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1 Introduction

The rate of anthropogenic carbon dioxide (CO2) emissions have reached an all-time high
since pre-industrial times, due to population and economic growth (Pachauri et al., 2014).
The natural carbon sinks are not able to keep up with these CO2 emissions causing a global
atmospheric CO2 increase (Ballantyne et al., 2012). The higher atmospheric CO2 concentration
leads to more absorption of longwave radiation, causing a global temperature increase. CO2

is the most important driver for climate change, as its radiative forcing compromises 80% of
the total increase in radiative forcing by greenhouse gases from 1750 until 2011 (Myhre et al.,
2013). According to the Intergovernmental Panel on Climate Change (IPCC), the period
from 1983 to 2012 is seen as the warmest 30 year period of the past 1400 years (Pachauri
et al., 2014). Moreover, 2015 was the first year anthropogenic activity led to an 1 °C global
temperature increase compared to pre-industrial levels (Hawkins et al., 2017).

Next to anthropogenic CO2 emissions, the atmospheric carbon balance is linked to the bio-
sphere and hydrosphere (Quéré et al., 2015). Within the biosphere, the Amazon Basin takes
up and releases twice the amount of carbon per year compared to the worldwide anthropogenic
fossil fuel emissions through photosynthesis and respiration (Phillips et al., 2009). The Amazon
basin stores a vast amount of carbon and acts as long-term net biomass sink (Gatti et al., 2014;
Brienen et al., 2015). Compared to the 1990s, the biomass mortality of the Amazon Basin has
increased throughout as tree mortality increased, while above-ground biomass growth rate is
recently levelling off (Brienen et al., 2015). A driver for this Amazon Basin carbon decrease is
very likely linked to larger interannual climate variabilities (Brienen et al., 2015).

In 2005, one of the most intense droughts of the past hundred years hit the Amazon Basin.
Droughts in Amazonia are mostly caused by El Niño-Southern Oscillation (ENSO), however
this drought was caused by anomalously high tropical North Atlantic sea surface temperatures
(Phillips et al., 2009). This extreme weather event is linked to climate change, which is likely to
increase the severity and frequency of extreme weather events (Frank et al., 2015). The 2005
event led to increased moisture stress and eventual forest biomass loss. The drought reversed
Amazonia from long-term carbon sink to a carbon source. And showed an exceptional global
atmospheric CO2 growth rate, which may be partially linked to the Amazon drought (Phillips
et al., 2009).

During the anomalously long-term Amazon drought in 2010, Gatti et al. (2014) measured
the vertical profile of carbon monoxide (CO) and CO2 in the atmosphere above the Amazon
Basin. From these measurements a more accurate seasonal and annual carbon balance was
set up. The results of the measurements showed a carbon loss of around 0.5 petagrams of
carbon in 2010, while the next year an anomalously wet year occurred, which showed a neutral
carbon balance. The feedback mechanisms between climate and tropical land carbon pools
are one of the key uncertainties to predict global climate (Cox et al., 2013; Gatti et al., 2014).
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Therefore, additional constrains on carbon exchange were added by Laan-Luijkx et al. (2015),
which include satellite observations of fire hot spots, burned area and CO. With the use of the
data assimilation system CarbonTracker, results confirmed a reduction of carbon uptake by
vegetation in 2010 (Laan-Luijkx et al., 2015). CarbonTracker makes use of inverse modelling
in which four surface models in combination with atmospheric CO2 observations is able to
optimize global surface CO2 fluxes. This includes for example the optimization of biospheric
fluxes and are optimized as follows (Peters et al., 2007, 2010a; Van der Laan-Luijkx et al.,
2017):

F (x, y, t) = λR · Fbio(x, y, t) + λR · Foce(x, y, t) + Ffossil(x, y, t) + Ffire(x, y, t) (1)

Here F (x, y, t) represents the total carbon fluxes at each longitude, latitude and for each time
step. Fbio(x, y, t) and Foce(x, y, t) are biospheric and oceanic a priori carbon fluxes respec-
tively, obtained from pre-calculated space-time biosphere and ocean models.Ffossil(x, y, t) and
Ffire(x, y, t) represent the carbon fluxes of the fossil fuel and fire emissions respectively, and
λR represents the scaling factor of each region which is the final assimilation product to deter-
mine the CarbonTracker carbon fluxes. This approach assumes the coupling of fluxes between
gridboxes in one region and therefore suggests the vegetation response to climate conditions
to be captured correctly. Such data assimilation systems are computational expensive because
of its size and complexity (see Section 2) and for studies on longer times scales, simplification
of its components could help to make faster progress and reveal more detail of carbon fluxes
within ecosystems such as the net ecosystem exchange (NEE). This is the net carbon flux of
photosynthesis and respiration (see Section 2). Moreover, with the use of a lightweight bio-
sphere model, NEE can be resolved at a higher spatial resolution, showing different responses
within a single ecosystem.

This research therefore aims to decrease the computing costs of CarbonTracker, which uses
the computational expensive Simple-Biosphere-Model-Carnegie-Ames Stanford Approach (SiB-
CASA) as input for the biospheric carbon fluxes. In my project, I will build a lightweight
biosphere model which parameterizes the SiBCASA NEE output, allowing us to simulate bio-
spheres’ CO2 exchange at a much smaller computational burden.
The lightweight model will focus on seasonal and interannual variability (IAV) as well as long-
term trends, and at its most basic is a simple statistical model. Here the seasonal cycle of NEE
will be captured by using the least square regression model of Thoning et al. (1989), which
he used to smoothen atmospheric CO2 observations. The NEE IAV will be based on the work
of Rödenbeck et al. (2018), which uses the sensitivity of carbon fluxes versus temperature
anomalies to capture the IAV based on (Cox et al., 2013). The parameters used in it will
statistically link the behaviour of the biosphere to essential climate variables such as tempera-
ture and precipitation, which helps to compare similar statistical relations typically derived by
climate models.
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This leads us to our research questions:

1. To what extent can we reproduce biospheric CO2 NEE fluxes from SiBCASA by a (tem-
perature or precipitation dependent) statistical model inspired by Thoning et al. (1989)
and Rödenbeck et al. (2018) for different spatial and temporal scales?

2. To what extent can the (temperature or precipitation dependent) statistical model save
computational costs at different spatial and temporal scales?

3. What is the sensitivity of atmospheric CO2 in forward atmospheric simulations using TM5
to replace SiBCASA fluxes with our (temperature or precipitation dependent) statistical
model for different station locations?

To answer our research questions, Section 2 will first give background information about the
seasonal, interannual and long-term carbon trends. Moreover, the biospheric carbon cycle,
climate-carbon models and inverse modelling will be further elaborated in this section. In Sec-
tion 3 we answer our first research question and start with the construction of the temperature
or precipitation dependent statistical model after which we analyze and interpret our results.
In Section 4, we answer our second research question with the use of experiments, which can
spatially and temporally save computational costs. In Section 5, we answer our third research
question, in which we run an atmospheric transport model with different inputs with SiBCASA
as reference. Section 6 will discuss the results and elaborate on possible recommendations and
follow up research. Section 7 will finally include the conclusions of this thesis.

anonymous
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2 Background information

2.1 Seasonal and interannual variability of the carbon cycle

To understand the trends and variability of terrestrial carbon exchange, observational records
of CO2 are held since the late 1950s at Mauna Loa (Hawaii) (NOAA a, 2016). The CO2

concentration at observation stations is described by the quantity mole fractions, which is
defined as the number of CO2 moles in a given number of molecules of dry air in parts per
million (ppm) (NOAA b, 2018). Normally, we express gas concentrations as the amount
of molecules per cubic meter. However, to quantify the addition and removal of carbon
to the atmosphere, we can not rely on the concentration gas per cubic meter. It namely
depends mainly on temperature and pressure, and secondly depends on how much the relative
abundance of each gas has been diluted by water vapour and is highly variable. When we apply
the dry air mole fraction, the measurement is thus not affected by different measuring heights
or seasonal temperature fluctuations. This quantitatively informs us about the removals and
emissions of CO2.

From the CO2 time series, we can derive a seasonal pattern, regulated by photosynthesis and
respiration (Figure 1). The larger landmass on the Northern hemisphere accommodates more
biomass, and has higher photosynthetic uptake of CO2 compared to the southern hemisphere.
This gives an CO2 maximum in the winter of the northern hemisphere and a minimum in the
summer of the northern hemisphere, which explains the seasonal cycle (Thoning et al., 1989).
We can also derive a long-term CO2 concentration trend from the time series, which is caused
by anthropogenic activity, however the long-term trend of CO2 does not follow a perfect linear
function as IAV plays a role as well.
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Figure 1: Seasonal and long-term trend of CO2 at Mauna Loa from 2008 until 2012 derived
from NOAA c (2018) with the methods of Section 3.2.2. The CO2 concentration is expressed
in mole fraction.
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For IAV in terrestrial carbon fluxes, three main drivers can be designated. These are (1)
metabolic changes in natural processes, such as ecosystem respiration, due to climate variations
(ENSO, droughts), (2) natural disturbances (fires, storms) and (3) land-use change (Houghton,
2000). This research only focuses on climate variations as variability in land-use change is
expected to be small for two reasons. First of all, land-use change only significantly varies
on local scale and generally less on regional or global scale. Secondly, only half the CO2

emissions due to land use change are released into the atmosphere in the first year of the
disturbance, while the remaining fraction will be released more slowly in subsequent years and
thus contribute less to IAV. Land-use changes likely account for only 5-10% of the global
IAV in observed CO2. Natural disturbances are also likely to only account for 5-10% of the
interannual variations. Therefore climate variations due to natural processes, are the main
factors for interannual terrestrial carbon flux variability.

The general oscillation pattern of the growth rate of CO2 can be explained by an El Niño
(warming phase of ENSO), followed by a La Niña (cooling phase of ENSO), (Figure 2),
(Thoning et al., 1989). In 1997-1998 and 2015-2016, two of the three strongest El Niño
events occurred and led to a strong growth rate of CO2 (L’Heureux et al., 2017). In 2005
not an ENSO event, but likely the long-term drought in the Amazon Basin caused a strong
increase in the CO2 growth rate, due to a lower respiration rate and a higher photosynthetic
rate of the biosphere (Phillips et al., 2009).
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Figure 2: Growth rate of CO2 at Mauna Loa from 2008 until 2012 derived from NOAA c (2018)
with the methods of Section 3.2.2. The CO2 concentration is expressed in mole fraction.

The decomposition of the CO2 time series in the seasonal, long-term and interannual trends
give more insights in corresponding processes and their magnitude. This method will also be
applied for the NEE output fluxes of SiBCASA. The methods of the decomposition of the time
series is elaborated in Section 3.2.2.
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2.2 Carbon-climate relations in the biosphere

The photosynthesis process of vegetation is a powerful mechanism for carbon exchange fluxes
in the atmosphere-biosphere carbon pools (Bonan, 2015). The process includes CO2, water
and absorbs light to produce carbohydrates, which serves as energy source for the plants. When
the stomata of the plants absorb the CO2, water is simultaneously lost due to transpiration.
Leaf respiration is due to the oxidation of organic compounds for growth and maintain plant
function.

In general, higher temperatures increase the enzymatic activity of leaves, which increases pho-
tosynthesis, respiration and water transpiration (Figure 3), (Bonan, 2015). At temperatures
between 20 and 35 °Celsius, an enzymatic maximum for the photosynthesis is reached, which
applies for the uptake of photon and CO2 uptake as well (Figure 3). However, when temper-
ature increases too much, the photosynthesis rate drops, as result of an excessive amount of
water lost through transpiration during photosynthesis. This results in a net unfavourable trade
of water versus energy. The leaf respiration keeps increasing as temperature increases due to
temperature induced enzyme activity until the leaf dies off. Microbial and root respiration
follow the same pattern as the leaf respiration.

Figure 3: effect of temperature on leaf photosynthesis and respiration(Bonan, 2015). Note
that this is a general leaf response.

Photosynthesis and respiration are linked to the carbon balance as follows (figure 4), (Schaefer
et al., 2008);

NEE = RH +RA −GPP (2)

NPP = RA −GPP (3)
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NEE is the net ecosystem exchange of CO2 at which a positive NEE indicates net CO2 flux
from the biosphere into the atmosphere. All fluxes which thus tend to increase the CO2

concentration, will have a positive value, which is called the “atmospheric perspective”. Het-
erotrophic respiration (RH) is the carbon dioxide release by microorganisms during the decay
of organic material and autotrophic respiration (RA) is the release by plants during growth and
maintenance. GPP is the gross primary production, which resembles the total carbon uptake
from the atmosphere to the biosphere. Net primary production (NPP) is the total flux of the
vegetation and does not include the respiration of the soil microbes.

Figure 4: Visualization of the terrestrial carbon cycle (Schaefer et al., 2008). Note that R is
the total of RH and RA.

The increase of CO2 and global surface temperature as result of anthropogenic activity (see
Section 2.1) will stimulate plants’ photosynthesis rate, which is called the CO2 fertilization
effect. This causes the dynamic carbon equilibrium between biosphere and atmosphere to
shift towards a larger biosphere carbon storage (Bonan, 2015). The future climate could also
enhance plant decomposition, which improves the nutrient availability of plants. Extra nitrogen
mineralization stimulates the mobilization of nitrogen from the decomposition process of soil
organic matter, which enhances carbon sequestration, however is not included in SiBCASA and
thus not represented in our statistical model. The statistical model will use the NEE output
fluxes of SiBCASA and try to represent these seasonal and IAV. We will not further analyze the
CO2 fertilization effect as we focus on a ten year timescale, which is too short to investigate
its effect on the terrestrial carbon fluxes.

anonymous
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2.3 Carbon-climate models

The trends and variability of terrestrial carbon exchange is observed by local measurements
of eddy covariance towers (Baldocchi et al., 2001). The observation sites are part of a global
measurements network called FLUXNET. Herewith we can study the spatial and temporal
patterns of ecosystem-scale of CO2 exchange among others. However, observations in espe-
cially the tropics are scarce and to quantify regional and global carbon fluxes, we need coupled
climate-carbon-cycle models, which can estimate the future atmospheric CO2 pathways and its
impact on global climate. In a coupled climate-carbon-cycle model, the ocean and land carbon
cycles feed back on the atmosphere, for example through CO2 and heat fluxes, to contribute to
further climate change (Cox et al., 2013). For an uncoupled model, changes in the ocean and
land carbon reservoirs are not fed back into the atmosphere to contribute to further climate
change .

The magnitude of the carbon flux from the biosphere remains uncertain according to the results
of the Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) (Cox et al.,
2013). These large uncertainties can mainly be explained by vegetation response to warming
and variations in rainfall predictions in the Amazon Basin. To explain the effects of atmospheric
CO2 and temperature increase (TT ) across the wide range of models and responses simulated
in the C4MIP experiments, the effects of temperature and CO2 as forcing of changes in land
carbon uptake are often separated (Friedlingstein et al., 2006). This separation linearizes the
response of the coupled climate models such that the total simulated change is the result of
changes in atmospheric temperature (TT ) and CO2 mixing ratio. For example, the tropical
land carbon storage (∆CLT ) can be expressed as (Cox et al., 2013);

∆CLT = βLT ∆Ca + γLT ∆TT (4)

Note that “LT” specifically applies to land in the tropics (Wenzel et al., 2014). Here βLT and
γLT are the land carbon storage sensitivities to direct CO2 effects and climate change induced
effects, and typical units are GtC/ppm and GtC/K respectively. These sensitivity factors can
easily be compared across many different models. To determine the γLT , first an uncoupled
climate-carbon model (CLTU) determines the βLT , and hereafter with the use of a coupled
climate-carbon model Cc

LT the γLT is calculated (Wenzel et al., 2014);

γLT = ∆Cc
LT + ∆Cu

LT

∆T c
T

(5)

γLT is a key uncertainty in climate-carbon models and Cox et al. (2013) presented an emergent
constraint on γLT across models from the C4MIP study. He suggested that short term processes
which affect CO2 fluxes especially in the tropics, dominate the long-term CO2 response as
well, and therefore the currently observed response of CO2 mixing ratios to variations in
observed temperatures is a measure of γLT (Figure 2). With the use of CO2 and temperature
measurements, a tight constraint on the γLT is provided by this relationship (Figure 5).

anonymous
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Figure 5: Annual anomalies in CO2 growth rate (black) and tropical temperature (red) versus
year from 1960 until 2010 (Cox et al., 2013).

