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Propositions 
 

1. The starting point for membrane selection should be the size of soft particles 
under process conditions not their size at “rest”.  
(this thesis) 

2. Water intrusion is an essential prerequisite in cleaning processes related to 
removal of compressed microgel packings.  
(this thesis) 

3. The word micro should only be used to refer to objects that are in the 
micrometer size range. 

4. In quantitative image analysis, good thresholding is key. 

5. Labelling foreigners according to the circumstances of their arrival does not 
help integration.  

6. In the era of smart machines, people should be encouraged to go back to basics 
and use their brains. 
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General concepts studied in this thesis 

This thesis investigates the behavior of soft particles during filtration. Before 

focusing on filtration, we first discuss a number of general concepts such as 

hardness/softness, and collective behavior of particles. Next, the general principles 

of filtration are introduced, from which the innovative aspects of this thesis follow, 

including the description of the contents of this thesis. 

Soft versus hard 

The difference between soft and hard is one of the first things we learn when 

discovering the world in our early years, by falling down (and getting up again). And 

maybe for this reason, we do not really pay so much attention to how present these 

two concepts are in our lives. Nobody questions the fact that billiard balls are hard 

and do not change regardless of how they are used. On the other hand, slime and 

squishy toys that very popular with children these days, can be easily deformed 

and/or compressed, exemplifying very well the concept of softness. 

In general, soft materials present a different behavior in comparison with hard 

materials [1,2]. Soft materials can deform, be squeezed, and even shrink, depending 

on their composition and characteristics what makes them different from hard 

particles [3-8]. Soft materials deform when their shape deviates from their original 

shape [9-11], as is the case of slime balls. Deswelling or squeezing happens when a 

material such as a balloon loses volume [12,13]; both effects can happen 

simultaneously in squishy toys (Figure 1). 

 

Figure 1. Differences between hard and soft materials. 

Particulate systems 

Particles are everywhere and particulate systems are part of our daily lives more than 

we realize, ranging from food ingredients such as rice and soy beans in silos to the 

children’s ball pit at the playground. These examples sound very different from each 

Hard Soft

Deform X ✔ ✔ X

Deswell X ✔ X ✔

Billiards Squishies Slime balls Balloons
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other. However, the one thing these systems have in common is the fact that they 

are composed of individual particles but utilized in collectivity. What we can observe 

is that the properties of the individual components (particle size, sphericity) together 

with the properties of the collective system (packing density, concentration) will 

determine collective system behavior [14,15]. 

Collective systems of soft particles can, amongst others, be found in food products 

and ingredients, proteins and pharmaceutical products [16]. As the name already 

suggests they are not rigid, and have the ability to modify their conformation 

according to the surrounding environment (and processing conditions as will be 

explained later). For this reason, system packing density, concentration, and particle 

properties will be a function of external parameters, leading to soft particles 

displaying a much richer behavior as their hard counterparts [3-8]. 

At a microscopic scale, soft particles are present in many industrial processes such as 

dairy [17], pharmaceutical [18,19] and waste water treatment [20,21]. For example, in 

milk, casein micelles are present as suspended components and are very important 

structure elements in milk [8,22,23] and during further processing thereof ranging 

e.g. from milk filtration to cheese fabrication [24]. In the pharmaceutical field, carrier 

particles for drug delivery such as microgels are prepared and have to be further 

processed [18,19]. In waste water treatment, sludge flocs form and also need 

subsequent processing [20,21]. These are all soft particles and due to their specific 

behaviors, many issues arise during processing, such as formation of irreversible 

deposits, change of particle properties and consequent product losses are some of 

the issues that soft particles are linked to [4,5,25]. 

A process that is especially prone to changing behavior of soft particles, and is used 

in all of the industries mentioned above is filtration [26-28]; therefore, we investigated 

various aspects related to filtration and took this as a focal point for our research. 

Filtration 

Filtration is a well-known unit operation that is widely used to separate components 

from a stream with the use of a filtration medium that can vary in composition, 

ranging from fabrics to ceramics to membranes. In general, filtration is used to 

recover, purify or fractionate industrial streams [29-31]. 

One type of filtration process is membrane filtration. In membrane filtration, the 

pores of the filter medium are microscopic or even smaller, and for that reason 

driving forces such as differences in pressure, temperature and solute concentration 
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are required to achieve separation [32]. Some membrane processes such as 

microfiltration are based on the size exclusion principle, which dictates that in a 

membrane process, the great majority of particles bigger than the membrane 

molecular weight cut off will be retained while smaller particles are able to pass 

through the membrane pores [33,34]. This is in general true for individual hard 

particles, since they do not change their conformation during the filtration process, 

but once present at high concentration, also the collective behavior of the particles 

will influence the separation that is achieved. For example, through the formation of 

a cake layer (see Figure 2), the separation process is influenced [35,36] as discussed 

later. 

The size exclusion principle has to be considered more carefully for soft particles, 

due to their deformability and deswelling properties [37-39]. Depending on the 

process, soft particles need to be purified or removed if they are undesired [29-31]. 

Processing should be adjusted to, ideally, include the special behaviors of soft 

particles to reach effective separation despite the final objective of the process. In 

practice, this is not taken into account yet. 

 

Figure 2. Cake layer formation and pore clogging by a soft particle. 

Solute rejection is a common way to classify performance of membrane processes 

based on size exclusion. It determines the percentage of solute that is retained by the 

membrane. The Ferry-Renkin equation is one example of equations that have been 

proposed to describe membrane rejection (ℝ) (Equation (1) [40]. 

ℝ = [1 − 2 (1 −
𝑎

𝑟
)

2

+ (1 −
𝑎

𝑟
)

4

] × 100% (1) 

where 𝑟 is the radius of ideal cylindrical pores, and 𝑎 is the solute radius. 
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As can be seen, particle size in relation to pore size (ratio 𝑎/𝑟) is strongly incorporated 

in the equation. But what if the solute particle size changes during processing (as 

illustrated in Figure 2)? For this reason, understanding the behavior and properties 

of soft particles is of key importance, as discussed in chapters 2-6. 

Fouling and cake formation are inherent phenomena of membrane filtration and 

decrease process efficiency [41]. Fouling happens when the membrane pores are 

reversibly or irreversibly blocked by a particle present in the feed stream; in this thesis 

we call this pore clogging. Cake formation is the name given to the accumulation of 

particles on top of the filtration medium (Figure 2) [42,43]. 

Cake formation is a consequence of a phenomena called concentration polarization 

[44,45] (or of pore clogging if retention changes because of it). The fact that 

components/particles are retained by the membrane induces concentration gradients 

between the membrane and the bulk feed. Mathematical descriptions of 

concentration polarization phenomena generally are based on such concentration 

term [40]. 

𝐽𝑖 = 𝑘𝑚(𝑐𝑖𝑜
− 𝑐𝑖𝑝

) (2) 

Where 𝐽𝑖 is the flux of component 𝑖, 𝑘𝑚 is the mass transfer coefficient and (𝑐𝑖𝑜
− 𝑐𝑖𝑝

) 

is the overall concentration difference across the boundary layer. For simplicity we 

do not take the concentration difference across the membrane into account, although 

this obviously also may play a role. 

But what if the concentration of the solute constantly changes not only due to further 

accumulation of particles on the membrane, but also due to particle shape changes 

happening locally due to the compressible and deformable nature of soft particles? 

This makes behavior prediction and process optimization very challenging. 

Thesis outline 

In this thesis (Figure 3), we are digging deep into the understanding of soft particle 

behavior that is relevant for pore clogging and cake formation. Throughout the thesis 

we will use microgels that can be easily produced on lab scale and have tunable 

properties [46,47], which makes them ultimately suitable as model particles for 

fundamental research [48,49]. The average size of microgels can vary from 

nanometer to micrometer range [50-53]. A great variety of studies focusses on 

colloidal microgels that also exhibit colloidal interactions [54-58]. Here we use 

microgels for which colloidal interactions are negligible [4,59] in order to be able to 
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fully focus on deformability of the particles, in some cases in combination with highly 

idealized microfluidic model membranes. 

We start our research by studying the behavior of soft particles on macroscale, using 

static and isotropic conditions (Figure 3 left). In this situation, the particles are 

experiencing the same forces coming from every direction [60], and for this we use 

the osmotic stress technique [61] to observe the behavior of microgels packings; 

highly concentrated microgel suspensions with individual microgels in a jammed 

state [14,15]. The microgel particles are subjected to isotropic forces since they are 

surrounded by neighboring microgels in a three-dimensional way [62]. 

 

Figure 3. Schematic representation of the thesis outline. 

The microgel packings are used to simulate particle behavior in cake layers. In 

Chapter 2, we focus on the particle collective behavior in static conditions. We 

describe the behavior of microgels in packings in terms of osmotic pressure [63]. We 

also make use of well-known models to support our observations. In Chapter 3, we 

look into individual particle behavior also in static conditions. We make use of 

fluorescence microscopy and image analysis to quantitatively determine individual 

particle deformation and deswelling in packings. 

From Chapter 4 onwards (Figure 3 right), we focus on micrometer scale observations 

of particles in anisotropic dynamic systems. In these systems, we can observe the 

behavior of soft particles moving through pores and under varying applied forces. In 

our study we use microfluidic centrifugation [64] and filtration devices. In Chapter 4 

we investigate collective particle behavior. We use a microcentrifuge coupled to an 

optical microscope to observe the deposition of microgels under centrifugal force 

[65]. The use of centrifugation allows us to apply high pressures to the system. We 

also assess the reversibility of the deposits according to the applied force. 

Chapter 4

Chapter 2 
(collective)

Chapter 3 
(individual)

Chapter 5

Isotropic/Static Anisotropic/Dynamic
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Centrifugation can be used to observe the behavior of microgel packings under force 

but not under a constant flow; for this, other microfluidic tools are needed as 

reported in chapters 4 and 5. Microfluidic devices have been widely used for the in-

situ observation of micrometer-sized particles in motion [66-68], and can be tailor 

made for applications such as microfluidic filtration [66,68]. In this thesis, an array of 

channels is used to simulate a filtration medium containing different pore geometries, 

and used to observe the filtration process. In Chapter 4, we use microfluidic devices 

to investigate the collective behavior in dynamic systems, and focus on cake layer 

formation as function of time and applied pressure. We also assess cake reversibility. 

The suspension of microgels in the microfluidic devices are also subjected to 

convective forces and in Chapter 5, we focus on individual particles going through 

pore constrictions (individual behavior under dynamic conditions). We correlate the 

observations with particle and system properties such as particle size and applied 

pressure. 

Finally, in Chapter 6, we discuss our main findings and their implications in real life 

situations and processes. We found that microgels use mainly two mechanisms to 

accommodate pressure: deswelling and deformation that mostly occur 

simultaneously to different degrees according to process parameters and possibly 

microgel properties. We obtained information on how the individual particle 

behavior will determine the structure and properties of collective systems as for 

example in cake/deposit layers and gathered more information on individual particles 

going through constrictions due to size adjustment. These findings are expected to 

be of great relevance for filtration processes.  

Still in Chapter 6, we discuss topics that came up during our observations but were 

not subject of extensive research in this thesis. These topics, such as microgel 

reswelling kinetics, are described as perspectives for future research. 
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Abstract 

Microgels are deformable and compressible particles that can be packed to 

concentrations that exceed the random close packing limit of hard spheres. To reach 

high packing levels, one has to overcome the resistance to compression of the system. 

This resistance potentially originates from many different phenomena (thermal 

agitation effects, surface interactions, microgel deformation, interpenetration, water 

expulsion) that depend on the microgel properties (size, ionic charge, structure, 

softness). Here, we investigate granular-scale dextran-based microgels with different 

native water contents. The resistance to compression of the suspensions is measured 

through the variation of the osmotic pressure with packing concentration. In parallel, 

we characterize the structure of the packings in terms of polymer heterogeneity, 

microgel deformation, and average size using confocal microscopy. We find that all 

microgel suspensions resist compression in the same manner; however, the 

mechanisms involved clearly depend on the actual degree of compression. In the 

loose packing regime, the resistance originates mainly from the resistance of the 

microgels to their own deformation, with no or negligible deswelling; the osmotic 

pressure rises abruptly with concentration in analogy to compressed emulsion 

droplets. In the second and dense packing regime, the microgels necessarily have to 

expel water to withstand compression. The resistance of the packing is then similar 

to that of a continuous gel of the same polymer. Importantly, we find that structural 

macro-voids are still observable in these systems; the presence of which needs to be 

taken into account when modeling the osmotic resistance. 
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2.1 Introduction 

Microgels are granular- or colloidal- scale particles made of a low-density polymer 

network swollen by a solvent [1-4]. They are soft and deformable objects that have 

the ability to change their size and shape in response to their environment, e.g. pH, 

ionic strength, temperature, concentration. This makes them interesting for a variety 

of applications such as drug delivery or food formulation for instance [5-7]. They are 

also model particles that are used for understanding the general behavior of soft 

objects in various situations. One specific and interesting case is when the particles 

are highly concentrated and packed against each other. This corresponds to situations 

encountered in the filtration of milk for instance, and more generally in processes in 

which filtration, centrifugation or drying operations are used involving deformable 

and compressible particles [8-13]. The rheological and phase properties of microgel 

dispersions at increasing concentration are more and more documented [14-18]. The 

most recent works report a complex phase transition from the fluid to the glassy or 

solid state; sometimes exhibiting phase coexistence [19,20]. This results from the 

ability of microgels to deswell depending on particle stiffness, ionic environment, size 

polydispersity and packing concentration [21-23]. The structural properties of the 

resulting packings, including the way the individual particles deform, organize 

themselves, sometimes crystallize, and even interpenetrate as a function of 

concentration, is also a recent matter of interest [24-28]. In particular, whereas 

crystallization is suppressed for hard colloidal spheres with polydispersity greater 

than 10%, microgels can overcome this limitation because a small number of large 

particles can spontaneously deswell to fit in the crystal lattice of smaller microgels 

[21,29,30]. Here we explore another property of microgel packings, which is the 

resistance to deswelling upon compression of the system. This question has clearly 

been overlooked over the past few years while it is of crucial importance for 

understanding and predicting the performances of concentration processes, e.g. 

drying time or filtration fluxes [8,31-34]. 

The resistance of a particulate and/or polymeric dispersion/solution to an isotropic 

compression can be accessed directly by measuring the variation in osmotic pressure 

with concentration [35,36]. The osmotic pressure is the result of all interactions in 

the system. For colloidal dispersions, it originates from thermal agitation of particles 

and surface interactions [35]. For polymer solutions, it is given by the entropy of 

mixing of the polymer segments with the solvent and an additional and often 

dominating contribution of the polymer counter-ions in the case of polyelectrolytes 

[37,38]. For polymer gels, the mixing and ionic contributions are complemented with 

a – negative – elastic term that comes from the crosslinks that prevent full reswelling 

of the structure [39]. The compressive resistance of a single microgel particle similarly 
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results from all these contributions. Therefore, osmotic pressure models developed 

for polymeric gels are now commonly used for explaining the (de)swelling behavior 

of individual microgels; popular approaches being based on Flory-Rehner theory 

[2,40-45]. 

The resistance to compression of a collection of microgels is more complex to 

analyze. At low concentrations, when the microgels are still separated from each 

other, surface interactions and thermal agitation often dominate like in the hard 

sphere dispersion [46-49]. In the specific case of charged, colloidal pNIPAM 

microgels, these contributions are supplemented by the presence of free counterions 

in the solution surrounding the particles [19,21,22]. In contrast, at high 

concentrations, the microgel particles can pack very densely and form a fully 

homogeneous material that resists compression like a macroscopic polymeric gel [3]. 

In between these two extreme conditions, the microgels are forced to get into contact 

with each other but still do not fill all of the available volume and voids are present. 

The resistance of the packing to compression is then difficult to apprehend as it 

potentially depends on many different phenomena: thermal agitation, particle-

particle interactions, compression of individual microgels (including compression 

without deformation [24]), deformation (including deformation at constant volume 

like in emulsion packings [50]), interpenetration [25,26], crystallization [19,20-

22,29,30], presence of structural heterogeneities. To date, experimental or simulation 

data on these systems are very much lacking and it is still a challenge to predict and 

understand what determines their resistance to compression. 

Here we examine this question through an experimental study performed with 

microgels of different origins and stiffness. To simplify the problem, we choose 

neutral (dextran-based) and granular-scale microgels so that both ionic effects and 

particle thermal agitation can be safely ignored. Suspensions of microgels are 

compressed to different degrees and the osmotic pressure of the packings is 

measured. In parallel, confocal scanning imaging is used to characterize the structure 

of the packing in terms of polymer heterogeneity and microgel deformation and size. 

2.2 Experimental 

Microgels 

All the microgels that we used are neutral, dextran-based particles (Table 1). 

G100-89 and G25-68 microgels are commercial Sephadex particles obtained through 

crosslinking of dextran polymer by epichlorohydrin [51]. The number after the letter 

G is the approximate water content as given by the manufacturer (GE Healthcare 
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Life Sciences) in gram of water per gram of dry polymer. MD-66 and MD-61 are 

methacrylated dextran (dexMA) microgels that we synthesized in our laboratory from 

dextran T40 using water-in-water emulsion polymerization following the protocol of 

Stenekes et al. [52,53] (see Appendix A for details about their preparation). 

Table 1: Properties of the microgel particles. 

 G100-89 G25-68 MD-66 MD-61 

Native internal water content 
89 68 66 61 

𝑤𝑤𝑎𝑡𝑒𝑟 (% w/w) 

Native internal dextran concentration 
114 362 387 460 

𝐶𝑖,0 (g/L) 

Native mean diameter 
62.5 51.7 30.0 37.6 

𝑑0 (µm) 

Polydispersity 
0.40 0.18 0.20 0.20 

2𝜎/𝑑0 (-) 

Hard-sphere random close packing limit 

0.78 0.68 0.68 0.68 estimated from Schaertl et al. [54] 

𝜙𝐻𝑆,𝑅𝐶𝑃 (-) 

 

The four microgel particles have different crosslink densities and consequently swell 

to different degrees when dispersed in water. According to Refs. [45,55], the mesh 

sizes of the fully swollen microgels vary from ∼20 nm (G100-89) to ∼5 nm (MD-

61). In Table 1, we provide the values of the corresponding native internal water 

contents 𝑤𝑤𝑎𝑡𝑒𝑟 in g of water per 100 g total (% w/w). These values also appear in 

the names of the particles after the dash. The water contents were determined using 

a well-established protocol of Stenekes et al. [55,56]. In brief the concentration of a 2 

MDa blue dextran tracer solution is measured after lyophilized microgel particles are 

added to the solution. The tracer is too large to penetrate the microgel particles when 

they swell to their equilibrium water content. The increase in tracer concentration in 

the solution is thus directly related to the quantity of water incorporated in the 

microgels. In addition to the value of 𝑤𝑤𝑎𝑡𝑒𝑟, we provide in Table 1 the internal 

dextran concentration 𝐶𝑖,0 of the fully swollen microgels; this characteristic is defined 

as: 

𝐶𝑖,0 =
(1 − 𝑤𝑤𝑎𝑡𝑒𝑟)

(1 − 𝑤𝑤𝑎𝑡𝑒𝑟)/𝑑𝑑𝑒𝑥 + 𝑤𝑤𝑎𝑡𝑒𝑟/𝑑𝑤𝑎𝑡𝑒𝑟
 (1) 
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where 𝑑𝑑𝑒𝑥=1598 g/L [57,58] and 𝑑𝑤𝑎𝑡𝑒𝑟=997 g/L are the dextran and water densities 

at 25 °C, respectively. 

All the microgels are a few tens of microns in diameter, which allows us to monitor 

their changes in shape and size in concentrated packings using optical microscopy. 

Their native size distributions were determined using confocal microscopy with 

microgel suspensions at low concentration. The microgels are polydisperse with a 

Gaussian population centered at diameter 𝑑0 and with a polydispersity 2𝜎/𝑑0 ranging 

from 0.18 to 0.4 (Table 1, 𝜎 is the standard deviation). From the values of 

polydispersity, we can evaluate the volume fraction at random close packing 𝜙𝐻𝑆,𝑅𝐶𝑃 

from the theoretical work of Schaertl et al. on hard-sphere dispersions [54]. This value 

corresponds to the limit in volume fraction when polydisperse hard spheres are 

closely packed. It exceeds the 0.64 value for monodisperse spheres because 

polydisperse systems can pack more efficiently with small particles that fit in the 

interstices of larger ones. For microgel particles, 𝜙𝐻𝑆,𝑅𝐶𝑃 typically corresponds to the 

volume fraction above which the microgels necessarily have to deform and/or 

deswell for the system to reach higher concentrations. 

