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Abstract

The global energy transition transforms the world’s energy sector from fossil-based towards based

on renewable energies. As each cloud condition causes different solar irradiance characteristics,

quantifying cloud-caused variability in solar irradiance is important for the successful grid integration

of weather-dependent decentralized solar energy systems. This study quantifies the cloud-caused

variability in the 1-minute averaged solar irradiance measurements from the Veenkampen weather

station near Wageningen, the Netherlands, for the period June 2011 to December 2017. We expand

on previous studies and create a classification scheme with nine classes that represent certain cloud

conditions. The variability in the solar irradiance magnitude and temporal variability are quantified

per cloud condition with: (1) the mean diffuse and direct solar irradiance, (2) the probability density

function of the clear-sky index, (3) the temporal autocorrelation of the solar irradiance, and (4) the

probability density function of the ramp rates in solar irradiance. The low-variability clear-sky class

mostly experiences variability in solar irradiance due to the solar cycle in the sky. The low-variability

overcast class experiences low variability in magnitude, but this variability has a random nature after

about 10 minutes. The high-variability mixed-sky class has high variability in magnitude, within one

minute the solar irradiance can drop with 670 W m−2. The temporal variability in this class is high

as well, as the variability becomes random already after 4 minutes. The classification scheme and

belonging results can be used to reduce the uncertainty in solar irradiance forecasts, thereby helping

grid operators with balancing the electricity load on current and future electricity grids.
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1 | Introduction

The global energy transition transforms the world’s energy sector from fossil-based towards based

on renewable energies. The combined share of variable solar and wind power in the energy sector

is expected to increase to 58% in 2050 (IRENA, 2018). Almost half of the solar capacity growth

over 2018-2023 will consist of decentralized energy generated by commercial and industrial projects

and residential applications (IRENA, 2018). However, traditional neighbourhood electricity grids are

designed for centralized energy generated by non-variable, often non-renewable, energy sources like

coal fired power plants. In case of a high photovoltaic (PV) power system density in a neighbourhood,

all these PV power systems generate about their maximum amount of power when the sun shines

and generate only little power when the sky is clouded.

On a sunny day with fair weather clouds, solar irradiance fluctuates within minutes between

values as low as clouded sky conditions and as high as clear-sky conditions. On a day like in Figure

1.1, this solar irradiance difference can be in 1 minute as large 670 W m−2 or a clear-sky index

difference of 0.73. Furthermore, measured solar irradiance also frequently exceeds the values of

clear-sky conditions, because clouds also reflect sunlight thereby adding diffuse radiation to direct

radiation (e.g., Schade et al., 2007). As PV systems transform intermittent solar irradiance into

solar energy, the passing of clouds causes similar fast and large intensity fluctuations in solar energy

production. These fluctuations can result in an electricity load on the electricity grid beyond acceptable

limits. This exceedance can cause local voltage-flicker issues, damage electromechanical equipment

and even lead to a blackout (Lave et al., 2012). Furthermore, fluctuations accelerate the fatigue

of PV modules materials (Tomson, 2010). Weather-dependent decentralized solar energy generation

thus challenges grid operators to balance electricity supply and demand in order to to guarantee the

stability and quality of the electricity grid.

For the successful grid integration of decentralized PV power systems, it is important to

quantify cloud-variability in solar irradiance (e.g., Woyte et al., 2007). Each cloud condition causes

different solar irradiance characteristics, therefore a complete quantification of variability should
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Figure 1.1: (a) Solar irradiance and (b) the clear-sky index on a day with fair-weather clouds (19

June 2016). The temporal resolution of the time series is 1 minute. The dark blue line in panel (a)

is the observed solar irradiance and in (b) the clear-sky index. The light blue line is in panel (a) the

modelled clear-sky irradiance and in (b) the clear-sky index of 1.

describe per cloud condition: (1) the physical quantity that varies, (2) the variability time scale,

and (3) the time period over which the variability is assessed (Perez et al., 2016). So point (1) and

(2) are respectively the variability in the solar irradiance quantity and in solar irradiance ramp rates

(i.e., changes over specified intervals of time) (e.g., Lave et al., 2012). Quantifying the variability in

solar irradiance is primarily relevant for forecasting the yield of PV systems and the capacity of energy

storage (Lohmann, 2018). Quantifying the ramp rates in solar irradiance is primarily relevant for the

balancing of the power supply and electricity load on an electricity grid, and for guaranteeing the

stability and quality of the electricity grid (Lohmann, 2018). The quantification of solar irradiance

variability can also help to decrease the forecast uncertainty of solar irradiance and solar energy

forecast models. Precisely forecasting solar energy generation is even highlighted as one of the key

challenges to enable the extensive integration of PV systems needed to succeed in the global energy

transition (European Photovoltaic Industry Association and others, 2012; Barth et al., 2014).

All solar irradiance measurements deviating from the modelled clear-sky irradiance are caused

by clouds (Figure 1.1). As solar irradiance can fluctuate within minutes between clouded and

clear-sky values, solar forecast models need to be able to capture this high temporal variability.

Clouds, and therefore solar irradiance, can be seen as the final (but ever changing) stage of complex

dynamics between (1) land surface (providing heat and water that form clouds), (2) atmospheric
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flow (transporting heat and water), and (3) microphysics (processes that lead to cloud development,

movement and dissipation). Of all standard meteorological variables, solar irradiance is the most

affected by clouds. Clouds absorb, block, and scatter solar irradiance, however, these properties

depend on the clouds’ position, structure and composition (e.g. condensation nuclei, water vapour

and ice crystals) relative to the point of measurement. Although the physics of the complex

dynamics and cloud properties are known, the turbulence processes give clouds a stochastic nature and

therefore clouds become difficult to parameterise and model (Kleissl, 2013). Hence, more research on

quantification of the stochastic cloud-caused variability in solar irradiance is important for electricity

grid operation (Lohmann, 2018). Especially, variability quantification on time series at (sub)minute

scale are essential as these time series are quite scarce, but highly relevant for quantifying the

stochastic nature of solar irradiance (Lohmann, 2018).

Our aim is to quantify cloud-caused in solar irradiance. There is much literature available on

quantifying variability in solar irradiance and its underlying processes in space and time. Three recently

published papers, Blaga and Paulescu (2018), Lohmann (2018) and Schroedter-Homscheidt et al.

(2018) have reviewed a comprehensive set of literature on quantifying variability in solar irradiance.

Different methods exist in capturing the variability in solar irradiance time series and up to this

moment there is no method that is found most suitable (Blaga et al., 2019).

Although some studies quantify the actual magnitude in solar irradiance expressed in W m−2,

most studies make use of the clear-sky index. This index is the normalization of measured solar

irradiance to the modelled clear-sky irradiance and therefore removes the daily and seasonal trends in

solar irradiance caused by the sun’s position (e.g., Liu and Jordan, 1960). To quantify the variability

in the quantity of solar irradiance, typically studies use the probability density function (e.g., Olseth

and Skartveit, 1984), the cumulative distribution/fractional time distribution (e.g., Suehrcke and

McCormick, 1988), and/or a (variation on) the standard deviation (e.g., Skartveit and Olseth, 1992).