These emergent constrains will help to develop a coupled carbon-climate model that is more
reliable for projections, as it is closer to observational data than the full ensemble of models
(Borodina et al., 2017). Temperature and precipitation anomalies have a strong climate co-
variance, and as tropical terrestrial carbon exchange is the largest uncertainty due to mostly
droughts, precipitation and temperature anomalies will be applied to capture the climate sen-
sitivity (Berg et al., 2015). Observational data can thus be used to develop model constrains
and deepen the understanding of the carbon cycle. This forms the base of the approach we
will take in this research, targeting the climate sensitivity parameter to capture the IAV in the
NEE time series with the use of T or P anomalies. These will from here be referenced as
γNEE−T and γNEE−P .

2.4 Modelling the carbon cycle

In forward carbon cycle modelling, surface forcing by land and ocean carbon fluxes, initial
conditions for CO2, and weather patterns that drive atmospheric transport are combined to
simulate CO2 mixing ratios. The carbon (in terms of CO2) fluxes are represented as output
of the biospheric SiBCASA model and the CO2 mixing ratios are the output variables of the
global chemical transport model TM5 (Figure 6).

SiBCASA consists of the model SiB, which contains biophysical and photosynthesis calculations
and the CASA model, which focuses on the biogeochemistry aspects. The SIBCASA hybrid
model has the capabilities to estimate terrestrial carbon and biomass fluxes from diurnal to
decadal timescales and is further elaborated in Section 3.2.1. A detailed description of chemical
and biological processes that determine vegetation response is available in Schaefer et al.
(2008); Sellers et al. (1996a,b).

anonymous
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The TM5 model can amongst others be applied for inversion studies and allows for high
spatial resolution within a coarser global grid and ensures regional estimates to be consistent
with global constraints. TM5 simulates vertical diffusion, convection and advection in both
the free troposphere and boundary layer. The European Centre for Medium-Range Weather
Forecasts (ECMWF) meteorological data fields drive the model, but are first pre-processed into
coarser grids to retrieve a flow which conserves the tracer mass (CarbonTracker Team, 2017).
More elaborate information is given in Section 5.2.1.

With inverse modelling, atmospheric observations can be integrated into further analysis of the
carbon cycle. With this method, initial conditions, or the surface forcing (as controlled by input
parameters in the land- and ocean flux models) can be optimized, in this case, to decrease the
uncertainty of the SiBCASA CO2 fluxes. However, computational restrictions typically cause
inverse modelling studies, such as Gurney et al. (2002), to be limited to a small number of
large regions for which CO2 fluxes can be estimated across the globe. With the use of a more
advanced data-assimilation system, Peters et al. (2007, 2010b) was able to overcome these
computational limitations and called the inverse modelling system “CarbonTracker”. With the
use of CarbonTracker regional CO2 fluxes are now regularly estimated (Laan-Luijkx et al.,
2015).

Figure 6: Simplified CarbonTracker framework, in which the fire, fossil and ocean emissions
are not taken into account. The final CarbonTracker assimilation product λ is computational
expensive to calculate on longer timescales.
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For the optimization in inverse modelling, an a-priori estimate of the unknowns (e.g. SiB-
CASA’s output CO2 fluxes) is needed to optimize the λ’s, the final assimilation product (Figure
6. A prior is the initial distribution of these unknown parameters and is used in the Bayesian
analysis. Starting from the distribution of the parameter of interest, the posterior distribution
is estimated with observational data to provide the model with extra information about the
parameter. The parameters to be estimated can be CO2 surface fluxes themselves (as for
CarbonTracker on the SiBCASA output) or scaling factors on a-priori calculated surface fluxes
to make them larger or smaller (Peters et al., 2007), or even biosphere model parameters that
control the surface fluxes themselves (Friedlingstein et al., 2006). However, we focus on longer
timescales to capture the seasonal and IAV in the NEE time series, which is computational
costly as the scaling factor λ needs to be calculated weekly (Koren and Peters, 2018). A
promising method to save computational costs is the optimization of climate-relevant param-
eters which was recently pioneered by Rödenbeck et al. (2018). (Rödenbeck et al., 2018)
applied linear regression of temperature (taken as climate proxy) and NEE anomalies fitted to
atmospheric CO2 data to capture NEE IAV with the use of γNEE−T and showed interpretable
and distinct patters along seasons and latitudes. We will not use an atmospheric inversion to
constrain our statistical model, but still use the method of Rödenbeck et al. (2018) as guideline
further explained in Section 3.2.2.

The statistical model can be implemented within the CarbonTracker iteration process during
the inversion run, in which γNEE−T or γNEE−P will be optimized instead of the output
fluxes as for SiBCASA (Section 3.1. This ensures that a redistribution of the output fluxes is
avoidable and therefore the output CO2 fluxes can independently be optimized for each area.
Additionally, we will try to decrease the computational costs (Section 4), lead to a possibility
to optimize the statistical model CO2 fluxes on a higher spatial resolution compared to the
SiBCASA inversion run when more measurement sites are set-up.
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3 Construction and performance analysis of the lightweight sta-
tistical model

3.1 Introduction

Biosphere models are uncertain about effects of climate change and its corresponding extreme
weather events on the carbon cycle (Cox et al., 2013). Moreover, IAV such as the 2010
drought in the Amazon for example, caused a different allocation of carbon within the bio-
sphere, resulting in a larger uncertainty within the biosphere models (Doughty et al., 2015).
The uncertainties can be reduced with CarbonTracker, which makes use of ensemble data
assimilation (Peters et al., 2007). The high computational costs of inverse modelling and SiB-
CASA limit the spatial resolution and lead to the indirect optimization of the carbon output
fluxes of SiBCASA and not the internal model’s parameters. Therefore this chapter will use
a statistical model to resemble the NEE output signal of SiBCASA. This model is based on
the work of Thoning et al. (1989) whom constructed a general statistical curve fit function
(fit function) originally set-up to smooth out the observed CO2 concentration and will be
used to reproduce the seasonal NEE cycle. This leads us to our first research question, which
determines our baseline performance:

1. To what extent can we reproduce biospheric seasonal NEE fluxes from the generic fit
function inspired by Thoning et al. (1989) for different timescales and regions?

To improve the fit function, we introduce an extra climate variable which will be applied
to capture the IAV within the NEE signal. For the tropics, temperature anomalies could
possibly better explain the NEE IAV as the link with ENSO is well established (Chiang and
Sobel, 2002). Strong El Niño years can namely cause a warming of 0.5 - 1°C when averaging
the monthly mean temperature over a global tropical strip of 20°S-20°N. The application of
using temperature anomalies as climate proxy originates from Rödenbeck et al. (2018) as they
state that it also represents other co-varying environmental anomalies. The fit function with
temperature anomalies as climate proxy will from here be referred as the T-fit function and
includes the climate sensitivity parameter γNEE−T . The construction of the T-fit function will
be explained in the method section .The main goal of this chapter is to quantify how much
extra NEE variability can be captured with the T-fit function compared with the original fit
function. With the focus on capturing IAV in the NEE signal within the tropical and semi-arid
to arid climate zones. This leads us to our second research question of this chapter:

2. To what extent can we capture IAV in the NEE signal reproduced by the T-fit function
inspired by Thoning et al. (1989) and Rödenbeck et al. (2018) for different timescales
and regions?
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We first need to understand the spatial and temporal variability of the NEE output of SiBCASA
and relate this to the respiration and photosynthesis term. Hereafter we will analyze the
performance of the fit function and compare it with the T-fit function. To analyze the temporal
variability we use the grid boxes in which the Amazon Tall Tower Observatory (ATTO) and
the Zotino Tall Tower Observatory (ZOTTO) are located. These are two observatory stations
which measure CO2 among others and can be used to validate the output fluxes of SiBCASA
in follow-up research(Andreae et al., 2015). The stations are respectively located in a pristine
area in the middle of the Amazon Basin and in the boreal climate zone of Siberia, Russia.

These locations are also selected because of their large climatological differences, which should
show differences in the significance of the the seasonal and interannual cycle (Andreae et al.,
2015; Heimann et al., 2014). In the Northern part of South America, the largest worldwide
near-surface temperature effect of ENSO for the months January, February and March are
found in the Northern part of South America (Davey et al., 2014). While local weather
stations over Northern Eurasia show near-surface temperature IAV during the summer months
(Heimann et al., 2014). As temperature and precipitation are linked with the respiration and
photosynthesis rate, potential interannual NEE variability can be expected for both cases (Berg
et al., 2015).

The third focus of this chapter is to check the hypothesis of Rödenbeck et al. (2018) regarding
their use of temperature anomalies as climate proxy. As mentioned in Section 1, the 2005 and
2010 droughts in the Amazon caused the region to turn into a carbon source instead of sink
Phillips et al. (2009); Gatti et al. (2014). It therefore seems that precipitation anomalies are
possibly a better climate proxy for the tropics. In this climate zone, temperature is not the
GPP limiting factor, while for the less wet parts, precipitation can be. Therefore this chapter
will also explore the role of precipitation anomalies as climate proxy instead of temperature
anomalies for the Amazon region, which leads to our main research question:

3. To what extent can we capture IAV in the NEE signal reproduced by the P-fit function
inspired by Thoning et al. (1989) and Rödenbeck et al. (2018) for different timescales
and regions?

Also for semi-arid to arid climate zones photosynthesis and respiration are driven by precipi-
tation (anomalies). In the Australian desert, rainfall is highly erratic year-to-year and a large
shares falls within a few months (Australian Bureau of Statistics, 2006; Australian Government
- Bureau of Meteorology, 2016). The timing of these precipitation peaks varies every year and
shows large spatial variability within the region as precipitation mostly occurs in heavy thun-
derstorms (Australian Bureau of Statistics, 2006). Therefore also for the Australian desert
the role of precipitation anomalies as climate proxy will be explored. Precipitation (P) will be
constructed using the same method as the T-fit and we will therefore answer research question
three for the P-fit function as well.
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The section will finally deepen the understanding of γNEE−T and γNEE−P , with a spatial and
temporal analysis to capture its variability and try to link it to natural processes. Herewith we
will compare our findings of γNEE−T with (Rödenbeck et al., 2018)’s findings, which gives
the possibility to validate SiBCASA. This leads us to our final research question:

4. How do γNEE−T and γNEE−P vary over time and space and which natural processes
can we link to these climate sensitivity parameters?

3.2 Methods

In this subsection, we will first give detailed information of SiBCASA. Hereafter, we will explain
and construct the (T/P-)fit function after which we formulate the growth rate and long-term
trend. Next, we explain the selection of the regions and gridboxes, which form the base of
the results interpretation. Finally we explain the statistical measures we apply throughout the
analysis.

3.2.1 SiBCASA

The biosphere module of CarbonTracker called SiBCASA (Schaefer et al., 2008) consists of the
model SiB (Sellers et al., 1996a), which contains biophysical and photosynthesis calculations
and the CASA model (Potter et al., 1995), which focuses on the biogeochemistry aspects. The
SiBCASA hybrid model consists of a detailed description of chemical and biological processes
that determine vegetation responses. SiBCASA contains all carbon stored in biomass and
has the capabilities to estimate terrestrial carbon and biomass fluxes from diurnal to decadal
timescales (Schaefer et al., 2008).

SiBCASA is driven by 23 climatological drivers such as radiation, temperature and precipitation.
The meteorological data fields are used from the European Centre for Medium Range Weather
Forecasts (ECWF) ERA-interim reanalysis (CarbonTracker Team, 2017). The carbon fluxes
output is represented as GPP, RA, RH , NEE and NPP and is generated as monthly output
over a 1x1 degree worldwide spatial grid (Schaefer et al., 2008). SiBCASA also provides
output every three hours, but is not currently necessary to use as we are interested in seasonal,
interannual and long-term trends. The higher temporal resolution will be useful when the
parameters of the fit function will be optimized during the inversion run.

The aim of SiBCASA is to give a good physical description of the in and outgoing biosphere
fluxes as atmospheric measurements only show the effect of the net carbon flux (CarbonTracker
Europe, 2017). The net yearly carbon flux is namely relatively small, in the order of a few
Petagrams (Pg = 1015), compared to the annual GPP, RA and RH , which are in the order
of 120 Pg. The model gives information on these fluxes on for example a daily and seasonal
temporal scale and will be used as input in CarbonTracker as first guess.
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The SiBCASA data we use is the ’sibcasa_zeus_run_1851-2011.nc’ and only uses the data
ranging from 2001 until 2011. The data set includes monthly data without the month Decem-
ber in the year 2010. For this run, standard settings are applied.

3.2.2 The fit function

The fit function will be based on the so-called "CCGCRV" program, which is a digital filtering
curve fitting program developed late 1980s by atmospheric scientist Kirk Thoning (Thoning
et al., 1989; Pickers and Manning, 2015). He originally developed the program to analyze the
seasonal, interannual and long-term atmospheric CO2 trend over time Thoning et al. (1989),
which can be found at the National Oceanic and Atmospheric Administration (NOAA f, 2016).
Within the CCGCRV a time-dependent function was set-up to fit data-sets with a linear least
square regression. This fit function can also be used as starting point to represent the NEE
output signal.

The fit function does not include other climate-dependent variables and therefore interannual
variability, driven by ENSO, will not be taken into account. The performance of the fit function
compared to the SiBCASA NEE signal can quantitatively show which climate zones are affected
by IAV. This is because SiBCASA is driven by meteorological data and therefore includes the
effect of ENSO for example.

