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Abstract 

In the field of metabolomics the annotation and classification of unannotated molecules is still a large 

bottleneck, this is due to a lack of reference spectra and tools helping with the structural annotation of these 

molecules. Therefore, efforts have been made to create novel tools to accelerate this process and make it 

more accurate. The goal of this project is to add to these efforts by combining two tools, CFM-id and 

MS2LDA, to speed up the identification substructures in mass spectra with in silico data. This was done 

with CFM-id, the output of this tool was used to create Mass2Motifs, patterns of fragments and losses that 

are concurrently observed, with MS2LDA. Using this information from the Mass2Motifs we can observe 

which motifs match to a spectra to gain a better understanding of what the molecule is composed of. By 

making the pipeline that uses CFM-id, it allowed for a quick and streamlined path from SMILES to a MGF 

that can be used to in MS2LDA. Of the created flavonoid motifs, around 40 of them show to have overlap 

with motifs belonging to flavonoid related datasets containing real mass spectra. These motifs have been 

annotated with the help of both the already annotated motifs of the matching data and annotation by hand 

with the help of MAGMa. Findings show that there is a lot of information to be gained from applying in 

silico spectra to create Mass2Motifs. Which in turn should greatly improve the rate and scale of structural 

annotation can be achieved. 

Introduction 

The study of metabolomics focuses on the full 

collection of metabolites present in an organism or 

biological sample1. Metabolomics is the last step in 

the process from gene to phenotype2. Therefore, 

metabolomics is crucial for understanding the 

mechanisms inside organisms2. Metabolomics can 

be divided into two different groups, targeted- and 

untargeted metabolomics1. With targeted 

metabolomics the goal is to quantify the already 

known and annotated metabolites with the help of 

reference databases1. Untargeted metabolomics on 

the other hand focuses on the entire metabolome 

including the unknowns1,3. The field of 

metabolomics has grown a lot in the last number of 

years, however major bottlenecks still remain3,4. 

One of the most important tools in metabolite 

identification is mass spectrometry (MS)2. A 

commonly used type of MS in metabolomics, called 

tandem mass spectrometry (MS/MS)5, provides 

mass spectra from which a lot of metabolite data can 

be derived. Although MS/MS is highly capable for 

picking up the presence of metabolites, the issue 

currently is that the analysis and interpretation of 

these spectra is difficult6. For the identification of 

known metabolites reference MS/MS tools and 

libraries are used such as MassBank7, ReSpect8, 

NIST9 and Global Natural Product Social Molecular 

Networking (GNPS)10. Even with the amount of 

databases there still is a lack of public available 

MS/MS reference spectra, as well as a lack of tools 

that help with the structural annotation of 

molecules11. Therefore it becomes hard to identify 

the metabolites present in MS/MS spectra. 

However, in recent years progress has been made 

with the creation of some new tools and approaches 

to assist with the identification and annotation of 

metabolites in spectra5,11.  
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This project builds upon the tools cfm-if and 

MS2LDA that Allen et al.5 and van der Hooft et al.11 

created. To tackle the problems that small molecule 

identification and annotation are facing, MS2LDA 

is a tool that uses the machine learning method latent 

Dirichlet allocation (LDA) to create Mass2Motifs 

out of fragmentation spectra11. Mass2Motifs can be 

seen as patterns that identify common structures 

found in a set of data, these patterns can belong to a 

specific substructure or region that reoccurs in the 

entered set of spectra11. Instead of identifying 

molecules with the fragmentation spectra12, this 

method aims to use the Mass2Motifs to identify the 

different substructures. These motifs can then be 

used to help with the structural annotation of the 

molecule they belong to.11  

 

Another development in the metabolomics field is 

the creation of in silico spectra to create large 

amount of simulated data which can then hopefully 

can be used to compensate for the lack of real-world 

reference spectra5. Competitive fragmentation 

modelling of EMI-MS/MS spectra for putative 

metabolite identification tool or CFM-ID5 is one 

such tools which aims to produce in silico spectra 

based on entered molecules. This is done with 

machine learning making use of the support vector 

machine (SVM) method5. The program uses the 

probabilities of the fragmentation points of the 

molecule and creates spectra based on the most 

likely fragmentations5. The spectra are created with 

multiple collision energy levels, making it possible 

change the collision energy levels leading more 

fragmentation in case the energy gets higher5. By 

combining these two tools we will attempt to predict 

experimental data with Mass2Motifs that are created 

by using only in silico data. The main objectives for 

this project are to improve molecular substructure 

annotation and identification. We will be using the 

CFM-ID to predict the fragmentation of molecules 

and generate tandem mass (MS/MS) spectra, next 

the created spectra will be analyzed with MS2LDA. 

This tool creates Mass2Motifs based on the 

recurring patterns in the in silico spectra. These are 

patterns composed of fragments and losses observed 

in the data. Once this is done, we take these motifs 

and try to identify what they are with the use of 

experimental data and a database containing 

predicted substructures. Because the motifs and the 

spectra used to create the motifs are all in silico, it is 

need to compare the Mass2Motifs to experimental 

data in order to confirm that these motifs are actually 

picking up the substructures in real MS/MS data. 

The goal of this project is to see if possible to create 

a pipeline that can speed up the structural annotation 

of molecules with the use of in silico spectra. 

Materials and Methods

All tools made in this project can be found at 

https://github.com/NP-Plug-and-Play-Scripts. 

The tools and pipelines utilised in this project were 

made with Java version 1.8.0_191 and Python 

version 2.7.15.  

 

Natural product database 

The natural product database (NP DB) was created 

by S. Stokman who combined the data of multiple 

Np databases into a single one, this includes Super 

Natural II13, ChEBI14, HMDB15, Np Atlas16, GNPS10 

and others as seen in figure 1. This database contains 

the data of around 320.000 molecules and is the 

main source of data used in this project. The 

database contains a number of tables with the main 

one used for this being the structure table which 

contains the ID, SMILES, Classification and 

InChIKey. This database was also expanded upon at 

the end of this project to include the created data, 

check the appendix for the layout of the expanded 

database as well as a link to github for the code. 

 

NpDb Extractor 

To keep the search-process of the database 

manageable a General user interface was made to 

quickly obtain data. This interface was made with 

Java Swingx and uses the aforementioned  NP DB 

to which it connects. Based on user input returns the 

entries in the databases corresponding to the selected 

data. The selection of data is based on the selected 

Figure 1 Natural product database data sources. The main bulk of the 

data is coming from Super Natural 2 with a number other smaller 

databases making up the rest of the database. Here they are indicated 

with the number of molecules and what percentage of the total data 

that they make up. 

https://github.com/NP-Plug-and-Play-Scripts
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classifications. For example, a user can select a 

super class like benzenoids and get a list of all the 

data that has the super class benzenoids. The user 

can then save the data using a save button leading to 

a file containing the structure ID and SMILES 

string. This data is ready to be put through the cfm-

pipeline. On github these are available as runnable 

jar and full project (made in Netbeans) either find 

them with the link above or look in the first part of 

the appendix. 

 

MGF Format 

Mascot generic format or MGF is a format for 

MS/MS data files17. These files contain the 

information of a spectrum, usually having multiple 

headers followed by m/z – intensity pairs making it 

very readable while keeping everything ordered. 

The start and stop of a spectrum are indicated with 

“BEGIN IONS” and “END IONS” everything in 

between these two lines belongs to one spectra17,18. 