The previous methods, however, are independent of time and thus do not quantify how the

clear-sky index changes over time. Several methods exist to define the temporal variability, often it

consists of some kind of statistics on the ramp rate (e.g., Hoff and Perez, 2010). Several studies first

want to classify the time series into classes of a classification scheme. The classification scheme is

divided according to some measure(s) of variability in solar irradiance and can represent for example

cloud conditions (e.g., Stein et al., 2012). As the variability in solar irradiance is depended on clouds,

quantifying the temporal variability in solar irradiance per cloud condition would therefore be more

representative. Although the temporal autocorrelation is found to be a good measure of variability

over time according to Skartveit and Olseth (1992), to our knowledge no study has applied the
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temporal autocorrelation on the clear-sky index time series per class of a classification scheme.

The objectives of this study are to quantify the variability in solar irradiance’s quantity and

ramp rates per cloud condition. We use the solar irradiance data set as measured per minute at

the Veenkampen weather station near Wageningen, the Netherlands, for the period June 2011 to

December 2017. We produce a cloud condition classification scheme with nine classes based on the

hourly mean clear-sky index and the hourly standard deviation of the 1-minute ramp rate (Section

3.4.2). Per cloud condition class we quantify the variability quantity via a probability density function

and the temporal variability via a temporal autocorrelation and a PDF on the ramp rates.

A theoretical background on the interaction between clouds and solar irradiance is provided

in Chapter 2. Chapter 3 reports on the data handling and the methods of classifying the solar

irradiance time series according a cloud condition classification scheme. The chapter also reports on

the methods of quantifying cloud-caused variability in solar irradiance per cloud condition. The results

are presented in Chapter 4 and discussed in Chapter 5. Finally, conclusions are drawn in Chapter 6.
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2 | Theoretical background

The flux of the radiation emitted by the sun that reaches the world’s atmosphere is called the solar

constant and is equal to 1376 W m−2 (World Meteorological Organization, 1982). The solar constant

can vary slightly due to for example sun spots and solar flares, but these generally do not affect the

solar constant by more than 0.1% (Kipp & Zonen, 2018b). When solar radiation passes through the

atmosphere, solar radiation is scattered, absorbed and transmitted by atmospheric molecules, aerosol

particles, trace gases and clouds. The amount of shortwave incoming radiation (UV, visible and near

infrared) eventually received on a horizontal plane at the Earth’s surface is called the global horizontal

irradiance (GHI). The SI unit for the measure of solar irradiance (radiative flux) is W m−2.

Variability in solar irradiance has three causes: (1) the solar cycle, so the sun’s position in the

sky, which causes precisely predictable seasonal and diurnal variations; (2) atmospheric molecules,

aerosol particles and trace gases (with an exception of clouds) which cause deterministic variability that

is most pronounced on a daily temporal resolution (Schepanski et al., 2015); (3) the cloud’s position,

structure, composition and velocity which are responsible for the stochastic and intermittent variability

in solar irradiance. As the cloud-caused variability in solar irradiance is difficult to parameterise and

model (Kleissl, 2013), we specifically want to quantify this variability.

The GHI consists of two components: the diffuse horizontal irradiance (DHI) and the direct

beam normal irradiance (BNI). The DHI is all solar irradiance that indirectly reaches the point of

measurement via scattering on atmospheric molecules, aerosol particles, trace gases and clouds. The

BNI is the received direct irradiance from the sun and its aureole (not the from the surrounding sky)

on a plane perpendicular to the BNI. As the BNI always reaches the horizontal plane in an angle, the

GHI can be calculated following Equation 2.1:

GHI = cos(θ) · BNI + DHI (2.1)

, where θ is the local solar zenith angle (SZA) (vertical above the location is 0◦, horizontal is 90◦).

In concentrating solar or thermal power plants, the solar irradiance is focused onto a receiver

with mirrors or lenses. These mirrors or lenses face the sun and track the movement of the sun
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throughout the day by changing their east west orientation. For these applications, the global normal

irradiance (GNI) and BNI are especially of interest (e.g., Olseth and Skartveit, 1987). GNI is the

solar irradiance received at a plane directed normal to the sun that tracks the sun’s movements and

is calculated by means of Equation 2.2:

GNI = BNI + DHI (2.2)
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3 | Data and methods

This chapter first presents a site description of the weather station in Section 3.1. Section 3.2 focuses

on the collection of the solar irradiance time series. Section 3.3 reports on the data handling of the

solar irradiance time series. Finally, Section 3.4 describes the methods of quantifying cloud-caused

variability in the solar irradiance and clear-sky index time series.

3.1 Site description

This study uses the in situ GHI, BNI and DHI 1-minute averaged measurements from the Veenkampen

weather station. The weather station is located northwest of the city Wageningen in the province

Gelderland of the Netherlands (51.9814 N, 5.6217 E) and is owned by Wageningen University &

Research. The local landscape is characterized by flat grasslands and the elevation of the weather

station is 5.0 m above sea level. The region has a prevailing southwest wind direction and is classified

as a temperate oceanic climate (Cfb, Köppen climate classification).

3.2 Data collection

3.2.1 Solar irradiance observations

The GHI and DHI are measured respectively with a Kipp & Zonen CMP11 pyranometer (Kipp &

Zonen, 2018a) and a Hukseflux SR11 pyranometer (Hukseflux Thermal Sensors B.V., 2015) that

store 1 minute averages. To measure the DHI, a shading ball on a tracker blocks the BNI, so

only indirect irradiance via the atmosphere reaches the pyranometer. The measurement uncertainty

(95% confidence interval) of the GHI pyranometer is ±10 W m−2 (Kipp & Zonen, 2018a). The

achievable uncertainty (95% confidence level) of the minute totals of the DHI pyranometer is ±6.5%

(Hukseflux Thermal Sensors B.V., 2015). The BNI is measured with a Hukseflux Thermal Sensor

DR01 pyrheliometer that stores 1 minute averages (Hukseflux Thermal Sensors, 2018). The achievable

uncertainty (95% confidence level) of the minute totals is ±1.8% (Hukseflux Thermal Sensors B.V.,
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2016). Our investigation period is from June 2011 to December 2017, as the pyranometers and

pyrheliometer that provide measurement data sets with an 1-minute temporal resolution are installed

in June 2011.

3.2.2 Solar irradiance under clear sky

The clear-sky irradiance is the solar irradiance under a cloud-free sky. It includes the sun’s seasonal

and diurnal cycle and also the composition of the atmosphere like the aerosol optical depth (Lefèvre

et al., 2013). So the difference between measured solar irradiance and modelled clear-sky irradiance is

caused by clouds. We collected modelled clear-sky irradiance with an 1-minute temporal resolution for

the investigation period June 2011 to December 2017 for the same coordinates as the Veenkampen

weather station. The modelled GHI, BNI and DHI under cloud-free conditions (GHIclear, BNIclear and

DHIclear) were obtained from the Copernicus Atmosphere Monitoring Service (CAMS) McClear Clear

Sky Irradiance service version 3.1 (Lefèvre et al., 2013). The bias in the CAMS McClear GHIclear

comprises between -6 and 25 W m−2 (Copernicus Atmosphere Monitoring Service, 2016). The

bias in the CAMS McClear BNIclear comprises between -48 and 33 W m−2 (Copernicus Atmosphere

Monitoring Service, 2016).

3.3 Data processing

3.3.1 Solar irradiance observations

After careful inspection, solar irradiance measurements are being omitted at timestamps when one or

more of the measurement instruments had an instrument failure. This failure could express as: (1) a

data gap, (2) a double timestamp, (3) a non-realistic or reliable measurement value. The time series

timestamps with a failure of type (3) where identified after careful personal interpretation and where

mostly found around periods with data gaps or double timestamps.