The fit function makes use of the Fourier Series, which is a general signal processing method.
It includes a summation of four harmonic terms, which consist of a sine function with different
frequencies, amplitudes and phases. These will resemble the seasonal cycle of the carbon fluxes
and move around an average given by three polynomial values. These indicate the initial, mid-
term and long-term average of a signal over time. The fit function also uses four harmonic
terms to represent the seasonal cycle of the NEE signal and is therefore represented as follows:

C(t) = a1 + a2t+ a3t
2 +

4∑
n=1

Cn
(

sin(2nπt+ φn)
)

(6)

Here C(t) resembles the different carbon fluxes, a1, a2 and a3 are the polynomial values, in
which a1 is the initial value, a2 is the linear trend and a3 is the exponential trend of the fitted
NEE signal. Cn represents the amplitude and φn represents the phase of the wave. For each
harmonic two parameters are given by the CCGCRV program, which can be used to calculate
the phase and amplitude. In total 11 parameters are presented to represent the NEE signal
in this case. The parameters thus represent constants when curve fitting is applied. However,
these parameters are only constant for a single NEE signal per grid box. To analyze the phase
and amplitude variability for each grid box and climate zone, first the amplitude and phase
need to be derived from the 11 parameters given by the CCGCRV program.
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3.2.3 Reconstruction of the fit function

The first step is to reconstruct the fit function as we need to understand how these parameters
relate to equation 6. As already mentioned, the first three parameters consist of the three
polynomial terms, while the following two parameters, C1 and φ1, correspond to the cosine
and sine of the first harmonic. To determine the amplitude and phase of the first harmonic,
the following relations from the CCGCRV function are derived:

φ = arccos
( an

Cn

)180
π

(7)

φ = arcsin
(an+1
Cn

)180
π

(8)

Here an and an+1 resembles the parameters with n as 4,6,8,10, in which n = 4 resembles the
first harmonic term. From this relation, the phase of the first harmonic can independently
from the amplitude be determined:

φ = arctan
(a4
a3

)180
π

(9)

By substituting equation 9 into equation 7 and 8, the amplitude of the first harmonic is
represented as:

Cn = a3
cos(πφ/180) (10)

Cn = a4
sin(πφ/180) (11)

The amplitude and phase of the other harmonic terms are derived in similar fashion.
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3.2.4 Construction of the T and P-fit function

To add the NEE IAV to the curve fit function, Rödenbeck et al. (2018) introduces the γNEE−T

(gC m−2yr−1K−1) variable. This parameters represents climate sensitivity, whereby changes
in temperature anomalies impact the NEE as explained in Section 2.3. To estimate the NEE
response to climate anomalies, Rödenbeck et al. (2018) uses a linear relation between temper-
ature and NEE which is resolved with regression coefficients. The linear regression is hereafter
combined with an atmospheric inversion to decompose the atmospheric CO2 signal in seasonal,
interannual and decadal timescales. Their inversion constrains the climate-carbon cycle and
can quantify the contribution of different climate zones to NEE response. In our case we will
not use inversion constrains due to time limitations, but we can still use this method to obtain
γNEE−T and compare it with the results of Rödenbeck et al. (2018). Implementing γNEE−T

in the fit function gives:

T − fitNEE = fitNEE + γNEE−T (T − TLT +Seas+Deca+T rend) (12)

Here T represents the SiBCASA monthly averaged input temperature data from the ECMWF
ERA-interim reanalysis and is spatially dependent. The TLT +Seas+Deca+T rend represents the
sum of the longterm (LT), seasonal(Seas), decadal (Deca) and trend (Trend) (Rödenbeck
et al., 2018). Subtracting this term from T, gives the IAV of the temperature. In this case the
fit function of equation 6 is applied to the temperature signal, which does not include any IAV.
And with the use of the original spatial temperature input of SiBCASA, the following equation
for temperature IAV can be derived:

TIAV = T − Tfit (13)

The TIAV represents the residual of the line fitting function of the fit function. Implementing
this equation into equation 12, gives:

T − fitNEE = fitNEE + γNEE−T · TIAV (14)

The T-fitNEE is in µ gC mol m−2 s−1 and TIAV in K. For the P-fit function, the same
method will be applied and therefore we end up with:

P − fitNEE = fitNEE + γNEE−P · PIAV (15)

Here γNEE−P is in (µgC mol m−2 s−1 mm−1h) and PIAV in mm h−1.
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3.2.5 Construction of γNEE−T and γNEE−P

Our climate sensitivity γ consists of 12 parameters, in which each parameter corresponds to
the conditional mean of all residuals of a certain month over a time series. Thus a parameter
value for the month January is obtained by using linear regression to all January residuals over
the time period. These values are obtained by linear regression of the residuals of NEE and T
calculated with equation 13 and for NEE applies:

NEEIAV = NEE −NEEfit (16)

Both residuals are thus the remaining IAV, which the fit function is not able to capture as it
only focuses on capturing the seasonal cycle with its harmonics and long-term trend with the
use of the polynomial terms.
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Figure 7: Monthly NEEIAV versus NEEIAV from 2001 until 2010 for the ATTO gridbox.
The period DJF therefore contains 27 data points resembling a climate sensitivity relations
between NEEIAV and TIAV .

On a yearly timescale the γNEE−T values do not seem to show any clear relation, however from
a monthly and seasonal perspective a pattern can be derived (Figure 7). From a visualization
perspective we show a three month cluster of residual data points, but do not that for our
results we will apply linear regression to monthly residuals of NEE and T. To obtain the
γNEE−P monthly values, we will perform the same method only this time with the use of
precipitation residuals.
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Precipitation consists of roughly two mechanisms: convective and stratiform precipitation,
which mainly differ in growth time of the rain droplets and magnitude of vertical air flows in
a cloud system (Houze, 1993). For stratiform precipitation, updraft is weak and droplets grow
with the use of condensation and/or deposition. This precipitation has a low intensity and is
fairly homogeneous spatially distributed.
Convective precipitation is caused by from a strong updraft due to buoyancy and grow by
accretion, which is the collection by raindrops at the bottom of the cloud. They growth of the
droplets coincides with cloud formation and precipitation is formed in short time span. These
rain showers have a very local character and are therefore heterogeneous spatially distributed.

SiBCASA makes distinction between the two precipitation mechanisms, in this research we will
define precipitation as a sum of convective and stratiform precipitation, which is therefore the
total precipitation.

3.2.6 Growth rate and long-term trend

The growth rate and long-term trend within the CCGCRV function are derived with a low-pass
filter on the residuals to remove the short-term variations (Thoning et al., 1989). Note that it
is not clearly documented how this residual is established as it does not represent the raw time
series minus the fit function for each lat/lon grid point. The filter makes use of the following
decreasing exponential filter:

H(f) = exp
[
− c1( f

fc
)p] (17)

Here c1 is equal to ln (2) and resembles a normalizing coefficient, for which H(f)=0.5 at f=fc.
The variable f resembles the signal’s frequency (cycles yr−1), fc is the cut-off frequency (cycles
yr−1) and p is an integer with value 4. For smoothing the data, a short-term cut-off value
is used, in which fc = fs and to remove the remaining seasonal oscillation fc = f1. The
cut-off values used in Thoning et al. (1989) are 7.3 cycles yr−1 (50 days) and 0.55 cycles
yr−1 (667 days) for f1 and fs respectively, as atmospheric mixing takes 2-3 months in the
northern hemisphere. The long-term trend (TrendLT ) and growth rate (gr) are determined by
man2html (2002):

TrendLT = C(t)polynomial +H(f1) (18)

gr = d

dt

(
C(t)polynomial +H(f1)

)
(19)

Here C(t)polynomial represents only the polynomial part.
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3.2.7 Grid box and region selection

To determine the NEE climate zone spatial and temporal variability, we have selected one
gridbox in three different climate zones. The first climate zone is equatorial fully humid (Af)
according to the Køppen-Geiger climate classification Kottek et al. (2006) and will from here
be referenced as the tropical climate region. Within this region ATTO is located at 2° south,
59° east, which will be used as reference gridbox. The second selected climate zone has a
snow climate, fully humid with cool summers and cold winters (Dfc) and will be referenced
as the boreal region. In this region we selected the ZOTTO gridbox at 61° north, 109° west
as reference gridbox. The third climate zone we will further look into has a arid climate and
warm summer(BWh), in which the gridbox is located in the Australian desert at 22 ° south
and 135° west. This gridbox is selected as it is located in the middle of the Australian desert.

To compare different climate zones, we will select the tropics and extratropics. The tropics are
defined as every gridbox between 23° south and 23° north, while the extratropics are defined
as 30° north until 31° north.

The selection of the semi-arid to arid region in Australia will be clarified in section 3.3. The
boreal and tropical regions are selected because of the large climatological differences in which
ATTO and ZOTTO are located respectively. Both stations are set up because, in the last
decade, observational data was limited by Eddy Covariance flux tower observations, which
only take the micro-meteorology processes into account and can only measure the local CO2

footprint (Andreae et al., 2015). A large carbon flux variability was found with the use of
these local ’snapshots of reality’. Therefore long-term and continuous studies are necessary,
in which ATTO and ZOTTO play a crucial role to obtain more observational data as input
for CarbonTracker amongst others. Both towers namely stand over 300 meters tall and are
especially useful as they can measure regional influences and processes with a concentration
footprint in the order of 1000 km (Heimann et al., 2014; Andreae et al., 2015). Now regional
measured CO2 can be used as input for the the inversion model and can therefore better
optimize the regional biospheric carbon fluxes.

3.2.8 Statistical measures

To analyze the results we will make use of the average (〈 NEE 〉), standard deviation (σNEE),
Pearson correlation coefficient (pxy) and the root mean square error (RMSE) as depicted
below:
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〈NEE〉 = 1
N

N∑
i=1

NEEi (20)

σy =

√√√√ 1
N − 1

N∑
i=1

(
yi − 〈xi〉

)2
(21)

pxy =
n(

N∑
i=1

xiyi)− (
N∑

i=1
xi)(

N∑
i=1

yi)

σxσy
(22)

RMSE =

√√√√√ N∑
n=1

(yi − xi)2

N
(23)

Here NEE represents any NEE time signal, which can be the signal of SiBCASA or the (T/P-
)fit function and N is the total amount of time steps. yi represents the NEE signal of the
(T/P-)fit function and xi represents the NEE signal of SiBCASA.

3.3 Results and discussion

To answer our three research questions stated in the introduction, we will divide the results
section in four subsections which will each try to explain one research question. Before we
answer our research questions we will first introduce you to spatial and temporal variability of
NEE and show the distinction between seasonal, interannual and long-term variability in the
NEE time series with the use of the original SiBCASA output. Hereafter we will determine
the performance of the fit-function, which should capture the seasonality of the NEE time
series. Next, we will analyze the performance of the T/P- fit function in a similar fashion and
compare them to each other. The results section will finally elaborate on the climate sensitivity
parameter in which we biophysically interpret the parameter and compare it with literature.

3.3.1 Analysis of the SiBCASA NEE output

Figure 8 shows large spatial variability for the global NEE distribution with a global average
NEE of -0.58 µgC m−2s−1. The largest global negative net carbon flux can be found in the
tropical latitudes as climate variables such as temperature, light and precipitation are most
beneficial for photosynthesis and dominates the respiration term (Welp et al., 2011). The
average NEE in the tropics is -2.02 µgC m−2s−1 and almost four times as high compared to
the extratropics, as NEE is -0.51 µgC m−2s−1 on average.
The extratropics also show a negative NEE, but is relatively lower compared to the tropics as
light and temperature are the limiting factor. While in the desert no significant NEE fluxes are
found as precipitation is the limiting factor. The positive NEE in Australia indicates a larger
respiration rate compared to the photosynthesis rate (Haverd et al., 2017; Cleverly et al.,
2013).
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These worldwide NEE variabilities show that the spatial climate conditions are important to
take into account the interannual variability of NEE. Interestingly is the variability of NEE on
small scale within a climate zone, in for example the Amazon basin and Australian desert,
in which a NEE variability of a factor 5-10 can be observed. In Australia this could be
explained by local heavy rainfall events (Cleverly et al., 2013; Australian Government - Bureau
of Meteorology, 2019). To gain a better understanding of the NEE fluxes for constructing
the fit function, NEE on different temporal scales will be analyzed next for the ATTO and
ZOTTO.
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Figure 8: Yearly averaged SiBCASA NEE output from 2001-2011. The more negative the
NEE values, the larger the net carbon taken up by the biosphere from the atmosphere and
vice verse. The blue dot indicates the location of ZOTTO and the blue triangle indicates the
location of ATTO. The tropics show large negative NEE fluxes as climatology is favorable.

Figure 2 shows large temporal NEE variability for ATTO and ZOTTO. The ATTO site shows
relative large IAV compared to its seasonal trend. The seasonal trend is determined by the
movement of the intertropical convergence zone (ITCZ), which roughly follows the solar equa-
tor (Fu and Li, 2004; Li and Fu, 2004). The ITCZ is accompanied with heavy thunderstorms
and causes the wet season in the tropics. During the wet season, the tropics are PAR lim-
ited due to the thick cloud cover, which causes a decrease in photosynthesis resulting in a
negative NEE. For ATTO, located just south of the equator, the wet season is from October
until March. From April until September, the ITCZ is located at the northern hemisphere
and therefore precipitation decreases. This period is called the dry season, in which cloud
cover is less thick and fresh leaves increase the photosynthetic capacity leading to negative
NEE (Myneni et al., 2007). The deep rooting depth of the Amazon vegetation ensures that
in regular years no soil moisture stress occurs (Fu and Li, 2004).
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However, during the 2005 (figure 9) ,2010 and 2015/2016 Amazon droughts, the dry period
was extended, which did cause soil moisture stress (Phillips et al., 2009; Gatti et al., 2014; van
Schaik et al., 2018; Jiménez-Muñoz et al., 2016; Lewis et al., 2011). Here the 2005 and 2010
droughts were caused by anonymously high sea surface temperatures, which are identified as
a 1-in-100-year event and the 2015/2016 drought was caused by an El Niño. During these
periods, GPP decreased and let to a carbon flux from the biosphere into the atmosphere.
These are examples of IAV and are represented in the NEE time series as well.

In SiBCASA, the 2005 drought seems to be recognizable, however the 2010 drought is not.
The Amazon is not homogeneously impacted during the droughts as especially the Eastern part
of the Amazon receives less precipitation in general and the Northwestern part is very wet.
The precipitation input data at ATTO (not shown) do not suggest precipitation anomalies in
this area. With the use of the climate sensitivity parameter γNEE−P , possible responses of
these droughts at the ATTO gridbox could possible explained and will be further looked into
in upcoming results subsections.

The tropics have a long-term negative NEE trend of around 5 µgC m−2s−1 and does not show
a trend over the 2001-2011 period as the time span is too short to observe the CO2 fertilization
effect. The calculated growth shows large interannual fluctuations with a maximum of almost
5 µgC m−2s−1.

Note that the long-term trend does not exactly represent what was expected in figure 9. The
long-term trend namely still shows yearly fluctuations, because the current standard cut-off
value (fc) is set as 667 days. The trend line therefore takes into account the irregularities
between two years, which causes the small seasonal cycle in the long-term trend. For a better
representation of the long-term trend a larger time interval could be used, but will also effect
the resemblance of the interannual variability as it is the derivative of the interannual trend (see
section 3.3.2). A filter of 1643 days (4,5 years) can for example be applied for the long-term
filter, which is the average time interval for an El Niño to occur (Chang and Zebiak, 2015).
In this case the variability caused by ENSO in the long-term trend will be filtered out, but will
also largely filter out ENSO in the interannual trend (depicted as growth rate). Therefore a
trade-off between the two trends in terms of fc will need to be taken into account. A cut-off
value of 667 days was eventually chosen to show the interannual trend in detail and still have
a decent representation of the long-term trend.
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Figure 9: Monthly averaged raw time series of the SiBCASA NEE output as represented as
the green line for ATTO and ZOTTO grid boxes.The red and blue line corresponds to the
long-term trend and interannual variability of the ccgcrv program respectively.

The NEE time series at ZOTTO is dominated by the seasonal cycle as the boreal region is light
and temperature limited (9). In the summer months of the Northern hemisphere NEE becomes
negative as temperature and daylight increases and becomes positive in winter. IAV is low as
the distance to the origin of El niño’s is large and therefore hardly impacts the ZOTTO and
its corresponding boreal region. In 2010, a severe drought over European Russia had taken
place (Arpe et al., 2012), which could have impacted ZOTTO. But it seems that ZOTTO is
located too far East to show any impacts of the drought on the NEE signal by SiBCASA. The
IAV and long-term trend at ZOTTO is therefore low.

3.3.2 Fit function performance analysis

To asses the performance of the fit function we will first show how the fit function looks
like for ATTO and ZOTTO and hereafter check its performance with the use of the Pearson
correlation coefficient and RMSE.
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Figure 10: Visualization of the fit function for ATTO and ZOTTO from 2001 until 2011 as
defined in section 3.2.2. The fit function is able to capture the seasonal cycle of both
gridboxes.
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The fit function is able to capture the largest portion of the NEE signal for ZOTTO and has
difficulty capturing the NEE signal of the ATTO gridbox as expected. The large IAV at ATTO
results in a RMSE of 3.84 µgC m−2s−1 and correlation coefficient of 0.84 For ZOTTO we
obtain a RMSE of 1.80 µgC m−2s−1 and a correlation coefficient of 0.97. The IAV at ATTO
seems to result in a phase and amplitude change a the fit function is not able to capture both.
The signal shows a large seasonal cycle, but seemingly also a smaller second seasonal cycle,
which we hypothesize, could be due to the location of ATTO, which is near the equator. This
causes the ITCZ to pass by twice and therefore seems to cause a small and shorter second
dry and wet season, which is affected by IAV as well. The second time the ITCZ crosses the
equator, the NEE could again be lowered as PAR is limited due to thick cloud cover, which
could possible explain the second NEE peak.

