily global coverage at high spatial resolution, as we show in
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Figure 1.2: Radiative forcing for the period 1750–2011 based on emitted compounds. Dif-
ferent colors in the emitted components represent the different forcing agents they affect.
The vertical bars indicate the relative uncertainty of the radiative forcing induced by each
component (from Myhre et al. (2013)).

some examples later in this section.

Table 1.1: European Union air quality standards and WHO air quality guideline values for
PM10, PM2.5, NO2 (annual mean) and O3 (8 hour mean) in µg/m3.

PM10 PM10 NO2 O3

EU 25 40 40 120
WHO 10 20 40 100

The most recent WHO air pollution report (WHO, 2016) estimated that the expo-

sure to air pollution causes around 4 million premature deaths worldwide mainly due to

cardiovascular diseases (heart diseases and strokes), respiratory infections and lung dis-

eases including cancer. Ambient fine particles are consistently associated with mortality,

hence many studies assess air pollution exposure from the concentrations of particulate
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matter (e.g. WHO (2016), Hales et al. (2012)). Because harmful levels of PM and NO2

are frequently correlated, the particular attribution of these pollutants is not straightfor-

ward and adjustments need to be made to quantify their health effects separately (WHO,

2013). The DUELS study (Fischer et al., 2015) analysed air pollution effects in a 7 mil-

lion population from The Netherlands. They showed that long-term exposure to PM10

after adjustment for NO2 remained associated to non-accidental mortality, mortality from

respiratory diseases, lung cancer mortality and cardiovascular mortality. For NO2, they

found associations to all mortalities but not to cardiovascular mortality, and after ad-

justment for PM10 associations remained for non-accidental mortality and lung cancer

mortality. This study shows that both NO2 and PM should be taken into account when

analysing the effects of long-term exposure to air pollution. The differences before and

after adjustments show that these two pollutants characterize air pollution and its health

effects differently, but also that they are both causing health damage.

Epidemiological studies mostly use models and in-situ observations to estimate the

population exposure to air pollution. In several studies satellite measurements of NO2

have been proposed as a reliable tool to measure the spatial variability and long term

exposure of NO2 (e.g. Geddes et al., 2016) and they have been used to evaluate health

impacts (e.g. Anenberg et al., 2018). The use of satellites improves exposure assessment

(e.g. Hoek et al., 2015) and can complement the use of models in epidemiological studies.

In order to bring forward the use of satellites for these type of applications, we need to have

reliable satellite measurements and uncertainty estimates, and an active collaboration

between satellite and ’Public Health’ experts is indispensable.

Tropospheric NOx - VOC - O3 chemistry

O3 is a secondary pollutant that is formed in the troposphere in the presence of light and

other chemical components such as VOCs and NOx. Globally, the most abundant VOCs

are isoprene and monoterpenes, mostly emitted by natural sources in the tropical regions

(Sindelarova et al., 2014). Anthropogenic sources of VOCs account for 15% of the total

VOCs emissions, and most of these 15% occur in agriculture, transport (mainly emis-

sion of hydrocarbons) and industrial processes and product use. McDonald et al. (2018)

showed that chemical products constitute half of the VOC emissions in industrialized U.S.

cities. This contribution has increased relative to the contribution from transportation,

sector for which emissions have effectively been controlled in the last decades. Globally,

anthropogenic emissions are the largest source of annual NOx emissions, although natural

emissions (mainly biomass burning, lightning and soils) can substantially contribute to

the total NOx emissions budget. In industrialized urban areas, anthropogenic NOx emis-

sions correspond to around 90% of the total NOx emissions. They are mainly emitted in

combustion processes, so most of the emissions are from the transport sector. Figure 1.3
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shows the fraction of anthropogenic NOx and non-methane VOC emissions by different

sectors in the European Union for the year 2016.

Figure 1.3: Fraction of anthropogenic nitrogen oxides (NOx) and non-methane volatile or-
ganic compounds (NMVOC) emitted by different sectors in the European Union in 2016.
Reported total emissions in 2016 were 8.5 Tg NOx and 8 Tg NMVOCs. Source: EU emission
inventory report 1990-2016 under the UNECE Convention on Long-range Trans-boundary Air
Pollution (LRTAP).

Most of the NOx are emitted in the form of NO, and then a rapid cycling occurs

between NO and NO2, which is called the photostationary state:

NO +O3 → NO2 +O2 (R1)

NO2 + hv
O2−→ NO +O3 (R2)

At night, most of the NOx is present as NO2 due to the lack of light to photolyse

NO2 via reaction R2. The principal sink of NOx is the oxidation to HNO3 by OH during

daytime. At night NOx is oxidized by O3, and will react through N2O5 on aerosol surfaces.

The photostationary state (R1-R2) is a null cycle in which O3 is continuously being

produced and consumed. For O3 to accumulate in the troposphere, an additional pathway

is required to convert NO to NO2 without destroying O3. This occurs in the photochemical

oxidation of VOCs via reactions R4 and R6 (Jacob, 1999):

RH +OH
O2−→ RO2 +H2O (R3)

RO2 +NO → RO +NO2 (R4)

RO +O2 → R′CHO +HO2 (R5)
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HO2 +NO → OH +NO2 (R6)

The net reaction is then:

RH + 4O2 → R′CHO + 2O3 +H2O (R7)

In this chain, RH refers to any hydrocarbon. From reactions R4 and R6, NO2 photol-

yses and creates O3. This chain of reactions is broken by loss of HOx radicals (HOx = OH

+ HO2) in two different paths, depending on the relative concentrations of hydrocarbons

and NOx. Thus the net production of ozone within this chain depends on the availability

of hydrocarbons and NOx.

The atmosphere will be hydrocarbon limited if there are not enough hydrocarbons

that oxidize to form RO2 via reaction R3. In this situation, the amount of NO2 present in

the atmosphere will be high compared to the concentration of hydrocarbons, so NO2 will

deplete OH by oxidation to HNO3. In contrast, the atmosphere will be NOx limited if

there are not enough NO to convert HO2 to OH via R6, so HO2 gets lost to H2O2 and the

chain ends. Figure 1.4 shows simulated ozone concentrations as a function of NOx and

hydrocarbon emissions. In the hydrocarbon limited regime, O3 concentrations increase

with hydrocarbon emissions and decrease slightly with NOx emissions. In the NOx limited

regime, where hydrocarbon emissions are higher, there are enough hydrocarbons for NOx

to create O3, so an increase in NOx result in an increase of O3 concentrations.

The production of ozone depends strongly and in a non-linear way on the relative

concentrations of hydrocarbons and nitrogen oxides in the troposphere. A study in the city

of Madrid, Saiz-Lopez et al. (2017) showed that despite the decrease in NO2 concentrations

in the period 2007-2014, O3 concentrations increased, which might be a consequence of the

city of Madrid being ”hydrocarbon limited”. Orographical and meteorological conditions

also play an important role in O3 pollution episodes in megacities like Madrid (Querol

et al., 2018), which makes the interpretation of urban boundary layer chemistry even more

complex. The regime under which ozone is formed has a seasonal dependency, and when

the transition from hydrocarbon to NOx limited happens is crucial for the effectiveness of

mitigation strategies (Jacob et al., 1995). Because it is highly relevant to have knowledge

on the prevalent chemical regime, the monitoring of NO2 and VOCs not only from the

ground but also from space is necessary to tackle tropospheric and surface ozone pollution

problems efficiently.

The study by Jin et al. (2017) used 10 years of satellite measurements to study trends

of the O3 formation regime: using the ratio of OMI NO2 measurements (as an indicator for

NOx) and formaldehyde (as an indicator for VOCs), they classified different regions around

the world as NOx or hydrocarbon limited. Figure 1.5 shows that European and U.S. cities
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Figure 1.4: Contour lines of ozone mixing ratio (in ppb) as a function of NOx and hydro-
carbon emissions. Thick black line separates NOx limited and hydrocarbon limited ozone
production regimes (adapted from Jacob (1999)).

are becoming NOx limited due to the decrease in NOx emissions. Because of this change

in the O3 production regime, in those cities NOx emission controls might be now more

effective than a decade ago. The use of satellite measurements results in a global overview

of O3 formation regimes that is not feasible with other type of measurements. However,

it is conditioned by the uncertainties linked to satellite retrievals, which highlights the

need to characterize and reduce the uncertainties, one of the main motivations of this

thesis.

Atmospheric composition from space

Satellite measurements have been widely used to monitor O3 (e.g. Fu et al. (2018))

and its main precursors NOx and VOCs. Formaldehyde (HCHO) is a major product in

the oxidation of most VOCs, therefore satellite measurements of HCHO can give unique

information on the spatial and temporal patterns of the main VOC sources (e.g. Zhu

et al. (2017), Bauwens et al. (2016)). NO2 satellite measurements can be used to estimate

NOx emissions from different sources, including cities (e.g. Beirle et al. (2016)), ships (e.g.

Boersma et al. (2015)), lightning (e.g. Boersma et al. (2005)) and fires (e.g. Castellanos

et al. (2014), Mebust et al. (2011)). Because satellites have been measuring atmospheric

composition for more than two decades, the evolution in time of emissions can also be
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Figure 1.5: Regions of Europe and Eastern U.S classified as NOx limited, hydrocarbon
limited and transitional based on the NO2 and HCHO ratio measured from the OMI satel-
lite for 2005 (upper row) and 2015 (lower row) (modified from AURA Science webpage
https://aura.gsfc.nasa.gov/science/feature-20171228b.html).

monitored from space (e.g. Lamsal et al. (2011)).

Satellite measurements have been used to link changes in emissions to environmen-

tal regulations and economic activities. Castellanos and Boersma (2012) analysed daily

tropospheric NO2 columns over Europe measured by the OMI satellite and linked the

decrease in NO2 levels between 2004 and 2010 to environmental regulations, with sev-

eral regions showing an increase due to economic development. They also showed that

in 2009, the global recession accelerated the decrease in NO2 compared to other years.

Duncan et al. (2016) used OMI measurements to analyse urban concentrations of NO2,

and linked the decrease in NO2 levels to reasons varying from environmental regulations

(e.g. Europe) to civil unrest (e.g. Syria). In contrast, they associated higher NO2 lev-

els to locations of intensive energy activity and to the economic growth of several Asian
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and tropical cities. Jiang et al. (2018) used satellite measurements together with ground

based observations to asses the changes in pollutant emissions. They found that in the

2011-2015 period the reduction in NOx emissions was negligible compared to 2005-2009,

completely opposite to the emission reduction reported by the EPA’s emission inventory.

This discrepancy could be attributed to an increase in the contribution of industrial and

area sources, off-road mobile sources and a slower decrease in NOx emissions from diesel

vehicles. This shows the relevance of using satellite measurements to estimate emissions

(i.e. a top-down approach) and to validate the emissions reported in the inventories (the

bottom-up approach).

The use of data assimilation techniques together with satellite measurements allows to

have a global estimate of the magnitude and distribution of emissions from daily to decadal

time scales. Miyazaki et al. (2017) obtained top-down NOx global emission estimates from

2005 to 2014 by assimilating satellite measurements of several species in a global chemistry

transport model. The study showed a strong increase in NOx emissions over India and

Middle East, and a decrease over the U.S., southern Africa and western Europe. In China,

a positive trend between 2005-2011 was followed by a decrease in NOx emissions after 2011.

In this study, they assimilated not only satellite measurements of NO2 but also O3, CO and

HNO3 from different satellites to better constraint tropospheric chemistry. This multi-

constituent data assimilation approach shows a better agreement of simulated species

with independent observations, as well as a reduction in simulation errors (Miyazaki

et al., 2018).

Air pollution is not just a problem at local or regional scales. Global transport of

pollution can impact air quality at local scales far away from the source. An example

of this trans-boundary transport of air pollution problem is ozone. Verstraeten et al.

(2015) showed that even though precursor emissions decreased over western U.S., free

tropospheric ozone did not show the same tendency due to long-range transport of ozone

and its precursors from China and the increase in the stratosphere-troposphere ozone

transport. The use of satellite measurements of NO2 by OMI and O3 by TES (Tropo-

spheric Emission Spectrometer) were fundamental in this study to understand a global

scale and long term problem. OMI NO2 columns indicated an increase in NOx emissions

between 2005 and 2010 of about 20% over China and a similar decrease over western U.S.

TES measurements revealed a significant O3 increase over China and a modest increase

in western U.S., which pointed to long range O3 transport as an extra source that could

explain this increase. The assimilation of satellite measurements of OMI NO2 and TES

O3 in models has also contributed to a better attribution of the sources that affect western

U.S. due to transport from the Eastern Pacific (e.g. Huang et al. (2015)).

The paragraphs above give an overview of various successful applications of NO2 satel-

lite measurements, mostly related to air quality and emission quantification. Many of
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these applications have had a great impact as they show how satellite measurements can

serve society in many ways (e.g. as a basis for policymakers to make the right decisions for

emission controls to be successful). Still, NO2 measured from space is an indirect measure-

ment, with multiple assumptions and error sources, as the reader will learn throughout this

thesis. So even though trace gas satellite retrievals have improved over the last decades,

there is a constant need to improve the retrieval algorithms for a better characterization

of the measurements and to reduce and better characterize the uncertainties associated

with it. Satellite data users need to have confidence that the quality of the measurements

is such that fits the fitness of purpose of their applications.

1.2 Satelite remote sensing of atmospheric composi-

tion in the UV-Vis

The monitoring of atmospheric composition from space has developed vastly in the last

two decades, together with the rapid increase of the need of having accurate informa-

tion to understand and mitigate air pollution and climate change effects. Since satellite

measurements have become a very useful tool for atmospheric composition monitoring,

it has also become a priority for data producers to provide quality assured satellite data

records, with a more complete and understandable information on the processing chain,

uncertainties and the fitness-for-purpose of the satellite data products. Ultimately, satel-

lite measurements have to be reliable and robust enough so they can be used by agencies,

stakeholders and policymakers.

From the mid 60’s to the 90’s, the National Oceanic and Atmospheric Administra-

tion (NOAA) and the National Aeronautics and Space Administration (NASA) from the

United States were leading the programs to monitor atmospheric composition with the

Nimbus and NOAA 4th generation satellite programs. The Total Ozone Mapping Spec-

trometer (TOMS) sensor onboard Nimbus-7 satellite was the first to monitor stratospheric

O3 in the early 80’s. In the 90’s, the first European program for monitoring Earth’s atmo-

spheric chemical composition started with the European Remote Sensing (ERS) missions.

Among the sensors in the ERS-2 satellite launched in 1995 was the Global Ozone Mon-

itoring Experiment (GOME), aimed at monitoring ozone, trace gases and aerosols. The

Environmental Satellite (ENVISAT) was launched in 2002 with the Scanning Imaging Ab-

sorption Spectrometer for Atmospheric Cartography (SCIAMACHY) satellite on-board,

a mission also lead by the European Space Agency (ESA). On board the European Or-

ganisation for the Exploitation of Meteorological Satellites (EUMETSAT) and ESA’s

Meteorological Operational Satellite (Metop) - A (2006), B (2012) and C (2018), the

GOME-2 instrument is included as a follow-up of GOME. The Dutch-Finish Ozone Mon-
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itoring Instrument (OMI) on board NASA’s Aura satellite was a major improvement in

spatial resolution compared to its predecessors. The high spatial resolution (13×24 km2

at nadir) and the wide swath (2600 km) allow daily full global coverage. Since its launch

in 2004, it has provided high quality data of atmospheric trace gases (Levelt et al., 2018).

Figure 1.6 gives an overview of the past, current and future satellite sensors that measure

NO2 columns in the atmosphere since GOME was launched in 1995.

Figure 1.6: Timeline of UV/Vis polar orbiting and geostationary satellite instruments that
measure NO2 columns since 1995. Launch date for future sensors (in orange) still needs to be
determined.

A joint initiative between the European Commission and the ESA are the Sentinel

missions as part of the Copernicus Earth Observation programme. Land, ocean and at-

mosphere will be monitored by this constellation of satellites. The Tropospheric Monitor-

ing Instrument (TROPOMI) is the instrument on the payload of the Sentinel-5 Precursor

(S5-P) satellite, aimed at monitoring atmospheric composition and chemistry. Since its

launch in October 2017, it is providing unprecedented high-resolution (up to 7×3.5 km2)

measurements of NO2, CO, CH4, O3, SO2 and HCHO among others. All the satellites

mentioned above are ”low Earth orbit” (LEO) satellites in Sun-synchronous orbits. These

satellites make global measurements, and the overpass at a given latitude is always at the

same local time. For example, OMI and TROPOMI cross the Equator around 13:30 LT,

while GOME, SCIAMACHY and GOME-2 cross(-ed) it around 10:30 LT. Geostation-

ary satellites have a fixed position relative to the Earth, and their field-of-view covers

a limited area. The main advantage of geostationary satellite instruments is the high

temporal resolution that allows the monitoring of diurnal pattern of pollutants, which

is particularly interesting for short-lived species like NO2. There are three geostationary
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satellites that will be launched in the coming years that will host different sensors to

measure atmospheric composition over Europe (Sentinel - 4), over North America (Tro-

pospheric Emissions: Monitoring of Pollution TEMPO) and over Asia (Geostationary

Environmental Monitoring Spectrometer GEMS). This constellation of satellites brings

new challenges for improving satellite measurements, as important aspects like viewing ge-

ometry and overpass times will change and these need to properly be accounted for. These

satellites will provide a new perspective in the understanding of atmospheric composition

from remote sensing observations.

Measurement principles

Remote sensing instruments discussed above measure backscatter radiation in different

spectral ranges, so they do not directly measure atmospheric composition. Incoming

radiation from the Sun, when travelling through the atmosphere and back to the satellite,

interacts with the different elements of the atmosphere (e.g. clouds, aerosols, trace gases)

and the surface. The radiance spectra measured by the satellite contain information on

the components that absorb and scatter light, and when we apply a retrieval algorithm

to the measured reflectance spectrum we can obtain information (e.g. characteristics

and abundance) about these different components. The measured reflectance spectrum

is defined as the ratio of the Earth’s backscatter radiance spectrum I(λ) (times π) and

a reference spectrum, typically the direct solar irradiance spectrum at the top of the

atmosphere E0(λ) multiplied by the cosine of the solar zenith angle µ0:

R(λ) =
πI(λ)

µ0E0(λ)
(1.1)

Figure 1.7 shows a solar irradiance and Earth radiance spectrum measured by the

OMI instrument in the UV/Vis (280-500 nm), and the ratio of both spectra. The differ-

ences between solar irradiance and Earth radiance spectrum are due to absorption and

scattering by the different atmospheric constituents. Strong spectral signatures due to

ozone absorption for wavelengths below 340 nm are visible in Fig. 1.7a,b and at larger

wavelengths Rayleigh scattering by molecules is the dominant extinction process. The

inset in Fig. 1.7b shows the spectral absorption structures of NO2 enlarged around 440

nm. These NO2 absorption features are much weaker than the ozone absorption features

around 300 nm. This is because the optical thickness of NO2 around 440 nm is on the

order of 0.005, more than 1000 times smaller than the ozone optical thickness around 300

nm.

Atmospheric retrievals make use of spectral fitting techniques to derive the concen-

tration of a specific trace gas integrated along the average atmospheric light path of the
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Fig. 7. (a) OMI solar irradiance and Earth radiance spectrum above The Netherlands on a cloudless day (April 2, 2005). (b) Ratio spectrum of the radiance and
irradiance spectra of (a). Absorption peaks of ozone Hartley and Hugging bands are clearly visible between 270 and 330 nm. The double peak around 390 nm are
the Raman lines from the Calcium Fraunhofer lines. Between 410 and 450 nm the tiny absorption features of NO are visible.

on the absolute reflectance. In the TOMS–type of retrieval
(total ozone, SO index and aerosol index), based on the use
of a few wavelength bands of 1 nm over a wavelength range of
308–360 nm, the absolute reflectance is also an essential factor
for its accuracy. For accurate retrieval of all data products based
on the reflectance, monitoring the degradation of the reflectance
during instrument lifetime is mandatory. Since several optical
elements in the instrument are highly polarization sensitive, the
polarization state of the incoming radiation should be known,
in order to be able to derive the correct amount of trace gas.
This is the approach taken for GOME and SCIAMACHY
(see e.g., [14]). However, another way to circumvent this is to
pseudo-depolarize the radiation before it hits any polarization
sensitive element in the instrument. In the case of OMI, this
was done by using a scrambler (15; see [11] for more details).
This paper will discuss above aspects of the OMI instrument
that are related to the retrieval.

IV. INSTRUMENT SPECIFICS

The accuracy of the retrieved products will contain a random
component and a systematic bias which are due to instrumental
effects and the retrieval method used for a particular product.
The random component will be called the precision. The
random component due to instrumental effects is determined by
the signal-to-noise while the random component due to retrieval
is caused by uncertainty in the model parameters used in the
retrieval. Usually one wants to reduce the instrumental effects
so that the final accuracy is dominated by the bias and precision
in the retrieval algorithm. Further improvement in the retrieval
algorithms during the life time of the instrument can then im-
prove the products. In this section the instrumental effects will
be considered. Retrieval algorithm effects have been described
in the OMI ATBD (http://www.knmi.nl/omi/research/docu-
ments). In Fig. 7, a typical measured solar irradiance spectrum,
earth radiance spectrum and their ratio spectrum, are given.
Typical signal-to-noise values for OMI are 1000 to 1500 in
the visible, around 1000 in the UV-2, and between 50 and 100

in the UV-1. In the following various instrumental systematic
effects will be discussed.

A. Absolute Calibration of Reflectance

By dividing the radiance by the irradiance spectrum the
assumption is that any specific instrument characteristics or
degradation effects cancel out. In OMI the primary mirror is
not shared between the Earth radiance and solar irradiance
measurement, as well as the mesh, diffuser and folding mirror
needed to measure the solar irradiance spectrum. The mesh
is needed to reduce the intensity of the solar irradiance and
prevent detector saturation and has a suppression factor of
10%. The solar irradiance is measured by opening the Solar
Aperture Mechanism (SAM). The solar irradiance passes a
mesh and is reflected by one of the three reflection diffusers
in the Diffuser Carousel into the optical path of the telescope
by reflecting from a mirror mounted in the Folding Mirror
Mechanism (FMM), the third mechanism in OMI, which at the
same time closes the optical path for the Earth radiances. A
solar calibration measurement has therefore a different optical
path from the Earth radiation measurement, adding the mesh,
the reflection diffuser and the FMM mirror, and missing the
primary mirror (003). The philosophy is that the FMM and
the primary mirror, being made of the same material, will
have a comparable degradation. To monitor the degradation
of the diffuser, 3 reflection diffusers are used with a different
frequency. One diffuser is used for the daily solar calibration,
one diffuser is measured every week and one every month.
When not used the solar port is closed using the Solar Aperture
Mechanism (C02 in Fig. 2). To check the assumption above, in
orbit radiance measurements under well-known atmospheric
conditions and surfaces can be used as well as comparisons
between solar irradiance measurements with different diffusers
and solar measurements from other sources [11], [16].

B. Stray Light

Reducing stray light is one of the challenges in UV/VIS spec-
trometers, especially for the part of the spectrum below 290 nm,
from which part of the ozone profile information originates.

Figure 1.7: (a) Solar irradiance and Earth radiance spectrum measured by OMI on a clear
sky day over The Netherlands and (b) the ratio of both spectra in (a) (from Levelt et al.
(2006)).

backscatter radiation (the so-called slant column density (SCD)). Spectral absorption

structures like the ones of NO2 in the UV/Vis makes it possible to apply Differential Op-

tical Absorption Spectroscopy (DOAS) technique (Platt, 2017). The DOAS technique is

based on the Beer-Lambert law that describes the attenuation of light in the atmosphere

due to scattering and absorption:

I(λ) = I0(λ)exp
[
(−
∑

i

σi(λ) · L · ci)
]

(1.2)

Equation 1.2 states that the attenuation of the (initial) intensity I0 at the top of the

atmosphere is proportional to the absorption cross-section σi, the light path length L

and the concentration of the absorber i. In DOAS, least squares methods are used to

match the observed spectral signatures to a modelled reflectance spectrum that takes into

account molecular absorption spectral features and other extinction processes in a specific

fitting window. The modelled reflectance separates spectral absorption features into low

and high frequency contributions. Low frequency (i.e. spectrally smooth) features are

included in a low order polynomial P (λ), that accounts for the smooth absorption and

scattering features such as Rayleigh and Mie scattering and surface reflection. The high

frequency contribution is caused by absorption by atmospheric trace gases like NO2, and

is used for the retrieval of the slant column density Ns. Equation 1.2 is then expressed

as:

I(λ) = I0(λ)exp
[
−
∑
i=1

σi(λ)Ns,i −
∑

P

aPλ
P
]

(1.3)
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Other effects (e.g. instrumental features) might be also accounted for in the modelled

reflectance. The Ring effect, which is due to inelastic rotational Raman scattering by N2

and O2 molecules in the atmosphere, is taken into account by including a pseudo absorber

with a synthetic Ring spectrum. Figure 1.8 shows an example of TROPOMI’s measured

reflectance for the retrieval of NO2 and the modelled reflectance obtained with the DOAS

fit using the following expression:

Rmod = P (λ) · exp
[∑

i=1

σi(λ)Ns,i

]
·
(

1 + CRing
Iring(λ)

I0(λ)

)
(1.4)

TROPOMI ATBD tropospheric and total NO2
issue 1.4.0, 2019-02-06 – released
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Figure 4: The top panel shows an example of a reflectance spectrum (black solid line) obtained by TROPOMI
on 4 July 2018 during orbit 03747, the spectrum modelled in the DOAS fit procedure (dashed red line); the
inset shows an enlargement of a 10 nm wide part of the fit window. The bottom panel shows the residual of the
DOAS fit, i.e. the measured minus the modelled reflectance spectrum; note that the vertical scale is a factor of
100 smaller than the scale in the top panel.

advantage of the fact that we have additional information from a high-resolution solar reference spectrum
Eref(l ). Details of the wavelength calibration and the high-sampling interpolation implemented for TROPOMI
are given in Appendices A and B, respectively.

Slant column densities Ns,k, the Ring coefficent Cring, and the polynomial coefficients am are obtained from
a minimisation of the c2 of Eq. (2), i.e. the differences between the observed and modelled reflectances. In
the initial TROPOMI NO2 DOAS, we implented a version of the OMI NO2 DOAS processor, called OMNO2A,
which uses a non-linear least squares fitting based on routines available in the SLATEC mathematical lib-
rary [Vandevender and Haskell, 1982]. During the commissioning phase, however, we discovered that this
implementation suffered from some issues (i.e. the c2 and/or the slant column error estimates were scaled
incorrectly) that could not be solved due to inflexibility of the OMNO2A code. To solve this issue, we chose to
use the optimal estimation (OE) routine already available in the processor, since it was implemented for the
wavelength calibration; see Appendix A. For the c2 minimisation suitable a-priori values of the fit parameters
were selected and the a-priori errors are set very large, so as not to limit the solution of the fit, while for
numerical stability reasons a pre-whitening of the data is performed.

A number of fitting diagnostics is provided by the fitting procedure. Estimated slant column and fitting

Figure 1.8: Reflectance spectrum measured by TROPOMI on 4 July 2018 and the modelled
reflectance spectrum obtained with the DOAS fit (adapted from van Geffen et al. (2018)).

After the spectral fitting has been applied to obtain the slant column density, it is

converted to a vertical column density (VCD) by taking into account the radiative transfer

properties of the atmosphere. For this conversion, we use a radiative transfer model to

calculate the air mass factor (AMF), which represents the length of the average light path

through the atmosphere. The AMF calculation assumes knowledge on the measurement

geometry, and a priori knowledge of the state of the atmosphere, so it requires external

information on geophysical variables such as surface albedo, surface height, and vertical

profile of the trace gas. As the interaction of radiation with the atmosphere is sensitive

to the vertical distribution of the absorber in the atmosphere, the AMF depends on

the vertical distribution of the trace gas. Palmer et al. (2001) proposed a formulation
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to decouple the dependency of the AMF on the vertical distribution of NO2 by using

altitude-dependent (box-) air mass factors that account for the vertical sensitivity of

the measurement. Then the total AMF can be expressed as sum of the box-AMF of

each layer multiplied by the trace gas vertical profile (e.g. calculated with a chemistry

transport model or from aircraft measurements) weighted by the vertical column. This

formulation requires that the absorber is optically thin (optical thickness τgas � 1) so

the light path does not depend on the absorber concentration. For high pollution events,

and when using a wider and red-shifted fitting window, the NO2 atmospheric column is

no longer optically thin and AMFs (i.e. measurement sensitivity) decrease. In this case

of optically thick absorber, the AMF depends on the amount of NO2 assumed in the

radiative transfer modelling and a correction factor is applied based on the relation of the

slant column and the AMF for different assumed NO2 columns (S5P Verification Team,

2015).

The calculation of the AMF, and thus the vertical column density, implicitly depends

on the a priori trace gas profile shape and this dependency is a source of systematic error

in the retrieval. The averaging kernels (AKs) represent how the retrieved VCD changes

when the absorber concentration changes at a certain level. AKs are calculated as the ratio

of the box-AMF of layer l and the total AMF, and they provide the relation between the

vertical column and the slant column density without the influence of the a priori profile

(Eskes and Boersma, 2003). The application of the AKs to NO2 vertical profiles removes

the AMF dependency on the a priori trace gas profile used in the retrieval, which is

essential to properly interpret satellite retrievals and to compare satellite measurements

to chemistry transport models and measured profiles in an independent way. Boersma

et al. (2016b) showed that larger errors when doing model to satellite comparisons may

occur when the comparison is done without using averaging kernels. Averaging kernels

can be used to recalculate the air mass factor to use an a priori profile that is more

suitable for a particular model to satellite comparison, e.g. from aircraft measurements

(Bucsela et al. (2008), Boersma et al. (2008)). Averaging kernels are also used in data

assimilation of satellite retrievals to remove the retrieval dependency on the a priori profile

(e.g. Miyazaki et al. (2017)), and in this way the retrieval uncertainty due to the a priori

profile can be neglected. Errors related to the use of other ancillary data (i.e. clouds,

albedo, aerosols and surface reflectivity) remain even after using the AKs.

The presence of residual clouds and aerosols is a big challenge for retrievals in the

UV/Vis, as they modify the photon path length. The net effect in the NO2 retrieval

depends on the location of the NO2 relative to the cloud or aerosol layer (e.g. Leitao

et al. (2010)). If the NO2 is located below clouds, there is a reduced sensitivity as less

photons will travel through the air mass below the cloud. In contrast, the sensitivity to

NO2 will be enhanced if the trace gas is located within or above the cloud or aerosol layer.
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The independent pixel approximation (IPA) implicitly accounts for these physical effects,

and calculates the AMF as a linear combination of cloudy and clear components of the

AMF, weighted by the fraction of satellite-measured radiance that originates from the

cloudy part of the pixel (Martin et al., 2002). The cloud information (cloud pressure and

cloud fraction) to calculate the cloudy AMF is taken from a cloud retrieval applied (if

possible) to measurements from the same satellite instrument, using as much as possible

the same assumptions on surface reflectance. Another approach is to consider clear-sky

AMFs for scenes with a sufficiently small cloud fraction, without applying any correction.

The differences between the IPA AMF and clear-sky AMF for scenes with small cloud

fraction will be discussed in detail in Chapter 3.

For aerosols, typically an implicit or explicit aerosol correction is applied in the UV/Vis

trace gas retrievals. The implicit correction is based on the fact that the effective cloud

parameters used in the calculation of the AMF are sensitive to the presence of aerosols (e.g.

Boersma et al. (2011)), and therefore the AMF implicitly contains the effects of aerosols.

There is also the possibility to explicitly correct for aerosols by introducing aerosol optical

properties in the radiative transfer simulations (Lin et al., 2014), but for this accurate

information of the type, vertical distribution and amount of aerosols is required. The

implicit aerosol correction via the effective cloud parameters works well for relatively

small scattering aerosols, and for scenes with moderate aerosol optical thickness (AOT

below 0.6) (e.g. Boersma et al. (2011), Castellanos et al. (2015)). These are the cases when

the cloud algorithm is most sensitive to aerosols, as the increased TOA reflectance due to

aerosol scattering is interpreted as a cloud and accounted for in the retrieved effective cloud

parameters. For high optical thickness and absorbing aerosols, there are compensating

mechanisms between the effect of smaller effective cloud pressures and smaller effective

cloud fractions occurring in the implicit aerosol correction (e.g. Castellanos et al. (2015)).

In those cases, the explicit aerosol correction might be the most suitable treatment of

aerosols in the NO2 retrieval, as is the case for high pollution events in China (e.g. Lin

et al. (2015), Liu et al. (2019)). The errors due to the treatment of aerosols are rather

complex and very dependent on the optical and physical properties of the aerosols and the

reflecting surface (e.g. Chimot et al. (2018)). Actually, the choice of the aerosol correction

is one of the biggest source of uncertainty in the AMF calculation, as shown in Chapter

3.

1.3 Radiative transfer in the atmosphere

Radiative transfer modelling in the atmosphere is key in satellite trace gas measurements.

Because radiation is modified by the different extinction processes when passing through

the atmosphere and by reflection at the surface, it is essential to model these processes
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properly to have accurate satellite measurements. In the UV/Vis spectral range, extinc-

tion processes are of central importance. Beer-Lambert’s law describes extinction due to

scattering and absorption. In the Beer-Lambert law, the extinction rate is determined

by the cross sections of each of the absorption and scattering processes and the view-

ing geometry. The absorption cross sections of the different molecules strongly depend

on the wavelength and they are normally obtained from laboratory measurements. The

scattering phase function describes the scattering processes, and it represents the angular

distribution of the scattered radiation intensity, which depends on the direction of the in-

cident light and the scattering angle. The scattering processes depend on the wavelength

and on the size of the particles that interact with the radiation. In Fig. 1.9 the blue sky is

an example of scattering by air molecules (i.e. by molecules that have a size in the order of

a nm like nitrogen and oxygen) which is described by Rayleigh scattering. The Rayleigh

scattering cross section is proportional to λ−4, which means that shorter wavelengths (i.e.

blue light) are scattered more efficiently, making the sky appear blue. Rayleigh scattering

is also stronger in the lower part of the troposphere where the density of air molecules is

higher, and that is why satellite measurements are less sensitive to trace gases close to

the surface. Clouds in Fig. 1.9 are an example of scattering by larger particles like cloud

droplets (around 10 µm radius), described by Mie scattering. Mie scattering has a slight

dependency on wavelength (as relative to Rayleigh scattering), and that is why we see

clouds in white color. In atmospheric applications typically a size distribution is needed

to describe the phase function for Mie scattering.

Figure 1.9: Example of Rayleigh scattering (blue sky) and Mie scattering (white clouds).
Photo taken by Alba Lorente in Salt Lake City (Utah), in August 2017.
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The radiative transfer equation (RTE) is the mathematical formulation that describes

the loss and gain of radiation due to all the processes described above. The RTE is

usually discretized assuming the atmosphere as a multi-layer stratified medium, where

each layer is optically uniform. The RTE results in a complex2 equation, and to solve

it complex mathematical methods are needed. A radiative transfer model (also known

as forward model) calculates the radiation field for a given atmospheric state. This is

what is typically done in UV/Vis retrievals to compute the air mass factor given the

atmospheric state and boundary conditions. In Chapter 3, we compare four radiative

transfer models to establish the error of forward models for UV/Vis retrievals, as each

of these RTMs use different methods to solve the radiative transfer equation that could

lead to different estimation of atmospheric radiation fields. SCIATRAN and VLIDORT

(Vector-LInearized Discrete Ordinate Radiative Transfer) use mathematical methods to

solve the system of differential equations to which the RTE is reduced after applying

a quadrature method to solve the integrals. DAK (Doubling-Adding KNMI) uses the

doubling-adding method, which calculates the transmission and reflection of individual

homogeneous atmospheric layers and by adding these layers on top of each other, it

yields to the reflection and transmission of the combined layers. McArtim (Monte Carlo

Atmospheric Radiative Transfer Inversion Model) uses statistical approaches to calculate

probability distributions for the different radiative transfer processes. These four models

also describe differently the sphericity of Earth’s atmosphere, a characteristic that is

relevant in the treatment of the scattering processes in the atmosphere.

One of the boundary values necessary to solve the radiative transfer equation is the

upward radiation field at the surface, i.e. the surface reflection. The reflecting properties

of the surface can be considered isotropic (i.e. equal in all directions) or anisotropic (i.e.

angular dependent). In the isotropic case the surface is considered to be a Lambertian

reflector, so the intensity of the reflected light does not depend on the incident nor the re-

flected direction. However, surfaces reflect light differently in each direction, so anisotropy

is a fundamental physical property of the surface reflectance. The angular distribution

of the reflected light by a surface is represented mathematically by the bidirectional re-

flectance distribution function (BRDF) (Nicodemus et al., 1992). The assumption of

Lambertian reflector is widely used in the UV/Vis satellite retrieval community, justified

by the fact that surface BRDF effects are likely to smooth out over the large pixels. How-

ever, for smaller pixel size (like in TROPOMI) this assumption is no longer valid. In order

to fully represent the geometry-dependent surface scattering properties in cloud and trace

gas retrievals, the surface BRDF has to replace the isotropic Lambertian albedo. We show

in Chapter 4 that surface BRDF effects are stronger for retrievals in the near-infrared, as

Rayleigh scattering in the visible partly smooths out these effects.

2Integro-differential equation, i.e. equation that contains integrals and derivatives.
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1.4 Thesis outline

This thesis builds up from the motivation to improve NO2 retrievals and to quantify

the uncertainties associated with it. We focus here on improving the air mass factor

calculation and establishing the error of the radiative transfer in the retrieval, and we

properly characterize the surface reflectance for cloud and NO2 retrievals. The thesis

culminates with the application of the improved TROPOMI NO2 retrievals to infer daily

NOx emissions at urban scales.

In the Quality Assurance for Essential Variables (QA4ECV) project, we developed a

community NO2 and HCHO retrieval algorithm based on best practices of different state

of the art retrieval algorithms, applicable to four different satellite sensors (GOME, SCIA-

MACHY, GOME-2 and OMI, see Fig. 1.6) to obtain more than 20 years of harmonized

NO2 measurements. In Chapter 2 we explain the build up of each step of the QA4ECV

NO2 retrieval algorithm. In order to select the best approach for the AMF calculation

step, we will identify in Chapter 3 characteristics and assumptions of the radiative

transfer modelling part that should be improved. We will establish the error of forward

models for UV/Vis retrievals and improve the calculation of the altitude-dependent AMF

for HCHO and NO2 retrievals, and implement those in the QA4ECV algorithm. The

research questions answered in Chapter 3 can be summarized as follows:

• How can we improve the air mass factor calculation process?

• What are the main sources of the AMF structural uncertainty, and can we quantify

these uncertainties for every step of the calculation?

The representation of the surface as a Lambertian reflector is still an issue in NO2 and

cloud retrievals. In Chapter 4 we will asses the surface reflectance anisotropy effects

on surface Lambertian Equivalent Reflector (LER) climatologies, on cloud and trace gas

retrievals, covering all the steps from TOA reflectance simulation to the calculation of

tropospheric AMFs. We demonstrate that surface BRDF effects need to be coherently

considered to accurately retrieve clouds and NO2 from satellites. The research questions

that will be addressed in Chapter 4 can be summarized as follows:

• How accurate is the use of Lambertian surface albedo for backward and forward

scatter viewing geometries from different satellite instruments?

• How can we account for surface reflectance anisotropy in the radiative transfer model

DAK?

• How does surface reflectance anisotropy affect cloud retrievals and NO2 retrievals

via clear sky and cloudy sky contributions to the tropospheric AMFs?
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The recently launched TROPOMI satellite instrument inherited most of the improve-

ments of the QA4ECV retrieval algorithm. In Chapter 5 we explore the capabilities of

TROPOMI’s unprecedented high resolution NO2 measurements to infer the magnitude

and spatial distribution of daily NOx emissions from megacities. The research questions

addressed in Chapter 5 can be summarized as follows:

• How is the quality of the TROPOMI NO2 retrieval algorithm and of the high reso-

lution NO2 measurements?

• Can we estimate daily NOx emissions from TROPOMI NO2 measurements focusing

on the build up of pollution within the city?

• How robust is the method applied to a megacity like Paris?
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This chapter includes material from:

Boersma et al. (2018): Improving algorithms and uncertainty estimates for satellite NO2 retrievals:

Results from the Quality Assurance for Essential Climate Variables (QA4ECV) project.

Lorente et al. (2016): Air Mass Factor Calculation Best Practices and Recommendations, Sect. 2.5

of QA4ECV Deliverable 4.2 version 1.0.

Müller et al. (2016): Recommendations (scientific) on best practices for retrievals for Land and

Atmosphere ECVs. Deliverable 4.2 version 1.0.
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2.1 QA4ECV for NO2

Nitrogen dioxide (NO2), together with formaldehyde (HCHO), sulfur dioxide (SO2), and

carbon monoxide (CO), was included by the Global Climate Observing System (GCOS)

in the Essential Climate Variables (ECV) framework as a precursor of ozone and aerosols.

ECVs are variables that contribute to the characterization of Earth’s climate system and

its changes; ozone and aerosol precursors were considered due to their importance to

understand past, present and future climate, and because long term record and global

monitoring of these precursors (i.e. NO2) is achievable with existing and future observing

systems (Bojinski et al., 2014). In order to serve this purpose, a consistent and reliable

multi-sensor data record of NO2 is needed. Furthermore, long, consistent time series

of NO2 are necessary for trend analysis of the NO2 tropospheric columns (e.g. van der

A et al. (2008)) and also of the NOx emissions that can be inferred from inverse mod-

elling analysis and data assimilation systems that use NO2 from multiple satellites (e.g.

Miyazaki et al. (2017)). These studies, besides the consistent NO2 data record, also re-

quire a complete understanding and characterization of the uncertainties to apply a more

realistic constraint to the modelled fields.