The measured solar irradiance and clear-sky irradiance data are selected for timestamps when

SZA was between 0◦ and 80◦. This SZA range is to eliminate (1) night time values; (2) early

morning and late evening periods when the pyranometers are subject to errors in cosine response;

and (3) moments when measurements are potentially contaminated by the solar reflection and beam

blocking due to trees, buildings and topography near the horizon (e.g., Mathiesen and Kleissl, 2011;

Aguiar et al., 2015). The SZA per minute has been calculated following Stull (2000).
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3.3.2 Solar irradiance under clear sky

To quantify cloud-caused variability, the first step is to separate the effect of clouds from the

deterministic seasonal and diurnal variability in solar irradiance time series. To achieve this, some

studies focus on the actual magnitude of solar irradiance, but most studies normalize the measured

solar irradiance GHI(t) to the modelled clear-sky irradiance GHIclear(t) (e.g., Lohmann, 2018). This

normalization results in the clear-sky index (k∗). We calculated the clear-sky index for each minute

in the investigation period, when SZA < 80◦, by means of Equation 3.1:

k∗(t) =
GHI(t)

GHIclear(t)
(3.1)

Figure 1.1 presents in panels (a) and (b) the GHI and clear-sky index for 19 June 2016.

The clear-sky index shows some typical features. For example, the lowest values are never zero,

as even the darkest clouds still do not absorb all solar irradiance. Furthermore, the highest values

can exceed a clear-sky index of 1.0. This phenomenon is called cloud enhancement and is primarily

due to short-term reflections of clouds and for a small degree due to limitations in the clear-sky

models (Lohmann, 2018). Schade et al. (2007) investigated cloud enhancement events and found

the strongest cloud enhancement of 522 W m−2 during nearly overcast altocumulus clouds and

fractional cumulus clouds.

As mentioned in Section 3.2.2, the GHIclear can have a bias of -6 and 25 W m−2. This bias

is especially influential when investigating moments that the clear-sky index exceeds 1.0. We have

excluded all timestamps in the time series when the period that the clear-sky index exceeded 1.0

took longer than 20 minutes. It is impossible to determine the real bias in the GHIclear time series

for each minute, but we wanted to exclude unrealistic values. The probability density was 0.003 for

the time periods that the clear-sky index exceeded 1.0 took 20 minutes. Schade et al. (2007) stated

that the durations of cloud enhancement events depend on their strength and range from 20 seconds

(enhancements > 400 W −2) up to 140 seconds (enhancements > 200 W m−2). Inman et al. (2016)

found that cloud enhancement events have a time scale of 4 minutes. Therefore, the two studies

confirm our choice of 20 minutes.

3.4 Variability quantification

3.4.1 Variability indices

Different methods exist for quantifying the variability in solar irradiance time series, but up to this

moment there is no general consensus on which method is most suitable (Blaga et al., 2019). A
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straightforward method to express the variability in a subset of a clear-sky index time series of length

T , is by calculating the subset’s mean (k∗) and standard deviation (σk
∗
). However, the mean and

standard deviation are independent on the measurements’ ordering in time. In other words, they do

not take into account how the clear-sky index changes over time. A useful measure for intermittency

is a measure that determines the change of k∗ over a specified time interval τ , in other words the

increment or ramp rate (∆k∗τ ) (e.g., Friedrich et al., 2011). The ramp rate is calculated via Equation

3.2:

∆k∗τ = k∗(t+ τ) − k∗(t) (3.2)

3.4.2 Classification scheme of cloud conditions

Some studies have applied a classification scheme to group subsets of solar irradiance or clear-sky

index time series according to the subset’s variability characteristics (e.g., Stein et al., 2012). These

variability classes are also indicators for cloud conditions. To obtain a quantification of variability in

solar irradiance per cloud condition, we first grouped hours of the GHI and clear-sky index time series

in a classification scheme. As cloud conditions can change heavily during the day, more accurate

quantifications of variability in solar irradiance per cloud condition can be found when grouping hours

instead of days. Our classification scheme is based on two statistics: the hourly mean clear-sky index

(k∗) and the hourly nominal variability (σ∆k∗). In these equations, t is 1 minute, τ is 1 minute

and T is 60 minutes. The hourly mean clear-sky index divides the data set on the variability in the

quantity. The hourly nominal variability divides the data set on the temporal variability, as it is the

standard deviation of the 1-minute ramp rate in the clear-sky index time series. Some studies express

variability by calculating the maximum or mean ramp rate over a time interval (e.g., Hoff and Perez,

2010). However, we define variability as the nominal variability which is in line with most studies

(e.g., Perez et al., 2016). This method takes into account the whole spectrum of variability, not just

the maximum and mean.

Aguiar et al. (2015) performed a similar study on 1 minute GHI time series when SZA <

80◦. However, they defined a classification scheme on the same statistics, but classified days (T is

1 day) instead of hours. Aguiar et al. (2015) divided the classification scheme in nine classes (three

categories per statistic) which we used as well. The mean clear-sky index is divided into the classes

overcast, mixed-sky and clear-sky, with limits of respectively 0 - 0.5, 0.5 - 0.9 and > 0.9. The nominal

variability is divided into the classes low-variability, medium-variability and high-variability, with limits

of respectively 0 - 0.05, 0.05 - 0.15 and > 0.15. The limits of the classes were defined by Aguiar

et al. (2015) after an empirical observation of the local weather.
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Another study worth mentioning is Lohmann et al. (2016). They have performed a very

similar study, but defined their classification scheme on k∗ and σk
∗
, instead of k∗ and σ∆k∗ . Another

difference is that the clear-sky index data set of Lohmann et al. (2016) consists of measurements from

99 synchronized silicon photodiode pyranometers operating at 1 Hz temporal resolution. Therefore,

this high temporal resolution allowed them to classify non-overlapping windows of 900 s (15 minutes)

and the high amount of measurements allowed them to make 25 classes. Our pyranometer is thermal

load based and therefore cannot achieve this high temporal resolution, but the measurement accuracy

is higher than silicon photodiode pyranometers. As our data set has a temporal resolution of 1 minute,

we classify solar irradiance hours in 9 classes.

To define what an hour is, we do not simply choose for T whole hours (e.g. 08.00 - 08.59

hour) to calculate k∗. This is because: (1) moments of sunrise and sunset shift throughout the year,

thus some hours will not have 60 measurements; and (2) the correlation of solar irradiance over time

will be lost to some extent, especially for the first and last values in an hour. Therefore, we first

calculate the centred moving average clear-sky index (k∗ma(t)) as in Equation 3.3 and then the hourly

mean of the centred moving average (k∗ma) as in Equation 3.4:

k∗ma(t) =
1

T

T−1∑
i=0

k∗(t+ 1
2 (T − 1) − i) (3.3)

k∗ma =
1

T

T∑
t=1

k∗ma(t) (3.4)

, where T is the amount of minutes in each whole hour per day in the time series (e.g. 2017/01/01

08.00 - 2017/01/01 08.59 hour). Also, by performing this centred moving average, each day loses

the first and last 30 minutes in the time series for which SZA < 80◦ applied.