For ZOTTO the fit function is able to capture the seasonal cycle well and IAV only causes
small changes in amplitude in the winter and summer months. This therefore show that for
ZOTTO a small set of parameters is already able to explain the signal and show that for
these regions performing research at longer time scales is possible and that we could save
computational costs as the final product of CarbonTracker, λ does not have to be calculated
any more. However, for the ATTO this is not the case. Therefore we will now zoom into
the Australian gridbox to gain a better understanding of the fit function and the correlation
coefficient performance lack in this region.

Figure 11: Performance of the fit function compared to the raw SiBCASA output signal
represented in Pearson correlation coefficient. The value 0 represents no correlation and 1
represents a perfect correlation. The correlation coefficient is determined from the SiBCASA
output and fit function from 2001-2011. High correlation coefficient in the extratropics and
reasonable in the tropics and Australian desert.
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The average global correlation of the fit function is 0.93 and therefore the seasonality trend
is captured well (Figure 11). In the tropics the correlation coefficient is 0.89 and in the
extratropics the correlation is higher than average with 0.97 as expected. The tropics and semi-
arid to arid regions such as the Amazon basin and Australian desert show the lowest captured
seasonality trend due to high IAV in the NEE signal. The correlation coefficient, especially
in the extratropics, suggest that applying a simple fit function with only 11 parameters is a
valid method to capture the trend of NEE signal when it is dominated by the seasonal cycle.
However, while the correlation coefficient is still quite high in the tropics, we have seen at the
ATTO gridbox (Figure 10) that the RMSE is still significantly large.
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Figure 12: NEE time series of Australian desert gridbox with high IAV in the NEE signal of
SiBCASA.

The phase and amplitude of the NEE signal at the Australian desert is dominated by IAV
(Huxman et al., 2004). The large NEE IAV can be explained by the erratic year to year rainfall
Australian Bureau of Statistics (2006). Microbial activity is triggered at small precipitation
events and saturates at moderate events. While photosynthetic activity only takes place when
relative large precipitation events or multiple small events take place Huxman et al. (2004).
The different responses cause semi-arid areas to act as carbon sources as also seen in figure 8.

The erratic year to year rainfall is caused by four main processes (Australian Bureau of Statis-
tics, 2006). Firstly, the Southward extension of the monsoon through, which position varies
interannually and when located south the Northern part of the Australian desert receives pre-
cipitation. Secondly, tropical cyclones, which occur multiple times in a regular year and cross
the Australian coast from the north to penetrate well inland. This causes highly erratic and
intensive rain showers.Parts of the Australian desert receive rain up to 40 % due to this atmo-
spheric process. Thirdly, the Northwest Cloudbands, which transport moisture from the warm
Indian Ocean over Australia in a Northwest to Southeasterly fashion. These three processes
mainly cause the interannual NEE variability in the Australian desert. In 2010/211, the effect
of the fourth process took place in which moisture is taken inland due to a strong La Niña
(Poulter et al., 2014). During this period record-braking rain record turned the Australian
desert green and caused a large GPP fluxes, which led to strong negative NEE.
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This region thus shows how γNEE−P could explain a large portion of IAV in the NEE signal.
When only using the fit function we obtain a correlation coefficient of 0.72 and a RMSE of
3.76 µgC m−2s−1. Now we again would like to zoom out and look at the RMSE to further
increase our understanding of the performance of the fit function.
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Figure 13: Performance of the fit function compared to the raw SiBCASA output signal
represented in RMSE. The RMSE is determined from the SiBCASA output and fit function
from 2001-2011. Tropics show large RMSE as IAV in the NEE time series is large as well, for
the extratropics RMSE is low.

The RMSE is especially high in the tropics as NEE fluxes are large and IAV within the NEE
signal is dominant (figure 13). This leads to RMSE of 3.13 µgC m−2s−1 in the tropics,
while globally the RMSE is 2.19 µgC m−2s−1 and the extratropics have a RMSE of 1.77
µgC m−2s−1. The arid regions show the lowest RMSE as there is hardly any NEE signal and
therefore residuals of the fit function are very low. In the semi-arid area of Australia we do
see an RMSE of around 2 µgC m−2s−1, which is high as NEE fluxes are relatively small as
shown in figure 12. To achieve a better performance we will in the next section add the climate
sensitivity term, γ.

3.3.3 T/P-fit function performance analysis

To evaluate the performance of T/P-fit function, we will first show the its implementation
temporally and use the spatial correlation coefficient and RMSE metric to obtain its perfor-
mance.
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Figure 14: Top: Time series of the (T/P-)fit functions of the ATTO and Australian gridbox
from 2001 until 2010. Bottom: residuals of (T/P-)fit functions.

Figure 14 shows the original NEE signal and the fit and T-fit functions with their corresponding
residuals. Both methods show a similar performance of the original signal, whereas the T-fit
function captures the original signal slightly better.

Both the T and P fit function show a performance increase in terms of correlation coefficient
compared to the fit function. The T-fit function shows a correlation coefficient of 0.88 and
0.78 for ATTO and the Australian gridbox respectively, which is an increase of 0.04 and 0.08
respectively. The P-fit shows an increase of 0.10 and 0.02 for ATTO and the Australian gridbox
respectively, which lead to a 0.93 and 0.73 correlation coefficient respectively.

The T and P fit function also show RMSE decrease at both gridboxes and therefore increase
the performance compared to the fit function. The T-fit function now has a RMSE of 3.38
µgC m−2s−1 and 3.24 µgC m−2s−1 for ATTO and the Australian gridbox respectively, in
which an RMSE of 66.3 % and 96.9 % remains respectively compared to the fit function. The
RMSE of the P-fit shows a remain 86.5 % and 88.5 % compared to the fit function, which lead
to a RMSE of 2.59 µgC m−2s−1 and 3.55 µgC m−2s−1 for ATTO and ZOTTO respectively.
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The T and P-fit function thus show a performance increase for both gridboxes, however residu-
als remain significantly large. The interannual phase and amplitude change at both gridboxes is
not resolved. Especially for the Australian gridbox we expected a high performance increase of
the γNEE−P as NEE in the Australian desert is strongly dependent erratic precipitation events
(Huxman et al., 2004) as shown in Figure 12. However, the P-fit function only shows a small
RMSE decrease, which is in contrast to the ATTO gridbox in which the RMSE significantly
decreases. Notewhorty is the large difference of the RMSE between the T and P-fit functions
at the ATTO gridbox. We expected a similar performance as precipitation and temperature
have a strong climate covariance, which drives the carbon cycle (Jung et al., 2017; Berg et al.,
2015). Jung et al. (2017) states that on a local scale the IAV of GPP and R is dominated
by water availability and to a lesser extent also for NEE. Regionally and globally, NEE IAV is
driven by temperature anomalies. This seemingly contradiction could be due to two outbal-
ancing water effects: (1) NEE variability is dampened due to the compensation of temporal
and local water-driven R and GPP, and (2) spatially, the anomalies in water availability also
compensate. This leads to interannual carbon fluctuations dominated by the temperature
signal.

Thus on a gridbox scale, which is roughly 110 km by 110 km, it could be possible that the
IAV of precipitation is dampened and therefore we do not observe the performance increase as
expected for the P-fit function in Australia. To increase our understanding of the performance
of the T and P-fit functions we our next step is to check the spatial performance and afterwards
elaborate on the climate sensitivity parameter.
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Figure 15: Spatial difference of the RMSE of the fit function - T-fit function from 2001 until
2010. Higher RMSE values indicate a performance increase of the T-fit function, which is
mainly in the tropics.
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The T-fit function improves the representation of the NEE time series compared to the fit
function across the whole globe. In the desert areas, no improvement is made as the NEE
signal is already close to zero. In the tropics the biggest improvements are made as the T-
fit function decreases the RMSE by 0.51 µgC m−2s−1 on average and globally the RMSE
decreases by 0.35 µgC m−2s−1 on average. This leads to an average RMSE of 2.61 µgC
m−2s−1 and 1.81 µgC m−2s−1 for the tropical and global average respectively.

The P-fit function (not shown), has a RMSE decrease of 0.33 µgC m−2s−1 on a global average
and 0.54 µgC m−2s−1 for the tropics on average. This leads to an average RMSE of 2.59
µgC m−2s−1 and 1.83 µgC m−2s−1 for the tropical and global average respectively. The
P-fit function thus slightly outperforms the T-fit function in the tropics, but globally the P-fit
function performs slightly worse. On this level the co-variance of precipitation and temperature
IAV seems to be linked performance wise as stated by Jung et al. (2017). To understand how
small or large these RMSE’s are we will in chapter 5 transform them to CO2 mole fractions
and compare them with the SiBCASA output.

3.3.4 γNEE−T/P interpretation and comparison
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Figure 16: Time series of γNEE−T for the ATTO gridbox (left panel) and the ZOTTO and
Australian gridboxes (right panel) from 2001 until 2010.Here corresponding shading indicates
the uncertainty of the gammaNEE−T value within one σ and shows a clear seasonal pattern
for all gridboxes.

All gridboxes show a distinct seasonal pattern for γNEE−T , in which a positive γ resembles
positive NEE fluxes when temperatures are higher than average and vice verse (Figure 16).
For ATTO the begin of the dry season, in May and June, we observe negative NEE fluxes,
which could be due to the fact that during the dry season, PAR is not the limiting factor as
cloud cover is low. Higher than normal temperatures could herewith increase the GPP and
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thus result in a negative NEE (Fu and Li, 2004).

During the months March and April the ITCZ is on top of the ATTO gridbox as the wet season
transitions into the dry season on the southern hemisphere. When temperatures are higher
than average, it could lead to extra evapotranspiration, extra moisture and thus a thicker cloud
cover (Fu and Li, 2004). This eventually leads to a decrease in PAR availability and therefore
decreases the GPP, which causes a positive NEE peak during this period. However, the large
variability in during these months also show that there is a possible negative γNEE−T during
this period which would reject our possible explanation. During September and October the
ITCZ surpasses ATTO again and here we do not see a clear γNEE−T response.

During the wet season in the months September until March, we see a negative trend at ATTO.
When higher temperatures than average occur, we expect a positive γNEE−T as explained in
previous paragraph. Therefore the processes behind the seasonality of γNEE−T is difficult
to explain and the large variability shows that the value of γNEE−T at ATTO has a large
uncertainty.From this single gridbox we hypothesize that γNEE−T is not clearly linked to
natural processes and its corresponding IAV. However, to support this claim, we will have to
check the global spatial perspective first.

In the Australian desert, higher than average temperatures cause a positive γNEE−T annually.
Temperatures near 40 ° Celsius decrease a plants activity and therefore shuts down photosyn-
thesis and root respiration (Bonan, 2015). The net NEE increase is due to microorganisms in
the soil which have an enzymatic optimum at such high temperatures. The noisy behaviour
over the months could possible be explained by the highly variable precipitation which also
effects surface air temperature (Huxman et al., 2004).

At the ZOTTO gridbox, we observe a strong NEE peak in May as higher than average tem-
peratures lead to an earlier start of the spring season. Therefore the plants activity increases
with a net larger photosynthetic carbon uptake compared to respiration release (Bonan, 2015).
γNEE−T is negative for the whole growing season at ZOTTO, which lasts until August. Here-
after temperature anomalies have a small impact on the NEE fluxes as the whole region is
covered in snow.

The ATTO gridbox shows the largest γNEE−T , due to the seemingly much larger influence of
ENSO and NEE fluxes. The monthly variability relative to its yearly cycle is comparable for
the ATTO and ZOTTO box during the growth season in the boreal region. The large monthly
variability is one of the reasons, the T-fit function only slightly decreases the RMSE in figure
14.
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Figure 17: Monthly values for γNEE−P for the ATTO, ZOTTO and Australian gridbox calcu-
lated with linear regression over a period of 2001-2010. Here corresponding shading indicates
the uncertainty of the γNEE−P value within one σ, which is large and a clear seasonal pattern
is missing.

For all three gridboxes the link between γNEE−P and their natural processes is difficult to
explain (Figure 17). ATTO depicts a seasonal cycle, however all monthly γNEE−P are positive,
which means that higher than normal precipitation leads to an increase of carbon flux from the
biosphere into the atmosphere. This would indicate that extra precipitation, thus extra cloud
cover limits the PAR throughout the year. However, we know that an El Niño may extend
the dry season leading to soil moisture stress. In this case higher than normal precipitation
in especially the months July, August (end of dry season) should show a negative correlation
with the γNEE−P .

At ZOTTO, the NEE is light and temperature limited and an interpretation of γNEE−P is
difficult. We do see that the uncertainty of γNEE−P during spring and the start of summer
as the no correlation between precipitation and NEE anomalies is found. At the Australian
gridbox we would expect a strong negative γNEE−P as the semi-arid region is water limited.
higher than normal precipitation should therefore result in negative NEE.

These results indicate that mathematically IAV is captured in the signal of the T and P-fit
function, however we can not statistically link them to natural processes. To decrease the
uncertainty of the γ’s a larger time series of NEE could solve the problem. Currently, climate
anomalies in some months due to an El Niño may be underrepresented. If we for example have
thirty years of NEE time series, we have an extensive amount of ENSO captured in the NEE
signal. This also increases the likelihood of an El Niño and a La Niña to take place during
each month. This approach could lead to a better representation of the climate sensitivity
parameter γ.
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A second method to improve the γ’s is to optimize them with the use of inverse modelling
as performed in Rödenbeck et al. (2018). Visualizing the γ’s as in the Hovmöller diagram of
(Rödenbeck et al., 2018). In this case we plot the the latitude versus the monthly γ’s values,
which is an average of all longitudinal γ’s at each latitude as depicted below. Here we depict
(Rödenbeck et al., 2018) Hovmöller diagram and our Hovmöller diagram of γNEE−T .

Figure 18: Interannual climate sensitivity γNEE−T (gC m−2 yr−1K−1) of the Americas (180
°W...30 °W) shown as Hovmöller diagrams: longitudinal averages of γNEE−T are plotted as
colour over latitude (vertical) and month of the year (horizontal). The stippling indicates
robustness see Rödenbeck et al. (2018) for more detail.

Focusing on the America’s, the climate sensitivity parameter γNEE−T of Rödenbeck et al.
(2018) are able to illustrate the photosynthesis rate being temperature limited in spring for
the northern extratropical land shown as negative γNEE−T (Figure 18). These higher than
average temperatures lead to a higher photosynthesis rate and therefore a more negative NEE.
The NEE flux is defined as negative when atmospheric CO2 concentrations decrease and vice
versa, which is called the ’atmospheric perspective’ and will be used throughout this thesis. In
May and June we see the opposite effect, in which warmer summers enhance the respiration
rate and tend to be drier leading to a lower photosynthesis rate and therefore a net positive
γNEE−T .

In the tropical region, positive γNEE−T is dominant, however it also shows less systematic
variations. The missing stippling indicates results of limited robustness and therefore have a
larger uncertainty, see Rödenbeck et al. (2018) for more details.
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The Southern extratropics show a similar γNEE−T pattern as the northern extratropics, but
is less robust due to the relative small land mass. For Europe, Africa and Asia, Australia,
we also see a γNEE−T , which can be linked to natural processes. Thus, without computing
the complex ecosystem and plant processes, a large fraction of interannual NEE variations is
captured, while considerably decreasing the computational costs.

Figure 19: Interannual climate sensitivity γNEE−T (gC m−2 yr−1K−1) shown as Hovmöller
diagrams: longitudinal averages of γNEE−T are plotted as colour over latitude (vertical) and
month of the year (horizontal).