As reported by Flodin, Sephadex microgel particles are homogeneous in polymer and 

crosslink densities [51], and this is also the case for the dextran microgels that are 

synthesized through water-in-water emulsion polymerization (see the confocal 

images in [59] for instance). Therefore, we are far from the core-shell structure of 

pNIPAM colloidal microgels that have fuzzy shells that can interpenetrate at high 

concentrations [25,26]. As we will show later, interpenetration effects are most 

probably very limited – if not absent – in the case of granular scale dextran microgels. 

Osmotic stress experiments 

The osmotic stress method was used to compress the microgel suspensions and 

measure their osmotic pressure. The microgel suspensions are placed in dialysis bags 

that are in turn immersed in a large volume of a stressing polymer solution of known 

osmotic pressure. The dialysis bags are chosen so that they respectively retain the 

microgel particles and the polymer, in the dialysis bag and in the immersion solution. 

The difference in osmotic pressure, i.e., the difference in water chemical potential, 

between the two compartments induces an osmotic flow of water from the bag 

towards the immersion solution. The flow stops when the osmotic pressure in the 

bag equals the osmotic pressure of the immersion solution. By multiplying the 

experiments with different concentrations of stressing polymer in the immersion 

solution, it is possible to compress the microgel suspensions to different levels. The 
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resistance to compression of each system is given by the osmotic pressure at 

equilibrium, i.e. when flow stops. 

A polyethylene glycol of 35 kDa molecular weight (PEG35, Sigma-Aldrich) was used 

as the stressing polymer. The variation of the osmotic pressure of PEG35 solutions 

as a function of concentration is given in the literature [46,60]. PEG35 concentrations 

were chosen in the range 1.9–33.6 % w/w, corresponding to osmotic pressures 

between 2.5 kPa and 2 MPa. 

All solutions and suspensions were prepared by mixing PEG or lyophilized microgels 

in milliQ water. Dialysis bags of molecular weight cut-off 6–8 kDa were used 

(Spectra/Por 1, Spectrum). Initially, the bags are filled with a microgel suspension of 

∼0.25 vol fraction. As water escapes the bags during the process, it is necessary to 

refill the bags regularly with microgels (at least three times) in order to have enough 

material at the end of the compression. After each addition, the bag content is mixed 

manually. About one week after the last addition of microgels to the bag, the stressing 

PEG solution is renewed and the bags are allowed to equilibrate for one further week. 

The compressed microgel suspensions are then analyzed in terms of concentration 

and structure. 

For comparison purposes, the osmotic pressure of solutions of non-crosslinked 

dexMA polymer and commercial dextran T40 (∼40 kDa Molecular weight, 

Pharmacosmos) was also measured as a function of concentration. The protocol was 

similar to the one previously described. 

Dextran concentration and microgel effective volume fraction 

After equilibration, the total dextran concentration in the bags was determined by 

drying a small amount of the sample at 105 °C until constant weight. At this 

temperature, the polymer does not decompose or vaporize and only water is 

removed from the sample. This way, we obtain a dry matter content 𝑤𝑝 which is the 

mass fraction of dextran polymer in the sample expressed in % w/w. The 

measurements were repeated three times per sample and the variation between dry 

matter contents was below 1% for the same sample. 

The dextran concentration in the samples can also be expressed in g per volume of 

sample, which is simply obtained from dry matter content 𝑤𝑝 using the following 

relation: 
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𝐶 =
𝑤𝑝

𝑤𝑝/𝑑𝑑𝑒𝑥 + (1 − 𝑤𝑝)/𝑑𝑤𝑎𝑡𝑒𝑟
 (2) 

This concentration 𝐶 is in turn used to define and calculate the effective volume 

fraction 𝜁: 

𝜁 = 𝑛𝑝𝑉𝑝,0 =
𝐶

𝑚𝑝
𝑉𝑝,0 =

𝐶

𝐶𝑖,0
 (3) 

with 𝑛𝑝 the number density of microgels, 𝑉𝑝,0 and 𝑚𝑝 the native volume and dextran 

mass of one average microgel, respectively, and 𝐶𝑖,0 the internal dextran concentration 

of a fully swollen, uncompressed, microgel (native internal dextran concentration in 

Table 1). 

The use of an effective volume fraction 𝜁 is now a standard in the microgel literature 

[3,25,27]. 𝜁 is the volume fraction of microgels in the suspension as defined from 

their actual number density but with respect to their native, uncompressed size. The 

value of 𝜁 is related to the degree of packing of the microgels in the suspensions. In 

the dilute regime, when the microgels are still not compressed and/or deformed, 𝜁 is 

simply a measure of the true microgel volume fraction (𝜙) in suspension [17,27]. This 

holds until 𝜁 reaches a limiting value at which the microgels start to deform and/or 

shrink. This limiting value can be related to the nature of the microgels [19,21] for 

instance for the specific case of ionic colloidal microgels) but is often close to the 

random close packing fraction for hard spheres, 𝜙𝐻𝑆,𝑅𝐶𝑃 We can then distinguish two 

theoretical regimes of compression after 𝜁 reaches this limit: A first regime at 

𝜙𝐻𝑆,𝑅𝐶𝑃 ≲ 𝜁 < 1, where the microgels have the possibility to deform only and keep 

their initial volume, as compressed emulsion droplets would do for instance [50]. A 

second regime where 𝜁 exceeds 1 and the microgels necessarily have to expel solvent 

to reach lower volumes than 𝑉𝑝,0. 

Confocal laser scanning microscopy (CLSM) 

To image the microgels in the packings by CLSM, we create a contrast by adding 

FITC-dextran (500 kDa fluorescein-5-isothiocyanatedextran, Sigma-Aldrich) in the 

suspensions. FITC-dextran is too large to penetrate the microgel particles and the 

non-fluorescent microgels are visualized against a fluorescent background. To limit 

premature bleaching, the FITC-dextran is added at the last refill of the bags with 

microgels. The content of the bag is then mixed to assure an even distribution of the 

fluorescent polymer. Afterwards, the system is left to equilibrate for one more week 

to remove the water introduced with the FITC-dextran. We estimate the final 

concentration of FITC-dextran to be ∼0.2 mg per g of sample. As we found 
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experimentally (the osmotic pressures measured with dispersions that contains or not 

additional FITC-dextran were always virtually the same), the presence FITC-dextran 

at such a low concentration has no measurable impact on the osmotic resistance of 

the samples. It is then safe to consider that the images obtained using CLSM and 

with additional FITC-dextran are representative of the ‘true’ structure of the microgel 

packings without FITC-dextran. 

To observe stacks of compressed microgels, we designed a sample holder with a 

depth equivalent to about ten times the diameter of the microgels. It consists of a 

glass slide in which a circular hole is drilled. The hole is 480 μm deep and has 1 cm 

in diameter. The hole is manually filled with the sample and sealed with a glass 

coverslip and adhesive tape to avoid drying. Stacks of images with 1 μm spacing are 

obtained using a Leica SP8 CLSM microscope (Plateforme Imagerie Toulouse-

Réseau-Imagerie). 

For each sample, the images were treated using a home written MATLAB code that 

(i) calculates the volume fraction of voids in the packings, (ii) gives the distribution 

of microgel sizes by analyzing 200–800 particles. We provide additional information 

about the way the calculations are performed in Appendix A. 

2.3 Results 

Osmotic pressure 

The osmotic pressures measured for the suspensions of Sephadex and dexMA 

microgels are given in Figure 1A and B, respectively (closed symbols). They are 

plotted as a function of dextran concentration C which is the total concentration of 

dextran polymer in the samples in g per volume. The pressures of solutions of 

dextran T40 (Figure 1A, open symbols) and methacrylated dextran T40 (Figure 1B, 

open symbols), as measured using the same methodology, are also given. In this way 

we compare the compression resistance of the microgel suspensions with the 

compression resistance of a reference polymer that corresponds to the non-

crosslinked material of the microgels. Note that this is not strictly the case for 

Sephadex microgels as we do not know the exact size of the dextran precursor used 

in the making of these particles. However, Sephadex G25 and G100 are made from 

dextran with molecular weight >>10 kDa [61], and the osmotic pressure of dextran 

is relatively insensitive to dextran size at such molecular weights [62]. So, it is 

reasonable to consider dextran T40 as an adequate reference polymer for Sephadex 

here. 
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G100-89 is the microgel with the highest initial water content in this study. It shows 

osmotic pressures that are always very close to the dextran T40 values, albeit 

systematically slightly lower (Figure 1A, green diamonds). We added in the figure 

vertical arrows that correspond to the positions of the reference points 𝜁 = 𝜙𝐻𝑆,𝑅𝐶𝑃 

and 𝜁 = 1. The first osmotic pressure point for G100-89 is located slightly below the 

RCP volume fraction for hard spheres, indicating that the suspension starts to resist 

compression before the microgels are closely packed. This is not an effect of thermal 

agitation as G100-89 consists of granular, non-Brownian, particles. Instead this is 

probably due to some frictional effects between the particles leading to the formation 

of stable loose packings at volume fractions below the RCP limit [63]. These packings 

resist compression as energy is needed to counteract frictional forces and go further 

up in microgel volume fraction. All the other pressure values for G100-89 

correspond to 𝜁 > 1 (second arrow), indicating that the microgels have necessarily 

deswollen and are probably strongly deformed and squeezed against each other, 

capable of reaching even an effective volume fraction 𝜁 ≈ 6. 

For microgel G25-68, the variation of osmotic pressure with polymer concentration 

is rather different (black squares in Figure 1A). At low concentration, the osmotic 

pressure is considerably lower than the pressures measured for dextran solutions. 

This difference is explained by the fact that suspensions of granular microgels start 

to resist compression only when the microgels come into contact and form a 

percolating network. Before that, the microgels sediment and there is no measurable 

resistance to this. As a result, we start to measure an osmotic pressure at a 

concentration 𝐶 that corresponds to 𝜁 ≈ 𝜙𝐻𝑆,𝑅𝐶𝑃 (first arrow, about 200 g/L); the 

slight discrepancy towards lower concentrations is most probably because of 

interparticle frictional forces. The behavior of dextran solutions is rather different 

and show a measurable osmotic pressure as soon as polymer chains are present in 

solution, hence there is a large difference in pressure between dextran T40 and the 

microgels. As soon as we obtain a measurable osmotic pressure for the microgels, 

which is still at low concentrations, we observe a strong increase in osmotic pressure 

with 𝐶 (note the logarithmic scale). Interestingly, this increase occurs at 

concentrations that almost exactly matches the range 𝜙𝐻𝑆,𝑅𝐶𝑃 < 𝜁 < 1, meaning that 

the packing considerably gains in compression resistance when the microgels get into 

close contact and need to deform and/or deswell to accommodate the pressure. In 

a last regime, corresponding to 𝜁 > 1, the increase in osmotic pressure with 

concentration becomes less pronounced and the pressures measured are close to 

those of dextran T40. At such high effective volume fractions, the microgels 

necessarily respond to compression by expelling water and shrinking to lower 

volume. 
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Figure 1. Osmotic pressure of dextran microgel packings and dextran solutions as a 

function of the overall polymer concentration in the system. A) dextran T40 (empty 

hexagons), Sephadex microgels G100-89 (green diamonds) and G25-68 (black 

squares). B) dexMA (empty stars), dexMA microgels MD-66 (blue circles) and MD-

61 (red triangles). The solid lines are power law fits to the osmotic pressure data of 

dextran T40 and dexMA. The arrows indicate the dextran concentration at which 𝜁 =

𝜙𝐻𝑆,𝑅𝐶𝑃 (lower arrows) and 𝜁 = 1 (higher arrows). 

The results obtained with dexMA microgels are very similar to those obtained with 

Sephadex G25-68 particles, including the divergence in osmotic pressure when the 

particles get packed and the match between the pressure of the microgel suspensions 

and the pressure of the polymer material that constitutes the microgels at high 

concentrations (Figure 1B). We will not go into a detail description here but instead 

move to the next section in which we characterize the structure of the packings as a 

function of concentration. 

Images of the packings 

Figure 2 and Figure 3 present examples of CLSM images obtained for G100-89 and 

G25-68 microgels at the osmotic pressures reported in Figure 1. Images of 

compressed MD-61 and MD-66 microgel suspensions display features similar to 

those obtained for G25-68 and are given in Appendix A. 

For all microgels, the pictures obtained at the lowest osmotic pressure correspond 

well to loose percolating packings of spherical or slightly deformed particles that 

oppose a small resistance to compression through interparticle frictional forces 

and/or particle deformation and deswelling. As osmotic pressure increases, the 

microgels get increasingly packed and deformed. This is more visible for G100-89 

microgels that clearly lose their spherical shape in the range 0.60 < 𝜁 < 1.52. 
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Deformation is less obvious but still visible for the other microgels; mostly because 

the particles are of smaller size and/or the contrast is not optimal. 

Note that the 500 kDa FITC-dextran that we use as contrast agent has quite an 

unexpected behavior with G100-89 microgels (Figure 2). At low osmotic pressures 

(𝛱 ≤ 35 𝑘𝑃𝑎), it is effectively excluded from the particles because of its larger size 

compared to the average pore size of the microgels [55,64]. However, at large 

osmotic pressures (𝛱 ≥ 150 𝑘𝑃𝑎), when the microgels are closely packed and 

deformed against each other and the FITC-dextran clearly enters the structure of the 

microgels. This phenomenon is particularly difficult to interpret. At first sight, it is 

tempting to explain this through the effective degree of entanglement experienced 

by the FITC-dextran when the interstitial voids between the microgels are closed. At 

some point, it is indeed plausible that the interstitial concentration in FITC-dextran 

reaches a limit where entanglement effects are so strong that it becomes more 

favorable for the FITC-dextran to enter the microgels through reptation (a similar 

effect is described in [65,66] for instance). This mechanism can perfectly be translated 

in terms of osmotic pressure: when the osmotic pressure of FITC-dextran becomes 

higher than the osmotic pressure of the microgels – which is equal to the osmotic 

pressure of the PEG reservoir – some of the FITC-dextran enters the microgel to 

equilibrate the pressures inside and outside the microgels. However, we find that this 

whole explanation based on the effective concentration in FITC-dextran in the voids 

is not satisfactory for at least two reasons: 

(i) the total concentration of FITC-dextran in the samples is very low, ∼0.2 

mg/g, which leads to a maximum concentration of∼15-50 g/L in the 

interstitial voids using the void fraction values of Figure 4B (see next 

paragraph). This concentration of FITC-dextran in turn corresponds to 

an osmotic pressure of about 2 kPa (dextran tabulated values of Peter 

Rand [67]), which is much lower than the pressures at which the FITC-

dextran enters the microgels. 

(ii) the fluorescence intensities suggest that FITC-dextran has entered the 

microgels in such a way that it is more concentrated inside the microgels 

than in the interstitial voids. Such a ‘reverse’ exclusion phenomenon 

clearly cannot be explained through osmotic/entanglement effects only, 

but is more probably the results of some kind of attractive interactions 

between the tracer and the microgel. 
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Figure 2. Confocal Laser Scanning Microscope images of compressed G100-89 

microgels. The scale bar is 100 μm. 

 

Figure 3. CLSM images of compressed G25-68 microgels. The scale bar is 100 μm. 
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We will not go further into this discussion here, as it is clearly beyond the scope of 

this study to properly understand the reasons for this accumulation of FITC-dextran 

in the microgels in conditions of dense packing. We stress however that we do not 

observe this effect with the Sephadex G25-68 microgels, except maybe at the highest 

osmotic pressure where the FITC-dextran seems to have started to diffuse in the 

periphery of the particles (Figure 3, 2 MPa). For dexMA particles, we observe 

penetration of FITC-dextran at compression pressures ≥ 500 kPa only (Appendix 

A). 

 

Figure 4. (A) Microgel mean diameter as a function of osmotic pressure. (B) Fraction 

of void in the packings as a function of osmotic pressure. (C) The evolution of the 

internal dextran concentration of the microgels in the packings as calculated from the 

void fraction data (Eq. (4). The patterned areas correspond to the native internal 

concentration of the microgels at zero pressure (𝐶𝑖,0 in Table 1) +/− 5%. Microgels 

G100-89 (green diamonds), G25-68 (black squares), MD-66 (blue circles) and MD-61 

(red triangles). 
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An interesting question is how much the individual microgel particles have actually 

squeezed in the packings: do they always squeeze and loose internal water when the 

packings are compressed or is there a regime at which they only deform at constant 

volume like emulsion droplets do for instance? To answer this question, one can first 

look at the evolution of the size of the particles as measured from the CLSM images 

(Figure 4A). The reported sizes are the average diameters obtained by analyzing 200–

800 particles in each sample. This analysis also suggests that there is no significant 

evolution of size polydispersity with compression for each microgel population. 

However, we chose not to present these results as it would require more statistics 

and/or more advanced characterization techniques (like SAXS or SANS in the case 

of colloidal particles for instance [21,22]) to investigate this question properly. 

The decrease in size is obvious for the G100-89 microgels and starts already at the 

lowest osmotic pressures (the values at high 𝛱 values are not reported as the 

microgels are then highly deformed and the size of individual particles cannot be 

determined precisely). This is in line with effective volume fractions 𝜁 ≥ 1 being 

reached early in the compression process (second point of osmotic pressure) and that 

the particles necessarily expel water. For the other three other microgels, the size is 

not really affected by compression at low pressures and the decrease in size is only 

apparent at pressures ≥150 kPa. This suggests that the microgel particles loose 

volume and expel water only in this second range of applied pressures. 

To confirm that, we now look at the volume fraction occupied by the interstitial voids 

that persist in the packing during compression. This void fraction can be measured 

from the CLSM images with quite good precision and is plotted as a function of 

osmotic pressure in Figure 4B. As expected, we see that the voids get progressively 

closed with compression without disappearing completely, except for G100-89 for 

which the voids vanish. What is interesting here is that we can estimate the actual 

degree of squeezing of the microgels from the measured void fractions. Indeed, the 

internal polymer concentration of the microgels in the packings is simply given by: 

𝐶𝑖 =
𝐶

(1 − 𝑣𝑜𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)
 (4) 

In Figure 4C, 𝐶𝑖 is plotted as a function of osmotic pressure. For G100- 89, 𝐶𝑖 exceeds 

the native internal dextran concentration 𝐶𝑖,0 of the microgels at pressures≥10 kPa. 

This confirms that the particles start to expel water from this pressure upward, in 

accordance with the changes in size of Figure 4A. For the other microgels, 𝐶𝑖 in found 

to be very close to 𝐶𝑖,0 for the first 3–4 points of osmotic pressure, meaning that the 
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particles have not yet expelled water in that range. 𝐶𝑖 goes beyond 𝐶𝑖,0 only at high 

osmotic pressures, as expected from the changes in size shown in Figure 4A. 

 

Figure 5. Evolution of the void fraction in the packings as a function of the average 

dextran concentration in the system. The black line is the theoretical evolution of void 

fraction for packings of particles that do not deform but only deswell at 𝜁 ≥ 𝜙𝐻𝑆,𝑅𝐶𝑃 

(void fraction=1 − 𝐶/𝐶𝑖,0 at 𝜁 < 𝜙𝐻𝑆,𝑅𝐶𝑃 and void fraction=1 − 𝜙𝐻𝑆,𝑅𝐶𝑃 at 𝜁 ≥

𝜙𝐻𝑆,𝑅𝐶𝑃). The red line is the theoretical evolution of the void fraction for packings of 

particles that only deform and do not deswell, such as emulsion droplets (void 

fraction=1 − 𝐶/𝐶𝑖,0 until vanishing). 
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Another interesting way of looking at these results is by comparison of the observed 

void fraction as a function of 𝐶, i.e. the average dextran concentration in the 

suspension (Figure 5), with ‘ideal’ scenarios. Particles that cannot deform at all and 

only deswell are represented by the black lines, while objects that can only deform 

without losing volume before 𝜉 = 1 (such as emulsions) are represented by red lines. 

We clearly see in Figure 5 that all dextran microgels have the tendency to follow the 

behavior of deformable but non-compressible objects in the range 𝜙𝐻𝑆,𝑅𝐶𝑃 ≤ 𝜁 ≤ 1. 

At 𝜁 ≥ 1, the compressibility of the microgels then comes into play and the particles 

squeeze to smaller volumes, while some voids persist. The presence of these 

remaining voids is an important point that we discuss further in the following section. 