To calculate the nominal variability, we first calculate the centred moving average ramp rate

(∆k∗ma(t)) and hourly mean of the centred moving average ramp rate (∆k∗ma) in a similar way as to

Equations 3.3 and 3.4. The hourly nominal variability we used for making the classification scheme

is calculated as in Equation 3.5:

σ∆k∗ma =

√√√√ 1

T

T∑
t=1

(∆k∗ma(t) − ∆k∗ma)2 (3.5)

3.4.3 Probability density function of solar irradiance per cloud condition

The classification scheme has nine classes, with each class representing a cloud condition. To quantify

the cloud-caused variability in the solar irradiance’s quantity, we calculate per class’ clear-sky index
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time series the kernel density estimate (KDE) of the probability density function (PDF) (Waskom,

2018). The PDF provides the information on the range of possible values and the probability

associated to those values. As mentioned before, the variability in the clear-sky index time series

is only caused by clouds and not by, e.g., the sun’s position in the sky.

3.4.4 Temporal autocorrelation of solar irradiance per cloud condition

The first way we quantify the temporal variability in the solar irradiance time series, is by making a

temporal autocorrelation on the classes’ GHI time series. An temporal autocorrelation shows the

autocorrelation between the observed solar irradiance at the initial moment lag 0 and the solar

irradiance in the future lag x. As the temporal resolution of the solar irradiance time series is 1

minute, lag x represents x minutes in the future. A high autocorrelation indicates that there is a well

predicted trend in the solar irradiance time series, for example, t = 0 has clear-sky conditions and x

minutes in the future also has clear-sky condition. An temporal autocorrelation of zero indicates that

the variability in the solar irradiance time series is completely random.

We first made a temporal autocorrelation per class of the classification scheme on the clear-sky

index time series, but these gave impractical outcomes. For example, the variability was very minimal

in absolute values in the clear-sky index time series of the low-variability clear-sky class, but relatively

large and random. As a result the temporal autocorrelation went to zero in only 2 minutes, whereas

a temporal autocorrelation of close to 1.0 would be expected for a much longer period. Therefore

we choose to make a temporal autocorrelation per class on the GHI time series. However, the

cloud-caused temporal variability is thus not isolated from the temporal variability caused by the

sun’s position in the sky.

The time series per class consist of non-consecutive hours. Therefore, we can only first calculate

the temporal autocorrelations per separate hour per class and then average these per lag into one

temporal autocorrelation that is representative for that class. We use the pandas.series.autocorr

function that calculates the temporal autocorrelations via the Pearson correlation (Pandas-Dev, 2019).

We have calculated the 95% confidence interval as: ± 1.96√
N
, where 1.96 is the 95th quantile of the

normal distribution and N is the sample size. In our case, N is equal to 60, as an hour contains 60

minutes. The confidence interval is thus 0±0.253 and we assume the time series to be random when

the temporal autocorrelation lies within this range.

The temporal autocorrelation provides information on the decorrelation time of the solar

irradiance time series and thus also on how random the time series is (Barnett et al., 1998). However,

to our knowledge only Skartveit and Olseth (1992) used temporal autocorrelations to quantify the
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temporal change of solar irradiance. They have calculated the lag one autocorrelation of the short-time

clearness index time series for different averaging times. Skartveit and Olseth (1992) stated that

autocorrelations with larger lags would only be reliable when the data records are sufficiently long,

but do not state how long this period should be.

3.4.5 Ramp rates in clear-sky index per cloud condition

The second way we quantify the temporal variability in solar irradiance time series, is by making PDFs

on the ramp rates in the classes’ GHI time series. Many studies quantify the temporal variability by

making PDFs or cumulative probability distribution functions (CDFs) on the ramp rates in the clear-sky

index or solar irradiance time series (e.g., Lave and Kleissl, 2010). We have calculated per class the

ramp rates for the following four time intervals (the k∗ in Equation 3.2 is replaced with GHI): 1, 5,

10 and 30 minutes. The PDFs are calculated similar to the PDFs of the solar irradiance data set,

namely with a kernel density estimate (KDE) of the probability density function (PDF) (Waskom,

2018). An advantage over the temporal autocorrelation is that the PDFs of the ramp rates show

the probability of quantities. PDFs on the ramp rates are also useful because they can be made on

the clear-sky index and do not face the problem of relative variability that forced us to use temporal

autocorrelations on solar irradiance instead of on the clear-sky index.

13



14



4 | Results

This chapter presents the results. Section 4.1 presents the monthly means of solar irradiance variables.

Section 4.2 shows the results of the classification scheme with nine classes representing different cloud

conditions. Section 4.3 presents the classes’ mean diffuse and direct solar irradiance components.

The results of the quantification of the variability in the quantities of the clear-sky index per class is

presented in Section 4.4. Sections 4.5 and 4.6 present the results of the quantification of the temporal

variability in the solar irradiance per class.

4.1 Seasonal variability in solar irradiance

Cloud-caused variability in solar irradiance has a (sub)minute temporal scale, but this variability

translates into cloud-caused variability on a seasonal temporal scale. Monthly means of solar irradiance

components show how clouds affect solar irradiance per month (Figure 4.1) (Liu and Jordan, 1960).

The variability on a seasonal scale is affected, next to clouds, also by the daily and seasonal solar

cycle. The daily solar cycle gives GHIclear a parabolic shape: irradiance increase after sunrise until

solar noon and decreases it until sunset. Due to the seasonal solar cycle, GHIclear also has a seasonal

parabolic shape with lowest values on winter solstice (21 to 22 December) and highest on summer

solstice (21 to 22 June). The seasonal parabolic shape in monthly mean GHIclear is not completely

symmetric, because of two factors: (1) the solar solstices are not half-way the months, and (2) the

scattering and absorption of solar irradiance by atmospheric molecules, aerosols and trace gases differs

per month.

The monthly means of GHI also form a parabolic shape similar to GHIclear. The highest monthly

means of GHI are found for the months May, June, July and August, and do not deviate more than 10

W m−2 from each other (351 ± 5 W m−2). Suggesting that the cloudiness in these months dampen

the effect of the seasonal solar cycle on solar irradiance. December has the lowest monthly mean GHI

(89.6 W m−2). Per month, the difference between the monthly mean GHIclear and GHI is caused by

scattering and absorption by clouds. The largest difference between monthly mean GHIclear and GHI
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Figure 4.1: The monthly mean of the clear-sky global horizontal irradiance (GHIclear), observed global

horizontal irradiance GHI, diffuse horizontal irradiance (DHI) and the horizontal component of the

beam normal irradiance (cos(θ) · BNI).

is found in June and is 235.9 W m−2. The smallest difference is found in December and is 108.5 W

m−2. However, these results do not indicate that June is the most overcast month and December

the most clear-sky month. The absolute differences still include the seasonal and daily solar cycle.

The ratio between GHIclear and GHI eliminates the seasonal and daily solar cycle, and is able

to provide the monthly mean cloudiness. This ratio is the monthly mean clear-sky index. The order

of months from highest clear-sky index to lowest clear-sky index is different than the order from

highest to lowest absolute difference between GHIclear and GHI. June is only the sixth clearest month

(clear-sky index of 0.59) and December is actually the most overcast month (clear-sky index of

0.45). The months clearer than June are: August, with on average the highest clearest sky (clear-sky

index of 0.64), than September (0.63), April (0.62), July (0.61) and lastly May (0.60). This shows

that quantifying cloud-caused variability in solar irradiance expressed in W m−2 provides different

information than the variability expressed in the clear-sky index.

Clouds do not only vary the GHI, they also vary the two components of GHI: the DHI and
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cos(θ) · BNI. The DHI is the received solar irradiance on a horizontal plane that is first scattered

on atmospheric particles and clouds. Clouds thus increase the relative contribution of DHI to GHI.