If we compare the results of (Rödenbeck et al., 2018) with our results we see that we have a
sign change in the γNEE−T (Figure 18 and 19). This confirms our hypothesis in which our
γNEE−T is mathematically correct, but can unfortunately not be directly linked with natural
processes, which (Rödenbeck et al., 2018) is able to show. We do see that in the tropics the
γNEE−T becomes more pronounced as in the Amazon γNEE−T is more negative.

anonymous
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Figure 20: Interannual climate sensitivity γNEE−P (µgC m−2yr−1 mm−1h) shown as Hov-
möller diagrams: longitudinal averages of γNEE−P are plotted as colour over latitude (vertical)
and month of the year (horizontal).

For γNEE−P we also do not observe a clear seasonal pattern (Figure 20). We do see mostly
positive γNEE−P , which indicates that higher than normal monthly precipitation results in
positive NEE, which does not seem correct. This could possible be explained by the too low
response of the soil moisture stress in SiBCASA (van Schaik et al., 2018; Koren et al., 2018).
Laan-Luijkx et al. (2015) showed that SiBCASA did not show any effect on the carbon cycle
during the 2010 drought in the Amazon, which we have also seen in figure 9. (van Schaik et al.,
2018) therefore implemented a hydrological model, which directly couples the soil moisture
balance with the surface hydrology. With the use of this method (van Schaik et al., 2018) was
able to capture the drought response in the Amazon. This could thus possible be a method
increase our mathematical performance of γNEE−P and perhaps be able to link it to natural
processes. This could also increase the performance and interpretability of γNEE−T as they
are closely correlated (Jung et al., 2017).
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3.4 Conclusion

Reproducing the biospheric seasonal cycle is possible with the generic fit function inspired
by Thoning et al. (1989) for the extratropics, and performs reasonably for the tropics and
Australian desert. Capturing the IAV with the use of the method of Rödenbeck et al. (2018)
is possible as the performance of the T/P-fit function is for both cases better compared to the
fit function. The performance especially increases in the tropics, however the interpretability
of the climate sensitivity parameters γNEE−T and γNEE−P has shown difficult. γNEE−T is
not comparable with literature and both γ’s can hardly be linked to natural processes.

anonymous
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4 Computational cost savings: flux analysis

4.1 Introduction

In the last section we constructed the T and P-fit function, which reasonably capture the IAV
of the SiBCASA NEE output. Optimizing the climate sensitivity parameter γNEE−T/P can
increase the performance of the T and P-fit function, however does require a CarbonTracker
run, which is computational costly as we focus on longer timescales. Therefore we set up
experiments, which will indicate if saving computational costs is possible and to what extent.
Herewith we will only apply our experiments to the T-fit function as it slightly performance
better compared to the P-fit function in terms of global RMSE, while the global terrestrial
CO2 sink is comparable.

In our first experiment we will decrease the amount of monthly NEE data from SiBCASA
needed to still resemble the T-fit function. Instead of applying the T-fit function to ten years
of monthly NEE data to resemble a ten year time series, we will use only the first three or
five years of the dataset. Herewith, we apply the least square regression method of the T-fit
function and obtain the polynomial, amplitude, phase and climate sensitivity parameters to
reconstruct the original ten year NEE time series. In this case we thus only use 3/10 and 5/10
of the monthly NEE dataset. This method will be called the extended 3 or 5 yr T-fit function,
the ext3 and ext5-T-fit function respectively. This leads us to our first research questions:

1. To what extent can the ext3 and ext5-T-fit function resemble the original T-fit function
in terms of seasonal and IAV of the NEE signal?

Here the performance loss will be indicated by the RMSE and the computational savings
will be compared with the original costs. So, if we for example only use half the data for
the representation of the original T-fit, the computational savings are a factor two. Note
that, computational savings temporally are more beneficial compared to spatial savings as less
SiBCASA input data has to be downloaded, which is thus more cost-efficient than decreasing
the spatial resolution twofold. With this remark in mind, the second experiment will focus on
decreasing the computational costs by lowering the spatial resolution.
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This will be performed for a 4° by 6° (latitude x longitude) region, which we define as a
small region. Herewith we apply the T-fit function to one of the gridboxes located in the
small region. The other gridboxes located in the same small region will be assigned the same
parameter values to reconstruct the NEE time series. Therefore all gridboxes within a small
region will be spatial and temporal homogeneous. So we only need SiBCASA NEE output
for 1 out the 24 gridboxes in the small region, and therefore computationally save a factor
24. We will also check if this method can be applied for a Transcom region, which is an
area of land mass that roughly covers 1/11th of the total land mass and contains 1000 land
gridboxes. This could thus potentially lead to a computational savings of a factor 1000, taking
into consideration that the performance is reasonable. This leads us to our second research
question:

2. To what extent can a single gridbox represent a Transcom or small region in terms of
the representation of seasonal and IAV in the NEE signal?

In our third and final experiment, we will first select the best representable gridbox within each
Transcom region and apply the fit function to capture its parameter values. Note applying a
T-fit function was preferable, however time resources were limited. Hereafter, we assign the
parameter values to the other corresponding gridboxes within the Transcom region resulting in
a spatial and temporal homogeneous NEE Transcom region. For the selection method, we use
all gridboxes and therefore do not save computational costs spatially. The selection method
will be based on selecting a gridbox, which represents the total NEE fluxes of each Transcom
region as further elaborated in Section 4.2.4. With this selection method we represent the
total NEE fluxes of all 11 Transcom regions with the use of only 11 gridboxes, the method will
be defined as the extended Transcom fit function.

The computational costs will namely be similarly saved as in experiment 1 as in this method
we apply an extended fit function to the 11 gridboxes and for example use the first 4 out of 9
years to represent the NEE time series. This method will show a lower performance compared
to the extended fit function as we only use 11 instead of all gridboxes as for experiment 1.
The aim of this method is to check the performance when using only such a limited amount
of gridboxes and will show the performance benchmark of the fit function. In this experiment
we also include the cumulative error experiment and will be further explained in Section 4.2
and 4.3.

In this section we will first further introduce our methods of our computational saving exper-
iments after which the results will separately show the representation of the original (T-)fit
function and its performance to check whether the experiment is an efficient method to save
computational costs. After we also discuss the results in the same section, we wrap up with
the conclusion.
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4.2 Methods

4.2.1 Transcom regions

The Transcom regions are set up by the Atmospheric Tracer Transport Model Intercomparison
Project (Transcom) to diagnose and quantify the uncertainty of inverse calculations of the
global carbon budget, which are a result of simulated atmospheric transport errors (DeFries
and Townshend, 1994). The Transcom regions were set up in 11 land and 12 ocean regions.

Figure 21: Transcom regions with their corresponding name , which include 11 land
Transcom regions and 12 ocean Transcom regions(DeFries and Townshend, 1994).

The Transcom region mask will be used to answer our first research question. Do note that
the distinction between land and ocean gridboxes is not equal to those of SiBCASA. SiBCASA
has more land gridboxes, but we will only use those indicated by the Transcom region mask,
which therefore does not take into account all SiBCASA gridboxes. This should be taken into
account when implementing the NEE fluxes in a forward transport model such as TM5.

The third and seventh Transcom regions include ATTO and ZOTTO respectively and will be
named Amazon and Boreal Russia region throughout.

4.2.2 Experiment 1: Temporal extension method

To save computational costs we will set up an experiment in which we will decrease the
temporal costs of SiBCASA. We can for example take the first five years of a ten year NEE
time series and extract its eleven parameters with the use of the CCGCRV program of (Thoning
et al., 1989). This enables us to reconstruct the fit function in a similar fashion, in which we
use our obtained parameters to construct a new fit function and only use half the data set for
parameterization.
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4.2.3 Experiment 2: Gridbox selection of small region

To select a gridbox in a small region (6° by 4 °, lat/lon), which will eventually represent the
small region, we will select the center gridbox. To determine the center box, we average the
latitude and longitude coordinates of every land box within the small region. If all gridboxes are
land gridboxes, the southwestern center box will be selected. If the center box is an ocean box,
we will select the the first box we come across working our way from southwest to northeast.

Figure 22: Visualization of the gridbox selection method within a small region. Here
represented as a 4° by 6 ° (lat/lon) grid. Here the green boxes represents a land gridbox, the
blue gridbox represents an ocean gridbox and the black gridbox resembles the selected
gridbox.

4.2.4 Experiment 3: optimization selection method

To select the best gridbox to represent a Transcom region, we will make use of an optimization
method. In this method the gridbox with the smallest difference in NEE signal compared to
the average NEE of the Transcom region is selected. These are the steps taken to select the
optimized gridbox for each Transcom region:
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NEErel_region =
(Ngridbox∑

n=1

Ntimestep∑
t=1

NEE(n, t) ∗ (Agridbox/Agridboxmax)
)
/Ngridbox (24)

NEEbox(n) =
(Ntimestep∑

t=1
NEE(n, t)(Agridbox/Agridboxmax)

)
(25)

nopt = ArgMin
n

(
NEErelregion −NEEbox(n)

)
(26)

NEEbox_opt = NEEbox(nopt) (27)

Performance = NEEbox_opt/NEErel_region (28)

Here NEErel_region is the relative NEE for the Transcom region, which represents the average
gridbox value of the Transcom region. Ngridbox is the amount of gridboxes in a Transcom
region, Ntimestep is the total amount of time steps, NEE(n, t) is the NEE signal of a gridbox,
Agridbox is the total area of the gridbox and Agridboxmax is the total maximum area of a single
box in the Transcom region. The fraction Agridbox / Agridboxmax is the relative size of each
gridbox and is needed to take into account the different sizes of the region. This allows use
to get a well presented average NEE flux per m2 of the Transcom region. Note that we take
the sum of all gridboxes and divide it by the total amount of gridboxes in the Transcom region
instead of applying an average. This is due to the fact that the average NEE signal of a
Transcom region is dampened due to changes in phase in the NEE signal as further elaborated
in the Section 4.3.

Next we obtain the total sum of all separate gridboxes (NEEbox(n)), again applied with the
fraction of the area. Afterwards we use a minimization function between NEErel_region and
NEEbox(n) to obtain the box number with the smallest NEE difference (nopt). This allows
us to select the optimized box (NEEbox_opt).

The optimization selection will be run for the whole time series (9 years) and for 1,2 and 4
years. This will show if it is more important to select a high performance in the first year(s)
or a good resemblance after 9 years. This will be checked as for an atmospheric transport
models, small errors in the early stages propagate over time a result in large errors, which
is know has the cumulative propagation method. It is therefore key to know how well the
optimized selection works after different time steps. Moreover, if the selected box after for
example 2 years still works properly after 9 years it indicates that temporal cost savings are
possible as well.

anonymous

anonymous
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4.3 Results and discussion

4.3.1 Experiment 1: extended fit function experiment

The extended fit experiment aims to decrease the computational costs about 2-3 threefold and
will first focus on the performance of the seasonal cycle with the use of the ext3 and ext5-fit
function. Instead of applying the fit function for 9 years to the SiBCASA output NEE signal,
we will fit it for the first three and five years. With the use of the methods from Section 2 we
can obtain the set of parameters of the first three and five years. Hereafter both time series
are extended back to the original 9 years with the earlier obtained set of parameters. After the
removal of the second and third polynomial, the trend, we end up with our final computational
savings method; the ext3-det-T-fit function and show its global performance loss versus the
T-fit function in terms of RMSE.
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Figure 23: Time series of SiBCASA (green lines), ext3 (red lines) and ext5-fit-function (blue
lines). The extended fit functions are applied over monthly SiBCASA NEE output for the
ATTO and ZOTTO gridbox, in which the polynomial terms are badly parameterized. The fit
function is shown for comparison.

The linear and exponential trend is not correctly parameterized as a seasonal cycle around 0
µgC m−2 s−1 is not upheld over the years for the extended fit functions (Figure 23). The
parameterized trend of the first 3 or 5 years is crucial to determine the overall trend, due to the
cumulative error propagation.Therefore the worse parameterized trend of the ext3-fit-function
compared to the ext5-fit-function causes a large increasing error over time for both the ATTO
and ZOTTO locations.
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The trend offset for both extended fit functions is mainly caused by the IAV in the parameterized
years. Therefore ATTO shows a larger trend offset as IAV is more pronounced in the NEE
signal compared to ZOTTO. The extended fit functions are able to fit the four harmonics,
amplitude and trend well compared to the fit function as expected.

The ext5-fit-function is most suitable to decrease the computational costs as the RMSE de-
crease of ext5-fit-function outweighs the computational costs decrease of the ext3-fit (Figure
23). The ext3-fit shows a RMSE increase of 30.74 µgC m−2 s−1 for ATTO and 2.44 µgC m−2

s−1 for ZOTTO with a factor three computational costs decrease both compared to SiBCASA.
For the ext5-fit we obtain a RMSE increase of 7.87 µgC m−2 s−1 for ATTO and a 2.03 µgC
m−2 s−1 for ZOTTO with a factor 1.8 computational costs decrease both compared to SiB-
CASA. To increase the performance of the extended fit function we will remove the linear and
exponential trend. This gives us an extended fit function without a trend. This computational
saving method is called the ext3-det-T-fit function:

Ext3− det− T − fitfunction = a1 +
4∑

n=1
Cn
(

sin(2nπt+ φn) + TIAV · γNEE−T

)
(29)

Do note that the γNEE−T will be calculated from linear regression with only 3 data points
as γNEE−T contains a parameter value for each month. For the mean initial value (a1), the
amplitude (Cn) and the phase (φn) only the first three years of data is used to parameterize
the ext3-det-T-fit function.
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Figure 24: Time series of ext3-det-T-fit function (red line) compared to the SiBCASA output
(green line) for ATTO and ZOTTO gridbox with a structural underestimation of the
ext3-det-T-fit function for ATTO.
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The ext3-det-T-fit function improved the extended fit functions, however does show an struc-
tural underestimation for ATTO (Figure 24). The small seasonal cycle of the dry and wet
season in the first year in terms of NEE causes the ext3-det-T-fit function to structurally un-
derestimate the signal. Especially for ZOTTO, the ext3-det-T-fit function now cycles around 0
µgC m−2 s−1, while the seasonal cycle, compared to the extended fit functions, is still captured
well. The RMSE of the ext3-det-T-fit at ATTO is 6.26 µgC m−2 s−1 and for ZOTTO is 1.86
µgC m−2 s−1 both compared to SiBCASA. The downside of this method is that we can not
determine the CO2 fertilization effect, which is determined by the least square regression of
the polynomials of the original T-fit. The CO2 fertilization effect takes place at a timescale of
decades (Cox et al., 2013) and is therefore not the main focus as we currently try to decrease
the computational costs at a 9 year timescale.
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Figure 25: Global RMSE of the ext3-det-T-fit function - T-fit function, which is the
performance loss of the ext3-det-T-fit function compared to the T-fit function. The highest
RMSE difference, the largest performance loss, is mainly depicted in the tropics.

The highest RMSE difference between the RMSE of the ext3-det-T-fit function and the T-
fit function, compared to SiBCASA, is in the tropics (Figure 25), due to the large, not well
represented IAV in the NEE time series (see Figure 24). We also observe high RMSE values in
the extratropics such as Eastern Europe for example, in which the seasonal cycle is generally
dominant. Two droughts between 2001 and 2004 in this area possible decreased the GPP and
caused IAV in the NEE signal (Spinoni et al., 2015). As we selected these years to parameterize
the signal, the seasonal cycle deviates and causes a low performance.

anonymous
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The Northern Australian desert shows a large RMSE as well taking into account the relative
small NEE fluxes. Interannual precipitation anomalies caused by soutward extension of the
monsoon through, tropical cyclones, Northwest Cloudbands and ENSO cause this IAV in the
signal as previous explained in 3.3, (Huxman et al., 2004; Poulter et al., 2014; Australian
Bureau of Statistics, 2006).

