Improving genomic prediction in numerically small Red dairy cattle populations

Jovana Marjanovic, Hulsegge B., Schurink A., Calus M. P. L.

EAAP, 2018

Acknowledgement

Project: ReDiverse

European Red dairy breeds (ERDB)

Unique genetic variation

Well adapted to diverse environments

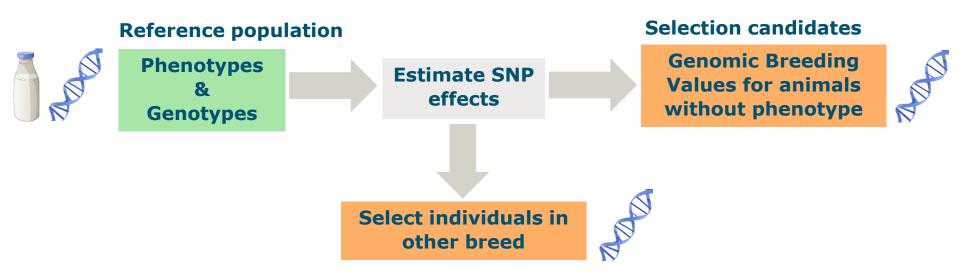
Robust in terms of functional and health traits

Historical and cultural value

- Increasingly replaced

Genetic diversity of ERDB is endangered

European Red dairy breeds


- ReDiverse project
- Preserve biodiversity within and between ERDB
- Conservation through utilization
- Increase competitiveness

Genomic prediction

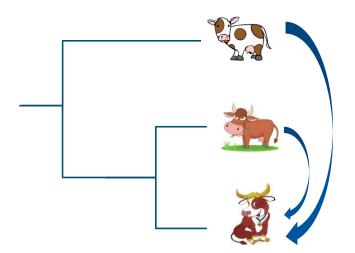
- Accelerate genetic improvement of production traits
- Genomic selection
- Increase economic perspectives for farmers
- Increase long-term perspectives ERDB

Principle of GP

- Many of ERDB are numerically small
- Breed-specific RP is challenging

Reference population

Alternative - multi-breed RP



- Not all breeds are useful, how to prioritize?
- We propose Effective number of chromosome segments (M_e)

Breed	Country	Herd- book animals
Modem Angeln Dairy Cattle	Germany	10,000
Traditional Angeln Dairy Cattle	Germany	150
Red and White Dual Purpose	Germany	4,000
Vorderwälder Cattle	Germany	6,600
Hinterwälder Cattle	Germany	600
Rotes Höhen Cattle	Germany	1,500
Modem Red Danish Dairy Cattle	Denmark	40,000
Traditional Red Danish Dairy Cattle	Denmark	~ 200
Swedish Red and White Cattle	Sweden	130,000
Swedish Polled	Sweden	~1,200
Finnish Ayrshire	Finland	190,000
Estonian Red	Estonia	18,000
Lithuanian Red	Lithuania	30,295
Latvian Brown	Latvia	44,280
Meuse-Rhine-Yssel	Netherland	17,771
Dutch Red Friesian	Netherland	700
Deep Red	Netherland	1,563
Groningen White Headed	Netherland	2,488
Improved Red	Netherland	1,283

M_{e}

- Indicator of relatedness
- Directly predict expected accuracy
- $\hfill\blacksquare\ M_e$ within the population and across two populations

- lacktriangle Within M_e Chrom segments that are segregating independently
- Across M_e consistency of LD between populations/breeds

$$\mathbf{M}_{\mathrm{e,w}} = \frac{1}{Var(G_{ij} - A_{ij})} \qquad \mathbf{M}_{\mathrm{e,a}} = \frac{1}{Var(G_{pop1_ipop2_j} - A_{pop1_ipop2_j})}$$

Objectives

- Estimate
 - M_e within breeds
 - M_e between each pairwise combination of breeds

Breed	Country	Herd-	-
		book	
		animals	
Modem Angeln Dairy Cattle	Germany	10,000	_
Traditional Angeln Dairy Cattle	Germany	150	
Red and White Dual Purpose	Germany	4,000	
Vorderwälder Cattle	Germany	6,600	
Hinterwälder Cattle	Germany	600	
Rotes Höhen Cattle	Germany	1,500	
Modem Red Danish Dairy Cattle	Denmark	40,000	
Traditional Red Danish Dairy Cat	tle Denmark	~ 200	
Swedish Red and White Cattle	Sweden	130,000	
Swedish Polled	Sweden	~1,200	
Finnish Ayrshire	Finland	190,000	
Estonian Red	Estonia	18,000	
Lithuanian Red	Lithuania	30,295	
Latvian Brown	Latvia	44,280	
Meuse-Rhine-Yssel	Netherland	17,771	
Dutch Red Friesian	Netherland	700	
Deep Red	Netherland	1,563	
Groningen White Headed	Netherland	2,488	
Improved Red	Netherland	1,283	

Data & Analysis

- BovineSNP50 data 38,991 SNPs after QC
- Individual call rate > 90%, SNP call rate >95%, MAF > 5%
- Data on 5 breeds CGN, WUR

Breed	N
MRY	423
Groningen White Headed (GWH)	129
Dutch Belted (DB)	41
Dutch Friesian (DF)	352
Deep Red (DR)	44

M_e - calc_grm

	MRY	GWH	DB	DF	DR
MRY	293				
GWH		151			
DB			104		
DF				212	
DR					149

	MRY	GWH	DB	DF	DR
MRY	293				
GWH	17906	151			
DB	14883	16315	104		
DF	16452	10890	7625	212	
DR	3662	17516	17047	14560	149

- MRY and DR are most closely related
- DF was most closely related to DB
- For GWH, DF was the closest breed
- The most distant relationships DR and DB, DR and GWH, and GWH and MRY

Adding individuals from other breed

- $n_{P,2} = \frac{h_1^2}{h_1^2} \frac{M_{e_{1,2}}}{M_{e_1}} n_{P,1}$
- To obtain the same increase in accuracy

$$r_{G_{1,2}=1}$$

	Population 2						
		MRY	GWH	DB	DF	DR	
-	MRY	1	61	51	56	13	
Population	GWH						
	DB						
	DF						
	DR						

- Adding individuals from other breed
- To obtain the same increase in accuracy

$$n_{P,2} = \frac{h_1^2}{h_1^2} \frac{M_{e_{1,2}}}{M_{e_1}} n_{P,1}$$

$$r_{G_{1,2}=1}$$

	Population 2							
		MRY	GWH	DB	DF	DR		
-	MRY	1	61	51	56	13		
ition	GWH	119	1	108	72	116		
Population	DB	144	158	1	74	165		
Ā	DF	78	51	36	1	81		
	DR	25	117	114	97	1		

Conclusions

M_e:

- Shows high variability in relatedness
- Shows which breeds to use in multi-breed RP

Multi-breed RP:

- Should be much larger than single-breed RP
- Beneficial for some small breeds (DR)