The minimum information to be in a spectra is the 

precursor mass, the charge, a title and at least one 

m/z – intensity pair. However more information can 

be added to the spectrum, this leads to a very flexible 

file type while also making it hard to use MGF files 

made by others since they might include or exclude 

different information18. The appendix includes 

examples of some MGF formats. 

 

CFM-id 

Competitive fragmentation modelling of ESI-

MS/MS spectra for putative metabolite 

identification or CFM-ID5 is a probabilistic 

generative model that uses machine learning to learn 

parameters with the use of MS/MS data. CFM can 

be used for two different tasks, the first being the 

prediction of mass spectra of molecules using their 

chemical structure (in the form of a SMILES string 

or InChI) and secondly by identifying putative 

molecules5. For the present project CFM-id is 

mainly used to create in silico spectra and 

subsequently to work with these generated spectra. 

There are currently a number of different tools 

available for the generation of spectra mainly using 

one of two different methods. These methods  use 1) 

a rule based model in which uses thousands of 

manually curated rules to predict spectra or 2) a 

combinatorial fragmentation procedure which 

enumerates all the possible fragments of the original 

structure, and then making a spectra out of those. 

CFM-id is different as it establishes its spectra on 

the likelihood of fragmentation. Based on the 

benchmark results when comparing CFM-id to 

MetFrag5,19 and FingerID5,20, CFM appears to 

outperform than both existing methods. The 

generation of spectra with CFM-id can be done in 

two ways: SE-CFM (single energy) and CE-CFM 

(combined energy). The difference between these 

two methods is that SE-CFM uses fragments the 

given molecule with only one energy level while 

CE-CFM creates three different spectra each using a 

different collision energy level (10,20,40V). This 

gives a better representation of reality since MS/MS 

spectra are normally viewed at multiple collision 

energies. The output of CFM-id can be created in 

multiple formats such as mzML21, mzXML22 and 

MGF17. The latter two are alternative ways of saving 

the mass spectra data. While mzML is widely used 

it isn’t as interpretable as MGF is, the same counts 

for mzXML.   

To run CFM-id you need to provide it with three 

files. 

1.  the input file containing the ID’s and 

smiles. 

2.  A parameter file which the user can create 

themselves with a set of real mass spectra 

on which it trains to recognize the breaking 

points5. In case the user doesn’t want to or 

is unable to create their own parameter file 

they can use one of the pre trained models 

provided by CFM-id.  

3. The last file that needs to be added is a 

configuration file, this file contains the 

settings on what rules CFM should follow 

when creating the in silico spectra. This file 

can be supplied by the user as well or 

downloaded off the CFM-id site.  

When running CFM on the command line more 

options can be given. These options change if  

fragments  are annotated and also make it so the 

probability threshold can be changed. This is to 

prune unlikely fragmentations that fall below the 

threshold. To get an installer of CFM-id please see 

the github section of the appendix.  

 

RDKit 

RDKit is an open source toolkit for 

cheminformatics, it has a large amount of functions 

that makes it easier to manipulate chemical 

structures by allowing the user to change 

aromaticity, neutralize, kekulize, add and remove 

molecules, cluster molecules and more23. RDKit can 

be used with Python, C# and Java. However, the 

latter two lack any examples on how to work with it 
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whereas python has numerous sites with examples 

on how to use the different functions. For this project 

we chose to use it for the neutralization and 

kekulization options which are used in the CFM-

pipeline. This is due to the inability of CFM-id to 

work with charged SMILES and Molconvert to 

work with aromatic SMILES. 

 

Molconvert & InChIKeys 

Molconvert is a tool in the JChem toolkit that is used 

to convert between molecular file types24. It was 

used in this project to change the SMILES in to 

InChIKeys. The InChIKeys are unique identifiers 

for molecules they are created since the InChI and 

SMILES notations get very lengthy whereas 

InChIKeys are always 27 characters long and will 

always be unique for one molecule. The first 14 

characters are the hash encoding for the molecular 

skeleton of the molecule the 8 characters after that 

are the hash encoding of the remaining layers such 

as the stereochemistry. After this there is a letter for 

the flag which indicates the type of InChIKey, this 

can be either standard or non-standard25. Next is 

another letter which indicates the version of the 

InChIKey starting with A for version 1, B for 

version 2 etc. last is a letter indicating the whether 

or not a molecule is protonated or deprotonated, with 

N meaning 0 protons M being -1 and O being +1 the 

lower in the alphabet the more negative charges the 

molecule has and the higher in the alphabet the more 

protons it has25. In the appendix github section a 

standalone version of the InChIKey pipeline can be 

found. 

 

CFM-pipeline – a pipeline to turn SMILES them in to in 

silico spectra  

In order to get from database info to a MGF used as 

input for MS2LDA a number of steps need to be 

taken. A pipeline was created to do this task, it will 

take an input csv file containing ID, SMILES pairs 

as well as a settings file that contains the preferred 

settings for the experiment. Here the pre trained 

model for CFM, the cut-off value along with other 

settings will be decided. This tool modifies and edits 

the data so it is prepared to be submitted to 

MS2LDA11. 

Extraction: First of all the data needs to be extracted 

from the database. This is done with the NPDB 

extractor.  

Neutralisation and splitting: The csv file is then 

put in the CFM-pipeline. After one of the earlier runs 

the pipeline it turned out  that around a 1000+ 

molecules were being lost per dataset if the entered 

csv file was just entered in to CFM-id. The reason 

for the loss of data turned out to be the inability of 

CMF-id to fragment molecules that were charged. 

This led  to the implementation of a neutralization 

step, which was done with the help of RDKit23.  

With this intervention the loss of molecules was 

greatly reduced in most data sets, going down to 

around 500 molecules lost per dataset. The output is 

then saved in a new file which contains the 

ID,SMILES and neutralized SMILES. Another 

problem arose in the flavonoid data, this dataset 

consisted of a large amount of SMILES that 

contained multiple molecules. SMILES can contain 

multiple molecules in a single string, this being 

indicated with a “.” On the location were a seperate 

molecule starts. Cfm-id is not able to process these 

leading to only 3000 of the around 9000 flavonoid 

molecules being able to pass through it. Therefore 

only the longest sub SMILES was taken from the 

SMILES, this is then considered as the main 

molecule. Next the large file is split in to equal parts 

so they can undergo the next steps simultaneously 

with the help of multiprocessing which greatly 

reduces the process time of Molconvert and CFM-

id. 

InChIKey creation: Molconvert 24 is then used to 

turn both the original and neutralized smiles in to 

InChIKeys. However SMILES can be denoted in 

their aromatic form, this lead to molconvert24, which 

wants to have a static representation of the molecule 

figure 2, not being able to handle certain molecules 

with aromatic rings due to the delocalization of 

bonds26.  Thus RDKit was used again to turn the 

molecules to their kekulized form which has 

localized bonds. All the info is stored in a new file, 

which contains the ID, SMILES, neutral SMILES, 

InChIKey, neutral InChIKey.  

 

Spectra creation: Once all files are done receiving 

their InChIKeys the files are ready to be entered in 

to CFM-id. For these runs the settings of the CFM-

pipeline  were put the CE-CFM mode to obtain all 

three energy level, the output type is  MGF. The 

parameter model used was the pre trained model by 

CFM-id, param_output0.log. This file is available 

on the CFM-id site. The parameter file was obtained 

here as well. For the command line settings the 

Figure 2: example of a delocalized benzene ring and the 

two possible kekule versions of it. 
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probability threshold was put on 0.001, the default 

value, and the Annotate_fragments option was set 

on 0 meaning the fragments were not annotated. 