The global RMSE of the ext3-det-T-fit function is 3.14 µgC m−2 s−1 compared to the global
1.81 µgC m−2 s−1 of the T-fit. For the tropics the RMSE of the ext3-det-T-fit function
is 4.81 µgC m−2 s−1, while the T-fit accounts for a RMSE of 2.611 µgC m−2 s−1. The
performance decrease in terms of RMSE of around 70% compared to the T-fit is reasonable
when comparing it to the computational saving costs of a factor 3. The global terrestrial CO2

sink of the ext3-det-T-fit function is -2.87 Pg yr−1 compared to the T-fit function, which has a
global terrestrial CO2 sink of -2.76 Pg yr−1, both for the periods from 2001-2010. This is due
to the structural underestimation in the tropics (Figure 24) and the ext3-det-T-fit function
will thus have a lower atmospheric CO2 concentration over time as the difference with the
T-fit function accumulates. The atmospheric sensitivity of these different T-fit functions will
be further elaborated in Section 5.2.1.

4.3.2 Experiment 2: Spatial resolution experiment

The goal of this section is to decrease the spatial resolution, while maintaining a high per-
formance of the NEE signal to save computational costs. Herewith we first test the coarsest
possible global resolution, the Transcom region resolution and check whether the variability
in the Transcom regions is small enough for one gridbox to represent the average NEE time
series. To perform this analysis, we will check the SiBCASA’s spatial NEE variability first and
perform this analysis for a small region resolution as well.

The second step is to verify whether the parameters of the T-fit function show a low variability
when we apply them to all gridboxes in a Transcom and small region. A low variability indicates
that the parameter values of one gridbox can be assigned to other gridboxes located in the
same Transcom/small region to obtain a spatial and temporal homogeneous pattern in each
region. As mentioned in Section 4.2, we select the Amazon and Boreal region, which are
both Transcom regions to analyze the spatial NEE variability. And we select the ATTO and
ZOTTO regions, which are both small regions surrounding the observatory gridboxes to analyze
the spatial NEE variability.

We conclude with a performance check in terms of a global RMSE map, in which we apply
the T-fit function over a 4° by 6 ° grid (small region resolution), which is defined as the small
region T-fit function and compare it to the RMSE of the T-fit function.
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Figure 26: Averaged monthly SiBCASA NEE over the South American tropical Transcom
region (left panel) and the Eurasian Boreal Transcom region (right panel). Here the red lines
indicate the averaged NEE of the corresponding Transcom region with variability in terms of
monthly σ,indicated by the red shading for each Transcom region.The green line represents
the single NEE gridbox value for ATTO/ZOTTO as reference. In both cases the spatial NEE
variability is too large to apply spatial and temporal homogeneous NEE values.

The spatial resolution can not be decreased to Transcom region scale as the variability of the
Amazon and Boreal region are too large for the application of spatial and temporal homoge-
neous NEE values. The average Transcom region NEE time series shows large discrepancies
compared to the single box NEE time series in terms of the phase and amplitude. The large
NEE variability in the Amazon region is mainly caused by the different seasonality phases
within the region with an average variance of 9.85 µgC m−2 s−1. At the equator, two wet
and dry seasons seem to occur annually as the tropical rain belt passes by twice as shown in
the ATTO gridbox located at 2 °S. The Northern and Southern tropics only have one wet and
dry season as the tropical rain belt only passes once. Thus positive and negative NEE fluxes
occur at the same time within the region.

The average Amazon region NEE signal is dominated by the Southern located tropics as
the largest share of tropical landmass is located South of the equator. Therefore during the
months October until March positive NEE fluxes are shown indicating the wet season in the
Amazon region. The signal is moreover dominated by the single wet and dry seasonal cycle
as it is more extreme in the Northern and Southern tropics, resulting in a larger seasonal NEE
amplitude. The amplitude of the average Amazon NEE signal is smaller compared to single
gridbox values such as ATTO. This is due to the averaging of the NEE signal while having
large phase difference within the region.
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The Boreal region also shows a large phase variability as the σ is 8.69 µgC m−2 s−1. This is
mainly due to the phase difference in the spring and autumn months generally dependent on
the latitude. The southerly located gridboxes have a larger summer season and earlier snow
melt, which causes earlier plant growth compared to northerly located gridboxes in the Boreal
Region. This causes a timing difference in NEE decrease and for autumn vice verse applies.

The effect of the phase variability in the Amazon region also applies to the Boreal region
as the amplitude of the average NEE time series of the Boreal region is dampened. It also
clearly shows that the phase difference compared to ZOTTO is large, even though the grid
box is approximately in the middle of the Transcom region. Here from we can conclude that
a single gridbox cannot represent a whole Transcom region. Moreover it is not possible to
parameterize the average region’s NEE signal as it does not match possible single gridbox
values. To decrease the variability within the NEE signal of a region we will increase the global
spatial resolution to 6°x4°(lat x lon).
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Figure 27: Averaged monthly NEE over the ATTO region (left panel) and the ZOTTO
region. Monthly σ is indicated by the red shading for each small region. The ATTO and
ZOTTO NEE single gridbox time series and their corresponding monthly averaged NEE
Transcom regions are shown as reference. The spatial NEE variability is small as indicated by
the red shading for both small regions.

Both small regions show relative small NEE variability compared to their corresponding NEE
variability within each Transcom region (Figure 26 and 27). The ATTO and ZOTTO region
have an average σ of 4.43 µgC m−2 s−1 and 1.022 µgC m−2 s−1 while the Amazon and
Boreal region have an average σ of 9.85 µgC m−2 s−1 and 8.69 µgC m−2 s−1 respectively.
Do note that both small regions have a small σ decrease compared to their computational
costs increase, which increases from approximately 1/1000 to 1/24 of the original costs to run
SiBCASA.
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Figure 27 again shows the disability of the average Transcom region NEE signal to represent a
large region. The average Boreal and 1 σ shading of the Boreal region, and ZOTTO region NEE
signal are not comparable during almost the entire year. Using the average Boreal region signal
for the ZOTTO region would therefore cause large disagreement in the region’s atmospheric
CO2 concentration even tough the ZOTTO region is located in the center of the Boreal region.

On a small region spatial resolution the σ between the ATTO and ZOTTO small regions differs
by a factor 4.3. This can be explained by Kottek et al. (2006), which shows that in the Amazon
Transcom region and especially near the equator, multiple climate zones are classified, while
the Boreal region is dominated by one climate zone. To check whether this spatial resolution
could be an performance and cost efficient method, we will now elaborate the variability of the
parameters of the T-fit function for the previous mentioned Transcom and small regions.
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Figure 28: Top and left bottom panels: Boxplots of the Tropical and Boreal Transcom region
and the small ATTO and ZOTTO (4° by 6°) region. The whiskers represent a 95%
confidence interval and the white dots represent outliers. a1 represents the mean initial
value, a2 represents the linear polynomial term and a3 represents the quadratic polynomial
term of the fit function. Bottom right panel: Values of 1/10 of a2 (linear term) plotted
versus a3 (quadratic term). Here a value of 1/10 of a2 is chosen for visualization
purposes.The variability of the polynomials of the small regions is small and 1 gridbox can
represent a small region.
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The polynomials suggest that a one gridbox can represent the ATTO and ZOTTO small
regions (Figure 28. The mean initial value (a1) shows the largest variability for ATTO, but
does still fall within the 95 % confidence interval of the tropical Transcom region. For the
ZOTTO region, parameter variability is low throughout and indicates that one gridbox thus
can represent a small region. From here we can also again conclude that a single gridbox
cannot represent the NEE time series of a Transcom region.

We have seen in earlier time series of ATTO and ZOTTO that almost no trend can be observed
in a short time series of nine years. However, the parameter values of a2 and a3 are both not
close to 0 µgC m−2 s−1. It therefore seems that a2 and a3 compensate each other over time.
The right bottom panel of figure 28 confirms our hypothesis as in this case the a2 and a3
parameters of the Amazon Transcom region cancel each other out approximately. Do note
that this type of visualization method does not show the exact pattern of a2 and a3, which
time series have indicated (not shown). The regularity of this pattern does suggest that the
terms cancel each other out over time as well.

0

5

10

15

20

25

30

 C
1 (

10
6 g

C 
m

2  s
1 )

100

50

0

50

100

150

200

250

1  
(°

)

Tropics ATTO Boreal ZOTTO
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

 C
2 (

10
6 g

C 
m

2  s
1 )

Tropics ATTO Boreal ZOTTO
100

50

0

50

100

150

200

250

2 (
°)

Figure 29: Top panels: Boxplot of the amplitude (C1) and phase(φ1) of the T-fit function.
Bottom panels: Boxplot of the amplitude (C2) and phase(φ2) of the T-fit function. The
tropics resembles the tropical Transcom region, ATTO resemble the ATTO small region,
Boreal resembles the Boreal Transcom region and ZOTTO resembles the ZOTTO small
region.
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The amplitude and phase of the Transcom regions and small regions is highly variable for
ATTO, while for ZOTTO shows a small variability. Within the ZOTTO small region, variability
between climate drivers is small as the small region falls within one gridbox (Kottek et al.,
2006). The Boreal Transcom region shows large variability of the phase and amplitude of the
parameters of the T-fit function. This can be explained by the approximately five different
climate zones in this region (Kottek et al., 2006). Note that the phase values of the Transcom
regions near 250° and -100° can be interpreted as the same value.

At the ATTO small region, the phase of the dry and wet season is subjected to interannual
variability, due to droughts and interannual fluctuations of the position of the ITCZ (van
Schaik et al., 2018; Phillips et al., 2009; Gruber, 1972; Adam et al., 2016). Next to that, the
amount of precipitation in the Amazon is spatial heterogeneous and causes a variable intensity
on droughts (van Schaik et al., 2018). And finally the location of a gridbox determines when
the ITCZ passes and therefore influences the start and end of the dry season (Fu and Li, 2004),
which causes the phase variability in the Amazon Transcom region and ATTO region. The
differences in the ATTO region are smaller compared to the tropical Transcom region as the
tropical Transcom region is simply larger. The results of the third and fourth harmonic are
shown in Appendix 8.1. With this information in mind, we would now like to check the global
performance when selecting one gridbox for each small region.
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Figure 30: RMSE of the small region T-fit function - T-fit function, which indicates the
performance loss of the small region T-fit function calculated from 2001-2010. The RMSE is
fairly evenly distributed among the Amazon Basin and extratropics, while it shows difficulties
at outer ranges of the African tropics.
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The strong point about this method is the better representation of the tropics and especially
of the Amazon Basin and Indonesian tropics relative to the RMSE of for example Europe. The
larger and more homogeneous a climate zone, such as the northwestern Amazon Basin and
the Australian desert, the lower the RMSE. Therefore the western equatorial strip of Africa is
shows a low RMSE increase of 0-2 µ gC m−2 s−1. While north of the African tropics until the
Sahara desert, multiple climate zones are located in a relative small region and therefore one
gridbox cannot represent a small region (Kottek et al., 2006).

The 4x6 region seems to perform well compared to its computational savings. The global
RMSE increase of the 4x6 T fit compared to the T-fit function is 3.19 µgC m−2 and for the
tropics the RMSE increase is 4.78 µgC m−2, which are large as the global T-fit function only
has a global RMSE of 1.81 µgC m−2. However, if we use the global averaged monthly NEE
values as indicator for its performance results improve. This is due to the fact that some
gridboxes in each small region are underestimated and others are overestimated, which leaves
us with a reasonable represented global land sink of -2.95 Pg yr−1 for the small region T-fit
function compared to -2.76 Pg yr−1 for the T-fit function.The RMSE error is thus not able
to show if the errors in the signal smoothen out spatially, which from a TM5 perspective will
occur as longitudinal atmospheric mixing is in the order of weeks (Bolin and Keeling, 1963).

4.3.3 Experiment 3: Extended Transcom fit function experiment

We have seen in the previous section that one gridbox cannot resemble the average time series
of a Transcom region. This time we will check if the total relative sum of the region (section
4.2) corresponds to the total sum of a single gridbox. If so, it should constrain the eventual
CO2 mole fraction difference with SiBCASA when we run it with our forward atmospheric
transport model TM5. Hereafter we will show you the the cumulative error experiment, which
will (1) indicate how much NEE monthly data we need to represent the whole time series
and therefore save computational costs.(2) Check whether it is more important to have a well
presented NEE sum in the first years or a probably decent presented NEE sum after the whole
time series, which is from importance when running the TM5 model from a cumulative error
propagation perspective. We will finally show the performance of the Transcom region proxy
with the use of the global RMSE, which from here we call the Transcom T-fit.

All gridboxes are able to represent the relative sum of each Transcom region very well for the
total time period it is optimized for, which is indicated by the left column of Table 1 This is due
to the fact that we do not take into account the amplitude and phase of the seasonal pattern
of the box, but only the 9 year total sum in this case. This implies that for implementing
each optimized gridbox for all gridboxes in each Transcom region, the total amount of NEE
is equal when we calculate the total NEE of each individual gridbox for a 9 year period. With
this method we checked all gridboxes to select the best gridbox and therefore do not save
computational costs spatially. Therefore we will next check if the selected optimized gridboxes
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after 1,2,4,8 years can resemble the 9 year total NEE flux of the Transcom region, when we
run the gridbox thus for the full 9 years.

1yr opt 2yr opt 4yr opt 8yr opt
1yr 9yr 2yr 9yr 4yr 9yr 8yr 9yr

TR1 1.00 0.18 1.00 2.28 1.00 1.02 1.00 0.85
TR2 1.01 0.67 1.00 0.20 1.00 0.67 1.00 0.88
TR3 1.02 1.14 1.02 0.97 1.02 0.97 0.99 0.99
TR4 1.01 2.44 1.24 0.58 1.03 0.17 1.02 0.68
TR5 0.99 1.30 1.01 0.51 1.00 0.86 1.00 1.55
TR6 1.03 1.22 0.98 0.77 1.02 0.77 1.00 1.04
TR7 1.00 0.49 1.00 1.55 1.00 0.38 1.00 1.17
TR8 1.01 1.29 1.00 0.52 1.00 0.64 1.00 1.21
TR9 1.01 1.93 1.00 0.92 1.00 1.13 1.01 1.01
TR10 1.00 3.46 1.01 79.78 1.00 22.11 1.01 0.37
TR11 1.00 1.72 1.00 0.32 1.00 1.28 1.00 1.15
Average 1.01 0.81 1.00 8.04 1.00 2.72 1.00 0.92

Table 1: Cumulative error experiment of the Transcom T-fit function from 2001-2010. Here
1 yr opt is thus the box optimization method for 2001. TR1 stands for Transcom region 1
etcetera, in which section 4.2.1 shows the corresponding name and location of each Transcom
region. The calculation of the performance is explained in section 4.2.

The cumulative error experiment can decrease computational costs by about a factor 1/9 as
optimizing for 8 years gives an representation of 0.92 of the sum of for a period of 9 years
(Table 1). However, this time we do not take into account phase and amplitude of the seasons.
TR10 shows large discrepancy of the performance compared to the other Transcom regions.
TR10 is the Australian continent and is known for its large IAV in the NEE signal and therefore
more difficult to get a well representative sum. Moreover, the northern part of Australia is
located in the tropical climate zone according to Kottek et al. (2006), which indicates that
selecting one gridbox to represent a desert and tropical climate zone seems not feasible. To
check whether a performance of 0.92 after a selection period of 8 years (Table 1) corresponds
to a good performance in terms of RMSE, we now show the global RMSE. This indicates the
representativeness of the seasonal cycle, which is not optimized in this method. We namely
optimized for a good representation of the total NEE fluxes for each period disregarding the
yearly seasonal cycle. Thus a gridbox with a large seasonal amplitude could perform equally
to a gridbox with a small seasonal amplitude and is one of the weaknesses of this method.
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Figure 31: Performance of the Transcom T-fit function of the optimized gridboxes for each
Transcom region after an optimization period of 8 years for an 9 year time series in terms of
RMSE.