2.4 Summary and discussion 

The results presented above can be summarized as follows: 

(1) Suspensions of dextran, granular microgels start to resist compression at a 

volume fraction that matches the random close packing of hard-spheres of 

similar size distribution, 𝜙𝐻𝑆,𝑅𝐶𝑃. This is consistent with the fact that these 

microgels are non-Brownian particles that sediment and come into contact 

at 𝜙 ≈ 𝜙𝐻𝑆,𝑅𝐶𝑃 with no measurable resistance. In two cases (Sephadex), the 

volume fraction at which the packings start to resist compression is slightly 

below 𝜙𝐻𝑆,𝑅𝐶𝑃, which may be caused by some frictional forces between the 

microgels [63]. Note that this general behavior of granular and neutral 

microgels at low volume fractions is very different from the one of colloidal 

scale microgels where particle-particle interactions of different types (hard-

sphere like, electrostatic), and in some cases counterions, produce a 

measurable osmotic resistance before closepacking [19,21,22,46-49]. 

(2) In a first regime of compression, at effective volume fractions between 

𝜙𝐻𝑆,𝑅𝐶𝑃. and 1, the compression resistance rises from zero to a value that is 

close to the resistance of a dextran solution of the same average 

concentration. Images of the packings in that range of concentration 

indicate that the microgels increasingly pack and deform with compression, 

while the internal dextran concentration is close to the native one. So, the 

microgels behave like objects that only deform and do not loose internal 

volume upon compression, as in the case for emulsions for instance. A 

similar behavior is reported in Chapter 3 with polyacrylamide microgel 

particles of slightly smaller size (∼10 μm). Interestingly, the fact that shape 

deformation dominates over squeezing in a first regime of compression was 

also recently observed for colloidal pNIPAM microgels [26]. In that case 
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however, interpenetration effects are also significant [25,26]; while such 

effects are not visible in the present work. We note finally that compression 

never leads in our case to highly ordered crystal-like structures, as it was 

observed with colloidal and polydisperse polyelectrolyte microgels 

[21,22,29,30].This is probably because the size distribution of the microgels 

is relatively unchanged upon compression in our case, while for pNIPAM 

colloidal microgels, charge effects makes the largest microgels deswell 

before the smaller ones, thus decreasing size polydispersity and inducing 

crystallization [22]. 

(3) In a second regime of compression, at effective volume fractions 𝜁 ≥ 1, the 

resistance of the packings to compression becomes similar to that of a 

homogeneous solution of the polymer that constitutes the microgels. In this 

regime, the only way to concentrate the system is to compress the individual 

microgels in the packing. The microgels are strongly deformed and 

squeezed, leading to reduction of size, and increased internal dextran 

concentration. The deformation is however not sufficient to close all 

interstitial spaces in the packings. This is here an interesting and potentially 

important difference with colloidal scale microgels where the persistence of 

interstitial voids in highly dense packings is usually not considered or 

observed [3,22,26]. 

Next, we focus on points (2) and (3) and look for qualitative and/or quantitative 

explanations for our results using existing theoretical frameworks. 

At concentrations between 𝜁 = 𝜙𝐻𝑆,𝑅𝐶𝑃 and 𝜁 = 1, the microgels mainly deform upon 

compression, and seem to act similarly to emulsions, which we take as a reference 

case. The osmotic resistance of concentrated emulsions was investigated by Mason 

and co-workers in the late 1990s [50,68]. These authors propose a 'network spring 

model' to describe the osmotic pressure at 𝜁 > 𝜙𝑅𝐶𝑃 [68]. In this model, the pressure 

depends on the number of facets formed between neighboring droplets in the 

packing. Any additional facet behaves as a spring that further resists compression. 

The number of springs between neighboring droplets grows as ∼ (𝜁 − 𝜙𝑅𝐶𝑃), while 

the number of droplets per unit volume grows with 𝜁. We then have: 

𝛱 ∼ 𝜁 (𝜁 − 𝜙𝐻𝑆,𝑅𝐶𝑃) (5) 

For all the microgels investigated, we find that the experimental osmotic pressure 

qualitatively follows the emulsion model in the concentration range 𝜙𝐻𝑆,𝑅𝐶𝑃 < 𝜁 < 1 

(Figure 6A–D). This suggests that the resistance to compression of the microgel 
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packings has a similar origin as that of emulsions: a network of facets acting like 

springs between neighboring microgels. For emulsions, the spring constant is given 

by the droplets surface tension [68], while for microgels packings, it is the elastic 

modulus of the microgel particles that sets the force of theses springs [69]. 

 

Figure 6. Compression resistance of the microgel packings as a function of the average 

polymer concentration in the system 𝐶 (closed symbols) or the internal concentration 

of the microgels 𝐶𝑖 (empty symbols). At low effective volume fractions 𝜁 ≤ 1, the 

packings mostly resist through deformation of the microgels and 𝛱 increases with 𝐶 

as it does for concentrated emulsions (blue line, [50]). At high effective volume 

fraction 𝜁 ≥ 1, the systems mostly respond to compression by expelling water from 

the particles. This time 𝛱 increases with 𝐶𝑖 as it does for a reticulated polymer gel of 

properties identical to the microgel material (orange line, [45]). 
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At 𝜁 > 1, the microgels reduce their size and expel water, as reported in Figure 4A 

and C. On the other hand, the void fraction in the packing does not totally vanish 

(Figure 4B and Figure 5), suggesting that deformation is not preponderant in this 

regime. So, as a first approximation, we consider the resistance to compression of 

the packings to be essentially due to the resistance of the individual microgels to 

deswelling. In that case, the Flory-Rehner (FR) theory for the osmotic pressure of 

connected gels is directly applicable [2,40-45]. The theory describes the osmotic 

pressure 𝛱 as a sum of a mixing contribution 𝛱𝑚 and an elastic contribution 𝛱𝑒𝑙. The 

mixing contribution results from the entropy of mixing of the polymer segments with 

the solvent. It corresponds to the osmotic pressure of the dextran polymers that we 

measure experimentally (empty symbols in Figure 2). These osmotic pressures are 

described by: 

𝛱𝑚 = 𝑎𝐶𝑏 (6) 

with 𝛱 in Pa, 𝐶 in g/L, and 𝑎=0.420 or 0.095 and 𝑏=2.34 or 2.56 for dextran T40 

and dexMA, respectively. Such simple empirical power law expressions are 

commonly used for describing the osmotic pressure of polymers [70]. 

The elastic contribution results from the presence of crosslinks that prevent the 

polymer gel from fully swelling and dissolving. It is a negative contribution to the 

osmotic pressure that can be approximated using the following equation [45]: 

𝛱𝑒𝑙 = −
𝑑𝑑𝑒𝑥𝑁𝐴𝑘𝐵𝑇

𝑁𝑥𝑀𝑚𝑜𝑛𝑜𝑚𝑒𝑟
𝜙𝑟𝑒𝑓 [

2

𝑓

𝜙

𝜙𝑟𝑒𝑓
− (

𝜙

𝜙𝑟𝑒𝑓
)

1/3

] (7) 

with 𝑁𝐴 the Avogadro number, 𝑘𝐵 the Boltzmann constant, 𝑇 the temperature, 𝑁𝑥 the 

number of monomers between crosslinks, 𝑀𝑚𝑜𝑛𝑜𝑚𝑒𝑟 the molecular mass of the 

monomer (180 g/mol), and 𝑓 the functionality of the crosslinks (taken as 𝑓 = 4). 𝜙 is 

the polymer volume fraction in the gel matrix, while 𝜙𝑟𝑒𝑓 is the polymer volume 

fraction at a reference state, generally taken as when the chains between the crosslinks 

are fully relaxed (for a critical review about the definition of 𝜙𝑟𝑒𝑓, we refer the reader 

to [44,71]). For gels of crosslinked dextran and similar polymers, Van der Sman finds 

using FR theory that 𝜙𝑟𝑒𝑓 ≈ 2/3𝜙0, with 𝜙0 the polymer volume fraction of the fully 

swollen gel at zero osmotic pressure [45]. 𝜙0 can be directly calculated from 𝐶𝑖,0 

(Table 1), using 𝜙0 = 𝐶𝑖,0/𝑑𝑑𝑒𝑥. 𝑁𝑥 is calculated for each microgel using the native 

dextran concentration in the fully swollen state, where 𝛱 = 0 and therefore 𝛱𝑚(𝐶𝑖,0) =

−𝛱𝑒𝑙(𝜙0). 
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This model is now compared with the osmotic pressure data plotted as a function of 

the internal concentration of the microgels (open symbols in Figure 6), as it is this 

concentration that determines the resistance to compression in the framework of the 

Flory-Rehner theory. The agreement between the model and our experimental data 

is quite satisfactory in all cases. This suggests that we have found a way to predict the 

osmotic resistance of the packings based on the knowledge of the internal 

concentration of the microgels. This is a subtle but important difference with highly 

compressed packings of microgels that no longer contain voids, like those studied by 

Menut et al. for instance [3]. For these packings, the average polymer concentration 

obviously matches the internal concentration of the microgels, and the osmotic 

pressure can directly be predicted with Flory-Rehner theory using the average 

concentration in the system [3,45]. When dealing with microgel packings with voids, 

as in the present work, the prediction is complicated by the necessity to determine 

the actual degree of squeezing from which the internal polymer concentration needs 

to be derived. 

2.5 Conclusions 

In this chapter, we report on the behavior of suspensions of granular scale dextran 

microgels when exposed to an external osmotic pressure. Our experiments assess the 

resistance of the packings to compression, as well give qualitative and quantitative 

information about the structure of the packings. As expected for granular, non-

Brownian microgels, the resistance to compression starts to rise at the vicinity of the 

volume fraction of random close-packing. In a first range of compressions that 

exceed this value, the microgels mainly deform, leading to a strong rise in resistance, 

in analogy with emulsion systems. In a second higher regime of compression, the 

microgels mainly respond to compression by expelling water. The resistance to 

compression of these systems can be estimated through a Flory-Rehner model based 

on the actual polymer concentration inside the microgel particles, therewith taking 

into account the presence of persistent voids in the packings. 

With these results, we demonstrate that loose to dense packings of neutral and 

granular-scale microgels clearly do not respond to compression as a uniform gel of 

the same material at the same average concentration; an analogy that has been used 

so far in literature for very dense packings of colloidal microgels where persistent 

voids are inexistent [3]. As a perspective, it would be interesting to focus on the 

resistance to compression of more complex systems like packings of colloidal-sized 

polyelectrolyte microgels for instance, in relation with effects that were recently 

reported with such systems, e.g. interpenetration [25] and crystallization [22]. This 

would lead to a better understanding of how a collection of deformable and 
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compressible particles resist to an increase in concentration, depending on the size 

and architecture of the involved particles. Such information would in turn be highly 

useful for predicting concentration operations, e.g. filtration of microgels, in which 

resistance determines overall productivity. 
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Appendix A. Supplementary data 

Synthesis of dextran (dexMA) microgels 

Methacrylated dextran (dexMA) microgels are prepared at two different water 

contents. DexMA, the microgel precursor, is first synthesized by a transesterification 

reaction of dextran T40 (Pharmacosmos) and glycidyl methacrylate (Sigma-Aldrich) 

following the method of van Dijk-Wolthuis [72,73]. Then dexMA and polyethylene 

glycol (PEG) 10kDa (Sigma-Aldrich) solutions are mixed with a three-bladed 

propeller stirrer at 1500 rpm at a temperature of 25 °C. As the two solutions are 

partially immiscible, a phase separation occurs upon mixing, giving a dispersed 

droplet phase, rich in dexMA and poor in PEG, and a continuous phase rich in PEG 

and poor in dexMA [52,53]. N,N,N’,N’-tetramethylenediamine (TEMED) (Sigma-

Aldrich; 20% w/w, pH neutralized with HCL 4M) is added as an initiator for the 

crosslinking reaction. The stirring speed is decreased to 500 rpm and potassium 

peroxodisulfate (KPS) (Sigma) is added to crosslink the dextran chains and to turn 

the dexMA droplets into microgel particles. The suspension of microgels is 

centrifuged and washed five times with water to remove the supernatant rich in PEG 

and obtain a suspension of microgels in water (3000 g for 5 minutes for the first wash 

and 500 g for 1 minute for the four next washes). The microgels are freeze dried 

before storage. 
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Treatment of CLSM images 

Void fraction. The pictures are first converted to binary. The number of black 

(particles) and white (void) pixels in each image are then counted. As the number of 

images in a stack and the distance between images is known, it is possible to calculate 

the total volume of the stack and the total volume occupied by the white and black 

pixels. The void fraction is simply: 

𝑉𝑜𝑖𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑣𝑜𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠
 (8) 

Microgel size. The microgels of a given stack are identified. For each of them, a 

radius 𝑟1 and a radius 𝑟2 is measured on two 2D-images of the stack. The true radius 

of the particle is then obtained as shown in Figure 7 and using the two following 

equations [74]: 

  

Figure 7. Particle radius calculation from two slices in a stack. 

ℎ1 = ℎ2 + 𝑥 (9) 

𝑟 = √ℎ1
2 + 𝑟1

2 = √ℎ2
2 + 𝑟2

2 (10) 

where 𝑥 is the known distance between the images in the stack. 
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CLSM images of compressed dexMa microgel suspensions 

 

Figure 8. CLSM images of compressed MD-66 microgels. Scale bar is 100 μm. 

 

Figure 9. CLSM images of compressed MD-61 microgels. Scale bar is 100 μm.  
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Abstract 

Increasing the particle density of a suspension of microgel colloids above the point 

of random-close packing, must involve deformations of the particle to accommodate 

the increase in volume fraction. By contrast to the isotropic osmotic deswelling of 

soft particles, the particle-particle contacts give rise to a non-homogeneous pressure, 

raising the question if these deformations occur through homogeneous deswelling 

or by the formation of facets. Here we aim to answer this question through a 

combination of imaging of individual microgels in dense packings and a simple 

model to describe the balance between shape versus volume changes. We find a 

transition from shape changes at low pressures to volume changes at high pressures, 

which can be explained qualitatively with our model. Whereas contact mechanics 

govern at low pressures giving rise to facets, osmotic effects govern at higher 

pressures, which leads to a more homogeneous deswelling. Our results show that 

both types of deformation play a large role in highly concentrated microgel 

suspensions and thus must be taken into account to arrive at an accurate description 

of the structure, dynamics and mechanics of concentrated suspensions of soft 

spheres. 
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3.1 Introduction 

Microgels are colloidal particles made from a solvent-swollen crosslinked polymer 

network [1,2] whose softness can be tuned with the crosslink density [3]. These 

microgels are commonly used as a well-defined experimental model system to 

explore the phase behavior, dynamics and mechanics of soft particle suspensions 

[4,5]. Their softness, which entails both a low resistance to shape and to volume 

changes, has a large effect on the properties of dense suspensions of these particles. 

For example, they can be compressed to packing density in excess of random close 

packing and their increase in viscosity as they approach the liquid-solid boundary 

shows significant deviations from the behavior of hard spheres [6,7] Moreover, 

microgels exhibit a rich phase behavior [8-10], which can be tailored by their degree 

of crosslinking [11], the presence of charges [12] or inherent network 

inhomogeneities [13]. 

To achieve effective packing densities of well above the random close packing limit 

for hard spheres, the reduction in available volume must be accommodated by either 

shape or volume changes in the constituent particles. This can occur either by 

forming facets at the contact points with the surrounding particles [8,14,15] and by 

the expulsion of solvent from the particle, leading to homogeneous deswelling and 

volume reduction [16,17]. Recent work has highlighted how the latter can have 

pronounced effects on the interpretation of experiments on microgels, since osmotic 

deswelling can lead to substantial deviations between the apparent and real particle 

volume fraction [18]. 

It is most likely that faceting and homogeneous deswelling are relevant to some 

extent; however, this remains relatively unexplored. Recent contrast-variation 

scattering experiments have shed light on this complexity for the first time, showing 

an interplay of deformations, deswelling and even interpenetration of surface-

dangling chains as the particle concentration is varied [19]. Yet, our quantitative 

understanding of particle deswelling and deformation remains incomplete. 

The isotropic compression of individual microgels subjected to a homogeneous 

osmotic force has been studied in detail previously. For example, microgels 

suspended in solutions of a polymeric osmolyte, such as dextran which is excluded 

from the microgel network, exhibit a homogeneous osmotic deswelling consistent 

with polymer swelling theory [6] from which the bulk modulus 𝐾 of the individual 

microgels could be determined. Squeezing a single microgel between two sapphire 

plates, yielding two discrete contact points, has shown that this is a controlled way of 

probing deformations of single particles, but the possibility of an interplay between 
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shape and volume changes was not discussed [17] In this last case, the microgel is 

under non-homogeneous pressure. This implies that contact deformations cannot be 

ignored as it is also the case for shape or volume changes, dictated by the Poisson 

ratio, which is typically between 0.4-0.45 for hydrogel particles [20]. Of course, the 

same argument holds for particles with more than two contact points, as would be 

the case in a dense packing of particles, contacting multiple neighbors. The fact that 

both effects contribute to microgel shape and size in non-homogeneous pressure 

fields is illustrated by the capillary micromechanics work of Guo and Wyss [5] where 

individual soft particles are brought into a tapered confinement, which induced both 

shape and size changes, that can be quantified accurately, for example to derive the 

full linear mechanics of single particles. 

So, while it is clear that the mechanical response of compressible and deformable 

microgels to complex pressure fields involves both shape and size changes, these 

effects remain to be explored in dense packings of many microgels in close contact. 

Understanding these effects is an important step towards a more comprehensive 

description of the combined effects of single-particle mechanics and osmotic 

equilibrium on the properties of concentrated suspensions of soft particles. 

In this chapter, we explore the deformation and deswelling mechanisms of microgels 

in compressed microgel packings and provide a framework to understand their 

behavior. We osmotically stress mixtures of fluorescent and non-fluorescent 

microgels and image the shape and size of single microgels with high resolution using 

confocal microscopy and quantitative analysis algorithms. We find that the ratio of 

shape to volume changes, evolves non-monotonically with applied pressure; at low 

pressures shape changes are pronounced, in the form of facets, while at larger 

pressure the facets disappear and the microgels assume a spherical shape by 

deswelling homogeneously. We qualitatively explain these results using a simple 

mechanical model, which combines the osmotic pressure of the gel network with 

contact mechanics. 

3.2 Experimental 

Microgel synthesis 

We synthesize polyacrylamide microgels by polymerization of monomer solutions in 

emulsion droplets as a template. In a round bottom flask, we mix 100 ml kerosene 

with 1%wt of the surfactant polyglycerol polyricinoleate (PGPR90). In a separate 

flask we prepare our monomer solution with 10 ml of water, 0.1M sodium hydroxide 

solution to set the pH at 8.5, 2.5 g of acrylamide, 50 mg of potassium persulfate 
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(KPS) and 25 mg of N,N’-methylenebisacrylamide (BIS) as the crosslinker at 1%wt 

as compared to the total monomer content. For fluorescent microgels, we include 25 

mg of fluorescein methacrylate at this stage. We add our monomer solution to the 

content of the round bottom flask and emulsify the aqueous phase into the oil phase 

under high shear with a rotor-stator mixer for three minutes. We then close the round 

bottom flask with a rubber septum and bubble the emulsion with nitrogen for 20 

minutes to remove oxygen. We subsequently place the round bottom flask on a 

stirring plate on ice and we inject 1 ml N,N,N’,N’-tetramethylethylenediamine 

(TEMED) to trigger the polymerization. We allow the system to react for 2-3 hours 

and precipitate the microgels in cold methanol. We clean our microgels by repeated 

centrifugation and resuspension steps, first in methanol to remove excess kerosene 

and surfactant, and finally in water, after which the microgel suspension is stored at 

4 °C. 

Osmotic stress 

We use a mixture of fluorescent and non-fluorescent microgel suspensions at a 

number ratio of 1:20 to allow observation of individual microgels in the packing using 

confocal fluorescence microscopy. We compress the microgel suspension using the 

osmotic stress technique. We place the suspension of microgels in dialysis bags that 

we then place in a solution of polyethylene glycol (PEG) with known concentration. 

The concentration of a PEG solution can be correlated to its osmotic pressure 

through empirical equations available in the literature [21]. We use a range of PEG 

concentrations corresponding to osmotic pressures between 2.5 kPa and 2 MPa. The 

volume of dialysate is at least 100 times larger than the sample volume. The system 

is allowed to equilibrate for two weeks to ensure the desired compression pressure P 

is achieved. The dialysate is renewed in the middle of this process, after one week. 