The aim of the 2014-2018 European Union (EU) Seventh Framework (FP7) project

Quality Assurance for Essential Climate Variables (QA4ECV, www.qa4ecv.eu) was to

create a harmonized multi decadal record of NO2 (and also HCHO and CO) satellite

measurements. In QA4ECV we have developed a community best practice retrieval al-

gorithm, and by applying it to the GOME (1995-2003), SCIAMACHY (2002-2012), OMI

(2004-2017) and GOME-2A (2007-2016) sensors, we have retrieved more than 20 years of

quality-assured data in a consistent way, both at algorithm level and across timescales.

Apart from developing an improved retrieval algorithm, delivering a detailed uncertainty

evaluation and assessing the quality of the data product were also central objectives of

QA4ECV. Some of the developments made to create the NO2 QA4ECV retrieval algo-

rithm have been adopted in the NO2 retrieval of the Sentinel 5 Precursor (S5P) TROPOMI

instrument (van Geffen et al., 2018) and have served as a benchmark for the preparation

of its successors Sentinel 4 and Sentinel 5.

Global NO2 measurements started with the Global Ozone Monitoring Experiment

(GOME) instrument (Burrows et al., 1999), launched in 1995. SCIAMACHY (Scanning

Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument (Bovens-

mann et al., 1999) was launched in 2002. GOME-2 on board Metop-A was launched in

2006 as a continuation of the long-term monitoring started by GOME and SCIAMACHY

and a second identical instrument was launched in 2012 on board Metop-B (GOME-2B)

(Munro et al., 2016). Metop-C is the last of the Metop satellites, and it has joined the

tandem in November 2018, also with a GOME-2 instrument on its payload. OMI (Ozone
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Monitoring Instrument) was launched in 2004 and it is still operational (Levelt et al.,

2018). TROPOMI on board Sentinel-5P was launched in October 2017 (Veefkind et al.,

2012). Table 2.1 provides an overview of the characteristics from TROPOMI and the

sensors on which QA4ECV retrieval algorithm has been applied to produce the NO2 data

record.

Table 2.1: Overview of the main characteristics relevant for NO2 retrieval of the four sensors
used in QA4ECV and TROPOMI.

Local Equator
crossing time

Resolution∗ [km2]
Swath [km]

Global
coverage

Spectral
range [nm]

GOME
(1995-2003)

10:30 hrs
320×40
960

1-3 days 240 - 790

SCIAMACHY
(2002-2012)

10:30 hrs
30×60
960

3-6 days 220 - 2380

GOME-2A
(2006-2016)

10:30 hrs
80×40, 1920
40 ×40, 960

1-3 days 240 - 790

OMI
(2004 - )

13:30 hrs
13×24
2600

1 day 270 - 500

TROPOMI
(2017- )

13:30 hrs
7×3.5
2600

1 day
270 - 500
675 - 775
2305 - 2385

∗At nadir

All these satellites measure backscattered solar radiation in the ultraviolet and vis-

ible (UV-Vis) spectral range relevant for NO2. GOME, SCIAMACHY, GOME-2 and

TROPOMI also measure in the near-infrared (NIR) around 760 nm, which allows also to

obtain cloud information from the oxygen (O2) A-band. For OMI, the O2 - O2 absorption

band is used to retrieve clouds. SCIAMACHY and TROPOMI also measure in the short-

wave infrared spectral band (SWIR, 2305 - 2385 nm), from which key atmospheric species

to monitor air quality and climate like methane and carbon monoxide can be retrieved.

OMI and TROPOMI are afternoon sensors (i.e. local Equator crossing time is around

13:30 local time (LT))(see Table 2.1), and the others are morning sensors (local Equator

crossing time around 10 LT). The combination of NO2 measurements from morning and

afternoon sensors has made it possible to study the diurnal cycle of NO2 (e.g. using

SCIAMACHY and OMI in Boersma et al. (2008)). One of the main differences between

all the sensors is the horizontal resolution and the width of the swath, which mostly de-

termines the spatial coverage. For GOME and GOME-2, daily coverage is achieved at

low and mid latitudes for measurements done at coarser resolution. Because OMI and

TROPOMI have a wider swath, they provide daily global coverage. TROPOMI has set

new standards for remote sensing of atmospheric composition by providing measurements

at an unprecedented spatial resolution of 7×3.5 km2.
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The state-of-the-art retrievals that are currently applied to these four sensors do not

produce consistent NO2 data due to intrinsic differences in the retrieval algorithms. When

applying different retrievals to the same satellite observations, even though the retrievals

are based on the same general approach, the outcome can be substantially different

(Van Noije et al., 2006). The different algorithms developed by different retrieval groups

have all their strengths and weaknesses, so the challenge in QA4ECV was to bring the

strengths together to create an improved retrieval algorithm. In this chapter we give an

overview of the main achievements within the QA4ECV project in the process of pro-

ducing a coherent and improved retrieval algorithm that has been applied to the four

sensors discussed above. First we describe the three retrieval steps and the improvements

that we have implemented for each step. Then we give an overview of the QA4ECV NO2

1995-2017 data record and finally we present some preliminary validation results that

show the better agreement of the QA4ECV NO2 product with independent ground-based

measurements.

2.2 NO2 QA4ECV retrieval algorithm

The retrieval of the tropospheric NO2 vertical column density from the measured radiance

spectra by the satellite instrument consists of three steps:

1. A spectral fitting of a modelled reflectance spectrum to the measured radiance

spectrum to obtain the amount of NO2 along the average photon path between the

Sun and the satellite, i.e. the total slant column density (Ns, SCD) (Fig. 2.1 (a)).

2. The estimation of the stratospheric NO2 contribution to the total slant column

density (Ns,strat) to obtain the tropospheric slant column density (Fig. 2.1 (b)).

3. The calculation of the air mass factor (M , AMF) with a radiative transfer model

(RTM) to convert the slant column density to a vertical column density (Fig. 2.1

(c)).

The retrieval equation is then written as:

x̂tr =
Ns(~y)−Ns,strat

Mtr(xa,tr, ~b)
(2.1)

Where ~y is the measured radiance spectrum from which the slant column density

Ns is obtained, Mtr is the tropospheric air mass factor that depends on the a priori

profile in the troposphere xa,tr and ~b the forward model (i.e. radiative transfer model)

parameters describing the state of the atmosphere (i.e. surface albedo, surface altitude

and clouds).
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Figure 2.1: Sketch of the three steps in the NO2 retrieval algorithm explained in Section
2.2. Green line in (a) and (b) represent the geometrical path of the direct light from the sun
to the surface and back to the satellite, without interacting with the atmosphere. Green line
in (c) sketches the modification of the light path due to different processes in the atmosphere.
Pink line in (c) is the vertical column for which the tropospheric vertical column density is
retrieved from the satellite.

To develop the QA4ECV algorithm, a systematic analysis of the three retrieval steps

was performed, comparing different approaches by the different retrieval groups within the

project consortium, formed by retrieval experts from BIRA-IASB, IUP Bremen, KNMI,

Max Planck Institute for Chemistry, and Wageningen University. All the approaches

analysed in QA4ECV are part of well-established retrieval algorithms, so in order to decide

which approach to adopt we had to perform dedicated inter-comparison experiments and

discuss the scientific relevance in multiple meetings throughout the algorithm development

phase. All these efforts pointed to the procedures that could be improved and lead us to

create a ”community best practice” retrieval algorithm that can be applied consistently

to four different sensors using the same methodology and assumptions.

In the subsections below we describe each of the retrieval steps and the improve-

ments made in QA4ECV with respect to previous state-of-the-art retrieval algorithms

(e.g. DOMINO v2 (Boersma et al., 2011)). Following the QA4ECV philosophy, Zara

et al. (2018) compared the slant column densities from the retrieval step 1 computed by

different retrieval groups including QA4ECV, with special emphasis on the characteriza-

tion of the uncertainties of the SCDs. Within QA4ECV, different stratospheric correction

approaches were investigated in detail (Beirle, 2016) and are summarized in Sect. 2.2.2.

Finally, because the air mass factor is a significant source of uncertainty in the retrieval

process, it is of central importance in this chapter (Sect. 2.2.3) and in Chapter 3.
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2.2.1 Slant column density

The first step of the retrieval uses the Differential Optical Absorption Spectroscopy

(DOAS) method (Platt, 2017) to obtain the slant column density, which is the num-

ber of NO2 molecules along the average light path. The DOAS method is based on the

Beer-Lambert Law that describes the attenuation of light passing through a medium (here

the atmosphere). A modelled reflectance spectrum is fitted to the observed reflectance

by the satellite using a least squares technique that minimizes the differences. The mod-

elled spectrum describes the effects of absorption by molecules, the effects of inelastic

rotational Raman scattering (i.e. Ring effect) and includes a polynomial that accounts

for spectrally smooth signals (e.g. from Rayleigh and Mie scattering, spectral surface

reflection and possible instrumental effects):

I(λ) = I0(λ)exp[(−
N∑

i=1

σi(λ)Ns,i −
∑

P

aPλ
P)] (2.2)

This equation can also be written as a function of the optical depth:

ln

[
I(λ)

I0(λ)

]
=

N∑
i=1

σi(λ)Ns,i +
∑

P

aPλ
P (2.3)

In both Eqs. 2.2 and 2.3, I(λ) is the radiance, I0(λ) the solar irradiance or reference

spectrum, σi(λ) the absorption cross section of the absorber i, Ns,i the slant column

density and aP the coefficients of the polynomial. Any of the equations above can be used

in the fit; using Eq. 2.2 is the so-called ”intensity fit” and using Eq. 2.3 is the ”optical

density fit”. The advantage of the optical density fit is that it is a linear fit with respect

to the quantity of interest, any slant column density.

In order to establish the optimal settings for the spectral fitting within QA4ECV, an

extensive comparison of fitting approaches and their uncertainties from different retrievals

codes was performed for OMI and GOME-2A (Müller et al., 2016). For GOME-2 (and also

SCIAMACHY and GOME), the standard wavelength interval that is used in state-of-the-

art retrievals to perform the NO2 spectral fitting is 425-450 nm (e.g. Valks et al. (2011),

Boersma et al. (2004)). For OMI, in order to improve the signal-to-noise ratio, the fitting

window was extended to 405-465 nm in the DOMINO retrieval (Boersma et al., 2002),

and this is the window that is currently used for TROPOMI (van Geffen et al., 2018).

Table 2.2 gives an overview of the main settings for the NO2 spectral fitting from different

retrieval algorithms for OMI (QA4ECV and OMNO2A v2) and GOME-2A (QA4ECV and

TM4NO2A v2.3). In QA4ECV, the fitting window for GOME, SCIAMACHY and GOME-

2 was extended from 425-450 nm to 425-465 nm to improve the consistency with the OMI
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405-465 nm window. Because of a better agreement between the different retrievals, it

was decided to use an optical density fit. The choice of the intensity fit or the optical

density fit leads to systematic bias up to 1· 1015 molec·cm−2, therefore the same type of

fit was applied to all four sensors (Boersma et al., 2018).

In the QA4ECV slant column inter-comparison, whether to include an intensity offset

correction was discussed and dedicated experiments were performed to investigate its rele-

vance and to understand its meaning. This intensity offset might account for instrumental

effects, e.g. straylight inside the spectrometer and dark current (Peters et al., 2014). The

intensity offset can also compensate for spectral features caused by inelastic vibrational

Raman scattering (VRS) on liquid water molecules, which is most significant for measure-

ments over cloud-free ocean scenes (e.g. Peters et al. (2016), Richter et al. (2011)). If the

intensity offset is not included, the Ring effect correction might partly account for these

VRS effects. Figure 2.2 shows that the fitted intensity offset coefficients are positive and

correlate well with clear-sky chlorophyll-free ocean scenes, as well as with the liquid water

fit coefficients (Fig. 2.3) strongly suggesting that this term indeed represents vibrational

Raman scattering in open water. Including this term results in better fit results, with a

10% reduction in the RMS of the fit over cloud-free ocean scenes and 9% smaller SCD

uncertainties (Oldeman, 2018). Over cloud-free ocean scenes, a positive intensity offset

results in differences in NO2 SCDs up to 15%, with mean differences of 4% (Oldeman,

2018). Although most of the pollution sources are over land where the intensity offset is

negligible, the SCDs over ocean scenes are relevant for the stratospheric estimation in the

second step of the retrieval, so the intensity offset should be included. In the QA4ECV

retrieval, a correction to account for an intensity offset is included in the fitting model

with a polynomial (Poff(λ) in Eq. 2.4).

The modelled reflectance used in the QA4ECV optical density fit is based on Eq. 2.3,

with an extra term Poff(λ) to account for the intensity offset:

Rmod = ln

[
I(λ)− Poff(λ)

I0(λ)

]
= P (λ)−

N∑
i=1

σi(λ)Ns,i − σRing(λ)CRing + r(λ) (2.4)

where P (λ) is the DOAS polynomial, and σRing is the cross-section of the Ring effect,

which is accounted for by introducing a pseudo-absorber. In the fitting procedure, a

χ2-minimisation of the residual r(λ) is performed (Zara et al., 2018) using the QDOAS

software for OMI and GOME-2A (2012-2017) (Danckaert et al., 2017) and NLIN (Richter,

1997) for SCIAMACHY, GOME and GOME-2A (2007-2011).

The comparison of approaches led to improvements in the spectral algorithm, mainly

through including liquid water absorption and the intensity offset correction. Overall,
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Table 2.2: Main settings of NO2 spectral fitting for TROPOMI, OMI (QA4ECV and
OMNO2A v2) and GOME-2A (QA4ECV and TM4NO2A v2.3).

Fitting
window (nm)

Fitting
method

Fitted
parameters

TROPOMI1 405-465 Intensity fit
O3, H2Ovap,
O2-O2, H2Oliq

QA4ECV OMI2 405-465
Optical
density fit

O3, H2Ovap,
O2-O2, H2Oliq

Poff

OMNO2A v23 405-465 Intensity fit
O3, H2Ovap,
O2-O2, H2Oliq

QA4ECV GOME-2A2 405-465
Optical
density fit

O3, H2Ovap,
O2-O2, H2Oliq

Poff

TM4NO2A v2.33 425-450
Optical
density fit

O3, H2Ovap,
O2-O2, Poff

(1) van Geffen et al. (2018), (2) Boersma et al. (2018), (3) van Geffen et al. (2015)

QA4ECV applies a more physically accurate fitting model to estimate the SCDs. The

SCD uncertainties from QA4ECV are lower compared to state-of-the-art retrieval and

these uncertainties are free of viewing or solar angle dependencies (Zara et al., 2018).

For the OMI sensor the mission-average SCDs uncertainties for QA4ECV are 0.84·1015

molec·cm−2 and 0.99·1015 molec·cm−2 for OMNO2A v2 (DOMINO v2), which is a 16%

improvement. For GOME-2A, the main difference between QA4ECV and the current

operational fit in the TM4NO2A (v2.3) retrieval is that QA4ECV uses a larger fitting

window and includes liquid water absorption. The SCD uncertainties for GOME-2A

are also lower in the QA4ECV retrieval by 11% (0.80·1015 molec·cm−2 vs. 0.89·1015

molec·cm−2, 2005-2015 average).

The spectral fitting in the TROPOMI NO2 retrieval algorithm incorporates most of

the developments from QA4ECV for the DOAS fit (van Geffen et al., 2018). However,

two important lessons have not been adopted yet. The fitting method is the intensity fit

(Eq. 2.2), and it was chosen because it allows to explicitly account for the Ring effect

(van Geffen et al., 2015). In contrast to what was decided in QA4ECV, the intensity

offset was not included in the first version of the retrieval algorithm, and the importance

of this correction on real data is currently being investigated.

The optimization of spectral fitting methods that has been ongoing in the last years for

NO2 satellite measurements (e.g. inclusion of liquid water, vibrational raman scattering in

water)(van Geffen et al. (2015), Boersma et al. (2018)) together with the much improved

signal-to-noise ratio and precision of TROPOMI (van Geffen et al., 2018), has led to

substantial improvement in the NO2 slant column densities (i.e. SCD uncertainties are



2.2 NO2 QA4ECV retrieval algorithm 31

Figure 2.2: (a) OMI cloud radiance fraction and (b) intensity offset for part of the orbit
5115 over the Mediterranean Sea and Sahara (adapted from Oldeman (2018)).

Figure 2.3: Intensity offset as a function of the liquid water coefficients for cloud-free ocean
pixels for three TROPOMI orbits (0864, 0867 and 0873) (adapted from Oldeman (2018)).

lower than for OMI by a factor of 2 (0.5− 0.6 1015 molec·cm−2)). As a consequence, we

may anticipate to the possibility to detect weaker sources which were missed by the coarser

OMI and GOME-2 pixels. This is also relevant to use TROPOMI NO2 measurements to

zoom in at urban scales and see enhancements of pollution over cities, as we will see in

chapter 5.

2.2.2 Stratospheric NO2 column estimation

NO2 satellite measurements do not provide information on the vertical distribution of

NO2, and the retrieved slant column density also contains contributions from stratospheric
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NO2. NO2 concentrations in the stratosphere are not negligible, and its source is mainly

from the oxidation of N2O to form NOx (Cohen and Murphy, 2003). In order to determine

the tropospheric NO2 column from the satellite measurements, it is necessary to accurately

estimate the stratospheric contribution (Ns,strat) to the total slant column density (see

retrieval Eq. 2.1).

Within QA4ECV, three different stratospheric correction approaches were compared

to establish the best method and assess the uncertainties for this retrieval step. The three

methods are based on assumptions on the spatial distribution of stratospheric NO2. They

use SCDs retrieved in clean remote regions where the contribution of tropospheric NO2 is

small because of its short lifetime. Two of the methods use a chemistry transport model to

simulate stratospheric NO2. IUP-Bremen scales the simulated VCDs with the B3dCTM

model to match satellite observations over the remote Pacific (Hilboll et al., 2013). KNMI

assimilates measured NO2 SCDs in the TM4 model so the simulated stratospheric NO2

fields are in close agreement with satellite observations over remote regions (Dirksen

et al., 2011). MPI-C applies the STREAM algorithm to satellite observations to estimate

stratospheric VCDs over remote regions and also over clouded scenes where tropospheric

NO2 is shielded (Beirle et al., 2016). The contribution of the stratosphere to the total

NO2 from individual measurements is estimated using weighting factors that account for

possible pollution and cloudy observations. Global daily maps of stratospheric NO2 are

provided using weighted convolution without the need of using a chemistry transport

model.

The three different approaches showed very good agreement for the stratospheric

columns and the tropospheric residue (Ns,trop = Ns − Ns,strat). Differences for two in-

dividual days and months were smaller than 0.5 1015 molec·cm−2 (around 15%) (Müller

et al., 2016). For the QA4ECV algorithm, it was decided to use the data assimilation

approach by KNMI, with several developments with respect to the current version used in

DOMINO v2. The use of this approach makes QA4ECV retrieval algorithm more consis-

tent, as NO2 a priori profiles used for the air mass factor calculation are estimated using

the same CTM (TM5-MP) as in the data assimilation scheme. A major improvement

of the data assimilation approach used in QA4ECV is the use of the TM5-MP instead

of the TM4 version. This implies a better spatial resolution (1◦×1◦ instead of 3◦×2◦),

updated reaction rates for the relevant chemical processes, an improved parametrization

of photolysis rate constants and year specific emission inventories until 2010 (Williams

et al., 2017). All these developments in the data assimilation resulted in about 15% less

negative tropospheric values at high latitudes and over oceans, a problem that was present

in the DOMINO retrieval (Maasakkers, 2013). Maasakkers (2013) also reported that neg-

ative columns often occurred for large solar zenith angles (SZA), suggesting a systematic

error in the AMFs. From the detailed radiative transfer model inter-comparison done in
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QA4ECV, we could attribute this to the lack of a full sphericity treatment in the radiative

transfer (Lorente et al., 2017). Therefore we included in the data assimilation a correction

for sphericity using the McArtim radiative transfer model. This sphericity correction is

further discussed in the next section and is of central importance in chapter 3.

The results for the stratospheric NO2 column by the STREAM algorithm are also

included in the QA4ECV NO2 product, to give users the possibility to switch between

approaches. Data assimilation (DA) resolves better the patterns caused by stratospheric

dynamics and strong stratospheric NO2 gradients, while STREAM is more suitable when

estimating NOx emissions from weaker sources (e.g. ships). Figure 2.4 shows NO2 strato-

spheric fields averaged in the 39°-41° latitude range as a function of longitude computed

by the DA system and by STREAM for one day of OMI measurements. The DA ap-

proach shows more variability within a zonal band, while STREAM shows more smooth

stratospheric fields. This is because in STREAM algorithm the NO2 stratospheric fields

are assumed to vary smoothly with longitude (Beirle et al., 2016). Between 75°-125°
W (United States) and 0-40° E (Europe), DA stratospheric columns values are 0.2-0.5

·1015 molec·cm−2 lower than STREAM values. Over eastern Asia (100°-140° E), DA

and STREAM agree to within 0.3·1015 molec·cm−2. These differences between the two

methods can be considered as the structural uncertainty in the stratospheric NO2 estima-

tion.

The data assimilation for the stratospheric estimation with the two main improvements

(the higher resolution CTM and the sphericity correction in the radiative transfer model)

gives the QA4ECV algorithm consistency with respect to steps 2 and 3 in the retrieval.

The new implementation results in fewer unphysical negative NO2 columns. Although this

points in the right direction, further testing of the stratospheric fields with independent

ground-based observations is necessary, both for the new data assimilation scheme and

STREAM.

2.2.3 Air mass factor calculation

In the last step of the retrieval, an air mass factor (AMF, M) is calculated to convert

the tropospheric slant column density into a vertical column density (M = Ns/Nv). To

calculate the AMF, a radiative transfer model is used together with prior knowledge on

the atmospheric state. At each atmospheric layer l the value of the AMF ml is computed

(i.e. altitude-dependent AMF or box-AMF) and these are typically stored in the form

of a look-up table (LUT). It is also possible to perform pixel-by-pixel online radiative

transfer simulations to calculate the box-AMFs (e.g. Lin et al. (2014)) but this approach

is computationally expensive for global retrievals. Furthermore, the LUT interpolation

errors are negligible compared to other errors in the AMF calculation (Lorente et al.,
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Figure 2.4: Data assimilation (black) and STREAM (green) stratospheric column meridional
average over 39°-41°N on 2 February 2005. QA4ECV OMI NO2 total slant column divided by
the geometric AMF is shown in light blue. No filter for cloud radiance, albedo, nor AMF has
been applied (from Boersma et al. (2018)).

2017).

The dimensions of the LUT are associated with the knowledge of the atmospheric

state and are the a priori parameters of the forward model (b̂) such as satellite viewing

geometry, surface pressure, surface reflectivity, cloud fraction and cloud pressure. The

a priori NO2 profile (xa,l) from a CTM (e.g. TM5-MP in QA4ECV) is used for the

application of the LUT to calculate total, stratospheric, and tropospheric AMFs:

M =

∑
l

ml(b̂)xa,l∑
l

xa,l
(2.5)

The sum in Eq. 2.5 over the atmospheric layers l of xa,l represents the vertical column

Nv, and the sum of ml(b̂)xa,l represents the slant column Ns. The NO2 absorption cross

sections are representative of one fixed temperature. However, these cross sections vary

with temperature, and commonly a correction factor is applied for each layer in the AMF

calculation based on temperature and trace gas profiles from model data or climatologies.
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Not accounting for this variation in the temperature can lead to systematic errors of

around 20% (Boersma et al., 2004).

Satellite retrievals also need to account for the presence of clouds, and that is done in

the AMF calculation. There are several cloud corrections commonly used to account for

residual clouds. The independent pixel approximation (IPA) consists of calculating the

AMF for a partly cloudy scene as a linear combination of cloudy (Mcl) and clear (Mcr)

components of the AMF, weighted by the fraction of radiance that originates from the

cloudy part of the pixel. The atmosphere can also be assumed to be cloud-free for cloud

fractions below a certain threshold and in that case, a clear-sky AMF is used. These

different cloud correction approaches are discussed in detail in Chapter 3.

Within QA4ECV, a very extensive and detailed comparison of AMF calculation ap-

proaches was performed to evaluate the method to use in QA4ECV and to investigate in

detail the uncertainties in this step of the retrieval. This comparison exercise was extended

to other groups outside the QA4ECV consortium (University of Leicester, NASA-GSFC

and Peking University), to ensure that a proper sample of the different approaches was

represented. With this comparison we estimated the ”structural uncertainty” in the air

mass factor, which represents the uncertainty that arises due to the choice of the RTM and

of the input parameters in every step of the calculation. The details of this comparison

can be found in Chapter 3, and in the remainder on this section we discuss some other

important aspects of the calculation of the AMFs for QA4ECV and TROPOMI.

After the extensive comparison, we decided to create the QA4ECV AMF NO2 LUT

with the radiative transfer model DAK. To calculate the AMFs, first we simulate top-

of-atmosphere reflectance (R) with and without NO2 in a particular atmospheric layer l,

and then compute the altitude-dependent (or box-) air mass factor (ml) by differencing

the logarithm of the reflectance divided by the absorption optical thickness of the layer

with NO2, τgas,l. Afterwards Eq. 2.5 is applied to obtain the tropospheric AMF.

ml = − lnR(τgas,l)− lnR(τgas,l = 0)

τgas,l

(2.6)

DAK radiative transfer model (Stammes et al. (1989), Lorente et al. (2017)) has been

used for high-quality satellite retrieval applications, such as trace gas, cloud and aerosol

retrievals (e.g. Boersma et al. (2011), Wang et al. (2008), Chimot et al. (2016)). DAK

solves the radiative transfer equation using the doubling adding method. The method

consists of first calculating the reflection and transmission properties of a homogeneous

layer by repeated doubling, starting with a very thin layer, and then adding homogeneous

layers on top of each other, which then yields the reflection and transmission of the

combined layers (de Haan et al., 1987).
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Polarization

Inclusion of polarization is important in radiative transfer calculations and for satellite

retrievals in the UV/Vis (Lacis et al., 1998), thus we investigated the effect of polarization

in DAK. Neglecting polarization can lead to errors in the simulated TOA reflectance (and

therefore in the AMF), although these errors are relatively small if a large contribution of

the light is from reflection on aerosols or larger particles instead of mainly from molecular

multiple scattering (Lenoble, 1993). Including polarization may change the reflectance

with a strong dependence on both solar and viewing zenith angles.

The simulations with DAK can be set up to neglect polarization, in which case the

Stokes vector1 is one dimensional and reflectance simulations are referred to as scalar.

DAK can also account for polarization, in which case all the components of the Stokes

vector are computed and the reflectance simulations are referred to as vector reflectance.

We performed scalar and vector TOA reflectance simulations using DAK to estimate the

effect of neglecting polarization in our RTM simulations. The experiment was performed

at 440 nm for a clean mid-latitude summer standard atmosphere (Anderson et al., 1986),

without aerosols and for a surface albedo of 0.05.

Figure 2.5 shows relative differences of scalar and vector TOA reflectance. Scalar

and vector TOA reflectances differ up to 7% in nadir view, with under or overestimation

depending on the solar and viewing geometry. For viewing geometries typically ocurring

in mid-latitudes (e.g. equal viewing and solar zenith angle of 45◦, orange lines in Fig.

2.5 ) vector TOA reflectances are 2-4% higher than the scalar simulations. Including

polarization is a more realistic description of the vector nature of light, therefore we

compute all the radiative transfer simulations (i.e. TOA reflectances) with polarization

for the calculation of the AMFs for QA4ECV and TROPOMI NO2 retrievals. This was

also the choice for the RTM and AMF comparison in Chapter 3.

Wavelength selection

The air mass factor determines the average light path of photons travelling from the sun

through the atmosphere and back to the satellite (Fig. 2.7c). Some processes that affect

the light path through the atmosphere depend on wavelength (e.g. Rayleigh scattering).

At shorter wavelengths, due to stronger Rayleigh scattering, light paths are attenuated

more strongly than at longer wavelengths. The absorption properties of the specific trace

gas also depend on wavelength, and NO2 has strong absorption properties around 440

nm, as shown by the NO2 absorption cross-section on the right axis in Fig. 2.6.

1Stokes vector or Stokes parameters (I, U,Q, V ) describe the polarization state of light propagating
through a medium.
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Figure 2.5: Contour lines of relative differences between scalar TOA reflectance and vector
TOA reflectance as a function of cosine of viewing zenith angle (VZA) and cosine of solar
zenith angle (SZA) at 440 nm. Orange lines represent typical mid-latitude viewing and solar
angle of 45◦. Simulations are shown for nadir view (φ − φ′ = 0◦) and surface albedo of 0.05.
A clean mid-latitude standard atmosphere is considered.

Slant column densities are retrieved in a spectral window that is several nm wide (e.g.

405-465 nm for OMI and TROPOMI NO2, Table 2.2), so it is important to establish the

appropriate wavelength to calculate the NO2 AMFs. The tropospheric AMF calculated

at one single wavelength should be representative for the fit-window average AMF. We

investigated the tropospheric AMF wavelength dependency for retrieval scenarios with

substantial tropospheric pollution in the boundary layer (Nv,trop = 1.6·1016 molec·cm−2,

around 7 ppb). We calculated AMFs using DAK for a mid-latitude standard atmosphere

in steps of 1 nm from 405 to 500 nm, the spectral range that covers the three fitting

windows used within QA4ECV and by the individual groups (Table 2.2).

Figure 2.6 shows a close-to-linear tropospheric AMF increase with wavelength, reflect-

ing the increasing transparency of the atmosphere towards the red part of the spectrum

where Rayleigh scattering is relatively weak. The NO2 AMF increases by 0.22-0.33% per

nm redshift to the visible. Horizontal blue, light blue and purple lines in Fig. 2.6 show

the mean AMF calculated over all spectral points in the three frequently used fitting

windows.

For the fitting windows considered for NO2 retrievals, blue and purple lines in Fig.

2.6 indicate that 437.5 nm is a representative wavelength to calculate the NO2 AMF.

437.5 nm is reasonably near to the centre wavelength of the fitting windows and the 437.5

nm AMF is within 2% of the window-average AMF for both windows. Given the need

for a simple, unambiguous AMF approach for the entire QA4ECV record, we use the
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Figure 2.6: NO2 tropospheric air mass factorM (black) as a function of wavelength computed
with DAK for a polluted boundary layer for a specific viewing geometry (θ=60◦, θ0=45.6◦).
Horizontal lines show averaged multi-wavelength AMF for different fitting windows (purple,
425-450 nm, blue 405-465 nm and light blue 425-497 nm). The grey line shows NO2 absorption
cross-section from Vandaele et al. (1998) at 220 K. A mid-latitude standard atmosphere was
used including O3. The AMF was computed for a polluted boundary layer with 16×1015

molec·cm−2, without aerosols, a boundary layer height of 1 km and surface albedo 0.05.

same 437.5 nm box AMF LUT for all sensors in QA4ECV. Uncertainties related to the

exact choice of AMF wavelength calculation (around 2%) are much smaller than AMF

uncertainties due to other choices (around 40%), such as clouds, albedo, trace gas and

aerosol profiles, as discussed in Chapter 3.

The largest fitting window (425-497 nm) has been used in retrievals from GOME-2

(Richter et al., 2011) and in the TROPOMI Verification Retrieval (S5P Verification Team,

2015). The use of a wider and red-shifted fitting window improves the sensitivity to NO2

in the boundary layer, as the contribution from Rayleigh scattering in the atmosphere

decreases. Figure 2.6 shows that in the large fitting window AMF varies up to 20% between

the edges. In highly polluted scenes, the AMF wavelength dependency is detected in the

slant column densities from the fit using the 425-497 nm window (S5P Verification Team,

2015). Because of a higher sensitivity, the SCDs are higher for fitting windows shifted to

the blue and red parts of the spectrum when NO2 is close to the surface (Behrens et al.,

2018). Therefore, when using a wider and red-shifted fitting window (for QA4ECV we
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use 405-465 nm) and especially for high polluted scenes, the AMF wavelength dependency

should be reconsidered.

Sphericity correction

Radiative transfer models simulate the transport of radiation in a plane parallel approx-

imation or accounting for Earth’s sphericity. Different RTMs have different degrees of

correction for Earth’s sphericity. McArtim is a full 3D spherical model that simulates ra-

diation fields in a spherical atmosphere. VLIDORT and SCIATRAN account for sphericity

on solar incoming and single-scattered photons, but not for multiple-scattered ones. DAK

in its pseudo spherical mode corrects the path for direct solar incident photons but not

for the scattered ones.

Differences between TOA reflectances with the plane parallel and the pseudo spherical

approximation in DAK become substantial (up to 22%) when the solar zenith angle is

large (i.e when the sun is low). For high solar zenith angles, McArtim AMFs are system-

atically lower than AMFs computed with the other RTMs, especially in the upper and

free troposphere. The reason is that McArtim fully accounts for Earth’s sphericity for

both direct and scattered light. This means that light paths in McArtim are bounded

by Earth’s sphere, while in plane parallel mode photons can reach TOA from far away

in the horizon, with longer light paths that result in higher AMFs (see Fig. 2.7). This

is of particular importance for a correct estimation of the stratospheric contribution to

the total slant column density in the second step of the retrieval. Too (incorrect) high

stratospheric fields can lead to negative tropospheric columns.

In QA4ECV we use DAK RTM with a correction factor that accounts for sphericity

based on McArtim. Retrieval results suggest that this correction factor has contributed

to having fewer negative tropospheric columns in the QA4ECV retrieval, together with

the improvements in the data assimilation approach. This is discussed in detail in Sect.

3.4 in Chapter 3.

Reference points in the LUT

The AMF LUT that contains the box-AMFs (ml, Eq. 2.6) is a 6-dimensional table. The

dimensions correspond to the a priori parameters of the forward model (i.e. viewing

geometry (x 3), surface albedo, surface pressure and altitude). For each combination of

the parameters, a multidimensional interpolation is performed to compute the AMF. A

proper density of reference points in the LUT is advantageous to minimize interpolation

errors. To estimate the proper number of reference points in the LUT, we investigated

the sensitivity of NO2 air mass factor to the input parameters. For low albedo values, the
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Figure 2.7: Schematic diagram of multiple scattering contributions to TOA reflectance in
different RTMs. For DAK, LIDORT, and SCIATRAN all three photon paths are possible,
whereas for McArtim only multiple scattering contributions from the spherical field (area
bound by the solid grey and curved black TOA line) are possible.

altitude-dependent AMF show a non-linear dependency to surface albedo. Therefore we

increased the number of reference points for albedo values between 0 and 0.2. The vertical

discretization of box-AMFs is also relevant, especially in the lower troposphere where

strong gradients in the concentration of NO2 occur. Therefore, the vertical dimension of

the LUT should have a fine resolution in the lower first few kilometres. For the other

parameters, AMFs dependencies are relatively weak compared to the albedo and vertical

sensitivity, therefore it is not necessary to increase the number of reference points (relative

to the current LUT in DOMINO v2).

This section shows that the QA4ECV NO2 retrieval incorporates relevant improve-

ments and it also provides a better quantification and understanding of the uncertainties

in all the retrieval steps. The spectral fitting now accounts for liquid water absorption

and includes an intensity offset correction, which improved the quality of the fits over

background ocean scenes by 30% (Zara et al., 2018). A major step in the data assimi-

lation and tropospheric air mass factor calculation has been the use of the CTM TM5

at a spatial resolution of 1◦ x 1◦. The stratospheric estimation has also benefited from

the sphericity correction applied in the AMF calculation. These improvements lead to

around 15% fewer negative NO2 columns. Most of the developments from the QA4ECV

retrieval have been implemented in the TROPOMI NO2 retrieval algorithm, although the

spectral fitting is with the intensity fit as in van Geffen et al. (2015) and the intensity

offset correction has not been implemented yet.
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2.3 NO2 QA4ECV climate data record

Traceable information on the quality of the QA4ECV NO2 climate data record, on all the

retrieval sub-processes, on the analysis methods, and on the validation steps is essential

for the explotation of data by users with varying knowledge level. In order to give full

traceability throughout the whole processing chain of the retrieval algorithm, traceability

chains were created to describe the specifics of each step of the retrieval. In this interactive

diagram, links and references to ancillary datasets used in the retrieval process are given as

well. These diagrams are presented to users as a complement to the Algorithm Theoretical

Baseline Document (ATBD), which are usually dense and difficult to read for users that

are not familiar with the data production chain.

Figure 2.8: Traceability Chain for the QA4ECV NO2 retrieval algorithm. The rectangles
are the main processes of the retrieval, and these are clickable to get more details of the
sub-processes. The light blue blocks provide more information on the data. The interactive
traceability chain is available at: http://www.qa4ecv.eu/ecv/no2-pre.

Figure 2.8 shows the NO2 traceability chain. The main entry is an overview of the
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Table 2.3: Ancillary data used in the AMF calculation of the QA4ECV NO2 retrieval algo-
rithm.

Terrain
height

Surface
reflectivity

Cloud
parameters

NO2 a priori
profile

GOME
SCIAMACHY
GOME-2A

Global 3km
DEM∗

Min LER
Tilstra et al.
(2017)

FRESCO+
Daily TM5
(1◦×1◦)

OMI
Global 3km
DEM∗

Min LER
Kleipool et al.
(2008) (v002)

O2 - O2
Daily TM5
(1◦×1◦)

∗Digital Elevation Model data.

retrieval algorithm that give access to all sub-steps. All the orange boxes in the first

level of the traceability chain represent different sub-processes in the retrieval algorithm,

and by clicking on them the user can access the second level of the traceability chain.

An example of one of the sub-process is shown in Fig. 2.8 for the ”AMF and vertical

column calculation”, which gives detailed information about all the steps (e.g. radiative

transfer modelling, AMF calculation) and the external information (e.g. surface albedo,

cloud parameters) that is used. The forward model input parameters that have been

used for the QA4ECV retrieval are state-of-the-art datasets that are available for the full

processing period (1995 - 2017), and are summarized in Table 2.3.

The QA4ECV NO2 1995-2017 climate data record2 is publicly available and can be

found at www.qa4ecv.eu and www.temis.nl. The processing of more than 20 years of data

was led by KNMI and supported by IASB-BIRA, IUP Bremen, Max Planck Institute

for Chemistry (MPI-C), and Wageningen University (WUR), and each of them played

a crucial role in different parts of the processing. Slant column densities were produced

by IASB-BIRA and IUP Bremen, stratospheric fields from STREAM were computed at

KNMI with MPI-C software, WUR created the AMF LUT and the central processing was

performed at KNMI, where all the inputs where brought together.

The QA4ECV data record starts in 1995 with GOME and although the project only

processed data until 2017, QA4ECV retrieval algorithm is being applied to OMI from

2017 onwards (this data is available via temis.nl together with the DOMINO v2 data).

Figure 2.9 shows GOME tropospheric NO2 in September 1995 and OMI tropospheric NO2

in September 2018. Thanks to QA4ECV, any user can directly compare these 23 year

apart NO2 fields knowing that they are fully consistent with respect to the algorithm that

has been applied to obtain the results. This is the first time that such dataset is available

to the public, and it is a very powerful tool not only to scientists outside the field of

2A climate data record is a time series of a variable that can be monitored, in this case with Earth
Observation systems, and that is associated with climate change (NRC, 2004)
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Figure 2.9: QA4ECV NO2 tropospheric vertical column from (a) GOME for September 1995
and from (b) OMI for September 2018. Pictures are taken from www.qa4ecv.eu for GOME
and www.temis.nl/airpollution/no2col for OMI.

satellite retrievals, but also to companies and policy makers that want to use air quality

data for different purposes. Several scientific studies have already used QA4ECV data,

like in the multi-constituent data assimilation study by Miyazaki et al. (2018).

2.4 QA4ECV NO2 product validation

In this section we compare QA4ECV NO2 tropospheric vertical columns to the DOMINO

v2 retrieval and to ground-based MAX-DOAS measurements. The comparison with

DOMINO v2 allows us to evaluate the effect of the retrieval improvements applied in

the QA4ECV retrieval. As the results shown in Sect. 2.2 point to better NO2 columns

resulting from the QA4ECV retrieval, we expect that the agreement with independent

ground-based measurements will improve with respect to DOMINO v2.

2.4.1 Comparison to DOMINO

For the comparison with DOMINO v2, we select OMI measurements from 20052. Figure

2.10 shows yearly mean tropospheric NO2 vertical column density from OMI retrieved

with the QA4ECV algorithm and DOMINO v2 algorithm. Both QA4ECV and DOMINO

v2 OMI NO2 data has been gridded to a 0.04◦ x 0.08◦ latitude - longitude grid. To assure

that mostly clear-sky measurements are taken into account, only measurements with a

cloud radiance fraction lower than 50% for both retrievals have been used to calculate

22005 is at the beginning of the mission and the instrument was not yet affected by the row anomaly
that influences the quality of the radiances for certain rows from 2007.
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the mean NO2 tropospheric columns. To avoid scenes contaminated by ice or snow, only

pixels with a surface albedo lower than 0.3 are considered.

Figure 2.10: Yearly mean NO2 tropospheric vertical column in 2005 from OMI retrieved
with DOMINO v2 (upper panel) and QA4ECV (lower panel) averaged in a 0.04◦ x 0.08◦

latitude - longitude grid.

Figure 2.11 shows the absolute differences between QA4ECV and DOMINO v2 NO2

tropospheric VCDs from OMI for 2005. Globally for 2005, QA4ECV NO2 values are 9.5%

higher than DOMINO v2, and the correlation coefficient between the two datasets is R2 =

0.93 (number of pixels around 107). The higher values of QA4ECV correspond mainly to
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background areas (red zones in Fig. 2.11), where the tropospheric slant column densities

are higher due to the (improved) lower stratospheric columns.

Figure 2.11: Absolute differences of NO2 tropospheric vertical column retrieved with
QA4ECV and DOMINO from OMI for 2005, averaged in a 0.04◦ x 0.08◦ latitude - longi-
tude grid.