This was done due to reduce the run time.  

Peak normalization: Next the spectra intensities 

that came out of CFM-id are normalized with the 

formula  ∑( (𝑥𝑎 −  𝜇) / 𝜎) 27. Any normalised 

intensity of 2 or an intensity below -2 is set to 2 or -

2 respectively. This was done to have the normalized 

values are on a scale from -2 to 2. Next all the values 

are multiplied by 225 to put the values on a scale of 

-450 to 450 and finally 450 is added to all values to 

make a scale of 0 to 900. This is done to make more 

pronounced differences in the intensities as well as 

making them more in line with actual spectra27. The 

old intensities are replaced with the created 

normalized intensities. 

Peak merging: The normalized spectra are then put 

in to a merger which takes the three spectra each that 

belong to one molecule  (each were fragmented on a 

different energy level with the CE-CFM method) 

and merges these in to a single spectra. This is done 

by adding all the peaks in to a single spectra and then 

combining the ones that have the same mass, the 

combined intensity of those spectra are then divided 

by the number of peaks that were combined. So if 

we had two peaks with the m/z of 78.114 then the 

combined intensity would be divided by 2. The 

reason for the merging of the peaks is to increase the 

amount of information in a single spectrum. Because 

MS2LA will find common patterns in the spectra, 

the more information is added the more informative 

Motifs should come out of it. It also helps as an extra 

step to conserve relevant peaks. A low energy 

spectra with a peak that has a low intensity for 

benzene for example might get filtered out, however 

with the combining of the three spectra we might see 

that the mid and high energy spectra have the 

benzene peak as well but with a much higher 

intensity thus conserving the relevant peaks.  Once 

all the spectra are merged a final filtering step is 

done by removing all peaks with an intensity below 

a set threshold, 120 in this case, to remove some of 

the background noise from the spectra.  

Adding info: The final step is the addition of extra 

information to the MGF. The added  information 

comprises: 1) the ID which links to the NP database, 

2) one or two InChIKeys based on if the SMILES 

got neutralized or not, 3) a title which describes the 

spectra, 4) the SMILES belonging to the spectra 

(also a neutral SMILES in case it was neutralized) 

and 5) an IUPAC name (naming of organic 

compounds). Once this info is added to the spectra 

all the files that were split into separate parts are 

combined in to a single file again. This file is then 

made after which it can be used as input for 

MS2LDA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: An overview of the pipeline. 1) The smiles are obtained from the pipeline with their ID. 2) The SMILES are neutralized so they can 

be submitted to CFM-ID and Molconvert, and the file is split in 10 parts. 3) CFM-ID creates spectra out of the neutralized SMILES. 4) A MGF 

file containing the  by CFM-ID created spectra. 5) Molconvert takes the original and ,in case present, neutralized SMILES and creates 

InChIKeys for both. 6) A file containing the SMILES and InChIKeys for the neutral and original molecules. 7) The created spectra are 

normalized. 8) The spectra that came of the same molecule but fragmented on different energy levels are combined. 9) The InChIKey(s) and 

SMILES along with some other info such as the ID and description are added spectra. 10) The resulting file contains all information needed 

for MS2LDA to get the most out of these spectra.  
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MS2LDA & Mass2Motif 

Mass2Motifs are patterns that can have a possible 

match to biochemically relevant molecular 

substructures11. The term was first used by van der 

Hooft et al11. The idea of Mass to motifs is that they 

match to a certain set of peaks that occur together 

often this means that if a selection of NPs contain a 

Mass2Motif they all contain the same molecular 

substructure that correspond to the pattern of the 

Mass2Motif. Whether this Motif is actually accurate 

or even matches to a relevant substructure is not 

something that is given, thus manual validation of 

these motifs is necessary. These Mass2Motifs are 

generated with the tool MS2LDA which uses LDA28 

on the MS/MS Spectra to find patterns in the 

different spectra. It looks at the recurring losses and 

fragments in a set of spectra and based on that it 

creates Mass2Motifs belonging to that set of spectra.  

 

To start an experiment in MS2LDA the tool requires 

an input file to be in one of three file types mzML, 

MGF or MSP as well as a number of setting. These 

include options such as; 

  The name of the field that contains the 

unique identifiers for the spectra in the 

submitted file. 

  The min and max retention times to store 

for the MS1. 

  The minimum intensities for both the MS1 

and MS2 to store. 

  The Number of Mass2Motifs to create. 

  The Number of iterations for the LDA. 

 

These options are all set on default values (with the 

exception of the unique identifier), the last two 

options heavily influence the run time of MS2LDA: 

the more Motif that are created the longer the runs 

will take to be completed, the same also applies for 

the number of iterations. Therefore the amount of 

motifs was set to 300 for all the datasets except the 

steroid dataset, for which the number was set to 400. 

This was done due to the large number of molecules 

in the dataset, increasing the number of motifs made 

it possible to catch more motifs that might be present 

in a dataset ten times the size of the others (with the 

exception of amino acids). Although even more info 

could have been collected with an even higher 

number of motifs the computing power of the server 

running MS2LDA could not handle more than 400 

motifs. The number of iterations was kept on 1000. 

In general, the number of motifs heavily depends on 

the input dataset. Too many motifs means the run 

time becomes longer and it also opens up the 

possibility of capturing motifs that are only specific 

for one or two spectra. On the other hand, using a 

very small amount of motifs can lead to a large 

number very general motifs that match to patterns 

that appear in nearly every molecule (e.g., C  or O 

fragments). Furthermore, when submitting a set of 

data it is good to keep in mind that MS2LDA will 

make a set of motifs based on that info. So if a set of 

data is submitted that is very similar, for example all 

from the same subclass of molecules, the resulting 

set of motifs will have a good change of belonging 

to substructures frequently found in this set of 

subclass. On the other hand if the set of molecules is 

very diverse its more likely that more motifs will 

more frequently belong to common substructures. 

All aforementioned considerations need to be  kept 

in mind when running an experiment. Once the 

experiments are done running more options become 

available such as; inspecting the motifs or spectra 

submitted, comparing  the motifs of one experiment 

to others  in order to find motifs with overlap. It is 

also possible to add more filtering options. 

 

Molecular data sets 

Five sets of molecule classes were selected from the 

NP DB. These sets contain the data of  18082  

structures belonging to ‘Amino acids, peptides, and 

analogues’, 3654 Azoles, 9752 Flavonoids, 1441 

Lactones and 15170 structures belonging to Steroids 

and steroid derivatives. The reason these sets where 

chosen vary, the Azole dataset was picked as it 

contains relatively short and simple molecules 

making it easier to analyse and find back 

substructures. Lactones were picked because of 

them being  well researched for their presence in 

antibiotics29, Flavonoids for their bioactive 

structures30,31, Steroids as well for their use in 

medicine and their effects on organisms and health32 

and Amino acids because they are relevant for 

proteomics, biochemistry and many others33,34. 
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Results and Discussion 

The first goal of this project was to set up a pipeline 

with cfm-id in order to create in silico spectra that 

can be used to derive motifs. This step alone cost a 

lot of time due to difficulties with the installation of 

the tools required for the pipeline. This includes 

tools lp-solve35 a program that changes the way 

operating systems handle certain calculations, 

without it cfm-id won’t run. In order to get it 

working an edited version of the program was made 

so it would run on the servers at Wageningen 

University and Research. The resulting pipeline can 

be seen in figure 3.  In order to find out if it’s 

possible to create and link motifs to substructure test 

need to be ran and for this the datasets mentioned 

where extracted from the NPDB with the help of the 

created NpDb extractor.  