Confocal microscopy 

To determine how the microgels deform we use confocal fluorescence microscopy 

to record three-dimensional image stacks of individual, fluorescently labelled 

microgels. As we only have a small amount of fluorescently labelled microgels in each 

sample we can visualize single microgels as they deform and shrink at varying osmotic 

pressure. These experiments are performed on a Zeiss microscope, equipped with a 

488 nm laser line and imaged using a x100 oil-immersion objective. The resolution 

of the images is 1000x1000 pixels. To measure the type and degree of deformation 

of a microgel at different compression pressures we analyze the confocal image stacks 

using custom MATLAB routines. To accurately determine the surface area and 

circumference of a microgel in each confocal slice we trace the boundary of every 

microgel and fit a polynomial function to this shape using Savitsky-Goley smoothing. 
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We calculate the surface area for each slice in our three-dimensional image stack and 

determine the total volume of each microgel in our field of view. 

3.3 Results and discussion 

We study microgels made from poly(acrylamide) (pAAm) prepared by emulsion 

templating. The particles are crosslinked with 1%wt of crosslinker with respect to the 

total monomer content, resulting in reasonably soft microgels. Here we aim to 

prepare microgels with sizes larger than 10 µm such that their shape and size can be 

carefully deduced from confocal fluorescence microscopy experiments. Although 

our microgels are large enough to be imaged by brightfield microscopy, it remains 

challenging to obtain the entire shape and size due to significant artefacts that arise 

due to the high particle concentration. Rather, we choose to use confocal microscopy 

to visualize a few labelled microgels in a large excess of undyed particles. This enables 

us to resolve the microgel shape and size with high resolution and without being 

hindered by the high particle density. To concentrate the microgel suspensions to a 

well-defined macroscopic osmotic pressure, we stress the suspensions by placing 

them in a dialysis membrane and equilibrating them against poly(ethylene glycol) 

(PEG) as an osmolyte, which leads to a homogeneous compression of the 

suspension to osmotic pressure differences between 103-106 Pa. 

 

Figure 1. Compressed microgel packing composed of a mixture of fluorescent and 

non-fluorescent microgels. (a) Bright field image. Scale bar denotes 20 μm. (b) CLSM 

image. Scale bar denotes 10 μm. The images were made at the same region of the 

sample. Red circles in the bright field image indicate the position of the fluorescent 

particles but are not to scale. 
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Figure 2. Steps during image treatment, (a) shows the raw microscopy data, (b) shows 

the binary version of this image, generated to most closely preserve the microgel 

shape, (c) shows a simple edge trace of this binary image, resulting in many artifacts, 

(d) shows the much smoother tracing after fitting this boundary with a Savitzky-Golay 

filter, which results in a smooth boundary while preserving the overall microgel shape. 

Scale bars denote 5 μm. 

If all the microgels are fluorescently labelled, observing the boundaries of a single 

particle at its contacts with neighbors becomes highly inaccurate. To end this, we use 

a mixture of fluorescent and non-fluorescent microgels in our experiments. This 

allows us to accurately observe a single fluorescent microgel that is surrounded by 

non-fluorescent microgels. While identification of single particles is difficult in 

bright-field microscopy images (Figure 1a) where all particles provide contrast, well-

defined images of single fluorescent particles can be made using confocal 

microscopy, as shown in Figure 1b. 

To quantify changes in size and shape of the individual microgels in the packings, we 

image at least twenty separate microgels in three-dimensions using confocal 

microscopy for each compression pressure. From these images, we can calculate the 

microgel volume and shape. In order to calculate an accurate perimeter and area for 

each slice in the three-dimensional image stacks, we first convert our images (Figure 

2a) to binary black and white (Figure 2b). During this thresholding, pixelation at the 

background-particle edge results in jagged edges in an edge-detection algorithm 

(Figure 2c). Such roughness on the perceived perimeter would overestimate the 

particle contour. This discretization effect can be minimized by recording high-

resolution confocal images, but some boundary effects remain. To solve this issue, 

we first trace this perimeter using a Savitsky-Golay (SG) filter [22] to smooth the 

boundary (Figure 2d). From these smoothed traces we then reconstruct the image, 

which allows us to calculate the perimeter and area much more accurately, while still 

having access to the overall microgel shape without blunting due to the filtering. 
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Figure 3. (a) Average microgel diameter (𝑑̅) as a function of compression pressure, (b) 

microgel packing polymer concentrations 𝑐 as a function of pressure 𝑃. Solid line 

describes the 𝑃 ∝ 𝑐4 scaling. (c) size distributions of microgel diameter (d) for two 

compression pressures (2.5 kPa - top and 2 MPa - bottom), which shows a narrowing 

of the size distribution at increased compression and (d) width of fitted Gaussian 

functions (𝜎) for each size distribution as a function of compression pressure. Open 

symbols are values obtained at zero pressure (𝑃). 

We first probe the changes in particle volume, to evaluate their osmotic deswelling 

in response to the contact pressure of neighboring particles. We deduce the particle 

volume from the equivalent sphere diameter 𝑑 fitted to the three-dimensional image 

stacks of thresholded and filtered images of single particles. As expected, we observe 

that the average size of the microgels decreases with increasing compression 

pressure, as a result of solvent expulsion by the microgels (Figure 3a). The average 

values were obtained by averaging over multiple particles in a polydisperse 
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Figure 4. (a) Average sphericity (𝛹) as a function of compression pressure. The open 

symbol is a value obtained at zero pressure 𝑃 = 0. (b) Microgel sphericity (𝛹) as a 

function of microgel diameter (𝑑) for a single compression pressure (10 kPa). Black 

circles are binned data. Bin width is 2 and the values within each bin were averaged. 

Confocal images of a single microgel at (c) zero pressure, (d) at 𝑃 = 10 𝑘𝑃𝑎 and (e) 2 

MPa. Red outlines correspond to the edges of the particle after image analysis. Scale 

bars denote 5 μm. 

population; nevertheless, we see a clear monotonic trend of deswelling with 

increasing pressure 𝑃, consistent with previous reports [17,23]. 

For each compression pressure 𝑃, we also determine the polymer concentration in 

the compressed microgel packings by dehydrating the particle pastes and measuring 

the dry weight (Figure 3b). We find that the osmotic pressure increases steeply with 

increasing polymer concentration. The data is well described by a scaling 𝑃 ∝ 𝑐4, 

which is significantly higher than the scaling prediction for the osmotic pressure of a 

semi-dilute polymer solution within the blob model of 𝑃 ∝ 𝑐9/4 [24] We attribute this 

to the additional contribution of network elasticity to the osmotic pressure, as  
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Figure 5. Osmotic compression of a microgel suspension leads to unphysical overlap 

between neighbors (a), which is resolved either by deswelling the particles (b) or 

through particle deformation in the form of contact facets (c). In the calculation of 

the energy of deformation by facet formation 𝑈𝑓 we use a Hertzian contact model in 

which the deformation is approximated by the overlap with penetration depth ℎ 

leading to facets of size 𝑅 (d). 

described by the Flory-Rehner theory [25] where the rise in osmotic pressure with 

concentration, in particular close to the equilibrium swelling state of the particles, is 

much steeper than that of a simple solution of linear chains [26]. 

From our experimental observations, we do not only have access to the average 

particle size as a function of compression, but also the size distribution. Interestingly, 

we see how the size distribution shifts as the compression increases (Figure 3c). This 

is likely due to the fact that larger microgels will be more compressed in the packings, 

whereas small particles can reside in interstitial spaces and thus experience smaller 

contact pressures on average. As a consequence, larger particles will deswell more 

than smaller ones, thus narrowing the size distribution of the sample. To quantify the 

change in size distribution, we measure the width of the particle size distributions 𝜎 

as the full width at half maximum (FWHM) by fitting the experimental data to a 

normal distribution at all compression pressures. Indeed, the width of the 

distribution decreases with increasing pressure (Figure 3d). We also plotted (results 

not shown) the ratio between the gaussian width and the mean with varying pressure 

and obtained the same decreasing trend. The fact that we obtained the same trend 

shows that the decrease in size of the particles is not the reason for the narrowing of 
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the size distribution. This observation of a narrowing particle size distribution is 

consistent with earlier reports of a co-crystallization of large microgels in a bath of 

smaller particles as the pressure increased, leading to shrinkage of the larger particles 

to fit into the microgel lattice [27]. 

 

Figure 6. (a) Mechanical work 𝑊 as a function of the fraction of the overlap that is 

mitigated through deformation 𝛼 = ℎ𝑑/(ℎ𝑠 + ℎ𝑑), showing a clear minimum where 

𝑑𝑊/𝑑𝛼 = 0, signalling the equilibrium condition (for: 𝜐 = 0.40 and ℎ𝑠 + ℎ𝑑 =

100 𝑛𝑚), (b–d) Contributions of shrinkage ℎ𝑠 and deformation ℎ𝑑 to the total particle 

response as a function of the total pressure 𝑃 for three different values of the Poisson’s 

ratio 𝜐 = 0.3 (b), 0.4 (c) and 0.48 (d). 
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Clearly, increasing the particle density leads to pronounced osmotic deswelling of the 

particles. However, visual inspection of the confocal microscopy images shows also 

how distinct facets develop at the particle-particle contact points (Figure 2). While 

most previous studies have studied in-depth the volume changes associated with 

osmotic compression of microgel packings, these shape changes have received much 

less attention so far, but may be crucial to understand the rheology and dynamics of 

microgel pastes. 

To evaluate the extent of shape changes, we determine to what extent the particle 

shape deviates from a perfect sphere. Due to the preparation templated in emulsion 

droplets, the rest shape of the microgels is a near-perfect sphere. We define the 

sphericity, extracted from our two-dimensional confocal images as: 

𝛹 =
2√𝜋𝑁𝑎

𝑁𝑐𝑖𝑟𝑐
 (1) 

where 𝑁𝑎 is the number of pixels in the area enclosed by the SG filtered boundary 

(red line in Figure 2d) and 𝑁𝑐𝑖𝑟𝑐 is the number of pixels along the boundary contour. 

For a perfect circle 𝛹 ≡ 1 , while any asphericity, e.g. due to facetting, will result in 

𝛹 < 1. 

Samples at zero pressure 𝑃 = 0, exhibit an almost perfect spherical geometry with 

𝛹 ≈ 0.99 ± 0.1 (Figure 4c); the small deviation from 𝛹 = 1 is caused by the inevitable 

discretization of the images at the scale of a pixel, which cannot be completely 

circumvented by the SG filtering of the particle contour. 

At finite pressure, the sphericity, averaged over at least twenty particles at each 

pressure, initially decreases. This indicates that the microgels become deformed by 

the formation of facets at contact points with neighboring particles (Figure 4d). As 

the compression pressures 𝑃 increase, the average sphericity of the microgels 

increases again, which indicates that the particles regain their spherical shape (Figure 

4e). For comparison, we evaluated images containing polygons and obtained 

sphericity values for a hexagon and a square of 0.97 and 0.91, respectively. We also 

evaluated images of spheres of different sizes to rule out the effect of the amount of 

pixels constituting the sphere in the sphericity values. We found that for the size of 

images used (1000x1000 pixels), or the size of the sphere did not interfere in the 

sphericity results. Finally, to investigate whether the size polydispersity of the 

microgels has an influence on their degree of deformation, we plot the sphericity 𝛹 

as a function of the diameter of the microgels 𝑑 (Figure 4b) for a certain compression 
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pressure (10 kPa). We find no statistically significant trend, indicating that there is no 

significant effect of size polydispersity on the particle deformations, within the 

statistical noise of our experiment. 

Our experimental results show that both faceting and deswelling happen, depending 

on the applied pressure, in a distinctly non-monotonic way. As the pressure increases, 

facets first become more pronounced, until they start to become less noticeable and 

the particle appears to homogeneously deswell to a (smaller) spherical configuration. 

This counterintuitive observation triggers the question if these are equilibrium 

effects, or whether non-equilibrium aspects may be important. First, we note that the 

samples are equilibrated for 14 days at a given osmotic pressure. The timescales for 

poroelastic relaxation, i.e. the solvent flow within the porous polymer particles 

required to achieve shape and size changes, occurs on much smaller time scales, and 

are thus not likely to contribute. Moreover, experiments conducted at different times 

give identical results, suggesting time-dependencies not to be of significant influence. 

To confirm that the change from faceting at low pressure to osmotic deswelling at 

higher pressures is an equilibrium effect, we derive a simple equilibrium model that 

is capable of reproducing the observed behavior by balancing contact mechanics 

versus osmotic effects upon creating particle-particle contacts. 

Since the experimental microgel particles of polyacrylamide are under good solvency 

conditions, we derive an extension on the classical description of Flory and Rehner 

[28,29] which assumes ideal chains between nodes that are marginally stretched, to 

account for large chain extensions. The osmotic pressure within a microgel particle 

results from two opposing terms. The first is a mixing term, describing the mixing 

entropy and the enthalpy of solvent-monomer interactions, which promotes 

swelling. Within the mean-field Flory-Rehner approach this can be written as: 

𝛱𝑚𝑖𝑥 =
𝑘𝐵𝑇

𝑎3
(−𝜑 − ln(1 − 𝜑) − 𝜒𝜑2) (2) 

where 𝑘𝐵𝑇 is the thermal energy, 𝑎 the size of a statistical chain segment, 𝜒 the Flory 

interaction parameter and 𝜑 the monomer volume fraction, which is the main control 

parameter. This term is always positive and as such promotes the uptake of solvent 

within the microgel particle. 

The mixing pressure is balanced by the elasticity of the chain segments between 

crosslinks. Swelling stretches the chains between crosslinks which reduces their 

conformational entropy. Traditionally, within the Flory-Rehner description, this 
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entropic elasticity is estimated within the Gaussian approximation, which assumes 

that chains obey a Hookean force law. However, this is only valid when the distance 

between two crosslinks x is close to the relaxed dimension of the chains 𝑅𝑔. For 

strongly swollen microgels however, chain extension between nodes may be strong, 

where large deviations from Hookean behavior may be expected. 

To capture this limit as well, we use the freely-jointed chain (FJC) model, which 

describes the elastic force 𝐹 on a polymer chain extended to length 𝜉 as: 

𝐹 =
𝛽𝑘𝐵𝑇

𝑎
 (3) 

in which 𝛽 is the inverse Langevin function, that can be expanded as: 

𝛽 = 3 (
𝜉

𝑁𝑥𝑎
) +

9

5
(

𝜉

𝑁𝑥𝑎
)

3

+
297

175
(

𝜉

𝑁𝑥𝑎
)

5

+ ⋯ (4) 

where 𝑁𝑥 is the number of statistical segments between crosslinks. In the limit of 

small chain extensions this returns to the Gaussian result for which the Hookean 

spring constant 𝑘 = 𝑘𝐵𝑇/𝑁𝑥𝑎2 is valid. Particle swelling, thereby increasing 𝜉, leads to 

an effective elastic pressure to counteract swelling: 

𝛱𝑒𝑙 =
𝐹

𝜉2
=

𝛽𝑘𝐵𝑇

𝑎𝜉2
=

𝑘𝐵𝑇

𝑎
(

3

𝜉𝑁𝑥𝑎
+

9𝜉

5(𝑁𝑥𝑎)3
+

297𝜉3

175(𝑁𝑥𝑎)5
+ ⋯ ) (5) 

where the monomer volume fraction is related to the characteristic mesh size as 𝜑 =

𝑁𝑥𝑎3/𝜉3. 

As the microgel is dissolved in a solvent, thermodynamic equilibrium requires the 

balancing of the pressure within the particle 𝛱𝑖𝑛, by swelling or deswelling, with the 

external osmotic pressure 𝛱𝑒𝑥: 

𝛱𝑖𝑛 = 𝛱𝑚𝑖𝑥 − 𝛱𝑒𝑙 = 𝛱𝑒𝑥 (6) 

We define the relaxed reference state of the microgel as 𝛱𝑖𝑛 = 𝛱𝑒𝑥 = 0, where the 

polymer volume fraction within the particles 𝜑 = 𝜑0. The bulk modulus 𝐾 is defined 

as: 

𝐾 = 𝜑
𝑑𝛱𝑖𝑛

𝑑𝜑
 (7) 
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The resistance of the same particle against shape changing deformations, typically by 

the formation of facets at the contacts of a particle with its neighbors, can be defined 

by its Young’s modulus 𝐸, defined as: 

𝐸 = 3𝐾(1 − 2𝜐) (8) 

with 𝜐 the Poisson’s ratio of the hydrogel particles. More comprehensive 

micromechanical mean-field approaches to explore the effect of particle elasticity and 

compressibility on microgel glasses both at rest and under shear have been reported 

recently [18,30]. 

Upon increasing the pressure of a microgel suspension, physical overlap between the 

particles (Figure 5a) must be avoided, either by shrinking or the formation of facets 

(Figure 5b,c). To evaluate the extent of both of these modes of response to 

compression we consider the work of deformation due to faceting 𝑊𝑑 and the work 

of shrinkage 𝑊𝑠; both of these represent the reversible (thermodynamic) work 

performed on a central particle at a given number of particles, total volume of the 

system and temperature. 

The overlap ℎ between two neighboring particles is defined in Figure 5d, which can 

be resolved by a linear combination of contributions due to deformation ℎ𝑑 and 

shrinking ℎ𝑠: ℎ = ℎ𝑑 + ℎ𝑠. The fraction of the response attributed to faceting-type 

deformations can thus be formulated as: 𝛼𝑑 =
ℎ𝑑

ℎ𝑑+ℎ𝑠
, and the fraction contributed to 

shrinking as (1 − 𝛼𝑑). 

The work of shrinkage is given by: 

𝑊𝑠 = 𝛱𝑖𝑛∆𝑉 =
4𝜋

3
𝛱𝑖𝑛(𝑅0

3 − (𝑅0 − ℎ𝑠)3) (9) 

with 𝑅0 the radius of the microgel in dilute conditions, where 𝛱𝑖𝑛 = 0. 

The work of deformation by forming facets is gauged by using the Hertzian model 

for the elastic contact between two spheres of equal size 𝑅0. The force required to 

form an indentation of depth ℎ is given by: 

𝐹 =
4

3
𝐸𝑅0

1/2ℎ3/2 (10) 
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such that the work required to perform a deformation of depth ℎ𝑑 between two 

spheres becomes: 

𝑊𝑑 = ∫ 𝐹(ℎ)𝑑ℎ
ℎ𝑑

0

=
8

15
𝐸𝑅0

1/2ℎ𝑑
5/2 (11) 

Since each microgel particles has 𝑍 neighbours, the total work associated with 

deformations becomes: 

𝑊𝑑 =
8

15
𝐸𝑅0

1/2ℎ𝑑
5/2𝑍 (12) 

The total mechanical work can now be defined as: 

𝑊 = 𝛼𝑑𝑊𝑑 + (1 − 𝛼𝑑)𝑊𝑠 (13) 

These two contributions need to be balanced to minimize the overall mechanical 

work. Thus, to find the relative amounts of deformation and shrinkage, we must 

solve: 

𝑑𝑊

𝑑𝛼
= 0 (14) 

This allows us to evaluate for each pressure, given our expressions for the microgel 

elasticity and the mechanical work upon compression to what extent a particle will 

deform and shrink, as expressed by the parameter 𝛼𝑑. If 𝛼𝑑 ≈ 1, the particle will solely 

deform and shrinkage is negligible; by contrast if 𝛼𝑑 ≈ 0, only isotropic shrinkage 

occurs while the particles maintain their spherical shape. 

To compute the elastic properties of the microgels, we need to choose values for the 

three independent parameters which govern the microgel properties: i) 𝑁: the 

number of statistical segments between crosslinks, for which we use 𝑁 = 250 (note 

that the behaviour we observe is robust to the choice of the crosslinking density and 

is mostly sensitive to the Poisson ratio of the hydrogel). ii) 𝑎: the size of a statistical 

unit, for polyacrylamide microgels as the experimental example, we use the Kuhn 

length of polyacrylamide as 𝑎~0.4 𝑛𝑚 [31], iii) 𝜒: the Flory interaction parameter 

describing the interactions between polymer and solvent, for polyacrylamide in water 

at room temperature 𝜒 = 0.48 [32]For the equilibrium particle size at rest 𝑅0 we take 

5 µm as also used in our experiments. Even though the coordination number is 

known to vary with particle concentration [33] for the sake of simplicity we assume 
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𝑍 = 12, corresponding to the close-packed limit for monodisperse spheres; also, here 

we find that the results are robust to the choice of 𝑍. 