On the opposite, the cos(θ) · BNI is the received solar irradiance on a horizontal plane from the sun

and its aureole, which means that clouds only have a blocking effect on the relative contribution of

cos(θ) · BNI to BNI. For each month, monthly mean DHI is higher than monthly mean cos(θ) · BNI.

Indicating that in all months, clouded conditions prevail over clear-sky conditions. If a month is

more clouded than another, the relative contribution of DHI should be higher and cos(θ) ·BNI should

be lower. This, however, does not always hold when we compare the monthly clear-sky index with

the relative contributions of DHI and cos(θ) · BNI. The order from highest to lowest monthly mean

clear-sky index and relative contribution of cos(θ) · BNI to GHI are for eight months the same or

deviate one month. But the rank in these orders for the months March, April, May and September do

not coincide. The months’ relative contribution of cos(θ) ·BNI is higher and the relative contribution

of DHI to GHI is lower than expected. An explanation could be is that the sun’s position in the

sky also the DHI and cos(θ) · BNI affects. A lower sun elevation means that solar irradiance needs

to travel a longer distance through the atmosphere, so it is more likely to scatter on atmospheric

molecules, thereby increasing the relative contribution of DHI and decreasing the relative amount of

cos(θ) · BNI to the GHIclear.

4.2 Classification scheme of cloud conditions

The nature of cloud-caused variability is dependent on the cloud conditions, for example, stratus clouds

affect solar irradiance differently compared to cumulus clouds. Therefore, to quantify cloud-caused

variability in solar irradiance, it is useful to group similar cloud conditions and quantify variability in

solar irradiance per cloud condition (Stein et al., 2012). To group similar cloud conditions, we have

made a classification scheme extending on other studies (e.g. Stein et al., 2012). Figure 4.2 shows

the classification scheme with nine cloud condition classes (low-variable overcast conditions (AI) to

high-variable clear-sky conditions CIII). The shades of blue indicate the joint probability density of the

hourly mean clear-sky index (Equation 3.4) and the hourly nominal variability (Equation 3.5). The

joint probability density figure is also called an Arrow Head figure due to it’s shape (e.g., Stein et al.,

2012), because the classes AI, BII, BIII and CI have the highest joint probabilities. In summary, at

the Veenkampen, the Netherlands, on hourly basis, low-variable overcast conditions occur most often

(33.8%). Medium- and high-variable mixed-sky conditions occur 18.3% and 12.8% respectively of

the time. Low-variable clear-sky conditions occur 12.6% of the time. The classification scheme shows
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that all medium- and high-variable cloud conditions occur about 50% of the time, highlighting the

relevance to quantify the stochastic cloud-caused variability in solar irradiance. Fractional cumulus

clouds are most likely the main cloud conditions responsible for the medium- and high-temporal

variability in the clear-sky index (Inman et al., 2016).

The joint probability density in the low-variable clear-sky class (CI) is high (>> 120 hours)

around the hourly mean clear-sky index between 0.9 - 1.0, and hourly nominal variability between 0.0

- 0.01. However, these limits are narrow. The integrated joint probability densities are higher for the

medium- and high-variable mixed-sky conditions then for the low-variable clear-sky class, even though

this is perhaps not immediately expected from the figure. The joint probability density is relatively low

for the low-variable mixed-sky class (BI: 6.8%). Thus in situations with mixed-skies, the probability

is 81.2% higher to have at least medium-temporal variability in the clear-sky index. Cloud conditions

for the BI class could be, e.g., constant cirrostratus clouds or a change from a clear to overcast sky in

case of the passing of a pressure front. The high-variable overcast (AIII) and clear-sky (CIII) classes

consist of the least amount of hours, respectively 0.8% and 1.8%.

4.3 Diffuse and direct components of solar irradiance per cloud condition

The classes of the classification scheme represent cloud conditions. To provide a general quantification

of how these cloud conditions affect solar irradiance, we have plotted the classes’ mean DHI and

cos(θ) · BNI. The sum of these two per class is the class’ mean GHI. The mean GHI increases from

class AI (109.9 W m−2) to CIII (561.0 W m−2). The BI class is the only exception, its mean GHI is

10.4 W m−2 lower than the AIII class. The increase from classes A to B and then to C is logic as the

classes are defined from overcast to mixed-sky and then to clear-sky. The mean GHI also increases

from the variability classes I, via II to III. For the A and B classes this is probably due to: (1) that

clouded moments alternate more often into clear-sky moments, and/or (2) that the cloud become

thinner. Note, the mean values are slightly higher than expected from the seasonal variability in solar

irradiance, because the first and last half hour of all days are removed when classifying hours into the

classification scheme.

The cos(θ) · BNI measures the solar irradiance only from the sun and it aureole, which means

that clouds only have a blocking effect on the cos(θ) · BNI. Clouds cause the highest difference

between GHI and GHIclear when they lie in the direct path between the sun and the pyrheliometer.

In those cases cos(θ) · BNI changes from its maximum to a lower value. This lower value depends

on mostly the thickness and composition of the cloud. We see indeed that cos(θ) · BNI increases in
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the A and B classes from the variability classes I to III. Although the C classes’ mean GHI increase

from variability classes I to III, the cos(θ) · BNI does not. The CI has the highest mean cos(θ) · BNI

(360.7 W m−2), than the CIII class (350.7 W m−2), and the CII has the lowest mean cos(θ) · BNI

(327.2 W m−2). The CI is the most clear-sky class of all, so it is logic that this class has the highest

mean cos(θ) ·BNI. However, apparently the two reasons why in the A and B classes the cos(θ) ·BNI

increases with increasing variability class, do not apply for the CII and CIII classes. In these two

classes the mean DHI increases even more (from 175.2 W m−2 for CII to 212.1 W m−2 for CIII).

This could suggest that in the CII class, the GHI varies relatively more between clear-sky moments

and clouds blocking GHI. Whereas in the CIII class, the GHI varies between clear-sky moments and

cloud enhancement events.

The classes’ mean DHI have a slightly different pattern compared to the classes’ mean GHI

and cos(θ) · BNI. It also increases from classes A to B and from variability classes I to III. But the

C classes have a lower mean DHI than the A and B classes. As mentioned before clouds absorb and

block solar irradiance. Therefore, the overcast classes receive less solar irradiance than the mixed-sky

classes, which is why the mean DHI is lower for the A classes (180.0 W m−2) than the B classes

(239.0 W m−2). However, clouds also scatter solar irradiance. This is why the relative contribution

of DHI to GHI is higher for the A classes than for the B classes. As the C classes have a relatively low

cloud amount, scattering is low, and thus have a lower relative contribution of DHI to GHI. Within

the A, B and C classes, the DHI always increases from class I to III. This is too some extent explained

by that the GHI also increases. But to another extent this is explained by the fact that apparently,

scattering is stronger on the type of clouds that cause high variability in solar irradiance.

However, the previous interpretations on cloud-caused variability would be completely valid if

the classes’ mean GHIclear would be the same, but this is not the case. Within the A, B and C classes,

the mean GHIclear increases from low- to high-variability conditions. Thus the low-variability classes

consist on average more out of time stamps in early and/or late daytime and/or in winter month.

The high-variability classes thus consist on average most out of time stamps around noon and/or

in summer months. Furthermore, each individual class just has a different mean GHIclear. However,

the mean GHIclear also support results like that solar irradiance is the most absorbed and blocked by

clouds for the A classes.