Over the polluted urban areas of Europe, United States and Asia, QA4ECV NO2

values are lower than DOMINO v2 (blue spots in Fig. 2.11), mainly due to higher AMF

values in QA4ECV. Figure 2.12 shows a correlation plot for each of these regions. The

correlation coefficient between the datasets for these particular regions is higher than R2

= 0.95 (number of pixels for each region is around 4· 105). An example of QA4ECV and

DOMINO v2 NO2 tropospheric columns over Europe and their differences is shown in

Fig. 2.13. QA4ECV NO2 VCDs are 20% lower than DOMINO v2 over Europe. The

difference map shows that over highly polluted areas QA4ECV is significantly lower than

DOMINO, like over the Po-Valley and the English channel. Also the outskirts of cities

like Madrid or Barcelona are visible in the differences plot, and also smaller cities in

North-West Spain.

One of the main improvements of QA4ECV retrieval algorithm with respect to

DOMINO v2 is the use of a higher resolution a priori profile (TM4 at 3◦×2◦ and TM5

at 1◦×1◦). This is clearly visible in Fig. 2.14 over the city of Paris, where the contrast

between the high polluted Paris and the background is much stronger than in DOMINO

v2. This results also in better resolved shipping lanes in QA4ECV (see the Indian ocean
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Figure 2.12: Scatter plot of QA4ECV and DOMINO v2 NO2 tropospheric vertical column
in 2005 from OMI over (a) Europe (35◦-60◦ N, 10◦ W - 30◦ E), (b) United States(25◦-55◦ N,
70◦ - 130◦ W) and (c) Asia (20◦-50◦ N, 80◦ - 130◦ E).

Figure 2.13: Yearly mean NO2 tropospheric vertical column in 2005 from OMI over Europe
retrieved with (a) DOMINO v2 and (b) QA4ECV averaged in a 0.04◦ x 0.08◦ latitude -
longitude grid. (c) Absolute differences between QA4ECV and DOMINO v2 NO2 tropospheric
vertical column in 2005.
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Figure 2.14: NO2 tropospheric vertical column from DOMINO v2 (left) and QA4ECV (right)
retrieval algorithms, on the 22nd of November 2017.

in 2.10 as an example). The improved spectral fitting results in a less noisy slant col-

umn densities, as shown in 2.15(c,d), with absolute SCD levels that agree within 10%.

Figure 2.15(a,b) shows that QA4ECV AMFs are higher than DOMINO v2 AMFs. Dif-

ferences in cloud parameters, albedo and TM5 NO2 profile shape may have contributed

to the AMF differences between DOMINO v2 and QA4ECV, which is currently being

investigated.

The comparison of QA4ECV NO2 with DOMINO v2 shows lower QA4ECV values

over polluted areas. Local pollution is better represented in QA4ECV because of the bet-

ter contrast between background and highly polluted areas. This is a direct consequence

of the improved slant column densities and the higher resolution of the CTM in the data

assimilation system and in the AMF calculation. Together with the QA4ECV NO2 tropo-

spheric column the averaging kernels are also provided. Averaging kernels represent the

relation between the vertical column and the slant column density without the influence

of the a priori profile (Eskes and Boersma, 2003), and thus they should be used to recal-

culate the air mass factor using an a priori profile that is more suitable for a particular

model to satellite comparison.

2.4.2 QA4ECV Validation

As a preliminary validation effort and to asses whether the improvements in QA4ECV

point in the right direction, here we compare QA4ECV OMI tropospheric NO2 columns

with independent MAX-DOAS column measurements in the city of Tai’an (China) and

the De Bilt (The Netherlands). The MAX-DOAS measurements in Tai’an were done by

Irie et al. (2008) in May-June 2006, and the measurements over De Bilt in July 2014.
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Figure 2.15: (a, b) Air mass factor and slant column densities (b, c) from DOMINO v2
(left) and QA4ECV (right) retrieval algorithms on the 22nd of November 2017.

Uncertainties in the MAX-DOAS NO2 columns are driven by noise, air mass factor and

temperature uncertainties amounting to approximately 15% uncertainty.

We compare OMI pixels with a collocation distance of 20 km and 30 minutes of the

MAX-DOAS measurements. The collocation criterion limits spatial representativeness

mismatches between the two measurements, and is consistent with the spatial dimensions

of the MAX-DOAS (±10 km) and OMI (20-30 km) footprints. We also require that the

satellite retrieval is performed under mostly clear-sky conditions, with a cloud radiance

fraction lower than 50%. We also discard pixels with effective cloud pressure higher than

875 hPa, as they might be contaminated by aerosols (mostly relevant for validation in

cities with high concentration of particulate matter, like Tai’an).

Figure 2.16(a) shows a scatter plot of QA4ECV and MAX-DOAS NO2 tropospheric

columns. We find a mean difference of -0.57 ·1015 molec·cm−2 (-7%). The regression
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analysis gives a slope of 0.85 and an intercept of -0.4·1015 molec·cm−2, with a correlation

coefficient of 0.3. Figure 2.16(b) shows a scatter plot of DOMINO v2 and MAX-DOAS

NO2 tropospheric columns. We find a mean difference of 1.02 ·1015 molec·cm−2 (18%).

The regression analysis gives a slope of 0.8 and an intercept of 2.4·1015 molec·cm−2 with

a correlation coefficient of 0.14. DOMINO v2 has higher number of collocated pixels

with MAX-DOAS because DOMINO v2 uses the previous version of the OMI O2-O2

cloud product (Acarreta et al., 2004), which has too low cloud pressures (Veefkind et al.,

2016).

Figure 2.16: (a) Scatter-plot of QA4ECV OMI and (b) DOMINO v2 vs. MAX-DOAS
tropospheric NO2 columns for Tai’an (blue) (China) in May-June 2006 and De Bilt (pink)
(The Netherlands) in July 2014. The solid line shows the 1-1 line and the dashed line is
the result of a reduced major axis regression to the data. Only pixels with a cloud radiance
fraction lower than 0.5, an effective cloud pressure lower than 875 hPa, within 20 km and 30
minutes of a MAX-DOAS measurement have been selected.

In line with the QA4ECV and DOMINO v2 comparison in the previous section, we see

that positive bias of the DOMINO v2 NO2 columns with respect to MAX-DOAS (+18%)

is reduced and changes sign for QA4ECV (-7%) NO2 columns. The discrepancy between

OMI and MAX-DOAS measurements in moderately to highly polluted areas like Tai’an

and De Bilt is mainly due to the spatial inhomogeneity in the NO2 columns measured

around the ground based stations. The better agreement with OMI QA4ECV product is

mainly due to lower QA4ECV columns. This first validation is based on a limited time

range and only for two sites, so the sample size is small. A more comprehensive validation

work based on several MAX-DOAS sites and multiple years is ongoing by the QA4ECV

validation team (Compernolle et al., 2018).
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2.5 Conclusions

In the QA4ECV project, in which several leading satellite retrieval groups participated,

we have developed an improved community best practice retrieval algorithm that has

been applied to four different UV/Vis sensors to generate a harmonized 1995-2017 NO2

data record. The dataset also contains traceable information on each of the retrieval steps

and a full characterization of the uncertainties, which is of central importance when using

satellite measurements for data assimilation and inverse modelling studies.

The improvements achieved in QA4ECV for the NO2 (and HCHO) retrieval algorithms

are based on a thorough comparison of state-of-the-art retrievals. During the algorithm

development phase, to establish the best approach for each retrieval step, dedicated inter-

comparison experiments were performed. The comparison results were extensively dis-

cussed and have been documented in detail in deliverables and peer-reviewed publications

that are publicly available. Also the fitness for purpose of the QA4ECV dataset has been

evaluated in peer-reviewed publications (Miyazaki et al., 2018) as well as in several studies

from PhD and MSc students (Boersma et al., 2016a). Most of the developments in the

QA4ECV retrieval algorithm have been implemented in the retrieval algorithm for the

TROPOMI instrument. Within QA4ECV we were very close to the TROPOMI team and

the verification group, which resulted in intensive scientific collaboration.

In the QA4ECV retrieval algorithm, the spectral fitting method now includes liquid

water absorption and an intensity offset correction. Due to the more accurate spectral fit-

ting, the quality of the fits has substantially improved especially over background scenes,

and the uncertainties of the slant column densities have decreased (Zara et al., 2018). For

stratospheric estimation, the data assimilation approach was selected to give consistency

to the retrieval algorithm. A relevant improvement in this step has been the higher reso-

lution CTM (from 3◦×2◦ to 1◦×1◦) and the sphericity correction in the radiative transfer

model. This new implementation results in less unphysical negative NO2 tropospheric

columns, a problem that was present in the DOMINO retrieval. The sphericity correction

was an outcome of the comparison made within QA4ECV of the radiative transfer models

for the AMF calculation. Specific differences between the pseudo spherical RTMs with

the McArtim full-spherical model pointed to the importance of accounting for Earth’s

sphericity, particularly for extreme geometries and for stratospheric AMFs. The AMF

calculation has greatly benefited from the improved resolution of the CTM used for the

a priori profiles.

All the improvements resulted in smaller (5-20%) QA4ECV OMI NO2 vertical column

densities over polluted areas as compared to the ones retrieved with DOMINO v2. Highly

polluted cities like Paris can be resolved better in QA4ECV due to the higher resolution a

priori profiles and the lower and less noisy slant column densities in the surroundings of the
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cities. In the remote background areas, QA4ECV has a better estimation of stratospheric

fields due to the sphericity correction, which makes QA4ECV tropospheric columns higher

than DOMINO v2. QA4ECV NO2 columns over Tai’an and De Bilt agree within 7%

with ground based MAX-DOAS measurements. The comparison shows that the lower

QA4ECV tropospheric NO2 columns agree better with the MAX-DOAS measurements

than the high biased (18% ) DOMINO v2 columns.

QA4ECV has generated a harmonized 1995-2017 data record of the ECV precursor

NO2 (and also HCHO and CO). The QA4ECV effort was complementary to the European

Space Agency (ESA) Climate Change Initiative (CCI), who provided long-term satellite

based data record of climate ECVs, not only for atmospheric ECVs but also for oceanic

and terrestrial ECVs. This shows the strong potential and relevance of remote sensing

measurements to help not only scientists to improve their understanding on the climate

system, but also as a tool to bring science and policy together to face current and future

environmental challenges. In order to serve this purpose, the European Commission, ESA

and other institutions need to work together and empower the scientific community.
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Abstract

Air mass factor (AMF) calculation is the largest source of uncertainty in NO2 and HCHO

satellite retrievals in situations with enhanced trace gas concentrations in the lower tro-

posphere. Structural uncertainty arises when different retrieval methodologies are applied

in the scientific community to the same satellite observations. Here, we address the is-

sue of AMF structural uncertainty via a detailed comparison of AMF calculation methods

that are structurally different between seven retrieval groups for measurements from the

Ozone Monitoring Instrument (OMI). We estimate the escalation of structural uncer-

tainty in every sub-step of the AMF calculation process. This goes beyond the algorithm

uncertainty estimates provided in state-of-the-art retrievals, which address the theoreti-

cal propagation of uncertainties for one particular retrieval algorithm only. We find that

top-of-atmosphere reflectances simulated by four radiative transfer models (RTMs) (DAK,

McArtim, SCIATRAN and VLIDORT) agree within 1.5%. We find that different retrieval

groups agree well in the calculations of altitude resolved AMFs from different RTMs (to

within 3%), and in the tropospheric AMFs (to within 6%) as long as identical ancillary

data (surface albedo, terrain height, cloud parameters and trace gas profile) and cloud

and aerosol correction procedures are being used. Structural uncertainty increases sharply

when retrieval groups use their preference for ancillary data, cloud and aerosol correction.

On average, we estimate the AMF structural uncertainty to be 42% over polluted regions

and 31% over unpolluted regions, mostly driven by substantial differences in the a priori

trace gas profiles, surface albedo and cloud parameters. Sensitivity studies for one particu-

lar algorithm indicate that different cloud correction approaches result in substantial AMF

differences in polluted situations (5 to 40% depending on cloud fraction and cloud pres-

sure, and 11% on average) even for low cloud fractions (lower than 0.2) and the choice

of aerosol correction introduces an average uncertainty of 50% for situations with high

pollution and high aerosol loading. Our work shows that structural uncertainty in AMF

calculations is significant and that is mainly caused by the assumptions and choices made

to represent the state of the atmosphere. In order to decide which approach and which

ancillary data are the best for AMF calculations, we call for well-designed validation ex-

ercises focusing on polluted situations when AMF structural uncertainty has the highest

impact on NO2 and HCHO retrievals.
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3.1 Introduction

Satellite observations in the UV and visible spectral range are widely used to monitor

trace gases such as nitrogen dioxide (NO2) and formaldehyde (HCHO). These gases are

relevant for air quality and climate change, because they are involved in the formation

of tropospheric ozone and aerosols, which have an important influence on atmospheric

radiative forcing (Myhre et al., 2013). Ozone and aerosols are defined as ”essential cli-

mate variables” (ECVs) by the Global Climate Observing System (GCOS). These ECVs

and their precursors (NO2 and HCHO among others) are included in the ECV framework

because they contribute to characterization of Earth’s climate and they can be moni-

tored from existing observation systems (Bojinski et al., 2014). Currently a wide range

of ECV products are available, but they rarely have reliable and fully traceable quality

information. To address this need, the Quality Assurance for Essential Climate Variables

project (QA4ECV, www.qa4ecv.eu) aims to harmonize, improve and assure the quality of

retrieval methods for the ECV precursors NO2 and HCHO. Here, we focus on retrievals of

tropospheric NO2 and HCHO vertical column densities (VCDs) from spaceborne UV/Vis

spectrometers. Retrievals from these instruments have been used for a wide range of ap-

plications. These notably include estimating anthropogenic emissions of NOx and HCHO

(e.g. Boersma et al. (2015), Marbach et al. (2009)), natural isoprene emissions (e.g.

Marais et al. (2014), Barkley et al. (2013)) and NOx production from lightning (e.g. Lin

(2012), Beirle et al. (2010)), data assimilation (e.g. Miyazaki et al. (2012)), and trend

detection (e.g. Krotkov et al. (2016), Richter et al. (2005), De Smedt et al. (2010)).

Although trace gas satellite retrievals have improved over the last decades (e.g. Li et al.

(2015), Richter et al. (2011), De Smedt et al. (2012), Bucsela et al. (2013)), there is still

a need for a more complete understanding of the uncertainties involved in each retrieval

step. The retrieval of NO2 and HCHO columns consists of three successive steps. First

a spectral fitting is performed to obtain the trace gas concentration integrated along the

average atmospheric light path (slant column density, SCD) from backscattered radiance

spectra. For NO2, the stratospheric contribution to the SCD is removed to obtain the

tropospheric SCD. Finally, the SCD is converted into the vertical column density (VCD)

using an air mass factor (AMF). Previous studies indicated that the AMF calculation is

the largest source of uncertainty (contributing up to half of the typical VCD uncertainties

of 40-60%) in the NO2 and HCHO retrievals in scenarios with a substantial tropospheric

contribution to the total column (e.g. Boersma et al. (2004), De Smedt et al. (2008),

Barkley et al. (2012)). These studies arrived at such theoretical uncertainty estimates

based on error propagation for one specific retrieval algorithm.

Theoretical uncertainty (also known as parametric uncertainty) is the uncertainty

arising within one particular retrieval method. Structural uncertainty is the uncertainty
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that arises when different retrieval methodologies are applied to the same data (Thorne

et al., 2005). To represent the state of the atmosphere, several choices and assumptions

are made in the retrieval algorithm, in particular within the AMF calculation. Even

though these choices are physically robust and valid, when different retrieval algorithms

based on different choices are applied to the same satellite observations, this usually

leads to different results. The structural uncertainty is intrinsic to the retrieval algorithm

formulation and it is considered to be a source of systematic uncertainty (Povey and

Grainger, 2015). In principle, theoretical and structural uncertainties should be considered

independently from each other. However, in the calculation of the theoretical uncertainty,

the contribution of the ancillary data is often calculated comparing different databases

(e.g. to estimate surface albedo uncertainty as in Boersma et al. (2004)) rather than

using the uncertainty of the database itself. Consequently, some components are shared

in the structural and theoretical uncertainty calculations. However, for a full structural

uncertainty estimate, all sources of methodological differences need to be considered. In

the framework of AMF calculations addressed here, this implies e.g. the selection of

radiative transfer model, vertical discretization and interpolation schemes, the method

for cloud and aerosol correction and the selection of (external or ancillary) data on the

atmospheric state (surface reflectivity, cloud cover, terrain height, and a priori trace gas

profile). The problem of structural uncertainty has been addressed in other fields of

atmospheric sciences, e.g. in satellite retrievals for atmospheric variables (Fangohr and

Kent, 2012) and in numerical models for climate studies (Tebaldi and Knutti, 2007).

There are few studies addressing structural uncertainty for trace gas retrievals.

Van Noije et al. (2006) compared NO2 tropospheric columns retrieved from GOME data

by 3 different groups. In that study, the discrepancies inherent to differences and assump-

tions in the retrieval methods were identified as a major source of systematic uncertainty.

However, the causes of discrepancies between retrievals were not addressed but were tar-

geted for a more detailed investigation. In this study we focus on AMF structural uncer-

tainty, by comparing the AMF calculation approaches by seven different retrieval groups

and providing a traceable analysis of all components of the AMF calculation. Ensem-

ble techniques to estimate structural uncertainty have already been applied in different

atmospheric disciplines (e.g. Steiner et al. (2013), Liu et al. (2015)). The groups that

participated in this study are: Belgian Institute for Space Aeronomy (IASB-BIRA; ab-

breviated as BIRA), Institute of Environmental Physics, University of Bremen (IUP-UB),

Wageningen University (WUR) and Royal Netherlands Meteorological Institute (KNMI)

(calculations made by WUR following the KNMI approach, abbreviated as WUR), Uni-

versity of Leicester (UoL), Max Planck Institute for Chemistry (MPI-C), NASA Goddard

Space Flight Center (NASA-GSFC; abbreviated as NASA) and Peking University.

We start with a comparison of top-of-atmosphere (TOA) reflectances simulated by ra-



3.2 Methods 57

diative transfer models (RTMs), the main tool for any AMF calculation (Sect. 3.3.1). The

RTMs DAK, McArtim, SCIATRAN and VLIDORT solve the radiative transfer equation

differently, and have different degrees of sophistication to account for Earth’s sphericity

and multiple scattering. Next we compare altitude-dependent (or box-) AMFs for NO2

and HCHO computed with the four RTMs (Sect. 3.3.2). This is followed by a comparison

of tropospheric AMFs (for NO2) calculated by four groups for measurements by the Ozone

Monitoring Instrument (OMI) based on identical settings (same ancillary data and same

approach for cloud and temperature correction) (Sect. 3.3.3). We interpret the result-

ing spread between the tropospheric AMFs as the AMF structural uncertainty associated

with using different RTMs, vertical discretization and interpolation schemes. Then, we in-

vestigate how the choice of cloud correction affects the AMF structural uncertainty (Sect.

3.3.3). For the overall structural uncertainty estimate, we perform a round robin exercise,

in which seven different groups calculate NO2 AMFs using their own preferred methods

for cloud and aerosol correction and sources of ancillary data. Here we asses the effect

of the different choices in the AMF structural uncertainty. Finally, we investigate how

stratospheric AMFs are affected by the selection of RTM and their physical description

of photon transport through a spherical atmosphere. The complete chain of uncertainties

associated with each phase provides traceable quality assurance for the AMF calculation.

Recommendations on best practices are given for this particular algorithm step and they

will be applied in a community best practice retrieval algorithm for ECV precursors, under

development in the framework of the QA4ECV project.

3.2 Methods

3.2.1 AMF calculation process

The concept of traceability chain (here in the form of a flow diagram) for the AMF

calculation process and uncertainty assessment used in this study is illustrated in Fig.

3.1. Structural uncertainty estimated in each step is based on the standard deviation

(1σ) of relative differences of the compared elements. Modelled reflectance (R) at TOA is

the starting point for air mass factor calculations using radiative transfer models. A RTM

solves the radiative transfer equation, which describes the transport of radiation through

the atmosphere to the observer (in our case the satellite) and the physical processes that

affect the intensity of the radiation (absorption, scattering, refraction and reflection) (first

box in the diagram in Fig. 3.1). Reflectance (unitless) is calculated from fundamental

radiation quantities, and it is defined as the ratio of modelled Earth radiance (I) (times

π) and the solar irradiance at TOA perpendicular to the solar beam (E0) multiplied by
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Figure 3.1: Flowchart of AMF calculation and comparison process followed in the study.
In the third step forward model parameters (~b: surface albedo, surface pressure, a priori
profile, temperature, cloud fraction and cloud pressure) are selected for harmonized settings
comparison (upper part) and preferred settings comparison (lower part). In each step the
main differences between the compared elements are highlighted. The compared parameters
and their structural uncertainty (σ) in each step are: TOA reflectance (R, σR), box-AMFs
(~m, σm), and tropospheric AMFs (M , σM ).

the cosine of the solar zenith angle (µ0):

R(λ) =
πI(λ)

µ0E0(λ)
(3.1)

Different models use different methods to solve the radiative transfer equation and

to describe the sphericity of the Earth’s atmosphere. Differences in modelled TOA re-

flectances between RTMs provide an estimate for the reflectance structural uncertainty

(σR). This uncertainty due to the choice of the RTM propagates to the next step in the

AMF calculation.

Altitude dependent AMFs (box-AMFs, equivalent to scattering weights) characterize

the vertical sensitivity of the measurement to a trace gas (e.g., Palmer et al. (2001)).

They are directly related to how the measured radiance at TOA changes with a change

of the optical depth of the atmosphere (related to the presence of a trace gas in a cer-

tain atmospheric layer), with the requirement that the absorber is optically thin (optical

thickness τgas � 1). In the context of the AMF calculation (second box in diagram of Fig.

3.1), box-AMFs for each layer can be calculated and stored in a look-up table (LUT) as a

function of the forward model parameters (b) such as satellite viewing geometry, pressure

level, surface pressure and surface reflectivity. There is also the possibility of online ra-

diative transfer calculations for determining box-AMFs, i.e., bypassing the calculation of

a LUT (e.g., Lin et al., (2014, 2015); Hewson et al. (2015)). Different RTMs use different

vertical discretizations of the atmosphere, and calculate box-AMFs in different ways (see

Sect. 3.2.2). A comparison of the box-AMF LUTs calculated with different RTMs pro-

vides a measure for the box-AMF structural uncertainty (σm), which can be considered



3.2 Methods 59

as the reproducibility of the box-AMFs from different RTMs when the same settings and

input data are used.

The air mass factor (M) represents the relative (dimensionless) length of the mean

light path at a certain wavelength for photons interacting with a certain absorber in the

atmosphere relative to the vertical path. The AMFs are used to convert the SCD obtained

from the reflectance spectra to a VCD. To calculate the tropospheric VCD, a tropospheric

AMF is used (VCDtr = SCDtr/Mtr). But for species that have a stratospheric contribution

to the total slant column, the stratospheric SCD first needs to be estimated and subtracted

from the total SCD. For this purpose, a stratospheric AMF is often used together with an

independent estimate of the stratospheric VCD (e.g. from a chemistry transport model,

a climatology or independent measurements) (SCDstrat = VCDstrat · Mstrat).

If the trace gas is optically thin, the total air mass factor can be written as the sum of

the box-AMFs of each layer weighted by the partial vertical column (e.g., Palmer et al.

(2001), Boersma et al. (2004)):

M =

∑
l

ml(b̂)xa,l∑
l

xa,l
(3.2)

In Eq. 3.2 ml is the box-AMF and xa,l is the trace gas sub-column in layer l. However,

as the actual profile of sub-columns is unknown, an a priori profile has to be used in

the AMF calculation. The summation is done over the atmospheric layers (l) of the a

priori trace gas profile. In this step of the AMF calculation, apart from the profile shape

of the trace gas, it is also necessary to have the best estimates for other forward model

parameters (b̂) such as satellite viewing geometry, surface pressure and surface reflectivity.

Surface reflectivity depends on the surface properties and the geometry of the incident and

reflected light. This anisotropy is described by the bidirectional reflectance distribution

function (BRDF). In practice, surface reflectivity is often approximated by an isotropic

Lambertian equivalent reflector (LER). There are different sources from which the a priori

information can be obtained. It is desirable to use as many forward model parameters as

possible retrieved from the satellite instrument itself. This practice gives consistency to

the trace gas retrieval regarding the forward model parameters.

The NO2 and HCHO absorption cross sections used in the SCD fit and box-AMF cal-

culation are representative for one fixed temperature. However, these cross sections vary

with temperature, so it is necessary to apply a temperature correction. This correction

accounts for the change in the absorption cross section spectrum at a specific layer as a

function of the effective temperature (see Eq. S3.1 in the supplement), based on tempera-

ture and trace gas profiles from model data or climatologies. The correction is commonly
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done by applying a correction factor (cl) for each layer in the AMF calculation.

M =

∑
l

ml(b̂)xa,l · cl∑
l

xa,l
(3.3)

Most of the studies in which the temperature effect on the NO2 cross section is analyzed

assume a simple dependency of the correction factor to temperature (Vandaele et al.,

2002) (see Eq. S3.2 and S3.3 for typically used correction factors). For satellite applica-

tions, the change of the absorption cross section in case of NO2 has been reported to be

approximately -0.3% per K in the visible (Bucsela et al. (2013), Boersma et al. (2002))

and -0.05% per K for HCHO (De Smedt, 2011).

Satellite retrievals also need to consider the presence of clouds. In the AMF calculation,

residual clouds can be accounted for in several ways. The independent pixel approximation

(IPA) consists of calculating the AMF for a partly cloudy scene as a linear combination

of cloudy (Mcl) and clear (Mcr) components of the AMF, weighted by the cloud radiance

fraction w (i.e. the fraction of radiance that originates from the cloudy part of the pixel)

(Martin et al. (2002), Boersma et al. (2004)):

M = wMcl + (1− w)Mcr (3.4)

In Eq. 3.4 w is wavelength dependent through radiation intensity, so it will be different

for NO2 and HCHO (see Eq. S3.4 in the supplement).

AMFs for cloudy scenes are calculated using Eq. 3.3 with a specific cloud albedo and

cloud pressure, with ml = 0 below the cloud. In line with assumptions made in current

cloud retrievals, the cloud is considered as a Lambertian reflector with a fixed cloud

albedo. This simple cloud model is in most cases suitable to be used in trace gas retrieval

algorithms (Acarreta et al., 2004). As an alternative, the radiative effects of the cloudy

parts of the pixels can be calculated by representing the clouds as volume scatterers (see

Sect. S1.3), or the cloud structures and their radiative properties can be simulated using

3D RTMs (e.g. O’Hirok and Gautier (1998)).

The atmosphere can also be assumed to be cloud-free for cloud fractions below a

certain threshold (e.g. 0.1 or 0.2, see Table 3.3). In that case, a clear-sky AMF is used

and Eq. 3.4 reduces to M = Mcr. For cloud fractions larger than the clear-sky threshold

but below a cloudy-sky threshold, IPA is sometimes applied. Generally, measurements

with cloud fractions higher than the cloudy-sky threshold are discarded or flagged. There

is also the possibility to account for cloud-aerosol mixtures; in this case the threshold for

using either clear-sky AMF or IPA can depend on both cloud fraction and cloud altitude

(see Sect. S1.3). In all approaches accurate information is needed on the cloud radiance
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fraction and in the cloud height.

Different retrieval groups use different sources for the ancillary data, as well as differ-

ent methods to account for the temperature dependence and the presence of clouds and

aerosols (e.g. Van Noije et al. (2006)). In our study, each of the groups first calculated

tropospheric AMFs using harmonized settings, i.e. using the same forward model param-

eters, temperature correction and cloud correction. In order to calculate the total AMF

using Eq. 3.3, an interpolation from the LUT needs to be done to obtain the box-AMFs at

the specific values of the forward model parameters. Furthermore, a vertical interpolation

is required to adjust the vertical discretization of the a priori absorber profile to the one

of the LUT. From the comparison of the tropospheric AMFs calculated using harmonized

settings, we can thus obtain a relative AMF structural uncertainty, which is determined

by different approaches in interpolation and vertical discretization of the box-AMFs, as-

suming that the selected forward model parameters are the true values.

Next, each of the groups used their preferred settings to calculate tropospheric AMFs.

In this round-robin exercise, a comparison of state-of-the-art retrieval algorithms, the

differences between AMFs not only arise from differences between the RTMs, vertical

discretization and interpolation but also from differences in the selection of forward model

parameter values and the different corrections for clouds, aerosols and surface reflectivity.

Thus the differences in the AMFs using preferred settings can be interpreted as the overall

structural uncertainty of the AMF calculation (Thorne et al., 2005).

3.2.2 Participating models

Four RTMs from different research groups participated in the comparison. Some differ-

ences between models are highlighted in Table 3.1. A brief summary for each model is

listed alphabetically in this section and more detailed information about the models can

be found in the references.

DAK

DAK (Doubling-Adding KNMI) was developed at the Royal Netherlands Meteorological

Institute (Stammes, 2001). DAK uses the doubling-adding method for solving the ra-

diative transfer equation (Stammes et al. (1989), de Haan et al. (1987)). The method

consists of first calculating the reflection and transmission properties of a homogeneous

layer by repeated doubling, starting with a very thin layer, and then adding homoge-

neous layers on top of each other, which then yields the reflection and transmission of

the combined layers. The internal radiation field is computed at the interface of all layers

and the radiation emerging at the top of the atmosphere and at the surface is calculated.
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Table 3.1: Overview of radiative transfer models that participated in the top-of-atmosphere
reflectance comparison and their main characteristics.

Model DAK McArtim SCIATRAN VLIDORT

Reference Stammes (2001)
Deutschmann et al.
(2011)

Rozanov et al. (2014) Spurr et al. (2001)

Institute KNMI, WUR MPI-C IUP-UB IASB-BIRA
Solving the
Radiative
Transfer
equation

Doubling adding
method

Monte Carlo methods
to solve integral
form of RTE

Source function
integration technique
and discrete -
ordinate method

Linearized discrete
ordinate solution

Sphericity
correction

Pseudo spherical
for direct solar
incident photons

Full 3D spherical model
calculations on a sphere

Full spherical mode
for solar and single
scattered photons

Pseudo spherical
for solar and single
scattered photons

DAK accounts for multiple scattering and polarization. It is also possible to account for

Earth’s sphericity using the pseudo spherical option, which corrects for sphericity in the

light path of the direct solar beam, but not in the scattered beam.

Box-AMFs are calculated with DAK in this study by WUR/KNMI by differencing the

logarithm of reflectances at TOA with and without the trace gas in atmospheric layer l

divided by the gas absorption optical thickness of the layer τgas:

ml = − lnR(τgas,l)− lnR(τgas,l = 0)

τgas,l
(3.5)

McArtim

McArtim (Monte Carlo Atmospheric Radiative Transfer Inversion Model) (Deutschmann

et al., 2011) was developed at University of Heidelberg and Max-Planck Institute for

Chemistry (MPI-C, Mainz). It is based on the backward Monte Carlo method: a photon

emerges from a detector in an arbitrary line of-sight direction and is followed in the

backward direction along the path until the photon leaves the top of the atmosphere.

The various events which may happen to the photon at various altitudes are defined

by suitable probability distributions. At each scattering event the probability that the

photon is scattered into the direction of the Sun is calculated and the intensity of the

photon is weighted by the sum of the probabilities of all scattering events (local estimation

method). In this RTM, the integro-differential equation for radiative transfer is deduced

and solved using Neumann series, the summands of which are linked with the contributions

of multiple scattering orders to the radiation field. McArtim is a 3D-model and uses

full spherical geometry, which means that sphericity is accounted for incoming, single

scattered and multiple scattered photons. The model is capable of including polarization

and rotational Raman scattering (which are included in the simulations shown in this
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study).

Box-AMFs calculated by MPI-C are obtained from Jacobians (derived by W = ∂lnI
∂β

,

with β (km−1) the absorption coefficient) for each grid box according to the formula:

ml = − W

I∆h
(3.6)

In Eq. 3.6 W refers to the Jacobian (km), I is the simulated radiance at TOA normalized

by the solar spectrum (unitless) and ∆h is the grid box thickness (km).

SCIATRAN

SCIATRAN (Rozanov et al., 2014) was developed at the Institute of Environmental

Physics at the University of Bremen (IUP-UB) in Germany. It models radiative transfer

processes in the atmosphere from the UV to the thermal infrared, in both scalar and

vector mode, i.e. with the option to account for polarization. The simulations can be

done for a plane parallel, pseudo-spherical or fully spherical atmosphere. In the fully

spherical approach, the integral radiative transfer equation is solved accounting for single

scattering in spherical mode, and multiple scattering is approximated with a solution of

the differential-integral radiative transfer equation in the plane parallel mode.

SCIATRAN calculates the Jacobians or weighting functions, which are the derivatives

of the simulated radiance with respect to atmospheric and surface parameters (air number

density in this case). These quantities are related to the box-AMFs calculated by IUP-UB

as follows:

ml = − Wl

Iσ∆hl
(3.7)

Wl (W · m−2·nm−2·sr−1/molec·cm−3) is the weighting function at atmospheric level l, I

(W · m−2·nm−2·sr−1) is the TOA radiance, σl (cm2/molec) is the absorber cross section

and ∆hl (cm) is the thickness of the layer.

VLIDORT

VLIDORT (Vector-LInearized Discrete Ordinate Radiative Transfer) was developed by

Rob Spurr at RT SOLUTIONS, Inc. The model is based on the discrete ordinate ap-

proach to solve the radiative transfer equation in a multi-layered atmosphere, reducing

the RTE to a set of coupled linear first order differential equations. Then, perturbation

theory is applied to the discrete ordinate solution (Spurr et al., 2001). Intensity and

partial derivatives of intensity with respect to atmospheric parameters and surface pa-

rameters (i.e. weighting functions) are determined for upwelling direction at TOA, for
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arbitrary angular direction. The pseudo spherical formulation in VLIDORT corrects for

the curved atmosphere in the solar and scattered beam (for single scattering, not for

multiple scattering).

Box-AMFs are derived from the altitude-dependent weighting functions determined

by VLIDORT:

ml =
∂lnI

∂τgas,l
= (τgas,l ·

∂I

∂τgas,l
)/(I · τgas,l) (3.8)

I (W · m−2·nm−2·sr−1) is the TOA radiance, τgas is the trace gas absorption optical

thickness of the layer and the term (τgas,l · ∂I
∂τgas,l

) is the altitude dependent weighting

function.

3.3 Results

3.3.1 TOA reflectances

As a first exercise, a base case calculation and comparison of TOA reflectances was made to

assess the performance of the four RTMs and to obtain the structural uncertainty in TOA

reflectance modelling. The base case comparison allowed us to establish the best possible

level of agreement between RTMs by identifying differences in the RTMs performance that

in more complex settings would be difficult to recognize. Furthermore, total and ozone

optical thickness were compared to evaluate how the models agreed in their treatment of

scattering and absorption processes and whether differences in scattering and absorption

can explain possible differences between the TOA reflectances.

Basic model parameters were established as input in all RTMs (details can be found in

Table S3.1 in the supplementary material). The basic atmospheric profile was a 33-layer

mid-latitude summer atmosphere (Anderson et al., 1986), and every group performed

their own vertical discretization of this profile.

In the RT modelling, we considered a clear sky atmosphere, so clouds and aerosols were

not included. Rayleigh scattering and O3 absorption were included, but Raman scattering

was not included. The temperature dependence of the ozone cross-section was neglected in

the reflectance calculation. TOA reflectances were calculated at 7 wavelengths, including

440 and 340 nm which are relevant for the retrievals of NO2 and HCHO, respectively. Both

scalar (i.e. without polarization) and vector (i.e. with polarization) calculations were

performed in most of the cases. All models applied their particular sphericity treatments

to the calculations. The surface was considered as a Lambertian reflector by all the RTMs.

This approximation assumes that surface reflectivity is isotropic (i.e it does not consider
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Figure 3.2: TOA reflectances simulated by 4 RTMs for θ0 = 37◦ (µ0 = 0.8), off-nadir viewing
angle θ = 72.5◦(µ = 0.3) and ϕ = 0◦ as a function of wavelength (in 20 nm steps). Dashed lines
represent total optical thickness computed by each RTM. Grey bands indicate the relevant
wavelengths for HCHO (340 nm) and NO2 (440 nm). Surface albedo is 0 and surface pressure
is 1013 hPa.

the directionality of the surface reflectance distribution). The selected geometries covered

a wide range of values for solar zenith angle (SZA, θ0), viewing zenith angle (VZA, θ), and

relative azimuth angle (RAA, ϕ = 180◦ − |φ− φ0|, where φ− φ0 is the viewing direction

minus solar direction). All the angles are specified with respect to the surface. The values

for SZA span the typical range of what UV/Vis sensors are encountering in orbit, and the

maximum value of VZA is related to the higher possible values of this parameter for the

future TROPOMI instrument (72.5◦) (van Geffen et al., 2018).

All models calculate the same spectral dependency of TOA reflectance, as shown in

Fig. 3.2 (solid line). TOA reflectance increases towards shorter wavelengths due to

stronger Rayleigh scattering. TOA reflectance simulated by the different models agree

within 1.3% for the geometries included in Fig. 3.2. The dashed line in Fig. 3.2 shows the

total optical thickness as a function of wavelength for DAK, SCIATRAN and VLIDORT

(McArtim does not provide this output), and is generally consistent within 0.15% for all

wavelengths except 340 nm, where the differences are 0.5%.

Figure 3.3 shows the distribution of relative differences (defined as (100(a-b)/a)) be-

tween TOA reflectances simulated by the four RTMs at 340 nm and 440 nm. The dis-

tribution is determined by the relative differences between all combinations of model dif-

ferences, including all simulated geometry scenarios for a surface albedo of 0 and terrain

pressure of 1013 hPa. According to the standard deviation in both distributions (dashed

lines in Fig. 3.3), the relative differences are below 1.5% at 340 nm and 1.1% at 440

nm in most geometry configurations (80% of the samples of the distribution), including

the most common retrieval scenarios. The tails of the distributions at both wavelengths
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Figure 3.3: Distribution of relative model differences between TOA reflectances simulated
by four RTMs including polarization (DAK-VLIDORT, DAK-SCIATRAN, DAK-McArtim,
VLIDORT-SCIATRAN, VLIDORT-McArtim, SCIATRAN-VLIDORT and reversed combina-
tions) for all geometry combinations (0◦ < θ0 < 90◦, θ = 0◦, 72.5◦ and ϕ = 0◦, 60◦, 90◦,
120◦, 180◦) (see Table S3.1 for exact values) at 340 nm (left panel) and 440 nm (right panel).
The dashed lines represent the median plus/minus the standard deviation of the distribution.
Surface albedo is 0 and surface pressure is 1013 hPa. Sample size in each distribution is 960.

correspond to extreme viewing geometries, i.e. for scenarios in which solar and viewing

zenith angles are both large. Mean relative differences over all RTM pairs are at most

6.4% for extreme geometries (θ0 = 87◦, θ = 72.5◦), and for shorter wavelengths. For nadir

view (θ = 0◦) relative differences are on average two times smaller than for larger VZA

(θ ≥ 60◦) at both 340 and 440 nm.

The results show strong consistency of TOA reflectance calculations for the most com-

mon moderate viewing geometry retrieval scenarios. Relative differences are somewhat

higher for larger VZA, SZA and shorter wavelengths. For the more extreme geome-

tries, the light path through the atmosphere is generally longer and photons have higher

probability of undergoing interactions (scattering, absorption) with the atmosphere. Fur-

thermore, differences in the treatment of Earth’s sphericity for the extreme geometries

have a stronger influence than in close to nadir viewing geometries. These differences

will still be present in the box-AMFs comparison in Sect. 3.3.2. Rayleigh scattering also

affects the effective photon path and it is stronger at 340 nm than at 440 nm. Thus, small

differences in the description of Rayleigh scattering in the RTMs are more likely to lead

to differences for the extreme geometries and shorter wavelengths. The standard devia-

tion of differences between modelled TOA reflectances of 1.5% (at 340 nm) and 1.1% (at

440 nm) in this comparison can be considered as the reflectance structural uncertainty.

The agreement in this study is better than in previous RTM comparisons like Wagner

et al. (2007) and Stammes (2001) which reported differences of 5%. The detailed RTM

comparison will serve as a test bed to analyze the performance of other RTMs.
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Figure 3.4: Box-AMF dependencies on forward model parameters for NO2 at 440 nm (solid
lines, circles) and HCHO at 338 nm (dashed lines, triangles) for a clear-sky atmosphere. (a)
Box-AMFs vertical profile; (b) 950 hPa box-AMF as a function of surface albedo; (c) 797 hPa
box-AMF as a function of surface pressure; (d) 950 hPa box-AMF as a function of cosine of
SZA, (e) 950 hPa box-AMF as a function of cosine of VZA, (f) 950 hPa box-AMF as a function
of RAA. In all panels the fixed parameters are: µ0 = µ = 0.8 (θ0 = θ = 37◦), ϕ = 60◦, surface
albedo = 0.05, surface pressure = 1013 hPa.

3.3.2 NO2 and HCHO altitude-dependent (box-) air mass factors

To calculate box-AMFs, a common vertical grid was agreed between the groups in order to

reduce the sources that might cause differences between the RTMs. The common profile

resolution was 0.1 km from the surface up to 10 km, 1 km resolution from 10 to 60 km

and 2 km resolution from 60 to 100 km. NO2 box-AMFs were calculated at 440 nm and

HCHO box-AMFs were calculated at 338, 341 and 344 nm to investigate the wavelength

dependency (not shown). Box-AMFs were calculated accounting for polarization of light

and Earth’s sphericity. The number of reference points for surface albedo was increased

and several surface pressures were added relative to the TOA reflectance simulations in

the previous section to cover a wider range of scenarios. All settings are detailed in Table

S3.2.