Indeed, we see that the mechanical work 𝑊 has a minimum when plotted as a 

function of a, the fraction of the overlap ℎ mitigated by means of faceting (Figure 

6a). By finding this minimum, we can now assess the relative contributions of 

shrinkage and deformation as a function of the applied pressure. 

Interestingly, the experimental behavior is qualitatively reproduced within our 

approximate theory. When we plot the amount of overlap ℎ that is mitigated by 

faceting ℎ𝑑 and shrinking ℎ𝑠 as a function of the overall pressure 𝛱, we see a crossover 

in the response. At low pressures, ℎ𝑑 is dominant, indicating a response governed by 

faceting (Figure 6b-d). As the pressure is increased, we see a transition in the 

behavior, as a crossing point of ℎ𝑠 and ℎ𝑑, to a response governed by isotropic 

shrinkage. This is in qualitative agreement with our experimental observations. These 

results can seem counterintuitive from the point of view of classical contact 

mechanics, where the contact between two spheres would always increase its facets 

if they are more compressed. However, here we are dealing with a particle 

compressed and surrounded by other particles. As such, both contact mechanics and 

osmotic effects come into play. 

The crossover pressure at which ℎ𝑠 > ℎ𝑑 thus signals the point at which the osmotic 

effects of the particle suspension as a whole begin to dominate over the contact 

mechanics at the particle-particle contacts. At pressures beyond this crossover point, 

the high osmotic pressure of the particle ’bath’ leads to a homogeneous deswelling 

of the particles. 

Within the model we have chosen here, the ratio of shrinkage versus deformation 

depends strongly on the Poisson ratio of the microgels. For low Poisson’s ratios, 

indicative of compressible solids, shrinkage begins to dominate at relatively low 

pressures. By contrast, when we choose a high Poisson’s ratio, close to that for an 

incompressible solid, a response governed by deformation is observed. In fact, in the 

limit of 𝑣 → 0.5, ℎ𝑠 goes to zero and ℎ ≈ ℎ𝑑. 

Experimentally, we find a crossover in the sphericity at approximately 10 kPa. While 

the model is approximate, e.g. by the choice of a mean-field approach for the osmotic 

pressure and ignoring the molecular details of the particle surface, comparing this 

value to the theoretical cross-over pressures, indicates that the Poisson ratio of our 

experimental system is between 0.43-0.45. This is in the correct order of magnitude 
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for swollen polyacrylamide hydrogels, for which 𝑣 = 0.457, as determined 

independently previously [34]. 

At this time, the agreement between theory and experiments is qualitative, since the 

exact equation of state is not known for these particles. While the Flory-Rehner form 

(Eqs. (2-(5) is a common starting point, it does not take microscopic details, such as 

crosslinking inhomogeneities, the effects of charges, etc. into account. It may be 

expected that changing the exact nature of the equation of state, or of the expressions 

used to related the network structure to the shear rigidity, will change the crossover 

pressure at which osmotic effects begin to govern over contact mechanics. However, 

the general notion that at low overall osmotic pressure the particle-particle contacts 

themselves dominate the particle deformation, while the bath pressure takes over 

when it becomes sufficiently large, is expected to hold irrespective of the choices for 

the equation of state. In fact, since the faceting is most sensitive to the Young’s 

modulus of the particles, while homogeneous deswelling is governed by their bulk 

modulus, we may speculate that the Poisson ratio of the particle is the governing 

metric for if and when a crossover in behavior may be expected. 

Depending on the manner in which microgels are prepared, the surface structure of 

the polymer chains may be different, leading to significant variations in the length 

and grafting density of the dangling surface polymers. Also, this can have an effect 

that is currently not accounted for, e.g. by the creation or suppression of lubrication 

layers and the establishment of a significant disjoining pressure to break these layers 

during compression. 

Finally, recent work from our group has suggested an approach to treat the real 

volume fraction in systems of compressible colloids but taking osmotic deswelling 

into account [18], where we assumed that only deswelling occurs while faceting was 

presumed to be negligible. The results in the current study highlight that this 

approximation fails especially close to the jamming transition where faceting is 

severe. Interestingly, since faceting does not lead to a reduction in the real particle 

volume fraction with compression while deswelling does, the crossover in behavior 

we find indicates an even steeper effect of compression on the real versus apparent 

volume fraction than that predicted previously [18]. Moreover, the purpose of the 

previous study was to explore the effect of osmotic deswelling in absence of facets, 

on the slowing down of structural relaxations in microgel glasses. We may expect 

that facets, and the lubrication layers between the two interfaces across a facet, could 

alter the diffusion rate of particles with respect to their neighbors, and thus have a 

pronounced effect on the nature of the colloidal glass transition. In principle, this 
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could be tested by comparing the behavior of particles with identical stiffness but 

different Poisson ratios, through which the balance between osmotic versus contact 

effect can be tuned. 

3.4 Conclusions 

In this chapter, we investigated the behavior of individual microgels in microgel 

packings under compression considering simultaneous deswelling and deformation 

mechanisms. Our experiments show that microgels initially facet under compression 

and that at higher compression pressures, they regain their spherical shape. To 

explain this behavior, we propose a model that balances the work of osmotic 

deswelling, within the Flory-Rehner picture of gel swelling, versus facet formation in 

the Herzian contact model. Numerical solutions of the model predict behavior 

qualitatively consistent with our experimental observations with a crossover from 

contact mechanics dominated response at low pressures to an osmotically governed 

response at high pressures. These results imply that treatments of the dynamics and 

mechanics of packings of soft particles, that account only for faceting or deswelling, 

are approximate, and that a full description requires taking both effects into account. 

This is particularly important at low pressures, close to the jamming and/or glass 

transition, where deformations are significant. These results also have important 

implications for the flow behavior of soft particles, e.g. in complex geometries such 

as membrane pores or constrictions [35-38] where deswelling and/or deformation 

plays an important role in pore passage and mitigation of clogs. 
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Abstract 

Cake layer formation in membrane processes is an inevitable phenomenon and 

knowing how to manage it during the filtration processes is essential. For hard 

particles, especially cake porosity and thickness determine the membrane flux, but 

when the particles forming the cake are soft the variables one has to take into account 

in the prediction of cake behavior increase considerably. In this work we investigate 

the behavior of soft polyacrylamide microgels in microfluidic model membranes 

through optical microscopy for in situ observation under regular flow and under 

enhanced gravity conditions. 

Particles considerably larger than the pore are able to pass through a pore due to 

deformation and deswelling. We find that membrane clogging time and subsequent 

cake formation is not dependent on the applied pressure but rather on particle and 

membrane pore properties. Furthermore, we found that particle deposits subjected 

to low pressures and low g forces deform in a totally reversible fashion. Particle 

deposits subjected to higher pressures only deform reversibly if they can re-swell due 

to capillary forces, otherwise irreversible compression is observed. 

For membrane processes this implies that when using deformable particles, the pore 

size is not a good indicator for membrane performance, and cake formation can have 

much more severe consequences compared to hard particles due to the sometimes-

irreversible nature of soft particle compression. 
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4.1 Introduction 

Soft particles are in general termed deformable when assuming different shapes upon 

a stimulus, and compressible when expelling solvent in response to an external force 

[1,2]. Although these effects are studied, they are often disregarded in technical 

process designs that revolve around the ‘particle size’. Membrane separation is a 

process in which disregarding soft particles deformation and compression can have 

major effects, since particles larger than the pore size may end up in the permeate. 

In membrane filtration processes, many types of soft particles can be present such as 

proteins [3,4], cells [5] and sludge flocs [6,7]. Although there are different types of 

membrane separation processes, ranging from microfiltration to reversed osmosis, 

and even gas separation, in most of these processes, particle properties play an 

important role. This can be either in relation to the pore size that Particles may or 

may not be able to pass through a pore due to the pore size, or due to the formation 

of an accumulation layer on top of the membrane leading to increased resistance 

against mass transfer, and influencing solute transmission. 

It is often assumed that particles smaller than the pore size are able to pass while 

particles that are larger are retained [8]. Please note that this reasoning holds for 

membranes with uniform pores; in reality, most membranes have a pore size 

distribution, which makes the situation even more complex [9]. Furthermore, the 

previously described gate-keeper effect of pores holds for hard particles. Many 

particles are compressible and deformable, even to such an extent that depending on 

the applied driving force, they can be pushed through pores that are smaller than the 

original particle size [10]. This phenomenon has also been observed in emulsion 

filtration in which deformable liquid droplets were able to pass membrane pores that 

were considerably smaller [11,12]. 

This has various implications for membrane process design. If the soft particle is to 

be concentrated, it is desired that the permeate is free of them, but with soft particles 

this is not guaranteed based on their original size [10]. If the purity of the permeate 

is not a problem and the presence of soft particles can be tolerated, even then their 

presence can be a problem if e.g. backwashing is used. During backwashing the flux 

direction is reversed from permeate to feed side to remove particle deposits from the 

top of the membrane [13,14], but this can also lead to particles being strongly pushed 

into the membrane, and consequently clogging it. It is clear that the link between 

membrane pore size or molecular weight cutoff of the filtered component is not that 

straight-forward to make, and in practice a lot of trial and error is involved [15,16]. 

The reason for this could be deformability of particles, and that is why we have made 
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this the focal point of this study, investigating effects inside the membrane as well as 

on top of it in the so-called cake layer. 

Although studies have been done to obtain information on cake formation in 

filtration, the great majority assess cake formation (particle accumulation on top of 

the membrane) in an indirect manner, by measuring changes in flux, and sometimes 

conductivity [17,18]. These studies generate important information for the overall 

process but lead not necessarily to mechanistic understanding of local behavior. 

Further, a number of in situ observation techniques have been developed mostly 

focusing on surface visualizations. We specifically mention Fane et al. who developed 

Optical Coherence Tomography Imaging for visualization of fouling layers as 

function of time, which has led to new insights in regard to deposition of oil droplets 

[19,20]. When considering processes occurring inside a membrane, to the best of our 

knowledge, no techniques are available. 

In the last years, microfluidic devices have been used to observe the behavior of 

particles in systems simulating membrane filtration [21-23]. Van Zwieten et al. used 

them to elucidate the behavior of hard particles [24]; soft particle deposition and 

transmission is still an important and missing element. In this chapter, we use 

microfluidic methods to observe soft particle deposition and cake behavior for 

particles that are ‘larger’ than the pore size. The microfluidic devices are composed 

of an array of parallel channels and we use pAAm microgels as soft particles. We use 

constant pressure until a cake is observed on top of the channels. Clogging time, clog 

existence time and cake formation kinetics are measured, as is the cake volume as 

function of pressure. We also use a microfluidic device mounted on a high-speed 

centrifuge to emulate the pressure effects. We find that the clogging time is rather 

independent of applied pressure due to a combined effect of increased number of 

particles at high flux, and the higher pressure facilitating particle 

deformation/compression. The cake volume reduction as function of pressure is 

reversible as long as the particles are not too deformed due to applied g-forces. 

4.2 Material and methods 

Microgel synthesis and characterization 

For the microfluidic filtration experiments, we use tailor-made micrometer-sized 

polyacrylamide (pAAm) microgels synthesized by us. The microgels are produced by 

emulsion templating as described in detail in previous work [25]. The particle sizes 

range from 3 µm to 31 µm with a Sauter mean diameter (D[3,2]) of 10 µm. 

Commercially available Sephadex G100 microgels were used in some of the 
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centrifugation experiments; sizes range from 35 µm to 100 µm with a D[3,2] of 64 

µm. Size distributions were measured by laser diffraction (Malvern Mastersizer 3000). 

Microfluidic devices 

The microfluidic device used for the filtration experiments was made by soft 

lithography. The device is composed of 30 parallel channels and each channel has 19 

constrictions along its length (Figure 1). The channels have 5 different entrance 

angles (6 channels for each angle) varying from 0° to 55° [26]; Figure 2 shows the 

different angles and the dimensions of the channel constrictions. 

 

Figure 1. Optical microscopy image of the array of channels that compose the 

microfluid device at 2.5x magnification. There are 30 parallel channels with five 

different entrance angles. From left to right: 0, 20, 35, 45, 55° (see Figure 2A). 

 

 

Figure 2. a) Schematic representation of the channels and their different entrance 

angles, b) internal dimensions of the constrictions, channel depth is 40 µm, c) 

constriction representing the location where the angles are measured. Reproduced 

with permission from Nature (van de Laar et al. [26]). 
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The channels are positioned in a dead-end configuration and the device has an inlet 

and an outlet. The devices are connected via Teflon tubing to a pressure controller 

(Elveflow OB1-MK3) and placed under an optical microscope. Bright field and 

phase contrast configurations were used. For the filtration experiments we flow a 

suspension of microgels of approximately 0.1 %vol in water at three different 

pressures; 50, 100 and 150 mbar with precision of 0.1 mbar. Flow of microgel 

suspension continues until all the channels are clogged; images are taken at a frame 

rate of 4 fps. After all channels are clogged, we keep the flow of microgel suspension 

to form a cake, or in other words, microgels accumulate on top of the channels. 

When a cake is formed, we vary the applied pressure to observe compression and 

relaxation of the cake. 

Centrifugation 

We also centrifuged the microgel suspension while in a microfluidic device (see 

Figure 3) by using a microcentrifuge coupled with an optical microscope, as described 

in previous work by Krebs et al. [27]. Images are taken with a highspeed camera once 

per rotation and the images are analyzed to determine the 

(compression/deformation) behavior of the microgels during centrifugation. The 

centrifugation speed applied varied from 12 g to 1058 g. After rotation stops, images 

are taken to assess relaxation of the deposited microgels. Two different chamber 

designs were used (Figure 3). 

 

Figure 3. Microcentrifuge microchip designs. Thickness of the chambers is 100 µm. 

For easier comparison between the centrifugation and the microfluidic filtration 

results, we calculated the approximate pressure at the bottom of the centrifugation 

chamber for each centrifugation speed used. We first calculated the approximate 

mass of the microgels from their density and chamber volume (considering a volume 

fraction of 1) and used this value to calculate the force. We then calculated the 
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pressure by dividing the force by the area of the bottom of the chamber as can be 

seen in equation (1. 

𝑃 =
𝑉𝜌𝑔𝑛𝑔

𝐴
 (1) 

where 𝑃 is the pressure at the bottom of the microchip chamber, 𝑉 is the volume of 

the microgel deposit, 𝜌 is the density of the microgels, 𝑔 is gravitational constant, 𝑛𝑔 

is the number of g in a determined situation and 𝐴 is the area of the bottom of the 

microchip chamber. 

Image analysis 

The images from both microfluidics and microcentrifuge experiments are treated 

with home-made MATLAB scripts. For the clogging experiments, we manually select 

the area of the constriction where the clog happens in each channel. The code then 

tells us at which frame of the stack of images, the selected area is filled with microgels. 

The code uses black and white pixel differentiation to perform the task. For the 

centrifuge experiments, we also count black and white pixels, where black pixels 

represent the microgels and white pixels represent the background. 

Throughout the chapter, we will analyze the images of the microgel deposits 

considering only the 2D projection of them. For this reason, we will refer in the next 

sections to cake and deposit areas and not volume. For the cake relaxation 

experiments, the cake area is measured manually with the help of the software ImageJ 

[28]. 

4.3 Results and discussion 

System clogging time 

Microfluidic devices are used to study the behavior of microgels suspension in 

filtration systems. In our case, the microgels in suspension are larger than the pore 

constrictions but are able to modify their conformation to go through the pores. 

When the microgel suspension flows through the microfluidic device, the pores get 

blocked one by one by individual particles until the whole system is blocked. We 

consider the system blocked when there is at least one microgel stuck in every single 

microchannel. The complete system clogging time was measured as function of the 

applied pressure. Please note that the device clogging time was taken as the moment 

at which all channels contained at least one trapped microgel (Figure 4), although this 

does not mean that the channels were permanently clogged (see section clog 

stability). 
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Figure 4. System clog time (𝜏) as a function of pressure (𝑃). 

If the clogging time would be a function of the number of particles of given size and 

deformability passing a constriction, we would expect a decrease in clogging time 

with applied pressure (increasing overall flux leads to higher supply of particles). 

When observing the results presented in Figure 4, this is clearly not the case. At 50 

mbar, the majority of the channels clog at the first constriction (results not shown), 

so the particles are not pushed through the pore constrictions and clog the channels 

as soon as they reach them. At 100 mbar, more particles are pushed into the channel 

and go all the way through the channels, either not blocking them, or blocking deeper 

in the pore (results not shown). Due to a higher flux at 150 mbar, it is more likely 

that bigger particles will arrive at the entrance of the channels due to the higher flux, 

and the propensity to clog increases because these particles are less likely to be pushed 

all the way through the pores due to their larger size. The large error bars are not a 

result of unstable clogs but a result of the particle size distribution in combination 

with process conditions that dictate the deformation behavior, and is linked to 

clogging probability. 

As the channels in the microfluidic devices have a variety of entrance angles, we 

verified if the channels entrance angles had an impact on the channel’s clogging time 

and found that this is not the case as expected for hard particles smaller than the 

constriction [25]. An influence would be expected when particles are closer to the 

channel/pore size and the angles may facilitate deformation, which is apparently not 

the case, or when clusters of small particles are responsible for clogging [26]. To be 

complete, when using these devices in earlier work, we found a very weak 
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dependency of clogs being formed at a neighboring pore [24]; therefore, we expect 

this not to have played a significant role in the current work. 

To understand the behavior of microgels in filtration systems in greater detail, we 

focused on clog existence time and cake behavior. 

Clog stability 

As is clear from the previous section, it is not uncommon for microgels to be pushed 

all the way through the pores. Sometimes, a pore is blocked but after some time the 

clog is released, leaving the channel open until another microgel clogs the pore again. 

In the experiments carried out at different pressures we observed that most of the 

clogs are stable, meaning that a clog formed will remain in the channel and at the 

same position until the end of the experiment. The percentage of clogs that are 

pushed through is dependent on the applied system pressure (Figure 5) and is as high 

as 25% at the highest applied pressure. The percentage is calculated by dividing the 

number of clogs that were released by the total number of observed clogs and these 

values are not dependent on the duration of the filtration run (5-10 minutes). 

 

Figure 5. Percentage of unstable clogs (𝑈𝑐) for different system pressures (𝑃). 

Cake behavior 

In the microfluidic membrane system, microgels do not block the constriction for 

liquid flow [29], since microgel particles are still carried toward the channels after the 

system is clogged where they start to accumulate, forming a cake layer (Figure 6). We 

keep the microgel suspension flowing until a cake of approximately 250 µm height is 

formed, and next investigate the extent of compression/deformation. The situation  
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Figure 6. Cake layer forming on top of the channels as a result of channel clogging 

and subsequent particle deposition. 

in Figure 6 is depicted after the device has been clogged and more particles have 

accumulated over a period of time. Depending on the efficiency of primary clogging, 

a pore may not carry any liquid (so no additional cake) or still be open for liquid 

transfer which leads to considerable layer formation and great differences in 

thickness over the width of the device. 

Cake compression and relaxation experiments were done by gradually changing the 

applied pressure and analyzing the resulting images. The changes in pressure are 

gradual and do not provoke clog instability. The cake reaches steady state very 

rapidly, in a matter of seconds after a change of pressure, and recompression is 

almost totally reversible, since the area of the cake is almost the same as before 

relaxation (Appendix B). The actual difference in size may be influenced by some 

particles arriving at the cake layer, but since the swelling/deswelling processes are 

fast it can be expected that this only played a minor role if any. 

To compare all relaxation/compression experiments we calculate the relative area by 

dividing the final cake area by the initial cake area. We re-plotted the relative area 

against the pressure applied for relaxation and compression (Figure 7). Please note 

that the data for each pressure shown in the graph correspond to an independent 

experiment. 
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Figure 7. Relative cake area (𝐴𝑅) as a function of pressure (𝑃) for relaxation (red 

squares) and compression (blue circles). Data for each pressure correspond to 

independent experiments. 

The relaxation curve seems a little lower than the compression curve (possibly as a 

result of particle-particle adhesion), but when we take the error bars into account, we 

can consider that both curves overlap. As mentioned, the system compresses and 

decompresses in the same degree; we are looking at the thermodynamic state. When 

considering the values in the graph, it is clear that the volume reduction of particles 

at these pressures is considerable (>30% at 200 mbar; the area in the graphs can be 

interpreted as a volume given the depth of the chip). This corresponds to a diameter 

change of 10% for 10 micrometer particles, which is sufficient to influence filtration 

considerably even at pressures that are used in practice for microfiltration. 