The differences in mean GHIclear show that the solar cycle thus also influences the identification

of the classes in the classification scheme, and therefore that the clear-sky index is dependent on the

sun’s position in the sky (e.g. Kleissl, 2013). This has two reasons. First, solar irradiance consists

relatively more out of DHI when the sun’s position is low in the sky as it needs to travel a larger
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distance in the atmosphere and is thus more likely to get absorbed and scattered by atmospheric

molecules (see also Section 4.1). This causes the range of the clear-sky index to reduce when the

sun’s elevation in the sky decreases (Kleissl, 2013) because of two possibilities: (1) DHI has such a

large contribution that clouds have less effect in reducing the GHI, and (2) if the CAMS McClear

model performs not great on the relationship between the sun’s elevation and the DHI, the GHI can

never reach the GHIclear. Second, the clear-sky index is affected by the relative positions between

the sun, cloud and point of measurement, because of the: SZA, cloud base height, cloud structure

and cloud composition. In other words, the same cloud causes a different variability in the clear-sky

index at, e.g., noon and sunrise. This having stated, for the interpretation of the coming results we

assume that the clear-sky index is independent on the solar cycle which we believe is a relatively fair

assumption to make.

4.4 Probability density function of solar irradiance per cloud condition

The previous section showed the classes’ mean DHI, cos(θ) ·BNI, GHI and GHIclear. However, a mean

value does not provide the information on the variability around that mean. Furthermore, the previous

section showed that it is difficult to split the influence of the daily and seasonal solar cycle to the

influence of clouds on solar irradiance. Therefore, to quantify the variability in the quantity of solar

irradiance, we have made per class of the classification scheme a PDF of the clear-sky index time series

(Figure 4.4). The PDFs of the classes are ordered in the same layout as in the classification scheme

(Figure 4.2), with an increase in the hourly mean clear-sky index of classes A to C and an increase in

the nominal variability of classes I to III. Logically, the overcast classes have relatively low clear-sky

index values with modes between a probability density of 0.15 and 0.35. Also logically, the clear-sky

classes have relatively high clear-sky index values with modes between 0.95 and 1.05. The PDFs of the

clear-sky classes are much narrower and thus higher than the other classes, with the modes between

a probability density of 3.5 and 14.5. The differences between all PDFs are caused by clouds and how

the classes are defined. Firstly, clouds increase the variability in clear-sky index values and overcast

conditions lower the hourly mean clear-sky index. Furthermore, overcast conditions are defined for

a broader range of hourly mean clear-sky index (0.0 - 0.5) than the clear-sky conditions (0.9 - 1.0).

Finally, enhancement values (clear-sky index values higher than 1.0) are caused by clouds as they add

DHI to cos(θ) ·BNI (e.g., Schade et al., 2007; Inman et al., 2016). These cloud enhancement events

can therefore also shift the class’ mean GHI upwards. The results of these PDFs coincide with what

we found in the previous section. The relative contribution of DHI is relatively high for relative high
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probabilities of low clear-sky index values. The relative contribution of cos(θ) · BNI is relatively high

for relative high probabilities of high clear-sky index values.

The mixed-sky classes have a bimodal shape. The two modes correspond to respectively

clouded and clear-sky conditions (e.g., Suehrcke and McCormick, 1988). The difference in clear-sky

index between the two modes per class increases from low-variability (I) to high-variability (III)

with an increase in difference from 0.33 to 0.64. This indicates that the BIII class has the highest

probability to expect the largest quantity in solar irradiance fluctuations. For this class the transitions

between clouded and clear-sky conditions are the sharpest (from very low to very high clear-sky

index). Remember that the B classes are defined on having an hourly mean clear-sky index of 0.5 -

0.9, whereas the PDFs of the B classes have two modes that lie respectively lower and higher than

those values. Thus taking an hourly mean smooths out the variability and therefore high frequency

data is required for analysing sub-hour variability (Skartveit and Olseth, 1992).

The PDF of the total clear-sky index time series has a bimodal shape just like the B classes

(Figure 4.5). However, the PDF shape is different. The first mode is quite broad and lies more to

the left than for the first mode of the B classes. Probably because the A classes shift that mode

more to overcast values. This also shows that overcast and clouded conditions can vary per minute

and per hour on their cloud thickness and composition. The second mode lies just under a clear-sky

index of 1.0 (0.97) and the probability is almost twice as high as the first mode. However, the peak

is narrower than the first peak. The PDFs of all classes show how this PDF is divided, as combining

the PDFs of the classes would result in this PDF. Literature has investigated, among others, the

effects of optical air mass (e.g., Tovar et al., 1998), daily mean cloud conditions (e.g., Soubdhan

et al., 2009) and temporal averaging (e.g., Lohmann and Monahan, 2018) on the bimodal shape

of the total clear-sky index time series. However, PDFs for similar defined cloud condition classes

as our study are not to our knowledge presented before. Although literature quantifies variability in

solar irradiance differently, their results have a general agreement with our results (e.g., Blaga and

Paulescu, 2018).

For the A, B and C classes, an increase in hourly nominal variability (classes I to III) causes a

broadening and lowering of the PDF. Furthermore, also the probability density of cloud enhancement

events increases. The classes with the highest probability of cloud enhancements events are the

CIII (probability of 0.557), the BIII (0.285) and then the CII (0.321) class (Table 4.1). The mean

time periods of these events are between the 3 and 5 minutes for classes that have a probability

of enhancement events above 0.1. The mean clear-sky index when it is higher than 1. is for all

data 1.095. More results are found in the table. Schade et al. (2007) and Inman et al. (2016)
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Table 4.1: Statistics on cloud enhancement events (k∗ > 1.) per class of the classification scheme.

The probability of the cloud enhancement events are presented, as well and the mean time period of

such events and what their mean clear-sky index value is.

Class Probability k∗ > 1. Mean time period k∗ > 1. (minutes) Mean k∗ in time periods k∗ > 1.

AI 0.000 2.705 1.111

BI 0.020 4.031 1.064

CI 0.072 4.287 1.020

AII 0.026 2.549 1.140

BII 0.133 3.790 1.109

CII 0.321 4.543 1.059

AIII 0.080 2.224 1.149

BIII 0.285 3.321 1.117

CIII 0.557 4.685 1.100

All data 0.105 3.892 1.095

investigated enhanced solar irradiance and found that largest enhancements are caused by nearly

overcast altocumulus clouds and by fractional cumulus clouds. These cloud types would probably fit

in respectively the CII and CIII, and the BIII classes. It is interesting that some classes have relatively

high probabilities of cloud enhancement events, as many solar irradiance forecasting models do not

take enhancement values into account or do not have a high enough temporal resolution to capture

this enhancement (e.g., Inman et al., 2016).

4.5 Temporal autocorrelation of solar irradiance per cloud condition

For solar design methods it is important to determine whether the PDFs of the clear-sky index,

especially the bimodal PDFs, are maintained for longer time intervals (Suehrcke and McCormick,

1988). Longer time intervals are better to forecast, and high frequency fluctuations have different

complications than low frequency fluctuations. The temporal autocorrelation sub-figures show per

class the correlation between the observed GHI at the initial moment lag 0 and GHI in the future

lag x (Figure 4.6). Within the A, B and C classes, the temporal autocorrelation at each lag is always

lower going from variability class I to III. The variability classes are defined on the standard deviation

of the 1-minute ramp rate in the solar irradiance time series. This 1-minute ramp rate thus increases

in quantity going from classes I to III, which is in line with previous results. The results from the

temporal autocorrelations show that the decorrelation over time coincides with increasing ramp rate.
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The III classes therefore have the most random nature and the ramp rates are the highest in quantity.