Figure 3.4(a) shows that the 4 participating groups generally agree well on the vertical

profile shape of NO2 and HCHO box-AMFs in the troposphere. Measurement sensitivity

decreases towards the surface, due to the increase of light scattering in the lower tropo-

sphere. Measurement sensitivity to HCHO is substantially lower than to NO2, because

of stronger Rayleigh scattering at shorter wavelengths. McArtim box-AMFs have lower
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values in the stratosphere (pink line), presumably reflecting the more realistic description

of atmosphere’s sphericity in McArtim relative to the other models (see Sect. 3.3.4 for

specific sphericity effect on AMFs). The vertical profile of McArtim shows a wavering

line due to the statistical noise in the Monte Carlo simulations (which can be reduced by

increasing the number of simulations). Figure 3.4 (b), (d)-(f) shows the NO2 and HCHO

box-AMF dependency on forward model parameters (surface albedo, surface pressure,

SZA, VZA and RAA) in the lower troposphere at 950 hPa. This pressure level (close

to the surface) is especially relevant because this is where trace gas concentrations are

enhanced in polluted situations. The sensitivity to surface albedo at 950 hPa (Fig. 3.4b)

is similar for all four RTMs. Box-AMFs increase with surface albedo due to a stronger

reflection of light at the surface. This increase is particularly strong for low values of

surface albedo. For an albedo of 0.05, an increase of 0.01 in the surface albedo results in

an increase of 11% in the NO2 box-AMF at 440 nm and of 9% in the case of HCHO at 338

nm. The increase in the box-AMFs is less steep for higher values of surface albedo. Thus,

an accurate knowledge of surface albedo is required especially for low albedo values. For

surface pressure (Fig. 3.4c), the box-AMF (at 797 hPa) decreases with decreasing surface

pressure. For increasing terrain height, the amount of light scattered and reflected from

below 797 hPa decreases. In a more elevated terrain, the photons undergo fewer scattering

events, which tends to reduce box-AMFs at a specific level. Models agree well in repre-

senting this sensitivity. An error in the surface pressure of 10 hPa leads to ± 2% errors

in the lower tropospheric box-AMF values, which indicates the importance of accurate

surface pressure information that is representative for the entire pixel area. Box-AMFs

at 950 hPa show relatively weak dependency on VZA (Fig. 3.4e) and RAA (Fig. 3.4f)

and stronger dependency on high values of SZA (Fig. 3.4d), but all RTMs agree well on

measurement sensitivity to geometry parameters.

Figure 3.5 shows the vertical profile of mean relative differences in NO2 (left panel)

and HCHO (right panel) box-AMFs between all the models, for a specific surface albedo

and surface height and a wide range of solar and viewing geometries. Generally, models

reproduce box-AMFs to within 2% for NO2 and 2.6% for HCHO. Mean relative differ-

ences are higher at the lowest layers and around 300 hPa. This is due to unavoidable

slight differences in vertical discretization of the surface-atmosphere boundary and where

the resolution changes from 0.1 to 1 km at 10 km altitude in the different models. Spe-

cific differences were also found in the mid-upper troposphere and stratosphere, where

McArtim is on average lower than the other RTMs. Those differences illustrate the differ-

ent treatment of multiple scattering within the models. McArtim accounts for multiple

scattering in a fully spherical atmosphere, whereas DAK, VLIDORT and SCIATRAN

simulate multiple scattering in a plane parallel atmosphere. In a spherical atmosphere,

less light is horizontally scattered into the line of sight of the instrument than in a plane

parallel atmosphere (see Fig. S3.2), which is one of the reasons for lower box-AMFs by
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McArtim in the stratosphere (visible in Fig. 3.4a between 200-0 hPa).

Figure 3.5: Vertical profile of mean relative differences between NO2 box-AMFs (left) and
HCHO box-AMFs (right) from DAK, McArtim, SCIATRAN and VLIDORT for a wide range
of satellite viewing geometry (0◦ < θ0 < 75◦, 0◦ < θ < 72.5◦, 0◦ < ϕ < 180◦ ), surface albedo
= 0.05 and surface height 1013 hPa. Grey bands indicate 950 hPa atmospheric layer.

Relative differences for 950 hPa box-AMFs are below 1.1% for NO2 and below 2.6% for

HCHO in most geometry configurations (according to the standard deviation of relative

differences distribution for 950 hPa box-AMFs, not shown). Higher relative differences

mainly occur between McArtim and the other models. The highest relative differences

occur for scenarios with high VZAs (θ = 72.5◦) (not shown), again indicating that dif-

ferent Rayleigh scattering description and sphericity treatments in the radiative transfer

modelling of the atmosphere are important.

This comparison indicates a good agreement between box-AMF LUTs computed using

different RTMs. The structural uncertainty in the AMF calculation due to the choice of

RTM and different interpolation schemes is 2% for NO2 and 2.6% for HCHO. These results

suggest that a correct treatment of the processes affecting the effective light path in the

atmosphere is important for box-AMF calculation. The vertical discretization is also

relevant in box-AMF calculations, as demonstrated by the differences at specific altitudes

(Fig. 3.5) and by the box-AMF sensitivity to altitude (Fig. 3.4a). Therefore, the vertical

sampling of the LUT should have a fine resolution, especially in the lower troposphere

where strong gradients in NO2 and HCHO concentrations occur. The dependencies of the

box-AMFs at low surface albedo values (Fig. 3.4b) and to surface pressure (Fig. 3.4c),

suggest that the number of reference points in the LUT for these parameters should be

large.
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3.3.3 Tropospheric air mass factors

In order to compute tropospheric AMFs via Eq. 3.3 we need to interpolate the box-

AMFs from the LUT for the best estimate of the forward model parameters b. Generally

a 6-D linear interpolation (or 5-D if the vertical resolution of the LUT and the a priori

profile vertical grid are equal) is done over all the parameters on which the box-AMF

depend. For each dimension, the two closest values to the exact pixel parameters are

used to obtain the interpolated box-AMF (ml in Eq. 3.3). This approach will introduce

systematic errors in case of nonlinear dependencies of the parameters in the LUT. Pixel-

by-pixel online calculations of box-AMFs would avoid interpolation errors; Castellanos

et al. (2015) estimated the differences between on-line and LUT-derived AMFs to be on

average less than 1%, for individual measurements less than 8%, with an upper bound

of the difference of 20% over South America. Lin et al. (2014) found 1-5% differences on

retrieved VCDs with and without LUT over China.

Harmonized settings

Four groups used the same settings (forward model parameters, a priori profiles, temper-

ature and cloud correction) to calculate clear sky and total tropospheric NO2 AMFs for

one specific OMI orbit over Australia and Eastern Asia on 02 February 2005 (See Fig.

3.6). The selected harmonized settings were those from KNMI/WUR (see Table 3.3). All

groups applied the same temperature correction (from Boersma et al. (2004), (see Eq.

S3.1)) and cloud correction via the independent pixel approximation. The aim of this

comparison was to obtain an estimate of the structural AMF uncertainty introduced by

different vertical discretization and the interpolation schemes assuming that the values of

the selected forward model parameters are true.

All groups calculate similar AMF spatial patterns for the selected orbit. Figure 3.6

(upper panels) shows total tropospheric NO2 AMFs calculated by each group. The dis-

tribution of the AMF values along the orbit is determined by the different parameters on

which AMFs depend. Lower panels in Fig. 3.6 show NO2 (a priori) model vertical column,

surface albedo and cloud fraction in the orbit. At high latitudes, where surface albedo is

high, AMFs are up to 3-5. Surfaces with high albedo (usually covered by snow or ice)

reflect more radiation than surfaces with lower surface albedo, and this increases the AMF

values. The effect of clouds and the a priori profile is also visible: AMFs are generally low

in cloudy regions and over polluted regions in east China (∼30◦N), indicative of reduced

sensitivity to NO2 in the lowest layers of the atmosphere.

The correlation between AMFs calculated by the different retrieval groups is excellent

(R2 > 0.99). Overall, tropospheric AMFs agree within 6.5% in polluted areas and within
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Table 3.2: Statistical parameters for the comparison of total tropospheric NO2 AMFs for
polluted and unpolluted pixels (pixels with model NO2 vertical column higher or lower than
1 · 1015 molec/cm2 respectively) between the different retrieval groups for one complete orbit
from 02 February 2005 (2005m0202t0339-o02940 v003). Only pixels with effective (i.e. ra-
diometrically equivalent) cloud fraction ≤ 0.2 are considered. Mean, median and sigma are
relative differences in % (100(a-b)/a).

Polluted pixels (#1983)
Diff.

between
Mean

(rel. diff.)
Median

(rel. diff.)
σ

(rel. diff.)
R2 Slope Offset

IUP-WUR -3.8 ± 0.3 -2.5 6.4 0.9968 0.96 0.08
BIRA-WUR 0.5 ± 0.02 0.5 0.8 0.9996 0.98 0.02
BIRA-IUP 3.9 ± 0.7 2.9 4.8 0.9967 1.02 -0.07

MPIC-WUR -1.5 ± 0.1 -0.9 4.7 0.9957 0.99 0.03
MPIC-IUP 2.1 ± 0.9 0.5 4.9 0.9955 1.03 -0.06

MPIC-BIRA -2.0 ± 0.1 -1.2 4.7 0.9957 1.01 0.01

Unpolluted pixels (#23744)
IUP-WUR -0.4 ± -0.3 -0.3 2.4 0.9983 0.96 0.06

BIRA-WUR 0.6 ± 0.004 0.3 0.8 0.9995 0.98 0.03
BIRA-IUP 1.0 ± 0.04 0.7 1.9 0.9989 1.01 -0.04

MPIC-WUR -0.5 ± 0.02 -0.4 2.1 0.9985 0.97 0.06
MPIC-IUP -0.1 ± 0.06 -0.4 2.2 0.9981 1.01 -0.01

MPIC-BIRA -1.1 ± 0.02 -0.9 1.7 0.9990 0.99 0.03

2.5% in clean remote areas for most retrieval scenarios, in line with the results from the

box-AMF LUT comparison. BIRA AMFs are on average higher than AMFs by the other

groups, generally by a few percent, and IUP-UB AMFs are on average lower for polluted

and unpolluted situations. Table 3.2 summarizes the results of the comparison.

Largest differences are found at the edges of the OMI orbit, where viewing zenith

angles are large and light paths are long. This can be seen in the lower right panel of Fig.

3.6, where the relative differences of tropospheric NO2 AMFs between MPI-C and WUR

are clearly visible at the edges of the orbit. These differences are consistent with the higher

sensitivity to tropospheric trace gases for extreme viewing zenith angles (also shown in Fig.

3.4e) in McArtim compared to DAK. Figure S3.1 in the supplementary material shows

the relative differences between all AMFs calculated by the groups. Relative difference

distributions show patterns that reflect the spatial distribution of surface albedo, clouds

and NO2 (e.g. over southeastern Australia, East China and Korea). Large differences

between the groups are found in cloudy situations. These effects reflect the uncertainties

arising from the use of different RTM as well as from the interpolation and the vertical

discretization of the LUT when calculating the AMFs.

These results demonstrate that even when similar RTMs, box-AMFs, and identical

forward model parameters are used to calculate the AMFs, there is structural uncertainty

that is introduced by the specific implementation of different groups. First, the choice of a

RTM introduces uncertainty in the box-AMF calculation. Second, there are interpolation



72
Structural uncertainty in air mass factor calculation

for NO2 and HCHO satellite retrievals

Figure 3.6: Upper panels: total NO2 tropospheric AMFs calculated by BIRA, IUP-UB,
WUR and MPI-C. Lower panels: NO2 model tropospheric vertical column (from a priori
TM4 profile), climatological surface albedo (from Kleipool et al., 2008), cloud fraction (from
O2-O2 and FRESCO+) and an example of the relative differences between MPI-C and WUR
AMFs. Only pixels for SZA < 70◦ are shown. The selected OMI orbit is from 02 February
2005 (2005m0202-o02949-v003).

errors that are intrinsic to the calculation method using Eq. 3.3, i.e. interpolation errors

in finding the AMF value from the 6-D LUT and the vertical discretization of the a priori

profile. Overall, the average differences between the AMFs (always below 6.5% for cloud

fractions less than 0.2) are somewhat higher than the differences from the LUT comparison

(2%). This means that in successive steps of the AMF calculation sources of systematic

uncertainty are added that propagate throughout the AMF calculation process. These

sources directly affect the agreement between the AMF calculated by different groups

and hence the AMF structural uncertainty. 6.5% represents an upper limit value for

the differences that using different RTMs and LUTs may introduce in the final AMF

calculation.
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Figure 3.7: Mean relative differences between IPA and clear-sky NO2 tropospheric AMFs
for different cloud fraction intervals at different cloud pressures ranges (different colors) for a
complete day of OMI measurements (02 February 2005). Left panel is for polluted situations
and right panel for unpolluted situations (pixels with model NO2 vertical column higher or
lower than 1 · 1015 molec/cm2 respectively). The stars with the black dashed lines show the
average difference for all the cloud pressures. Pixels with surface albedo less than 0.3 and SZA
< 70◦ are considered.

Cloud correction: IPA vs. clear-sky AMF

It is important to account for the effect of clouds on the photon path lengths in the

troposphere when calculating tropospheric AMFs. There are various approaches that are

commonly used to calculate AMFs in (partly) cloudy situations. The independent pixel

approximation (IPA), introduced in Eq. 3.4 (e.g. Martin et al. (2002)), is motivated by

the fact that few pixels are completely cloud-free. Many pixels still have some degree of

cloud cover, and even small cloud fractions strongly affect the sensitivity to the trace gas.

The relevant physical effect of clouds (reduced sensitivity to trace gas below the cloud

and enhanced sensitivity to trace gas above and in the top layer of the cloud) is explicitly

taken into account in the IPA. Another approach is to consider clear-sky (CS) AMF for

scenes with a sufficiently small cloud fraction (e.g. Richter and Burrows (2002)). The

motivation for using clear-sky AMFs instead of IPA is that for scenes with small cloud

fractions (e.g. < 0.2), retrieved cloud parameters (cloud fraction and cloud pressure) have

relatively high uncertainty. This inhibits the reliable modelling of the effect of clouds on

photon path lengths, and consequently, a clear-sky AMF is used.

To quantify the differences between the two approaches, we compare here tropospheric

NO2 AMFs calculated by WUR (see Table 3.3) with the IPA approach and the clear-sky

AMFs, for two complete days of OMI measurements (02 February 2005 and 16 August

2005). In polluted situations, IPA AMFs are smaller than CS AMFs on average, with

differences as large as -40% for cloud fractions approaching the threshold value of 0.2

(left panel of Fig. 3.7). The negative differences between IPA and CS AMFs are largest



74
Structural uncertainty in air mass factor calculation

for NO2 and HCHO satellite retrievals

for the highest clouds, illustrating the reduced sensitivity to tropospheric NO2 below the

cloud in the IPA. IPA AMFs are larger than clear-sky AMFs for clouds situated in the

lower troposphere (cloud pressure > 900 hPa), where most NO2 pollution resides. These

positive differences can be understood from the albedo effect of residual clouds. Low,

bright clouds lead to enhanced photon scattering through the NO2 layers above the cloud

level and also inside the cloud top layer, and this increases the sensitivity to NO2. For

polluted situations, IPA AMFs are on average smaller than CS AMFs by 20% for cloud

fractions of 0.05-0.2, and smaller by 11% for cloud fractions between 0.0-0.2.

In unpolluted situations, IPA and CS AMFs are generally quite similar, with average

relative differences within 5%. Still, there are important differences between the two

approaches. In unpolluted situations with clouds in the free and upper troposphere (cloud

pressure < 600 hPa), IPA AMFs are smaller because of reduced sensitivity to NO2 (right

panel of Fig. 3.7). For clouds in the lower troposphere, IPA AMFs are larger because of

the albedo effect. The change of sign in the differences between IPA and CS AMFs now

occurs near 700 hPa (instead of near 900 hPa for polluted scenes), reflecting the more

even vertical distribution of NO2 in pristine situations compared to polluted scenes when

most NO2 resides in the polluted boundary layer.

These results indicate that the differences between using IPA or clear-sky AMFs are

substantial especially for polluted situations and small residual cloud fractions. Selecting

a particular cloud correction approach implies that AMF values will be systematically

different from values obtained with the other method. In polluted situations, the mean

differences are 20-40% for cloud fractions between 0.1-0.2, with cloud pressure largely

explaining the magnitude and sign of the differences. Note that the a priori profiles

used to calculate the AMFs in this section have been obtained from a specific CTM. If

a different CTM were used, the values for the differences between IPA and CS AMFs

would be different, in line with the structural uncertainty that is being discussed in this

study (See Sect. 3.3.3). A previous study by Van Noije et al. (2006) reported 30% higher

GOME tropospheric NO2 columns retrieved using the IPA compared to retrievals using

clear-sky AMFs. Such differences are in line with the systematically lower IPA AMFs

found here. But, like the study by Van Noije et al. (2006), we cannot clearly recommend

one AMF approach over the other. In order to make such a recommendation, a more

detailed analysis of the cloud parameter uncertainties is needed, along with a validation of

tropospheric NO2 retrievals using different AMF approaches against independent reference

data. Such a validation exercise should preferably focus on polluted situations with small

(0.05-0.2) residual cloud fractions.
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Round robin comparison

For the round robin comparison, each group calculated tropospheric NO2 AMFs using

their preferred settings (i.e. their own preference for source of forward model parameters,

cloud and aerosol correction). We extended the comparison and included other leading

international retrieval groups (University of Leicester, NASA and Peking University). We

now have a wider range of approaches and assumptions to better evaluate the impact that

the calculation methods and choices of forward model parameters have on the structural

uncertainty.

Table 3.3 summarizes the AMF algorithms included in this comparison. There are

several differences with the harmonized settings used in the previous section. IUP-UB

and BIRA now apply IPA only when cloud fraction exceeds 0.1 and 0.2, respectively,

motivated by the high uncertainty of cloud parameters for scenes with small cloud fractions

(see Sect. 3.3.3). Peking University accounts for the surface reflectance anisotropy and

they do pixel-by-pixel online radiative transfer calculations. They also include an explicit

aerosol correction, motivated by the fact that the implicit aerosol correction breaks down

in situations of high aerosol optical thickness and strongly absorbing particles (Castellanos

et al. (2015), Chimot et al. (2016)), which is particularly significant in East China. MPIC

applies IPA cloud correction for clouds higher than 3km and clear-sky AMFs for clouds

between 2 and 3 km when cloud fraction is less than 0.1. For clouds below 2 km they

include a parametrized aerosol-cloud layer in order to account for the possibility of cloud

aerosol mixtures, which might be especially relevant for AMF calculation in scenarios

where trace gas is most abundant in the lowest part of the troposphere. Among all

the groups, five different chemistry transport models for the a priori NO2 profiles are

used.

Different groups use different LUTs for their AMF calculations, and POMINO uses

pixel-by-pixel online radiative transfer calculations. The LUTs are different in several

aspects: the RTMs used to create them and the number of reference points for each

dimension. All these differences affect the AMF structural uncertainty. Based on the

discussion in previous sections we consider that the use of different LUTs introduces a

structural uncertainty of the order of 6.5%.

Most of the surface albedo values used in the retrievals come from the Kleipool et al.

(2008) database, which is based on OMI surface reflectance climatology. However, due to

the different representations of surface reflectance within this database (mode and min

LER), only three retrieval groups use the exact same albedo values. We investigated if

this could bias the estimation of the AMF structural uncertainty. We re-calculated the

AMF structural uncertainty with two retrievals that use the same exact albedo values and

with three that use different albedo values. These estimated AMF structural uncertainties



76
Structural uncertainty in air mass factor calculation

for NO2 and HCHO satellite retrievals

were of similar magnitude and therefore we can conclude that the fact that the surface

albedo values come from the Kleipool et al. (2008) database is not a clear driver of the

overall structural uncertainty calculation.

The agreement of AMFs from this round robin exercise quantifies the overall AMF

structural uncertainty. The comparison with 7 groups allowed us to calculate a mean AMF

as a reference (which is not necessarily the true AMF) value which can be considered a

state-of-the-art AMF value. For a representative ensemble mean AMF, we required all

groups to have a valid (un-flagged) AMF value at a pixel location. We selected two

different days (02 February 2005 and 16 August 2005) in winter and summer to identify

possible seasonality effects in the agreement of the AMFs.

Round robin: identical cloud parameters

First we compare the 6 groups that use the same cloud parameters. In contrast to what

we found in the harmonized settings comparison, the global maps of tropospheric AMF

calculated by each group using their preferred settings (Fig. 3.8) show pronounced differ-

ences in several regions. For example, over the Sahara desert, where surface albedo is high

(see lower panel on Fig. 3.8), AMFs differ by up to 15%. Small differences in the albedo

values can lead to high differences in the AMFs, especially for surface albedo lower than

0.3 (see Fig. 3.4b). Over Central Africa, AMFs differ in situations where cloud fraction

is close to the typically applied threshold of 0.2 (left lower panel in Fig. 3.8).

We compared global AMF calculations from all individual groups against the pixel

mean AMF from 6 groups (Peking University only calculates AMFs over China). Figure

3.9 shows the average ratio of the AMF by each group to the ensemble mean AMF (bars)

and the correlation (crosses) for polluted situations (NO2 > 1·1015 molec/cm2, left panel)

and unpolluted situations (NO2 < 1·1015 molec/cm2, right panel). Over polluted regions

(for pixels with SZA < 60◦ and effective cloud fraction < 0.2), the agreement among the 6

groups is within (minimum-maximum) 12-42% in February and within 10-31% in August.

BIRA AMFs are 14% higher than the ensemble mean, and WUR AMFs are 18% lower,

suggesting considerable structural uncertainty.

Over unpolluted regions the agreement is better: AMFs from the different groups

agree within 8.5-18% in both February and August, which implies a smaller structural

uncertainty (Table S3.6 provides a detailed summary of the comparison).

In order to asses which forward model parameters explain most of the AMF structural

uncertainty, we analyzed AMF differences from groups that use identical cloud param-

eters and implicit aerosol correction (BIRA, University of Leicester, NASA and WUR).

Between these four groups, the only different forward model parameters are surface albedo,
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Figure 3.8: Tropospheric NO2 AMFs calculated by each of the groups for a complete day
of OMI measurements (02 February 2005). Lower panels show an example of cloud fraction
and surface albedo used by KNMI/WUR (showed as example; see Table 3.3) to calculate the
AMFs. Groups apply different filters to the measurements which explains the different gaps
(grey).



3.3 Results 79

a priori NO2 profile and surface pressure. To investigate which of these parameters best

explains the AMF variability, we correlated differences between a particular parameter

(∆As, ∆NO2 and ∆Ps) with the corresponding AMF differences (∆AMF). For each par-

ticular parameter, we required the differences in the other parameters to be small (surface

albedo within ± 0.02, surface pressure within ± 50 hPa and a priori NO2 vertical columns

within ±0.2·1015 molec/cm2) so we could isolate the effect of one parameter only, while

keeping sufficient pixels for statistical significance.

Figure 3.9: Ratio of tropospheric NO2 AMFs by each group to the ensemble mean (left axis,
bars) and the correlation coefficient (right axis, cross) for two complete days of OMI mea-
surements (02 February 2005 (blue) and 16 August 2005 (green)) over the globe for polluted
(left panel) and unpolluted (right panel) pixels. The error bars correspond to the standard
deviation. Only pixels for SZA < 60 ◦ and cloud fraction < 0.2 are considered in the analysis.

We focus on explaining the differences between BIRA and WUR here, since these were

on the order of 30% (Fig. 3.9). We explored the correlations between BIRA-WUR AMF

differences and differences between assumed surface pressures, albedos, and NO2 vertical

columns and profile shapes; results are shown in Fig. S3.3 and Table S3.3. We find that

surface pressure differences do not explain the large systematic AMF differences, and that

surface albedo differences explain WUR and BIRA AMF differences especially in winter,

when NO2 is found close to the surface and AMFs are more sensitive to albedo variations

than in summer. In our ensemble, the WUR-BIRA AMF differences are highly sensitive to

the differences between the a priori NO2 profiles used, especially in summer. NO2 profiles

are vertically more elevated in TM5 (used by BIRA) than in TM4 (used by WUR) (right

panel of Fig. S3.3), as diagnosed by their 20 hPa lower effective NO2 pressures (pressure

levels weighted by NO2 sub-column in that level). The confinement of the trace gas to

lower atmospheric layers and the higher concentrations explains the systematically lower

AMF values for WUR compared to BIRA.

Selecting a specific chemistry transport model thus influences the AMF structural
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uncertainty via differences in the profile shape. These differences in the profile shape

depend on the different characteristics of the models (e.g. spatial and temporal resolution

and parametrization of different processes in the atmosphere). Previous studies analysed

how using different CTMs influences the NO2 retrievals due to the change in the profile

shapes used to calculate the AMF values. Heckel et al. (2011) compared retrievals using

fine and coarse resolution models and concluded that using one AMF value for a large

heterogeneous scene can lead to 50% bias in the retrieved NO2 columns.Vinken et al.

(2014) reported much smaller average differences of 10% in retrieved NO2 columns mainly

due to different emission inventories used in TM4 (3◦ x 2◦) and GEOS-Chem (0.5◦ x 0.67◦).

According to Laughner et al. (2016), different temporal resolution also influences a priori

profile shapes; they found differences in the retrieved NO2 column for individual days up

to 40% that were mostly explained by day-to-day wind direction variations that were not

captured in the monthly averages.

All these aspects influence the estimation of retrieval (and AMF) theoretical uncer-

tainties. In order to quantitatively estimate the effect of one model characteristic alone

(e.g. the spatial resolution) on the AMF structural uncertainty it would be necessary to

compare AMF calculated with the same approach but with just that specific characteris-

tic being different in the profile shapes generated by the CTM. Such a specific sensitivity

analysis has not been done in this study but should be considered in future AMF com-

parisons. To test the robustness of our structural uncertainty estimate, we did some

experiments by simulating the effect of high resolution a priori profiles on AMF values.

Kuhlmann et al. (2015), McLinden et al. (2014) and Heckel et al. (2011) reported that

AMFs calculated using coarse resolution a priori profiles are overestimated over polluted

areas by approximately 50%. Over remote locations, there is little spatial variability in

NO2 distributions, and the a priori profile spatial resolution is less important in the AMF

calculation. When including synthetic AMF emulating the use of high resolution a priori

profiles over polluted areas, the estimated AMF structural uncertainty is not strongly

affected (increases by 3-6%). This indicates that with the ensemble of retrievals used in

our comparison the estimate of the structural uncertainty in the AMF calculation may

be considered a robust estimate.

The findings in this subsection indicate that quality assurance efforts for retrievals

should not focus just on column validation, but also target the validation of the a priori

NO2 profiles used in the AMF calculations. It is worth to note that using averaging kernels

in satellite applications (e.g. when comparing retrieved NO2 columns with modelled NO2

distributions or observed NO2 profiles) will reduce the representativeness errors in the

comparisons associated with the a priori trace gas profile used in the retrieval scheme

(e.g. Boersma et al. (2016b)).
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Round robin: different cloud parameters

In the previous section, we found that differences between a priori NO2 profiles and surface

albedo values are the main cause for AMF structural uncertainty when cloud parameters

are identical in AMF calculation approaches. Here we extend our round robin experiment

by including AMF calculations from Peking University (Lin et al. (2014, 2015)) that were

done with different cloud parameters (Table 3.3) than the O2-O2 cloud parameters used

by all other groups. The comparison of Peking University and WUR AMFs thus allowed

us to investigate the relative importance of differences in cloud parameters in driving

AMF structural uncertainty. Our comparison of AMFs is confined to China, since Peking

University calculations are only available over that region.

All the groups calculate similar spatial patterns for the AMFs over China (Fig. 3.10).

In the polluted northeast (Beijing area) the AMFs are lower due to the reduced sensitivity

to NO2 in the lower troposphere. In the western part over the Tibet region, AMFs are

higher due to the presence of ice and snow in February. Figure 3.11 shows the average

ratio of each group’s AMF to the ensemble mean AMF (bars) and the correlation (crosses)

for polluted situations (left panel) and unpolluted situations (right panel). In polluted

regions, AMFs generally agree within 37% in February and within 20% in August, and

correlations are 0.7-0.9. Peking University AMFs are higher than the ensemble mean

AMF, especially in August when they are 25% higher. WUR and MPI-C AMFs are

lower than the mean AMF, especially in August (20% lower). In unpolluted regions the

agreement is better: within 26% in February and within 16% in August, with correlation

of 0.8-0.95 (see Table S3.7).

To estimate the effect of differences in cloud parameters on AMF structural uncer-

tainty, we analysed differences in AMF calculated by WUR and Peking University. The

Peking University AMF calculations (and the cloud parameters) were based on a version

of the POMINO retrieval using clouds retrieved with an implicit aerosol treatment (i.e.

similar to KNMI/WUR). We explored the correlations between Peking University and

WUR AMFs differences and differences in cloud pressure (Pc) and NO2 vertical columns

by requiring the differences in other forward model parameters to be relatively small.

Results are shown in Fig. S3.4 and Table S3.4. AMF differences are partly explained

by differences in the effective cloud pressures (Table S3.4): the O2-O2 cloud pressures

used by WUR are systematically lower (by 100 hPa) than those by Peking University, in

line with (Veefkind et al., 2016). This results in stronger screening of below-cloud NO2

pollution, and consequently lower AMFs by WUR compared to Peking University AMFs.

Peking University uses NO2 profiles from GEOS-Chem. These profiles tend to peak at

higher vertical levels than those from TM4 (Lin et al. (2014), Boersma et al. (2016b)),

thus contributing to higher AMFs by Peking University compared to WUR AMFs. In

summary, the more elevated NO2 profiles in combination with less elevated clouds explain
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Figure 3.10: Tropospheric NO2 AMFs calculated by each of the groups for a complete day of
OMI measurements (02 February 2005) over China ( 20◦N-53◦N/ 80◦W-130◦W). Only pixels
for SZA < 60 ◦, effective cloud fraction < 0.5 and surface albedo < 0.3 are shown.
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Figure 3.11: Ratio of tropospheric NO2 AMFs by each group to the ensemble mean (left
axis, bars) and the correlation coefficient (right axis, cross) for two complete days of OMI
measurements (02 February 2005 (blue) and 16 August 2005 (green)) for polluted (left panel)
and unpolluted (right panel) pixels over China. The error bars correspond to the standard
deviation. Only pixels for SZA < 60 ◦ and cloud fraction < 0.2 are considered in the analysis.

the substantially higher AMF by Peking University than WUR AMFs.

Round robin: explicit aerosol correction

The POMINO retrieval by Peking University explicitly corrects for the presence of aerosols

in the atmosphere by including profiles of aerosol optical properties simulated by the

GEOS-Chem model (and constrained by MODIS AOD on a monthly basis) in the radia-

tive transfer model and in the cloud retrieval (Lin et al. (2014, 2015)). All the other

groups except MPIC-C (see Table 3.3 and Sect. S3.1.3) assume that the aerosol effects

are implicitly accounted for in the cloud retrievals (Boersma et al. (2011), Castellanos

et al. (2015)). Including an explicit aerosol correction influences AMF values indirectly

by changes in cloud fraction and cloud pressure and directly in the radiative transfer

simulations. We quantify the effect of the choice of aerosol correction in AMF struc-

tural uncertainty by comparing AMFs calculated by Peking University with (abbreviated

AMFaer hereafter) and without (AMF) explicit aerosol correction.

In situations with substantial aerosol pollution (AOD > 0.5), selection of one aerosol

correction approach over the other can result in AMF structural uncertainty of 45% over

China. The sign of the AMF differences depends mainly on the altitude of the aerosol

layer relative to the NO2 profile (see e.g. Leitao et al. (2010)). We find that AMFaer
are on average 55% smaller in situations when aerosols are located above the NO2 layer,

mainly because cloud pressures are lower on average (more than 350 hPa), resulting in

stronger screening of NO2 (upper panel of Fig. S3.5; Table S3.5). When the aerosol
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vertical distribution is similar to that of NO2, AMFaer are on average 45% higher, mostly

because of much smaller cloud fractions, resulting in reduced screening of below-cloud

NO2 (lower panel in Fig. S3.5; Table S3.5). An additional factor is that when aerosols are

mixed with NO2, they increase the optical light path and enhance AMF values. These

results are in line with Lin et al. (2015) where an evaluation of the influence of the aerosols

in the NO2 retrieval is analyzed for 2012.

3.3.4 Stratospheric air mass factors

We pointed out in Sect. 3.3.3 that differences in the description of the atmosphere’s

sphericity could lead to differences in stratospheric AMFs, especially for extreme geome-

tries. Here we investigate the differences between stratospheric NO2 AMFs calculated

with DAK and McArtim radiative transfer models. The McArtim model simulates the

radiative transfer in an atmosphere that is spherical for incoming, single-scattered, and

multiple-scattered light. DAK’s atmosphere is spherical for incoming sunlight, but plane-

parallel for scattered sunlight. Based on these differences, we may expect the average

photon paths at high altitudes in McArtim to be shorter than in DAK, as diffuse photon

contributions (from near-horizontal directions) in McArtim are bound to finite spherical

atmosphere (as illustrated in Figure S3.2). Consequently, stratospheric AMFs in McAr-

tim are smaller (Fig. 3.4a). Figure 3.12 shows that McArtim box-AMFs (at 25 hPa) are

systematically lower than those from DAK by 1-2% for moderate viewing geometries, with

more significant differences (up to -5% to -10%) when solar zenith and viewing angles are

large.

Figure 3.12: Box-AMFs at 25 hPa as a function of cosine of SZA (left panel) and as a
function of cosine of VZA (right panel). In the left panel, VZA is constant at 37◦ (µ = 0.8),
and at the right panel, SZA is constant at 37◦ (µ0 = 0.8).

A direct validation of stratospheric NO2 AMFs is difficult, but comparing simulated

stratospheric slant column densities against observed NO2 SCDs constitutes a test of
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the radiative transfer models. Here we use OMI-observed (un-destriped) SCDs over the

Pacific from the OMNO2A v1 product (van Geffen et al. (2015), Boersma et al. (2011))

as benchmark. The NO2 columns over the Pacific Ocean are dominated by stratospheric

NO2, so we expect simulated stratospheric SCD values to be similar or somewhat smaller

than the observed, total SCDs. Simulated SCDs are the product of modelled VCDs

(from data assimilation in TM4) and the stratospheric AMFs calculated with DAK and

McArtim. Figure 3.13 (left panel) indicates (for high solar and viewing zenith angles) that

stratospheric SCDs simulated with McArtim are close to, or slightly below the OMI SCDs.

In contrast, the stratospheric SCDs simulated with DAK overtop the OMI SCDs, because

of the higher stratospheric AMFs from that model. This inevitably leads to negative

values for SCD-SCDstrat, and consequently to reduced or even negative tropospheric NO2

VCDs at high latitudes. Indeed, DOMINO v2 retrievals (using DAK stratospheric AMFs)

are known to suffer from negative tropospheric VCDs at high latitudes especially in the

summer hemisphere (Beirle et al., 2016) when solar zenith angles are largest. For small

solar zenith angles in the Tropics, the differences between DAK and McArtim stratospheric

slant columns are smaller, but still appreciable at the edges of the swath (Fig. 3.13 (right

panel)).

Figure 3.13: Averaged OMI total NO2 SCD (black line) as a function of viewing zenith angle
for solar zenith angles between 70-80 degrees (left panel) and 20-30 degrees (right panel) (OMI
orbit 02940 on 02 February 2005). The blue line indicates the estimated stratospheric SCDs
based on DOMINO v2 stratospheric VCDs and DAK stratospheric AMFs, and the purple line
represents the stratospheric SCDs based on DOMINO v2 stratospheric VCDs and McArtim
stratospheric AMFs. The only difference between the DAK and McArtim-based stratospheric
slant columns is the use of the radiative transfer model; all other relevant parameters (TM4
assimilated stratospheric column, cloud parameters, albedo, NO2 profile shape) are identical.

We tested whether possible errors in the diurnal cycle of stratospheric NO2 could

explain the overestimated slant columns for extreme viewing geometries. We did so by

imposing stratospheric NO2 vertical columns that are either constant with OMI row num-

ber (i.e. with local time), or increase (as N2O5 photolysis, NO2 concentrations build up)
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at a rate of approximately 0.15 1015 molec/cm2 h−1, i.e. by 1 1015 molec/cm2 from the

left to the right side of the orbit (Fig. S3.6a). These estimates correspond to the range of

increase rates at high latitudes in summer reported in the literature (e.g. Vaughan et al.

(2006), Celarier et al. (2008), Dirksen et al. (2011)). Our tests show that for these scenar-

ios, simulated SCDs based on McArtim generally stay within the observational constraints

of the OMI SCD patterns but that the simulated SCDs based on DAK are still exceeding

the observed SCDs (Fig. S3.6b-c). McArtim provides a better physical description of

photon transport in the stratosphere. The results above are not yet fully conclusive; a

complete test would require the implementation of McArtim (instead of DAK) in the data

assimilation scheme, or a dedicated validation of NO2 columns with independent reference

data in situations with extreme viewing geometries. Nevertheless, our results clearly hint

at McArtim as the RTM providing the more realistic stratospheric AMFs, and we will

test this assumption further in the remainder of the QA4ECV project.

3.4 Conclusions

We have analysed in detail the AMF calculation process for NO2 and HCHO satellite

retrievals from seven different retrieval groups. By comparing approaches for every step

of the AMF calculation process we have identified the main sources of structural un-

certainty and we have traced back these uncertainties to their underlying causes. We

have estimated the structural uncertainty in the NO2 AMF calculation, which results

from methodological choices and from preferences and assumptions made in the calcula-

tion process. Structural uncertainty is relevant beyond theoretical algorithm uncertainty,

which typically only addresses the propagation of errors within the context of one partic-

ular retrieval algorithm.

The choice of RTM for TOA reflectance and box-AMF calculation introduces an av-

erage uncertainty of 2-3%. The detailed comparison showed that state-of-the-art RTMs

are in good agreement. Particularly for DAK, this is the first time that box-AMF calcu-

lations are extensively tested against those calculated with other RTMs. The McArtim

model simulates systematically lower box-AMFs in the stratosphere, which we attribute

to the model’s geometrically more realistic description of photon scattering in a spherical

atmosphere. The four European retrieval groups agree within 6% in their calculation of

NO2 tropospheric AMFs when identical ancillary data (surface albedo, terrain height,

cloud parameters and a priori trace gas profile) and cloud correction are used. This

demonstrates that the selection of RTM and the interpolation operations lead to modest

uncertainty, which is intrinsic to the calculation method chosen and therefore cannot be

avoided.
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When retrieval groups use their preference for ancillary data along with their preferred

cloud and aerosol correction, we find that the structural uncertainty of the AMF calcula-

tion is 42% over polluted regions and 31% over unpolluted regions. Table 3.4 shows the

escalation of the structural uncertainty with every step of the AMF calculation. The steep

increase from 6% to 42% strongly suggests that it is not the models or the calculation

method but the assumptions and choices made to represent the state of the atmosphere

that introduce most structural uncertainty in the AMF calculation. The structural un-

certainty is of similar magnitude as the theoretical uncertainties found in algorithm error

propagation studies which confirms that there is a substantial systematic component in

trace gas satellite retrieval uncertainties.

Table 3.4: Average relative structural uncertainty for every step of the AMF calculation
following the comparison process shown in Fig. 3.1. This includes the modelling of TOA
reflectance (σR), calculation of box-AMF LUT (σm), tropospheric AMFs using harmonized
settings (σM ) and the overall structural uncertainty from AMF using preferred settings (σM ′).

σR σm σM σM ′

NO2 1.1% 2.6% 6% 31% - 42%
HCHO 1.5% 2.6%

Sensitivity studies for one particular algorithm indicate that the choice for cloud cor-

rection (IPA or clear-sky AMF for small cloud fractions) is a strong source of structural

uncertainty especially for polluted situations with residual cloud fractions of 0.05-0.2 (on

average an structural uncertainty of 20%). The choice for aerosol correction (explicitly or

implicitly via the cloud correction) introduces an average uncertainty of 50%, especially

when aerosol loading is substantial. Selecting trace gas a priori profiles from different

chemistry transport models, surface albedo from different datasets and cloud parameters

from different cloud retrievals contributes substantially to structural uncertainty in the

AMFs. These findings point to the need for detailed validation experiments designed to

specifically test cloud and aerosol correction methods under relevant conditions (strong

pollution, residual cloud fractions of 0.1-0.2). Not just the retrieved NO2 column itself

should be validated, but also the a priori vertical NO2 profile, the cloud and aerosol distri-

butions, and the surface albedo values should be compared in detail against independent

reference measurements.

The magnitude of the structural uncertainty in AMF calculations is significant, and

is caused mainly by methodological differences and particular preferences for ancillary

data between different retrieval groups. This study provides evidence for the need of

improvement of the different ancillary datasets, including uncertainties of the forward

model parameters used in the retrievals for a better agreement in the AMF calculation.

This will decrease significantly AMF structural uncertainty towards the levels desired

in user requirement studies (± 10 %). As there is no ”true” AMF value to be used as
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reference, it is difficult to decide which approach and which ancillary data are the best.

For this reason, future research should include a thorough validation against independent

reference data, specifically in the situations where AMF structural uncertainty has highest

impact.
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Abstract

The angular distribution of the light reflected by the Earth’s surface influences top-of-

atmosphere (TOA) reflectance values. This surface reflectance anisotropy has implications

for UV/Vis satellite retrievals of albedo, clouds, and trace gases such as nitrogen dioxide

(NO2). These retrievals routinely assume the surface to reflect light isotropically. Here

we show that cloud fractions retrieved from GOME-2A and OMI with the FRESCO and

OMCLDO2 algorithms have an East-West bias of 10% to 50%, highest over vegetation

and forested areas, and that this bias originates from the assumption of isotropic surface

reflection. To interpret the across-track bias with the DAK radiative transfer model, we

implement the Bidirectional Reflectance Distribution Function (BRDF) from the Ross-Li

semi-empirical model. Testing our implementation against state-of-art RTMs LIDORT

and SCIATRAN, we find that simulated TOA reflectance generally agrees to within 1%.