The Transcom T-fit function is not efficient in terms of computational costs savings versus
performance decrease as the RMSE error is very high. Globally we have a RMSE of 6.37 µ
gC m−2 and in the tropics we have a RMSE of 8.62 µ gC m−2. Do note that the Amazon
Basin does not have the largest RMSE as one gridbox in northern South America is able to
somewhat represent the NEE signal of all gridboxes, due to the fact that the Transcom region
is dominated by the tropical climate zone. For Australia, we can confirm our earlier findings,
in which the northern tropical region of Australia is not well represented. Therefore the ability
to represent the seasonal well temporally and spatially seems of great importance as the 0.92
performance indicator after 8 out of 9 years in the previous cumulative error experiment does
not translate to a good performance in terms of RMSE.

4.4 Conclusion

We have seen that saving computational costs by a factor 3 temporally leads to a well repre-
sented RMSE, however does show a large structural bias in terms of monthly averaged NEE.
This is mainly caused by IAV in the first 3 years of the NEE signal, leading to parameteriza-
tion difficulties. Decreasing the spatial resolution, the 4x6 T-fit showed high global RMSE,
but global and tropical monthly NEE average are well presented indicating a potential good
performance in terms of atmospheric sensitivity as spatial NEE differences are smoothened.
The Transcom T-fit function shows a low performance compared to computational savings as
the seasonal cycle of different climate zone within a Transcom region are not well presented.
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5 Atmospheric sensitivity analysis of the fit functions with TM5

5.1 Introduction

The previous sections showed the possibilities of decreasing the computational costs from a
spatial and temporal perspective of the T-fit function. Here the monthly averaged NEE and
RMSE gave a first indication of the performance of these simplified NEE fluxes. The T/P-
fit function showed a good monthly average estimate, however does have difficulty capturing
the IAV of the signal for which an inversion can be applied. Before CarbonTracker can opti-
mize these simplified biosphere surface fluxes, they first need to be transformed to CO2 mole
fractions. Therefore the SiBCASA NEE output and its simplified NEE fluxes will be used as
input for the global chemistry transport model TM5 (Peters et al., 2005; Van der Laan-Luijkx
et al., 2017), (see Section 2). The TM5 model will run with simplified NEE fluxes as input
and will thus deviate from the TM5 run with SiBCASA. The atmospheric sensitivity of the
simplified NEE fluxes, with SiBCASA as reference, show whether they are suitable as input for
CarbonTracker.

The aim of this Section is therefore to capture the atmospheric sensitivity in the TM5 forward
model run with simplified different NEE input fluxes. This gains a deeper understanding of the
possibilities to implement the simplified NEE fluxes as input for TM5 and eventually as prior
for CarbonTracker. To reach our aim, we first need to answer the following research question:

1. Which processes contribute to the atmospheric CO2 signal in terms of growth rate,
seasonal amplitude, and background concentration at different locations?

The atmospheric CO2 concentration will be shown at four different atmospheric observatory
locations across the whole latitude of the Earth. This should show the latitudinal gradient
as the largest share, ∼ 90% of fossil fuel emissions occur in the Northern hemisphere while
taking into account the inter-hemispheric mixing of 1-1.5 years (Conway and Tans, 1999).
These locations are also selected in view of follow-up studies using an inversion run with
CarbonTracker to determine the quality of the prior (TM5 output). Therefore this Section will
take the CO2 time series with SiBCASA input as reference for the other runs. Hereafter we
can answer the main research question:

2. What is the sensitivity of atmospheric CO2 in forward atmospheric simulations using
TM5 with simplified NEE fluxes for different locations?
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5.2 Methods

This section will first explain more about TM5 and introduce the four observation stations and
explain how monthly and global mean CO2 concentration are determined. Hereafter the set-
up of the TM5 runs will be elaborated with its different inputs to determine the atmospheric
sensitivity.

5.2.1 TM5

TM5 is a two-way nested chemistry transport model which was originally set up to model
regional atmospheric composition (Krol et al., 2005). The entire Earth’s atmosphere is taken
into account as sources and sinks are not regionally limited. This is especially true for CO2,
which is a long-lived trace gas and therefore local sources are affected by long range transport
from anthropogenic emissions, which are not uniformly distributed around the Earth (Peters
et al., 2004).
However from a computational perspective, running TM5 on a high resolution global grid is
not possible. Therefore Krol et al. (2005) used the ’nesting’ approach, in which a regional
high resolution model transfers information into a global coarse resolution model. Thus the
global domain provides the boundary conditions for the nested region. This is the main new
feature of TM5 which originates from first tracer model set up by Heimann et al. (1988) and
builds upon the TM3 model, in which many of the parameterization and concepts are used.
TM5 has also been used to independent determine and verify the national and regional CO2

uncertainty of the United States to establish fossil fuel emission reduction targets (Basu et al.,
2016).

5.2.2 Observation stations and measurements of CO2 mole fractions

Throughout this Section, four CO2 observatory stations will be compared which comprises
the whole range of latitudes. The observations will validate the processes (e.g. atmospheric
mixing) taken into account for the reference TM5 run with SiBCASA input. The selected
stations are (1) Barrow, Alaska (71 °N, 157 °W), (2) Mauna Loa, Hawaii, (20 °N, 156 °W) (3)
American Samoa (14.2 °S, 171 °W), and (4) Antarctica, South Pole (90.0 °S, 59 °E) (Figure
32. These observatory stations are taken as baseline and represent the background air for a
large region from the Cooperative Global Air Sampling Network (Conway et al., 1994). The
observation stations are remotely located and therefore do not show significant CO2 ’spikes’
caused by local anthropogenic sources or vegetation (NOAA a, 2016). The observational data
can be found at NOAA c (2018)
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Figure 32: Locations of the four CO2 observation stations. From North to South: Barrow,
Mauna Loa, American Samoa and the South Pole (NOAA e, 2018).

For the determination of the monthly averaged CO2 mole fraction, daily averages from the
National Oceanic and Atmospheric Administration are in situ measured and fitted through the
curve fitting method of Thoning et al. (1989) as explained in NOAA f (2016) and Section
3.2.2. The daily averages are calculated from a selection of hourly averages which satisfy the
background concentration and therefore represent regional air. The selection process filters
out influences of nearby anthropogenic CO2 emissions and local vegetation. More detailed
information about the selection criteria is given by NOAA b (2018). The observational data
is available at (NOAA c, 2018).

The global CO2 mole fraction estimates are based on measurements from a subset of obser-
vation stations (NOAA d, 2016). Herewith only stations with mainly a well-mixed boundary
layer are selected, typically at remote locations at sea level such as the observation station at
American Samoa. Hereafter the noise of weekly measurements due to synoptic-scale atmo-
spheric variability is reduced with the smooth curve method of Thoning et al. (1989). The
global mean surface values are determined by a weekly synchronization period.

5.2.3 Settings of TM5 runs

TM5 can be run on global 4°x6°, 2°x3° and 1°x1° horizontal resolution (longitude x latitude)
and can perform with a vertical resolution of 25, 34 or 60 layers. The runs in this section
make use of a 4°x6° and 25 vertical layer resolution without the use of the nesting approach.
The coarse resolution decreases computational costs and the results are only used to test the
atmospheric sensitivity of the fit functions and therefore only used as indicators. The output
is in CO2 mole fractions and the temporal resolution is in months which is consistent with the
temporal resolution in Sections 3 and 4.
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The global mean surface values of the TM5 runs are obtained by averaging the TM5 output
CO2 mole fraction at every gridbox at surface level. The growth rate and latitudinal gradient
are calculated with the use of Thoning et al. (1989). The latitudinal gradient is obtained by
the difference of the background concentration of Barrow minus the background concentration
at the South Pole.

Name Input Resolution (lat x lon) Temporal (yrs)
SiBCASA SiBCASA 180 x 360 9
Fit function Fit function 180 x 360 9
T-fit Function T-fit function 180 x 360 9
4x6 fit function Fit function 180 x 360 9
Transcom fit function Fit function 180 x360 9

Table 2: Overview with the settings of the TM5 runs.

The results section for each location will show the sensitivity using different settings as input
for TM5 (2. The SiBCASA run will be used as reference rather than observations of the
stations themselves as the SiBCASA NEE fluxes have not been subjected to the ensemble data
assimilation of CarbonTracker just like the other simplified NEE fluxes.

For the fit function and T-fit function the SiBCASA signal is parameterized as elaborated in
Section 3. Note that the P-fit function is not used as input for a TM5 run, because the flux
analysis results in Section 4 show large resemblance and therefore will not show noteworthy
results for this atmospheric sensitivity analysis.

The 4x6 fit function and Transcom fit function will indicate the efficiency of saving compu-
tational costs versus simplifying the NEE fluxes. Herewith it would be ideal to use the 4x6
T-fit function, ext3-det-T-fit function and the Transcom T-fit function for the atmospheric
sensitivity analysis, but is not possible due to time constrains. Do note Section 3 showed only
a small performance difference between the fit and T-fit function and therefore the fit function
can be used as indication of the atmospheric sensitivity of the T-fit function for the simplified
NEE fluxes.

5.3 Results and discussion

This section will first address the processes which influence the CO2 signal of the stations
and which are not taken into account compared to observations. Herewith we will explain (1)
background concentration, (2) the seasonal cycle and (3) growth rate. This will also include
a comparison of the processes between the stations. Hereafter the differences in CO2 for each
station will be compared and the sensitivity of TM5 with the different inputs (see section 5.2)
will be determined.
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Figure 33: Accumulation of the CO2 components into the atmosphere over time for Mauna
Loa from 2001 until 2006.

The biosphere, ocean, fossil fuel and biomass burning fluxes are the four components, which
cause atmospheric CO2 concentration changes over time (Keeling et al., 1976) (Figure 33).
Here fossil fuel and biomass burning are CO2 sources and the biosphere and ocean are CO2

sinks. The seasonal cycle of Mauna Loa is mainly influenced by the biosphere due to the
seasonal cycle of GPP, R and therefore NEE (33).The amplitude of the seasonal cycle at
Mauna Loa is approximately 15 ppm from 2001 until 2006 and shows the largest IAV in terms
of amplitude and phase of the four components, due to climate variations.
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Figure 34: CO2 concentration at four stations for the time period of 2001 - 2010.

The long-term growth rate of the SiBCASA run and the observations show large discrepancy
(Figure 34), which cause the difference of about 0.5 ppm for the stations and globally (not
shown). The average growth of the four stations combined is 0.63 ppm yr−1 lower for the
SiBCASA run compared to observations which is line with global difference. The global average
observed growth rate is 1.97 ppm yr−1 and for the SiBCASA run only 1.36 ppm yr−1 (Figure
34).

The global terrestrial CO2 sink of SiBCASA is reasonably high compared to the findings of
Le Quéré et al. (2016) and could explain the lower atmospheric CO2 growth rate of SiBCASA
compared to observations. During the 2001-2010 period, SiBCASA has a global terrestrial
CO2 sink of -2.76 PgC yr−1, which is at the maximum range of Le Quéré et al. (2016) with a
global terrestrial carbon sink of -1.9 ± 0.9 PgC yr−1 between 2006 and 2015.
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As expected, the background concentration shows a development of the North-South CO2

latitude gradient (Figure 34), (Conway and Tans, 1999). Barrow shows correspondingly the
highest background concentration and the South Pole the lowest as anthropogenic emissions
are substantially higher in the Northern hemisphere and interhemispheric mixing is slow. The
difference between the two stations over the time period is 5.2 ppm on average and is sub-
stantially higher than the 4.0 ppm difference of Conway et al. (1994); Fraser et al. (1983),
which is concluded from the period of 1981 -1992. This trend can be explained by the relative
higher increase in anthropogenic emissions on the Northern hemisphere for the following years
(Boden et al., 2013). Current observations also show a 5.2 ppm Barrow-South Pole latitudinal
gradient and the long-term trend of the gradient shows minimal variability in both cases (not
shown). Therefore the interhemispheric mixing time of TM5 seems to be comparable with
observations.

The amplitude of the observations correspond with SiBCASA, whereby the Northern hemi-
sphere located stations show large seasonality in the CO2 mixing ratio with a gradual decay
towards the equator as explained by the biosphere component in the total CO2 time series
(Fraser et al., 1983; Matsueda et al., 2002; Denning et al., 1995). Together with the strongly
seasonal vegetation, meridional transport, and large scale convective mixing attribute to the
large seasonal cycle across the Northern hemisphere (Denning et al., 1995).

A relative small seasonal cycle can be observed in the Southern hemisphere compared to the
Northern hemisphere as indicated at the South Pole. The amplitude of the CO2 mixing ratio
is lower as land and thus the the terrestrial biosphere is smaller. The South Pole is still
able to represent this seasonal cycle due to interhemispheric mixing as mentioned in previous
paragraph.

At American Samoa, the observations are not dominated by the large seasonal cycle of the
biosphere fluxes. The location of the South Pacific Convergence Zone (SPCZ),a monsoon
through in the ITCZ, prevents easy mixing between the hemispheres(Murayama et al., 2003;
Matsueda et al., 2002). However, in the Australian summer the ITCZ is poorly defined as
it shifts northwards, which causes penetration of the Northern hemispherical air. This air
mixes with the Southern hemispherical air which has an opposite seasonal cycle and therefore
neutralizes the seasonal cycle (Waterman et al., 1989). Now we gained a better understanding
of the processes, which account for spatial and temporal patterns of CO2 mole fractions, we
now increase our understanding of the atmospheric sensitivity of the simplified NEE fluxes.
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Figure 35: Left panel: time series of the atmospheric CO2 mole fractions with SiBCASA and
its simplified NEE flux methods as input for TM5 for Mauna Loa from 2001 until 2010.
Right panel: time series of the simplified NEE flux methods with SiBCASA as reference for
Mauna Loa for 2001 until 2010.

The three simplified NEE flux methods show great similarity with SiBCASA in terms of global
atmospheric CO2 mole fraction (Figure 35). The fit and T-fit function both show approximately
the same atmospheric sensitivity of a CO2 mole fraction difference of 0.5 ppm compared to
SiBCASA (Figure 35).

In 2004 the T-fit function outperforms the fit function, while in 2009 the opposite is depicted.
Checking the RMSE’s, we have seen that the T-fit function outperforms the fit function with
an RMSE of 1.812 µgC m−2 s−1 compared to 2.163 µgC m−2 s−1 respectively, in terms
of NEE fluxes. The T-fit seems to have a larger structural bias in fitting the NEE fluxes of
SiBCASA compared to fit function. This means that the least square regression method when
calculating the T-fit function has a tendency to over or underestimate the NEE fluxes over
a time. This results in an equal performance compared to the fit function even though the
RMSE is lower. This shows the disadvantage of using the RMSE as performance metric.

The 4x6 fit function shows lowest performance as expected, due the largest RMSE and average
monthly NEE difference as concluded in section 4. Over time the error of the 4x6 fit function
increases due to the cumulative error propagation. The computational decrease of a factor
24 spatially has led to approximately a 1.5 ppm difference of CO2 mole fraction compared to
SiBCASA. This is quite a large difference as in CarbonTracker these errors are extrapolated in
its calculations (Koren and Peters, 2018).
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Globally and for the other three observatory stations, we obtain similar results with a 0.5 ppm
difference for the T-fit and fit function, and a within 1.5 ppm difference for the 4x6 fit function
(See Appendix 8.2). The largest differences are expressed in the monthly erratic behaviour
in terms of atmospheric sensitivity. Barrow is highly erratic from month to month while the
south pole shows low intermonthly variability at these small CO2 mole fraction differences. At
the south pole, the effect of the difference in biosphere fluxes between SiBCASA and the other
simplified NEE fluxes is smoothened as atmospheric mixing has taken place before it reached
the observatory station. On the other hand, Barrow is attached to the mainland of Alaska,
and surrounded by boreal forest in the south. Therefore the changes between SiBCASA and
the simplified NEE fluxes is more pronounced in the amplitude of the atmospheric sensitivity
at Barrow when the wind direction is favorable .