Total reversibility of cakes formed by compressible particles such as wastewater 

sludge flocs has also been described [30], although some studies claim that total 

reversibility of compressible particles only means that the particles have not been 

compressed long / hard enough to form a cohesive cake layer [31,32]. We investigate 

this further using the microfluidic centrifugation methods. 

Centrifugation 

We use centrifugation experiments to simulate the compression and relaxation of the 

microgels when subjected to compressive forces only. The results shown in Figure 8 

relate to the experiments done with the rectangular microchip chamber. The 

compression of the microgels at low g-force seems similar to compression of cake  
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Figure 8. A) Compression data of microgels. Ratio between area after compression 

(𝐴𝑎𝑐) and the area before compression (𝐴𝑏𝑐) versus centrifugation speed (𝑐𝑠). B) 

Relaxation data of microgels. Ratio between area after (𝐴𝑎𝑟) and before relaxation 

(𝐴𝑏𝑟) versus centrifugation speed (𝑐𝑠). C) images showing the compressed and relaxed 

microgels at low and high number of g-forces. Values of area were measured manually 

with an average measurement error <0.5%. 
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layers in the microfluidic devices, in which a steep decrease in area is followed by a 

constant cake/deposit area (Appendix B). 

During the relaxation experiments, we found that the extent to which the deposit 

relaxes depends on the applied g-force. A certain degree of relaxation can be 

observed in experiments in which the applied force was low (Figure 8B, and top 

images in c), but as the microgels are exposed to more and more force, the 

reversibility of the deposit is almost nonexistent within the experimental time frame 

(Figure 8C, bottom images). The maximum centrifugation speed where we can see 

some relaxation corresponds to a pressure of 36 mbar, whereas in the model 

microfiltration experiments, full relaxation was observed at pressures up to 200 mbar 

(Figure 7). The plateau could be a combined result of compression behavior and 

changing the packing structure. However, in these experiments we did not have 

means to distinguish between both effects and have taken them as one. Since the 

same particles were used in both centrifugation and microfiltration experiments, the 

question is what causes the difference. 

To answer this question, we carried out centrifugation experiments with the 

hourglass configuration chamber that has two areas connected by a small channel, as 

if it was a single pore, but of course with bigger dimensions. We tried to use the same 

microgels as for the previous experiments but the microgels quickly transfer to the 

bottom of the chamber as soon as the g force is increased, leading to the same 

behavior as observed in the square chamber. That is why we opted for the use of the 

larger Sephadex microgels, of which a part stays in the first section of the chamber 

(so, before the “pore”) allowing us to observe “cake” behavior; please note that on 

the pictures of Figure 9, the right chamber contains the deposit and the left chamber 

is partly filled with water. 

Figure 9A&B show that for the Sephadex particles in the hourglass configuration, 

total relaxation of the deposit occurs even at the highest force used (1058g), whereas 

this is not the case in the rectangular chamber. The difference between the square 

and hourglass configurations is related to the freedom that the compressed material 

has to reswell. This can be seen as the availability of solvent for capillary effects and 

also the fact that there is no layer of water above the deposit in the hourglass 

configuration to be “pushed” away. For this reason, the deposit can reswell.  
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Figure 9. Area of Sephadex G100 microgels in the hourglass configuration microchips 

A) at 1058g. B) after 5 minutes of relaxation. Area of the microgels as function of the 

centrifugal speed at C) hourglass chamber configuration and D) squared chamber 

configuration. Please note that each centrifugal speed corresponds to an individual 

experiment. Blue circles represent compressed microgels and orange squares 

correspond to relaxed microgels; please note that in all cases Sephadex was used). 

Values of area were measured manually with an average measurement error <0.5%. 

This also implies that full relaxation can be influenced by the design of the channel, 

(pore geometry). Furthermore, we expect these effects to be relevant for cake layers 

that build on top of membranes that, depending on the pore geometry can be 

removed more easily. As discussed before, for the microfluidic filtration system, even 

after the formation of the cake layer, there is still a flow of water between the 

microgels. This flow might avoid permanent/strong interactions between the 

particles as long as the applied pressure does not deform the particles too much. To 

be complete, differences in g-forces due to the size of the cell are not expected to 

have played a role in our experiments. 
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Implications for membrane filtration 

When considering our findings in the light of membrane filtration, it is clear that large 

soft particles can clog pores effectively, but also can be pushed through the pores 

depending on many factors such as particle size, polydispersity of the particle 

suspension, applied pressure and pore configuration. Although currently not taken 

as a starting point for membrane process design, cake formation and behavior can 

be reversible depending on the applied pressure, and to some extent layer thickness. 

We expect that cake reversibility is an important parameter that co-determines 

removal of a cake layer by backwashing, and through that as well membrane life time.  

With the use of centrifugation systems, we are able to extend our experiments to 

higher pressures, which could be of interest to for example ultrafiltration, 

nanofiltration, and reverse osmosis applications. It is also good to mention that the 

particle properties can be systematically varied, and the propensity of 

deswelling/deformation charted using the microfluidic systems presented here. 

4.4 Conclusions 

In this chapter, we investigated the behavior of soft microgels in microfluidic 

filtration systems as well as in centrifugation systems in order to emulate various 

situations occurring during membrane filtration. The propensity to pore clogging, 

and the position (depth) at which this takes place in a model membrane, depends on 

the applied pressure. At low pressure pores block immediately, while at higher 

pressures microgels deform and can be pushed through pores that are smaller than 

the microgel diameter, to potentially block pores deeper in the model membrane. At 

even higher pressure, particles can be more and more pushed through the pores, even 

after initially blocking them. 

When forming a cake layer on top of the model membrane, we found that cake 

compression may be as high as 30% but it is totally reversible. These results are in 

line with those obtained with the so-called hourglass configuration in which a thin 

layer of microgels was present, but are in complete contrast with results obtained 

with a rectangular configuration containing a thick layer of microgels that 

compressed irreversibly. This shows that the presence of water near the microgels is 

of essence for reversibility of cake/deposits. 

Our results are useful for the understanding of membrane filtration of compressible 

particles and shed a new light on cake layers and their ease of removal. We clearly 

showed that soft particles can be pushed through pores that are smaller than their 

original dimension, and deformation/deswelling should be taken into consideration 
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for membrane design and process optimization. The extent to which this takes place 

can be quantified using the model systems that we presented here. 
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Appendix B. Supplementary data 

 

Figure 10. Cake area (𝐴𝑐) as a function of time (𝑡) A) from 0 to 50 mbar, B) from 50 

to 100 mbar and C) from 100 to 0 mbar.  
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Abstract 

Clogging of porous media by soft particles has become a subject of extensive research 

in the last years and the understanding of the clogging mechanisms is of great 

importance for process optimization. The rise in the utilization of microfluidic 

devices brought the possibility to simulate membrane filtration and perform in situ 

observations of the pore clogging mechanisms with the aid of high-speed cameras. 

In this work, we use microfluidic devices composed by an array of parallel channels 

to observe the clogging behavior of micrometer sized microgels. It is important to 

note that the microgels are larger than the pores/constrictions. We quantify the clog 

propensity in relation to the clogging position and particle size and find that the 

majority of the microgels clog at the first constriction independently of particle size 

and constriction entrance angle. We also quantify the variations in shape and volume 

(2D projection) of the microgels in relation to particle size and constriction entrance 

angle. We find that the degree of deformation increases with particle size and is 

dependent of constriction entrance angle, whereas, changes in volume do not depend 

on entrance angle. 
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5.1 Introduction 

The observation of soft particles going through constrictions has become a subject 

of extensive research in the last years [1-3]. Depending on the properties and size of 

the particle relative to the pore size, various mechanisms occur. Micrometer sized 

soft particles reduce their size or deform to go through constrictions that are smaller 

than their diameter, whereas hard particles would not be able to do so. Small soft 

particles moving through larger pores would not need to deswell, or deform, leading 

to colloidal interactions playing a more prominent role [4,5]. 

For hard particles, clogging can happen through sieving effects, bridging or 

agglomeration, depending on the size (distribution) of the particles, and their 

interactions. Since these particles are not able to modify their conformation, the 

clogging propensity is determined by process conditions, and the ratio of channel to 

particle (agglomerate) dimension [6]. When using a suspension of colloidal soft 

particles, clogging can happen through agglomeration or the formation of arches, as 

was the case for hard particles; but the pore size is no longer the strict gate keeper 

for particle permeation [7,8]. Soft particles larger than constrictions may be pushed 

all the way through [1]; whereas the largest particles have highest propensity to get 

stuck in the constrictions and clog the channels [9]. 

Depending on particle size and constriction geometry, soft particles can use two 

mechanisms to accommodate the pressure drop generated by the clog they generate: 

deformation and deswelling [10,11]. A soft particle deforms when it assumes a 

different shape to adjust to the surrounding environment. Deformation can also be 

observed in emulsion droplets [2,12]; however, unlike emulsion droplets, soft 

particles such as microgels are also able to accommodate some of the external 

pressure by deswelling. Deswelling happens when particles expel solvent, therewith 

effectively decreasing their volume. It has been already reported that both 

deformation and deswelling of constricted soft particles occur simultaneously 

(Chapter 3). The challenge that we face is to understand how these modifications 

occur, and use that knowledge in the design of processes where these effects occur 

(such as membrane filtration). 

Microfiltration is a membrane process based on size exclusion that has pressure as a 

driving force. The size exclusion concept says that what is larger than the size of the 

pore will be retained while what is smaller will go through [13,14]. In a process where 

soft particles are present, the concept of size exclusion should be used with care since, 

as soft particles are able to modify their conformation under pressure making the size 
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exclusion concept not very straightforward, unless when linked to the effective size 

of the soft particles under process conditions. 

Many direct and indirect methods have been reported in the literature to observe and 

describe the filtration behavior of soft particles. Some indirect methods include the 

quantification of soft particles in the permeate, and modeling of process parameters 

[12,15]. Direct observation methods have also been described and mostly include the 

use of microfluidic devices coupled with optical microscopes and high-speed cameras 

[16-18]. Microfluidic devices are flexible in their design and allow for endless 

variation in conformation. In our work, the microfluidic devices generally contain 

constricted channels and soft particles flow through them. We chose to work with 

microgels as model particles due to their ease of fabrication and tunable properties. 

In this work, we use microfluidic devices to observe the clogging behavior of 

microgels larger than the constrictions. We quantify the clog propensity in relation 

to the clogging position and particle size and find that the majority of the microgels 

clog at the first constriction independent of particle size and constriction entrance 

angle. We also quantify the variations in shape and volume (2D projection) of the 

microgels in relation to particle size and constriction entrance angle. We find that the 

degree of deformation increases with particle size and is dependent on constriction 

entrance angle, whereas, changes in volume are not dependent on entrance angle. 

5.2 Material and methods 

Microgel synthesis and characterization 

Polyacrylamide (pAAm) microgels are used as model particles for the channel 

clogging experiments. The microgels were produced via the emulsion templating 

technique as described in previous work [16]. For the preparation of the microgels, 

we start by mixing 100 mL kerosene with 1% of the surfactant polyglycerol 

polyricinoleate (PGPR90). In a separate container we prepare the monomer solution 

with 10 ml of water, 0.1 M sodium hydroxide solution to set the pH at 8.5, 2.5 g of 

acrylamide, 50 mg of potassium persulfate (KPS) and 25 mg of N,N′-

methylenebisacrylamide (BIS) as the crosslinker at 1%wt as compared to the total 

monomer content. The monomer solution is added to the content of the round 

bottom flask and the aqueous phase is emulsified into the oil phase under high shear 

with a rotor-stator mixer for three minutes. We then close the round bottom flask 

with a rubber septum and bubble the emulsion with nitrogen for 20 minutes to 

remove oxygen. We subsequently place the round bottom flask on a stirring plate on 

ice and we inject 1 ml N,N,N′,N′-tetramethylethylenediamine (TEMED) to trigger 

the polymerization. The reaction time is 2–3 hours. After, we precipitate the 
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microgels in cold methanol and the microgels are cleaned by repeated centrifugation 

and resuspension steps, first in methanol to remove excess kerosene and surfactant, 

and finally in water. The microgel suspension is stored at 4 °C. The microgels are 

micrometer sized and have a polydisperse size distribution. The diameter of the 

microgels range from 3 µm to 50 µm with a Sauter mean diameter (D[3,2]) of 10 µm. 

Size distributions were measured by laser diffraction (Malvern Mastersizer 3000). The 

microgels were used suspended in water at ~ 0.1 %vol. 

Microfluidics 

The microfluidic devices we use to simulate membrane filtration are composed of a 

main channel with an inlet and an outlet. An array of smaller parallel channels is 

connected to the main channels to simulate the pores of a membrane. The channels 

have 5 different entrance angles (6 channels for each angle) varying from 0° to 55° 

(Figure 1 and Figure 2) [19]. The microfluidic devices were produced by soft 

lithography and coupled to an optical microscope equipped with a high-speed camera 

to allow in situ observation of the filtration process. The devices were connected via 

Teflon tubing to a pressure controller (Elveflow OB1-MK3). The filtration 

experiments were conducted at 100 mbar and observed at relatively low 

magnification (2.5x) until all the channels were clogged. We consider the system 

completely clogged when there is at least one particle permanently stuck in every 

channel in the time frame observed (average of 10 minutes). After system clogging 

was complete, we increased the magnification to 20x, zooming in on a single particle 

stuck in a pore and gradually increased the pressure up to 800 mbar to force the 

particle to go through the constriction. With this experiment we expect to be able to 

observe particle’s change in conformation and/or volume when going through a 

constriction. 

Image analysis 

Self-written MATLAB scripts are used to analyze the images; for the clogging 

experiments, we determine the average clog constriction position, so how deep each 

channel clogs. For experiments focusing on the single particle behavior, we select 

images from the sequence obtained with a high-speed camera: typically showing the 

particles in the middle of the constriction, on the verge of being pushed all the way 

through. We use these images to determine the degree of deformation of the particles 

as previously described [16]. Briefly, we rewrote the sphericity equation in terms of 

the area and the perimeter of the microgel in a 2D image which leads to the following 

equation to calculate this sphericity parameter 𝛹: 
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𝛹 =
2√𝜋𝑁𝑎

𝑁𝑐𝑖𝑟𝑐
 (1) 

where 𝑁𝑎 is the number of pixels in the area of a microgel and 𝑁𝑐𝑖𝑟𝑐 is the number of 

pixels in the circumference of the microgel area. 

 

 

Figure 1. Optical microscopy image of the array of channels that compose the 

microfluid device at 2.5x magnification. There are 30 parallel channels with five 

different entrance angles. From left to right: 0, 20, 35, 45, 55°. Scale bar denotes 500 

µm. 

 

 

Figure 2. Schematic representation of the channels and their different entrance angles, 

b) internal dimensions of the constrictions, depth of the channels is 40 µm, c) 

constriction representing the location where the angles are measured. Reproduced 

with permission from Nature (van de Laar et al. [19]). 
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5.3 Results and discussion 

Average clog position in the channels 

In this study, we observe the behavior of individual particles at local scale through 

optical microscopy. During the clogging experiments, the channels of the 

microfluidic devices clog at different positions. To analyze whether this position is 

related to the particle size or to the applied pressure, we plot the clog propensity for 

each clog position for three different filtration pressures (Figure 3A-C). Clog 

propensity is the percentage of clogs in a determined position in relation to the total 

amount of observed clogs in all channels. For a better understanding of the data, we 

classified the particles according to their size in three different size ranges within the 

same experiment. From our observations it is clear that most of the channels clog at 

the first constriction, independently of particle size or applied pressure. There is a 

slight trend for smaller particles to clog at higher constriction number (deeper in the 

channel), which seems obvious since smaller particles are more likely to be pushed 

through a constriction, having to go through less shape modification (deswelling and 

deformation). 

At 50 mbar applied pressure, we can see that clogging happens only in the first 

position for particles larger than 30 µm. For smaller particles, this happens within the 

first eight constrictions. As we increase the applied pressure to 100 mbar, the particles 

may be forced to go deeper into the channels before clogging it. Particles larger than 

30 µm have a very high propensity to clog at the first constrictions and smaller 

particles have higher propensity to clog at deeper positions. As we increase the 

applied pressure to 150 mbar, we see that particles smaller than 25 µm do not clog 

the channels anymore (Figure 3C,D). The pressure is high enough to promote the 

modification of their conformation and for that reason they can be pushed all the 

way through the channels. Slightly larger particles show a high propensity to clog at 

the beginning of the channels, as part of the natural sieving effect. Given the process 

conditions, these particles cannot modify their shape sufficiently to move through 

the constrictions, and thus clog the channels. The size distribution of the particles 

that clog the channels at different pressures can be seen in Figure 3D. We can see 

that the system selectivity changes with the variation in pressure due to the changes 

in conformation of the microgels. 

The channels of the microfluidic devices used in this work have a variety of entrance 

angles. In Chapter 3, we found that the entrance angles do not have an influence on 

overall clogging behavior of micrometer-sized particles that are smaller than the pore. 

Here we investigate larger particles in detail. 
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Figure 3. Relationship between clog propensity and clog position (how deep in the 

channel the clog stabilizes). At A) 50 mbar, B) 100 mbar and C) 150 mbar. Blue 

symbols represent particles between 25 and 30 µm. Red symbols represent particles 

between 31 and 35 µm and black symbols represent particles between 36 and 40 µm. 

D) Size distribution of the microgels that clog the pores at 50 mbar (blue symbols), 

100 mbar (red symbols) and 150 mbar (black symbols). Lines are to guide the eye. 

In situ observation of clogging microgels 

Whenever soft particles are forced through pores that are smaller than their diameter, 

the particles change their shape. Figure 4 shows microgels before going through a 

constriction and during their passage through the constriction. It is easy to see that 

the microgels go through changes in shape (deformation); however, it is harder to 

quantify deformation and to analyze whether microgels also deswell (lose volume). 

For that reason, we use image analysis to determine the degree of deformation and 

deswelling of the particles. 
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Figure 4. Optical microscopy (20x) images of microgels before constrictions (top) and 

in the middle of constrictions (bottom), for four different entrance angles going from 

left to right: 0, 20, 45 and 55°. Scale bars denote 10 µm. 

To determine the degree of deformation of the microgels before and during their 

passage though the pores (middle of the constriction), we determine the sphericity 

parameter of the microgels from the images (Equation (1). 

For comparison, the sphericity of a perfect sphere is 1.00, the sphericity of an ellipse 

is 0.93, and the sphericity of a dumbbell is approximately 0.80. These are also the 

shapes we will use throughout the chapter to describe the deformed microgels. 

Figure 5A shows the plot of the sphericity of microgels at different entrance angles 

for microgels with different sizes. The sphericity of microgels with diameters varying 

from 24 to 26 µm going through constrictions does not depend on the entrance angle 

of the channels and their values are very close to 1, which implies that these microgels 

do not deform much to go through the constrictions. This is not surprising since the 

constrictions have a size of 20 µm. As the microgels increase in size (diameters from 

27 to 30 µm), they tend to have lower sphericity values (Figure 5B and Figure 5D), 

which is more pronounced at low channel entrance angles (Figure 5A). This means 

that the microgels are deformed as a dumbbell when going through low entrance 

angle constrictions (Figure 5C). On the other hand, at high entrance angles the 

microgels tend to assume a more elliptical shape, as reflected in their sphericity values. 
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Figure 5. A) Microgels sphericity (𝛹) variation with entrance angle (𝜃). Blue circles 

represent data obtained for microgels with diameters between 24 and 26 µm, red 

squares for diameters between 27 and 30 µm, and black triangles for diameters higher 

than 30 µm. B) Sphericity as function of particle diameter. Blue circles represent 

entrance angles of 0°, red squares 20°, black triangles 35°, green diamonds 45° and 

orange pentagons 55°. C) Scheme representing the difference in shape that microgels 

assume at different entrance angles. D) Scheme representing the change in shape of 

at increasing microgel size. 

For microgels with diameters larger than 30 µm, we observe an independence of 

microgel sphericity on entrance angle, and also find low sphericity values (Figure 5A). 