 

CFM-pipeline output  

The first step was to put the extracted data of the 

selected molecule classes through the pipeline. The 

MGF files that came out of the pipeline had slightly 

less spectra in them compared to the number 

obtained from the database. While the previously 

explained steps of neutralization, kekulization and 

the removal of multiple molecules in one single 

SMILES helped to reduce the number of lost 

molecules. A few molecules still remain that can’t 

pass through CFM-id. Figure 4 shows the number of 

spectra remaining per dataset. 

 

 
Figure 4: Shows the distribution of the data that passed through the CFM-pipeline as well as the total amount of molecules 

lost due to varying reasons. The values indicate the number of spectra that came out of the pipeline along with what 

percentage of the total they are. Of the lost molecules 167 belonged to the amino acid data, all other data sets lost around 35 

molecules with the exception of lactones which lost only 2. 

Spectra Validation 

In the paper on CFM-id by Allen et al5 the output 

spectra were already validated showing that the 

predicted spectra matched fairly well with the 

measured spectra. This resulted in weighted recall 

values around 70%, weighted recall being the 

percentage of the total peak intensity matching 

between the measured and predicted spectra. 

However due to the merging of the spectra in this 

project additional validation was done to ensure that 

the created spectra still are comparable to 

experimental spectra. Therefore a number of 

molecules were picked that  had available spectra 

and these were compared with the CFM created 

spectra. In the examples below the spectra belonging 

to an anisole and a cholesterol of CFM-id and 

MassBank were taken and compared. When looking 

at figure 5 it can be seen that the two spectra are 

mostly similar with some exceptions. And while this 

is true for a large part of the spectra created there are 

also spectra that while having some peaks in 

common also have many different peaks. These 

include peaks like 39 m/z, 65m/z and 78 m/z. This 

can be seen in figure 6 where the cfm version of 

cholesterol is very different from the one obtained 

from MassBank North America36.  

 

 

Amino Acids, 
17915, 37%

Azoles, 3613, 8%
Flavonoids, 9720, 

20%

Lactones, 1439, 3%

Steroids, 15142, 
31%

Molecules Lost, 270, 1%

Number of Molecules Per Dataset post CFM-Pipeline

Amino Acids

Azoles

Flavonoids

Lactones

Steroids

Molecules Lost
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Spectra variation 

The reasons for why some of these generated spectra 

are different from the spectra obtained from 

MassBank could lie in the use of the pre trained 

model of cfm-id. The data used to train the model is 

a large set of molecules with little to no natural 

products5. This could mean that some of the ways 

and likelihood steroids and other molecules 

fragment are not known to the model thus giving an 

incorrect fragmentation. The other explanation can 

be that while the peaks were present in the in silico 

spectra the intensity of these peaks was to low 

leading to them being filtered out. However even 

with these somewhat incorrect spectra it can still be 

possible to find useful motifs. With enough spectra 

the recurring patterns may be retrieved and thus 

useful motifs can still be generated. Another 

example can be found in the appendix where a CFM 

spectra has. 

 

 

Figure 5: This figure shows the comparison between the cfm generated spectra of an Anisole and an actual spectra of an 

anisole obtained from MassBank North America. On average the peaks that appear in the MassBank spectra also appear in 

the spectra created with cfm-id. Thus a likely accurate version of the spectra was made. 

http://mona.fiehnlab.ucdavis.edu/spectra/display/JP001826  

 

Figure 5: This figure shows the comparison of the cfm generated cholesterol spectra with MassBank North America 

spectra of cholesterol as can be seen while there is some overlap in peaks there is also a large amount of peaks not 

pressent or on different locations. http://mona.fiehnlab.ucdavis.edu/spectra/display/JP003478  

 

http://mona.fiehnlab.ucdavis.edu/spectra/display/JP001826
http://mona.fiehnlab.ucdavis.edu/spectra/display/JP003478
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Motif matching against annotated datasets  

With the CFM Runs done the datasets were entered 

in MS2LDA. The output of this was compared to 

other existing datasets. For the Flavonoids the data 

was split in two separate parts to make it possible for 

them to pass through MS2LDA. These two sets were 

compared with each other and a number of different 

experimental datasets. These being the MotifDB 

(massbank_binned_005), 

Rhamnaceae_plant_extracts_KyoBin_200Motifs, 

GNPS-Rhamnaceae, GlobalEuphorbiaStudy, 

Urine38, and the Foodomics datasets. The 

Rhamnaceae_plant, GlobalEuphorbia and 

Foodomics sets contain a lot of plant data thus likely 

containing flavonoids as well37. This Resulted in a 

total of  116 matches of which 73 have a score above 

0.7. Of these 73 motif a number of them had matches 

with one or more datasets. This is plotted in figure 

7, here the total amount of unique matches and 

annotated motifs is shown. In figure 8 the number of 

motifs with multiple matches is shown along with 

the number of these that are annotated. 
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M O T I F S  W I T H  M A T C H E S M A T C H E S  W I T H  A N N O T A T I O N

F L A V O N O I D  M O T I F S  W I T H  M A T C H E S
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Figure 7: Shows the amount of motifs matched to the flavonoids2 

dataset showing that around there are 73 matches in total with 40 of 

these being unique matches. Meaning 40 of the 300 motifs have 

matches.  

Figure 9 shows the overlap of 

matches between the datasets, shown 

in figure 8. Each point shows amount 

of overlap between the data. So for 

example a point having purple blue 

and red means that one motif in the 

cfm-flavonoids has matches with 

GNPS-Rhamnaceae, Global 

uphorbia and Rhamnaceae-KyoBin. 

The reason MotifDB has 0 is because 

MotifDB contains the data of some of 

these other datasets thus only having 

matches with other data and no 

unique matches. 

Figure 8: Shows the motifs that have  multiple matches with 

different datasets. This is shown as the amount of in silico motifs 

with either 2, 3 or with 4 or more matches.   
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Overlap in motif matches 

One of the biggest concerns at the start of this project 

was if the in silico spectra would actually be able to 

produce motifs that would match to real data. With 

the flavonoid experiments having 300 motifs (the 

default amount of motifs created) having a total of 

40 of these spectra covered, as seen in figure 7 with 

matches from experimental data is a good indication 

that it is working for at least other flavonoid data. 

Especially if it is taken in to account that of the 300 

motifs a large amount of them will be overfitting to 

the data, thus being specific for only a few spectra. 

This happens a lot with the larger molecules due to 

them having several large fragments, as well as for 

molecules that are quite similar such as isomers or 

those belonging to the same sub class. Furthermore, 

as seen in figure 8 and 9, 50% of these motifs have 

two or more matches in different datasets. This 

further reinforces that the motifs created with the 

pipeline will most likely be able to be used on  other 

data as well. Figure 10 also shows some of the 

annotated motifs with the number of overlaps. As 

can be seen the possible fragments of most of these 

motifs belong to structures often seen in plants. 

Which is expected due to the motifs being based on 

flavonoid data. 

 

Motif Degree 

Although the before mentioned motifs have one or 

more matches it won’t be useful if the motif doesn’t 

match to anything. Therefore the motifs were 

collected along with their degree, which is the 

amount of times they match to a spectra in the data. 