The ext3-det-T-fit function, is most likely not applicable for decreasing the computational
costs. The global terrestrial CO2 sink of the ext3-det-T-fit function compared to the 4x6 T-fit
function is substantially larger with a -2.95 PgC yr−1 and -2.87 PgC yr−1 respectively. Note
that SiBCASA and the T/P-fit function show a global terrestrial CO2 sink of -2.76 PgC yr−1,
all calculated over a time period from 2001-2010. This indicates that the CO2 mole fraction
difference will be larger than 1.5 ppm and therefore the performance decrease outweighs the
computational savings of a factor 3 from a temporal perspective.
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Figure 36: Left panel: time series of the atmospheric CO2 mole fractions with SiBCASA and
the Transcom fit function as input for TM5 for Mauna Loa from 2001 until 2010. Right
panel: time series of the Transcom fit function with SiBCASA as reference for Mauna Loa for
2001 until 2010.
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The atmospheric sensitivity analysis of the Transcom fit shows that the large potential com-
putational savings lead to a too large performance decrease with a maximum of 7 ppm and an
average of 5 ppm. This was also already concluded in section 4 and therefore the total sum of
the optimal selected gridbox can not resemble the relative sum of one Transcom. The method
is able to represent the total NEE fluxes for the nine years time period, however is not able
to represent the global seasonal cycle. On a global scale, the Transcom fit shows a maximum
atmospheric sensitivity of 4.8 ppm and an average of 3.2 ppm (Appendix 8.2).

5.4 Conclusion

The seasonal cycle of the atmospheric CO2 mole fraction is due to the seasonal cycle of
biosphere in especially the Northern hemisphere and well represented in TM5. The latitudinal
gradient is also well presented as it corresponds to Conway and Tans (1999). SiBCASA shows a
structural underestimation of the CO2 mole fraction of approximately 0.5 ppm. The fit function
and T-fit function show an atmospheric sensitivity of 0.5 ppm and therefore comparable with
SiBCASA, which indicate that both can be used to determine seasonal, interannual and long-
term trends. Further simplified NEE fluxes such as the 4x6 fit function, lead to an atmospheric
sensitivity of at least 1.5 ppm compared to SiBCASA, which is not suitable for inversions.
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6 Discussion and recommendation

To save computational costs, with around a maximum of 0.5 ppm difference compared to
SiBCASA, we can apply two strategies: (1) increase the performance of the T/P-fit function
and (2) decrease the computational costs less drastically.

6.1 Performance increase of the T/P-fit function

The seasonal cycle of NEE is captured well for the extratropics and for a large extent in the
tropics. The large IAV in the NEE signal in the tropics can only partly be resolved by introducing
the climate sensitivity parameter γ, which makes use of linear regression between NEE and T
or P anomalies. Rödenbeck et al. (2018) was able to link natural processes to γ and robustly
explain the effect of ENSO on the tropics and to a smaller extent for the tropics. However,
in our case, we were not able to biophysically interpret γNEE−T and γNEE−P as it seems
that the drought response of SiBCASA in the tropics is lacking (Section 3.3.3). Laan-Luijkx
et al. (2015) already showed that SiBCASA has difficulty capturing the drought response in
SiBCASA. In their case both the GPP and R lowered, causing a non-significant effect on the
NEE. A drought response lack was also captured by Van der Velde (2015) when studying the
effects of droughts on water-use efficiency.

One of the limiting factors of GPP in SIBCASA is the Rubisco enzymatic conversion (ωc),
which is a catalyst for photosynthesis. The limited rate of ωc (mol m−2s−1) is calculated with:

ωc = fc(Vm, ci, O2) (30)

Here fc is the full function as described in (Sellers et al., 1996b), Vm is the catalytic capacity
of the Rubisco enzym (mol m−2s−1), ci is the partial pressure of CO2 in the the leaf (Pa) and
ωc is also dependent on O2, which is the partial pressure of O2 in the leaf (Pa). And Vm is
given by:

Vm = VmaxfT (Tc)fw(Wi) (31)

Here Vmax is the maximum catalytic capacity of the Rubisco enzym (mol m2 s−1), Tc the
temperature at the top of the canopy (K), Wi is the soil moisture wetness and fT and fw are
the full functions as described by Sellers et al. (1996a). Therefore a limiting factor of GPP, ωc,
is dependent on Wi/ van Schaik et al. (2018) shows that the implementation of the surface
hydrology model PCR-GLOBWB with the precipitation product MSWEP improves the surface
hydrology of the Amazon Basin and supply SiBCASA with the soil moisture fraction. PCR-
GLOBWB does has an improved infiltration scheme and accounts for run-off unlike SiBCASA,
which has a high soil infiltration capacity, which leads to an under representation of the runoff
precipitation ratio. This has led to an improvement of the SiBCASA drought response in which
van Schaik et al. (2018) was able to distinguish the drought responses in different parts of the
Amazon and could therefore increase the interpretability of especially γNEE−P .
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The unknown deep rooting depth of the Amazon vegetation is a second uncertainty of the
drought response of SiBCASA in the Amazon (van Schaik et al., 2018) The rooting depth
is based on observations at one location in the Amazon, which may not be suitable for the
whole Amazon Basin (Maeght et al., 2013; Laan-Luijkx et al., 2015). Running SiBCASA
with an implementation of PCR-GLOBWB with MSWEP increases the drought response and
should improve the performance and interpretability of γNEE−P and also of γNEE−T as they
are closely linked (Berg et al., 2015). This also accounts for the implementation of a more
advanced deep rooting depth when more observations are available across the Amazon Basin.
Taller and older Amazon forests for instance are found to have a deeper rooting depth, which
makes them more resilient to precipitation variability as the forest has access to deep soil
moisture (Giardina et al., 2018). Giardina et al. (2018) therefore suggest that age and height
are another control factor of GPP in response to precipitation anomalies. Currently only the
Normalized Difference Vegetation Index (NDVI) is taken into account in SiBCASA, which is
derived from satellite data. This gives us an estimate about the green leaf biomass and is used
as input to estimate the GPP with the use of a photosynthesis model (Schaefer et al., 2008;
Ichii et al., 2001).

The findings of Giardina et al. (2018) are based on new remote sensing observations of sun-
induced fluorescence (SIF), which is a proxy of GPP. A satellite instrument at the top of the
atmosphere directly detects the wavelength of re-emitted light of chloroplasts during photo-
synthesis. SIF is therefore a direct observation of GPP and improves the signal especially
in the tropics as noise is reduced compared to other retrieval products (Koren et al., 2018).
SIF increases the spatio-temporal response of GPP and is able to detect a different response
between the eastern and western part of the Amazon. A comparison with Yang et al. (2018);
Jiménez-Muñoz et al. (2016); Gloor et al. (2018) showed that the largest anomalies of pre-
cipitation, temperature, terrestrial water storage and evapotranspiration are in line with SIF
anomalies. This would bypass the need of NDVI satellite data to estimate and constrain the
GPP fluxes, which could lead to an increased performance of the γNEE−P and γNEE−T and
their biophysical interpretation.

All recommendations could thus increase the T/P-fit function’s performance to capture the IAV
in the NEE time series. However, the results also suggest that adjusting the T/P-fit function
could improve its performance. The phase and amplitude of the T/P-fit function should for
example be dependent on climate anomalies as well, which should increase the performance
of the T/P-fit function in the tropical and semi-arid climate zones.
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To increase the performance and interpretability of γNEE−T and γNEE−P , we could make
use of a larger data set. Herewith we obtain a larger amount of NEE and T or P residuals
to estimate the monthly climate sensitivity parameter. For this estimation we have currently
used a linear regression dependent on only 9 years of residuals to estimate γNEE−T and
γNEE−P , in which a larger data set could decrease its uncertainty as well (Raudys and Jain,
1991). Moreover, a climate sensitivity parameter that would interpret both temperature and
precipitation would explain a larger portion of the IAV in the NEE signal, however would lead to
a non-physical interpretation. In the case of γNEE−T −P , we would first use linear regression
on the NEE IAV and T IAV to estimate the γNEE−T . Hereafter we would use a second
linear regression with the residuals of the T-fit function compared to SiBCASA and apply it
to the linear regression with P IAV, which is not possible as we would take the residuals of
the IAV.Another possible subsequent step can be running an T/P-fit function inversion with
CarbonTracker, which could optimize the climate sensitivity parameters γNEE−T and γNEE−P .

6.2 Performance increase of the computational saving methods

For the second strategy we recommend to increase the spatial resolution to a 2°x3° (lat/lon)
grid. The 4°x6° fit function showed differences up to 1.5 ppm, in which one NEE time series
represents an approximate 450 km by 650 km area. When increasing the resolution, the
climate zone overlap in a 2x3 local region will significantly lower according to the climate zone
classification of Køppen-Geiger (Kottek et al., 2006). The higher resolution should lead to a
better performance as one gridbox will represent a 2x3 local region better. Do note that it will
possible resemble a better atmospheric resemblance of the NEE fluxes compared to a saving
costs temporally.

When decreasing the temporal costs by a factor three, the global RMSE increases by a factor
1.7 compared to the T-fit function. While decreasing the spatial resolution to 6°x4° small
regions, we obtain a global RMSE increase by a factor 2.8. The downside of the temporal
cost savings is the large structural bias as we parameterize the NEE time series in the three
year. If for example droughts occur in these years, an overestimation of IAV in the NEE signal
is parameterized, which leaves us with a over or under estimation of especially the seasonal
cycle. Next to the seasonal cycle, the IAV can only be estimated from three data points as
the we estimate monthly γ values. Herewith we observe a large structural bias as the 9 year
monthly average NEE fluxes do not correspond to those of SiBCASA. To make this method
more robust, a larger sample of the original dataset is needed to parameterize a T-fit function.
This should lead to a lower RMSE and more importantly a better representation of the monthly
NEE fluxes, which seem a better indication for the atmospheric sensitivity analysis.
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7 Conclusion

Anthropogenic carbon emissions accelerate climate change and impact the global carbon cycle.
About 25% of CO2 is currently taken up by the terrestrial biosphere (Quéré et al., 2015). The
carbon fluxes are subjected to seasonal, interannual and long-term trends and substantial
variability, which are for a large share a response to climate variations and trends. The 2010
drought in the Amazon for example, turned the Amazon from carbon sink into a carbon source
and herewith increased the atmospheric growth rate in 2010. The effect of GPP and R on in
particular droughts contributes to largest land sink uncertainties.

To constrain the climate carbon cycle responses, it is essential to employ observational records.
However, commonly used Eddy Covariance measurements can only be used for a very local
scale and large scale observations are scarce (Baldocchi et al., 2001). Therefore biogeochemical
models are set up to quantify the large scale-carbon fluxes such as SiBCASA (Schaefer et al.,
2008). To decrease the uncertainty of the model, inverse modelling can applied which optimizes
the carbon fluxes with the use of CO2 mole fraction observations (Peters et al., 2005). The
data assimilation system CarbonTracker, can optimize these fluxes, however is computational
costly as weekly calculations have to be performed.

To quantify carbon fluxes on a longer time scale to capture the interannual and long-term
trend, (Cox et al., 2013) identified an emergent linear relationship between the sensitivity of
the annual atmospheric CO2 growth rate and sensitivity of tropical land carbon storage to
warming. (Rödenbeck et al., 2018) based his statistical model on the findings of (Cox et al.,
2013) to obtain a climate sensitivity parameter (γNEE−T , with the use of linear regression of
the NEE and T anomalies.

Together with the least square regression model of (Thoning et al., 1989), we build are own
statistical model, which captures the seasonal and NEE IAV with SiBCASA as input. We based
our statistical model on both γNEE−T and γNEE−P (precipitation) to capture the response of
droughts in especially the Amazon, which we called the T or P-fit function. Both fit functions
show similar results performance wise as the seasonal NEE cycle is captured well globally.In
regions with highly pronounced IAV in the NEE time series, such as the tropics, the performance
of the T/P fit functions decreases with a factor 1.5 approximately in terms of RMSE. The
biophysical interpretation of γNEE−T does not correspond with the findings of (Rödenbeck
et al., 2018) as SiBCASA does not show a good drought response due to a lack of detail in
the surface hydrology. Moreover, an inversion run would increase the representation of the IAV
in the NEE time series and biophysical interpretation of the γ’s would increase. The fit and
T-fit function both showed an atmospheric sensitivity of 0.5 ppm when using these simplified
NEE fluxes as input for the atmospheric transport model TM5. This atmospheric sensitivity is
suitable as potential prior for CarbonTracker as SiBCASA also shows an atmospheric sensitivity
of 0.5 ppm compared to observations over a 9 year time period.
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To further save computational costs we have (1) used less monthly NEE data to parameterize
the T-fit function with temporal savings of a factor 3. The global RMSE square error was
reasonable low, however the structural bias was high when IAV in the parameterization period
was pronounced. This will very likely lead to an atmospheric sensitivity of >1.5 ppm compared
to SiBCASA over a 9 year time period. Therefore a larger portion of the monthly NEE data
need to be taken into account the parameterize the SiBCASA NEE time series to decrease the
structural bias and decrease its atmospheric sensitivity.

We also (2) decreased the spatial resolution of the T-fit function, in which one gridbox was
selected to represent a 4° x 6° (latitude x longitude) small region. This method showed a high
RMSE, but a relatively small global monthly NEE difference compared to the original T-fit
function, due to the absence of a structural bias. The atmospheric sensitivity of the 4x6 fit
function is within a range of 1.5 ppm over a 9 year time period, and is therefore not suitable
as prior for CarbonTracker. To decrease the atmospheric sensitivity further research with the
use of higher resolution is needed. We (3) finally checked the spatio-temporal resemblance of
one gridbox for a whole Transcom region of the T-fit function, which showed a high RMSE
as the NEE fluxes were too strongly simplified lead to an global atmospheric sensitivity of 3.2
ppm approximately.

The T/P fit function thus show possibilities to decrease the computational costs of Carbon-
Tracker and resolve seasonal, interannual and long-term NEE patterns. Current research to
new climate and carbon flux proxies could further enhance our understanding of the impact
climate variability to the terrestrial carbon cycle.
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8 Appendix

8.1 Appendix A
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Figure 37: Top panels: Boxplot of the amplitude (C3) and phase(φ3) of the T-fit function.
Bottom panels: Boxplot of the amplitude (C4) and phase(φ4) of the T-fit function. The
tropics resembles the tropical Transcom region, ATTO resemble the ATTO small region,
Boreal resembles the Boreal Transcom region and ZOTTO resembles the ZOTTO small
region.
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8.2 Appendix B
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Figure 38: Left panel: time series of CO2 mole fraction of the simplified NEE fluxes. Right
panel: time series of atmospheric sensitivity of simplified NEE fluxes compared to SiBCASA.
Both are time series of Barrow observatory station, United States .
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Figure 39: Left panel: time series of CO2 mole fraction of the simplified NEE fluxes. Right
panel: time series of atmospheric sensitivity of simplified NEE fluxes compared to SiBCASA.
Both are time series of American Samoa (SMO)
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Figure 40: Left panel: time series of CO2 mole fraction of the simplified NEE fluxes. Right
panel: time series of atmospheric sensitivity of simplified NEE fluxes compared to SiBCASA.
Both are time series of the South Pole (SOP)
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Figure 41: Left panel: time series of CO2 mole fraction of the simplified NEE fluxes. Right
panel: time series of atmospheric sensitivity of simplified NEE fluxes compared to SiBCASA.
Both are global time series.)
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Figure 42: Left panel: time series of CO2 mole fraction of the 4x6 simplified NEE fluxes. Right
panel: time series of atmospheric sensitivity of simplified NEE fluxes compared to SiBCASA.
Both are time series of Mauna Loa (MLO).
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