From the PDFs per class of the clear-sky index time series, we would expect to find that

the temporal autocorrelations of the B classes would cross the confidence interval the quickest per

variability class compared to the A and C classes. The PDFs of the B classes have a bimodal

shape, indicating that the quantity of the clear-sky index fluctuates between values similar to clouded

conditions and values similar to clear-sky conditions. However, this expected higher decorrelation time

is not (clearly) visible in the temporal autocorrelations compared to those of the other classes. The

AII and AIII classes are almost identical to respectively the BII and BIII classes. Furthermore, the CIII

class has a lower temporal autocorrelation per lag than the B classes. The temporal autocorrelation

of the CII class first decreases faster than the BII and AII classes. However, it levels off and crosses

the confidence interval around lag 8, which also applies for the BII and AII classes.

For the I classes the order is different, the CI has the highest temporal autocorrelation per lag,

than the BI and the AI has the lowest temporal autocorrelation. A high temporal variability in time,

however, does not also mean high variability in quantity. A temporal autocorrelation is defined on

the autocorrelation normalized to the covariance. This makes that variability of low absolute values

could still have a high decorrelation if the relative variability is large and random. This could explain

the results on the temporal autocorrelations per class.

Two factors need to be taken into account when interpreting the results. Firstly, the PDFs

were made on the clear-sky index time series and the temporal autocorrelations on the GHI time

series. The temporal autocorrelations therefore also include the effect of the solar cycle in the sky.

This affect may not be so large as the temporal autocorrelations were made on hourly subsets of the

classes’ GHI time series. We found in previous sections that the low-variability classes probably have

relative more early/late daytime time stamps. In those time, the SZA changes fastest over time. This

could also explain why these classes have a relatively higher decorrelation time than the other classes.

Secondly, Skartveit and Olseth (1992) stated that temporal autocorrelations would only be reliable

when data records are sufficiently long, but do not state how long this period should be. It is possible

that our temporal autocorrelation taken for subsets of one hour are not sufficiently long for reliable

results.

4.6 Ramp rates in clear-sky index per cloud condition

The previous section showed the decorrelation of solar irradiance over time. However, it did not

provide information about the absolute values of the fluctuations. The PDFs of the ramp rates in

23



solar irradiance per class, with different time intervals, provide information with how much W m−2

solar irradiance changes over time (Figure 4.7). Per class, a higher probability for large ramp rates is

found for increasing time interval, which corresponds to the results on the temporal autocorrelation.

This is best visible in the sub-figures by the decrease in the peaks of the 4 PDFs of the solar irradiance

(time intervals of 1, 5, 10 and 30 minutes) around a ramp rate of 0 W m−2. This illustrates that

cloud conditions thus have the highest change to be different for increasing time interval after the

initial moment of observation.

The ramp rates also increase from the low- to the medium and then to the high-variability

classes, whereby the ramp rates increase around the order of respectively ±100 W m−2, ±200 W m−2

and ±300 W m−2. Furthermore, the ramp rates increase as well within each variability class from the

overcast to the clear and then to the mixed-sky class. The differences are, however, not always very

distinct. The low-variability clear-sky class has apparent shapes of its PDFs in the ramp rates which

are caused by the solar cycle in the sky (Lohmann et al., 2016). The low-variability overcast class

has a random nature in the time series after around 11 minutes. Its belonging ramp rates in solar

irradiance are constrained to about ±100 W m−2. The high-variability mixed-sky class has a random

nature in the time series after 4 minutes and has the largest ramp rates (around ±800 W m−2 for

time intervals of higher than 5 minutes). Lohmann et al. (2016) quantified ramp rates in clear-sky

index for different cloud conditions and found similar results compared to ours. These results suggest

that solar irradiance forecast models will have the highest difficulty, and therefore forecast uncertainty,

for forecasting solar irradiance variability under high-variability cloud conditions and high-variability

mixed-sky conditions in particular.
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Figure 4.2: The cloud condition classification scheme. The y-axis shows the hourly mean of the

centred moving averaged clear-sky index (Equation 3.4) and is divided into three classes: overcast

(A), mixed-sky (B) and clear-sky (C), with limits of respectively 0.0 - 0.5, 0.5 - 0.9 and > 0.9.

The x-axis shows the hourly nominal variability (Equation 3.5) and is divided into three classes:

low-variability (I), medium-variability (II) and high-variability (III), with limits of respectively 0.0 -

0.05, 0.05 - 0.15 and > 0.15. The shades of blue indicate the occurrences on hourly basis as an

joint probability density, 2D kernel density estimate, with a bandwidth of 0.01. The sum of all hourly

data points in the period June 2011 - December 2017 is 21,418. Additionally, placed at the top

and right-side of figure are the probability density functions of respectively the hourly mean clear-sky

index and the nominal variability.
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Figure 4.3: The means of the DHI and cos(θ) · BNI per class of the classification scheme. The sum

of the means per class is the class’ mean of the GHI. The black horizontal lines are the class’ mean

GHIclear.
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Figure 4.4: PDFs of the clear-sky index time series with an 1-minute temporal resolution per class of

the classification scheme. The PDFs sub-figures are ordered in the same layout as in the classification

scheme (Figure 4.2), with an increase in the hourly mean clear-sky index from classes A to C and an

increase in the nominal variability from classes I to III. The dashed lines at a clear-sky index of 1.0

are to visualize the PDFs of cloud enhancement events per class.
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Figure 4.5: The PDF of the total clear-sky index time series with an 1-minute temporal resolution.

The sum of all data points in the period June 2011 - December 2017 is 1,365,829. The dashed line

at a clear-sky index of 1.0 is to visualize the PDFs of cloud enhancement events. The dotted lines at

a clear-sky index of 0.5 and 0.9 are to visualize the limits used for the hourly mean clear-sky index in

the cloud condition classification scheme.
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Figure 4.6: Temporal autocorrelations of the GHI time series with an 1-minute temporal resolution

per class of the classification scheme. The dotted line is the top border of the confidence interval

of 0±0.253. The temporal autocorrelations sub-figures are ordered in the same layout as in the

classification scheme (Figure 4.2), with an increase in the hourly mean clear-sky index from classes

A to C and an increase in the nominal variability from classes I to III.
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Figure 4.7: PDFs of the ramp rates in the GHI time series with an 1-minute temporal resolution per

class of the classification scheme. The four coloured lines per sub-figure represent from dark blue to

light blue respectively the 1, 5, 10 and 30 minute ramp rates. The PDFs of the ramp rates sub-figures

are ordered in the same layout as in the classification scheme (Figure 4.2), with an increase in the

hourly mean clear-sky index from classes A to C and an increase in the nominal variability from classes

I to III.
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5 | Discussion

The aim of this study is to quantify cloud-caused variability in surface solar irradiance. We extend on

previous literature to make a classification scheme with nine classes, with each class representing a

certain cloud condition (e.g. Stein et al., 2012). The classes are defined on the hourly mean clear-sky

index and the hourly nominal variability, and are representative for certain cloud conditions. The

objectives of this study are to quantify the solar irradiance’s quantity and temporal variability per class

of the classification scheme. We reach these objectives by means of calculating the monthly means of

the solar irradiance components, PDFs on the clear-sky index time series, temporal autocorrelations

on the GHI time series, and PDFs on the ramp rates in the GHI time series.