We replace the assumption of isotropic surface reflection in the equations used to retrieve

cloud fractions over forested scenes with scattering kernels and corresponding BRDF pa-

rameters from a daily, high-resolution database derived from 16 years’ worth of MODIS

measurements. Doing so, the East-West bias in the simulated cloud fractions largely van-

ishes. We conclude that across-track biases in cloud fractions can be explained by cloud

algorithms not adequately accounting for the effects of surface reflectance anisotropy. The

implications for NO2 air mass factor (AMF) calculations are substantial. Under mod-

erately polluted NO2 and backscatter conditions, clear-sky AMFs are up to 20% higher

and cloud radiance fractions up to 40% lower if surface anisotropic reflection is accounted

for. The combined effect of these changes is that NO2 total AMFs increase by up to 30%

for backscatter geometries (and decrease by up to 35% for forward scattering geometries),

stronger than the effect of either contribution alone. In an unpolluted troposphere, surface

BRDF effects on cloud fraction counteract (and largely cancel) the effect on the clear-sky

AMF. Our results emphasize that surface reflectance anisotropy needs to be taken into

account in a coherent manner for more realistic and accurate retrievals of clouds and

NO2 from UV/Vis satellite sensors. These improvements will be beneficial for current

sensors, in particular for the recently launched TROPOMI instrument with a high spatial

resolution.
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4.1 Introduction

Nitrogen dioxide (NO2) in the lower troposphere is an important constituent of air pollu-

tion. In Europe, the annual mean NO2 concentration limit value (40 µg/m3) is still widely

exceeded, exposing 30 million people to poor air quality with known harmful health effects

(EEA, 2016). In combination with other pollutants and sunlight, chemical and physical

transformations of nitrogen oxides (NO+NO2=NOx) lead to the formation of particu-

late matter and ozone smog, further impacting public health, ecosystems, and climate.

Satellite measurements of tropospheric NO2 column densities provide much better spatial

coverage than ground-based sensors, and they have been used to monitor trends, and

to estimate NOx emissions and NO2 surface concentrations (e.g. Richter et al. (2005),

Martin et al. (2003), Lamsal et al. (2008)). The spatial resolution of the satellite instru-

ments and their retrievals is improving such that the observed NO2 pollution can now be

traced back to emissions from individual cities, power plants, and transportation sectors.

The uncertainty of satellite NO2 retrievals is considerable, and mainly related to the ad-

equacy of the assumptions made on the state of the atmosphere. We recently estimated

the structural uncertainty from an ensemble of NO2 retrievals to be on the order of 30-

40% (Lorente et al., 2017). An important component of this uncertainty is how surface

properties (usually from an external database) are taken into account, and how errors

in the external database propagate in the air mass factor (AMF) calculations. This is

not straightforward, because the AMF calculation directly depends on surface properties

under clear-sky circumstances, and indirectly via cloud parameters retrieved for the same

scene by the cloud algorithm.

Surfaces reflect light differently in each direction, and the angular distribution of the

reflected light influences top-of-atmosphere (TOA) reflectance levels measured by satel-

lite instruments that monitor atmospheric composition. Therefore, surface reflectance

anisotropy influences retrievals of surface albedo, trace gases, aerosols and clouds from

satellite instruments like the Global Ozone Monitoring Experiment 2 (GOME-2) and the

Ozone Monitoring Instrument (OMI). In surface albedo, cloud, aerosols and trace gas re-

trievals, the surface is often assumed to be Lambertian: an idealized surface that reflects

light isotropically (e.g. Kleipool et al. (2008), Veefkind et al. (2016), Torres et al. (2007),

Boersma et al. (2011)). This assumption implies that the geometry dependent scattering

properties of the reflecting surface are ignored.

The so-called Lambertian-equivalent-reflectivity (LER) climatologies represent the

albedo of the Lambertian surface in the radiative transfer simulations for cloud retrievals

and trace gas retrievals. In constructing such climatologies (e.g. monthly climatologies),

a large ensemble of measurements taken over a scene over multiple years is analyzed sta-

tistically, and based on the lower 1% percentile reflectance, an inversion is done to retrieve



92
The importance of surface reflectance anisotropy for cloud and NO2

retrievals from GOME-2 and OMI

the surface reflectance (e.g. Koelemeijer et al. (2003), Kleipool et al. (2008), Tilstra et al.

(2017)). Depending on the exact viewing and illumination geometry however, the surface

may appear darker or brighter. Taking the lower 1% percentile reflectances therefore skews

the distribution of retrieved albedo values to those scenes that appear darker from space.

Using these climatologies therefore fails to represent any surface reflectance anisotropic

effects on TOA reflectance simulations for the widely varying subset of viewing geometries

encountered along a satellite orbit. We may expect cloud retrievals to be directly affected

by the assumption of a Lambertian surface in the radiative transfer: if a scene is brighter

than predicted by the biased climatology, cloud fractions will be overestimated. Trace

gas retrievals are affected by the Lambertian assumption in the calculation of the AMF:

directly via the clear-sky AMF and also indirectly because the retrieved cloud parameters

are used to correct for the possible presence of residual clouds via the independent pixel

approximation (IPA) method. In the IPA, the cloud radiance fraction weighs the clear-sky

and cloudy parts of the scene for the calculation of the overall AMF and vertical column

density (VCD) (e.g. Martin et al. (2002)).

The angular distribution of the reflected light by a surface is represented mathemati-

cally by the Bidirectional Reflectance Distribution Function (BRDF) (Nicodemus et al.,

1992). Anisotropy is a fundamental physical property of surface reflectance, so in order

to fully represent the geometry dependent surface scattering properties in cloud and trace

gas retrievals, surface BRDF has to replace the isotropic Lambertian albedo. Some studies

have already shown that surface BRDF effects are important for NO2 and cloud retrievals.

Zhou et al. (2010) found that after including surface BRDF over Europe, differences in

NO2 columns were higher in November (20%) compared to July (3%), when the solar

zenith angle is small. Noguchi et al. (2014) studied surface BRDF effects on the diurnal

cycle of clear-sky geostationary measurements over Japan, and found that whether NO2

columns are under (-15%) or overestimated (+9%) depends on the specific geometry of

the measurement. To also address the need of including surface BRDF effects on cloud

algorithms, Lin et al. (2014, 2015) updated the POMINO retrieval over China. Changes

in surface reflectance led to changes of opposite sign in cloud fraction (±0.05) and more

complex effects on cloud pressure, with an overall change of 10% in NO2 columns that

were regionally and seasonally dependent. Vasilkov et al. (2017) created a geometry de-

pendent surface LER (GLER) product and applied it to OMI NO2 and cloud retrievals.

They found relatively small effects on retrieved cloud parameters and relatively high dif-

ferences in retrieved NO2 columns (up to 50%) driven by GLER values being on average

smaller than the original LER.

These studies show that surface BRDF effects depend on the specific geometry (hence

local time and season) and surface characteristics of the individual measurements, and

that averaging over many pixels results in smaller differences. They analysed mostly
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clear-sky scenes (i.e. no clouds present) or scenes with very low cloud fractions (i.e.

lower than 0.2), and they did not consider how surface reflectance anisotropy affects the

radiative transfer in the atmosphere and TOA reflectance. The indirect effect of biased

cloud parameters on NO2 retrievals combined with effects on clear-sky AMFs received

less attention. Vasilkov et al. (2017) and Lin et al. (2015) addressed the indirect effects

and showed that the effects on cloud parameters could enhance or compensate the direct

effect on clear-sky AMFs.

Here we study the effect of surface reflectance anisotropy on surface LER climatologies,

on cloud fraction retrievals and on NO2 tropospheric AMFs, covering the essential steps

from the TOA reflectance to retrieve the final NO2 tropospheric column in a partly cloud

covered pixel. We present observational evidence that surface reflectance anisotropy skews

LER climatologies to the darkest scenes corresponding with forward scattering geometries

(Sect. 4.2). We demonstrate that using these LER climatologies in cloud retrieval algo-

rithms leads to considerable across-track biases in cloud fractions, especially for the O2-A

band (GOME-2), but also for the 477 nm O2-O2 band (OMI). In Section 4.3 we describe

our extension of the DAK radiative transfer model (RTM) to include surface reflectance

anisotropy with the Ross-Li BRDF semi-empirical model. We validate DAK with state-

of-the-art radiative transfer models and evaluate TOA reflectance simulations including

surface BRDF at the relevant wavelengths for cloud and NO2 retrievals. In Sect. 4.4 we

study the consequences of including surface BRDF in the calculation of effective cloud

fractions. In Sect. 4.5 we study the surface BRDF effects on NO2 AMFs, and how these,

in combination with the effects on cloud fractions, affect tropospheric NO2 retrievals in

cloudy scenes. We end with conclusions and outlook.

4.2 Evidence of the influence of surface reflectance

anisotropy on LER climatologies and cloud re-

trievals

Surface LER climatologies are commonly used as boundary conditions for cloud and trace

gas retrievals (e.g. De Smedt et al. (2017), Bucsela et al. (2013)). Earlier instruments

like GOME and SCIAMACHY have very coarse pixels (40 x 320 km2 and 60 x 30 km2,

respectively) and a narrow swath (960 km). For retrievals from these instruments, the

Lambertian assumption can be justified as surface BRDF effects are likely to smooth

out over the large and heterogeneous pixels. Newer instruments like OMI, and especially

TROPOMI, have a higher spatial resolution (13 x 24 km2 and 3.5 x 7 km2, respectively)

and a wider swath (up to 2600 km), i.e. a wider range of viewing directions, and therefore

the surface BRDF effects become more relevant. One of the advantages of using LER
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climatologies is that they have been derived from measurements of the satellite instrument

itself. For example, Koelemeijer et al. (2003) climatology for GOME and SCIAMACHY,

Kleipool et al. (2008) for OMI and Tilstra et al. (2017) for GOME-2 and SCIAMACHY.

In constructing these climatologies, it is assumed that the surface reflectance is fully

isotropic, and the angular dependence of reflected light is neglected. In the minimum-LER

method, surface LER values are the 1% cumulative values retrieved from the histogram of

Earth reflectance over a specific scene in a climatological period. The presence of clouds

increases TOA reflectance compared to clear-sky scenes, therefore taking the minimum

LER assures that the surface LER values represent mostly cloud-free scenes. However, if

for particular viewing and illumination geometries, the TOA reflectance appears brighter,

then those measurements will not be included in the climatology. This will introduce an

intrinsic (but not explicit) viewing angle dependency in the surface LER climatologies

derived from the satellites. That measurements taken under different viewing geometry

configurations are used to create the climatologies, does not mean that climatological

surface LER values are representative for typical or average viewing geometries of the

instruments.

Figure 4.1a, b show the minimum surface LER climatology (2007-2013) at 494 nm

and 772 nm for March over Amazonia for GOME-2 onboard MetOp-A (hereafter GOME-

2A) from Tilstra et al. (2017). This climatology was derived from the 1% cumulative

reflectances gathered irrespective of viewing geometry. Figure 4.1c, d show the directional

dependence of the minimum surface LER climatologies derived using the same GOME-2A

measurements, but now discriminating between different geometries. For this purpose,

the 24 measurements in 24 different viewing directions along the GOME-2 swath are

considered independently, and then the minimum LER method is applied for each viewing

direction as in the derivation of the original full swath climatology. We consider East as

the 8 most eastward measurements, Nadir as the centered ones and West as the 8 most

westward measurements. The average relative azimuth angle (RAA) characterizes the

light scattering regime for measurements in each region: low RAA in the East (RAA

= 16◦) corresponds to forward scattering and high RAA (RAA = 164◦) in the West

corresponds to backward scattering.

In Figs. 4.1c, d the horizontal line is the original surface LER value obtained using

all GOME-2A measurements over Amazonia, and corresponds to the average value over

the box in Fig. 4.1a, b (ALER = 0.028 at 494 nm and ALER = 0.21 at 758 nm). The

albedo is lower at 494 nm because of absorption of light by chlorophyll. At 758 nm, if

only measurements of the eastern part (E) of the orbit are used to construct the climatol-

ogy, the average surface LER value is slightly lower (ALER = 0.19) than the value using

all measurements. If only nadir (N) measurements are used, the average surface LER

increases (ALER = 0.24), and for the westernmost measurements (W), the average surface
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LER increases to almost twice the original value (ALER = 0.37). Using the full swath

climatology thus implies a slight overestimation of the surface reflectance for the eastern

measurements and a strong underestimation for nadir and western measurements. This

systematic effect is a consequence of the directional signature of the surface reflectance. In

the backward scattering direction, canopy surfaces generally appear brighter than in the

forward scatter direction (e.g. Camacho-de Coca et al. (2004)). This effect is strongest

in the near-infrared (NIR, 0.7 - 2.5 µm) spectral range where the atmosphere is more

transparent, and over vegetation, which has non-isotropic elements (e.g. dense trees with

heterogeneous leave orientation and shadowing effects). The effect in the surface LER

climatologies also appears over non-vegetated regions and at shorter wavelengths. How-

ever, it is not as strong because stronger Rayleigh scattering tends to smooth out the

sensitivity to surface effects and because land surfaces are darker at shorter wavelengths.

Non-vegetated areas are usually more isotropic than vegetated areas. Because these bi-

ased surface LER climatologies are used in cloud retrievals (e.g. FRESCO Wang et al.

(2008), O2-O2 Veefkind et al. (2016)), we anticipate a substantial effect on the retrieved

cloud properties and as a consequence on trace gas column retrievals that use cloud pa-

rameters retrieved in the NIR, where sensitivity to surface anisotropy is strong (such as

GOME-2).

Indeed, we find that cloud fractions retrieved with FRESCO cloud retrieval from

GOME-2 measurements are affected by the across-track bias in the surface LER clima-

tology. FRESCO retrieves cloud properties in the O2 A-band near 760 nm. Figure 4.2a

shows that over Amazonia (in March 2008) FRESCO cloud fractions are generally lower

for the eastern measurements than for nadir and western measurements. This dependency

can be explained by the directional biases in the surface LER (Fig. 4.1d). In the nadir

and west measurements, the surface LER is underestimated and the retrieval compensates

this overestimating cloud fractions in order to match observed TOA reflectances.

This results in higher mean effective cloud fractions for the nadir (ceff = 0.50) and

west (ceff = 0.66) measurements compared to the east measurements (ceff = 0.33). The

East - West bias (100 · (ceff,W − ceff,E)/ceff,W) in the cloud fraction depends on the time

of the year and the location. It is not only present over forested areas (i.e. Amazonia

(50%), Equatorial Africa (42%) in March 2008) but also occurs over other regions (e.g.

over Europe (25%) and Asia (10%), not shown). Furthermore, in the ensemble of western

measurements in most of the regions there are very few cloud fraction values lower than

0.2. This directly impacts trace gas retrievals, because a cloud fraction of 0.2 is often used

as a threshold above which it is considered difficult to retrieve tropospheric NO2 columns

(cloud screening effect). This bias in FRESCO cloud fractions is significantly higher than

the cloud fraction retrieval uncertainty estimates of 0.05 due to surface albedo uncertainty

(Koelemeijer et al., 2002), which underlines the need to correct for surface BRDF effects
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Figure 4.1: (a, b) Map of GOME-2A minimum surface LER climatology (2007-2013) for
March at (a) 494 nm and (b) at 772 nm over Amazonia (Lat: 5N-10S, Lon: 60-70W, upper
panel) at 1◦ x 1◦ resolution. (c, d) Directional dependence of surface LER climatology (2007-
2013) derived from individual measurements along the swath: East (E) for the 8 easternmost
pixels, Nadir (N) for the 8 center pixels and West (W) for the 8 westernmost pixels. The
horizontal line represents the surface LER using the full swath which is the average of the
surface LER in panels (a, b).

in cloud retrievals in the O2-A band.

The OMCLDO2 cloud retrieval from the OMI retrieves cloud properties in the O2-O2

band around 470 nm and uses the Kleipool et al. (2008) surface LER climatology, which

is based on the same principles as the climatology used in FRESCO. Cloud fractions from

the OMI instrument retrieved with the OMCLDO2 algorithm also show a West - East1

1OMI swath is divided into 60 different viewing directions; East corresponds to the 20 easternmost
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Figure 4.2: Box-plot of cloud fractions retrieved with (a) FRESCO cloud retrieval for GOME-
2A for March 2008 and (b) OMCLDO2 cloud retrieval for OMI for September 2005 for East-
Nadir- West measurements over Amazonia (Lat:5N-10S, Lon:60-70W). Black triangles corre-
spond to mean values, red lines to median. The box represents 25th and 75th percentiles and
the dashed lines the minimum and maximum values.

bias (Fig. 4.2b) over Amazonia (September 2005) of 26% (ceff,W = 0.31, ceff,E = 0.42) and

around 15% over other regions. The effect is weaker than for GOME-2A (50% vs. 26%

over Amazonia), but still substantial. The bias shown here is slightly higher than the

cloud fraction retrieval uncertainty estimate which is always below 0.1 (Acarreta et al.,

2004), suggesting that the bias in the O2-O2 retrieved cloud fractions can be significant

depending on location and time of the year. Because OMI angles are larger than for

GOME-2, a larger effect could be expected if also the O2-A band would have been used

to retrieve clouds from OMI measurements.

We have shown that surface BRDF effects results in a distinct across-track bias in

surface LER climatologies and cloud fractions retrieved from satellite instruments and

that the effect is highly relevant in the NIR and in the visible. Errors in cloud fraction

and surface albedo are the most important source of tropospheric AMF errors (Boersma

et al., 2004), so we expect a strong impact on tropospheric NO2 retrievals. In the following

section we describe how to account for surface anisotropy in the radiative transfer model

DAK. Then, we study how cloud fraction and NO2 AMFs in the framework of cloud and

trace gas retrievals are affected by the assumption of a Lambertian surface as compared

to a realistic anisotropically reflecting surface.

measurements and West to the 20 westernmost measurements
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Figure 4.3: Sketch of the surface to top-of-atmosphere system with zenith and azimuth
angles that define incident (θ′, ϕ′) and reflected (θ, ϕ ) directions of light. Direct incident
solar light is described by (θ0, ϕ0). ALER is the Lambertian surface albedo and Rg the surface
BRDF.

4.3 Reflectance simulations with surface BRDF in

DAK

4.3.1 Definition of BRDF

The amount of radiation reflected by a surface in a certain direction depends on the

direction of the incident irradiance and on the direction in which the reflected radiance

is observed. The surface Bidirectional Reflectance Distribution Function (BRDF) is a

function that characterizes the directional reflecting properties of a surface. The surface

BRDF mathematically describes the angular distribution of the surface reflectance: Rg as

a function of the illumination direction (incident, θ′, ϕ′) and viewing direction (reflected,

θ, ϕ) (see Fig. 4.3). It is expressed as the ratio of the reflected radiance in a certain

direction (dL) and the incident irradiance from a particular direction (dE ′) (Nicodemus

et al., 1992):

Rg(θ′, ϕ′; θ, ϕ) = dL(θ′, ϕ′; θ, ϕ)/dE ′(θ′, ϕ′). (4.1)

The zenith angle (θ) and the azimuth angle (ϕ) define the direction of incidence (θ′, ϕ′)

and reflectance (θ, ϕ), as sketched in Fig. 4.3.

The albedo of a surface is generally defined as the ratio of the irradiance reflected by

a surface area into the whole hemisphere and the irradiance incident on the surface with
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hemispherical angular extent (i.e. coming from all directions) (Schaepman-Strub et al.,

2006). For particular illumination and viewing conditions, black-sky and white-sky albedo

are defined, and they are obtained through hemispherical integration of the surface BRDF.

The black-sky albedo is the albedo without diffuse component in the incident irradiance,

i.e. the illumination of the surface is from a single direction. It is defined as the integral

of the BRDF over the reflection hemisphere of 2π steradians (directional-hemispherical

reflectance):

Abs(θ
′, λ) =

∫ 2π

0

∫ π
2

0

Rg(θ′, ϕ′; θ, ϕ) cos θ sin θdθdϕ. (4.2)

In the particular case when there is only a diffuse isotropic component in the incident

irradiance, the white-sky albedo can be defined as the integral of the surface BRDF over

both the incident and reflection hemispheres (bi-hemispherical reflectance):

Aws(λ) =

∫ 2π

0

∫ π
2

0

∫ 2π

0

∫ π
2

0

Rg(θ′, ϕ′; θ, ϕ) cos θ′ sin θ′ cos θ sin θdθdϕdθ′dϕ′. (4.3)

The so-called blue-sky albedo is a linear combination of Abs and Aws weighted by the

fraction of diffuse skylight. The use of either Abs, Aws or ALER in different applications

depends on the assumptions of each parameter and the particular application. In the NIR,

the diffuse component in the radiation field is much smaller than the direct component

so the use of the Abs is justified because it assumes only direct light. Aws might be more

suitable for applications in the UV/visible spectral range where the diffuse component

of the incident light may be of comparable size as the direct component. In any case,

MODIS visible and NIR Aws and Abs do not differ on average more than 5% in summer

(Oleson et al., 2003). Aws is constant with solar incident direction, so its use is valid as a

ALER but it accounts for some surface BRDF effects (Eq. 4.3).

Several models have been developed to describe surface BRDF (Wanner et al., 1995).

These are either physical, empirical or semi-empirical models. Physical models are

constructed using laws of physics to explicitly describe the processes that lead to the

anisotropic behaviour of surface reflectance. Empirical models characterize the BRDF us-

ing mathematical functions that are suitable to describe the observed surface reflectance.

Semi-empirical models describe the surface BRDF as a weighted sum of empirical func-

tions derived from physical approximations.

Semi-empirical models are commonly used for global surface BRDF characterization

using remote sensing instruments. In these models, surface reflectance is represented as

linear combination of different terms (the so-called kernels) that characterize different

types of scattering that lead to the directional signatures on the reflectance (Roujean

et al., 1992). Typically these terms consist of an isotropic term, a volume scattering

term, and a geometric scattering term. The weights of the kernels cannot be directly
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interpreted as physical characteristics from the reflecting surface, but just as a first order

approximation of the structure of the surface BRDF (Gao et al., 2003).

In the semi-empirical BRDF Ross Thick-Li Sparse (hereinafter Ross-Li) kernel-driven

model, the surface reflectance is expressed as a sum of an isotropic term and two kernels

(Ki) that depend on incident zenith angle (θ′), viewing zenith angle (θ) and relative

azimuth angle (ϕ− ϕ′):

Rg(θ, θ′, ϕ− ϕ′, λ) = fiso(λ) + fvol(λ)Kvol(θ, θ
′, ϕ− ϕ′) + fgeo(λ)Kgeo(θ, θ′, ϕ− ϕ′). (4.4)

In Eq. 4.4 Ki are the kernels from the semi-empirical Ross-Li model that describe the

three basic scattering types and fi are the surface BRDF parameters that are retrieved

from surface reflectance observations from satellite measurements (e.g. MODIS). The

surface reflectance cloud-free observations used to obtain the surface BRDF parameters

are corrected for absorption and scattering by atmospheric gases, aerosols and thin clouds

(Vermote et al., 1997). Improvements in the atmospheric correction scheme include as

much information as possible derived from the satellite itself (e.g. MODIS aerosol optical

thickness) (Vermote and Kotchenova (2008)).

The isotropy parameter (fiso) represents the isotropic scattering from a nadir incident

and nadir view position. The volumetric scattering is represented by the Ross-Thick ker-

nel, Kvol. It is derived in a single scattering approximation from radiative transfer theory

for a thick homogeneous layer of small scatterers, with equal reflectance and transmittance

(Roujean et al., 1992). To account for the reflectance peak in the backscatter direction

(i.e. the hot-spot effect) we include the modification on the volumetric kernel by Maignan

et al. (2004). The geometric scattering is represented by the Li-Sparse kernel, Kgeo. For

this case, the scene is assumed to contain sparse objects that cast perfectly black shadows

with sunlit and shaded portions of the ground and crown contributing to the modelled

reflectance of the scene (Li and Strahler, 1986). The exact formulae for these kernels are

summarized in Sect. S4.1.

4.3.2 Surface BRDF implementation in DAK

The radiative transfer model DAK (Doubling-Adding KNMI, Lorente et al. (2017),

Stammes et al. (1989), de Haan et al. (1987)) is used in the GOME-2 and OMI cloud re-

trievals (FRESCO and OMCLDO2) and in the DOMINO NO2 retrieval. Originally DAK

only considered Lambertian surfaces. To account for the surface reflectance anisotropy

in DAK, we have implemented the Ross-Li kernel-driven model. We chose this model

for consistency with the retrieval algorithm of the MODIS BRDF/Albedo product that

we will use in our simulations. The MODIS satellite provides a reliable surface BRDF

product and its resolution is suitable to capture surface anisotropy variations for OMI
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and GOME-2 resolution. MODIS BRDF/Albedo products have been successfully used

in different fields of atmospheric and climate science such as analysis of radiative forcing

due to vegetation change (Myhre et al., 2005) and assessment of land surface albedo in

global climate models (Oleson et al., 2003).

After the implementation of the Ross-Li surface BRDF model in DAK, the surface

reflectance matrix Rg now contains the full reflection properties of the surface and sub-

stitutes the constant isotropic value used for the Lambertian case. This matrix is filled

with the surface reflectance calculated with the Ross-Li BRDF model via Eq. 4.4 as a

function of θ, θ′ for a specific ϕ− ϕ′. For the Lambertian case, the matrix only contains

the (1,1) element, which is the value of the surface albedo. We neglect polarization in the

BRDF. In the Doubling-Adding method for radiative transfer calculation, all the matrices

(scattering, reflection and transmission matrices) are expanded in a Fourier series for the

integration over ϕ− ϕ′ following the approach in de Haan et al. (1987). For each Fourier

term the Doubling-Adding procedure is applied separately, including the addition of the

surface. The m-th Fourier coefficient matrix for the surface reflectance matrix is obtained

from the relation:

Rm
g (µ, µ′) =

1

2π

∫ 2π

0

d(ϕ− ϕ′) cosm(ϕ− ϕ′)Rg(µ, µ′, ϕ− ϕ′) (4.5)

where µ, µ′ are the cosines of the zenith angles in the scattered and incident direction

(θ, θ′) respectively and ϕ−ϕ′ is the difference between the scattered and incident azimuth

angles.

The coefficients of the Fourier expansion (Eq. 4.5) are calculated with the Gauss-

Legendre quadrature integration method. It is possible to apply this method because the

surface reflection matrix Rg is known at a certain number of division points ϕ− ϕ′. The

number of Fourier terms (m) and Gaussian points for azimuth (ϕ−ϕ′) integration needed

to resolve the surface BRDF shape depends on the illumination and viewing geometry. For

geometries close to the hot-spot region in the backscatter direction, the number of Fourier

terms and Gaussian points needed to reproduce the original BRDF increases significantly

with respect to geometries outside the hot-spot. In order to reach an accuracy of 10−3

(difference between the original BRDF and the reconstructed BRDF with the Fourier

expansion) over the hot spot region, 720 Gaussian points are needed for the azimuth-

integration, and 300 Fourier terms. Outside the hot-spot region, using 60 Gaussian points

and 30 Fourier terms in DAK reproduces the original surface reflectance values with an

accuracy higher than 10−5. In the final implementation of the surface BRDF in the DAK

RTM and in order to have an optimal simulation time, we used 100 Fourier terms and 360

Gaussian points for ϕ − ϕ′, also over the hot-spot. The overall accuracy obtained with

these numbers is within the errors of the radiative transfer modelling for application in



102
The importance of surface reflectance anisotropy for cloud and NO2

retrievals from GOME-2 and OMI

satellite retrievals (Lorente et al., 2017).

One of the disadvantages of empirical models is that they depend on observations to

derive the parameters fi that describe the surface BRDF. Kernel based semi-empirical

models like the Ross-Li model implemented in DAK only describe the surface reflection

accurately for the range of illumination and viewing geometries of the measurements

from which they have been derived (Litvinov et al., 2011). The geometries for which the

semi-empirical models are valid are thus limited by extreme geometries of instruments like

MODIS, which are typically 60-70 degrees for θ and θ′. This limit overlaps well with the θ,

θ′ values in OMI and GOME-2 measurements for which clouds and trace gas columns are

retrieved. For geometries outside the range of MODIS measurement geometries, surface

reflectance variations need to be extrapolated.

In radiative transfer modelling with the Doubling-Adding method, in order to calculate

the radiation field correctly, the reflectance and transmittance values are needed for all

θ, θ′ between 0-90 degrees to integrate over the complete hemisphere. However, after

implementing the Ross-Li BRDF model in DAK, surface reflectance was negative or too

high for some combinations of extreme geometries. In order to avoid these unphysical

values, we tried various ways of extrapolating values from valid (MODIS-range) angles

to the more extreme angles. The different methods did not affect TOA reflectance and

albedo values by more than 1%. Finally, we constrained the surface reflectance to the

range [0, 1] as in Eq. 4.6. This is reasonable as negative surface reflectance values are

not physically valid and in nature surfaces with reflectance higher than 1 do not usually

occur (except e.g. for surfaces covered by snow or ice). Therefore,

If Rg(µi, µ
′
i, ϕi − ϕ′i) < 0 then Rg(µi, µ

′
i, ϕi − ϕ′i) = 0

If Rg(µi, µ
′
i, ϕi − ϕ′i) > 1 then Rg(µi, µ

′
i, ϕi − ϕ′i) = 1.

(4.6)

Figure 4.4 is an example of the surface reflectance computed with the Ross-Li BRDF

model for a surface with parameters (fiso, fvol, fgeo) = (0.0399, 0.0245, 0.0072). This com-

bination of fi values are the spatially averaged parameters from MODIS (BRDF/Albedo

product MCD43A1) Band 3 (459-479 nm) over Amazonia (Lat: 5N-10S, Lon: 60-70W)

for March 2008. This representation of a vegetated surface will be used in all the simula-

tions in Sect. 4.3. The backscatter direction corresponds to values of ϕ−ϕ′ = 180◦ in the

polar plot (Fig. 4.4b) and negative values of θ in the principal plane plot (Fig. 4.4a). In

the backscatter direction, the surface reflectance is two times higher than in the forward

scatter direction (ϕ−ϕ′ = 0◦ in Fig. 4.4b and positive θ in Fig. 4.4a). In the backscatter

direction the so-called hot-spot is clearly visible when θ = (-) 30◦ = θ′.

The surface reflectance dependence on geometry as shown in Fig. 4.4 does not exist

when a constant isotropic albedo or surface LER is used. Using a constant albedo for
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Figure 4.4: Surface reflectance modelled with the Ross-Li surface BRDF model with param-
eters from MODIS band 3 (459-479 nm) representing a vegetated surface over Amazonia (a)
as function of viewing zenith angle in the principal plane (ϕ − ϕ′ = 180◦ for negative θ and
ϕ− ϕ′ = 0◦ for positive θ) and (b) in a polar plot with ϕ− ϕ′ along the azimuth axis and θ
along the polar axis, for θ′ = 30◦.

this surface of 0.03 (the equivalent Aws is 0.034) means that in the backscatter direction

the surface reflectance is underestimated. On the contrary, in the forward direction the

surface reflectance is overestimated if an isotropic surface albedo is used. This surface

reflectance difference between forward-backward scattering direction thus qualitatively

explains the East-West bias in the surface LER in Fig. 4.1. West measurements in GOME-

2 correspond to the backscatter direction, and for this direction the surface reflectance is

higher than in the forward scatter direction, i.e. East measurement in GOME-2. How this

affects effective cloud fractions and NO2 AMFs from GOME-2 and OMI will be analysed

in Sect. 4.4.

4.3.3 Evaluation of surface BRDF effects in DAK TOA reflectances

To evaluate the surface BRDF implementation in DAK we compare TOA reflectances

with those simulated by other state-of-the-art radiative transfer models that include a

description of surface BRDF effects. Both SCIATRAN (Rozanov et al., 2014) and LI-

DORT (Spurr, 2004) model the surface reflectance using the Ross-Li model. To minimize

the differences due to factors other than the surface BRDF implementations itself, the

settings of the three RTMs were as similar as possible. These settings include: no polar-

ization, a plane parallel standard mid-latitude atmosphere and absorption by O3, O2-O2

and NO2.

We select two combinations of the Ross-Li BRDF parameters to model surface re-

flectance of different surfaces. We simulate TOA reflectances at two different wavelengths:
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469 and 645 nm. These wavelengths correspond to the middle of the MODIS band 3 (459-

479 nm) and band 1 (620-670 nm), respectively.

Figure 4.5 shows the simulated TOA reflectance by DAK, SCIATRAN and LIDORT

as a function of VZA along the principal plane at 469 nm and 645 nm. The agreement

between the models is within 0.5% for geometries outside the hot-spot region, and DAK

and SCIATRAN agree within 1% over the hot-spot. With this simple validation we as-

sure that our surface BRDF implementation in DAK is correct. The viewing geometry

dependency of the TOA reflectance is the effect of Rayleigh scattering of a clean atmo-

sphere. By comparing Fig. 4.4a with Fig. 4.5 we see that the effect of surface reflectance

anisotropy is dampened by the scattering in the atmosphere but the hot-spot effect is

still visible at both wavelengths after the radiation has passed through the atmosphere.

Figure 4.5 also shows that the hot-spot effect is less prominent in TOA reflectance at 469

nm compared to 645 nm, where the atmosphere is more transparent. At 469 nm Rayleigh

scattering is stronger than at 645 nm, reducing the effects of surface anisotropy on the

TOA reflectance.

Figure 4.5: TOA reflectance at (a) 469 nm and (b) 645 nm simulated by DAK (blue),
SCIATRAN (red) and LIDORT (green) with the Ross-Li surface BRDF model with parameters
representing a vegetated surface over Amazonia as in Fig.4.4 as a function of the viewing zenith
angle in the principal plane (ϕ−ϕ0 = 180◦ for negative θ and ϕ−ϕ0 = 0◦ for positive θ), for
θ0 = 30◦.

We now compare TOA reflectance simulated with surface BRDF and TOA reflectance

simulated assuming a Lambertian surface at 469 nm (Fig. 4.6a, b) and 758 nm (Fig. 4.6c,

d). For simulations at 758 nm we use surface BRDF parameters from MODIS band 2

(841-876 nm) to account for the increase in surface reflectivity near 700 nm (the so-called

red edge, e.g.Tilstra et al. (2017)). To test the representativeness of band 2 at 758 nm, we

scaled the parameters from band 3 (459-479 nm) using the ratio of reflectance at 772 nm

and 469 nm, and the differences with the parameters from MODIS band 2 were negligible.
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Figure 4.6: (a, c) TOA reflectance as a function of viewing zenith angle simulated by DAK
at 469 nm and 758 nm with a Lambertian surface (blue line) and with surface BRDF (green
line) in the principal plane (ϕ−ϕ0 = 180◦ for negative θ and ϕ−ϕ0 = 0◦ for positive θ). (b,
d) Absolute differences between TOA reflectance with surface BRDF and with a Lambertian
surface at 469 nm and 758 nm. Surface BRDF parameters represent a vegetated surface over
Amazonia at 469 nm (fiso, fvol, fgeo) = (0.0399, 0.0245, 0.0072) and 758 nm (fiso, fvol, fgeo)
= (0.36, 0.24,0.03). Note the different scales.

For the Lambertian case, we use the equivalent Aws calculated using the surface BRDF

model with Eq. 4.3. Figure 4.6b shows that at 469 nm, the highest absolute differences are

around the hot-spot region in the backward scattering direction, where TOA reflectance

with BRDF is up to 15% higher than the TOA reflectance for the Lambertian case. In

the forward scatter direction, TOA reflectance with surface BRDF is 7% lower than for

the Lambertian surface. At 758 nm the effect of surface reflectance anisotropy is much

stronger than at 469 nm (Fig. 4.6c). The highest absolute differences at 758 nm (Fig.

4.6d) are in the hot-spot region in the backscatter direction (up to 30%) and for very

extreme angles (θ > 85◦) in the forward scattering direction.

These results are consistent with those shown in Fig. 4.1 and Fig. 4.2: for GOME-
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2A West measurements (backscatter direction), TOA reflectances with surface BRDF are

higher than for the Lambertian surface. If these differences are not accounted for in the

cloud retrieval, cloud fractions will be biased high in the West measurements to match the

measured TOA reflectance. For East measurements in the forward scatter direction, TOA

reflectance with surface BRDF is lower than for the Lambertian surface. Cloud fractions

retrieved with surface LER will be biased low to match the measured TOA reflectance.

Results from Fig. 4.6 underline that surface BRDF effects in retrieved cloud fractions are

stronger for FRESCO at 758 nm than for OMCLDO2 at 477 nm. Our results also show

that the error in TOA reflectances due to the use of a Lambertian albedo is substantial,

but its magnitude is highly dependent on the spectral and geometrical characteristics of

the measurements: effects are stronger at 758 nm and around the hot-spot region in the

backscatter direction.

4.4 Role of surface BRDF in cloud retrievals

4.4.1 Synthetic cloud fraction retrieval

In Sect. 4.2 we showed that there is an East-West bias in the retrieved cloud fractions from

GOME-2 and OMI. Effective cloud fractions in FRESCO and OMCLDO2 are retrieved

as follows (Stammes et al. (2008),Veefkind et al. (2016)):

ceff =
Rmeas −Rcr

Rcd −Rcr

. (4.7)

Rmeas is the TOA reflectance measured by the satellite instrument, Rcr is the simulated

clear-sky TOA reflectance, and Rcd is the simulated cloudy-sky TOA reflectance assuming

that the cloud is a Lambertian reflector with a fixed albedo of 0.8. In the current versions

of FRESCO (v7) and OMCLDO2 (v2.0) cloud retrievals, the simulated clear-sky TOA

reflectances in Eq. 4.7 assume that the surface is Lambertian. Due to this assumption,

any surface anisotropy signal in the measured TOA reflectance (Rmeas) is neglected, and,

consequently ends up in the retrieved effective cloud fraction.

To improve our understanding of how surface reflectance anisotropy influences the

retrieval of cloud fractions, we use the forward model DAK to approximate Rmeas by

simulating the TOA reflectance for a scene with a Henyey-Greenstein cloud and surface

reflectance anisotropy. This resembles what the satellite would measure in a realistic

cloudy scene. We express Rmeas as the sum of TOA reflectance of the cloudy and the

clear parts of the scene, weighted by a geometric cloud fraction cgeo (independent pixel

approximation):

Rmeas ≈ Rsim = cgeo ·Rcd + (1− cgeo)Rcr. (4.8)
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The effective cloud fraction is the part of the pixel that the Lambertian cloud has to

occupy to match the observed reflectance. The geometric cloud fraction is the part of the

pixel that is covered by the “true” cloud (Stammes et al., 2008).

The settings of the simulations are summarized in Table 4.1. We simulate TOA re-

flectances and cloud fractions in the spectral regions where cloud fractions are calculated

in the cloud algorithms. The Ross-Li BRDF parameters are from a climatology created

by the QA4ECV Land Group at the Mullard Space Science Laboratory (University Col-

lege London). This dataset consists of daily BRDF parameters collected from 16 years of

MODIS measurements (Strahler et al. (1999), MCD43A1) from 2000 to 2016 (QA4ECV-

WP4, 2016). Parameters from band 3 (459 - 479 nm) are representative for simulations

in the O2-O2 absorption band and parameters from band 2 (841-876 nm) for simulations

in the O2-A band (see Sect. 4.3.2). Monthly averaged parameters from this dataset over

Amazonia are shown in Fig. S4.2 and S4.3 in the supplementary material.

We calculate cloud fractions using Eq. 4.7 with Rcr simulated with a Lambertian

surface consistent with the current O2-O2 and FRESCO+ retrievals (hereafter Lambertian

ceff) and by accounting for surface BRDF effects (hereafter BRDF ceff). The Lambertian

cloud is located at the same pressure level as the Henyey-Greenstein cloud so we can

isolate surface BRDF effects on cloud fraction only (see settings in Table 1).

Table 4.1: Settings for Lambertian and BRDF ceff simulations in Sect. 4.4.1. Inverse model
for Lambertian ceff reproduces current O2-O2 and FRESCO+ retrievals, with Lambertian
surface and Lambertian cloud. Inverse model for BRDF ceff reproduces the retrieval accounting
for surface BRDF effects.

Forward model, Rmeas

Henyey-Greenstein scattering cloud
Asymmetry parameter, g 0.85
Cloud optical thickness, τc 30
Cloud altitude 1-2 km
Geometric cloud fraction, cgeo 0, 0.05, 0.2, 0.5

Surface reflectance: BRDF parameters (fiso, fvol, fgeo) for Rcr

λ = 477 nm 0.03, 0.02, 0.01
λ = 758 nm 0.4, 0.25, 0.08

Inverse model, ceff

Lambertian cloud (Rcd)
Cloud albedo, Acd 0.8
Cloud altitude 1-2 km

Lambertian ceff : surface albedo (Aws) for Rcr

λ = 477 nm 0.0217
λ = 758 nm 0.337

BRDF ceff : surface parameters (fiso, fvol, fgeo) for Rcr

λ = 477 nm 0.03, 0.02, 0.01
λ = 758 nm 0.4, 0.25, 0.08

Figure 4.7 shows that cloud fractions accounting for surface BRDF effects (dashed
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Figure 4.7: Simulated effective cloud fraction at (a) 477 nm and (b) 758 nm as a function of
viewing zenith angle for different geometric cloud fractions along the principal plane (ϕ− ϕ0

= 180◦ for negative θ and ϕ − ϕ0 = 0◦ for positive θ). θ0 = 30◦ and cgeo = 0, 0.05, 0.2 and
0.5. At 477 nm: BRDF parameters (solid line) (fiso, fvol, fgeo) = (0.03, 0.02, 0.01) and for
Lambertian surface Aws = 0.0217 (dashed line). At 758 nm: BRDF parameters (solid line)
(fiso, fvol, fgeo) = (0.4, 0.25, 0.08) and for Lambertian surface Aws = 0.337 (dashed line).

lines) depend only weakly on geometry whereas cloud fractions with a Lambertian surface

(solid lines) are higher in the backward scattering direction, at both 477 nm and 758 nm

and especially for the lowest cgeo. At 758 nm this is true even for a geometric cloud

fraction as high as 0.5. In the backward scattering direction, surface reflectance is higher

than reflectance by a Lambertian surface. Therefore clear-sky TOA reflectance with a

Lambertian surface cannot explain the higher simulated reflectance in Eq. 4.7, which

results in high Lambertian ceff .