All of the 40 motifs with matches have a degree of 

250 or higher with more than half having a degree 

of 500+. This shows that most of the motifs actually 

match with the data. See the MS2LDA section of the 

appendix for a graph and table of the distribution of 

the degree between the motifs with matches. 

 

 

Motif with Annotation Number of 

matches with other 

datasets 

Possible fragment/loss structure  

motif_154 (Possible Chromone 

fragment  an  isomer of Coumarin - 

C9H6O2) 

 

5  

motif_240 (Water loss - indicative of a 

free hydroxyl group  (in beer often seen 

in sugary structures)) 

5  

motif_225 (Fragment indicative for 

aromatic compounds related to 

methylbenzene substructure (C7H7 

fragment)) 

4  

motif_48 possible Luteolin, Kaempferol 

like structures (C15H10O6) often found 

in plants 

2 

  

motif_7 possible Veratrole or 4-

Ethylcatechol 137.0575 fragment 

(C8H10O2) - 4-Ethylcatechol a 

constituent of roasted coffee and 

Veratrole is an insect attractant created 

by plants, being the methylated form of 

guaiacol 

1 

 

 

Figure 10: This table shows 5 motifs that had matches with one or more of the motifs from other databases.. Here a few of these 

motifs are displayed with their given annotation as well as the possible structure of the fragment. As seen, a number of these 

motifs have flavonoid related fragments. Thus making them good candidate motifs to try and find new flavonoids on other data. 

Especially since they have matches with actual datasets. 
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Motif annotation 

While a number of the motifs of the flavonoid date 

were given an annotated of a matching motifs with 

an annotation, there were motifs that had a match 

with no annotation. For these time was spend to try 

and annotate these motifs by hand. At first this 

process was slow and tedious due to having to look 

at the masses of the fragments belonging to the motif 

and the structures of the molecules that belonged to 

the spectra. And even when a possible annotation 

could be given it was still uncertain that this was the 

case. That changed when the flavonoid datasets and 

the steroid dataset were processed by MAGMA 

Substructure annotation38. This online application 

Figure 11: The figure above shows motifs 154  and  48 of the flavonoids2 dataset. When looking at the most likely fragments of these 

motifs we find that for motif 154 the fragment 147.0425 has the highest probability of being present when the motif is found in a 

spectra. The MAGMa annotation given to this fragment is as seen above likely related to P-Coumarldehyde or Chromone, the first 

being observed 172 times in the flavonoid data and the second is observed 121 times. As for motif 48 the most likely fragment is 

285.0375, this is annotated with MAGMa as likely being the isomers Luteolin (observed 337 times) and Kaempferol (observed 278 

times), both being related to flavonoids. While these MAGMa annotations help with the annotation of the motif it is not guarantee 

that in other data these annotations are correct. 
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annotates multistage Mass spectrometry data38. By 

annotating these datasets it allowed for easier 

identification of fragments part of motifs thus 

leading to more accurate ways to annotate the data. 

For extra insight in the data look at the MS2LDA 

section of the report, here a table of all 40 matches 

can be found along with their annotation (if they 

have one). Also a link to the flavonoid experiments 

can be found in the appendix. 

 

Discussion of Motif Annotation 

As seen in figure 11, with the help of MAGMa38 the 

two fragments of motif 154 with the highest 

probability were inspected. Previously the motif was 

annotated by hand and given the initial annotation of   

Chromone as seen in figure 11. While this 

annotation is partially right it is not an accurate 

representation of what can be found with the motif. 

So a new annotation should be given that also takes 

the other possibilities shown here in to account, or 

make it more general as “Coumarin related”. While 

this method of annotation works really well there is 

something to keep in mind when looking at these 

motifs. While it works when comparing these motifs 

generated with flavonoid in silico spectra to motifs 

and data of other flavonoid spectra. This does 

however not guarantee that these in silico motifs will 

only match to flavonoid data and that the 

annotations hold when they annotate to other natural 

product spectra. For example a match between one 

of these in silico flavonoid motifs and real steroid 

motifs can be found but they both have a different 

annotation due to the motif having similar 

fragments. However when the in silico steroid 

motifs and the in silico flavonoid motifs were 

matched, only the motifs that should be present in 

both (such as benzenaldahyde) matched. Also none 

of the flavonoid specific motifs were found in this 

comparison. For more info look at the MS2LDA 

section of the appendix here a table with the 

annotated hits can be found along with a link to the 

experiment. What also happened in some cases is 

that a motif would only have a single fragment, 

while these motifs can be useful for prediction this 

can lead to the motif matching to fragments of the 

same weight. While this can also happen to motifs 

with more fragments, the chances of, for example all 

five features being the same in a flavonoid motif and 

a steroid motif is way lower than the chance of the 

same thing happening when both motifs have a 

single feature. 

 
Conclusion 

The tools and knowledge that were produced by this 

project will make it easier to quickly produce a set 

of spectra and motifs that can be utilized to identify 

new molecules. The best way to create new 

Mass2Motifs for structural annotation for molecules 

belonging to a certain class would be to first use the 

NP DB created by S. Stokman to obtain the desired 

data. These can be searched with NpDb extractor by 

searching on the classification. The classifications 

are currently in the progress of being improved by 

O. Hoekstra who is working on a project related to 

this. With this data is then entered in this pipeline 

and turned in to spectra. Next MS2LDA can create 

the motifs and MAGMa will annotate the 

substructures to allow for easy annotation. This will 

result in a set of motifs that can be used to give a first 

impressions on what these unannotated molecules 

are made of. The results obtained in this project 

show great promise. They show that a lot of 

information to be obtained from Mass2Motifs 

created with in silico spectra, this is done in relative 

short time frame using publicly available data. 

However, effort should be made to create a pre-

trained model for CFM-id trained on real natural 

product spectra. This way the probability of 

obtaining more accurate spectra is increased, which 

in turn will likely yield more accurate Mass2Motifs 

with more predictive capabilities. Also with the help 

of projects like MAGMa38, the rate at which the 

created motifs are annotated can be improved 

immensely. Thus adding this to more datasets will 

further improve our insight of the quality of created 

motifs. Other projects like the work done by Lai et 

al. 39 also created a workflow to aid in the structural 

annotation of molecules. A good first step would be 

to take the annotated structures they mentioned such 

as: N-methyl-uridine monophosphate, 

lysomonogalactosyl-monopalmitin and N-

methylalanine, and create our own motifs based on 

the classes these molecules belong to. The resulting 

motifs can then be annotated with MAGMa. The 

results can then be compared to the results of  Lai et 

al.39  as an extra validation step for both projects. 

Due to this project highly relying on in silico spectra 

the extra validation will be especially valuable. To 

conclude, along with other advances in the field of 

metabolomics this project shows it has a lot of 

potential to improve the efficient structure 
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annotation and classification of unknown molecules. 

Especially when combined efforts of other projects 

such as the one of S. Stokman, O. Hoekstra and  L. 

Ridder. 
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Supplementary  

 

Github links. 

For all files go to this link: https://github.com/NP-Plug-and-Play-Scripts  

 

CFM-Pipeline: 

This contains the main pipeline created in this project 

 https://github.com/NP-Plug-and-Play-Scripts/CFM-Pipeline  

 

NpDb Extractor:  

Keep in mind that this project requires Java. Contains the NpDb Extractor.  