The results of the classification scheme show the usefulness of classifying a solar irradiance

data set into different cloud condition classes and using our used methods to quantify cloud-caused

variability in solar irradiance. A classification scheme like this can also be used to compare solar

irradiance characteristics as measured at different weather stations, both nationally and internationally

(e.g., Kang and Tam, 2013). Furthermore, a similar classification scheme is suitable for, e.g., assessing

the solar irradiance forecast accuracy as function of the solar irradiance variability and can therefore be

used to improve forecast models (e.g., Remund et al., 2015). Finally, a classification scheme on solar

irradiance variability with a (sub)second temporal resolution can be used to downscale solar irradiance

forecasts with a lower temporal resolution (e.g., Mathiesen and Kleissl, 2011). This avoids the need

for forecast models to have a temporal resolution of 1 minute or less, which is computationally costly

and may not be feasible in forecast time.

Throughout the study we have stated that the classes in our classification scheme represent

certain cloud conditions, but the classification scheme is based on statistics of the clear-sky index

time series. Therefore, physical properties of clouds per class cannot directly be provided. However,

literature have made similar classification schemes and found with, e.g., satellite and sky imagery

which cloud conditions could be representative for which class (e.g., Elsinga and van Sark, 2017).

As we are interested to quantify the cloud-caused variability, the clear-sky index is used for
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isolating the effects of clouds on variability in solar irradiance. Although the clear-sky index is widely

used in literature to investigate the cloud-caused variability and eliminate the effects of the sun’s

position in the sky on solar irradiance, the effects of the sun’s position are not completely eliminated

(e.g., Kleissl, 2013). A full explanation has been provided in Section 4.3. Although the effects of the

sun’s position on solar irradiance cannot completely be eliminated, the clear-sky index remains useful.

To really grasp how clouds and solar irradiance interact, further research is required to investigate

this on cloud level.

Some issues are left unresolved by our results, e.g. the quantification of the: spatial variability

in solar irradiance, (sub)second variability in solar irradiance, and variability in global normal irradiance

(GNI). The next paragraphs will elaborate on these unresolved issues.

To quantify spatial variability in solar irradiance is of course also crucial for getting a better

understanding of cloud-caused variability in solar irradiance. Furthermore, solar forecast models have

to include both the temporal and spatial variability in solar irradiance and solar power production.

Different solar forecast techniques exist which depend on the purpose of the forecast and therefore

the spatiotemporal scale of the technique. Due to spatial smoothing, the variability in solar power

load on a regional electricitry grid will be damped compared to the solar power load in a electricity

grid of a street (e.g. Lorenz et al., 2009). Therefore, the operation of a regional electricity grid also

does not need the same forecast accuracy as the operation on street level (e.g. Lorenz et al., 2009).

More literature on solar energy forecasting can be found in the literature review papers by Antonanzas

et al. (2016) and Blaga et al. (2019).

A data set with a (sub)second temporal resolution would be even better for quantifying the

stochastic variability in solar irradiance (e.g., Lohmann and Monahan, 2018). Solar irradiance can

be highly variable within a minute and the duration of cloud enhancement events is in the order of

seconds to a few minutes (e.g., Schade et al., 2007). Yordanov et al. (2013) therefore argue that

the optimal temporal resolution is around 10 Hz to not miss the extreme short and high magnitude

fluctuations. As the variability can be better captured with a (sub)second time series, some results

per class of classification scheme would likely change. The fluctuations would not be averaged over

1 minute anymore, so the extreme values in the clear-sky index are measured as well. Therefore the

PDFs of the clear-sky index time series will likely broaden. Especially the peaks in the clear-sky index

and cloud enhancements will probably increase in probability density when going from the classes I

to III. The temporal autocorrelations will likely change as well. The temporal autocorrelations are

probably quicker going to zero, as the high temporal variability is better measured so the time series

get a more stochastic nature. The PDFs of the ramp rates in solar irradiance time series will, similar
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to the PDFs on the clear-sky index, get a higher probability for higher ramp rates. An 1-second solar

irradiance data set is available from the weather station at Cabauw, the Netherlands, which is owned

by the Royal Netherlands Meteorological Institute (KNMI). Future research is planned to quantify the

cloud-caused variability in this 1-second solar irradiance data set.

Variability in solar irradiance and the clear-sky index is reported to be higher on titled planes

than horizontal planes (e.g., Schroedter-Homscheidt et al., 2018). Solar panels could thus produce

solar power with a larger variability than the variability what we found in this study. A titled plane

excludes a part of the sky from which it cannot receive DHI wherefore variability in the BNI becomes

relatively more important. Therefore, it is useful to also quantify the cloud-caused variability in GNI

and BNI time series. Especially for applications such as concentrating solar or thermal power plants

(e.g., Olseth and Skartveit, 1987) and PV power stations and neighbourhood PV systems which have

solar panels with a static inclination and orientation (e.g., Lohmann et al., 2016).
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6 | Conclusions

Due to the global energy transition, quantifying cloud-caused variability in solar irradiance for different

cloud conditions is important for the successful integration of weather-dependent decentralized PV

power systems. We quantified cloud-caused variability in the 1-minute averaged solar irradiance

measurements from the Veenkampen weather station near Wageningen, the Netherlands, for the

period June 2011 to December 2017. We extended on previous studies (e.g. Stein et al., 2012) and

created a classification scheme based on clear-sky index statistics. The nine classes are identified as

overcast, mixed-sky and clear-sky conditions and are subdivided on low-, medium- and high-variability

conditions. For a complete quantification of cloud-caused variability, we quantified per cloud condition

first the variability in the solar irradiance quantity and second the temporal variability.

The variability in solar irradiance quantity is characterized for mixed-sky conditions as having

a large spread and intermittent values corresponding to clouded and clear-sky conditions. Cloud

enhancement events result in solar irradiance quantities higher than clear-sky conditions and for

high-variability mixed-sky conditions they have a probability density of 0.29 to occur and can reach

clear-sky index values of 1.5. Of the the nine classes, the mixed-sky conditions, and its high-variability

in particular, thus likely cause the largest spread in solar power production.

The temporal variability in solar irradiance has the shortest time scale of fluctuations and largest

ramp rates for high-variability conditions. The time series are decorrelated after less than 5 minutes

and has ramp rates of ± 800 W −2. The mixed-sky high-variability cloud condition has the highest

probability to have such high ramp rates compared to the two other high-variability classes. These

results suggest that solar irradiance forecast models will have the highest difficulty, and therefore

forecast uncertainty, for forecasting solar irradiance variability under high-variability cloud conditions.

Although it was not the aim of this study, we also have quantified the affect of the solar cycle

in the sky on the solar irradiance variability. Low-variability conditions are more likely to occur when

the sun’s elevation is low in the sky, thus during winter months or in early/late hours of the day.

High-variability conditions are more likely to occur when the sun’s elevation is high in the sky, thus
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during summer months or in hours around noon. So, the sun’s position in the sky not only affect

the variability in the quantity of both solar irradiance and the clear-sky index, but likely also the

temporal variability in the two variables. Furthermore, this study shows that the clear-sky index is

not completely able to eliminate the effect of the sun’s elevation on cloud-caused variability in solar

irradiance.

The complete quantification of cloud-caused variability in solar irradiance concludes that the

high-variability mixed-sky cloud condition is potentially the most problematic for grid operators to

balance electricity load on the local grid in terms of short-term fluctuations. The classification scheme

and belonging methods presented in this study can be used by future studies to reduce the uncertainty

in solar irradiance forecasts, which is a stepping stone to enable large-scale installation of PV power

systems in current and future electricity grids.
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