Surface BRDF effects are more important for small cloud fractions, and less for large

cloud fractions. For cloudy pixels the effect of surface reflectance anisotropy vanishes

because the scattering by the cloud dominates in the measured reflectance. Fig. 4.7 shows

that for large cgeo, the viewing zenith angle dependency of the effective cloud fractions is

due to the Henyey-Greenstein scattering cloud, which gives relatively higher scattering in

the forward direction.

At 477 nm, surface BRDF effects on cloud fractions are less evident than at 758

nm. In the visible spectral region, surface BRDF effects are suppressed by Rayleigh

scattering smoothing out the surface anisotropy effects on TOA reflectances. For lower

geometric cloud fraction, Lambertian cloud fractions are moderately higher (by 0.05) in

the backscatter direction than in the forward scatter direction. These findings underscore

the relevance of accounting for surface BRDF effects because measurements with small

cloud fractions are most sensitive to pollution in the lower troposphere.

Differences in Lambertian cloud fractions between backward and forward scattering
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directions at 758 nm are on average 0.35. At 477 nm, the differences amount to 0.1,

depending on the surface and the geometry. This is consistent with the observed bias in

FRESCO and OMCLDO2 cloud fractions shown in Fig. 4.2. The absence of a backward-

forward scattering dependency in the BRDF ceff implies that accounting for surface BRDF

effects will reduce the East-West across-track bias in retrieved cloud fractions.

4.4.2 GOME-2A cloud fraction simulations

We simulate Lambertian and BRDF cloud fractions for GOME-2A measurements over

Amazonia in March 2008. We use the exact illumination and viewing geometry (θ, θ0, ϕ−
ϕ0) of each individual measurement and colocate MODIS pixels with the GOME-2A

pixel centre to obtain the surface BRDF parameters over the scene. For Lambertian

cloud fractions, we use the GOME-2A surface LER value from Tilstra et al. (2017). To

simulate the measured reflectance, we assume a geometric cloud fraction distribution with

an area-wide average of cgeo = 0.33. Figure 8a,d show the cgeo distribution for East and

West measurements respectively.

Figure 4.8 shows simulated Lambertian (b,e) and BRDF (c,f) effective cloud fractions

for East and West GOME-2A measurements. For East measurements, both Lambertian

(ceff = 0.32) and BRDF (ceff = 0.28) cloud fraction simulations capture the original

geometric cloud fraction distribution and absolute values. This means that surface BRDF

effects are weaker in the East, consistent with the smaller surface LER climatology bias

for measurements on the East part of the orbit (Fig. 4.1). For West measurements,

the original distribution is reproduced well in the BRDF cloud fractions (ceff = 0.29),

but the Lambertian values show a significant overestimation (ceff = 0.51). A box-plot of

these distributions is shown in Fig. S4.4 in the supplementary material. The East-West

bias in the Lambertian simulation (0.2) is considerably reduced (0.01) for the BRDF

cloud fractions: the across-track bias in the FRESCO data is a direct consequence of

neglecting surface BRDF effects. We conclude that accounting for these surface BRDF

effects can largely solve the bias in cloud fractions measured in the backscatter regime

over Amazonia. Although we have not made an analysis of the surface BRDF effects in a

complete retrieval, the biases in cloud fraction found over other regions will probably be

reduced after accounting for surface BRDF effects.

4.5 Role of surface BRDF in NO2 retrievals

Here we investigate the effects of accounting for surface reflectance anisotropy on tropo-

spheric NO2 column retrievals under clear-sky and partly cloudy conditions. We calculate
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Figure 4.8: Geometric cloud fraction distributions for (a) East and (d) West GOME-2A
measurements. (b, e) Lambertian and (c, f) BRDF cloud fraction simulations for East (first
column) and West (second column) GOME-2A measurements. Plots show averaged cloud
fractions in a 0.25◦x0.25◦ grid over Amazonia (Lat: 5N-10S, Lon: 60-70W) for March 2008.
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tropospheric AMFs with surface BRDF and with a Lambertian surface, including the sur-

face BRDF effects on retrieved cloud fractions (Sect. 4.4) for GOME-2A measurements

over Amazonia and over France.

In satellite retrievals of trace gases, an air mass factor (M) is used to convert the slant

column density (N s, SCD) from the measured reflectance spectra into the vertical column

density (N v, VCD):

M(Rs, Ps, fcd, Pcd,
−→xa , θ, θ0, ϕ− ϕ0) =

Ns

Nv

. (4.9)

The AMF depends on the surface reflectance (Rs), surface pressure (Ps), cloud fraction

and pressure (fcd, Pcd), a priori NO2 profile (−→xa) and measurement geometry (θ, θ0, ϕ −
ϕ0).

Here, tropospheric NO2 AMFs are calculated by differencing the logarithm of simulated

TOA reflectances with and without trace gas in the troposphere divided by the absorption

optical thickness of the gas τgas:

M = − lnR(τgas)− lnR(τgas = 0)

τgas

. (4.10)

AMF is directly affected by the assumption of a Lambertian surface instead of an

anisotropic surface in the simulated TOA reflectance. In addition, AMFs are indirectly

affected by the cloud radiance fraction (fcd) used to correct for residual clouds, in which

calculation a Lambertian surface is assumed as well. To account for the presence of clouds,

we use the independent pixel approximation (IPA, see also Eq. 4.8) which consists of

calculating the total AMF for a partly cloudy scene as a linear combination of cloudy

(Mcd) and clear (Mcr) components of the AMF, weighted by the cloud radiance fraction

w:

M = wMcd + (1− w)Mcr. (4.11)

The use of a Lambertian surface thus influences the AMF directly via Mcr and indirectly

via w:

w =
ceffRcd

ceffRcd + (1− ceff)Rcr

(4.12)

where ceff is the cloud fraction and Rcd, Rcr are the radiances for a totally cloudy and

clear-sky scene, respectively. Cloud radiance fraction depends on the Lambertian surface

assumption via Rcr and ceff .
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4.5.1 BRDF effects on tropospheric NO2 air mass factors

We calculate AMFs with Eq. 4.10 by simulating TOA reflectances with surface BRDF and

with a Lambertian surface. The settings of the simulations are summarized in Table 4.2.

Based on our analysis (Sect. 4.4.1), we include a change of ± 0.05 over the Lambertian

cloud fraction with a decrease of -0.05 in the backward scattering direction and an increase

of +0.05 in the forward scattering direction, to quantify how the surface BRDF effects on

clouds propagate to the final AMF.

Table 4.2: Settings for the Lambertian and BRDF tropospheric NO2 AMF calculations
shown in Fig. 9.

Lambertian AMF BRDF AMF
Surface parameters Aws = 0.036 (fiso, fvol, fgeo) = (0.04, 0.03, 0.008)

Cloud fraction ceff(Lamb.) = 0.1
Backward scat.: ceff(BRDF) = 0.1− 0.05
Forward scat.: ceff(BRDF) = 0.1 + 0.05

Cloud radiance fraction R′cr , R′cd, ceff(Lamb.) Rcr , Rcd, ceff(BRDF)
Common settings

Atmospheric profile Mid latitude standard atmosphere
Surface pressure: Ps= 1013 hPa

NO2 tropospheric column Moderately polluted: Nv,trop= 4 · 1015 molec·cm−2

Unpolluted: Nv,trop= 0.2 · 1015 molec·cm−2

Lambertian cloud (IPA) Cloud albedo: Acd = 0.8
Cloud pressure: Pcd = 850 hPa

Figure 4.9a shows surface BRDF effects on Mcr for a moderately polluted troposphere

as a function of VZA along the principal plane. In the backward scattering direction,

BRDF Mcr is higher by 5-20%. The higher surface BRDF reflectance and TOA reflectance

makes the retrieval more sensitive to the NO2 in the boundary layer. In the forward

scattering direction, BRDF Mcr is lower by 5-15%.

Figure 4.9b shows surface BRDF effects on w and Fig. 4.9c shows the combined effect

on total tropospheric M of changes in Mcr and in w in a partly cloudy scene with a

ceff(Lamb.) = 0.1. In the backward scattering direction, tropospheric M is 9-30% higher

when accounting for surface BRDF effects. The decrease in ceff (and hence w) makes the

retrieval more sensitive to the NO2 below the cloud. In the forward scattering direction,

tropospheric M is 14-22% lower when accounting for surface BRDF effects because of the

stronger screening effect by the higher BRDF ceff . The surface BRDF effect on w enhances

the effect on the clear-sky AMF by up to 10% in both the forward and backward scattering

direction.

Figure 4.10 shows surface BRDF effects on total tropospheric M in partly cloudy

scenes with increasing cloudiness for the specific combination of (θ, θ0) = (45◦, 30◦) in the

principal plane, representative of typical GOME-2 or OMI measurements. For a polluted

troposphere (represented by stars), the total effect of accounting for surface BRDF is
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Figure 4.9: (a) Clear-sky tropospheric NO2 AMF, (b) cloud radiance fraction and (c) total
tropospheric NO2 AMF computed with surface BRDF (green) and with a Lambertian surface
(blue) and their relative difference (right axis) as a function of viewing zenith angle in the
principal plane (ϕ−ϕ0 = 180◦ for negative θ and ϕ−ϕ0 = 0◦ for positive θ), for θ0 = 30◦. Pcd

= 850 hPa, Lambertian ceff = 0.1 and BRDF ceff = 0.10 ± 0.05. Surface BRDF parameters are
(fiso, fvol, fgeo) = (0.04, 0.03, 0.008) and Aws = 0.036 for the Lambertian surface. Troposphere
is moderately polluted (Nv,trop= 4 · 1015 molec·cm−2).

to increase M in the backward scattering direction (Fig. 4.10a) and to reduce M in

the forward scattering direction (Fig. 4.10b). Average relative differences of about 15%

for Mcr increase up to 25-40% for low cloud fractions (below 0.1) (see Fig. S4.5 in the

supplementary material). The effect decreases for higher cloud fractions, with relative

differences below 10% for cloud fractions higher than 0.5. For a lower bias in ceff (e.g.

0.02), the effect on M reduces to about 15-20%, which is still a considerable effect.

For an unpolluted troposphere, surface BRDF effects on Mcr are in the same direction

as in the polluted case but smaller (-7 to +11%). In a partly cloudy scene, Lambertian

and BRDF tropospheric M are similar within -3 to 7%. Because there is very little NO2

below the cloud, the effect of change in w counteracts (and largely cancels) the effect on

the clear-sky AMF (circles in Fig. 4.10).

Figure 4.11 shows surface BRDF effects on total tropospheric AMF as a function of

cloud pressure, for a cloud fraction of 0.1. For cloud pressures higher than the 850 hPa

assumed in Fig. 4.10, the contribution of surface BRDF effects to the change in M from

the change in cloud fractions is dampened. There is a range of cloud pressures (in Fig. 4.11

between 900 and 950 hPa) for which the effects on Mcr and on cloud fraction compensate

each other. For an even higher cloud pressure (e.g. 978 hPa), Mcd is larger than Mcr and

the sign of the effect changes. In the backward scattering we have lower BRDF AMFs and

in the forward scattering higher BRDF AMFs. In the unpolluted situations the differences

become larger for higher cloud pressures.

Although this study does not address surface BRDF effects on cloud pressure, we

did a preliminary analysis applying a directional surface LER derived from GOME-2 in

FRESCO+. The analysis shows that accounting for surface reflectance anisotropy effects

reduces the cloud pressure by 40 hPa on average (with differences up to 120 hPa). This
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Figure 4.10: Total tropospheric NO2 AMF as a function of cloud fraction in the (a) backward
scattering direction and (b) forward scattering direction computed with surface BRDF (green)
and a Lambertian surface (blue), for Pcd = 850 hPa, (θ, θ0) = (45◦, 30◦), for a moderately
polluted (stars) and unpolluted (circles) troposphere. BRDF parameters are (fiso, fvol, fgeo)
= (0.04, 0.03, 0.008) and Aws = 0.036 for the Lambertian surface.

high bias in retrieved cloud pressure implies that the results shown for 850 hPa might

be representative of the surface BRDF effects on AMFs for clouds currently retrieved at

higher (biased) pressures.

4.5.2 GOME-2A tropospheric NO2 air mass factors

We calculate Lambertian and BRDF NO2 tropospheric AMFs for the exact illumination

and viewing geometries of GOME-2A measurements over Amazonia and over France for

March 2008. This results in approximately 1300 clear-sky pixels analyzed over Amazonia

and 700 over France. We assume a moderately polluted atmosphere in every scene and

collocate MODIS pixels with the GOME-2A pixel centre to obtain the surface BRDF

parameters. For the Lambertian simulations, we use the surface LER value of each pixel

from the GOME-2 climatology. We apply Lambertian and BRDF ceff distributions from

Sect. 4.4.2 (as in Fig. 4.8). This way we account for the calculated surface BRDF effects

in cloud fraction instead of the average change of 0.05 assumed in the sensitivity analysis

in Sect. 4.5.1.

Figure 4.12a shows that for East measurements (i.e., forward scattering), Mcr decreases
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Figure 4.11: Total tropospheric NO2 AMF as a function of cloud fraction in the (a) backward
scattering direction and (b) forward scattering direction computed with surface BRDF (green)
and a Lambertian surface (blue), for Pcd = 850 hPa, (θ, θ0) = (45◦, 30◦), for a moderately
polluted (stars) and unpolluted (circles) troposphere. BRDF parameters are (fiso, fvol, fgeo)
= (0.04, 0.03, 0.008) and Aws = 0.036 for the Lambertian surface.

on average by 18% over Amazonia. Over France the decrease is on average 8% (not

shown). Figure 4.12b shows that for West measurements (i.e., backward scattering), Mcr

increases on average 5% over Amazonia and 7% over France, consistent with our findings

in Fig. 4.9a. The differences of 15%-23% found in this analysis agree with the reported

differences of 10%-20% in Noguchi et al. (2014) and Zhou et al. (2010) for clear-sky

AMFs. The higher BRDF AMFs in the upper right corner of our study area correspond

to a savanna ecosystem that is brighter than the dense rainforest. Because of the higher

resolution of the MODIS BRDF dataset, this feature is well captured and leads to higher

AMFs both in the East and West measurements (see Fig. S4.2 in the supplementary

material). MODIS albedo is able to capture spatial variability at scales that satellites

with coarser pixels cannot (Russell et al., 2011).

Figure 4.12c shows that for East measurements (i.e., forward scattering), total tro-

pospheric AMFs including surface BRDF effects on cloud fractions are on average 10%

lower over Amazonia. The decrease is on average 7% over France (not shown). For West

measurements, (i.e., backward scattering), total AMFs are on average 16% higher over

both Amazonia (Fig. 4.12d) and France, illustrating that the Mcr effect is enhanced

by the effect on the cloud fraction by 10%-15% on average. Vasilkov et al. (2017) also

found increased differences in the tropospheric AMFs due to surface BRDF effects on
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Figure 4.12: Relative differences between BRDF and Lambertian AMFs over Amazonia for
March 2008: (a) clear-sky tropospheric NO2 AMFs for East GOME-2A measurements (for-
ward scatter) (b) clear-sky tropospheric NO2 AMFs for West GOME-2A measurements (back-
ward scatter) (c) total tropospheric NO2 AMF for East GOME-2A measurements (forward
scatter) and (d) total tropospheric NO2 AMF for West GOME-2A measurements (backward
scatter). Total AMFs are only shown for ceff < 0.5.

cloud paramertes, but as reported by Lin et al. (2014), there can also be compensating

effects.

These results show that surface BRDF affects both clear-sky AMF and cloud radiance

fractions, which in combination significantly affect total NO2 AMFs. As shown in Fig.

4.10 -4.12, the sign and magnitude of the surface BRDF effects show strong spatial vari-

ations and depend on cloud fraction and cloud pressure. In order to generalize the effects

to a global retrieval, a full assessment including all possible retrieval conditions should be

done. Over forested terrain, current tropospheric AMF are likely underestimated in the

backscatter regime and overestimated in the forward scattering regime by up to 25-35%,

explained by systematic errors in Mcr and w. These results show that surface BRDF

effects have to be included consistently in both cloud and trace gas retrievals.
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4.6 Discussion and conclusions

We analysed the effects of surface reflectance anisotropy on the OMI and GOME-2 satel-

lite retrievals of cloud parameters and tropospheric NO2 columns that currently use

Lambertian-equivalent reflectivity (LER) climatologies. These climatologies, and con-

sequently retrieved cloud fractions, show substantial across-track biases over terrain with

a strong BRDF directionality. Here we interpret these with the DAK radiative transfer

model. A clear understanding of the reasons for the biases and how they propagate in

the tropospheric NO2 column retrieval is critical to improve cloud and trace gas retrieval

algorithms for satellite sensors.

An important finding is that the LER climatologies slightly overestimate surface albedo

for forward scattering satellite viewing geometries (eastern part of GOME-2 orbit), and

highly underestimate the surface albedo for backscatter viewing geometries (western part).

The underestimation is as large as a factor of 2 over forested scenes in the near-infrared

(772 nm). They are weaker but still relevant in the visible (494 nm), where surfaces are

darker and Rayleigh scattering effects are stronger. Such across-track bias in surface LER

propagates into the cloud fraction retrievals: we find biases in cloud fractions of up to

50% between backscatter and forward scattering geometries in the GOME-2 FRESCO and

26% in the OMI OMCLDO2 cloud algorithms. Time-of-day does not drive importance of

surface BRDF effects, but specific viewing geometry and spectral range do.

To interpret the above biases, we extended the description of surface reflectance in

DAK to include the geometrical surface reflecting properties via the Bidirectional Re-

flectance Distribution Function (BRDF) from the Ross-Li semi-empirical model. This al-

lows DAK to simulate not only isotropic reflection at the surface, but also the anisotropic

contributions from volumetric (e.g. leaf scattering) and from geometric (e.g. shadow-

casting) effects. We evaluated DAK top-of-atmosphere (TOA) reflectance simulations

against other radiative transfer models, and find agreement within 1% between DAK and

SCIATRAN, even within the so-called “hot-spot” backscatter reflectance peak. We then

simulated TOA reflectances over vegetated scenes using BRDF parameters from a daily,

high-resolution database derived from 16-years of MODIS measurements recently devel-

oped within the QA4ECV-project (QA4ECV-WP4, 2016). Our updated DAK simulations

show considerably higher TOA reflectance levels for backscatter viewing geometries than

those with isotropic surface reflection (LER) only. This strongly indicates that across-

track biases in cloud fractions can be explained by the lack of a description of surface

reflectance anisotropy in the FRESCO and OMCLDO2 algorithms.

Subsequent sensitivity tests indicated that accounting for surface reflectance

anisotropy in the FRESCO and OMCLDO2 retrieval framework removes the bias in cloud

fractions. A correct physical description of surface anisotropy is essential for FRESCO,
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because cloud properties are retrieved in the NIR spectral range (760-790 nm) where sur-

face BRDF effects are stronger and the atmosphere is virtually transparent. It is also

of high relevance for scenes with low cloud fractions, where trace gas retrievals are still

sensitive to pollution close to the ground. A discussion on the validity of the Lambertian

cloud model is beyond the scope of this study. Nevertheless, the cloud fraction depen-

dency with VZA for cloudy scenes suggests that the use of a more realistic cloud model

should be considered in future improvements of cloud retrievals.

The implications for NO2 air mass factor (AMF) calculations are substantial. Total

tropospheric NO2 AMFs are calculated as the radiative cloud fraction-weighted sum of

cloudy and clear-sky AMFs. For moderately polluted NO2 and backscatter geometries,

we find that clear-sky AMFs are up to 20% higher and cloud radiance fractions up to

40% lower if surface reflectance anisotropic effects are accounted for. The combined

effect of these changes (with clouds located at 850 hPa) is that NO2 AMFs in polluted

situations increase by 25-30% for backscatter geometries (and decrease by 25-35% for

forward scattering geometries), stronger than the effect of either contribution alone.

An issue that was not addressed in this study is the role of aerosols. Noguchi et

al. (2014) showed that scattering by aerosols generally dampens surface BRDF effects

for clear-sky scenes. However, more research is needed to assess how specific aerosol

characteristics (i.e. aerosol amount and type, vertical distribution relative to cloud) will

affect cloud parameter retrievals and air mass factor calculations both in clear-sky and

cloudy conditions.

We conclude that it is necessary to coherently account for surface reflectance anisotropy

effects in retrievals of cloud properties and trace gases from UV/vis satellite sensors. Al-

though this study does not apply surface BRDF to a complete global cloud and NO2

retrieval, it shows that it has substantial effects both cloud fractions and NO2 AMFs.

A number of recent studies have attempted to account for the effects of anisotropic re-

flectance on both cloud and NO2 retrievals (Lin et al. (2014); Vasilkov et al. (2017)), but

a global assessment including the full range of possible retrieval conditions is still missing.

An additional incentive to account for surface reflectance anisotropy is that the currently

available LER climatologies (Kleipool et al. (2008); Tilstra et al. (2017)) describe the spa-

tial variation in albedo at a scale (0.5°×0.5° - 1°×1°) coarser than the OMI or GOME-2

pixel itself (13 × 24 km2 / 80 × 40 km2). Using these coarse LER climatologies in AMF

calculations degrades the intrinsic spatial resolution of the satellite retrievals, an issue

that will be exacerbated for the recently launched TROPOMI instrument, with pixels as

small as 3.5×7 km2. A viable alternative to the current LER climatologies is provided by

the MODIS-derived BRDF-parameters at a spatial resolution better than the GOME-2,

OMI, and TROPOMI pixel sizes. MODIS Terra and Aqua are expected to last until 2025

and afterwards the Joint Polar Satellite System (JPSS) satellite constellation assures con-



4.6 Discussion and conclusions 119

tinuity of land observations needed to produce surface BRDF data. Sentinel-3 could be

employed to generate a BRDF similar to the one from the ESA GlobAlbedo broadband

and the QA4ECV spectral albedo after some years of measurements. Another alternative

is to make a directionally dependent LER database from TROPOMI once there is enough

surface reflectance data acquired by the satellite itself.
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5 Quantification of nitrogen oxides

emissions from build-up of pollu-

tion over Paris with TROPOMI

Abstract

Nitrogen dioxide (NO2) is a regulated air pollutant that is of particular concern in many

cities, where concentrations are high. Emissions of nitrogen oxides to the atmosphere

lead to the formation of ozone and particulate matter, with adverse impacts on human

health and ecosystems. The effects of emissions are often assessed through modelling

based on inventories relying on indirect information, that is often outdated or incomplete.

Here we show that NO2 measurements from the new, high-resolution TROPOMI satellite

sensor can directly determine the strength and distribution of emissions from Paris.

From the observed build-up of NO2 pollution, we find highest emissions on cold weekdays

in February 2018, and lowest emissions on warm weekend days in spring. The new

measurements provide information on the spatio-temporal distribution of emissions within

a large city, and suggest that Paris emissions in 2018 are only 5-15% below inventory

estimates for 2011-2012, reflecting the difficulty of meeting NOx emission reduction

targets.

A modified version of this chapter is under review for Scientific Reports as:

Lorente, A., Boersma, K. F., Eskes, H. J., Veefkind, J. P., van Geffen, J. H. G. M. , de Zeeuw, J. H. G.

M., Denier van der Gon, H., Beirle, S. and Krol, M.C.: Quantification of nitrogen oxides emissions from

build-up of pollution over Paris with TROPOMI (25-01-2019).
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5.1 Introduction

Nitrogen oxides, mostly a product of combustion processes, play a key role in tropo-

spheric chemistry, and influence air quality and atmospheric radiative forcing (Myhre

et al., 2013). Nitrogen oxides are short-lived (1-12 hours) (Stavrakou et al., 2013), but

their photochemical processing leads to longer lasting effects via the formation of ozone

(Stevenson et al., 2006) and aerosols, as well as acid rain (Jacob, 1999). In response,

European Union legislation establishes a maximum acceptable nitrogen dioxide (NO2)

concentration in ambient air of 40 µg/m3. In 2016, this annual limit for NO2 was widely

exceeded across Europe (EEA, 2018). For example, 1.4 million Parisians were exposed

to NO2 levels exceeding the limit in that year, mostly because of strong emissions from

road traffic, and from residential and commercial combustion (Airparif, 2017), despite

sizeable reductions in emissions reported over the last decade (EEA, 2017). Reliable and

comprehensive emission estimates are needed to evaluate air quality mitigation strategies

and as input to models simulating and forecasting air pollution. Satellite measurements

provide a comprehensive perspective on the spatial distribution (e.g. Miyazaki et al.

(2017), Fioletov et al. (2013)) and temporal evolution (e.g. Richter et al. (2005), Lamsal

et al. (2011)) of global emissions. Such emission estimates are still limited in their spatial

and temporal resolution. Thus, there remains a need to better understand emissions, in

particular their driving factors, in order to provide accurate alternatives for bottom-up

estimates at the sub-urban scale and on a day-to-day basis.

Here we report on NOx emission estimates from new NO2 measurements by

TROPOMI (Veefkind et al., 2012) instrument on the Sentinel-5 Preparatory (S5P) mis-

sion. TROPOMI extends the data records obtained from SCIAMACHY (2002-2012),

GOME-2 (ongoing since 2007), and OMI (since 2004) sensors, and is the preparatory

mission for Sentinel-5, due for launch in the 2020s. TROPOMI is a spectrometer measur-

ing direct and reflected sunlight at around 13:30 hrs local time in ultraviolet and visible

bands, as well as radiance and irradiance in the near- and short-wave infrared. Besides

NO2, these spectral bands allow the observation of other atmospheric constituents such as

ozone, carbon monoxide (Borsdorff et al., 2018), sulfur dioxide, formaldehyde (De Smedt

et al., 2018), and methane (Hu et al., 2018), as well as aerosol and cloud properties. Satel-

lite data quality has gradually increased over the last decade, but the very high spatial

resolution of 3.5×7 km2, (across × along track) and improved signal-to-noise offered by

TROPOMI (van Geffen et al., 2018) promise to be a major step forward.

The tropospheric NO2 data from TROPOMI (van Geffen et al. (2018), Boersma et al.

(2018)) provide the opportunity to estimate the NOx emissions directly from the build-

up of NO2 observed over Paris on a single clear-sky days, without the need for complex

inversions with a chemistry-transport model (Beirle et al., 2011). Our method allows
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inferring the NOx emissions from the observed NO2 in air advected over the city, provided

that wind speed and wind direction are known to good accuracy. Under non-stagnant

conditions, the chemical decay of NO2 in the boundary layer is of minor importance given

the short time it takes for an air parcel to cross the Paris Metropolitan area relative to the

chemical lifetime (Stavrakou et al. (2013), Shaiganfar et al. (2017), Beirle et al. (2011)).

The quality of the NO2 retrievals from TROPOMI is such, that it is not necessary to

reduce noise by averaging satellite NO2 distributions for a particular wind direction sector

first (van Geffen et al. (2018), Beirle et al. (2011)). This avoids errors associated with

interpreting average patterns based on an ensemble of individual plumes from different

days with different wind directions and wind speeds. Instead, we directly analyse the

build-up of NO2 pollution over the city from an individual TROPOMI orbit, thereby

achieving one or sometimes even two direct estimates of city-wide NOx emissions on a

particular day.

Figure 5.1a and 5.1b illustrate that the TROPOMI measurements present an improve-

ment over OMI, with TROPOMI clearly capturing the details of the NO2 pollution plume

originating from Paris and blown to the north on 17 April 2018. Indeed, Fig. 5.1c shows

that wind direction and speed from the European Centre for Medium Range Weather

Forecasts (Dee et al., 2011) indicate a southerly flow on this day, which was mostly cloud-

free at the overpass (Fig. 5.1d). The tropospheric NO2 columns from TROPOMI are

per definition representative for the vertically integrated NO2 concentrations between the

surface and the tropopause, and they are directly linked to the total NOx emissions.

We select measurements taken under mostly cloud-free conditions (see Sect. 5.4), when

TROPOMI is having good sensitivity to enhanced NO2 concentrations in the polluted

boundary layer.

5.2 Results

5.2.1 NO2 build-up in air advected over Paris

Paris is one of the three megacities in Europe, next to London and Istanbul, and one of

the strongest isolated hotspots of air pollution in north-western Europe, with 10.5 million

inhabitants and more than 3 million cars entering the city each day. Figure 5.2 shows

tropospheric NO2 columns over this region on Friday 23 February 2018 measured by

TROPOMI. The spatial distribution shows an increase in NO2 columns from the north-

east towards the south-west over Paris, and downwind of the city a plume of enhanced

NO2 advected towards the south-west, consistent with predominantly north-easterly winds

(32 km/h) on that day. NO2 surface concentrations measured at 20 stations throughout

Paris (Airparif, 2018) suggest a similar increase in surface pollution from the north-east
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Figure 5.1: Tropospheric NO2 vertical column on 17 April 2018 from (a) OMI (DOMINO
v2), and (b) TROPOMI. (c) ECMWF Era Interim 10 meter wind speed on 17 April 2018 at
12:00 UTC, (d) TROPOMI cloud radiance fraction. In (a-b) data has been filtered for cloud
radiance fraction (lower than 0.5) and surface albedo (lower than 0.3), and grey areas indicate
cloudiness or no data (in the case of OMI). Measurement time was approximately 12:15 UTC
for both OMI and TROPOMI. Paris is indicated as a small white circle in the panels.

towards the south-west, even though the measurement techniques are very different. Two

days later, on Sunday 25 February 2018, the wind (40 km/h) was slightly stronger, but

the build-up of NO2 over the city was much weaker, a first indication of lower emissions

on this weekend day. This analysis for two different days suggests that direct attribution

of the NO2 increase over Paris to the NOx source strength is possible, if the influence of

wind speed and NOx loss processes are accounted for.

On days with very low wind speeds, NOx emissions from the city are hardly ventilated,

but concentrate over the city instead. On such days, the satellite NO2 distribution over

Paris closely resembles the underlying emission pattern. Figure 5.2e shows the NO2

column distribution on Wednesday 20 June 2018, a day with a high-pressure system

centred over Paris. In the hours prior to TROPOMI overpass, a very light wind (0-2

km/hr) was coming from the north (Venstusky, 2018). The high NO2 columns observed

over inner Paris display a clear echo of the underlying spatial distribution of NOx emissions
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(Figure S5.2). The NO2 distributions on 20 June 2018 can be used to estimate the NOx

emissions, but the photochemical regime is more complex in stagnant conditions, and

assumptions on the chemical lifetime of NOx are more critical than in well-ventilated

situations, when NO2 loss over the city is dominated by transport of polluted air out of

the city (e.g. Jacob (1999), Shaiganfar et al. (2017). From a simple scaling argument this

becomes evident: with a wind speed of 30 km/h, it takes 2 hours for an air parcel to cross

the city, too short for substantial chemical loss of NOx. With a wind speed of 5 km/h

however, it takes 12 hours, long enough for substantial chemical conversion of NO2 into

HNO3 over the city.

5.2.2 Interpreting line densities

By integrating the TROPOMI NO2 columns perpendicular to the wind direction over a

distance of 60 km, we constructed the so-called line densities (Beirle et al., 2011) (see

Sect. 5.4). Increases in NO2 line density along with the wind are directly linked to recent

NOx emissions over the metropolitan area, somewhat dampened by photochemical decay.

The right panels of Fig. 5.2 show the NO2 line densities for 23 and 25 February 2018,

and for 20 June 2018 as function of the along-wind distance over Paris. For the windy

February days, the line densities show a modest increase of NO2 with distance over the

north-eastern segment of the city, followed by a steeper increase over and just downwind

of the city centre, and a levelling off towards the south-western edge of the city. This

pattern is apparent on many days (Fig. S5.7) and reflects the spatial distribution of

emissions within the Paris Metropolitan Area, where most NOx is emitted in the region

enveloped by the A86 ring road, and much weaker emissions occur in the outskirts (Fig.

S5.2). On days with high wind speeds, line densities over the city provide a convolved

view of the underlying emission pattern, because the wind takes along and disperses the

recently emitted nitrogen oxides. On days when wind speeds were extremely low, such as

20 June, line densities closely resemble the spatial distribution of the NOx emissions at

the approximate scale of a TROPOMI pixel.

5.2.3 Estimating NOx emissions from TROPOMI line densities

We validated the TROPOMI NO2 columns over Paris. We compared the TROPOMI

columns against a set of coincident NO2 columns inferred from in situ (AirParif) NO2

measurements taken on the Eiffel Tower using information on boundary layer height

(Dieudonné et al., 2013) (see Sect. S5.1). The comparison suggests excellent agree-

ment (R2=0.88) between the TROPOMI and AirParif columns, but the variability in

TROPOMI NO2 columns is underestimated by 25% (Figure S5.1). This bias, most likely

caused by air mass factor errors, would lead to a similar low bias in the NOx emission
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Figure 5.2: (a) Tropospheric NO2 columns over Paris on Friday 23 February 2018, (c) Sunday
25 February 2018, and (e) Wednesday 20 June 2018 observed by TROPOMI. Boundary layer
mean wind speed and wind direction, indicated by the black arrow, are from ECMWF ERA-
Interim data. The Paris A86 ring road is indicated by the inner black line, and the city
limits are approximated by the outer black line. The right panels (b), (d), and (f) show the
corresponding NO2 line densities between the upwind and downwind city limits at 0 and 60
km.

estimates, so we correct for this bias when estimating NOx emissions from the line densi-

ties.

To determine NOx emissions from the observed NO2 build-up on clear-sky days in the

first half of 2018, we generate a large ensemble of pre-computed line densities, each a
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of strength and pattern of the NOx emissions, wind speed, and NOx loss rate constant

(see Sect. 5.4). We compared each member to the observed line density, to identify the

function and its driving parameters that minimized the differences between the modelled

and the observed line density. In the ensemble, we take as prescribed parameters the

boundary layer average wind speed from ECMWF, and the [NO2]:[NOx] ratios simulated

by the CAMS model (Inness et al., 2015) over Paris for the day of interest (see Sect. 5.4).

We allow the NOx loss rate constants and the emission pattern (with 12 cells of 5 km over

Paris) to vary within a predefined range in our ensemble. As a first guess of the NOx loss

rate constant, we use boundary layer mean [OH] from CAMS with a range of ±50% given

the considerable uncertainty in simulating OH over a large city (Shaiganfar et al. (2017),

Ren et al. (2003),Valin et al. (2013)) by models (see Fig. S5.5). The emission pattern is

inherently uncertain, so we also allow this to vary. As a first guess pattern we use the 1-D

TNO-MACC-III NOx emissions pattern (Kuenen et al., 2014) calculated in the same way

as we calculated the NO2 line densities, which resembles a Gaussian distribution (Fig.

S5.6). We then use in our ensemble a range of Gaussian shapes defined by variation of 4

parameters: amplitude (up to factor 3 different), widths (±15%), offsets (factor 2), and

centre (±5 km) locations. The observed along-wind line densities are described well by

the modelled function giving the smallest residuals, as illustrated in the right panels of

Fig. 5.2, and by the high correlation coefficients between the observations and modelled

function (average R2=0.953), and low unexplained residuals (approximately 13% of the

line density values). Because of the TROPOMI overpass of approximately 13:40 hrs local

time, the inferred NOx emissions are generally representative for the hours just prior to

the TROPOMI overpass, i.e. noontime (Valin et al., 2013). Table 5.1 summarizes our

main results.

Table 5.1: Paris Metropolitan Area NOx emissions inferred from TROPOMI measurements in
2018, and the conditions under which they have been derived. Days with two estimates Paris
was covered by two successive orbits (orbit 1916 and 1917 on 25 February, 2895 and 2896 on 5
May, 3548 and 3549 on 20 June, 3633 and 3634 on 26 June 2018).

Day
Time

(UTC)

Emissions

mol s−1

Wind

Speed, Dir.

NOx

lifetime

[NOx]:[NO2]

CAMS,

Eiffel Tower

Surface

temp.

PBL

height

(m)

R2 RMS

res.

Thu

22.02
12:25 110.0±37.4 8.6 m/s, 51◦(NE) 16.0 hrs 1.83,1.86 3◦C 874 0.990 8%

Fri

23.02
12:06 93.3±31.3 9.0 m/s, 70◦(ENE) 10.9 hrs 1.72,1.70 2◦C 907 0.996 4%

Sun

25.02
11:29 51.3±16.5 11.0 m/s, 77◦(E) 9.4 hrs 1.75,1.78 0◦C 798 0.933 15%

Sun

25.02
13:10 74.4±23.9 11.0 m/s, 77◦(E) 11.4 hrs 1.75,1.86 0◦C 798 0.973 10%

Mon

26.02
12:51 78.7±24.9 12.2 m/s, 56◦(NE) 10.3 hrs 1.73,1.78 -2◦C 1545 0.925 21%

Tue

17.04
12:18 87.6±26.9 6.4 m/s, 197◦(S) 1.6 hrs 1.39,1.58 17◦C 1187 0.995 5%

–next page
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Table 5.1 – continued

Day
Time

(UTC)

Emissions

mol s−1

Wind

Speed, Dir.

NOx

lifetime

[NOx]:[NO2]

CAMS,

Eiffel Tower

Surface

temp.

PBL

height

(m)

R2 RMS

resi.

Wed

18.04
12:59 64.5±19.3 6.9 m/s, 100◦(E) 2.0 hrs 1.19,1.16 23◦C 1251 0.994 5%

Sat

21.04
12:44 38.4±24.1 2.7 m/s, 100◦(E) 2.9 hrs 1.31,1.28 24◦C 2106 0.970 9%

Sun

22.04
12:25 27.7±9.1 9.7 m/s, 230◦(SW) 2.7 hrs 1.26,1.39 24◦C 2188 0.840 31%

Tue

24.04
13:29 86.8±36.3 5.0 m/s, 231◦(SW) 2.8 hrs 1.48,N.A. 15◦C 1292 0.980 9%

Wed

02.05
12:39 65.2±21.9 9.0 m/s, 206◦(SW) 1.6 hrs 1.18,1.39 14◦C 1499 0.990 7%

Fri

04.05
12:01 50.4±18.6 6.6 m/s, 23◦(NNE) 2.9 hrs 1.21,1.36 16◦C 1051 0.957 12%

Sat

05.05
11:42 49.2±18.0 6.8 m/s, 27◦(NNE) 2.9 hrs 1.22,1.24 19◦C 682 0.984 7%

Sat

05.05
13:23 33.5±12.2 6.8 m/s, 27◦(NNE) 1.8 hrs 1.22,1.11 19◦C 682 0.964 10%

Sun

06.05
13:04 24.8±10.1 5.3 m/s, 53◦(ENE) 1.9 hrs 1.20,1.31 23◦C 696 0.937 11%

Tue

08.05
12:26 45.6±36.7 2.0 m/s, 5◦(N) 2.1 hrs 1.23,1.16 24◦C 1699 0.959 10%

Wed

09.05
13:49 36.4±17.3 4.0 m/s, 300◦(WNW) 2.5 hrs 1.16,1.17 19◦C 775 0.990 7%

Fri

11.05
13:11 48.4±20.9 4.7 m/s, 167◦(S) 2.2 hrs 1.21,1.44 17◦C 1491 0.982 9%

Thu

17.05
12:58 44.8±18.7 5.0 m/s, 12◦(N) 2.4 hrs 1.26,1.60 15◦C 844 0.992 6%

Fri

18.05
12:39 40.1±18.0 4.4 m/s, 21◦(N) 3.2 hrs 1.24,1.72 14◦C 787 0.983 9%

Sat

19.05
12:20 36.4±17.3 4.0 m/s, 26◦(NNE) 2.4 hrs 1.25,1.31 18◦C 1038 0.903 24%

Wed

20.06
12:20 54.3±57.3 0.5 m/s, 7◦(N) 3.3 hrs 1.61,1.4 25◦C 959 0.984 11%

Wed

20.06
14:00 75.6±67.9 1.8 m/s, 7◦(N) 3.9 hrs 1.55,1.4 25◦C 959 0.942 20%

Thu

21.06
12:02 30.5±12.8 5.0 m/s, 352◦(N) 2.0 hrs 1.3,1.66 20◦C 1139 0.947 15%

Sat

23.06
13:05 17.7±8.3 4.1 m/s, 35◦(NNE) 1.7 hrs 1.34,1.44 19◦C 1094 0.653 38%

Mon

25.06
12:27 51.7±21.2 5.2 m/s, 46◦(NE) 1.8 hrs 1.26,1.42 23◦C 1591 0.976 11%

Tue

26.06
12:08 44.8±22.8 3.6 m/s, 29◦(NNE) 2.1 hrs 1.33,1.41 24◦C 1049 0.949 18%

Tue

26.06
13:50 37.1±18.9 3.6 m/s, 29◦(NNE) 2.1 hrs 1.33,1.41 24◦C 1049 0.990 8%

Wed

27.06
13:31 49.5±23.2 4.1 m/s, 50◦(NE) 1.1 hrs 1.25,1.29 26◦C 1360 0.964 11%

Thu

28.06
13:12 41.9±16.1 6.0 m/s, 54◦(NE) 2.5 hrs 1.50,1.31 26◦C 1967 0.962 10%
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5.2.4 Day-to-day and spatial variability in NOx emissions

We compare the TROPOMI NOx emissions for Paris on clear-sky days to the TNO-

MACC-III (2011) adn EDGAR (2012) (Crippa et al., 2018) emisison inventories. The

emissions are sampled for the same month, day of the week, and 12:00 hrs local time as

the TROPOMI estimates. It is well known that Parisian NOx emissions are dominated

by traffic and heating (e.g. Shaiganfar et al. (2017), Kuenen et al. (2014)). As a result of

tightening emission standards (Euro-IV, V, and VI norms) and the more modern vehicle

fleet in 2018 compared to 2011 (Kuenen et al. (2014), EEA (2017)), we anticipate our

TROPOMI estimates to be lower than the inventory estimates for 2011-2012. Figure

5.3 shows that the TROPOMI emissions for 2018 are (on average) 5-15% lower than

the inventory estimates for 2011-2012, but still a long way from the emissions projected

for 2018 based on country-specific reductions for France (-26% relative to 2011) (EEA,

2017).