- https://github.com/NP-Plug-and-Play-Scripts/NpDbExtractor-runnable  

- https://github.com/NP-Plug-and-Play-Scripts/NpDbExtractor  

 

InChIKey Pipeline: 

While not described in the project itself, a standalone version of the InChIKey creator was made to help O. 

Hoekstra and S. Stokman with the creation of InChIKeys. Feel free to use this pipeline. On the github there 

should also be an added manual on how to set it up and run it. 

- https://github.com/NP-Plug-and-Play-Scripts/inchiKeyCreatorPipeline  

 

CFM-Workplace installation: 

In order to use the pipeline a workplace installer script was made this makes a folder containing all the 

dependencies for CFM-id, along with extra folder for storage of the input and results. 

 https://github.com/NP-Plug-and-Play-Scripts/Bash-scripts/blob/master/cfm-install.sh  

 

NpDb Expansion 

An expansion to the existing NPDB. Will add 6 tables that can store the cfm spectra as well as the motifs 

created with MS2LDA. Project contains a manual explaining how to run the data as well as the required scripts. 

 https://github.com/NP-Plug-and-Play-Scripts/NpDb_expansion  

 

 

 

 

 

 

 

 

 

 

https://github.com/NP-Plug-and-Play-Scripts
https://github.com/NP-Plug-and-Play-Scripts/CFM-Pipeline
https://github.com/NP-Plug-and-Play-Scripts/NpDbExtractor-runnable
https://github.com/NP-Plug-and-Play-Scripts/NpDbExtractor
https://github.com/NP-Plug-and-Play-Scripts/inchiKeyCreatorPipeline
https://github.com/NP-Plug-and-Play-Scripts/Bash-scripts/blob/master/cfm-install.sh
https://github.com/NP-Plug-and-Play-Scripts/NpDb_expansion
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CFM-ID Additional  tables and graphs 

 

 

 

MS2LDA Additional info tables and graphs 

Experiment numbers of the created and used data: 

All experiments should be available at http://ms2lda.org/basicviz/. At the time of writing this report, opening the 

larger datasets makes the server overload from time to time so open with caution. 

Data Experiment id on MS2LDA 

cfm_Flavonoids2 (most used dataset) 839 

cfm_Flavonoids 838 

cfm_neutralised-Steroids 810 

cfm_Lactones_neutralised 818 

cfm_azoles_neutralised 821 

Amino_acids_and_peptide_analogs_part1of4 875 

Amino_acids_and_peptide_analogs_part2of4 883 

 

Additional tables 

All Motifs with Matches above 0.7 probability including their annotation. 

Mass2Motif (Annotation) Best Match (Annotation) Best Match (Experiment) Match 

Score 

motif_108 (None) motif_355 (None) Foodomics_beverage_5_10_0_100_400_1000 0.707 

motif_12 (None) motif_108 (None) GlobalEuphorbiaStudy 0.702 

motif_120 (None) motif_102 (None) Foodomics_beverage_5_10_0_100_400_1000 0.96 

motif_128 (protocatechuoyl-related) gnps_motif_19.m2m ((5-Hydroxy-

2 2-dimethyl-4-oxo-3 4-dihydro-
2H-chromen-7-yl)oxy substructure) 

GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.967 

motif_128 (protocatechuoyl-related) motif_117 (protocatechuoyl-

related) 

Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.972 

motif_128 (protocatechuoyl-related) motif_177 (None) Foodomics_beverage_5_10_0_100_400_1000 0.977 

motif_131 (None) motif_113 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.842 

motif_132 (vanilloyl-related) motif_191 (vanilloyl-related) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.898 

motif_132 (vanilloyl-related) motif_252 (None) GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.838 

Appendix figure 1: Another example of a cfm spectra compared to a spectra obtained from NIST. While the peaks around 80 and 180 appear in both the 

spectra, the CFM predicted spectra has more peaks in this case. Showing that it’s not always the case that real spectra have more peaks. In the 

comparisons made it seemed to vary per comparison, this again could be due to the trained model. 

http://ms2lda.org/basicviz/
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motif_136 (Fragments indicative for 

kaempferol/glycosylated kaempferol 

substructure) 

mb_motif_42.m2m (Fragments 

indicative for 

kaempferol/glycosylated 

kaempferol substructure) 

GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.997 

motif_136 (Fragments indicative for 
kaempferol/glycosylated kaempferol 

substructure) 

mb_motif_42.m2m (Fragments 
indicative for 

kaempferol/glycosylated 

kaempferol substructure) 

MotifDB 0.997 

motif_141 ([1 3-dihydro-2-

benzofuran-1-yl]pyrrolidine 

substructure) 

gnps_motif_34.m2m ([1 3-dihydro-

2-benzofuran-1-yl]pyrrolidine 

substructure) 

GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.891 

motif_154 (Possible Chromone 
fragment  an  isomer of Coumarin - 

C9H6O2) 

gnps_motif_37.m2m (Fragments 
indicative for 

cinnamic/hydroxycinnamic acid 

substructure) 

GNPS-
MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.714 

motif_154 (Possible Chromone 

fragment  an  isomer of Coumarin - 

C9H6O2) 

mb_motif_20.m2m (Fragments 

indicative for 

cinnamic/hydroxycinnamic acid 

substructure) 

MotifDB 0.714 

motif_154 (Possible Chromone 

fragment  an  isomer of Coumarin - 

C9H6O2) 

motif_124 (Fragments indicative 

for cinnamic/hydroxycinnamic acid 

substructure) 

Foodomics_beverage_5_10_0_100_400_1000 0.992 

motif_154 (Possible Chromone 

fragment  an  isomer of Coumarin - 

C9H6O2) 

motif_444 (None) GlobalEuphorbiaStudy 0.746 

motif_154 (Possible Chromone 

fragment  an  isomer of Coumarin - 

C9H6O2) 

motif_62 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.863 

motif_157 (Benzaldehyde 
(105.0325) fragment C7H6O) 

motif_128 (Benzoyl substructure 
(likely from N-benzoyl) related 

Mass2Motif) 

Urine38_POS_mzML_standardLDA_005binned 0.92 

motif_157 (Benzaldehyde 
(105.0325) fragment C7H6O) 

motif_144 (None) GlobalEuphorbiaStudy 0.972 

motif_157 (Benzaldehyde 

(105.0325) fragment C7H6O) 

motif_172 (None) Foodomics_beverage_5_10_0_100_400_1000 0.981 

motif_16 (None) motif_112 (None) Urine38_POS_mzML_standardLDA_005binned 0.786 

motif_161 (Coumaric acid - H2O) motif_120 (Coumaric acid - H2O) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.927 

motif_161 (Coumaric acid - H2O) motif_204 (None) GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.813 

motif_167 (possible 1,3-
Butadiene,Butane or Butene related 

fragment(C4H8) 53.0375) 

motif_295 (None) Urine38_POS_mzML_standardLDA_005binned 0.969 

motif_18 (None) motif_214 (None) Urine38_POS_mzML_standardLDA_005binned 0.785 

motif_190 (Sugar related (small) 

fragments) 

motif_134 (Sugar related (small) 

fragments) 