This means that these microgels are so large that they have to deform to a dumbbell 

shape independently of the shape of the constriction. We also have illustrated a 

number of effects in Figure 6, in which we show images of microgels of similar size 

going through low and high entrance angle constrictions (top part), and it is clear that 

both microgels deform into similar dumbbell shapes. When using different sizes of 

microgels going through the same constriction as illustrated in the bottom images of 

Figure 6, it is also clear that they assume different shapes. 
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Figure 6. Top: Optical microscopy images (10x) showing microgels of similar size in 

the middle of constrictions of different entrance angles. Particles have diameters of 43 

and 41 µm, respectively. Scale bars denote 50 µm. Bottom: Optical microscopy images 

(20x) of microgels with different sizes going through constrictions with the same 

entrance angle (0°). Particles have diameters of 27 and 43 µm, respectively. Scale bars 

denote 20 µm. 

Particle compression versus deformation 

To quantify compression/deswelling of the particle we use the ratio between the 2D 

projection area of the particle image in the middle of the constriction (𝐴2) and the 

area of the particle before the constriction (𝐴1). We plot the change in area as function 

of the sphericity (Figure 7) for particles of similar size ranges, this time for smaller 

size intervals as the ones used before (in Figure 3). Small particles may lose a bit of 

area, but the sphericity is still very close to 1 since the particles hardly need to deform 

or deswell to pass the constriction. As the size of the microgels increases, both 

sphericity values and change in area decrease since larger microgels have to modify 

themselves more to go through the pores. As for the degree of each modification 

(deformation or deswelling) we see that deswelling plays an important role as does 

deformation. Larger particles obviously need to deform more to pass through the 

constriction, and possibly deswell to some extent. Both processes are time 

dependent, and since we binned all data irrespective of the applied pressure or  
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Figure 7. Comparison between deswelling (𝐴2/𝐴1) and deformation (𝛹) for microgels 

with diameters varying from 22 to 43 µm. Points represent binned data: 22-23 µm 

(blue circle), 24-25 µm (red square), 26-27 µm (black triangle), 28-29 µm (green 

diamond), 30-31 µm (orange pentagon), 32-33 µm (brown left arrow), 34-35 µm 

(purple right arrow), 36-37 µm (pink hexagon), 37-39 µm (lilac star), 40-41 µm (teal 

inverted triangle), 42-43 µm (turquoise asterisk). 

entrance angle, it could be that some differences are due to the kinetics of these 

processes. 

Also, large microgels (>40 μm) assume a dumbbell shape while going through the 

pores (Figure 7). The dumbbell shape allows for a more localized compression, i.e. 

the deswelling occurs only at the part that is going through the constriction and as 

soon as that part is released, it swells back while another part is being compressed. 

In this way the microgels do not deswell as a whole but part by part and reswell 

quickly as soon as they come out of the constriction. For this reason, the variation in 

area for larger microgels as seen in Figure 6 is again comparable to the ones found in 

smaller microgels. As mentioned previously, the angle and the applied pressure 

(kinetics) may have played a role here, but for now we consider this outside the scope 

of our analysis, and we limit ourselves to the overall behavior. 

5.4 Discussion 

In previous work [16], we investigated the behavior of microgel packings at different 

osmotic pressures, and found that microgels use both deswelling and deformation to 

accommodate pressure to different extents. The composition of the microgels 

changes with increasing pressure since they lose volume, becoming more 
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concentrated which also influences their deswelling, and deformation behavior. In 

our current observations on microgels under dynamic conditions, we see that this 

also holds. The microgels both deform and lose volume to accommodate applied 

forces as illustrated in Figure 7. 

We observe that microgels clog individually due to the fact that they are soft and 

large. For this reason, they are not likely to clog by forming arches or agglomerate 

(no colloidal effects) [2,6]. However, as they are soft, they can also go through 

constrictions that are smaller than their diameter by changes in shape and volume 

[10]. 

We observe that the majority of permanent clogs happen in the first constriction. Li 

et al. [11] measure the critical pressure at which microgels are forced through a 

constriction. They find that after going through a first constriction, a smaller critical 

pressure is necessary for the microgels to go through next constrictions if the 

particles do not reswell fast enough to their original shape and size. This would imply 

that once a particle passes the first constriction, it would pass all of them, but that is 

typically not what we find since clogging deep in the pores is also observed. This in 

turn indicates that most probably the microgels we use are able to reswell fast. The 

critical pressure can also help us explain the change in system selectivity with 

pressure. 

We also found that the change in shape of the microgels does depend on the channel 

entrance angle, whereas the variation in volume is not dependent on the channel 

entrance angle since the data is very scattered (see Appendix C). The same 

observation was made by Li et al. [10]. On small microgels the entrance angle does 

not have an influence on the shape of the microgels. This happens because when the 

microgels are inside the constrictions, they are not in contact with the entrance of the 

channel but only with the internal dimensions of the constriction. For this reason, 

only the internal dimensions of the constriction will influence the deformation and 

deswelling of microgels. When the microgel is large, part of it will be inside the 

constriction and part outside. The part that enters the constriction loses volume and 

the rest of the microgel keeps their original properties. As soon as the part that was 

squeezed comes out of the constriction, it reswells. It is then the turn of the part that 

was still outside of the constriction to deswell. In the end a constant change in volume 

is observed. 

These results are expected to be of importance for membrane filtration of soft 

particles where particle transmission through the pores can be observed, and is not 
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always desired. Pan et al. [9] synthesized fluorescently labelled microgels, and found 

microgels in the permeate when using microporous membranes with pores much 

smaller than the diameter of the particles. Understanding this transmission 

mechanism (also in relation to the pore size distribution) is important for process 

optimization when the presence of particles in the permeate is not desirable, or where 

a specific size separation is needed. Other example of areas that can benefit from our 

results are chromatography, injectable microgels for tissue engineering [20] and 

studies on blood cell flow [21]. 

Conclusions 

In this work, we used microfluidic channels to observe the behavior of microgels 

going through constrictions. We find that most microgels clog the channels at the 

first channel constriction independently of constriction entrance angle, particle size 

and applied pressure. We do see a shift in size distribution of the particles that clog 

the pores with increasing pressure showing a change in selectivity with system 

parameters such as applied pressure. 

Considering the variations in microgel shape and volume, we find that the degree of 

deformation increases with particle size and is dependent on constriction entrance 

angle, whereas changes in volume are independent of entrance angle. 

These findings are of great importance for various fields such as membrane filtration. 

They show how soft particles are able to change their conformation under pressure 

and emphasize the importance of careful analysis of the process as a whole (so 

including particle deformation) to avoid undesired contamination in the final 

product. 
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Appendix C. Supplementary data 

 

 

Figure 8. Comparison between deswelling (𝐴2/𝐴1) and particle size for constriction 

angles of: Blue circles 0°, red squares 20°, black triangles 35°, green diamonds 45° and 

orange pentagons 55°. 

Particle compression 

When plotting the area ratio as function of particle size for different entrance angles, 

we see that microgel deswelling can be as high as 25%, but it is not a function of the 

particle size or the constriction entrance angle, since the data is very scattered. Small 

particles may lose up to 25% area, but this is not that much reflected in the 

circumference, and therefore this parameter can still be close to 1. Also, at high 

pressure the particles will have less time to deswell and thus need to deform more in 

order to pass the constriction, or vice versa, and this could be an explanation for 

range of area ratios that are found. 
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Introduction 

As mentioned throughout this thesis, soft particles behave rather differently from 

their solid counterparts. The special characteristics of soft particles make it difficult 

to predict their behavior during separation processes such as filtration [1,2]. From 

earlier chapters, it is clear that deformability leads for example to the passage of 

particles through pores that are considerably smaller in size than the diameter of 

particles; an effect that is not covered by current filtration theory. In the following 

section, the main findings of each chapter will be highlighted first, and related briefly 

to practical processes. Finally, the implications of these findings will be put into a 

wider perspective. 

Main findings 

In Chapter 2, we use packings of micrometer-sized gels to investigate the behavior 

of microgels under external pressure by using the osmotic stress technique. We 

obtained information on the resistance of the packings to compression and observed 

the structure of the packings. We found that suspensions of dextran microgels start 

to resist compression at volume fractions close to random close packing of hard 

spheres with the same size distribution. For volume fractions between random close 

packing and 1, the resistance increases similarly to that of a dextran solution of the 

same concentration. From image analysis followed that microgels are deformed but 

internal concentration remains the same. At volume fractions ‘higher than 1’, 

microgels are forced to expel solvent and deswell. 

The results of Chapter 2 are of importance for processes in which soft particles are 

exposed to an external force, and pushed into each other as is the case during 

filtration and centrifugation, or even processing in general where particles are 

exposed to external stresses. The osmotic stress technique is thus useful to assess 

properties of the packings [3,4]. In our study, we used a microgel suspension with a 

broad size distribution which allows particle rearrangement during compression, so 

smaller particles may be forced to change positions in the interstitial spaces of the 

packing [5]. 

When translating this to the situation during membrane filtration in which particles 

accumulate on top of a membrane, we can relate our findings to the cake resistance 

that builds up during filtration. Although we cannot do this in a quantitative manner 

yet, it is clear that our findings can be used to predict the resistance of the layer as 

function of the applied pressure for example, which in a next step can be linked to 

the local selectivity of the membrane process, as is further elaborated in Chapter 3. 



 

107 

 

This is an important step toward more detailed mechanistic understanding of 

filtration behavior. 

We were intrigued by the observations that microgels of the size that we used would 

first deform at lower pressure and deswell at higher pressures. For that reason, we 

decided to carry out a more in-depth analysis of microgel deformation and 

deswelling. In Chapter 3 we investigated the deformation and deswelling behavior of 

individual microgels in microgel packings at varying osmotic pressures. We found 

that in most cases, both deswelling and deformation occur simultaneously; the degree 

to which each modification occurs depends on the osmotic pressure of the system. 

Faceting tends to be the dominant modification mechanism at lower pressures while 

deswelling is more pronounced at higher pressures (Figure 1). 

Under these conditions, microgels regain their spherical shape if the pressure of the 

system continues to increase, although obviously their size becomes smaller. In this 

chapter, we confirm the observations of Chapter 2 that microgels first deform and 

afterwards deswell with increasing pressure. We also propose a theory capable of 

predicting the behavior of microgels according to the applied pressure to the system. 

This theory and the observations in general can be applied to processes where the 

structure of packings of soft particles is critical such as chromatography. 

 

Figure 1. Confocal images of a single microgel at (A) zero pressure, (B) at P=10 kPa 

and (C) 2 MPa. Red outlines correspond to the edges of the particle after image 

analysis. Scale bars denote 5 μm. Adapted from Chapter 3. 

Membrane cake formation and filtration in general are subjects that can benefit from 

the results presented in this thesis. With our theory from Chapter 3, it is possible to 

predict the shape of the microgels depending on applied pressure, and this is a direct 

link to the retention of particles. As a matter of fact, this could be a way to predict 

the actual pore size needed to retain particles that are quite smaller than when 
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measured away from the applied process conditions. Also, the liquid flux will be 

influenced by the shape of the soft particles in the membrane cake/deposit layer. 

When soft particles are deformed, the contact area between them is larger. This 

means that the space in between the particles will be smaller, therewith decreasing 

the porosity of this cake/deposit leading to higher resistance against flow. As soon 

as the particles are forced further together and regain their spherical shape, it is 

expected that the porosity of the cake/deposit will consequently increase, therewith 

increasing the liquid flux, and possibly even leading to passage of these small particles 

through a pore (see also later chapters). 

After studying the behavior of microgels in isotropic and static conditions with 

osmotic stress experiments in the first two experimental chapters, we moved on to 

using the microgels in dynamic systems that move our observations in model 

processes closer to those needed to understand filtration (and centrifugation) 

processes in practice. 

In Chapter 4, we use soft particles in microfluidic filtration and centrifugation devices 

to emulate processes in which they are being subjected to external forces. We found 

that the propensity of a microgel particle to clog a pore is dependent on the applied 

pressure. At low pressures, microgels are more likely to clog a pore. As pressure 

increases, microgels are more likely to be pushed all the way through the pores or 

block deeper in the pore. We also found that a microgel deposit layer (cake layer) that 

formed on top of the model membrane can be compressed up to 30% but the 

compression is totally reversible, which was also observed in centrifugation trials. 

Reversibility in centrifugation trials was observed as long as the chip configuration 

allowed for water to be in close contact with the deposited layer. In the absence of 

water, the layer compressed irreversibly. The conclusion is that microgel deposit 

compression can be totally reversed as long as there is water available for reswelling. 

Our observations on the behavior of soft particle deposits shed new light on behavior 

of cake layers in membrane filtration, and even more precisely on the management 

of deposit formation, which is one of the challenges faced during membrane 

filtration. The overall management of fouling as this effect is known in the membrane 

field, is mostly solved through the application of high shear in combination with 

extensive cleaning [6,7]. Our results clearly indicate that the pressure drop applied 

during filtration may lead to tighter cake layers through which less liquid will 

permeate, and relatively small particles will be captured. When thinking in terms of 

product quality, this will influence both productivity and selectivity of the process 

greatly. Likewise, it will also influence the efficiency of any high shear cleaning step 
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that is carried out to mitigate layer formation [8]. The critical pressure above which 

gel reversibility is no longer observed, is normally not considered in regular process 

design and cleaning operation. We have shown that this critical pressure also depends 

on particle properties, but we only briefly touched upon this effect that is worthy of 

a deeper study. 

In Chapter 4, we investigated relatively small particles collectively going through 

pores. In Chapter 5, we zoom in and observe individual particles going through 

pores/constrictions as in a model membrane system. We see that most microgels 

clog at the first channel constriction independently of the constriction entrance angle 

and applied pressure. Higher pressures promote clogging deeper in the channels but 

most of the microgels will still clog at the first constriction. This was a remarkable 

finding, since this also indicates that cross-flow as standardly used will not be 

effective to mitigate this effect. We also observe a shift in particle size of microgels 

that clog the pores with increasing applied pressure, as could be expected from 

previous chapters: particles decrease their size with increasing pressure and are more 

likely to go through a pore. The degree of particle deformation is dependent on 

channel entrance angle whereas changes in volume are not. From this it is clear that 

system selectivity is influenced by the process parameters and the pore geometry, 

therewith indicating again that choosing a membrane pore size based on the particle 

diameter under non-process conditions will lead to ‘unexpected’ filtration behavior 

that can now much better be understood through our observations. 

The main message of this chapter is that soft particles are able to modify their 

conformation considerably, and thus they can be pushed all the way through pores 

that are smaller than the particle diameter. Whether a particle gets trapped will 

depend on process parameters such as applied pressure as well as particle properties. 

The fact that soft particles that can be up to two times the constriction size can be 

pushed through the pores show that this capacity of the particles should be taken 

into consideration for membrane selection to avoid process failure. It also shows that 

this complexity needs to be taken into account. 

Next steps and further interpretation 

In our research, we used a microfluidic system as a model membrane for our 

research. The model membrane used was composed of non-connecting straight 

through channels. The channels also had a fixed amount of constrictions, same pore 

size and five different entrance angles. It was in this highly ideal system that we 

obtained the results presented in the last two chapters of this thesis. However, real 

membranes differ from this ideal system in pore configuration, pore size distribution 



 

110 

and pore design. These topics will be discussed in the following paragraphs together 

with some suggestions on the use of model particles and model suspensions. 

Pore configuration 

In general, membranes have a variety of pore configurations: straight-through, 

interconnected and even dead-end pores [9]. This means that soft particles can feel 

the applied pressure in different ways according to their position inside the 

membrane. When soft particles are under pressure, it is like that they will 

deswell/deform according to particle characteristics and applied pressure. For this 

reason, soft particles going through pores with different configurations can 

experience different amounts of pressure and consequently deswell in different ways 

changing their water content and softness. All these changes are expected to occur 

in real membrane configurations and were not taken into consideration in this thesis. 

From the observation that plugging often occurs near the first constriction (Chapters 

4 and 5) in model membranes, also follows that this could be a very important effect 

in practice. 

Pore size distribution 

Another particularity of our model system is that all channel/pore entrances had the 

same size and that is not true for most membranes. Most membranes used on large 

scale do not have pores with the exact same size but a pore size distribution [10]. 

This is mainly due to the fact that producing membranes with identical pore sizes is 

challenging and expensive [11,12]. For a membrane with a pore size distribution, it is 

expected that the largest pores carry a bigger portion of the permeate, and thus the 

separation characteristics of the overall process would depend greatly on the size of 

these pores: both flux and retention would be affected by this. The initial retention 

would be determined by the ratio of particle over pore size for the process conditions 

used (see earlier remarks on particle size to be used in practice) [13], but when these 

pores get blocked the next largest pores carry more liquid and retention is shifted to 

smaller particles. We expect pore size distribution to have an influence on the 

deswelling/deformation behavior of soft particles and consequently on filtration 

behavior in general. In our research, we used particles with a broad size distribution 

and larger and smaller particles were added to the system simultaneously. What we 

observed is that smaller particles easily passed through the pores while larger particles 

were responsible for clogging the pores/constrictions. After clogging, smaller 

particles were also retained to form a cake layer. In a system with a pore size 

distribution, smaller particles can thus be expected to be responsible for pore 

clogging possibly together with larger ones and that would change clogging dynamics. 
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Pore design 

Our model membrane has five different pore entrance designs. In a real membrane, 

there would be no designs, but many pores coexisting (pore matrix) with various 

entrance angles unless they are isoporous membranes [11,12]. Although we covered 

a range of entrance angles in our research, alternative entrance angles and designs 

could also be tested in a similar way. 

Model particles 

In this thesis, we used model particles in suspension. The suspensions were ideal 

since they contained soft particles in the micrometer range, what excluded colloidal 

interactions that may play a role in practical systems [14,15]. In Chapter 2, we used 

microgels with different properties such as size distribution, whereas in the following 

chapters, a single type of microgel suspension was used. It would be insightful to 

investigate the effect of particle properties such as softness and size distribution on 

filtration behavior in the systems studied. As a next step, various types of particles, 

with different compositions and size distributions can be combined, to emulate 

filtration in practice more closely. Also, interactions between particles would be 

interesting to investigate in the model membrane systems, since it is expected that 

this can greatly influence filterability of a feed solution as described by Van de Laar 

et al. [16] for hard particles. 

Model suspensions 

When going from the rather ideal liquids used here, and considering non-ideal liquids, 

the implications for concentration and separation processes can also differ. When 

concentrating ideal microgel suspensions, only the suspension as a whole will be 

concentrated. In non-ideal mixtures, depending on the selectivity of the membrane, 

the concentration of not only particles, but also solutes can completely change the 

behavior of the retentate. When the final objective of the membrane process is 

separation, it is easier to predict the behavior of ideal mixtures, but when 

fractionation takes place this is much more complex [17]. Furthermore, the presence 

of different types of particles and solutes can promote particle interactions and also 

influence/create interactions between the particles which may lead to shear-induced 

diffusion that is known to improve membrane processes. When the interactions are 

between particles and the membrane, this is mostly detrimental for filtration [6,18]. 

These considerations clearly indicate that doing extended research with non-ideal 

liquids can bring extra information needed to design filtration processes. In short, 

every filtration process is unique, and for that reason, the more information available 

to help with process design, the better, and for this model membranes as used in this 

work are of great value. 
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Extra observations 

During our in-situ microscopy observation experiments, we saw many peculiarities 

that could be subject of follow-up research. Among these topics are particle 

adhesion, the movement of the smaller particles through the packing and kinetics of 

reswelling and deformation. We observed that when a clog would be released, the 

particles accumulated on top of it would be released in chunks and not immediately 

as individual particles (Figure 2). We also observed that when a constriction is clogged 

and there is accumulation of particles on top of it, small particles still move in 

between the bigger particles and ultimately move through the pore. Studying the 

behavior of these particles could bring more information on the structure of the 

accumulation layer itself.  

 

Figure 2. Microgel in constriction A) before release and B) after release showing 

agglomeration. Scale bar denotes 20 µm. 

Finally, we observed that once a microgel goes through one constriction, it is more 

likely that it will go through more constrictions at the same shot. This can be related 

to the reswelling kinetics, since the particle may not have had enough time to reswell 

to the size in which it initially was caught in the first constriction. We did not 

quantify/study this behavior, but it surely would help understanding of soft particle 

filtration to a next level. For straight through pores (with constrictions) this would 

imply that if a particle can move through the first constriction, it will move all the 

way through the pores if it does not reswell fast, which would also greatly help the 

filtration process as a whole. The monitoring and understanding of the kinetics of 

particle deswelling and reswelling could help the explanation of this observation and 

bring more information on particle behavior in general. 