Figure 5.3: Time series of TROPOMI (red), TNO-MACC-III (2011: dark blue, 2018: blue),
and EDGAR (2012) (light blue) NOx emissions integrated over 60 × 60 km2 around Paris. The
medium blue bars represent projected TNO-MACC-III emissions for 2018 based on reductions
of 26% for France between 2011 and 2018 predicted by the EEA. The grey shaded areas indicate
weekend days. For days with two TROPOMI emission estimates, the mean is shown. Error
bars correspond to 1-sigma uncertainties calculated via error propagation (Supplementary
Material for Chapter 5).

In February 2018, a particularly cold month (4◦C colder than normal), TROPOMI

emissions are higher than those from the inventories. In April-June 2018, surface tem-

peratures were above the 18◦C threshold commonly assumed for turning on heating, and

TROPOMI emissions are below those predicted by the inventories. This points to an

underestimation of residential heating emissions in cold February, and an overestimate in

the warm spring months, associated with the climatological rather than real-time activity

factors for residential heating contributions assumed in the inventories. The TROPOMI

emissions furthermore show a more pronounced weekend reduction (35%) than the inven-

tory (21%). This is consistent with a smaller role for residential heating in April-June
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2018 than predicted by the inventory, and suggests that traffic emissions with pronounced

weekend reductions dominate overall NOx emissions in April-June. TROPOMI measure-

ments are thus useful to not only evaluate absolute emissions, but also their temporal

disaggregation into monthly, weekly, and diurnal estimates. These come with substantial

uncertainties as they are based on behavioural patterns that are assumed to be the same

across Europe. One example is that our emission estimates for Fridays are generally lower

that those for other weekdays, in contrast to the predictions from the inventory, where

Friday emissions are the highest of the week (Figure S5.4).

The noontime NOx lifetimes from our method merely represent an improvement to

prior, uncertain knowledge on OH concentrations from the CAMS model, constrained via

the observed line densities. The lifetimes are about 11 hours in winter and 2-4 hours

in spring (with typical uncertainties of 50%), corresponding to mean OH concentrations

between 1 and 12·106 molec. cm−3, consistent with other estimates (e.g. Shaiganfar

et al. (2017), Beirle et al. (2011), Ren et al. (2003), Valin et al. (2013)). TROPOMI

provides information on the sub-urban distribution of emissions in Paris. However, the

spatial variability in our inferred NOx emissions is similar to the a priori distribution from

TNO-MACC-III (Figure S5.6).

5.3 Discussion

We show that the new TROPOMI NO2 measurements provide good quality information

at a resolution unprecedented for satellite remote sensing observations. The new satellite

measurements allow the determination of NOx emissions from Paris on a day-to-day basis

for cloudless spells. Our results indicate that NOx emissions in 2018 are only 5-15%

below inventory estimates for 2011-2012, falling short of anticipated reductions based

on predicted improvements in technology and policies. This is most relevant on cold

weekdays, when TROPOMI detects very high emissions compared to the inventories,

pointing at strong contributions from the residential heating sector.

With the global coverage of TROPOMI measurements, emissions can be estimated

for other major sources around the world in a consistent manner, as long as accurate

knowledge of wind speed is available. The method is only weakly sensitive to assumptions

on NOx chemical lifetime for days with modest to strong wind speeds, when NOx loss over

the city is dominated by outflow. For days with stagnant air and large-scale subsidence

the observed NO2 patterns provide a direct echo of the NOx emission pattern over Paris.

We conclude that the data and methodology presented here demonstrate the potential

of TROPOMI and follow-up geostationary sensors to monitor emissions in ever greater

spatial and temporal detail, not just for nitrogen oxides, but also for other air pollutants
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such as carbon monoxide, sulfur dioxide, and formaldehyde. TROPOMI data holds a

strong promise for the detection of emissions also from smaller cities and point sources,

and is particularly interesting for still uncharted sources.

5.4 Methods

5.4.1 TROPOMI sensor

NO2 tropospheric columns are provided by the TROPOspheric Monitoring Instrument

(TROPOMI) on board of the Copernicus Sentinel 5 Precursor (S5P) satellite (Veefkind

et al., 2012). We use level-2 data (version 1.0.2) processed by KNMI and DLR for

February-June 2018 that are available to validation teams at https://scihub.copernicus.eu.

The first 6 months of the mission were used for special observations to commission the

satellite and the ground processing systems; the operational phase started in April 2018.

The instrument measures the top of the atmosphere solar radiation reflected by and radi-

ated from the Earth between 270-500 nm and 675-775 nm, and in the short-wave infrared.

The instrument images a strip of the Earth on a 2-D detector for a period of 1 second dur-

ing which the satellite moves by about 7 km. This strip has dimensions of approximately

2600 km across the track direction of the satellite and 7 km in the along-track direction.

The two dimensions of the detector allow to simultaneously measure 450 spectra over the

entire 2600 km strip, corresponding to a spatial resolution of the 7 km (along)×3.5 km

(across) at nadir. The equator crossing time is near 13:40 local solar time, which results

occasionally in two overpasses over Paris on the same day, with some 100 minutes in

between measurements.

5.4.2 NO2 retrieval algorithm

The NO2 columns are retrieved with a 3-step procedure performed for each measured level-

1b spectrum as described in the Algorithm Theoretical Baseline Document (van Geffen

et al., 2018). In the first step, NO2 slant column densities are obtained from the radiance

and irradiance spectra using the Differential Optical Absorption Spectroscopy technique

in the 405-465 nm window where NO2 has prominent spectral features. Then, the slant

column is separated into a stratospheric and tropospheric part based on information from

a data assimilation system. Finally, the tropospheric slant columns are converted into

tropospheric vertical column densities by application of a tropospheric air mass factor

(AMF) based on a look-up table of altitude-dependent AMFs and actual information on

surface and cloud characteristics and on the vertical distribution of NO2 predicted by the

TM5-MP model on a 1°×1° grid (Williams et al., 2017).
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The TROPOMI retrieval builds on principles used in the DOMINO v2 approach

(Boersma et al., 2011), but includes many retrieval improvements proposed within the

European Union Quality Assurance for Essential Climate Variables (QA4ECV) project

(Boersma et al. (2018), Lorente et al. (2017)). These include an improved wavelength

calibration and the inclusion of O2-O2 and liquid water in the DOAS fitting model (van

Geffen et al. (2015), Zara et al. (2018)). In combination with the high signal-to-noise

ratio of TROPOMI, this leads to lower uncertainties in the slant columns (0.5-0.6·1015

molec·cm−2) compared to OMI. The data assimilation approach to estimate the strato-

spheric NO2 columns is based on the TM5-MP model and operates on a 1◦×1◦ grid

(Williams et al., 2017). Stratospheric NO2 in TM5-MP (free running mode) is driven by

nudging to satellite-observed climatological HNO3:O3 ratios (from ODIN and HALOE)

and 3-hourly ECMWF analysed and forecast meteorological fields. The TM5-MP sim-

ulations are updated every 30 minutes based on TROPOMI slant columns available in

that time-step, and the forecast NO2 field is then used to estimate the stratospheric NO2

column. A preliminary comparison with ground-based NDACC SAOZ measurements

suggests agreement to within 10% (or 0.3·1015 molec·cm−2) between the TROPOMI and

SAOZ stratospheric NO2 columns (Compernolle et al., 2018). The air mass factor that

converts the slant column density to vertical column density is calculated using the radia-

tive transfer model Doubling-Adding code KNMI. The AMF includes a correction factor

to account for atmosphere’s sphericity calculated with the 3D model McArtim (Lorente

et al., 2017). This correction affects mainly the stratospheric AMFs that are highly rele-

vant in the stratospheric NO2 estimation, and results in lower stratospheric NO2 columns

especially for extreme solar zenith angles in the winter hemisphere (Boersma et al., 2018).

The a priori NO2 vertical profiles from TM5-MP have an improved spatial resolution with

respect to DOMINO.

5.4.3 TROPOMI NO2 data filtering

We use tropospheric NO2 columns measured from orbits with cloud radiance fractions

less than 0.5, corresponding to geometric cloud fractions of up to 0.2, over Paris, as rec-

ommended in the TROPOMI ATBD (van Geffen et al., 2018). Experience with previous

satellite NO2 observations showed that measurements with the lowest effective cloud frac-

tions compare most favourably with independent measurements (Schaub et al., 2006),

and are of the highest quality (Lorente et al., 2017). Following this criterion rendered

a total of 36 orbits (obtained on 29 different days) with a mostly unobstructed view on

Paris, corresponding to a retention rate of approximately 25% in the February-June 2018

period.

Arguably the largest source of uncertainty in the satellite retrievals is the computation

of the tropospheric AMF (Boersma et al. (2018), Lorente et al. (2017)). We evaluated the
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influence of cloud parameters (effective cloud fraction and cloud pressure) on the AMF

patterns, and found that in some situations the rather course-gridded surface albedo

climatology used in the FRESCO+ cloud pressure retrieval, led to spurious jumps in

the tropospheric air mass factors for some days, which were absent when evaluating the

tropospheric slant column divided by the geometrical air mass factor. Based on these

tests, we rejected a number of orbits from further analysis: 24 February (orbits 1902 and

1903). This was also a day with relatively high cloud radiance fractions over Paris. We

also rejected data from 20 April 2018, as on this day various pixels right in the middle

of the pollution build-up (13 out of 126) were classified as non-valid over Paris. A day

with rapidly changing wind direction (19 April) was not considered either in our analysis.

There were strong indications for winds shifting direction and speed in the hours just

before the TROPOMI overpass time (Venstusky, 2018) of 13:22 UTC.

Our validation exercise over Paris suggests that TROPOMI NO2 columns have a low

bias with a multiplicative component of 25% (Figure S5.1). This is in line with other

validation activities that suggest that TROPOMI NO2 columns are on average some

20-40% lower than co-located NO2 columns measured with independent ground-based

measurements 34. This could be indicative of a low bias in the satellite retrievals or a

high bias in the ground-based measurements, but could also indicate differences in spatial

representativeness between the ground-based and satellite measurements. An experiment

in which we recalculated TROPOMI air mass factors by replacing a priori assumptions

on the NO2 vertical distribution (from TM5-MP) by profile shapes simulated with a high-

resolution model, shows higher NO2 columns, and suggests stronger increases of NO2

along with the wind from TROPOMI.

5.4.4 Line densities

For each day, the tropospheric NO2 columns are converted into one-dimensional line

densities along the wind direction over Paris. We do so by gridding the original TROPOMI

field to a 0.05◦×0.05◦ grid rotated towards the mean wind direction in the boundary layer

(Figure S5.3). We then integrate this rotated field over a 60 km interval perpendicular

to the wind direction, in units of molecules·cm−1. The 60 km interval is motivated by

the spatial contours of Paris and the horizontal distribution of bottom-up emissions that

suggest that the entire Paris metropolitan area is enveloped in all directions within a

radius of 30 km (Fig. S5.2), and so avoids interference from other sources. We focus on

the pollution build-up over the city along with the wind. Our line densities thus start 30

km upwind of the Paris city centre (x=0 km), and end 30 km downwind (x=60 km). This

ensures that they capture the full extent of the accumulation of NO2 over the emitting

metropolitan area.
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5.4.5 Boundary layer information on wind and chemistry

We calculate mean boundary layer wind speed at 12 UTC (13:00 hrs local time in Paris)

from ECMWF data. The wind data is taken from the 6-hourly data ECMWF ERA-

Interim reanalysis (e.g. Dee et al. (2011), Berrisford et al. (2011)). The original horizontal

resolution of this dataset is about 80 km, we use a re-gridded version at 0.125◦×0.125◦. At

the TROPOMI overpass time, the boundary layer is usually well mixed, so the boundary

layer average wind speed and wind direction is a good representation of the transport of

pollutants within the Paris dome. We ensured that the NO2-weighted mean boundary

layer wind speed did not differ significantly from the mean wind speed between the surface

and the boundary layer depth.

The a priori NOx lifetime is calculated as:

τNOx =
[NOx]/[NO2]

k[OH][M ]
(5.1)

with [NOx], [NO2], and [OH] the boundary layer mean concentrations simulated by

CAMS at 12 UTC over Paris, and k[M] the high-pressure, high-temperature reaction rate

constant for oxidation of NO2 (2.6·10−11 cm3 molec−1 s−1). The CAMS global near-real

time atmospheric composition reanalysis provides 3-hourly information of atmospheric

composition, with a horizontal resolution of 40 km. The CAMS system uses satellite

observations of atmospheric composition in its 4-D variational data assimilation system

(Inness et al., 2015), together with the Integrated Forecast System for atmospheric com-

position (C-IFS) from ECMWF 37 (Flemming et al., 2015).

5.4.6 Simulating line densities with a superposition model

We constructed a simple model that simulates the NO2 line density as a function of the

along-wind distance x over Paris. This model simulates the build-up of NO2 in the air

column as a superposition of line densities caused by the emissions in cell i. The prior

emission in these cells is from the TNO-MACC-III NOx emissions, integrated cross-track

over the full 60 km width perpendicular to the wind over Paris (unit molecules NOx

cm−1 s−1)). For each 5 km long cell i between 0 km < x < 60 km the contribution to

the line density downwind of the cell is calculated using a simple column model (Jacob,

1999):

Ni(x) =

{
E(xi)
k

(
1− exp

[
− k(x− xi)/u

]) [NO2]
[NOx]

x ≥ xi

0 x < xi
(5.2)
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where Ni(x) represents the contribution from E(xi), the NOx emissions from cell xi
alone, to the overall line density, k is the loss rate constant of NOx for daytime conversion

to nitric acid and u is the vertically averaged boundary layer wind speed. In Eq. (1),

scaling with the vertically averaged [NO2]:[NOx] mixing ratio is required to express the line

densities in terms of NO2. The superposition accounts for the spatially varying emission

rates (E(x)) in the urban area and reads:

N(x) =
∑
i

Ni(x) (5.3)

with N(x) describing the build-up of NO2 in molecules cm−1 along with the wind ex-

clusively over the Paris Metropolitan Area. The build-up reflects the underlying emission

strength and pattern E(x) and is influenced by the first order chemical loss and wind

speed over the city. The background value at the upwind end of the city (x=0 km) is

assumed to be representative for the entire city, so that the increase between 0 and 60 km

is attributed exclusively to emissions from the city.

5.4.7 Daily NOx emissions over Paris from the TNO-MACC-III inven-

tory

To obtain the emission for a particular day at 12:00 hrs (just before the TROPOMI

overpass time), the 24-hour mean emissions for Paris were first integrated over a 60×60

km2 area around the city centre, and then scaled by specific monthly, weekly, and diurnal

factors from the TNO-inventory. Figure S5.4 illustrates the temporal scaling factors from

the TNO MACC-III inventory, with the highest emissions in February and March, and

lowest in June. The weekly cycle in emissions peaks on Friday, and has some 21% lower

emissions on weekend days. The diurnal cycle indicates that emissions at 12:00 hrs are

20-30% higher than the 24-hour mean. These factors from a TNO report (Denier van der

Gon et al., 2010) have a high uncertainty embedded. For instance, the diurnal cycle

in emissions from road transport is based on traffic intensity time series from 1985 to

1998 in the Netherlands. It seems plausible that not only traffic intensity and emission

abatement in cars decreased in the past decades, but also that the temporal variation in

Paris is different than in the Netherlands.
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In this chapter we place the results and conclusions of the main chapters within the

perspective of future research.

6.1 Radiative transfer and air mass factor calcula-

tion

The calculation of the air mass factor is the most uncertain step of the NO2 retrieval algo-

rithm. We have seen in Chapter 2 and 3 that the structural uncertainty can be estimated

by applying different methodologies to the same data and analysing the spread in the

results. In this thesis we addressed the air mass factor (AMF) structural uncertainty by

comparing different AMF calculation methods by different retrieval groups. We analysed

in detail all the sub-processes in the AMF calculation, which allowed us to simultaneously

address the following research questions:

• How can we improve the air mass factor calculation process?

• What are the main sources of the AMF structural uncertainty, and can we quantify

these uncertainties for every step of the calculation?

The detailed comparison between different approaches pointed to possible improve-

ments in the AMF calculation process. The box-AMF comparison showed that McArtim

model simulates systematically lower box-AMFs in the stratosphere as compared to DAK

and the other radiative transfer models. We attributed these differences to the model’s

geometrically more realistic description of photon scattering in a spherical atmosphere.

Based on this result, we included a correction for sphericity in the altitude dependent air

mass factor look-up table and in the data assimilation for the stratosphere-troposphere

separation. This correction, together with the use of a higher resolution a priori profile,

resulted in (compared to DOMINO v2) lower (5-20%) tropospheric NO2 columns over

polluted regions that show a better agreement with independent ground-based measure-

ments. The comparison against DOMINO and the different validation exercises (e.g. over
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Tai’an and De Bilt in Chapter 2) show that the AMF calculated as a result of the re-

search in Chapter 3 and the QA4ECV project represent an improvement w.r.t. previous

AMFs.

In the tropospheric AMF comparison between groups, we identified the main sources

of structural uncertainty in every step of the AMF calculation and we traced back these

uncertainties to their underlying causes. When retrieval groups used their preference

for ancillary data along with their preferred cloud and aerosol correction, we estimated

the overall structural uncertainty of the AMF calculation to be up to 42% over polluted

regions. The steep increase from the structural uncertainty in top-of-atmosphere (TOA)

reflectance simulations of 6% to 42% strongly suggests that it is not the models or the

calculation method but the assumptions and choices made to represent the state of the

atmosphere that introduce most structural uncertainty in the AMF calculation.

The most critical assumptions (i.e. strongest source of structural uncertainty) for the

AMF calculation are the choice for a specific cloud correction and aerosol correction,

followed by the choice of a priori profiles and surface albedo. Therefore future research

should focus on improving cloud and aerosol characterization for trace gas retrievals. For

clouds, their structure and radiative properties can be more realistically simulated using

3-D radiative transfer models, and incorporate these to the cloud model used in the air

mass factor calculation. The implicit aerosol correction should be further developed by

including a (better) physical aerosol characterization in the radiative transfer. Recent

studies by Liu et al. (2019) and Chimot et al. (2018) attempted to improve the aerosol

correction by using aerosol properties retrieved from Moderate Resolution Imaging Spec-

troradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)

and Ozone Monitoting Instrument (OMI) satellites. Liu et al. (2019) showed that the new

correction, which constraints the GEOS-Chem modelled aerosol parameters using aerosol

extinction profiles from CALIOP, improved the Peking University OMI NO2 (POMINO)

retrieval over China in hazy conditions. Chimot et al. (2018) applied the aerosol correc-

tion using aerosol parameters (aerosol layer height and aerosol optical thickness) retrieved

from OMI. They showed the feasibility of their methods for cloud-free scenes with high

aerosol load and in the presence of strongly absorbing aerosols, and recommended to use

the explicit aerosol correction when a clear distinction between clouds and aerosols cannot

be made. They highlighted that difficulties still exist in the application of the implicit

correction due to the interplay on the radiative transfer of the NO2 profile shape, aerosol

properties and surface reflectance.

The use of high resolution (e.g. about 15×15 km2) a priori profiles improves the AMFs

and hence NO2 satellite retrievals, as urban and background areas are better resolved (e.g.

McLinden et al. (2014), Heckel et al. (2011)). Although it can be computationally expen-

sive to apply these profiles in a global retrieval, with the new and future high resolution
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instruments to use high resolution prior information will be necessary . There are state-

of-the-art chemistry transport models than can model global NO2 fields at high spatial

resolution (e.g. WRF-Chem, GEOS-Chem). Regionally for Europe, the Copernicus At-

mosphere Monitoring System CAMS provides NO2 fields from an ensemble of 7 chemistry

transport models at a resolution of 40×40 km2 that can be used to re-calculate the AMFs.

The need of using high resolution prior information also applies to the surface albedo:

climatologies at coarse resolution currently used in the NO2 retrievals degrade the in-

trinsic spatial resolution of the scenes measured at high resolution, like with TROPOMI.

Although TROPOMI itself will soon provide a surface reflectance ”climatology” as its

predecessors GOME-2 and OMI, other alternatives should be investigated. The ADAM

(A surface reflectance DAtabase for ESA’s earth observation Missions) database provides

monthly climatologies of surface reflectance at 0.1×0.1◦ resolution derived from MODIS,

which might be an alternative to current coarse resolution climatologies. The QA4ECV

project also derived a land surface albedo climatology (1982-2016) based on several satel-

lite instrument that, combined with another source of information for ocean reflectance,

could be used in current NO2 retrievals. Until now these options have been discarded

because of the fact that different satellite would then provide the ancillary information,

which leads to a less consistent cloud and NO2 retrieval framework (e.g. different in-

strumental features, different spectral range and radiative transfer characterization and

atmospheric correction).

Structural uncertainty is intrinsic to the retrieval algorithm formulation and it is con-

sidered to be a source of systematic uncertainty. Currently, most satellite retrievals only

consider the theoretical uncertainty. However, uncertainty from methodological differ-

ences should also be considered when estimating the overall uncertainty. In case of

the NO2 and formaldehyde (HCHO) retrievals, the magnitude of the structural uncer-

tainty is significant and comparable to the theoretical uncertainty. In the QA4ECV and

TROPOMI HCHO retrieval algorithms, structural uncertainty has been accounted for

as an additional contribution in the total error calculation of the AMF (De Smedt et

al., 2018). Even though this results in a more exhaustive uncertainty budget estimation,

the fact that the calculation of the theoretical and structural uncertainty share several

components can influence the overall uncertainty estimation and needs to be further in-

vestigated.

Chapter 3 provides evidence of the need for improvement of the different ancillary data

sets and their uncertainty estimates. Because there is not a ”true” air mass factor value

to use as a reference, direct validation of the AMF using independent measurements is

not possible, only via validation of the vertical columns. Therefore there is a strong need

of having dedicated validation exercises against independent data focusing on situations

where AMF structural uncertainty has the highest impact: strong pollution events and
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scenes with residual clouds. The ancillary data itself (NO2 profile, cloud and aerosols dis-

tributions and surface albedo) are in deep need of validation and should also be considered

when designing future validation campaigns.

6.2 Surface reflectance anisotropy

Surface reflectance anisotropy (i.e. the angular distribution of the light reflected by a

surface) has implications for satellite retrievals of albedo, clouds and trace gases such as

NO2. Because most of the operational retrievals assume that the surface reflects light

isotropically, in Chapter 4 we addressed the following research questions:

• How accurate is the use of Lambertian surface albedo for backward and forward

scatter viewing geometries from different satellite instruments?

• How can we account for surface reflectance anisotropy in the radiative transfer model

DAK?

• How does surface reflectance anisotropy affect cloud retrievals and NO2 retrievals

via clear sky and cloudy sky contributions to the tropospheric AMF?

In Chapter 4 we have shown that surface reflectance anisotropy needs to be taken into

account in a coherent manner for more realistic and accurate satellite retrievals of clouds

and NO2. We showed that retrievals suffer from systematic errors when surface reflectance

anisotropy effects are not taken into account. We found biases in cloud fractions across the

orbit of up to 50% in the GOME-2 FRESCO cloud algorithm and up to 26% in the OMI

OMCLDO2 cloud algorithm. The biases are larger over vegetation and forested areas in

the near-infrared, and weaker but still relevant in the visible, where surfaces are darker

and Rayleigh scattering effects are stronger. These biases are caused by systematic under

and over estimation of the surface reflectance by the surface LER (Lambertian Equivalent

Reflector) climatologies that propagates into the cloud retrieval. The effects on clouds

are highly relevant for scenes with low cloud fractions, where trace gas retrievals are still

sensitive to pollution close to the ground. Surface reflectance anisotropy affects both

clear-sky AMF and cloud fractions, which in combination significantly affect NO2 AMFs.

The combined effect, stronger than the effect of either contribution alone, is that NO2

AMFs in polluted situations vary up to ± 25%–35%. The sign and magnitude of surface

BRDF effects show strong spatial variations and depend on cloud fraction and cloud

pressure.

A natural progression of this work would be to substitute the current surface LER

climatologies by a better surface reflectance characterization which is particularly urgent

for new and future satellite instruments measuring at high resolution with a wider swath.
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An alternative to the traditional surface LER climatology is the ’directional surface LER

climatology’. This climatology is constructed in the same way as traditional climatolo-

gies (i.e. the surface reflectance is still considered isotropic) but discretizes the orbit

swath according to the different relative viewing geometries, which results in a view-

ing geometry dependent surface LER climatology. Another alternative is the so-called

geometry-dependent LER (GLER)(Vassilkov et al. (2017)). In this approach spatially

averaged MODIS BRDF information over each OMI pixel is used to construct a LER

database that is viewing geometry dependent. The advantage of using the directional

LER and GLER is that current algorithms only need minor adjustments to adapt to the

new datasets, mainly because these are derived for the same pixel sizes, geometries and

wavelengths and using the same retrieval framework as the one used in cloud and NO2

retrievals. The alternative, the use of a full surface BRDF implementation, is preferred

but needs major changes to the algorithm framework. For instance, it would be neces-

sary to include two more dimensions in the LUT to account for the different scattering

types. A full BRDF implementation also implies the use of external BRDF parameters

from different satellite instruments (e.g. MODIS), which gives less consistency to the

retrievals as the spectral ranges, radiative transfer and atmospheric corrections differ for

the retrievals of the different satellite products. The cloud fraction dependency with the

viewing geometry for cloudy scenes also suggests that the use of a more realistic cloud

model should be explored in further research for the improvement of cloud retrievals. A

first step forward from the currently used Lambertian model would be to consider in the

radiative transfer a vertical structure of different scatterers within the vertical extension

of the clouds and to account for directionality in the scattering of light by clouds.

Chapter 4 raised the need of a thorough analysis of how cloud parameters retrieved

with current cloud retrievals depend on geometry to estimate the effects at larger time

and spatial scales. Retrieved cloud fractions and cloud pressures suffer from a geometry

dependent bias that might not be visible on a day to day basis, but does appear when

analysing the cloud products at longer periods over specific locations as we do in Chapter

4. A preliminary analysis with 5 days of global GOME-2B data over land showed that

using the directional LER in the FRESCO retrieval reduces the cloud pressure by 40 hPa

on average. This analysis also showed a decrease in cloud fractions by up to 0.1 on the part

of the orbit that measures under backward-scatter geometries, where currently FRESCO

retrieves hardly any cloud fractions below 0.2. This threshold of 0.2 is highly relevant

for NO2 and other trace gas retrievals (i.e. HCHO, SO2, fluorescence) as it is used to

decide on whether a pixel is considered cloud-free or not. This implies that there might

be NO2 retrievals considered cloud contaminated when in reality it could be a clear-sky

scene, which brings up the need to also investigate the number of pixels that might be

(and might have been) compromised by this.
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Although in Chapter 4 we have shown that it is necessary to coherently account for

surface reflectance anisotropy effects, the surface BRDF effects have not yet been applied

to a complete global cloud and NO2 retrieval. This should be a priority for current

retrievals that still consider the surface as a Lambertian reflector. This would result

in improved cloud and trace gas retrievals, especially for highly polluted scenes with

residual clouds, for measurements under geometries more affected by surface anisotropy

(i.e. backward scattering) and over areas covered by vegetation. Besides the surface

reflectance characterization, ocean reflectance anisotropy also has to be taken into account,

as cloud and trace gases are also retrieved over ocean scenes. The ocean reflectance can

be parametrized, similar to surface BRDF, using the Cox-Munk model that simulates the

reflection as a function of geometry and wind speed (Cox and Munk, 1954). Additionally,

two terms to account for foam reflectance (Koepke, 1984) (as a function of wind speed)

and ocean column reflectance (Morel, 1988) (as a function of chlorophyll concentrations)

can also be added.

6.3 TROPOMI NO2 measurements for daily NOx

emission estimates

The research described in Chapter 5 started just a month after TROPOMI was launched

in October 2017. Data from the first month of TROPOMI measurements showed pollution

from sources with unprecedented spatial resolution. Its predecessors (e.g. OMI) could only

come close by temporally averaging, and not exclusively with only one satellite overpass.

The 22nd of November 2017, a day with mostly clear skies over Europe, TROPOMI NO2

measurements showed a plume from Paris that was transported towards the north-east

more than 100 km away. With this picture as a motivation for our study, and with a

constant flow of new TROPOMI data coming in, we focused on answering the following

questions:

• How is the quality of the TROPOMI NO2 retrieval algorithm and of the high reso-

lution NO2 measurements?

• Can we estimate daily NOx emissions from TROPOMI NO2 measurements focusing

on the build up of pollution within the city?

• How robust is the method applied to a megacity like Paris?

In Chapter 5 we show that is it possible to estimate daily NOx emissions of the Paris

metropolitan area from the NO2 measurements of TROPOMI. The high resolution and

improved signal-to-noise ratio of TROPOMI allows to apply a simple column model fo-

cusing on the build up of pollution within the city. Our methodology is inspired by the
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one in Beirle et al. (2011) but it differs from it as it overcomes some limitations from the

assumptions in the downwind decay of the plume and the use of coarser resolution NO2

measurements from OMI. TROPOMI allows the use of daily measurements regardless of

the wind direction and without the need to average NO2 tropospheric columns. Averag-

ing introduces errors as it implies the interpretation of different plumes transported in

different days with changing atmospheric conditions (e.g. wind speed and direction). On

the other hand, we focus on the build up of NO2 over the source (i.e. the city) without

analysing the downwind decay to estimate the lifetime of NO2. In the high resolution

daily measurements of TROPOMI, the determination of the lifetime from the downwind

decay is influenced by the diurnal cycle of emissions, the downwind emission sources and

the variability of the lifetime within the plume (de Zeeuw, 2018). When these effects are

neglected in the column model, the lifetime inferred from the downwind decay is under-

estimated, thus the downwind decay of the plume is not a good constraint on the NOx

lifetime as in (Beirle et al., 2011). Because an accurate determination of the lifetime is

not possible without accounting for these effects, we focus on the accumulation of NO2

within the metropolitan area of Paris where most of the NOx emissions take place. The

accumulation of NO2 first upwind and then within the city reflects the spatial distribu-

tion of emissions within the 60×60 km2 metropolitan area of Paris. With an overpass

time of 13:30 LT, the TROPOMI emission estimates are representative for the noon-time

emissions for the entire metropolitan area. The method relies on the knowledge of wind

speed and direction to good accuracy, and it is only weakly sensitive to assumptions on

NOx chemical lifetime for days with modest to strong wind speeds, when NOx loss over

the city is dominated by outflow.

The TROPOMI NO2 retrieval is based on the principles used in the DOMINO v2

retrieval for OMI satellite and includes improvements developed for the QA4ECV re-

trieval algorithm (discussed in Chapter 2). However, the unprecedented high resolution

of TROPOMI measurements brings new challenges for the retrieval community. Apart

from analysing the tropospheric NO2 columns from TROPOMI, we also analysed the

slant column densities divided by the geometrical AMF to identify artificial patterns in

the AMF (caused by the ancillary datasets) that could be affecting the retrieved NO2

vertical columns. During some of the days the cloud parameters were causing spurious

jumps in the AMF (visible in the NO2 fields), and we traced these jumps back to the

interaction of the cloud retrieval with the surface albedo dataset, which was not properly

being interpolated in space1. The surface albedo climatologies used in the cloud and NO2

retrieval are based on measurements from GOME-2 and OMI respectively, and they are

given in a rather coarse (1◦× 1◦, 0.5◦× 0.5◦) spatial resolution (Kleipool et al. (2008),

Tilstra et al. (2017)). Retrieval groups need to investigate the representation of the sur-

1This issue has been solved by the retrieval team and corrected in the updated version of the cloud
algorithm.
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face reflectance in order to perform accurate retrievals of clouds and NO2 from TROPOMI

and future high resolution sensors (as discussed in previous section).

The a priori profiles used in the retrievals are from the TM5-MP model at 1◦×1◦

resolution, an improvement compared to the 3◦×2◦ resolution used in DOMINO. However,

this resolution is still too coarse for the high resolution of TROPOMI NO2 measurements

at 3.5×7 km2, and the contrast between polluted and background areas is insufficiently

represented in the AMF patterns. When using a coarse resolution model for the a priori

profiles, background NO2 values are typically overestimated and in high pollution spots

underestimated. We performed an experiment and re-calculated the AMFs using higher

resolution a priori profiles from CAMS for 4 days (Henk Eskes and John Ntouros, KNMI,

2018). The results showed an underestimation of the NO2 columns within the plumes from

Paris of around 10%-15%, and an similar overestimation in the background NO2 columns

outside the plumes. TROPOMI NO2 being biased low within the polluted Paris is in

line with the conclusions from the first validation results. This could be attributed not

only to the resolution of the a priori profile, but also to the different emissions or vertical

mixing in the models. This directly points to the need of thorough validation campaigns

with independent measurements (e.g. MAX-DOAS, surface and aircraft measurements)

to validate the different sources of a priori profiles for the retrievals. In Chapter 5 we

have scaled the emissions based on the validation of TROPOMI NO2 with ground based

measurements from the Airparif network, but the use of high-resolution profile shapes

should be considered in future applications of TROPOMI NO2 measurements.

Chapter 5 shows that it is necessary to monitor emissions in real time and presents

TROPOMI NO2 measurements as an additional tool to bottom-up emission inventories,

as they provide NOx emission estimates at sub-urban scales and on a day-to-day basis.

It is at these temporal and spatial scales where bottom-up emission inventories are less

accurate as they are based in rather general assumptions. The method presented in

Chapter 5 can be easily applied to other megacities: within the Paris area TROPOMI

makes enough measurements to calculate the line density with 12-15 points along the

city every day, so we think that the application of the method to smaller sources is also

feasible. The challenge now is to automatize the process so we can derive emissions

as soon as TROPOMI NO2 measurements and accurate wind speed and wind direction

information are available.
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Nitrogen oxides (NOx = NO + NO2) play an important role in atmospheric chemistry,

therefore affecting air quality and Earth’s radiative forcing, which impact public health,

ecosystems and climate. Remote sensing from satellites in the ultraviolet and visible

(UV-Vis) spectral range results in measurements of tropospheric NO2 column densities

with high spatial and temporal resolution that allow, among many applications, to mon-

itor NO2 concentrations and to estimate NOx emissions. NO2 satellite retrievals have

improved extensively in the last decade, together with the increased need of having trace-

able characterization of the uncertainties associated with the NO2 satellite measurements.

The spatial resolution of the satellite instruments is improving such that the observed NO2

pollution can now be traced back to emissions from individual cities, power plants, and

transportation sectors. However, the uncertainty of satellite NO2 retrievals is still con-

siderable and mainly related to the adequacy of the assumptions made on the state of

the atmosphere. In this thesis we have improved the critical assumptions and our under-

standing in the radiative transfer modelling for NO2 satellite measurements, and we use

the new TROPOMI NO2 measurements to quantify daily NOx emissions from a single

urban hot spot.

In the Quality Assurance for Essential Variables (QA4ECV) project, we developed a

community NO2 and formaldehyde (HCHO) retrieval algorithm based on best practices

of different state-of-the-art retrieval algorithms (Chapter 2). To develop the QA4ECV

algorithm, a systematic analysis of the three retrieval steps was performed, comparing

different approaches by leading retrieval groups to create an improved retrieval algorithm.

By applying it to four different sensors we have retrieved more than 20 years of NO2

and HCHO measurements in a consistent way, both at algorithm level using the same

methodology and assumptions and across timescales.

The QA4ECV NO2 retrieval incorporates relevant improvements and it also provides

a better quantification and understanding of the uncertainties in all the retrieval steps.

The spectral fitting method now accounts for liquid water absorption and includes an

intensity offset correction, which improves the quality of the fits. A major step in the data

assimilation and tropospheric air mass factor calculation has been the use of a priori profile
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shapes from the chemistry transport model TM5 at a spatial resolution of 1◦ x 1◦, which

together with the improved spectral fitting results in pollution hot spots being better

resolved. The stratospheric estimation has also benefited from the sphericity correction

that we applied in the air mass factor (AMF) calculation, which was an outcome of the

radiative transfer model comparison presented in Chapter 3. We compared the QA4ECV

NO2 data record to the NO2 retrieved with the DOMINO v2 algorithm and we validated

it with MAX-DOAS ground based measurements. The smaller QA4ECV OMI NO2 VCDs

(5-20% compared to DOMINO v2) show a better agreement (w.r.t. DOMINO v2) with

the independent MAX-DOAS measurements over De Bilt in The Netherlands and Tai’an

in China, with a mean difference of -7% (-18% for DOMINO v2).

In the comparison of the air mass factor calculation approaches, we identified the

characteristics of the radiative transfer modelling part that could be improved and imple-

mented those in the QA4ECV algorithm (Chapter 3). The AMF is the biggest source of

uncertainty in the NO2 and HCHO retrieval algorithm, mainly because to represent the

state of the atmosphere, several assumptions and choices have to be made. We compared

the AMF calculation (step by step) of seven different retrieval groups, and we focus on

characterizing the sources of structural uncertainty, which is the uncertainty that arises

when different retrieval methodologies are applied to the same data.

The methodological differences in the AMF calculation start with the choice of the

radiative transfer model for the TOA reflectance calculation, which only introduces an

uncertainty of 2-3%. The agreement in the tropospheric AMFs calculated by the dif-

ferent groups when using identical ancillary data (surface albedo, surface height, cloud

parameters and trace gas profile shape) is of 6%, uncertainty that is intrinsic to the AMF

calculation and cannot be avoided. The uncertainty increases up to 42% when each group

uses their preferred settings, which indicates that the assumptions and choices made to

represent the state of the atmosphere introduce most of the structural uncertainty, with

cloud and aerosol corrections contributing the most to it. The comparison showed that

McArtim model simulates systematically lower altitude dependent air mass factors in

the stratosphere as compared to DAK and we attributed these differences to McArtim’s

geometrically more realistic description of photon scattering in a spherical atmosphere.

Based on this result, we applied a correction for sphericity when calculating the air mass

factor look-up table in the QA4ECV retrieval.

The angular distribution of the light reflected by the Earth’s surface influences top-of-

atmosphere (TOA) reflectance values, and as a consequence satellite retrievals of albedo,

clouds and NO2 are also affected. In Chapter 4 we focus on the characterization of the

surface reflectance in the radiative transfer modelling for these retrievals, which usually

assume that surface reflectance is isotropic. This assumption originates in the construc-

tion of the surface Lambertian Equivalent Reflector (LER) climatologies that are used to
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represent the surface albedo in cloud and trace gas retrievals. Surface LER climatologies

over (under) estimate surface reflectance for forward (backward) scattering geometries, a

direct consequence of the directional signature of surface reflectance that is ignored when

constructing the climatologies. The under (over) estimation results in higher (lower)

retrieved cloud fractions for measurements done with backward (forward) scattering ge-

ometries, and we show that this bias is removed when accounting for surface reflectance

anisotropy.

To interpret the influence of surface reflectance anisotropy in cloud and NO2 retrievals,

we implemented in the radiative transfer model DAK (used in the DOMINO NO2 and

FRESCO and OMCDLO2 cloud retrievals) the bidirectional reflectance distribution func-

tion (BRDF) from the Ross-Li semi empirical model that fully characterizes the surface

reflectance geometrical properties. This model represents the surface reflectance as a

sum of three kernels that represent different types of scattering, weighted by parameters

obtained from observations (e.g. MODIS). Surface BRDF effects on cloud fraction are

highly relevant for scenes with low cloud fractions, where trace gas retrievals are still

sensitive to pollution close to the ground. Surface BRDF effects are most relevant for

cloud retrievals in the near infrared spectral range, as in the visible part of the spectrum

stronger Rayleigh scattering reduces surface BRDF effects in the top of atmosphere re-

flectance. Surface reflectance anisotropy affects both clear-sky AMF and cloud radiance

fractions, which in combination significantly affect total AMFs used in the NO2 retrievals.

The combined effect, stronger than the effect of either contribution alone, is that NO2

AMFs in polluted situations increase by 25%–30 for backward-scattering geometries and

decrease by 25%–35% for forward-scattering geometries.

The unprecedented high resolution of TROPOMI NO2 measurements is a major im-

provement for atmospheric composition monitoring and brings new challenges for the

retrieval community. TROPOMI NO2 retrieval algorithm inherited most of the improved

aspects of the QA4ECV retrieval algorithm, and the research in Chapter 5 served as a

first assessment and evaluation of the TROPOMI NO2 dataset and to test the quality

and performance of the retrieval algorithm. TROPOMI measurements present an im-

provement over OMI, as TROPOMI clearly captures the details of pollution plumes from

various sources, including cities. In Chapter 5 we explore the capabilities of TROPOMI’s

NO2 measurements to infer daily NOx emissions from the megacity of Paris. We use a

simple column model that focuses on the build-up of pollution over the city metropolitan

area where most of the emissions occur, and together with prior knowledge of wind speed

and wind direction we estimate NOx emissions on clear-sky days. The column model

method works best for days with strong wind speeds, when the loss of NOx is dominated

by advection and the prior knowledge on the chemical lifetime does not strongly influence

our results.
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We applied the column model to TROPOMI NO2 data in the first half of 2018 and

we compared the estimated NOx emissions with the TNO-MACC III bottom-up emission

inventory. In the winter days of February, TROPOMI estimates higher NOx emissions

than TNO-MACC inventory. In April, May and June, we find that the inventory overes-

timates the emission estimates, which might point to an overestimation of the residential

heating by the inventories. Inventories typically assume a 18◦C threshold for turning on

the heating, and in April-June 2018 temperatures were higher for most of the clear-sky

days that we analysed. In the weekends, the build up of NO2 is not as strong as on

the weekdays, an indicator of weaker weekend emissions. Indeed, we estimated emissions

to be up to 35% lower in weekends compared to the values during the week. Our re-

sults indicate a stronger weekend reduction compared to that predicted by the bottom-up

emission inventories. The day-to-day variation captured by TROPOMI resembles the ad-

ditional knowledge that we can gain by estimating emissions with TROPOMI. Bottom-up

inventories use monthly, weekly and daily factors that might not reflect daily particular

conditions of specific locations. For example, TROPOMI emission estimates for Fridays

are generally lower than for the rest of the week, in contrast to the inventories that predict

the highest emissions of the week on Fridays.