Urine38_POS_mzML_standardLDA_005binned 0.945 

motif_195 (None) motif_112 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.896 

motif_207 (None) motif_85 (None) Foodomics_beverage_5_10_0_100_400_1000 0.992 

motif_211 (None) motif_55 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.872 

motif_219 (None) motif_134 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.871 

motif_219 (None) motif_191 (None) GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.827 

motif_225 (Fragment indicative for 
aromatic compounds related to 

methylbenzene substructure (C7H7 

fragment)) 

gnps_motif_52.m2m (Fragment 
indicative for aromatic compounds 

related to methylbenzene 

substructure (C7H7 fragment)) 

GNPS-
MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.891 

motif_225 (Fragment indicative for 

aromatic compounds related to 

methylbenzene substructure (C7H7 
fragment)) 

mb_motif_30.m2m (Fragment 

indicative for aromatic compounds 

related to methylbenzene 
substructure (C7H7 fragment)) 

MotifDB 0.891 

motif_225 (Fragment indicative for 

aromatic compounds related to 
methylbenzene substructure (C7H7 

fragment)) 

motif_114 (Fragment indicative for 

aromatic compounds related to 
methylbenzene substructure (C7H7 

fragment)) 

Urine38_POS_mzML_standardLDA_005binned 0.89 

motif_225 (Fragment indicative for 

aromatic compounds related to 
methylbenzene substructure (C7H7 

fragment)) 

motif_207 (None) Foodomics_beverage_5_10_0_100_400_1000 0.707 

motif_240 (None) gnps_motif_43.m2m (Water loss - 
indicative of a free hydroxyl group 

GNPS-
MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.743 
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â€“ (in beer often seen in sugary 

structures)) 

motif_240 (None) mb_motif_22.m2m (Water loss - 

indicative of a free hydroxyl group 

â€“ (in beer often seen in sugary 
structures)) 

MotifDB 0.743 

motif_240 (None) motif_173 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.705 

motif_240 (None) motif_206 (None) Urine38_POS_mzML_standardLDA_005binned 0.743 

motif_240 (None) motif_415 (None) GlobalEuphorbiaStudy 0.719 

motif_255 (None) motif_99 (None) Foodomics_beverage_5_10_0_100_400_1000 0.961 

motif_256 (None) motif_185 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.737 

motif_257 (None) motif_3 (None) Urine38_POS_mzML_standardLDA_005binned 0.932 

motif_257 (None) motif_425 (None) GlobalEuphorbiaStudy 0.951 

motif_276 (Fragments indicative for 

ethylphenol (i.e. resulting from 

Tyramine in beer) or the structurally 
related paramethylmethoxybenzene 

(MassBank) substructure) 

gnps_motif_21.m2m (Fragments 

indicative for ethylphenol 

substructure (i.e. resulting from 
Tyramine â€“ MzCloud)) 

GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.928 

motif_276 (Fragments indicative for 
ethylphenol (i.e. resulting from 

Tyramine in beer) or the structurally 

related paramethylmethoxybenzene 
(MassBank) substructure) 

mb_motif_19.m2m (Fragments 
indicative for ethylphenol (i.e. 

resulting from Tyramine in beer) or 

the structurally related 
paramethylmethoxybenzene 

(MassBank) substructure) 

MotifDB 0.928 

motif_276 (Fragments indicative for 

ethylphenol (i.e. resulting from 
Tyramine in beer) or the structurally 

related paramethylmethoxybenzene 

(MassBank) substructure) 

motif_343 (None) GlobalEuphorbiaStudy 0.913 

motif_285 (None) motif_16 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.732 

motif_296 (None) motif_282 (Mass2Motif related to 

caffeoylquinic acids (177 and 145 

mass fragments)) 

Foodomics_beverage_5_10_0_100_400_1000 0.787 

motif_296 (None) motif_31 (None) GlobalEuphorbiaStudy 0.807 

motif_38 (None) motif_2 (None) Urine38_POS_mzML_standardLDA_005binned 0.801 

motif_4 (Flavonoid core fragments 

(m/z 151)) 

motif_140 (Flavonoid core 

fragments (m/z 151)) 

Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.749 

motif_4 (Flavonoid core fragments 

(m/z 151)) 

motif_202 (None) GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.735 

motif_40 (None) gnps_motif_24.m2m (Fragments 

indicative for tyrosine related 
substructure (MzCloud)) 

GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.723 

motif_40 (None) motif_301 (None) Foodomics_beverage_5_10_0_100_400_1000 0.852 

motif_48 (possible Luteolin, 

Kaempferol like structures 

(C15H10O6) often found in plants) 

motif_104 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.816 

motif_48 (possible Luteolin, 

Kaempferol like structures 

(C15H10O6) often found in plants) 

motif_175 (None) GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.873 

motif_5 (None) motif_224 (None) Urine38_POS_mzML_standardLDA_005binned 0.784 

motif_5 (None) motif_80 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.782 

motif_53 (4-Methyl-6-oxo-6H-

benzo[c]chromen-3-yl substructure) 

gnps_motif_71.m2m (4-Methyl-6-

oxo-6H-benzo[c]chromen-3-yl 
substructure) 

GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.843 

motif_62 (phthalate substructure) gnps_motif_64.m2m (phthalate 

substructure) 

GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.888 

motif_62 (phthalate substructure) motif_245 (None) GlobalEuphorbiaStudy 0.887 

motif_62 (phthalate substructure) motif_96 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.781 

motif_66 (None) motif_52 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.876 

motif_7 (possible Veratrole  or 4-

Ethylcatechol 137.0575 fragment 

(C8H10O2) - 4-Ethylcatechol a 

constituent of roasted  coffee and 

Veratrole  is an insect attractant 

motif_142 (None) Foodomics_beverage_5_10_0_100_400_1000 0.96 
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created by plants, being the 

methylated form of guaiacol) 

motif_75 (Emodin related Motif) motif_160 (None) GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.919 

motif_75 (Emodin related Motif) motif_40 (Emodin related Motif) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.911 

motif_86 (None) motif_11 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.879 

motif_94 (Fragments indicative for 

dihydroxylated benzene ring 
substructure (MzCloud) â€“ 

C6H5O2 fragment corresponds to 

positively charged fragment with 
two hydroxyl groups.) 

gnps_motif_55.m2m (Fragments 

indicative for dihydroxylated 
benzene ring substructure 

(MzCloud) â€“ C6H5O2 fragment 

corresponds to positively charged 
fragment with two hydroxyl 

groups.) 

GNPS-

MS2LDA_integration_Rhamnaceae_noMS1PeakListProvided_withMotifDB 

0.868 

motif_94 (Fragments indicative for 

dihydroxylated benzene ring 
substructure (MzCloud) â€“ 

C6H5O2 fragment corresponds to 

positively charged fragment with 
two hydroxyl groups.) 

mb_motif_38.m2m (Fragments 

indicative for dihydroxylated 
benzene ring substructure 

(MzCloud) â€“ C6H5O2 fragment 

corresponds to positively charged 
fragment with two hydroxyl 

groups.) 