Throughout this thesis, we used two-dimensional observations to investigate the 

systems. However, three-dimensional observations could bring a more precise 

A B



 

113 

C
h

ap
te

r 
6

 

insight into the behavior of individual particles in the system as a whole and closer 

to real situations and applications. Alternative microscopy techniques could be used 

for this purpose such as three-dimensional reconstruction of confocal images. The 

observation of microgel packings/cake layers/deposits in a three-dimensional way 

can bring more details on structure as for example the number and size of contact 

points and the position of smaller particles before and after rearrangements. 

Concluding remarks 

In our research and discussion, we focused on membrane filtration processes, and 

showed how the model micro systems can be used to generate mechanistic 

understanding. However, our results are also relevant for other fields of application, 

mainly those using packings of soft particles. One example of such application is 

chromatography. In our first experimental chapter (Chapter 2), we use Sephadex 

microgels as model particles, that were developed to be used in chromatography 

columns, and our results immediately link to chromatography processes. 

All the differences between our model membrane system and real applications 

mentioned in the previous sections should be subject of extended research since such 

topics are only touched upon in this work. However, it is clear that the tools used in 

this work and the methodology developed can be applied very widely to different 

fields of application and systems. 

  



 

114 

References 

[1]  A. Bouchoux, P. Qu, P. Bacchin, G. Gésan-Guiziou, A general approach for 

predicting the filtration of soft and permeable colloids: the milk example, 

Langmuir 30 (2014) 22–34. 

[2]  M. Elimelech, S. Bhattacharjee, A novel approach for modeling concentration 

polarization in crossflow membrane filtration based on the equivalence of 

osmotic pressure model and filtration theory, J. Membr. Sci. 145 (1998) 223–

241. 

[3]  C. Bonnet-Gonnet, L. Belloni, B. Cabane, Osmotic pressure of latex dispersion, 

Langmuir 10 (1994) 4012–4021. 

[4]  M. Rubinstein, R.H. Colby, A.V. Dobrynin, Dynamics of semidilute 

polyelectrolyte solutions, Phys. Rev. Lett. 73 (1994) 2776–2779. 

[5]  S. Nezamabadi, T.H. Nguyen, J.-Y. Delenne, F. Radjai, Modeling soft granular 

materials, Granul. Matter 19 (2017) 8. 

[6]  L. E. Head, M. R. Bird, Backwashing of tubular ceramic microfilters fouled with 

milk protein isolate feeds, J. Food Process Eng. 36 (2013) 228–240. 

[7]  A. Ostadfar, A. H. Rawicz, M. Gitimoghaddam, Application of backwashing to 

increase permeate flux in bioparticle separation, J. Med. Biol. Eng. 33 (2013) 

478–485. 

[8]  L. Böhm, A. Drews, H. Prieske, P.R. Bérubé, M. Kraume, The importance of 

fluid dynamics for MBR fouling mitigation, Bioresource Technol. 122 (2012) 

50-61. 

[9]  M.A. Islam, M. Ulbricht, Microfiltration membrane characterization by gas-l

 iquid displacement porometry: Matching experimental pore number 

distribution with liquid permeability and bulk porosity, J. Memb. Sci. 569 (2019) 

104-116. 

[10]  J. Woods, J. Pellegrino, J. Burch, Generalized guidance for considering pore-

size distribution in membrane distillation, J. Memb. Sci. 368 (2011) 124–133. 

[11]  V. Abetz, Isoporous block copolymer membranes, Macromol. Rapid Commun. 

36 (2015) 10-22. 

[12]  S. Rangou, K. Buhr, V. Filiz, J.I. Clodt, B. Lademann, J. Hahn, A. Jung, V. 

Abetz, Self-organized isoporous membranes with tailored pore sizes, J. Memb. 

Sci. 451 (2014) 266-275. 

[13]  R. Baker, Membrane Technology and Applications, 2nd ed., John Wiley & 

Sons, Ltd, Chichester, 2004. 

[14]  K. L. Tung, C. C. Hu, C. J. Chuang, K. J. Hwang, T. Y. Wu, Effects of soft 

particle deformability and particle/pore size ratio on the blocking mechanism 

in dead-end microfiltration, Chem. Eng. Technol. 33 (2010) 1341–1348. 



 

115 

C
h

ap
te

r 
6

 

[15]  O. Nir, T. Trieu, S. Bannwarth, M. Wessling, Microfiltration of deformable 

microgels, Soft Matter 12 (2016) 6512–6517. 

[16]  T. van de Laar, S. ten Klooster, K. Schroën, J. Sprakel, Transition-state theory 

predicts clogging at the microscale, Sci. Rep. 6 (2016) 28450. 

[17]  A.M.C. van Dinther, C.G.P.H. Schroën, R.M. Boom, Particle migration leads 

to deposition-free fractionation, J. Memb. Sci. 440 (2013) 58-66. 

[18]  H. P. Chu, X.-Y. Li, Membrane fouling in a membrane bioreactor (MBR): 

sludge cake formation and fouling characteristics, Biotechnol. Bioeng. 90 (2005) 

323-331. 

 



 

116 



 

117 

 

Summary 

Soft particles are present in our daily lives and differently from their hard 

counterparts, they can change conformation and composition when experience an 

external source of stress. This specific characteristic of soft particles can make it more 

challenging to predict their behavior in processes such as filtration and centrifugation. 

More information on the specific behavior of soft particles under external stress is 

still lacking on current literature and can be useful to different areas of application. 

The aim of this thesis is to provide information that will contribute to the 

understanding of soft particle behavior under pressure such as in pore clogging and 

cake formation in membrane processes. We use micrometer-sized microgels as 

model particles in this work due to their tunability and ease of production. Also, using 

micrometer-sized microgels we can consider colloidal interactions negligible, what 

simplifies our system and allows us to focus on individual particle behavior. 

In the first two experimental chapters (Chapters 2 and 3), we focus on microgel 

packings (static conditions). The packings were produced by osmotic stress with 

controlled, varying applied pressure. 

In Chapter 2, we focus on the collective behavior of microgels in packings in static 

conditions and we describe the behavior of the microgel packings in term of well-

known polymeric theories such as the Flory-Rhener theory. We found that 

suspensions of dextran microgels start to resist compression at volume fractions 

close to random close packing of hard spheres with the same size distribution. For 

volume fractions between random close packing and 1, the resistance increases 

similarly to that of a dextran solution of the same concentration. From image analysis 

followed that microgels are deformed but internal concentration remains the same. 

At volume fractions ‘higher than 1’, microgels are forced to expel solvent and deswell.  

In Chapter 3, we explore our observation from Chapter 2 that individual particles 

will respond to stress in different ways according to the applied pressure. For that we 

use microgel packings containing a mixture of fluorescent and non-fluorescent 

microgels with an excess of non-fluorescent microgels. We observe the packing using 

fluorescence microscopy and are able to observe single fluorescent particles 

surrounded by non-fluorescent particles (non-visible). We found that both 

deswelling and deformation occur simultaneously when soft particles are under 

pressure and we describe a theory to predict their behavior according to the pressure 

applied to the system. 
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In Chapters 4 and 5, we use microfluidic devices to observe the behavior of soft 

particles in dynamic systems. 

In Chapter 4, we focus on the collective behavior of particles. For that we use a 

microcentrifuge coupled with an optical microscope to investigate the reversibility of 

soft particle deposits according to the applied force. We found that, for the particles 

used, total reversibility of deposits is possible as long as there is water available for 

particle reswelling. Also in Chapter 4, we use microfluidic devices composed of an 

array of parallel channels as a model membrane for filtration experiments. In this 

device, we observe the clogging behavior of soft particles in filtration, focus on cake 

layer formation and assess cake reversibility. We found that the propensity of a 

particle to clog is dependent on the applied pressure and that at low pressures, 

microgels are more likely to clog a pore. As pressure increases, microgels are more 

likely to be pushed all the way through the pores or block deeper in the pore. We 

also found that a microgel deposit layer (cake layer) that formed on top of the model 

membrane can be compressed up to 30% but the compression is totally reversible. 

After focusing on collective behavior of soft particles, in Chapter 5 we focus on what 

is happening at individual particle level. We observe single particles going through 

pore constrictions and assess deformation and deswelling of the particles. We then 

correlate the observations with particle and system properties such as particle size 

and applied pressure. We found that higher pressures promote clogging deeper in 

the channels but most of the microgels will still clog at the first constriction. We also 

observe a shift in particle size of microgels that clog the pores with increasing applied 

pressure, as could be expected from previous chapters: particles decrease their size 

with increasing pressure and are more likely to pass a pore. The degree of particle 

deformation is dependent on channel entrance angle whereas changes in volume are 

not. 

Finally, in Chapter 6, we discuss our main findings and their implications in real life 

situations and processes. The results presented in this thesis are of importance in 

many areas involving packings and concentration of soft particles such as membrane 

filtration and chromatography.  
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Résumé 

Les particules molles sont présentes dans notre vie quotidienne et, contrairement à 

leurs homologues durs, elles peuvent changer de conformation et de composition 

lorsqu'elles sont confrontées à une source de stress externe. Cette caractéristique 

spécifique des particules molles peut rendre plus difficile la prévision de leur 

comportement dans des processus tels que la filtration et la centrifugation. De plus 

amples informations sur le comportement spécifique des particules molles sous 

contrainte externe font encore défaut dans la littérature actuelle et peuvent être utiles 

dans différents domaines d'application. 

Le but de cette thèse est de fournir des informations qui contribueront à la 

compréhension du comportement des particules molles sous pression, telles que le 

colmatage des pores et la formation de gâteaux dans les procédés de filtration 

membranaires. Nous utilisons des microgels de taille micrométrique comme 

particules modèles en raison de leur adaptabilité et de leur facilité de production. De 

plus, en utilisant des microgels de taille micrométrique, nous pouvons considérer les 

interactions colloïdales comme négligeables, ce qui simplifie notre système et nous 

permet de nous concentrer sur le comportement des particules individuelles. 

Dans les deux premiers chapitres expérimentaux (chapitres 2 et 3), nous nous 

concentrons sur des empilements de microgels obtenus en conditions statiques. Ces 

empilements ont été produits par stress osmotique dans une gamme de pression 

contrôlée. 

Au chapitre 2, nous nous concentrons sur le comportement collectif des microgels 

dans des empilements statiques et décrivons leur comportement, notamment leur 

résistance à la compression et à la déformation dans le cadre de la théorie de Flory-

Rhener. Nous avons constaté que les suspensions de microgels de dextrane 

commençaient à résister à la compression pour des fractions volumiques proches de 

la compacité pour un empilement aléatoire de sphères dures présentant la même 

distribution de taille. Aux fractions volumiques comprises entre la compacité d’un 

empilement compact aléatoire de sphères et 1, la résistance augmente de zéro à des 

valeurs proches de celle d’une solution de dextran de même concentration. L'analyse 

d'images obtenues par microscopie confocale des empilements a ensuite montré que 

les microgels sont déformés mais que la concentration interne reste la même. Aux 

fractions volumiques supérieures à 1, les microgels sont obligés d’expulser le solvant 

et de se dégonfler, ce qui réduit leur taille. 
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Au chapitre 3, nous examinons l'observation tirée du chapitre 2 selon laquelle les 

particules individuelles réagiront au stress de différentes manières en fonction de la 

pression appliquée. Pour cela, nous utilisons des empilements de microgels contenant 

un mélange de microgels fluorescents et non fluorescents avec un excès de microgels 

non fluorescents. Nous observons la compaction à l'aide de la microscopie à 

fluorescence et pouvons observer des particules fluorescentes simples entourées de 

particules non fluorescentes (non visibles). Nous avons constaté que la réduction de 

taille et la déformation se produisent simultanément lorsque les particules molles sont 

sous pression et nous décrivons une théorie permettant de prédire leur 

comportement en fonction de la pression appliquée au système. 

Dans les chapitres 4 et 5, nous utilisons des dispositifs microfluidiques pour observer 

le comportement des particules molles dans des systèmes dynamiques. 

Au chapitre 4, nous nous intéressons au comportement collectif des particules. Pour 

cela, nous utilisons une microcentrifugeuse couplée à un microscope optique pour 

étudier la réversibilité des dépôts de particules molles en fonction de la force 

appliquée. Nous avons constaté que, pour les microgels utilisés, une réversibilité 

totale des dépôts après compaction est possible dans la mesure où il existe de l'eau 

disponible pour le regonflement des microgels Toujours au chapitre 4, nous utilisons 

des dispositifs microfluidiques composés d’un ensemble de canaux parallèles comme 

membrane modèle pour les expériences de filtration. Dans ce dispositif, nous 

observons le comportement colmatant des particules molles lors de la filtration. 

Nous nous concentrons sur la formation de la couche de gâteau et évaluons la 

réversibilité du gâteau. Nous avons constaté que la propension d'un microgel à 

boucher un canal dépend de la pression appliquée et qu'à des pressions basses, les 

microgels sont plus susceptibles de boucher un canal. À mesure que la pression 

augmente, les microgels sont plus susceptibles d'être poussés à travers les pores ou 

de se bloquer plus profondément dans les pores. Nous avons également constaté 

qu’une couche de dépôt de microgel (couche de gâteau) qui se formait au-dessus de 

la membrane modèle pouvait être comprimée jusqu’à 30%, mais que la compression 

était totalement réversible. 

Après avoir abordé le comportement collectif des particules molles, au chapitre 5, 

nous nous concentrons sur ce qui se passe au niveau des particules individuelles. 

Nous observons des particules individuelles traversant des constrictions de pores et 

évaluons leur déformation et leur dégonflement Nous établissons ensuite une 

corrélation entre les observations et les propriétés des particules et du système, telles 

que la taille des particules et la pression appliquée. Nous avons constaté que des 
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pressions plus élevées favorisaient un encrassement plus profond dans les canaux, 

mais que la plupart des microgels resteraient encrassés à la première constriction. 

Nous observons également un changement dans la taille des particules de microgels 

qui obstruent les pores lorsque la pression appliquée augmente, comme on pouvait 

s'y attendre au vu des résultats des chapitres précédents: les particules diminuent de 

taille avec l'augmentation de la pression et ont plus de chances de traverser un pore. 

Le degré de déformation des particules dépend de l'angle d'entrée du canal alors que 

les changements de volume n’en dépendent pas. 

Enfin, au chapitre 6, nous discutons de nos principales conclusions et de leurs 

implications dans des situations et processus réels. Les résultats présentés dans cette 

thèse sont importants dans de nombreux procédés séparatifs impliquant la 

concentration de particules molles, tels que les procédés de filtration notamment 

membranaire, la centrifugation mais aussi la chromatographie. 
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Samenvatting 

Zachte deeltjes zijn overal in ons dagelijks leven aanwezig, en in tegenstelling tot 

harde deeltjes kunnen ze van vorm en samenstelling veranderen wanneer ze een 

externe bron van druk ervaren. Deze specifieke eigenschap van zachte deeltjes maakt 

het uitdagend om hun gedrag te voorspellen in processen zoals filtratie en 

centrifugatie. Kennis en informatie over het specifieke gedrag van zachte deeltjes 

onder externe druk ontbreekt momenteel nog in de literatuur, terwijl dit nuttig zijn 

voor verschillende toepassingsgebieden. 

Het doel van dit proefschrift is om informatie te verschaffen die zal bijdragen aan 

het begrip van het gedrag van zachte deeltjes onder druk, zoals bij verstopping van 

poriën en vorming van koeklagen tijdens membraanprocessen. We gebruiken 

microgels van micrometer grootte als modeldeeltjes, vanwege de mogelijkheden om 

hun eigenschappen aan te passen, en het gemak van productie. Ook kunnen we 

hierdoor colloïdale interacties verwaarlozen, wat ons systeem vereenvoudigt en ons 

in staat stelt om ons te concentreren op individueel deeltjesgedrag. 

In de eerste twee experimentele hoofdstukken (hoofdstukken 2 en 3), richten we ons 

op zogenaamde microgel-pakkingen (onder statische omstandigheden). Deze 

pakkingen werden gemaakt door een gecontroleerde variabele osmotische stress toe 

te passen. 

In hoofdstuk 2 concentreren we ons op het collectieve gedrag van microgels in 

pakkingen onder statische condities en beschrijven we het gedrag van de pakkingen 

in termen van bekende polymeerconcepten, zoals de Flory-Rhener-theorie. We 

ontdekten dat suspensies van dextran-microgels bestand zijn tegen compressie bij 

volumefracties in de buurt van een dichtste bolstapeling van harde bollen met 

dezelfde grootteverdeling. Voor volumefracties tussen de dichtste bolstapeling en 1, 

neemt de weerstand toe op dezelfde manier als in een dextran-oplossing met dezelfde 

concentratie; de microgels vervormen maar de interne concentratie blijft hetzelfde. 

Bij volumefracties 'hoger dan 1', worden microgels gedwongen om oplosmiddel uit 

te stoten en krimpen. 

In hoofdstuk 3 gaan we verder op onze observatie uit hoofdstuk 2 dat individuele 

deeltjes op verschillende manieren op druk zullen reageren, afhankelijk van de 

toegepaste druk. Daarvoor gebruiken we microgel-pakkingen die een mengsel van 

fluorescerende en niet-fluorescerende deeltjes bevatten met een overmaat aan niet-

fluorescerende microgelen. We observeerden de pakking met behulp van 
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fluorescentiemicroscopie en waren in staat om fluorescerende deeltjes te observeren 

omringd door niet-fluorescerende deeltjes. We ontdekten dat zowel krimp als 

vervorming gelijktijdig optreden wanneer zachte deeltjes onder druk staan, waarvoor 

we theorie beschrijven om het gedrag van zachte deeltjes als functie van de druk die 

op het systeem wordt uitgeoefend. 

In hoofdstukken 4 en 5 gebruiken we microfluïdische apparaten om het gedrag van 

zachte deeltjes in dynamische systemen te observeren. 

In hoofdstuk 4 concentreerden we ons op het collectieve gedrag van deeltjes. 

Hiervoor gebruiken we een microcentrifuge gekoppeld aan een optische microscoop 

om de reversibiliteit van samendrukking van zachte deeltjes te onderzoeken als 

functie van de uitgeoefende kracht. We vonden dat voor de gebruikte deeltjes, totale 

omkeerbaarheid mogelijk is zolang water beschikbaar om de deeltjes te laten zwellen. 

Ook gebruikten we microfluïdische apparaten bestaande uit een reeks parallelle 

kanalen als een modelmembraan voor filtratie-experimenten. In dit apparaat 

observeerden we het verstoppingsgedrag van zachte deeltjes tijdens filtratie, en 

focussen we op de vorming van koeklagen en de omkeerbaarheid hiervan. We 

vonden dat de neiging van een deeltje om een porie te verstoppen afhankelijk is van 

de toegepaste druk en dat naarmate de druk lage is de kans hoger is dat microgels een 

porie verstoppen. Bij hogere druk, krijgen microgels meer de kans om helemaal door 

de poriën geduwd te worden of de porie dieper te blokkeren. We ontdekten ook dat 

een afzetting van microgelen (koeklaag) bovenop het modelmembraan tot 30% kan 

worden gecomprimeerd, en dat deze compressie volledig omkeerbaar is. 

Na ons te hebben gericht op collectief gedrag van zachte deeltjes, richtten we ons in 

hoofdstuk 5 op wat er op individueel deeltjes-niveau gebeurt. We observeerden 

individuele deeltjes die door porie-vernauwingen gaan en beoordeelden de 

vervorming en het krimpen van de deeltjes. De meeste microgels verstopping de 

kanalen nog steeds bij de eerste vernauwing, hoewel bij hogere druk ook verstopping 

dieper in het kanaal optreedt.  We zagen ook een verschuiving in de grootte van 

microgelen die de poriën verstoppen bij toenemende uitgeoefende druk, zoals 

verwacht op basis van de resultaten van de vorige hoofdstukken: deeltjes worden 

kleiner met toenemende druk en maken meer kans om door een porie te gaan. De 

mate van deeltjesvervorming is afhankelijk van de kanaalinvoerhoek, terwijl 

veranderingen in volume dat niet zijn. 

Tot slot bespreken we in hoofdstuk 6 onze belangrijkste bevindingen en hun 

implicaties in reële situaties en processen. De resultaten gepresenteerd in dit 
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proefschrift werpen een nieuw licht op veel gebieden waarin met pakkingen en 

concentratie van zachte deeltjes wordt gewerkt, zoals membraanfiltratie en 

chromatografie. 
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