The work presented in this thesis contributes to the satellite remote sensing community

(1) because of the improvement of the satellite retrieval and the knowledge of its main

uncertainty sources (Chapter 2, 3 and 4), and (2) because of the application of TROPOMI

NO2 measurements for the first time to infer daily NOx emissions at urban scales (Chapter

5). Chapter 2 presents a community best practice NO2 retrieval algorithm, how it is has

been developed in the QA4ECV project and which are the main improvements with

respect to state-of-the-art retrievals. The QA4ECV retrieval algorithm has been applied

to four different satellite sensors to create for the first time a coherent and harmonized

data record of 20 years of NO2 (and HCHO) satellite measurements. Chapter 3 presents

in more detail the improvements developed in the radiative transfer part for the air mass

factor calculation. Chapter 4 shows the need to coherently account for surface reflectance

anisotropy in clouds and NO2 retrievals. In Chapter 5, we explore the capabilities of

TROPOMI’s unprecedented high resolution NO2 measurements to infer NOx emissions

from megacities. TROPOMI and future satellite sensors present new challenges for the

retrieval community. The outcome of this thesis points out aspects that still need to be

improved for more accurate NO2 retrievals from current and future satellite measurements.

The end of this work leaves a list of to-do things for the satellite retrieval community,

which will hopefully result in new scientific findings and further improvements of the

satellite remote sensing capabilities.
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Supplementary material for Chapter 3

Equation S3.1. Effective temperature at which the cross sections should be fitted.

Teff =

∫∞
z T (z) ·m(z) · n(z)dz∫∞

z m(z) · n(z)dz
(S3.1)

Where T(z) is the temperature profile, m(z) is the altitude-dependent air mass factor, and

n(z) is the NO2 number-density profile.

Equation S3.2. Temperature correction factor from Boersma et al. (2002).

cl =
T0 − 11.4

Tl − 11.4
(S3.2)

T0: Cross section temperature used in the DOAS fit (220 K in this study)

Tl: Temperature in layer l

Equation S3.3. Temperature correction factor from Bucsela et al. (2013).

cl = 1− 0.003 · (Tl − T0) (S3.3)

T0 : Cross section temperature used in the DOAS fit (220 K in this study).

Tl : Temperature in layer l

Equation S3.4. Cloud radiance fraction (Boersma et al., 2004).

w =
fclIcl

fclIcl + (1− fcl)Icr
(S3.4)

fcl is the effective (i.e. radiometrically equivalent) cloud fraction, and Icr and Icl the fit-

window averaged radiances for 100% clear and cloudy scenes, respectively.
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Table S3.1. Model settings for top-of-the-atmosphere reflectance calculation with different
RTMs, as described in Section 3.3.1.

Input parameter
Number of
reference points

Values of reference points

Wavelength 7 340, 360, 380, 400, 420, 440, 460 nm

Atmospheric profile N.A
Mid-latitude summer atmosphere
including O3 (335 DU)

µ0 (cosine solar zenith angle) 10
1.00, 0.80, 0.60, 0.50, 0.30, 0.25,
0.15, 0.05, 0.03, 0.00

Solar zenith angle 10
0°, 36.9°, 53.1°, 60°, 72.5°,
75.5°, 81.4°, 87.1°, 88.3°, 90°

µ (cosine viewing zenith angle) 2 1.00, 0.30
Viewing zenith angles 2 0°, 72.5°
180 -abs(φ− φ0) (relative azimuth angle) 5 0°, 60°, 90°, 120°, 180°
Surface albedo 1 0.0
Surface pressure 1 1013 hPa

Table S3.2. Model settings for altitude dependent (box-) AMFs calculation in Section 3.3.2.

Input parameter
Number of
reference points

Values of reference points

Atmospheric profile N.A
Mid-latitude summer atmosphere
including O3 (335 DU)

Layering 170
0, 0.1, 0.2, . . . . 10 km
10, 11, 12, . . . . 60 km
60, 62, 64, . . . . 100 km

µ0 (cosine solar zenith angle) 12
1.00, 0.90, 0.80, 0.70, 0.60, 0.50,
0.30, 0.25 0.15, 0.05, 0.03, 0.00

Solar zenith angle 10
0°, 25.8°, 36.9°, 45.6°, 53.1°, 60°, 72.5°,
75.5°, 81.4°, 87.1°, 88.3°, 90°

µ (cosine viewing zenith angle) 6 1.00, 0.90, 0.80, 0.70, 0.50, 0.30
Viewing zenith angles 6 0°, 25.8°, 36.9°, 45.6°, 60°, 72.5°

180 -abs(φ− φ0) (relative azimuth angle) 13
0°, 15°, 30°, 45°, 60°, 75°, 90°,
135°, 150°, 165°, 180°

Surface albedo 7 0.00, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0
Surface pressure (hPa) 5 1013, 902, 802, 554, 281

S 3.1 Preferred settings for NO2 tropospheric AMF calculation

S 3.1.1 BIRA-IASB. For the radiative transfer modelling and box-AMF calculation, BIRA

uses the VLIDORT radiative transfer model (see Sect. 3.2.2). The surface reflectivity is a

combination of the MODIS black sky albedo (BSA) gap filled product (MCD43GF) and the

OMI minimum LER from Kleipool et al. (2008) at 440 nm. The MODIS BSA values are

averaged over 10 years of measurements and the OMI min LER dataset is used to fill the gaps

and for scenes over water. Surface pressure is from the Global Multi-resolution Terrain Elevation

Data 2010 with 30 x 30 km resolution, corrected following the approach by Zhou et al. (2009).

The cloud parameters (cloud fraction and cloud pressure) are taken from the OMI 02-02 cloud

retrieval (OMCLDO2, Acarreta et al. (2004)). For the cloud correction they apply IPA for cloud

fractions higher than 0.2 and cloud masking for cloud fractions lower than 0.2. They apply an
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Figure S3.1: Relative differences of tropospheric NO2 AMFs between each research group
using harmonized settings. Only pixels with SZA < 70 º are shown. The selected OMI orbit is
from 02 February 2005 (2005m0202-o02940 v003). Different scale was used for the differences
between BIRA and WUR (lower right panel).

implicit aerosol correction. The NO2 a priori profiles are daily profiles from the TM5 chemistry

transport model at a resolution of 1x1 degrees.

S 3.1.2 IUP-UB. For the radiative transfer modelling and box-AMF calculation, IUP-UB

uses the SCIATRAN radiative transfer model (see Sect. 3.2.2). Surface albedo is from Kleipool

et al. (2008) version 3, which uses 5 years of OMI measurements. The monthly minimum LER

at 442 nm is used. Surface pressure is from the Global Multi-resolution Terrain Elevation Data

2010. They are gridded to 0.25 x 0.25 deg. and corrected following the approach by Acarreta

et al. (2004). For the cloud correction they apply independent pixel approximation (IPA) for

cloud fractions higher than 0.1 and cloud masking for cloud fractions lower than 0.1. They use

modelled reflectances for the current albedo and a cloud albedo of 0.8 to convert O2-O2 cloud

fraction to radiance fraction. The cloud fraction threshold is cloud radiance fraction of 50%.
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Figure S3.2: Schematic representation of differences in model design between McArtim
(left) and DAK, VLIDORT and SCIATRAN (right) for the direct solar beam (left side of the
individual figures) and the multiple scattered photons (left side of the individual figures). The
grey line indicates the atmosphere’s confinement (either spherical or plane parallel).

They apply an implicit aerosol correction. The NO2 and temperature profiles come are daily

MACC-II reanalysis profiles with a resolution of 1.25° x 1.25°.

S 3.1.3 MPI-C . For the radiative transfer modelling and box-AMF calculation, MPI-C

uses the McArtim radiative transfer model (see Sect. 3.2.2). Surface albedo is from Kleipool

et al. (2008), version 002, which uses 3.5 years of OMI measurements. The monthly minimum

LER at 440 nm is used. Surface pressure is from TM4 chemistry transport model and corrected

following Zhou et al. (2009) approach using the high resolution DEM 3km Earth Science Data

type database. The NO2 and temperature profiles are daily TM4 model at a resolution of 3 x

2 deg. In the preferred settings, MPI-C accounts for possible cloud aerosol mixtures or layer of

other different types of aerosol. They differentiate three cases:

(A) Clouds higher than 3 km. The IPA is applied to calculate the AMF.

(B) Low clouds and aerosols. For clouds below 2 km, a parametrized aerosol-cloud layer is

included between 0 and 1 km above the surface. This parametrization represents a coarse

cloud/aerosol model that assumes small cloud fractions to be pure aerosols and high cloud

fractions to be pure clouds both with a fixed layer thickness of 1 km. They determine the

relation between optical depth of an aerosol/cloud layer and the cloud radiance fraction

using McArtim. For this purpose they expand the LUT by the optical depth (OD),

single scattering albedo and the Henyey Greenstein asymmetry parameter. Depending

on the optical depth, they assume typical optical parameters of aerosols for OD ≤ 1,

aerosols/cloud particle mixture for 1 < OD < 3 and cloud particles for OD >3.

(C) Low cloud fraction. For clouds between 2 and 3 km and cloud radiance fraction below

10%, they use the clear sky AMF.

(D) High cloud fraction. For clouds between 2 and 3 km and cloud radiance fraction higher

than 10%, the pixel is invalid as it cannot be differentiated between white Lambertian

clouds and mixtures of clouds and aerosols.



153

	

	
Figure S3.3: Example of correlation between AMF differences by BIRA and WUR (∆AMF)
and differences in NO2 vertical columns (∆NO2) for 02 February 2005 (upper panels) and 16
August 2005 (lower panels). The panels on the right show the average NO2 vertical profiles
for the scenarios shown in the left panels (green, TM5 by BIRA and blue, TM4 by WUR).

Table S3.3. Number (#) of pixels and correlation coefficient (R) for the correlation between
air mass factor differences between WUR and BIRA (∆AMF) with differences in modelled NO2

vertical column (∆NO2), surface albedo (∆As) and surface pressure (∆Ps) for 02 February
2005 (upper panels) and 16 August 2005 (lower panels). The first column corresponds to the
correlation shown in left panels in Fig. S3.3.

2005m0202 ∆AMF vs. ∆NO2 ∆AMF vs. ∆As ∆AMF vs. ∆Ps

# Pixels 6843 1876 1303
R -0.19 0.50 -0.04
2005m0816 ∆AMF vs. ∆NO2 ∆AMF vs. ∆As ∆AMF vs. ∆Ps

# Pixels 15142 5382 2736
R -0.55 0.21 -0.01
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Table S3.4. Number (#) of pixels and correlation coefficient (R) for the correlation between
air mass factor differences between Peking Uni. and WUR (∆AMF) with differences in cloud
pressure (∆Pc) and modelled NO2 vertical column (∆NO2) for 02 February 2005 and 16
August 2005.

2005m0202 ∆AMF vs. ∆Pc ∆AMF vs. ∆NO2

# Pixels 397 981
R 0.28 0.151
2005m0816 ∆AMF vs. ∆Pc ∆AMF vs. ∆NO2

# Pixels 576 310
R -0.12 0.17

Table S3.5. Tropospheric NO2 AMFs calculated by Peking Uni. with and without an explicit
aerosol correction over China on 02 February 2005. Pixels with AOT > 0.5, albedo < 0.3 and
effective cloud fraction < 0.5 were selected. The average AOT and single scattering albedo
originate from the GEOS-Chem aerosol simulations for the location and time of the pixels.
The average cloud fraction and cloud pressure are the result from Peking Uni. cloud retrieval.

AMFaer < AMF AMFaer > AMF
# Pixels 441 149
AOT 1.1 0.7
SSA 0.90 0.88

Without
correction

With
correction

Without
correction

With
correction

Cloud fraction 0.18 0.15 0.31 0.19
Cloud Pressure 791 hPa 432 hPa 689 hPa 666 hPa
AMF 1.78 0.80 0.53 0.94

	
Figure S3.4: Correlation between AMF differences by Peking University and WUR (∆AMF)
and differences in cloud pressure (∆Pc) and NO2 vertical columns (∆NO2) for the 02 February
2005 (upper panels) and 16 August 2005 (lower panels).
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Figure S3.5: Aerosol optical depth (red line) and a priori NO2 (blue line) vertical profiles for
02 February 2005. Upper panel: pixels where AMFaer (with explicit aerosol correction) are
lower than AMF (without explicit aerosol correction), due to the screening effect of the aerosols
layer above the NO2 layer. Lower panel: pixels where AMFaer (with explicit aerosol correction)
are higher than AMF (without explicit aerosol correction), due to the increased scattering
probability within the NO2 + aerosol layer. Only pixels with AMF relative differences higher
than 25% are shown, as well as surface reflectance < 0.3, effective cloud fraction < 0.5 and
AOD > 0.5.

	

	
Figure S3.6: (Left panel) Stratospheric vertical NO2 columns as a function of VZA from
assimilation of OMI NO2 SCDs in TM4 (DOMINO V2 product). Dashed line: scenario
without any diurnal variation in stratospheric NO2 (local solar time differences are up to 6
hours at these latitudes), dashed-dotted line: scenario with a strong, consistent stratospheric
NO2 increase rate (of 0.15 · 1015 molec/cm2/h). Central and right panel compare the three
corresponding simulated stratospheric slant columns (from TM4 assimilated VCD, without
diurnal cycle and with diurnal cycle) from DAK (left panel) and McArtim (right panel) to the
observed OMI total SCD (black solid line) as a function of OMI VZA.
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Table S3.6. Statistical parameters of the comparison with the model mean (in % (100(a-
b)/a)) of total tropospheric NO2 AMFs calculated by each group over the globe for polluted
and unpolluted pixels (pixels with model NO2 vertical column higher or lower than 1 · 1015

molec/cm2 respectively). Upper panels correspond to OMI measurements for the 02 February
2005 and the lower panels for the 16 August 2005. Only pixels with cloud fraction ≤ 0.2 and
SZA < 60° are considered in the comparison.

Polluted pixels
Mean Median σ R2 Slope Offset

BIRA -14.0 -15.8 15.6 0.840 1.40 -0.33
IUP-UB 2.0 2.0 20.2 0.606 1.10 -0.17

Leicester Uni. 3.7 3.8 14.6 0.788 1.07 -0.14
MPIC -8.0 7.1 42.1 0.699 2.60 -1.85
NASA -1.6 -1.2 11.7 0.847 1.05 -0.05
WUR 18.0 18 12.5 0.814 1.06 -0.30

Unpolluted pixels
BIRA -5.9 -6.1 10.4 0.897 1.08 -0.05

IUP-UB 1.7 1.2 11.6 0.861 1.05 -0.12
Leicester Uni. 7.4 7.7 8.4 0.926 1.04 -0.2

MPIC -2.6 -2.4 17.9 0.827 1.45 -0.75
NASA -2.5 -1.5 9.5 0.940 1.16 -0.31
WUR 1.8 1.5 8.8 0.938 1.13 -0.26

Polluted pixels
Mean Median σ R2 Slope Offset

BIRA -9.7 -13.2 15.5 0.916 1.39 -0.36
IUP-UB -7.3 -6.2 15.3 0.859 1.04 0.02

Leicester Uni. 1.3 1.9 10.6 0.921 0.97 0.01
MPIC 1.8 10.2 31.1 0.643 1.54 -0.71
NASA -1.7 -1.5 11.5 0.918 1.08 -0.08
WUR 15.7 13.9 10.3 0.926 1.03 -0.23

Unpolluted pixels
BIRA -5.2 -5.9 9.3 0.929 1.1 -0.09

IUP-UB -0.8 - 0.7 11.3 0.875 1.01 -0.01
Leicester Uni. 6.0 6.7 8.5 0.923 0.99 -0.1

MPIC -2.0 -1.4 15.9 0.871 1.36 -0.61
NASA -2.5 -1.5 9.5 0.940 1.16 -0.31
WUR 3.7 3.6 9.3 0.932 1.13 -0.29
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Table S3.7. Statistical parameters of the comparison with the model mean (in % (100(a-
b)/a)) of total tropospheric NO2 AMFs calculated by each group over China (20°-53°N /
80°-130°W) for polluted and unpolluted pixels (pixels with model NO2 vertical column higher
or lower than 1·1015 molec/cm2 respectively). Upper panels correspond to OMI measurements
for the 02 February 2005 and the lower panels for the 16 August 2005. Only pixels with cloud
fraction ≤ 0.2 and SZA < 60° are considered in the comparison.

Polluted pixels
Mean Median σ R2 Slope Offset

BIRA -10 -7.5 18.2 0.769 1.42 -0.37
IUP-UB 5.1 9.0 14.9 0.728 0.70 0.27

Leicester Uni. -8.8 -3.3 20.4 0.649 0.96 0.13
MPIC 7.1 8.2 37.1 0.781 2.46 -1.72
NASA -0.2 1.5 11.9 0.843 0.94 0.06

Peking Uni. -3.3 -4.8 18.0 0.774 1.27 -0.28
WUR 10.7 9.9 13.0 0.880 1.22 -0.37

Unpolluted pixels
BIRA -15 -15.1 15.2 0.860 1.27 -0.18

IUP-UB 8.3 12.6 16.2 0.745 1.08 -0.24
Leicester Uni. 1.2 2.1 10.2 0.905 0.98 0.01

MPIC -5.1 -3.2 27.5 0.728 1.64 -0.88
NASA -2.5 -2.9 11.4 0.910 1.13 -0.15

Peking Uni. 2.9 3.9 20.7 0.762 1.33 -0.54
WUR 10.1 10.2 12.3 0.882 1.11 -0.31

Polluted pixels
Mean Median σ R2 Slope Offset

BIRA -10.5 -10.9 13.4 0.855 1.41 -0.33
IUP-UB -20.0 -20.8 14.0 0.767 1.13 0.06

Leicester Uni. 7.2 8.1 9.7 0.871 1.06 -0.14
MPIC 26.0 27.0 12.7 0.708 1.06 -0.34
NASA -0.9 0.7 17 0.778 1.43 -0.46

Peking Uni. -24.6 -25.3 20.0 0.775 1.81 -0.60
WUR 22.8 23.3 12.5 0.701 1.04 -0.29

Unpolluted pixels
BIRA -10.3 -10.2 8.6 0.960 1.27 -0.26

IUP-UB -0.9 0.1 9.6 0.899 0.87 0.20
Leicester Uni. 8.0 7.6 7.8 0.931 0.97 -0.09

MPIC -1.0 -0.9 10.6 0.929 1.27 -0.40
NASA 4.7 4.3 11.2 0.874 1.05 -0.16

Peking Uni. -3.2 -0.9 15.3 0.822 1.18 -0.24
WUR 2.8 3.3 8.6 0.934 1.10 -0.19
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Supplementary material for Chapter 4

S4.1 Kernels for the Ross-Li BRDF model

Expressions of the kernels implemented in DAK to model the surface reflectance anisotropy. We

refer to the original literature where these kernels were derived for more details.

Ross-Thick kernel. The expression of the Ross-Thick volumetric scattering kernel is (Rou-

jean et al., 1992):

Kvol = [
(π/2− ξ) cos ξ + sin ξ

cos θ′ + cos θ
] · [1 + (1 + ξ/ξ0)−1]− π

4
. (S4.1)

Here θ′ and θ are the incident and reflected zenith angles, respectively. ξ is the scattering angle

defined as:

cosξ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) (S4.2)

where ϕ− ϕ′ is the relative azimuth angle (reflected and incident azimuth difference).

The term in the second pair of squared bracket in Eq. A1 is the modified part for the hot-

spot modelling, where ξ0 is the hot spot characteristic angle (typically 1.5◦). This characteristic

angle can be related to the ratio of the size of the scattering element and the canopy vertical

density (Maignan et al., 2004).

Li-Sparse kernel. The expression of the Li-Sparse geometric scattering kernel is (Li and

Strahler (1986), Wanner et al. (1995)):

Kgeo = O(θ, θ′, ϕ− ϕ′)− sec θ∗ − sec θ′∗ +
1

2
(1 + cos ξ∗) sec θ∗ sec θ′∗. (S4.3)

O =
1

π
(t− sin t cos t)(sec θ∗ + sec θ′∗), (S4.4)

cos t =
h

b

√
D2 + (tan θ′∗ tan θ∗ sin(ϕ− ϕ′))2

sec θ∗ sec θ′∗
, D =

√
tan2 θ∗ + tan2 θ′∗ + 2 tan θ∗ tan θ′∗ cos(ϕ− ϕ′).

(S4.5)

The angles with a star are equivalent angles to convert spheroid-like object to spheres:

θ∗ = tan−1(
b

r
tan θ), θ′∗ = tan−1(

b

r
tan θ′). (S4.6)

O (Eq. S4.4) is the overlap area between the shadow of illumination and the shadow of

viewing projections on the ground. D is the distance between the centers of the scattering

objects. The parameter t is used to parametrize the scattering objects spherically. The kernel
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it is not linear as it has two parameters b
r and h

b describing the shape and the relative height of

the scattering objects, in this study are set to 1 and 2 respectively.
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Figure S4.1: Google Earth image of the Amazon region (Lat.: 5N-10S and Lon.: 70W-60W)
analysed in the manuscript.

	
Figure S4.2: Monthly averaged BRDF parameters (fiso, fvol, fgeo) from MODIS Band 3 (459-
479 nm) averaged over the Amazon in a 0.25° x0.25° grid for March. BRDF parameters are
from a 16-year climatology (2000-2016) created by the QA4ECV land group.

	
Figure S4.3: Same as Fig. S4.2 but for Band2 (841 - 876 nm).
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Figure S4.4: Box-plot of simulated cloud fractions with a Lambertian surface (blue) and with
surface BRDF (green) for GOME-2A East, Nadir and West measurements over Amazonia for
March 2008. Triangles and circles show the mean values and the box represents 25th and 75th
percentiles and the dashed lines the minimum and maximum values.

	
Figure S4.5: Relative differences between total tropospheric NO2 AMF computed with sur-
face BRDF and with a Lambertian surface as a function of cloud fraction for (a) backward
scattering direction and (b) forward scattering direction for (θ, θ0) = (30°, 45°) for a moder-
ately polluted (circles) and unpolluted (squares) troposphere. Surface BRDF parameters are
(fiso, fvol, fgeo) = (0.04, 0.03, 0.008) and Aws = 0.036 for the Lambertian surface.
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Supplementary material for Chapter 5

S5.1 Validation of TROPOMI NO2 over Paris

To evaluate the quality of TROPOMI NO2 data over Paris, we generated a set of independent

NO2 columns based on coincident measurements of NO2 concentrations measured at the Eiffel

Tower at 300 m altitude, and knowledge of the boundary layer height. The hourly NO2 con-

centration values closest in time to the TROPOMI overpass were converted (multiplied by 1.4,

motivated by Figure 1b in Dieudonné et al. (2013) into surface concentrations Cg representative

for the Eiffel Tower pixel. We then applied the empirical relationship between surface and col-

umn NO2 values established from 2 years of coincident column and in situ measurements over

Paris by Dieudonné et al. (2013). This empirical relationship relates NO2 surface concentrations

to the NO2 column (NAP) via the boundary layer height:

NAP = K
(
0.244h(Cg − 1.38) + 0.184(Cg − 2.83)

)
(S5.1)

with K a constant factor that converts 1 µg/m3 in a 1 km deep boundary layer into a column

of 1.31 ·1015 molec cm−2, Cg the surface NO2 concentration (in µg/m3), and h the boundary

layer height in km (from ECMWF). The scaling factor in Eq. S5.1 have been determined by

fitting the tropospheric NO2 columns against NO2 surface concentration for different boundary

layer height classes, and show that the NO2 columns scale progressively with increasing boundary

layer height (Dieudonné et al., 2013).

By applying the above procedure, we obtained 28 ‘AirParif’ NO2 columns measured within 30

minutes of the TROPOMI observations over the Eiffel Tower. On one day, 24 April 2018, there

were no NO2 measurements available from AirParif. Figure S5.1 shows very good agreement

between the AirParif and TROPOMI NO2 columns (R2=0.88). On average TROPOMI NO2

columns are lower than those from AirParif by 10-15%. To characterize the differences, we

did a reduced major axis regression. This suggests that TROPOMI has a small, systematic

offset of +0.8 · 1015 molec. cm−2, and a multiplicative low-bias component of 25%. The

multiplicative component of the low bias suggests that the increases in NO2 columns over Paris

are underestimated by the same amount (the offset is discarded in the line density analysis as

explained in the Methods). This relative underestimate of 25% is corrected for in the inversion

method.

S5.2 Line densities over Paris

For each mostly clear-sky day, we calculated maps of NO2 tropospheric columns from S5P-

TROPOMI observations. We then rotated the maps such that they align with the prevailing

ECMWF boundary layer wind direction over Paris. Line densities L(x) (as function of distance

x from the point source in wind direction) are determined by spatial integration over a 60 km
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Figure S5.1. Comparison of tropospheric NO2 columns from AirParif (calculated with Eq.
S5.1) and TROPOMI over the Eiffel Tower. The left panel shows a time series of the clear-sky
columns between February and July 2018. The right panel shows a scatter plot and the results
of a reduced major axis regression analysis of TROPOMI vs. AirParif. The average distance
of the TROPOMI pixel centre to the Eiffel Tower was 2.6 km.

interval in across-wind direction. The 60 km interval is motivated by the spatial contours of Paris

and the horizontal distribution of bottom-up emissions that both suggest that the entire Paris

metropolitan area is enveloped in all directions within a radius of 30 km (Figure S5.2).

Figure S5.2. Upper panels: NOx emission strength (mol s−1) over the Paris Metropolitan
area from the TNOMACC- III emission inventory for 2011; original resolution 1/8◦×1/16◦

(lon × lat). In the upper right panel, the location of the A86 Super-périphérique Parisien
highway and geographical contours of the entire metropolitan area (including Sarcelles, Tav-
erny, Montesson, Versailles, Palaiseau, Bretigny, Villiers sur-Marne, Torcy, Mitry- Mory, and
Paris Charles-de-Gaulle airport) are indicated as white solid lines. The 30 km radius envelope
is indicated as a dashed white line.

We focus on the pollution build-up of NO2 in a column of air that is advected over the city.

Our line densities thus start 30 km upwind of the Paris city centre, and end 30 km downwind.

This ensures that line densities capture the full extent of the accumulation of NO2 over the

metropolitan area. Figure S5.3 illustrates our method to calculate the line densities, for Friday

4 May 2018.
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Figure S5.3. Left and middle panel: tropospheric NO2 vertical column on 4th May 2018
from S5P- TROPOMI, S5P- TROPOMI rotated towards North-North-east wind direction.
Right panel: corresponding NO2 line density from 0 km (upwind) to 60 km (downwind) over
Paris (black dashed line) with further downwind line density decay up to 140 km in light grey.

S5.3 Temporal variation in NOx emissions

To account for temporal variations and allow a fair comparison between the inferred S5P-

TROPOMI NOx emissions (valid for approximately 12:00 hrs local time) and the NOx emissions

predicted by the TNO-MACC III inventory, we used the emission scaling factors over Paris pro-

vided in the TNO-MACC III inventory (Kuenen et al., 2014). Figure S5.4 illustrates the scaling

factors that relate the 24-hour mean emissions in the inventory to the emission strength at 12:00

hrs for all the days of the week, and for different months. According to the inventory, weekend

reductions are ±30% in winter, and ±20% in summer, and emissions are some 10% lower in

the summer months than in winter as a consequence of a smaller contribution from residential

heating in the warm season.

Figure S5.4. Emission scaling factors for 12:00 hrs local time over Paris, France, as provided
by the TNO-MACC III inventory. A value of 1.0 corresponds to the 24-hr mean (for the year
2011) NOx emissions provided in the inventory.

S5.4 Modeled boundary layer mean OH concentrations

Because it is difficult for coarse-resolution chemistry transport models to reproduce OH con-

centrations ((Ren et al., 2003), (Valin et al., 2013)), especially over strong source regions such
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as Paris, we allow for a range of ±50% on the boundary layer mean OH concentrations around

the values predicted by CAMS over the city. This range was motivated by a comparison of OH

simulations by the 3-D CTM CAMS and 0-D CLASS model (Vilà-Guerau de Arellano et al.,

2005) showing that OH levels from the latter are some 50% lower (Figure S5.5) on most days

in June. The CLASS box model was forced with (1) initial conditions; (2) emissions; and (3)

a chemical scheme, to reproduce the O3 and NOx values observed at the 3rd floor of the Eiffel

Tower.

Wednesday 20 June 2018 was a day with extremely low wind speed and a boundary layer

reaching an altitude of only 950 m over Paris. This is associated with a high pressure system and

large-scale subsidence, capping the boundary layer. Indeed, the NO2 column at the city centre

exceeded 2.5·1016 molec. cm−2 on this day, and NO2 concentrations measured at the top of the

Eiffel Tower (3rd floor, 300 m altitude) just before the TROPOMI overpass were very high (40

µg/m3 compared to 5-15 µg/m3 on other June days (Airparif, 2018)), and the boundary layer

was not as deep as on other June days. We evaluated this particular situation with the CLASS

mixed-layer model of atmospheric chemistry, constrained by measured concentrations of O3,

NO, NO2 and boundary layer height. The CLASS model simulations suggest that daytime OH

was indeed lower by a factor 3-5 on 20 June than in the period between 21 and 28 June, when

wind speeds and boundary layer heights were much higher. Figure S5.5 shows that the CAMS

OH simulations correspond to those from CLASS within a factor 2 between 21 and 28 June,

but that CAMS does not capture the reduced OH levels simulated by CLASS for the stagnant

situation on 20 June. This can be attributed to fast dispersion of NOx in that model over the

40 km × 40 km grid boxes, promoting the formation of O3 and OH, compared to the high-NOx

regime indicated by observations. In contrast, CLASS, constrained by observed NO, NO2, and

O3 concentrations from the Eiffel Tower and boundary layer height from ECMWF, suggests that

OH levels are actually suppressed by the high levels of pollutants (NOx, VOCs) that accumulate

over Paris on this day without any ventilation and a relatively shallow boundary layer.

We therefore reduced the boundary layer mean OH from CAMS (15·106 molec. cm−3) by

a factor of 4 to obtain a more plausible first guess of the NOx loss rate constant on this day.

The inferred emissions from two successive orbits are on the same order of magnitude as on

other June days, but the inferred NOx lifetime is somewhat longer. Both estimates come with

considerable uncertainties because of the low wind speed (Table S5.1).

S5.5 Uncertainties

The S5P-TROPOMI NOx emissions derived from S5P-TROPOMI are inherently uncertain.

Here we discuss and quantify the main contributions. Our estimated emissions are directly af-

fected by the accuracy of the S5P-TROPOMI columns, which is driven by structural uncertainty

in the tropospheric air mass factor calculation (Boersma et al. (2018), Lorente et al. (2017) and

amounts to ±30%.

The ratio between NO2 and NOx concentrations from CAMS over Paris has an uncertainty of
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Figure S5.5. Scatter-plot of OH simulated by the 40×40 km2 CAMS CTM ensemble mean
and boundary layer CLASS model at the TROPOMI overpass time (12:00-14:00 hrs; con-
strained by measurements from AirParif, Eiffel Tower station, 3rd etage). The corresponding
NO2 concentrations observed at the Eiffel Tower are colour-coded.

±20%, based on a comparison of CAMS simulations and observations at the Eiffel Tower (Table

1). If we replace CAMS NOx-to- NO2 ratio’s (geometric mean: 1.36) by those from the Eiffel

Tower (geometric mean: 1.43), our emission estimates are reduced by less than 3% on average.

We adopt an error of ±20% in the ECMWF boundary layer mean wind speed, consistent with

(Beirle et al., 2011), and (Petetin et al., 2015). With this error, we found that emissions changed

by +20%, when modifying the wind speed by +20%.

Our results are only weakly sensitive to assumptions on the NOx lifetime. Firstly, our method

allows for an uncertainty in the boundary layer mean OH concentrations from CAMS of 50%,

reflecting the difficulty that models have in capturing OH over a large city. Because the inferred

emissions have some dependency on the selected range of possible OH concentrations, we did

a test where we used CLASS OH concentrations (with generally lower values, e.g. Figure S5.5

as our starting point instead of the CAMS values. Results change by less than 15%, thus our

method proves to be quite robust for such changes. If CAMS systematically overestimates the

boundary layer OH, then emissions will be overestimated.

The a priori emission pattern is important to minimize the differences between the observed

and modelled line densities, but its exact shape is of little influence to the overall emissions. We

did an experiment where we used one fixed a priori emission pattern as predicted by the TNO-

MACC-III inventory, and compared the resulting emissions to the results obtained by optimizing

the pattern as described in the manuscript. The emissions are similar to within 10%.

Other uncertainties include wind direction and wind speed changing with height. Our method

assumes that the NO2 pollution over Paris is advected in a well-defined direction and that the
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boundary layer average wind speed captures the advection well. In reality there will be differ-

ences in wind direction and wind speed with altitude. The effects of wind direction uncertainties

on NOx emissions are likely limited, because the 60 km intervals for calculating line densities are

large enough to absorb small errors in wind direction. Wind speed variations with height do not

lead to large uncertainties in the estimated emissions. As described in the Methods, the NO2-

weighted mean boundary layer wind speed did not differ significantly from the mean wind speed

between the surface and the boundary layer depth, so that the mean boundary layer wind speed

can be considered to be representative for the bulk of the NO2 in the boundary layer.

Table S5.1. Evaluation of uncertainties in the individual components and how these affect
the NOx emission estimates from S5P-TROPOMI.

Uncertainty Effect on NOx emissions
S5P-TROPOMI NO2 column 30% 30%
NO2:NOx ratio 20% 3%
Wind speed 20% 20%
A priori NOx loss rate 50% 15%
A prioir emission pattern 20% 10%

Total uncertainties assuming
uncorrelated error contributions

50%

Systematic wind variations, for instance a relatively fast change in the prevailing wind di-

rection, or recirculation, may affect the spatial build-up patterns over the city, and thus the

fit results. Often this effect is small, and the observed patterns are dominated by the wind

conditions close to the time of the satellite measurement. Days with rapid changes in wind

direction or wind speed such as 19 April 2018 have been excluded from further analysis (see

Methods).

The total uncertainty in the NOx emissions is mostly driven by the uncertainties in the

S5P-TROPOMI NO2 columns, and contains non-negligible contributions from uncertainty in

wind speed and a priori assumptions on NOx loss rate and emission patterns. We add these

contributions in quadrature and estimate an overall emission uncertainty of 36-65%. These

estimates are higher for days with low wind speeds, when wind speed and OH are particularly

uncertain, such as on 20 June 2018 when we estimate uncertainties of ±100%. The fit results

are robust with respect to changes in the selection of the across-city integration interval, as long

as this interval is chosen wide enough (60 km, all of Paris is captured within a 30 km radius).

If this interval is chosen more narrowly, then the line density will not cover the full across-wind

extent of Paris, so that the emissions would be representative for a smaller part of Paris.

S5.6 Spatial distribution of the estimated NOx emissions

Figure S5.6 compares the (1-D) emission distribution from TROPOMI and TNO-MACC III

over Paris for all week and weekend days. The patterns agree reasonably well, and indicate that

the bulk of the Parisian NOx is indeed emitted within a radius of 15 km of the city centre, with

weaker contributions from the suburbs.
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Figure S5.6 Left panel: emission ‘line density’, obtained by accumulating TNO-MACC-
III NOx emissions across Paris over a 60 km perpendicular to the wind in steps of 5 km.
Right panel: average NOx emission line density (mol/s) from TROPOMI weekdays (red)
and weekend days (green) and TNO-MACC-III (dark blue) over Paris. The TNO-MACC-III
emission line densities were calculated by sampling along the main wind direction, and hold
for the samples days in the year 2011. The TROPOMI patterns have not yet been corrected
for the low bias discussed at the beginning of this section.

S5.7 S5P-TROPOMI NO2 maps, line densities, and model fits for all days

Figure S5.7 below shows the S5P-TROPOMI tropospheric NO2 columns (left columns) and the

observed and fitted NO2 line densities (right columns) for all days that were mostly cloud-free

and had valid data over Paris in the period February-June 2018.
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Figure S5.7. Tropospheric NO2 columns for all clear-sky days as observed by TROPOMI in the period

February-June 2018 (left panels) and the corresponding observed and modelled NO2 line densities. The

black arrow in the left panels indicates the wind direction, and the length of the arrow is proportional

to the wind speed.
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C., Pu¸k īte, J., Wagner, T., Werner, B., and Pfeilsticker, K.: The Monte Carlo atmospheric radia-

tive transfer model McArtim: Introduction and validation of Jacobians and 3D features, J. Quant.

Spectrosc. Radiat. Transfer, 112, 1119 – 1137, doi: 10.1016/j.jqsrt.2010.12.009, 2011.
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Maignan, F., Bréon, F.-M., and Lacaze, R.: Bidirectional reflectance of Earth targets: evaluation of

analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot,

Remote Sensing of Environment, 90, 210 – 220, doi: http://doi.org/10.1016/j.rse.2003.12.006, 2004.

Marais, E. A., Jacob, D. J., Guenther, A., Chance, K., Kurosu, T. P., Murphy, J. G., Reeves, C. E., and

Pye, H. O. T.: Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument

(OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter, Atmos.

Chem. Phys., 14, 7693–7703, doi: 10.5194/acp-14-7693-2014, 2014.

Marbach, T., Beirle, S., Platt, U., Hoor, P., Wittrock, F., Richter, A., Vrekoussis, M., Grzegorski, M.,

Burrows, J. P., and Wagner, T.: Satellite measurements of formaldehyde linked to shipping emissions,

Atmos. Chem. Phys., 9, 8223–8234, doi: 10.5194/acp-9-8223-2009, 2009.

Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., and Evans, M. J.: An im-

proved retrieval of tropospheric nitrogen dioxide from GOME, J. Geophys. Res., 107, 4437, doi:

10.1029/2001JD001027, 2002.

Martin, R. V., Jacob, D. J., Chance, K.and Kurosu, T. P., Palmer, P. I., and Evans,

M. J.: Global inventory of nitrogen oxide emissions constrained by space-based observations

of NO2 columns, J. Geophys. Res.: Atmospheres, 108, doi: 10.1029/2003JD003453, URL

http://dx.doi.org/10.1029/2003JD003453, 4537, 2003.

MCD43A1: MODIS/Terra and Aqua BRDF/Albedo Model Parameters Daily L3

Global 500 m SIN Grid V006, doi: DOI: 10.5067/MODIS/MCD43A1.006, URL



186 REFERENCES

https://ladsweb.nascom.nasa.gov/api/v1/productPage/product=MCD43A1.

McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A., Cappa, C. D., Jimenez,

J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A., Cui, Y. Y., Kim, S.-W., Gentner, D. R., Isaacman-

VanWertz, G., Goldstein, A. H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and

Trainer, M.: Volatile chemical products emerging as largest petrochemical source of urban organic

emissions, Science, 359, 760–764, doi: 10.1126/science.aaq0524, 2018.

McLinden, C. A., Fioletov, V., Boersma, K. F., Kharol, S. K., Krotkov, N., Lamsal, L., Makar, P. A.,

Martin, R. V., Veefkind, J. P., and Yang, K.: Improved satellite retrievals of NO2 and SO2 over the

Canadian oil sands and comparisons with surface measurements, Atmos. Chem. Phys., 14, 3637–3656,

doi: 10.5194/acp-14-3637-2014, 2014.

Mebust, A. K., Russell, A. R., Hudman, R. C., Valin, L. C., and Cohen, R. C.: Characterization of wildfire

NOx emissions using MODIS fire radiative power and OMI tropospheric NO2 columns, Atmospheric

Chemistry and Physics, 11, 5839–5851, doi: 10.5194/acp-11-5839-2011, 2011.

Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. F.: Simultane-

ous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical

composition and emissions, Atmos. Chem. Phys., 12, 9545–9579, doi: 10.5194/acp-12-9545-2012, 2012.

Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal changes in

global surface NOx emissions from multi-constituent satellite data assimilation, Atmospheric Chem-

istry and Physics, 17, 807–837, doi: 10.5194/acp-17-807-2017, 2017.

Miyazaki, K., Sekiya, T., Fu, D., Bowman, K. W., Kulawik, S. S., Sudo, K., Walker, T., Kanaya,

Y., Takigawa, M., Ogochi, K., Eskes, H., Boersma, K. F., Thompson, A. M., Gaubert, B., Barre,

J., and Emmons, L. K.: Balance of Emission and Dynamical Controls on Ozone During the Korea-

United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation, Journal of

Geophysical Research: Atmospheres, 124, doi: 10.1029/2018JD028912, 2018.

Morel, A.: Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),

Journal of Geophysical Research: Oceans, 93, 10 749–10 768, doi: 10.1029/JC093iC09p10749, 1988.

Müller, J.-P., Kharbouche, S., Gobron, N., Scanlon, T., Govaerts, Y., Danne, O., Schultz, J., Lattanzio,

A., Peters, E., De Smedt, I., Beirle, S., Lorente, A., Coheur, P. F., George, M., Wagner, T., Hilboll,

A., Richter, A., Van Roozendael, M., and Boersma, K. F.: Recommendations (scientific) on best

practices for retrievals for Land and Atmosphere ECVs (QA4ECV Deliverable 4.2 version 1.0), URL

http://www.qa4ecv.eu/sites/default/files/D4.2.pdf, last access : June 2018, 2016.

Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., Huckle, R., Lacan, A., Grzegorski,

M., Holdak, A., Kokhanovsky, A., Livschitz, J., and Eisinger, M.: The GOME-2 instrument on the

Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview,

Atmos. Meas. Tech., 9, 1279–1301, doi: 10.5194/amt-9-1279-2016, 2016.

Myhre, G., Kvalev̊ag, M. M., and Schaaf, C. B.: Radiative forcing due to anthropogenic vegeta-

tion change based on MODIS surface albedo data, Geophysical Research Letters, 32, n/a–n/a, doi:

10.1029/2005GL024004, l21410, 2005.
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Alfonso, te estoy eternamente agradecida por tu apoyo, especialmente durante este
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la distancia que nos separó durante 3 años pareciese más corta, y gracias por finalmente

hacer realidad el sueño de vivir juntos bajo el mismo techo. Ahora Holanda es un sitio
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