MotifDB 0.868 

motif_94 (Fragments indicative for 
dihydroxylated benzene ring 

substructure (MzCloud) â€“ 

C6H5O2 fragment corresponds to 
positively charged fragment with 

two hydroxyl groups.) 

motif_131 (None) Urine38_POS_mzML_standardLDA_005binned 0.857 

motif_98 (possible Pyrocatechol 
fragment (C6H6O2)) 

motif_102 (None) Rhamnaceae_plant_extracts_KyoBin_200Motifs_MS1_peaktable 0.778 

motif_98 (possible Pyrocatechol 

fragment (C6H6O2)) 

motif_271 (None) Foodomics_beverage_5_10_0_100_400_1000 0.908 

 

 

Motif degree table and graph 
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Motif Degree for each motif with match

No annotation Annotated

Appendix : This figure shows the degree for each motif of the flavonoid data that has one or more matches. Degree means the amount of 
times this motif was found in the flavonoids2 dataset, this dataset contains around 4500 spectra so a degree around 450 would mean the 
motif is observed in 10% of all the spectra. The top motif 257 has a degree of around 3200 which is explained by it matching to a OH 
fragment which is obviously pretty common.  
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This table shows all the motifs with matches and their exact degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matches Between Steroids (810) and Flavonoids2(839) – Showing only matches for unannotated structures or 

common structures. 
 

Best Match (Annotation) Best Match (Experiment) Match Score 

motif_150 (None) motif_257 (possible OH- fragment) cfm_Flavonoids2 1 

motif_202 (None) motif_195 (None) cfm_Flavonoids2 1 

motif_281 (None) motif_167 (possible 1,3-Butadiene,Butane or 

Butene related fragment(C4H8) 53.0375) 

cfm_Flavonoids2 1 

motif_178 (None) motif_221 (None) cfm_Flavonoids2 0.999 

motif_388 (None) motif_268 (None) cfm_Flavonoids2 0.978 

motif_2 (None) motif_177 (None) cfm_Flavonoids2 0.97 

motif_87 (None) motif_295 (None) cfm_Flavonoids2 0.965 

motif_230 (None) motif_124 (None) cfm_Flavonoids2 0.943 

motif_22 (None) motif_19 (None) cfm_Flavonoids2 0.933 

motif_263 (None) motif_117 (None) cfm_Flavonoids2 0.933 

motif_187 (None) motif_140 (None) cfm_Flavonoids2 0.928 

motif_111 (None) motif_133 (None) cfm_Flavonoids2 0.926 

motif_357 (None) motif_103 (None) cfm_Flavonoids2 0.922 

motif_63 (None) motif_221 (None) cfm_Flavonoids2 0.911 

motif_247 (None) motif_156 (None) cfm_Flavonoids2 0.904 

motif_349 (None) motif_98 (possible Pyrocatechol fragment 

(C6H6O2)) 

cfm_Flavonoids2 0.895 

motif_278 (None) motif_131 (None) cfm_Flavonoids2 0.889 

motif_361 (None) motif_234 (None) cfm_Flavonoids2 0.864 

motif_145 (None) motif_168 (None) cfm_Flavonoids2 0.83 

Motif Degree Motif Degree Motif Degree 

motif_257 3204 motif_211 621 motif_190 377 

motif_5 2089 motif_16 597 motif_225 357 

motif_219 1613 motif_86 597 motif_4 312 

motif_157 1544 motif_207 582 motif_296 280 

motif_195 1471 motif_132 578 motif_53 270 

motif_120 1275 motif_154 576 motif_38 214 

motif_98 1158 motif_75 554 motif_240 37 

motif_48 1091 motif_285 528 motif_18 21 

motif_136 1081 motif_12 507 

motif_7 936 motif_141 501 

motif_255 929 motif_108 495 

motif_128 891 motif_276 491 

motif_131 855 motif_167 437 

motif_62 777 motif_256 413 

motif_161 707 motif_40 406 

motif_94 684 motif_66 387 
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motif_23 (None) motif_191 (None) cfm_Flavonoids2 0.821 

motif_294 (None) motif_175 (None) cfm_Flavonoids2 0.816 

motif_260 (None) motif_58 (None) cfm_Flavonoids2 0.811 

motif_81 (None) motif_191 (None) cfm_Flavonoids2 0.794 

motif_359 (None) motif_3 (None) cfm_Flavonoids2 0.793 

motif_268 (None) motif_16 (None) cfm_Flavonoids2 0.786 

motif_229 (None) motif_18 (None) cfm_Flavonoids2 0.779 

motif_266 (None) motif_27 (None) cfm_Flavonoids2 0.768 

motif_65 (None) motif_157 (Benzaldehyde (105.0325) 

fragment C7H6O) 

cfm_Flavonoids2 0.753 

motif_72 (None) motif_281 (None) cfm_Flavonoids2 0.74 

motif_354 (Mass2Motif related to 

methoxylated benzene ring) 

motif_109 (C7H8O Fragment could be a 

Anisole, Para-cresol or Metacresol) 

cfm_Flavonoids2 0.729 

motif_333 (None) motif_38 (None) cfm_Flavonoids2 0.718 

motif_98 (None) motif_64 (None) cfm_Flavonoids2 0.714 

motif_189 (None) motif_131 (None) cfm_Flavonoids2 0.706 

motif_68 (None) motif_267 (None) cfm_Flavonoids2 0.701 

 

Natural Product database expansion 

The figure below shows the new tables included in the database.  

 

Currently the tables Motif_structure and Motif_spectra, which are linking tables, are not yet present in the 

database due to time constraints however it should not be hard to implement these. 

 

 

 

 

Appendix : shows the new database additions. Main focus points are the np_spectra, spectra peaks mass2motifs and motif detail tables. 
These will contain the created spectra along with peaks and relevant data and the mass to motifs along with the fragments and losses, 
these also include extra details. 
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MGF Format 

Here are two examples obtained from MGF files, the first is one that comes straight out of CFM-id 

and the second is the result of the pipeline. (some peaks were left out to shorten the length of the 

examples a bit)  

 

BEGIN IONS 

PEPMASS=82.05309819 

CHARGE=1+ 

TITLE=NP_ID_265938;Energy0;[M+H]+;In-silico MS/MS by CFM-ID; 

42.03382555 1.166094178 

52.01817548 1.431702494 

54.03382555 7.291185703 

56.04947561 8.850370785 

66.03382555 1.53076755 

83.06037464 77.30416099 

END IONS 

 

BEGIN IONS 

IUPAC=Not_Added 

ID=NP_ID_206371 

TITLE=EnergyCombined 10eV 20eV 40eV;[M+H]+;In-silico MS/MS by CFM-ID; 

PEPMASS=1343.350826 

CHARGE=1+ 

SMILES=COc1cc(C=CC(=O)OC2C(OC3C(Oc4cc5c(OC6OC(COC(=O)CC(=O)O)C(O)C(O

)C6O)cc([O-])cc5[o+]c4-

c4ccc(O)c(O)c4)OC(COC(=O)C=Cc4ccc(OC5OC(CO)C(O)C(O)C5O)cc4)C(O)C3O)OCC(

O)C2O)cc(OC)c1[O-] 

NEUTRAL_SMILES=COc1cc(C=CC(=O)OC2C(OC3C(Oc4cc5c(OC6OC(COC(=O)CC(=O

)O)C(O)C(O)C6O)cc(O)cc5[o+]c4-

c4ccc(O)c(O)c4)OC(COC(=O)C=Cc4ccc(OC5OC(CO)C(O)C(O)C5O)cc4)C(O)C3O)OCC(

O)C2O)cc(OC)c1O 

InChIKey=QRNIDVBVORPNBX-UHFFFAOYSA-M 

NEUTRAL_InChIKey=QRNIDVBVORPNBX-UHFFFAOYSA-O 

41.00219107 418 

68.99710569 345 

87.00767038 453 

147.0440559 320 

165.0546206 333 

179.0702706 421 

1299.360996 428 

1325.340261 900 

1343.350826 492 

END IONS 
 

 

 


